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Figure 4.4 Buckling of the two parallel leaf spring stage. When the compressive load
exerted on the table reaches the critical load, the leaf springs buckle, taking the shape
illustrated in (a). The leaf springs may buckle inward or outward at random. When the
leaf springs buckle, the system becomes unstable. To be able to observe it in this state,
a fixed stop must be added. The critical load is independent of the deflection f of the
leaf spring: the critical load of leaf springs (b) and (c) is the same. The Euler column
equivalent to load case (b) is represented by (d).

It is vital to remember here that the buckling model that we use makes the
assumption that the beam remains within the elastic deformation range for all
loads ranging up to the critical load 0 6 N̄ < N̄c. Thus, the critical load that we
have just calculated forms a threshold beyond which the system is inevitably
destroyed by a phenomenon of elastic instability regardless of the elastic limit
of the material used. In actual fact, the material used has a finite elastic limit.
As a result, depending on the case, the system could be destroyed by the onset
of stresses in the leaf springs that exceed the stress allowed by them, for loads
below the critical load, i.e., before elastic instability occurs. At this stage of our
development, we can draw just one conclusion – the allowable load of a table
with parallel leaf springs is always less than its critical load:

N̄adm 6
8π2EI

l2 . (4.20)

At the end of this section we will prove that for small deflections in relation
to the maximum deflection allowed by the two parallel leaf spring stage, the
allowable load is well and truly equal to the critical load. However, for larger
deflections (close to fadm), the elastic limit is exceeded at loads below N̄c.

Tensile/compressive behaviour in the elastically stable domain

Let us consider once again that the force P̄ is applied to point B and that it thus
does not induce any tensile/compressive forces in the leaf springs: T1 = T2 = 0.
This force causes the mobile block to move through a distance f , which this
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Figure 4.11 Allowable deflection as a function of load. This function comprises
four sections. The first, for N < 0, is defined by (4.51). The second, for 0 6 N < No,
is defined by (4.52). The third, for No < N < Nc, has not been calculated. All that
we know about it is that it is located above fadm(Nc). The fourth section, for N = Nc,
is a vertical straight line defined by (4.58). This figure corresponds to a case for
which condition (4.55) is fulfilled. This graph may also be construed as a plot of
the allowable load as a function of deflection. We have shown that all the load and
deflection combinations corresponding to the shaded area do not produce stresses
greater than the allowable stress.

From (4.33) and (4.39) we know that

P = K f = (Ko−
Ko

No
N) f ,

which allows us to eliminate P from equation (4.45) and find the moment at the
beam’s clamped ends as a function of the deflection f and the load N:

M = f
(

N
2
+

Kol
2
− KoNl

2No

)
. (4.46)

According to (2.3), this moment, in applying a bending load on the leaf spring,
induces a stress

σ f lex =
6M
bh2 . (4.47)

The force N also applies a compressive load on the leaf spring and induces a
stress

σcomp =
N
bh

. (4.48)
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Figure 4.12 Like Fig. 4.11, this figure presents the allowable deflection as a function
of load. But, unlike the case in the previous figure, the condition (4.55) has here not
been fulfilled. The consequence is that the allowable deflection decreases as the load
increases between 0 and No.

The maximum stress that occurs in the leaf spring is the sum11 of the stresses
due to the bending moment and the compressive force

σ = σ f lex + |σcomp|. (4.49)

By combining (4.46), (4.47), (4.48) and (4.49), we obtain the stress as a function
of load and deflection:

σ = 3 f
(

Eh
l2 +

N(π2−12)
bh2π2

)
+

∣∣∣∣ N
bh

∣∣∣∣ . (4.50)

By isolating f in this equation, we can deduce the formula for the allowable
deflection as a function of the allowable stress (Fig. 4.11 and Fig. 4.12):

fadm =
hl2π2(N +bhσadm)

3bEh3π2 +3l2N(π2−12)
valid for N < 0 (4.51)

fadm =
hl2π2(−N +bhσadm)

3bEh3π2 +3l2N(π2−12)
valid for 0 6 N < No

(4.52)

11 The term σ f lex is always positive regardless of the sign of N. As for the stress σcomp, it is
negative when the load exerts a tensile stress on the leaf springs (negative N). This is why the
absolute value is used in (4.49).




