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Preface

The Mechanics of Continuous Media (MCM) offers a unified approach to the
concepts and general principles for modeling the motion or deformation of di-
verse materials. By considering an appropriate length scale, based on the molec-
ular arrangements or the microstructure, any material can be approximated by
a continuum where smoothly varying properties are assigned to every point in
space occupied by the investigated body at a given time during its motion.
This topic of mechanics was considerably developed in the second half of the
20th century, and today is considered an important subject in all branches of
continuum physics.

The reasons for this development are the modeling of new materials with un-
usual mechanical behaviors in solid or fluid form including rubber, polymers
and gels, living tissues, and soft matter. If we consider classical continuum
like air or water, the phenomena of turbulent flow are far from being under-
stood in their totality and this area is still a subject of intense research. Also,
modern engineering analysis uses sophisticated tools for design of advanced
structures and devices in transportation, energy, life science, sports, etc. These
tools involve simulation software that performs numerical integration of partial
differential equations that describe the continuous models. In order to be able
to analyze the results obtained, the engineer must have a sound theoretical
foundation.

This book presents the basic concepts for the mathematical modeling of classi-
cal solid and fluid continuous media. In the first chapter the indicial notation is
defined and discussed with several examples to illustrate its use in demonstra-
tions of vector identities. The theory of Cartesian tensors and their properties
are presented afterwards. Next, the important relations of polar decomposition
of a tensor are given. The different vector operators are defined with several
illustrative examples, and the mathematical tools and theorems necessary to
develop the continuous mechanics model are described.

In chapter 2 the kinematics of a continuum is developed using the Lagrangian
(material) and Eulerian (spatial) descriptions. The material derivative is de-
fined, and velocity and acceleration are introduced. The motion of a rigid
body is described afterwards, followed by the definitions of the deformation
gradient tensor and the various deformation tensors, the properties of which
are illustrated in detail with representative examples. The transformation of
line, surface, and volume elements between material and spatial coordinates are
explained. Also developed in this chapter is the important topic of lineariza-
tion to obtain the infinitesimal strain tensor used in linear elasticity followed
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by the definition of the deformation gradient tensor. In the last part of this
chapter, the objectivity with respect to two different observers is defined and
the relevant definitions of objective tensors are given.

In chapter 3, entitled dynamics of continuous media, the laws of conserva-
tion of mass, momentum, and angular momentum are presented. Cauchy’s
stress tensor, Cauchy’s theorem, and the equations of motion of a continuum
using spatial description are introduced. The properties of the stress tensor
and the equation of equilibrium are analyzed to illustrate their significance in
continuum mechanics. Representative simple examples are given to illustrate
the importance of stress and the properties of Cauchy’s stress tensor. The
Piola-Kirchhoff stress tensors with respect to the material description are also
defined. The effect of linearization is highlighted, and its ramifications for the
Cauchy and Piola-Kirchhoff stress tensors are illustrated.

Chapter 4 is devoted to the thermodynamics of continuous media. The first
principle, which deals with the conservation of total energy, is developed in
detail using the spatial description followed by the principle of conservation
of mechanical energy in the material description to arrive at the set of con-
jugate tensor parameters that define energy. The notion of entropy is dis-
cussed afterwards, followed by the second principle of thermodynamics and the
Clausius-Duhem inequality to account for the irreversibility of the phenomena
in a continuous medium. The general principles for establishing constitutive
equations are described in chapter 5.

In Chapter 6 classical Newtonian fluids are introduced, followed by the theory
of hyperelasticity from which the constitutive laws of hyperelastic materials
are deduced. The description is illustrated with simple representative cases
of hyperelastic material behavior. The infinitesimal linear isotropic elasticity
theory is defined next. After introducing Fourier’s law for heat conduction, the
chapter ends with considerations of the second principle of thermodynamics
applied to viscous fluids, ideal gases, and linear elastic materials.

The seventh chapter deals with linear, isotropic elasticity. In the first part the
general theory is defined for solids in static equilibrium, followed by the defini-
tions of plane strain and plane stress. Afterwards, the methods of solutions of
Navier’s equations using the method of potentials are presented with applica-
tions to selected problems. The solution to some advanced problems including
those of Kelvin, Cerutti, and Boussinesq are discussed next. The important so-
lution method based on Airy’s stress function is developed for two-dimensional
problems with examples of solutions for representative problems. In the second
part of the chapter, the wave propagation equation in linear elastic solids is
deduced from Navier’s equations, and the solution for Rayleigh surface waves
is discussed in some detail. Lastly d’Alembert’s solution to the one-dimensional
wave equation is provided with representative examples.

The last chapter deals with the mechanics of Newtonian fluids. Some physical
observations are presented for laminar and turbulent flow of an incompressible
fluid and then, for subsonic and supersonic flow of a compressible fluid. The
Navier-Stokes equations are derived in compressible and incompressible cases.
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Analytical solutions are proposed for simple cases. The dynamics of vorticity is
described. The equation for the fluid circulation is presented and the Bernoulli
equation is obtained. The chapter ends with acoustic waves and simple solu-
tions for steady state, irrotational, and isentropic flow of a perfect compressible
fluid.

Appendices give the necessary additions to follow the work and represent the
field equations in cylindrical and spherical coordinate systems. A list of symbols
and suggestions for solutions to the exercises in each chapter are also provided.

This book is the result of our teaching of the Mechanics of Continuous Media to
second-year students in mechanical engineering at the EPFL and contributes
modestly to the knowledge base in this direction. The subject is developed in
a simple-to-follow pedagogical manner that a reader can work through on her
own.

Audience: This book is intended for engineering and physics students who want
to learn the basic principles of continuum mechanics. They will find in this work
a complete modern introduction that opens the door to this vast territory of
knowledge. For an introductory course in continuum mechanics in engineering
or physics curricula, we recommend covering the first four chapters, i.e., Carte-
sian tensors, kinematics, dynamics, and energetics of continuous media as well
as selected sections in chapters 6, 7 and 8 on constitutive equations for solids
and fluids.

Prerequisites: We assume that potential readers have taken courses in Newto-
nian mechanics, linear algebra, calculus, and an introductory course in struc-
tural mechanics. The curious reader will also be able to further explore this
area by referring to the many more advanced texts quoted in the bibliography.
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General Rules for the Notations: In this monograph, the scalars are in italic
characters, such as p and T . Vectors and tensors are in bold italic characters,
such as v, σ and L. Matrices are in italics in square brackets, for example,
[C]. When tensors are written in index notation, the indices are chosen in
most cases from the letters i, j, k, l, m, n. Therefore the vector v will have as
components vi and the second order tensor σ will have components σij .

John Botsis
Michel Deville

Lausanne
September 2018
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Chapter 1

Cartesian Tensors

1.1 Introduction

The Mechanics of Continuous Media (MCM) is the branch of mechanics for
modeling the behavior of solid or fluid materials. We know from physics that
matter is composed of elementary particles. At the atomic scale (on the order
of a nanometer or less) one would typically use statistical mechanics to describe
the physical phenomena. In fact, every constituent“particle”could be described
with Newtonian laws, but the value of Avogadro’s number, NA = 6× 1023 per
mole, renders any solution of the resulting set of equations impossible, either
analytically or numerically. In the case of compressible fluids, the kinetic theory
of gases is a good example of a statistical approach using a probability density
function to describe the particle in a phase space of velocity and position.
These particles undergo random Brownian motion characterized by the mean
free path λ. This leads to the definition of the Knudsen number Kn = λ/L,
the ratio of the mean free path to a reference length, L, for the problem under
consideration. If Kn < 1, the medium is sufficiently dense to allow the behavior
of individual particles to be ignored; the continuous medium hypothesis at the
scale L is valid. If, on the contrary, Kn ∼ 1 or Kn > 1, then the continuous
medium model is no longer appropriate. It is thus seen that the notion of a
continuous medium depends directly on the observation scale.

Another way to define the notion of a continuous medium consists of study-
ing the evolution of the mass density or simply the density of a cube as a func-
tion of its size. For simplicity, we consider water as the physical system in a cube
centered on a point P with sides of length h. A certain number of molecules are
found in the cube with an average density ρh defined as ρh = Mh/h

3, where
Mh is the mass of water in the cube.

Now consider the variation of ρh as a function of h at a given time. When
h is very small, the cube contains just a few molecules and a small change in h
causes a large change in ρh, as molecules may be excluded when h is reduced.
Note that 1 cm3 contains around 3×1022 water molecules and when h is around
10−7 cm there are about 30 water molecules in the cube. Thus, large variations
of ρh are expected for values less than h∗ ∼ 10−7cm (fig. 1.1).

Above this value of h, corresponding to the characteristic value ρh = ρ∗,
the density is constant, assuming uniform temperature in the medium, and it
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ρh

ρ*

10–7 h (cm)

Fig. 1.1 Qualitative variation of the average mass density inside a cube of water of
size h

is considered to be the density of water at point P under the approximation of
continuous media. Continuous velocity, acceleration, etc., can be defined using
similar reasoning. Another example where the continuous medium hypothesis
can easily be invalid and where the size of the cube must be precisely defined
is for a system with a porous structure. When h is very small, small variations
in size can result in large variations in density (fig. 1.2).

The density becomes independent of h, i.e., ρh = ρ∗, (and thus of the size
of the cube) above a certain limiting value h∗, and remains so as long as the
microstructure of the solid stays the same. In general, large variations of the
density or other physical variables are observed when h is of the order of the
dimension of the microstructure (that is, the distance between molecules or
the characteristic length in a material with a complex microstructure found in
porous, polycrystalline, or composite materials).

ρh

h* h

ρ*

Fig. 1.2 Qualitative variation of the average mass density of a porous material inside
a cube of size h
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Therefore, for engineering analysis or design it is not necessary to go down
to the atomic or microstructure scale. For these purposes we consider the ma-
terials to be continuous so that they can be modeled at the macroscopic scale.
This simplification of the reality ignores the discrete nature of the material and
considers that its properties such as viscosity, density, elastic modulus, etc.,
attributed to a point in the medium, are spatially continuous functions. These
quantities are the averages obtained over a large number of particles inside a
small volume of material containing the point. The specific dimension h of
the volume element depends on the structure of the medium and needs to be
defined with mathematical techniques and physical arguments.

The theory that we will develop is a phenomenological theory, which rep-
resents the generalization of the rational laws of mechanics (point mechanics)
to continuous media. With respect to statistical mechanics, the models that
we will establish are mathematically satisfactory. We will consider that the
transformation between two regions of space that the material can occupy at
different times is a continuous transformation. With this abstraction we may
speak of the velocity at a point in a more suitable way than for the same notion
based on a molecular model. For the latter we would need to take the average
velocity of the molecules in the neighborhood of the point under consideration.
Thus, the question of the definition of a neighborhood becomes crucial. If it
is too large, its relation to the point is lost; if it is too small, the notion of an
average is in doubt. To establish a valid link between molecular and continuous
models, it is necessary to employ more sophisticated notions of average which
are beyond the scope of this book.

The beginner in MCM may wonder why the first concepts introduced are
related to vectors and tensors. The reason is that tensors and the associ-
ated algebra are the natural tools for the theory of fields or continuous media.
Specifically, we would like the physical quantities that describe a continuous
medium to be independent of the coordinate system in which we work. This
objective can only be attained by using tensors.

Numerous publications dedicated to MCM deal with the vector and tensor
tools used in MCM. Not intending to be exhaustive, we refer the reader to the
following for complementary reading: [2, 8, 20, 24, 36, 45].

1.2 Vector Algebra

1.2.1 Generalities

In mechanics of continuous media, motion and the associated physical quan-
tities are described in Euclidean space R3 (physical space) with which a
three-dimensional vector space E3 is associated. The elements of R3 and E3

are called the points and vectors, respectively. The scalars, vectors, and tensors
that describe the physical quantities which will be introduced later on are also
attached (most of them) to a space (typically R3) and form what are called
scalar, vector, or tensor fields.
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First recall that a vector space is defined uniquely from the properties
of operations on its elements and assumes the existence of an arbitrary field
(typically the field of real numbers R) whose elements are called scalars. The
vector space E3 is then the set of elements denoted u, v, w, . . . such that

u+ v ∈ E3 au ∈ E3

(u+ v) +w = u+ (v +w) 1u = u
∃0 ∈ E3 | u+ 0 = u a(bu) = (ab)u
∃ − u ∈ E3 | u+ (−u) = 0 (a+ b)u = au+ bu
u+ v = v + u a(u+ v) = au+ av

(1.1)

for every u,v,w ∈ E3 and a, b ∈ R. We note that the axioms (1.1) can
be divided in two. Those in the first part concern the additive structure of
the vector space and show that E3 is a commutative group with respect to
addition. The other axioms translate action of the body R on the vector space
(distributive with respect to vector and scalar addition).

By providing E3 with a scalar product, in order to later be able to calculate
lengths and angles, it takes the name Euclidean space. The scalar product
associates with every pair of vectors u,v ∈ E3 a scalar denoted u · v with the
following properties:

u · v = v · u
u · (αv + βw) = α(u · v) + β(u ·w)

u · u ≥ 0

(1.2)

for every u,v,w ∈ E3 and α, β ∈ R. The scalar product is consequently an
application of E3×E3 in R that is linear with respect to each of its arguments.
It is also called a positive definite bilinear form as shown in the last relation
in (1.2). The scalar product permits the definition of the vector norm u,
denoted ‖u‖ by the relation

‖u‖ =
√
u · u . (1.3)

The vector u is called a unit vector when ‖u‖ = 1, and two vectors u and v
are orthogonal if and only if u · v = 0. Every vector in E3 can be decomposed
uniquely according to a basis formed of three linearly independent vectors of
E3. The choice of a basis is arbitrary but generally one uses the canonical
basis (e1, e2, e3) defined by

ei · ej =

{
1 if i = j
0 if i 6= j , i, j = 1, 2, 3.

(1.4)

As (1.4) shows, the vectors of the canonical basis are unit vectors and each pair
is orthogonal (that is, orthonormal). The basis is called orthogonal when the
basis vectors are not unit vectors but are still orthogonal.

By choosing a fixed point O (arbitrary) in the space R3, we have a cor-
respondence between each vector x of E3 and one and only one point P in
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R3 (different than O) such that OP = x. The Cartesian coordinate sys-
tem (O, e1, e2, e3) for the space R3 is, by definition, the set formed by the
point O taken as the origin and the three orthonormal basis vectors (e1, e2, e3)
at this origin. The Cartesian coordinates of the point P in the system, as
well as the components of the associated vector x with respect to (e1, e2, e3),
are thus represented by a unique triplet of numbers (x1, x2, x3) such that

OP = x =
∑3
i=1 xiei (in this context x is the vector position of the point

P). Using the properties (1.2) and (1.4), the scalar product of two vectors

x =
∑3
i=1 xiei and y =

∑3
j=1 yjej is given by

x · y =
3∑
i=1

xiyi . (1.5)

The simplicity of the result (1.5) clearly shows the value of using the canonical
basis (or another orthonormal basis) to perform operations on vectors.

There are many physical quantities for which only one value can be associ-
ated. For example, one of them is the mass density of a material. We denote
it ρ and it has for SI (1) units kg/m3 or dimensions ML−3 where M is the
mass and L a length. For water, at standard sea level temperature, ρ is 1, 000
kg/m3. In the neighborhood of a point, this density is practically constant and,
in addition, there is no direction associated with its value. It is thus a scalar
quantity.

Other quantities have not only a value but also a direction. A force of one
Newton is that which, applied to a point, gives it an acceleration of 1 m s−2

per kg. Since this force has a direction, it is a vector. We know that vectors are
expressed in terms of coordinates for the system in use. In a given coordinate
system, this vector is specified by its components. Going from one set of axes
to another, the vector remains invariant and only the components of the vector
change by a transformation rule.

Finally, we introduce the concept of a tensor in a rudimentary way as
follows. For example, a stress is a force per unit surface. As we have seen. a
force is a vector. But an element of a surface is also a vector as we must specify
both its size and its orientation, that is, the direction of the normal vector. If
f describes the force vector and s the normal vector of the surface S, then we
might think that the stress T could be expressed by f/s. But, as the division
of two vectors is an undefined operation, we get around the difficulty by saying
that given s, we can find f by multiplying s by a new entity T such that

f(s) = Ts .

This new mathematical object is a tensor which yields the stress at a point. In
this case we have a tensor of order 2. One gathers intuitively that this quantity
is associated with two spatial directions, not just one as for vectors or none for

(1)International System of Units, Système International d’Unités, designated SI in all
languages.
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scalars. In fact, this tensor can be represented by a matrix with two indices,
each index corresponding to one direction in Euclidean space. It is thus an
entity with nine components. Again, we would like the physical quantity (the
tensor) to remain invariant when we change the coordinate system. For this,
the components of a tensor will follow a transformation rule when coordinate
systems are changed.

1.2.2 Orthogonal Transformation of Coordinate Systems

In the physical Euclidean space R3, let there be a Cartesian orthonormal co-
ordinate system (O, e1, e2, e3), that we denote also as Oxi (i = 1, 2, 3), with
origin at O and the unit vectors ei (i = 1, 2, 3) directed along the axes Oxi
(fig. 1.3). Another system Ox′i (i = 1, 2, 3) with unit vectors e′i defines a Carte-
sian coordinate system with the same origin O. The direction cosines of the
axes x′p with respect to the axes xi, denoted by cpi, are given by the scalar
products of the basis vectors

cpi = cos (x′p, xi) = e′p · ei i, p = 1, 2, 3 . (1.6)

P

x3

x2

x1

e3

e1

e2

eꞌ3

eꞌ1

eꞌ2

xꞌ3

xꞌ2

xꞌ1

O

Fig. 1.3 Cartesian coordinate systems

Similarly, the direction cosines of the first system with respect to the second
are given by

c′pi = ep · e′i = cip , (1.7)

the last equality being obtained from (1.6).

Let P be a point with coordinates xi in the first system and x′i in the
second. From equation (1.6), the coordinates x′i are related to those of xi by
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the equations

x′1 = c11x1 + c12x2 + c13x3

x′2 = c21x1 + c22x2 + c23x3

x′3 = c31x1 + c32x2 + c33x3 .

(1.8)

We can write (1.8) in the form

x′i =
3∑
j=1

cijxj i = 1, 2, 3 . (1.9)

We can easily see that the inverse of (1.8) is given by

x1 = c11x
′
1 + c21x

′
2 + c31x

′
3

x2 = c12x
′
1 + c22x

′
2 + c32x

′
3 (1.10)

x3 = c13x
′
1 + c23x

′
2 + c33x

′
3

or

xi =

3∑
j=1

cjix
′
j =

3∑
j=1

c′ijx
′
j . (1.11)

We can suppress the symbol
∑

by adopting, from here on, the Einstein sum-
mation convention for repeated indices, that is when an index appears twice
in a product, a sum with respect to that index is implied by taking successively
all its possible values (in this case, i = 1, 2, 3). In this way equations (1.9) and
(1.11) are written in the compact form

x′i = cijxj xi = cjix
′
j j = 1, 2, 3 . (1.12)

To illustrate the summation convention, we can write

σijnj =
3∑
j=1

σijnj = σi1n1 + σi2n2 + σi3n3

σijnjni =
3∑
j=1

3∑
i=1

σijnjni = σ11n
2
1 + σ22n

2
2 + σ33n

2
3 + (σ12 + σ21)n1n2

+ (σ23 + σ32)n2n3 + (σ31 + σ13)n3n1 .

In the expression σijnj , the index i is fixed and has a value among 1, 2, 3. We
call it the free index.

The symbol ui will designate the set of the 31 quantities u1, u2, u3 (3 for
space and 1 for the free index). Similarly, the symbol Lij signifies the set of
the 32 quantities L11, L12, L13, L21, L22, L23, L31, L32, L33 (3 for space and 2 for
the free indices). For the parameter Lii, we have 30 = 1 quantity, namely a
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scalar. Thus, we can write

Lii =
3∑
i=1

Lii = L11 + L22 + L33

AiBkCi =

3∑
i=1

AiBkCi = Bk

3∑
i=1

AiCi = Bk(A1C1 +A2C2 +A3C3)

ds2 = dx2
1 + dx2

2 + dx2
3 =

3∑
i=1

dxi dxi = dxi dxi .

Note that the index over which we sum is a dummy index; we can change the
notation of this index without changing the significance of the sum. Thus

σijnj = σiknk = σilnl

Mijkuivjwk = Mjikujviwk = Mikjuivkwj = . . .

A dummy index is not allowed to appear more than twice in an expression.
Therefore, to insert the second equation (1.12) in the first we need to rewrite
it, for example, in the form

xj = cqjx
′
q .

From which

x′i = cijcqjx
′
q and similarly xi = cjicjqxq . (1.13)

It is clear that the coefficient of x′q in the first equation (1.13) should be equal
to unity for i = q and 0 for i 6= q. This is also true for the second equation
(1.13). If we introduce the Kronecker delta

δij =

{
1 if i = j
0 if i 6= j ,

(1.14)

then we obtain
cijcqj = δiq . (1.15)

The transformation (1.12) which satisfies (1.15) is called orthogonal and (1.15)
are the orthogonality conditions. The components cij form an orthogonal
matrix [C] such that its transpose is equal to its inverse

cikc
−1
kj = cikcjk = δij or [C][C]−1 = [C][C]T = [I] , (1.16)

with [I] denoting the unit or identity matrix. The matrix of cij is such that

det [C] = e1 · (e2 × e3) , (1.17)

that is, det [C] = ±1. The sign + or − characterizes a direct (rotation) or
retrograde (reflection) change of the coordinate system. Here, the symbol ×
represents the vector product.



Vector Algebra 9

Note that by using the Kronecker delta, the index of a component can be
changed as follows:

Lik = δijLjk,

AiBkCi = δijAiBkCj ,

∂uj
∂xi

= uj,i = δkj
∂uk
∂xi

= δkjuk,i

∂2ui
∂xj∂xk

= ui,jk = δjl
∂2ui
∂xl∂xk

= δjlui,lk .

1.2.3 Scalars

Let P be a point in a continuous medium and F (P) the real value of a continuous
function at P. If the value F (P) does not depend on the coordinate system,
then the function F is called a scalar function, or scalar, or a tensor of order 0.
This is the case, for example, for temperature, pressure, kinetic energy, etc. It
is not the case for the components of a vector which depend on the coordinate
system. Of course, this does not mean that the form of the function that yields
the value F (P) is independent of the chosen coordinate system. If the point
P has coordinates xi and if F (P) has a value f(xi), the change of coordinate
systems in the second equation in (1.12) for the scalar F (P) leads to

F (P ) = f(xi) = f(cjix
′
j) = f ′(x′j) . (1.18)

Take, for example, a linear temperature field T (P ) given in a coordinate
system xi by

T (xi) = T0 +
T1 − T0

L
x1 ,

such that T (0) = T0 and T (L) = T1. A rotation of 45◦ about the axis x3,
moves us to the coordinate system x′i with the transformation

[C] =



√
2

2

√
2

2
0

−
√

2

2

√
2

2
0

0 0 1

 .

More generally, the matrix that expresses the change of coordinate systems by
rotation around the axis e3 by an angle θ, is given by

[C] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

The temperature in the new coordinate system becomes

T ′(x′i) = T0 +
T1 − T0

L

√
2

2
(x′1 − x′2) ,
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as from (1.11)

x1 = c11x
′
1 + c21x

′
2 + c31x

′
3

=

√
2

2
x′1 −

√
2

2
x′2 .

1.2.4 Vectors

Let v = PQ be a vector having its origin at point P and its extremity at
point Q (fig. 1.4). This vector has a direction and three components vi. The
vector itself is independent of the coordinate system.

x
3

O

υ
3

x
1

x
2

Q

P

υ
2

υ
1e

1

e2

e
3

v

Fig. 1.4 Vector in a Cartesian coordinate system

We examine the representations of v in the two coordinate systems linked
by the relations

x′i = cijxj and xi = cjix
′
j . (1.19)

Let xi, yi be the coordinates of the points P and Q in the first coordinate
system and x′i, y

′
i in the second. The components of v in the first system are

written as

vi = yi − xi
and

v′i = y′i − x′i



Vector Algebra 11

in the second. We relate the components v′i to those of vi by the transformation
rule

v′i = y′i − x′i = cij(yj − xj) = cijvj . (1.20)

Since in a Cartesian coordinate system, the direction cosines cij are independent
of the coordinates of P, we can write

∂x′i
∂xj

= cij
∂xi
∂x′j

= cji (1.21)

and thus
∂xi
∂x′j

=
∂x′j
∂xi

.

Combining (1.20) and (1.21), we obtain

v′i =
∂x′i
∂xj

vj or v′i =
∂xj
∂x′i

vj . (1.22)

By definition, we will say that a mathematical object v, characterized by
the three components vi in a Cartesian coordinate system, is a vector or a tensor
of order 1 if its components are transformed according to the rule (1.22) during
a coordinate system change that is an orthogonal transformation according to
(1.16). Consequently, a triplet of numbers in a coordinate system does not
necessarily give a vector. It is the transformation rule (1.22) associated with
the invariant character of the vector that determines its nature.

The index notation allows us to implement the standard algebra of vectors
and their scalar components. For example, if a is a scalar, the ith component
of av is avi. With (1.22), we can show that the multiplication av′ is a vector
since

(av′i) = cij(avj) =
∂x′i
∂xj

(avj) .

The addition of two vectors is done by the addition of their respective compo-
nents, that is,

wi = ui + vi . (1.23)

In vector notation, we have

w = u+ v .

Now we look at the scalar product of two vectors. We denote the
product b as the sum uivi. In symbolic form, b = u · v = v · u and

b = uivi = u1v1 + u2v2 + u3v3 . (1.24)

Let us see if the product b is affected by an orthogonal change of coordinate
system. Relation (1.20) can be expressed in the form

vi = yi − xi = cji(y
′
j − x′j) = cjiv

′
j .
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And then we have

b = uivi = cjiu
′
jckiv

′
k

= cjickiu
′
jv
′
k

= δjku
′
jv
′
k

= u′jv
′
j .

Thus the product uivi is a scalar as its value does not change during a
coordinate system change. With vector analysis it can be shown that

b = ‖u‖ ‖v‖ cos θ , (1.25)

where ‖u‖ and ‖v‖ are the norms of the vectors u and v respectively, and θ is
the angle between the two vectors.

Recall that an important consequence of (1.25) is that two (non-zero) or-
thogonal vectors have a zero scalar product. Another interesting result is that
the scalar product of a vector with itself yields the square of its norm:

vivi = ‖v‖2 . (1.26)

If we consider a vector from the origin of the coordinate system to a
point P of the Euclidean space, this vector is the position vector x such that
x = x(x1, x2, x3) = OP . The position vector is a fundamental concept of
continuous media kinematics that we will develop more completely in chapter
2. Its components depend on the spatial coordinates. Recalling (1.14) we can
write

∂xi
∂xj

= δij . (1.27)

1.2.5 Permutation Symbol and Vector Product

The permutation symbol is defined as follows:

εijk =

 1 if ijk is an even permutation of 1 2 3
−1 if ijk is an odd permutation of 1 2 3
0 all other cases

(1.28)

or as

εijk =
1

2
(i− j)(j − k)(k − i) . (1.29)

From the definition (1.28), we can move an index toward the back and inversely

εijk = εjki = εkij .

The permutation of two adjacent indices results in a sign change

εijk = −εjik
εijk = −εikj .
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From (1.28) and the definition of the Kronecker delta (1.14), we can prove the
very useful identity

εijkεilm = δjlδkm − δjmδkl . (1.30)

In an orthonormal basis of R3, the vector product of two vectors w = u× v,
sometimes denoted u ∧ v, is defined by the equality

wi = εijkujvk . (1.31)

For example we can evaluate

w1 = ε123u2v3 + ε132u3v2 = u2v3 − u3v2 .

We could do similarly for w2 and w3.

An important point of the notation (1.31) is that the first index of εijk
must be that of the component of the vector w; the second, the same as that
of the first vector of the product u× v; and the last, that of the last vector of
the product.

The norm of a vector product is equal to the product of the norms of the
vectors multiplied by the sine of the angle θ that these vectors form

‖w‖ = ‖u‖ ‖v‖ sin θ . (1.32)

A few formulas in symbolic notation present diverse combinations of scalar and
vector products. For example

u× v = −v × u (1.33)

u× (v +w) = u× v + u×w (1.34)

(u× v) ·w = (v ×w) · u = (w × u) · v (1.35)

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) . (1.36)

Example 1.1

The vector product u× v generates a vector w perpendicular to the plane
of the two vectors, and the three vectors u, v, w form a direct system. It
can be shown that w is orthogonal to v since v · w is zero. Using (1.28),
we have

viwi = viεijkujvk = εijkvivkuj

=
1

2
(εijkvivkuj + εijkvivkuj) =

1

2
(εijkvivkuj + εkjivkviuj)

=
1

2
(εijkvivkuj − εijkvivkuj) = 0 .
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Example 1.2

We use index notation algebra to verify the identity (1.36). The term on
the left L is written as

L = (a× b) · (c× d) = εijkajbkεilmcldm .

With (1.30), we obtain

L = (δjlδkm − δjmδkl) ajbkcldm
= δjlajclδkmbkdm − δjmajdmδklbkcl .

Using the properties of the Kronecker delta δij , we set l = j and m = k in
the first term and m = j and l = k in the second. Then

L = ajcjbkdk − ajdjbkck .

The right-hand term of this relation is none other than the index notation
representation of the right-hand term of (1.36).

Example 1.3

If Pi = εijkuk,j where ui are continuous functions of xi with continuous
partial derivatives, show that Pi,i = 0.

We use the properties of the permutation symbol to modify the expression
as follows:

Pi = εijkuk,j ⇒ Pi,i = εijkuk,ji = εjikuk,ij

εjik = −εijk, uk,ij = uk,ji

⇒ Pi,i = εijkuk,ji = −εijkuk,ji
2Pi,i = εijkuk,ji − εijkuk,ji = 0 ⇒ Pi,i = 0 .

1.3 Tensor Algebra

1.3.1 Definition of Tensors of Order 2

The notion of a tensor of order 2 is introduced by respecting the representa-
tion of an invariant object. Let E3 be the Euclidean vector space of vectors
associated with R3, and L a linear mapping on E3 that transforms a vector to
another, that is,

L : E3 → E3 such that u 7→ Lu . (1.37)
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If L transforms u1 to v1 and u2 to v2 with the relations

Lu1 = v1

Lu2 = v2 ,

and if L has the following properties:

L(u1 + u2) = Lu1 +Lu2

L(αu1) = αLu1 ,
(1.38)

where u1 and u2 are two arbitrary vectors of E3 and α ∈ R, then we say that L
is a linear transformation. It is also a tensor of order 2, or simply, a tensor. The
unit tensor I and the zero tensor O are defined by the relations u = Iu
and 0 = Ou, respectively.

For every vector u, the vector v is such that

v = Lu = Luiei = uiLei . (1.39)

The components of v are obtained by taking the scalar product

vi = ei · v . (1.40)

Combining (1.39) and (1.40), we have

vi = ei · (ujLej) = ujei ·Lej . (1.41)

The terms of this equation, such as, for example, e1 · Le1 and e2 · Le1, are
the components along e1 and e2 of Le1. We agree to write the components as
L11 = e1 ·Le1, L21 = e2 ·Le1, etc. In general we will have

Lij = ei ·Lej . (1.42)

These elements Lij are the components of the tensor L. From (1.41) and (1.42),
we obtain

vi = Lijuj . (1.43)

This last relation can be written in matrix form v1

v2

v3

 =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 u1

u2

u3

 . (1.44)

The matrix  L11 L12 L13

L21 L22 L23

L31 L32 L33


is the matrix of the tensor L with respect to the basis vectors {ei}. Note that
the components of the first column are the components of the vector Le1, those
of the second are the components of the vector Le2 and so on. Thus we have

Le1 = L11e1 + L21e2 + L31e3 = Lj1ej ,
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that is,

Lei = Ljiej . (1.45)

We see then that the components of a tensor depend on the coordinate system
defined by the basis {ei} in the same way as the components of a vector depend
on the system.

Nevertheless, a tensor that is an invariant linear operator has an intrinsic
character, as, for example, a force per unit surface. Only its components will be
affected by changing the basis. Note the matrix associated with the tensor
L

[L] =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 (1.46)

and its determinant

detL = det[L] = det

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 . (1.47)

A tensor is called singular if and only if det L = 0.

1.3.2 Tensor Product or Dyadic Product of Two Vectors

The tensor product or dyadic product a⊗ b of two vectors a and b is defined
as the tensor which, for any vector v, yields the vector (b · v)a

(a⊗ b)v = (b · v)a = a(b · v) . (1.48)

For every vector v and w and for α, β ∈ R, we have

(a⊗ b)(αv + βw) =
(
b · (αv + βw)

)
a

=
(
α(b · v) + β(b ·w)

)
a

= α(b · v)a+ β(b ·w)a

= α(a⊗ b)v + β(a⊗ b)w .

This shows that (a ⊗ b) is a tensor. Its components with respect to the basis
{ei} (i = 1, 2, 3) are

(a⊗ b)ij = ei · (a⊗ b)ej = ei ·
(
(b · ej)a

)
= ei · (abj) = (ei · a)bj = aibj .

Thus, we have

(a⊗ b)ij = aibj . (1.49)

The corresponding matrix will be given by

[a⊗ b] =

 a1

a2

a3

( b1 b2 b3
)

=

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 .
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In general (u ⊗ v) 6= (v ⊗ u). The tensor product of the base vectors ei ⊗ ej
is expressed as

(ei ⊗ ej)u = (ej · u)ei = ujei . (1.50)

From (1.50) and (1.43), we can write

v = viei = Lu = Lijujei = Lij(ei ⊗ ej)u .

Consequently, we obtain
L = Lij(ei ⊗ ej) . (1.51)

Example 1.4

The identity I and the dyadic product tensors can be expressed as

I = δij(ei ⊗ ej)
a⊗ b = aibj(ei ⊗ ej) .

1.3.3 The Transformation Rule for Cartesian Tensor Components

The representation in the Cartesian coordinate system xi of the linear operator
L, which is invariant, is given by its components Lij (1.42). In the coordinate
system x′i, the components of L are expressed as

L′ij = e′i ·Le′j .

We can easily evaluate the relation between the components Lij and L′ij .
From (1.20), the previous relation becomes

L′ij = (cikek) ·L(cjlel) = cikcjlek ·Lel = cikcjlLkl . (1.52)

Invoking (1.21), we have

L′ij =
∂x′i
∂xk

∂x′j
∂xl

Lkl or L′ij =
∂xk
∂x′i

∂xl
∂x′j

Lkl . (1.53)

In matrix notation, equation (1.52) is written as

[L′] = [C][L][C]T . (1.54)

By definition, a matrix [L] with nine components corresponds to a tensor of or-
der 2 if its components are transformed according to (1.53) during a coordinate
change that obeys (1.20) and that is an orthogonal transformation according
to (1.16). By extension, we will also refer to the tensor components Lij . The
transformation rules (1.53) guarantee the invariance of L with respect to the
choice of coordinates.

As an example, let us verify that the tensor product T = a⊗ b is a tensor
of order 2. We have

T ′ij = a′ib
′
j =

∂x′i
∂xk

∂x′j
∂xl

akbl =
∂x′i
∂xk

∂x′j
∂xl

Tkl .
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1.3.4 Tensors of Any Order

Recall now the transformation rules for vectors (tensors of order 1) and tensors
of order 2 between the systems xi and x′i

v′i =
∂x′i
∂xj

vj L′ij =
∂x′i
∂xk

∂x′j
∂xl

Lkl .

By generalizing these rules, we can define a tensor of order n. Let T be
an object whose value in a coordinate system xi is given by 3n components
Ti1i2···in , where the indices ij take the values 1, 2, or 3. By definition, T is
a tensor of order n if, during a coordinate transformation, its components are
transformed according to the rule

T ′i1i2···in =
∂x′i1
∂xj1

∂x′i2
∂xj2

· · · ∂x
′
in

∂xjn
Tj1j2···jn . (1.55)

Note that for n = 1 and 2, we obtain the transformation rules for vectors and
tensors of order 2.

We can also verify that the permutation symbol introduced in equation
(1.28) is a tensor of order 3. To show this, apply to εijk the tensor transfor-
mation (1.55) and verify that the components ε′ijk satisfy the relations (1.28).
Using (1.21), we write

ε′ijk = cimcjnckpεmnp .

The second term can be developed taking into account (1.28) to obtain

ε′ijk = ci1cj2ck3 + ci2cj3ck1 + ci3cj1ck2 − ci2cj1ck3 − ci1cj3ck2 − ci3cj2ck1 .

The right-hand side of the equation is none other than the determinant of the
matrix  ci1 ci2 ci3

cj1 cj2 cj3
ck1 ck2 ck3

 ,

which is the orthogonal matrix of direction cosines between xi and x′i. When
(i, j, k) is an even permutation of (1, 2, 3), ε′ijk is 1 if the coordinate system
is right-handed; when (i, j, k) is an odd permutation of (1, 2, 3), the lines are
permuted an odd number of times, and the determinant is −1. Finally, in every
other case, at least two lines are equal and the determinant is zero.

Tensors of order n satisfy the following rules.

Multiplication by a Scalar:
the multiplication of a tensor of order n by a scalar is carried out by
multiplying each component of the tensor by the scalar. The result is
a tensor of order n.

Linear Combination:
the linear combination of two tensors of order n is by linear combina-
tion of the corresponding components. A tensor of the same order is
obtained.
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Zero Tensor:
is the tensor for which all the components are equal to zero.

Equivalent Tensors:
when the components of two tensors of the same order are equal term
by term in a coordinate system, then they are equal in every other
system; the tensors are equivalent. Consequently, if a tensor relation is
verified in one coordinate system, it is true in all coordinate systems.

Exterior Product of Tensors:
let Ai1···in and Bj1···jm be the respective components of a tensor of order
n and a tensor of order m in a coordinate system. The 3n+m quantities
obtained by

Ci1···inj1···jm = Ai1···inBj1···jm
form a tensor C of order n + m. As an example, we have previously
shown that the dyadic product of two vectors yields a tensor of order 2.

Tensor Contraction:
let A be a tensor of order n whose components in a coordinate system
are Ai1···in . The contraction operation consists of equating two indices
of the tensor, for example, the jth and the kth with j and k ≤ n, and of
summing over these indices (j, k = 1, 2, 3) to form a tensor of order n−2
thus having 3n−2 components. This tensor is obtained by contraction
of the indices j and k.
For example, Lii is the only contraction possible of Lij . It is then no
longer a tensor of order 2, but a scalar (tensor of order 0).

Now consider two tensors S and T of order 2. Their exterior product results
in a tensor of order 4 whose components are

Rijkl = SijTkl .

The components obtained by contraction of the second and third indices of R
are

Rimml = SimTml .

We can show that this is a tensor of order 2. From the transformation rule
(1.55), we have

R′ijkl = cipcjqckrclsRpqrs
and thus

R′imml = cipcmqcmrclsRpqrs .
From (1.15), we obtain

R′imml = cipcls δqrRpqrs = cipclsRprrs

=
∂x′i
∂xp

∂x′l
∂xs
Rprrs .

This last equation proves that we do indeed have a tensor of order 2 Rimml.
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Looking back, we can see that the left-hand term of equation (1.30), εijkεilm
is a tensor of order 4 obtained by contraction. In the same way, the contraction

εijkεijl = 2 δkl (1.56)

yields a tensor of order 2, and the relation

εijkεijk = 6

yields a scalar.

1.3.5 Algebra of Tensors of Order 2

Sum of Tensors

Let L and T be two tensors of order 2. Their sum (T + L) is such that for
every vector a, we have

(T +L)a = Ta+La . (1.57)

The components of (T +L) are then

(T +L)ij = ei · (T +L)ej = ei · Tej + ei ·Lej
or

(T +L)ij = Tij + Lij . (1.58)

Interior Product of Two Tensors

If L and T are two tensors of order 2, then LT and TL are defined by the
equations

(LT )a = L(Ta) (1.59)

and
(TL)a = T (La). (1.60)

The components of LT are obtained from (1.42) and taking into account (1.45),

(LT )ij = ei · (LT )ej = ei ·L(Tej)

= ei ·LTmjem = Tmjei ·Lem .

Thus
(LT )ij = LimTmj . (1.61)

Similarly we have
(TL)ij = TimLmj . (1.62)

Note that the interior product of tensors L and T is a contracted multiplication
of tensors of order 2, with the contraction over the last index of the first tensor
and the first index of the second tensor. In matrix form, we can write the
matrix of the interior product as equal to the product of the matrices of the
two tensors [

(LT )
]

= [L][T ] and
[
(TL)

]
= [T ][L] .
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Note that the interior product of tensors is not commutative in general, that
is LT 6= TL.

If L, T , and S are three tensors, then we can evaluate(
L(ST )

)
a =

(
L(ST )a

)
= L

(
S(Ta)

)
and

(LS)(Ta) = L
(
S(Ta)

)
.

From which we obtain
L(ST ) = (LS)T . (1.63)

The interior product of tensors is associative. For the case L = T , we can
introduce the following notations TT = T 2, TT 2 = T 3, etc.

We also have the property

det (ST ) = detS detT . (1.64)

Note also the relations

L(a⊗ b) = (La)⊗ b (1.65)

(u⊗ v)(a⊗ b) = (v · a)u⊗ b = u⊗ b(v · a) . (1.66)

Example 1.5

We use index notation algebra to verify identity (1.65)

(L(a⊗ b))ij = Lim(a⊗ b)mj = Limambj

= (La)ibj = ((La)⊗ b)ij .

1.3.6 Tensor Properties

Transpose of a Tensor

The transpose of a tensor is obtained by exchanging two indices: the transpose
of Lij is Lji. We denote it LT , and have the relation(

LT
)
ij

= Lji . (1.67)

Consequently, we can easily show that

(LS)T = STLT (1.68)

and
u ·LTv = Lu · v = v ·Lu . (1.69)

For a dyad

(a⊗ b)T = b⊗ a , (1.70)

(a⊗ b)L = a⊗LT b . (1.71)

And finally note the property

detLT = detL . (1.72)
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Inverse of a Tensor

For a non-singular tensor L, that is det L 6= 0, there exists a unique tensor
called the inverse tensor L−1 of L that satisfies the relation

LL−1 = L−1L = I . (1.73)

By definition of the inverse, we can show that(
L−1

)−1
= L (1.74)

(αL)−1 =
1

α
L−1 (1.75)

det (L−1) =
(
detL

)−1
. (1.76)

For two invertible tensors S and T , we have

(ST )−1 = T−1S−1 . (1.77)

Symmetric Tensors

A tensor is said to be symmetric when it is equal to its transpose. The tensor
L is symmetric if

L = LT , (1.78)

that is, if

Lij = Lji . (1.79)

Consequently, a symmetric tensor has six independent components.

Antisymmetric Tensors

A tensor L is said to be antisymmetric if it is equal to the opposite of its
transpose, or

L = −LT , (1.80)

that is,

Lij = −Lji . (1.81)

In this case the diagonal components of L are zero and only three components
are independent.

Now we can prove that all tensors L of order 2 can be uniquely decomposed
into the sum of a symmetric tensor LS and an antisymmetric tensor LA. To
demonstrate that this decomposition is possible, we write

Lij = LSij + LAij

LSij =
1

2
(Lij + Lji)

LAij =
1

2
(Lij − Lji) .

(1.82)
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To show the uniqueness of the decomposition, suppose that two decompositions
exist, that is,

Lij = LSij + LAij = L′Sij + L′Aij .

The last equation can be rearranged as

LSij − L′Sij = L′Aij − LAij . (1.83)

Here the left-hand side (1.83) is symmetric and the right-hand side is antisym-
metric. Only the zero tensor (all components zero) satisfies condition (1.83).
We have then

LSij = L′Sij LAij = L′Aij .

Trace of a Tensor

The trace of a tensor L of order 2, denoted tr, is the sum of its diagonal
components

tr (L) = tr (Lij (ei ⊗ ej)) = Lij tr (ei ⊗ ej) = Lij δij = Lii . (1.84)

The trace of the tensor product of two vectors reduces to the scalar product of
the vectors

tr (a⊗ b) = a · b . (1.85)

The properties of the trace are

trL = trLT (1.86)

tr (S + T ) = trS + trT (1.87)

tr (αL) = α trL (1.88)

tr (AL) = tr (LA) , (1.89)

where α ∈ R.

Deviatoric Tensors

A tensor L can be decomposed as the sum of a spherical tensor Ls and a tensor
with a zero trace Ld, called the deviatoric tensor, so that

L = Ls +Ld . (1.90)

The spherical component of Ls is one third of its trace: Lsij = 1
3Lkkδij and the

deviatoric components of Ld are defined by

Ldij = Lij −
1

3
tr (L) δij . (1.91)

These components Ldij are not independent since the trace of Ld is zero.
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Orthogonal Tensors

A tensor Q is orthogonal if it satisfies the condition

Qu ·Qv = u · v (1.92)

for every vector u and v. Using (1.69), the condition (1.92) is written as

u ·QTQv = u · v. (1.93)

Thus an orthogonal tensor satisfies the equation QTQ = I. Since u · v is
preserved in this transformation, the angle between the vectors and their norms
‖u‖, ‖v‖ are also preserved. The tensor Q has the property that detQ = ±1.
If detQ = +1, the tensor corresponds to a rotation; the tensor is said to be a
proper rotation. When detQ = −1, it is said to be an improper rotation as it
corresponds to a reflection. It is important to notice the difference between the
orthogonal tensor Q, mapping two vectors, and the coordinate change resulting
from the rotation of the axes presented in section 1.2.2 that describe the same
vector. There we defined a new vector basis e′i (i = 1, 2, 3) by rotation of the
vector basis ei (i = 1, 2, 3), both systems of axes being orthogonal Cartesian
systems describing the same vector. Since by (1.92), the angle between vectors
is conserved, the coordinate change can be considered to be an orthogonal
transformation which rotates the basis vectors ei to e′i. Consequently, the
matrix of the tensor Q is equal to the matrix [C].

Scalar Product of two Tensors

The scalar product of two tensors of order 2 is the scalar defined by the double
sum

a = SijTij . (1.94)

Symbolically, we denote it a = S : T . We can see that it is a multiplication
with double contraction. Then, we can write successively

S : T = tr (STT ) = tr (T TS) = tr (ST T ) = tr (TST ) = T : S . (1.95)

The norm of a tensor ‖L‖ is defined by the relation

‖L‖ = (L : L)1/2 = (LijLij)
1/2 ≥ 0 . (1.96)

The scalar product also satisfies the following properties:

L : (ST ) =
(
STL

)
: T =

(
LT T

)
: S (1.97)

(u⊗ v) : (a⊗ b) = (u · a)(v · b) (1.98)

L : (a⊗ b) = a ·Lb = (a⊗ b) : L . (1.99)
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Example 1.6

To verify identity (1.99) we use index notation algebra. With the definition
(1.94), we have

(L : (a⊗ b)) = Lij(a⊗ b)ij = Lijaibj = aiLijbj = (a ·Lb) . (1.100)

Example 1.7

Consider the tensors A and B such that Aij = Aji is symmetric and Bij =
−Bji is antisymmetric. The scalar product of these two tensors is zero.
(Note that AjiBij = AijBji since the result is a scalar). Using definitions
(1.78), (1.80), and (1.94), we have

(A : B) = AijBij =
1

2
(AijBij +AijBij) =

1

2
(AijBij −AijBji)

=
1

2
(AijBij −AjiBij) =

1

2
(AijBij −AijBij) = 0 . (1.101)

Right Product of a Tensor and a Vector

The right product of a tensor L and a vector u is defined as

vj = uiLij = Lijui . (1.102)

We write it uL. Here, the order of the symbols is important, which is not the
case for index notation. The symbolic form Lu represents a different vector,
which in index notation is written as

wi = Lijuj = ujLij . (1.103)

Note that this last relation is none other than (1.43).

1.3.7 Dual Vector of a Tensor of Order 2

The components di of the dual (or axial) vector of a tensor L are definined by
the product

di =
1

2
εikjLjk = −1

2
εijkLjk . (1.104)

Or explicitly

d1 = −1

2
(ε123L23 + ε132L32) = −1

2
(L23 − L32)

d2 = −1

2
(ε231L31 + ε213L13) = −1

2
(L31 − L13)

d3 = −1

2
(ε312L12 + ε321L21) = −1

2
(L12 − L21) .
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Note in passing that if tensor L is symmetric, the dual vector d is zero. De-
composing L into its symmetric and antisymmetric parts, we have from (1.82)

di = −1

2

(
εijkL

S
jk + εijkL

A
jk

)
. (1.105)

As εijk is by definition antisymmetric with respect to any pair of its indices,
the first term on the right-hand side is zero as it is the interior product of a
symmetric and an antisymmetric tensor (1.101). Thus the dual vector depends
uniquely on the antisymmetric part of a tensor

di = −1

2
εijkL

A
jk . (1.106)

The inverse of the relation (1.104) is obtained by multiplying the two sides by
εilm, that is,

εilmdi = εlmidi = −1

2
εilmεijkLjk .

With (1.30), we obtain successively

εilmdi = −1

2
(δlj δmk − δlk δmj)Ljk

= −1

2
(Llm − Lml) = −LAlm

or
−LAlm = εlmidi . (1.107)

The three independent components of an antisymmetric tensor (recall that the
diagonal components are zero) are equivalent to the three components of the
dual vector in that they yield the same information as d1 = −LA23, d2 = −LA31,
d3 = −LA12.

1.3.8 Eigenvalues and Eigenvectors of a Tensor

Let L be a second order tensor. If u is a vector that, when L is applied, is
transformed into a vector parallel to itself, that is,

Lu = λu , (1.108)

then the vector u is an eigenvector of L, and λ is the corresponding eigenvalue.
We know the eigenvectors can always be of arbitrary length. However, for
simplicity, we will normalize them to unit length. Let n be a unit eigenvector .
Then, if we introduce the unit tensor I, we can write

Ln = λn = λIn , (1.109)

which gives
(L− λI)n = 0 with n · n = 1 . (1.110)

In index notation, with n = niei, we have

(Lij − λ δij)nj = 0 njnj = 1 . (1.111)
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Since equation (1.111) is valid for any n 6= 0, we must solve the equation

det
(
[L]− λ[I]

)
= 0 (1.112)

to obtain a solution.

If the tensor L is symmetric, then the characteristic equation (1.112) allows
us to invoke a theorem from linear algebra (see [67] for a proof) which is stated
as follows.

Theorem

The eigenvalues of a real n × n symmetric matrix are all real. The corre-
sponding eigenvectors are orthogonal.

It will be the same for the eigenvalues corresponding to the tensor L, which
we will call principal values, as is common in mechanics for stress and strain
tensors. Similarly, the associated eigenvectors define the principal directions.

We can show that for a symmetric tensor, there are always three principal
directions which are orthogonal. Let n1 and n2 be two eigenvectors corre-
sponding to the respective eigenvalues λ1 and λ2 of the tensor L. Then,

Ln1 = λ1n1 (1.113)

and

Ln2 = λ2n2 . (1.114)

Let us take the scalar product of (1.113) with n2 and of (1.114) with n1.
Switching to index notation we obtain

Lij(n1)j(n2)i = λ1(n1)i(n2)i (1.115)

and

Lij(n2)j(n1)i = λ2(n2)i(n1)i . (1.116)

Because of the symmetric property of L the first term of (1.116) can be trans-
formed as follows:

Lji(n1)j(n2)i = λ2(n2)i(n1)i . (1.117)

Subtracting (1.117) from (1.115), we have the result

(λ1 − λ2)(n1 · n2) = 0 . (1.118)

As λ1 6= λ2, n1 · n2 = 0 and so n1 and n2 are orthogonal. Thus, we can
conclude that if the principal values are all distinct, then the three principal
directions are mutually orthogonal.

If λ1 = λ2 6= λ3, we have n1 · n3 = n2 · n3 = 0. The directions n1 and n2

are then chosen mutually orthogonal and normal to n3.
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If λ1 = λ2 = λ3, the directions n1, n2, and n3 are chosen mutually orthog-
onal and without any restriction.

Let us examine now the form of the matrix of a tensor with respect to its
principal directions. We denote by n1, n2, and n3 the unit vectors in these
directions. If we use these vectors as basis vectors, and (1.42), then the tensor
components become

L11 = n1 ·Ln1 = n1 · (λ1n1) = λ1

L22 = λ2

L33 = λ3

L12 = n1 ·Ln2 = (n1 · λ2n2) = 0 = L21

L13 = L31 = 0

L23 = L32 = 0 .

(1.119)

The matrix is thus diagonal and its diagonal elements are its eigenvalues.

Scalar Invariants of a Tensor and the Cayley-Hamilton Theorem

Developing (1.112) the characteristic equation of a tensor is cubic in λ; we
can write

λ3 − I1(L)λ2 + I2(L)λ− I3(L) = 0 , (1.120)

where I1(L), I2(L), and I3(L) are the invariants of the tensor L given by the
expressions

I1(L) = Lii = trL

I2(L) =

∣∣∣∣ L11 L12

L21 L22

∣∣∣∣+

∣∣∣∣ L22 L23

L32 L33

∣∣∣∣+

∣∣∣∣ L11 L13

L31 L33

∣∣∣∣
=

1

2
(LiiLjj − LijLji)

=
1

2

(
(tr L)2 − tr (LL)

)
=

1

2

(
(tr L)2 − tr (L2)

)
I3(L) = εijkLi1Lj2Lk3 = detL .

(1.121)

As, by definition, the eigenvalues λ1, λ2, λ3 of L are independent of the
basis vectors {ei}, then the coefficients of the cubic equation (1.120) should be
the same for all {ei}. This is why they are called ‘invariants’.

Example 1.8

Find the principal values (eigenvalues) and the corresponding unit vectors
(eigenvectors) of the symmetric tensor with matrix

[L] =

 2 1 -2
1 4 -3
-2 -3 -2

 . (1.122)



Tensor Algebra 29

Using the expressions (1.121), the corresponding invariants are

I1(L) = 4, I2(L) = −18, I3(L) = −36,

and the corresponding characteristic equation (1.112) is given by

λ3 − 4λ2 − 18λ+ 36 = 0.

This equation has three distinct roots which are the principal values of L

λ1 = 6, λ2 = 1.65, λ3 = −3.65.

Let us assume that the eigenvector n1 corresponding to λ1 has components
(n1)1, (n1)2, and (n1)3. For this particular eigenvalue, equation (1.111)
gives the following system of equations:

(2− 6)(n1)1 + (n1)2 − 2(n1)3 = 0

(n1)1 + (4− 6)(n1)2 − 3(n1)3 = 0

−2(n1)1 − 3(n1)2 − (2 + 6)(n1)3 = 0.

The first two equations give (n1)2 = −2(n1)3. Inserting into the third
equation, we obtain (n1)1 = −(n1)3. By the orthogonality condition we
have

(n1)2
1 + (n1)2

2 + (n1)2
3 = 1 .

With this condition and the results for (n1)1 and (n1)2, we obtain (n1)3 =
0.4082. Then with this value, the other components are (n1)1 = −0.4082
and (n1)2 = −0.8165. Proceeding similarly we calculate the unit vectors
for the two other principal values. Finally, we have

λ1 = 6 : (n1)1 = −0.4082, (n1)2 = −0.8165, (n1)3 = +0.4082

λ2 = 1.65 : (n2)1 = +0.8736, (n2)2 = −0.4792, (n2)3 = −0.0849

λ3 = −3.65 : (n3)1 = +0.2650, (n3)2 = +0.3220, (n3)3 = +0.9089 .

Example 1.9

Show that the expression a = 1
2εijkεistLjsLkt is an invariant of the sym-

metric tensor L.

We use identity (1.30) to modify the expression as follows:

2a = εijkεistLjsLkt = (δjsδkt − δjtδks)LjsLkt
= δjsLjsδktLkt − δjtLjsδksLkt
= LjjLkk − LtsLst = LjjLkk − LtsLts .
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Cayley-Hamilton Theorem

Any tensor L satisfies its own characteristic equation

L3 − I1(L)L2 + I2(L)L− I3(L)I = 0 . (1.123)

(See exercise 1.16.)

Positive Definite Tensors

We introduce now the notion of a positive definite tensor. A tensor L is said
to be positive definite if for any non-zero vector v it satisfies the inequality

∀v ∈ E3, v ·Lv > 0 . (1.124)

We can easily show that the eigenvalues of a positive definite tensor are strictly
positive. Let λ be an eigenvalue of the positive definite tensor L and let n be
the corresponding unit eigenvector. As Ln = λn and ‖n‖ = 1, then

n ·Ln = λ > 0 .

Spectral Decomposition of a Tensor

Let L be a symmetric tensor which has three real eigenvalues λi and three
real, orthogonal eigenvectors ni. These eigenvectors form the basis of the
spectral decomposition that is written as the sum of three principal self-dyads
ni ⊗ ni

L =

3∑
i=1

λi ni ⊗ ni . (1.125)

This expression is known as the spectral decomposition or the spectral rep-
resentation of the tensor L. It is easily established by expressing L = LI,
I = ni ⊗ ni and using (1.65) and (1.109).

1.3.9 Square Root of a Tensor

Theorem

Let C be a symmetric, positive definite tensor whose eigenvalues are λ2
i with

the corresponding eigenvectors ni. Then, there exists a unique, symmetric,
positive definite tensor U such that

U2 = C . (1.126)

We denote
√
C = U .
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Proof.
1) Existence. By (1.125), let

C =
3∑
i=1

λ2
i ni ⊗ ni . (1.127)

Define U by the relation

U =
3∑
i=1

λi ni ⊗ ni . (1.128)

Then equation (1.126) is the direct consequence of

U2 = UU =
3∑
i=1

λ2
i (ni ⊗ ni)(ni ⊗ ni) =

3∑
i=1

λ2
i (ni ⊗ ni) = C

as, for any set of eigenvectors,

(ni ⊗ ni)(nj ⊗ nj) =

{
0 if i 6= j
(ni ⊗ ni) if i = j .

2) Uniqueness. Suppose that there are two tensors U and V such that

U2 = V 2 = C .

Let n be the eigenvector of C corresponding to the eigenvalue λ > 0. Then,

0 =
(
U2 − λ2I

)
n = (U + λI)(U − λI)n . (1.129)

Let us set

v = (U − λI)n . (1.130)

Then from (1.129)

Uv = −λv .

But the vector v must vanish, otherwise −λ would be an eigenvalue of U , which
is impossible as U is positive definite and λ > 0. Thus, by (1.130), we obtain

Un = λn . (1.131)

In the same way, we have V n = λn, thus Un = V n for all eigenvectors n of
C. And, as we can form a basis from the eigenvectors of C, then U and V
must coincide.
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1.3.10 Polar Decomposition

Theorem

Let F be a tensor belonging to the set of tensors F with determinant detF >
0. Then, there exist symmetric positive definite tensors U and V , and a
rotation, that is, an orthogonal tensor with a positive determinant (equal to
1), R such that

F = RU = V R . (1.132)

Each of these decompositions is unique. We have

U =
√
F TF , V =

√
FF T . (1.133)

The representation F = RU (and the representation F = V R) is the right
polar decomposition (and the left polar decomposition) of F .

Proof.
1) We show that F TF and FF T belong to the set of all symmetric positive
definite tensors. The two tensors are clearly symmetric. In addition,

v · F T Fv = vjFmiFmjvi = Fmivi Fmjvj = (Fv) · (Fv) ≥ 0 .

This last scalar product cannot be equal to zero unless Fv = 0; consequently it
can only be zero when v = 0. Therefore, F TF belongs to the set of symmetric
positive definite tensors. Similar reasoning applies for FF T .

2) Uniqueness. Let F = RU be the right polar decomposition of F . As R is
a rotation, we have

F TF = URTRU = U2 .

But by the square root theorem, there can only be one tensor U belonging
to the set of symmetric positive definite tensors for which the square is F TF .
Thus, the first relation of (1.133) is valid and U is unique. BecauseR = FU−1,
R is also unique. In addition, if F = V R is the left polar decomposition, then

FF T = V 2 , (1.134)

and V is determined by (1.133) with R = V −1F .

3) Existence. Let U be a tensor belonging to the set of symmetric positive
definite tensors given by (1.133) and let

R = FU−1 . (1.135)

To verify that F = RU is in fact a polar decomposition , we show that R
belongs to the set of all rotations.
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As detF > 0 and detU > 0, then detR > 0 (detU > 0 because all the
eigenvalues of U are strictly positive). We only need to show that R belongs
to the set of orthogonal tensors.

We proceed as follows:

RTR = U−1F TFU−1 = U−1U2U−1 = I . (1.136)

Now show that detR = 1. We know that detF = J > 0. Thus, detU2 = J2

and detU−1 = 1/J > 0. From (1.136), we have detR = ±1. Relation (1.135)
allows us to deduce detR = +1, which corresponds to a rotation. If we define

V = RURT , (1.137)

then V belongs to the set of symmetric positive definite tensors and

V R = RURTR = RU = F .

1.3.11 Isotropic Tensor Function of a Symmetric Tensor

An isotropic tensor function f , for which the variable T is a symmetric tensor
of order 2, satisfies by definition the identity

Qf (T )QT = f
(
QTQT

)
(1.138)

for any orthogonal tensor Q. Then the application of the vector space of
symmetric tensors in itself yields a symmetric tensor such that

L = f (T ) . (1.139)

In the following we present without demonstration the representation the-
orem. For a proof, the reader is referred to the appendix of [49].

Rivlin-Ericksen Theorem

Expression (1.139) can be written in the form

L = ϕ0

(
I1(T ), I2(T ), I3(T )

)
I + ϕ1

(
I1(T ), I2(T ), I3(T )

)
T

+ ϕ2

(
I1(T ), I2(T ), I3(T )

)
T 2 ,

(1.140)

where the ϕi (i = 0, 1, 2) are scalar functions of the invariants of T .

For an isotropic function (1.140), the principal directions of T and of f(T )
coincide; T and f(T ) are said to be coaxial.



34 Cartesian Tensors

1.3.12 Scalar Function of a Tensor

A function W(T ) is defined as a scalar function of the tensor T and yields a
scalar value. When T is symmetric and the condition

W(T ) =W
(
QTQT

)
(1.141)

is satisfied, the function W(T ) is an isotropic tensor function of T . It can be
represented by the relation

W(T ) = Φ
(
I1(T ), I2(T ), I3(T )

)
. (1.142)

This function is also a scalar invariant of the tensor T . The preceding repre-
sentation is equivalent to

W(T ) = φ(λ1, λ2, λ3) , (1.143)

where the λi (i = 1, 2, 3) are the eigenvalues of T .

We can show that for an isotropic functionW(T ), its derivative with respect
to T is expressed in the form

∂W
∂T

=

3∑
i=1

∂W
∂λi

ni ⊗ ni , (1.144)

where ni (i = 1, 2, 3) are the principal directions corresponding to λi. It follows
that

T
∂W
∂T

=
∂W
∂T

T . (1.145)

This last relation indicates that the two tensors T and ∂W/∂T are coaxial or
have the same eigenvectors or principal directions.

1.4 Tensor Analysis

In this section we will introduce the concepts related to the differentiation and
differentials of tensors. We will denote, for example, F a scalar, vi a vector
component, and Lij a tensor component, all of which are functions of position
xi in space and time t. The notation F (x, t) signifies F (x1, x2, x3, t), while the
notation vi(xm, t) covers the three functions v1(x1, x2, x3, t), v2(x1, x2, x3, t),
and v3(x1, x2, x3, t). Also Lij(xi, t) covers all components of a tensor.

Thus when xi is between parentheses, to indicate a function, the summation
rules do not apply to the independent space variable: F (xi, t) is not a vector;
it is a scalar field, while vi(xm, t) is a vector field, etc.
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1.4.1 Derivative of Vector, Tensor or Scalar Function

Time derivatives of several field parameters play important roles in continuum
mechanics based modeling, i.e., velocity, acceleration, strain rate, power, etc.
In section 1.4.1 we define the essential time derivatives of second order tensors
and vectors before presenting the spatial derivatives in the following sections
1.4.2 to 1.4.8. Afterwards, the definition of curvilinear coordinates (sec. 1.4.9)
and flux (sec. 1.4.12) are given, followed by two important integral theorems
of calculus (sec. 1.4.13).

Let L = L(t) be a tensor function of a scalar t (time, for example). The
derivative of L with respect to t is the tensor of order 2 given by

L̇ =
dL

dt
= lim

∆t→ 0

L(t+ ∆t)−L(t)

∆t
. (1.146)

In terms of its components,

L̇ =
dLij(t)

dt
ei ⊗ ej = L̇ijei ⊗ ej . (1.147)

The first derivative of a vector function v(t) with respect to t is defined similarly,
v̇ = dv/dt. In terms of its components,

dv

dt
= v̇ = v̇i(t)ei . (1.148)

And the second derivative is

d2v

dt2
= v̈ = v̈i(t)ei . (1.149)

One can easily establish the following identities:

d

dt
(u± v) =

du

dt
± dv

dt
(1.150)

d

dt
(u⊗ v) =

du

dt
⊗ v + u⊗ dv

dt
(1.151)

d

dt
(L± T ) =

dL

dt
± dT

dt
(1.152)

d

dt

(
α(t)L

)
=
dα(t)

dt
L+ α(t)

dL

dt
(1.153)

d

dt
(LT ) =

dL

dt
T +L

dT

dt
(1.154)

d

dt
(La) =

dL

dt
a+L

da

dt
(1.155)

d

dt
(LT ) =

(
dL

dt

)T
. (1.156)
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We can demonstrate (1.155) for example. By definition (1.146), we obtain

d

dt
(La) = lim

∆t→ 0

L(t+ ∆t)a(t+ ∆t)−L(t)a(t)

∆t

= lim
∆t→ 0

1

∆t

(
L(t+ ∆t)a(t+ ∆t)−L(t)a(t)

+L(t)a(t+ ∆t)−L(t)a(t+ ∆t)
)

= lim
∆t→ 0

(
L(t+ ∆t)−L(t)

)
a(t+ ∆t)

∆t

+ lim
∆t→ 0

L(t)
(
a(t+ ∆t)− a(t)

)
∆t

=
dL

dt
a+L

da

dt
.

1.4.2 Gradient of a Scalar Field

Associated with a scalar field F (x) is a vector field called the gradient of F .
This gradient is denoted∇F or gradF . It is such that the scalar product with
dx gives the difference between the values of F evaluated at x+ dx and at x.
We obtain

dF = F (x+ dx)− F (x) =∇F · dx . (1.157)

If we denote by dx the norm of dx, and by e the unit vector in the direction
of dx (e = dx/dx), then equation (1.157) yields(

dF

dx

)
in direction e

=∇F · e . (1.158)

This last relation shows that the component of ∇F in the direction e gives the
variation of F in that direction (directional derivative). Since we have(

dF

dx

)
in direction e1

=
∂F

∂x1
=∇F · e1 = (∇F )1 ,

with similar relations in directions 2 and 3, the Cartesian components of ∇F
are ∂F/∂xi, or

∇F =
∂F

∂x1
e1 +

∂F

∂x2
e2 +

∂F

∂x3
e3 =

∂F

∂xi
ei . (1.159)

We can define the gradient operator as

∇(•) =
∂(•)
∂x1

e1 +
∂(•)
∂x2

e2 +
∂(•)
∂x3

e3 =
∂(•)
∂xi

ei , (1.160)

where (•) indicates an arbitrary function.
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It is easy to show that the gradient of a scalar field is a vector. From
relation (1.18), we have

∂F (x)

∂x′i
=

∂

∂x′i
f ′(x′j) =

∂

∂x′i
f
(
xm(x′j)

)
=

∂

∂xk
f(xm)

∂xk
∂x′i

=
∂xk
∂x′i

∂

∂xk
F (x) .

This equation is a transformation of the form (1.22).

1.4.3 Gradient of a Vector Field

With a vector field v(x), we associate a tensor, called the gradient of v, and
denote it∇v. It is a tensor of order 2 which, applied to dx, gives the difference
of v between x+ dx and x. We have

dv = v(x+ dx)− v(x) = (∇v) dx . (1.161)

Again, let us define dx = ‖dx‖ and e = dx/dx. We obtain(
dv

dx

)
in direction e

= (∇v) e . (1.162)

The tensor (∇v) of order 2 (it is left to the reader to prove that it is a tensor
of order 2) transforms a unit vector e to a vector describing the variation of v
in that direction. Since(

dv

dx

)
in direction e1

=
∂v

∂x1
= (∇v) e1 ,

in a Cartesian coordinate system we have

(∇v)11 = e1 · (∇v) e1 = e1 ·
∂v

∂x1
=

∂

∂x1
(e1 · v) =

∂v1

∂x1
.

Similar reasoning leads us to write

(∇v)ij =
∂vi
∂xj

. (1.163)

The tensor ∇v can be expressed as (see (1.49) and (1.51))

∇v =∇⊗ v =
∂vi
∂xj

(ei ⊗ ej) . (1.164)
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1.4.4 Gradient of a Scalar Valued Tensor Function

For a regular, scalar valued, smooth function W(T ) of a tensor T of order 2,
the first two terms of a Taylor series expansion around T are

W(T + dT ) =W(T ) + dW(T ) + o(dT ) , (1.165)

where o(dT ) is the remainder of the expansion which tends to zero as dT
→ 0, as expressed in the relation

lim
dT → 0

o(dT )

‖dT ‖ = 0 . (1.166)

The total differential is expressed as follows:

dW(T ) =
∂W(T )

∂T
: dT = tr

((
∂W(T )

∂T

)T
dT

)
. (1.167)

In index notation,

dW(T ) =
∂W(T )

∂Tij
dTij . (1.168)

The tensor ∂W(T )/∂T of order 2 is called the gradient of W(T ) in T .

1.4.5 Gradient of a Tensor Valued Tensor Function

For a regular, tensor valued, smooth function S(T ) of a tensor T of order 2,
the first two terms of a Taylor expansion around T are

S(T + dT ) = S(T ) + dS(T ) + o(dT ) . (1.169)

When dT → 0, we have

dS(T ) =
∂S(T )

∂T
: dT . (1.170)

In index notation

dSij =
∂Sij
∂Tkl

dTkl. (1.171)

The tensor ∂S(T )/∂T of order 4 is the gradient of S(T ) in T .

1.4.6 Divergence of Vectors and Tensors

Let v(x) be a vector field. The divergence of v(x) is the scalar obtained by a
contraction. Thus

div v =
∂vi
∂xi

= tr (∇v) . (1.172)

Note that when the divergence of a vector field v is zero, that is, div v = 0, the
field v is called a solenoidal field.
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We can also express the divergence of the field v as the following scalar
product:

∇ · v =
∂vi
∂xi

. (1.173)

For a tensor, the divergence of L is the vector field denoted divL, defined
by

(divL)i =
∂Lij
∂xj

= Lij,j (1.174)

or

divL =
∂Lik
∂xj

(ei ⊗ ek) ej =
∂Lik
∂xj

(ek · ej) ei

=
∂Lik
∂xj

δkjei =
∂Lij
∂xj

ei .

(1.175)

1.4.7 Curl of a Vector Field

Let v(x) be a vector field. The curl of v is a vector field defined by the equation

curl v =∇× v . (1.176)

In index notation, we have

(curl v)i = εijk
∂vk
∂xj

. (1.177)

With the properties of the permutation symbol, we can easily verify that

(curl v)1 =
∂v3

∂x2
− ∂v2

∂x3

(curl v)2 =
∂v1

∂x3
− ∂v3

∂x1

(curl v)3 =
∂v2

∂x1
− ∂v1

∂x2
. (1.178)

If the curl of the field v is zero, that is, ∇ × v = 0, the field is called irrota-
tional.

In the following examples Φ and a are continuously differentiable scalar
and vector functions, respectively.
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Example 1.10

Prove that
curl (∇Φ) =∇×∇Φ =∇× (∇Φ) = 0 . (1.179)

We have successively

(∇×∇Φ)i = εijk
∂

∂xj
(
∂Φ

∂xk
) = εijk

∂2Φ

∂xj∂xk
= εikj

∂2Φ

∂xk∂xj
= −εijk

∂2Φ

∂xj∂xk
.

Thus, 2εijk
∂2Φ

∂xj∂xk
= 0 .

Example 1.11

Demonstrate that

div(∇× a) = div curl a = 0 . (1.180)

Taking into account (1.177), we obtain

div(∇× a) =
∂

∂xi

(
εijk

∂ak
∂xj

)
= εijk

∂2ak
∂xi∂xj

.

By following the same steps as in the previous example, we show that (1.180)
is satisfied.

Example 1.12

Show that
div(Φa) = Φ diva+ a · (∇Φ) . (1.181)

Taking into account (1.172), we have

div(Φa) =
∂(Φai)

∂xi
=
∂Φ

∂xi
ai + Φ

∂ai
∂xi

= (∇Φ) · a+ Φ diva .

1.4.8 Laplacian Operator

Laplacian of a Scalar Field

We also encounter second order derivatives in expressions of physical quantities
in continuum mechanics. For example, the divergence of the gradient of a scalar
function is

∂2F

∂xi∂xi
or ∇ · (∇F ) or div (gradF ) , (1.182)

which is also the Laplacian of F , symbolically denoted ∇2F , or sometimes as
4F ,

∂2F

∂xi∂xi
=
∂2F

∂x1
2

+
∂2F

∂x2
2

+
∂2F

∂x3
2
. (1.183)
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A function F that satisfies the equation

∇2F = 0 (1.184)

is said to be harmonic. Equation (1.184) is known as Laplace’s equation.

If the relation reads
∇2F = f , (1.185)

where f is a scalar function, then it is called Poisson’s equation.

Laplacian of a Vector Field

We can also treat a vector function in the same way. The divergence of the
gradient of a vector is written as

∂2vj
∂xi∂xi

or ∇ · (∇v) or div (∇v) . (1.186)

The result of these operations is a vector. We also denote the operation as ∇2,
that is,

∇ · (∇v) = ∇2v . (1.187)

The symbol ∇2v does not pose a problem in rectangular coordinates since ∇2v
has three components so that (

∇2v
)
i

= ∇2vi .

But, a difficulty appears in curvilinear coordinates where(
∇2v

)
i
6= ∇2(vi) .

Example 1.13

Prove that
div(∇Φ) = ∇2Φ. (1.188)

We have, successively

div(∇Φ) =
∂

∂xi

(
∂Φ

∂xi

)
=

∂2Φ

∂xi∂xi
= ∇2Φ . (1.189)

Example 1.14

Show that
∇× (∇× a) = ∇(diva)−∇2a . (1.190)

In index notation, we have

(∇× (∇× a))l = εlmi
∂

∂xm

(
εijk

∂ak
∂xj

)
= εlmiεijk

∂2ak
∂xm∂xj

.
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Using (1.30) and the properties of the permutation symbol, we have

εlmiεijk
∂2ak

∂xm∂xj
= (δljδmk − δlkδmj)

∂2ak
∂xm∂xj

= δljδmk
∂2ak

∂xm∂xj
− δlkδmj

∂2ak
∂xm∂xj

=
∂2am
∂xm∂xl

− ∂2al
∂xj∂xj

=
∂

∂xl

(
∂am
∂xm

)
− ∂2al
∂xj∂xj

=
∂

∂xl
(diva)−∇2al =

(
∇(diva)−∇2a

)
l
,

and thus
(∇× (∇× a))l =

(
∇(diva)−∇2a

)
l
,

which is valid for the three components of the vector a.

Example 1.15

Demonstrate that
div
(
∇2a

)
= ∇2 (diva) . (1.191)

In index notation, we have

(
∇2a

)
i

=
∂2ai
∂xj∂xj

.

Thus(
div
(
∇2a

)
i

)
=

∂

∂xi

(
∂2ai
∂xj∂xj

)
=

∂2

∂xj∂xj

(
∂ai
∂xi

)
= ∇2 (diva) .

1.4.9 Curvilinear Coordinates

Let xi be the Cartesian coordinates of a point P. In a curvilinear coordinate
system θi (for example, cylindrical or spherical coordinates), the position of the
point P is given by the three numbers θi which represent the coordinate curves
that pass through P (fig. 1.5), that is, by the curves on which two of the three
coordinates θi are constant. The curvilinear coordinates can be considered as
functions of Cartesian coordinates

θi = θi(xj) , (1.192)

and if the condition that the Jacobian J = det(∂θi/∂xj), not be zero is met,
then the transformation (1.192) is invertible.
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O

P

θ2

θ1

θ3

x2

x3

x1

e3

e1

e2

g2

g3

g1

Fig. 1.5 Curvilinear coordinate system

The set of points for which the curvilinear coordinate θi is a constant,
represents a surface given by the equation

θi(xj) = cnst . (1.193)

Consider the cylindrical and spherical coordinate systems. Referring to
figures 1.6 and 1.7, we go, respectively, from Cartesian to cylindrical or spherical
coordinates with the relations

θ1 = r =
√
x2

1 + x2
2

θ2 = θ = tan−1 x2

x1

θ3 = z = x3

(1.194)

and

θ1 = r =
√
x2

1 + x2
2 + x2

3

θ2 = θ = tan−1

√
x2

1 + x2
2

x3

θ3 = ϕ = tan−1 x2

x1
.

(1.195)



44 Cartesian Tensors

As seen in figure 1.7, the angle ϕ is the longitude and θ is the colatitude
(latitude with 0 at the North Pole) or polar angle. The (r, θ, ϕ) coordinates are
commonly used in physics as suggested by an ISO convention. Mathematicians
swap the two angles.

x1

x2

x3

O

P

gz

g
θ

gr

r

z

e2

e1

e3

θ

Fig. 1.6 Cylindrical coordinate system

e1

e2

e3

x1

x2

x3

O

P

g
θ

g
ϕ

gr

θ

φ

r

Fig. 1.7 Spherical coordinate system
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The inverse relations are easily obtained.

Cylindrical coordinates:

x1 = r cos θ

x2 = r sin θ

x3 = z .

Spherical coordinates:

x1 = r sin θ cosϕ

x2 = r sin θ sinϕ

x3 = r cos θ .

For later calculations of volume integrals, the element dV is written in the
three coordinate systems:

• Cartesian dV = dx dy dz,

• cylindrical dV = r dr dθ dz,

• spherical dV = r2 sin θ dr dθ dϕ.

The position vector of a point P in Cartesian coordinates is written as

OP = r = xiei . (1.196)

In curvilinear coordinates, the basis vectors at P are the three unit vectors
tangent to the coordinate lines passing through P. We define them with the
relations

gi =

∂r

∂θi∥∥∥∥ ∂r∂θi
∥∥∥∥ . (1.197)

These vectors gi are shown in the two figures 1.6 and 1.7 for the two contexts.

In cylindrical coordinates, we write

r = r cos θe1 + r sin θe2 + ze3

∂r

∂r
= cos θe1 + sin θe2

∥∥∥∥∂r∂r
∥∥∥∥ = 1 gr =

∂r

∂r

∂r

∂θ
= −r sin θe1 + r cos θe2

∥∥∥∥∂r∂θ
∥∥∥∥ = r gθ =

1

r

∂r

∂θ

∂r

∂z
= e3 gz = e3 .

(1.198)

With the same reasoning, we obtain for spherical coordinates

gr =
∂r

∂r
gθ =

1

r

∂r

∂θ
gϕ =

1

r sin θ

∂r

∂ϕ
. (1.199)
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Note that the basis vectors in cylindrical and spherical coordinates are orthog-
onal and the corresponding curvilinear coordinates are orthogonal.

The direction cosines of the basis vectors gi with respect to the basis ej
are obtained using (1.6) as follows:

cij = gi · ej . (1.200)

In cylindrical coordinates, by (1.198) and (1.200), we have

[C] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (1.201)

Note that this matrix is orthogonal.

1.4.10 Scalars, Vectors, and Tensors in Orthogonal Curvilinear Coordinates

The value of a scalar field is given in either Cartesian or curvilinear coordinates
by the transformation

F (P) = f(xi) = f(xi
(
θj)
)

= f ′(θj) . (1.202)

Let v be a vector at a point P that has coordinates xi, θi. The physical com-
ponents v′i of the vector v in curvilinear coordinates at P are its components
following the basis vectors gi, that is,

v = viei = v′igi . (1.203)

Multiplying by gi we obtain

v′i = gi · ejvj = cijvj . (1.204)

If a tensor L applied to a vector u produces the vector v, v = Lu, the
physical components of L in curvilinear coordinates at P are such that

v′i = L′iju
′
j . (1.205)

We can easily verify that
L′ij = cikcjlLkl . (1.206)

1.4.11 Gradient of Scalar and Vector Fields in Orthogonal

Curvilinear Coordinates

The gradient of the property f given by (1.159) is a vector h with components
∂f/∂xj in Cartesian coordinates. In curvilinear coordinates, we have for the
physical components of the vector

h′i = cijhj = cij
∂f ′

∂θk

∂θk
∂xj

. (1.207)
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In cylindrical coordinates, with relations (1.194), we have

∂r

∂x1
=
x1

r
= cos θ

∂r

∂x2
=
x2

r
= sin θ

∂θ

∂x1
= −x2

r2
= − sin θ

r

∂θ

∂x2
=
x1

r2
=

cos θ

r
.

(1.208)

Combining equations (1.207) and (1.208), we easily obtain

h′r =
∂f ′

∂r
h′θ =

1

r

∂f ′

∂θ
h′z =

∂f ′

∂z
. (1.209)

If we consider a scalar function f defined in the two coordinate systems, Carte-
sian and cylindrical, since xi and θi are related by (1.192), we have

∂

∂xi
=
∂θj
∂xi

∂

∂θj

∂

∂xm

(
∂

∂xi

)
=

∂2

∂xm∂xi
=

∂

∂xm

(
∂θj
∂xi

∂

∂θj

)
.

The last relation becomes

∂2

∂xm∂xi
=

∂2θj
∂xm∂xi

∂

∂θj
+

∂θk
∂xm

∂θj
∂xi

∂2

∂θk∂θj
. (1.210)

We can now calculate the first derivatives

∂

∂x1
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(1.211)

∂

∂x2
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
(1.212)

∂

∂x3
=

∂

∂z
(1.213)

and the second derivatives

∂2

∂x2
1

= cos2 θ
∂2

∂r2
− sin 2θ

r

∂2

∂r∂θ
+

sin 2θ

r2

∂

∂θ

+
sin2 θ

r

∂

∂r
+

sin2 θ

r2

∂2

∂θ2
(1.214)

∂2

∂x2
2

= sin2 θ
∂2

∂r2
+

sin 2θ

r

∂2

∂r∂θ
− sin 2θ

r2

∂

∂θ

+
cos2 θ

r

∂

∂r
+

cos2 θ

r2

∂2

∂θ2
(1.215)

∂2

∂x2
3

=
∂2

∂z2
. (1.216)

Combining relations (1.214)–(1.216) and taking (1.201) into account, we obtain
for the Laplacian operator

∇2f =
1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
. (1.217)
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To express the gradient of a vector in cylindrical and spherical coordinates, we
must define the metric tensors of these coordinate systems and resort to an
analysis beyond the scope of this book. The reader can find complementary
reading in [2, 8, 47]. As an example, for the gradient of a vector, we will have

L = ∇v

L =



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

∂vr
∂z

∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z

 . (1.218)

Other operations, including the divergence of a vector, the components of
the curl, and the Laplacian of a vector for cylindrical coordinates, are given in
appendix A.

All the corresponding expressions for spherical coordinates are presented
in appendix B.

1.4.12 Definition of the Notion of Flux

Consider in figure 1.8 a body in a three-dimensional space and a surface element
of area ds. The volume of material that passes through ds in the time interval
dt is given by

vini dt ds or v · n dt ds , (1.219)

where vini dt corresponds to the length of the cylinder of material that has
passed through the surface element during the interval dt. Then, adopting the
notation ∂ω for the surface that encloses the volume ω, we have the following
definitions:

• the flux of a vector ∫
∂ω

vini ds or

∫
∂ω

v · n ds ; (1.220)

• the flux of an arbitrary scalar quantity ρ through the surface of a body
(scalar quantity) ∫

∂ω

ρvini ds or

∫
∂ω

ρv · n ds ; (1.221)

• the flux of kinetic energy (scalar quantity)∫
∂ω

1

2
ρvivivjnj ds or

∫
∂ω

1

2
ρ(v · v)(v · n) ds ; (1.222)

• the flux of a property Q∫
∂ω

Qvini ds or

∫
∂ω

Q(v · n) ds . (1.223)

In this case, Q can be a scalar, a vector, or a tensor.
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n
υ

ds

e1

e2

e3

x

x2

x

O

∂ω

ω

Fig. 1.8 The notion of flux

1.4.13 Integral Theorems of Gauss and Stokes

The basic theory of analysis establishes the relation between the integral and
the derivative of the integrand. If we have for the integrand f = dF/dx, then

∫ b

a

f dx =

∫ b

a

dF

dx
dx = F (b)− F (a) .

Gauss’ Theorem

The equivalent theorem for a volume integral is called Gauss’ theorem or di-
vergence theorem, which is written for an arbitrary component Tjk···(xi)
as ∫

ω

∂Tjk···
∂xi

dv =

∫
∂ω

niTjk··· ds . (1.224)

Gauss’ theorem is most often used in the form of the divergence theorem.
This theorem transforms the volume integral of the divergence of a property
of a continuous medium into a surface integral and plays an important role
in the mechanics of continuous media [67].
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Carl Friedrich Gauss (1777–1855) was a talented mathe-
matician, so much so that he was crowned the “prince of
mathematics”at the age of 24 by experts from all over Eu-
rope. Named professor of mathematics at the University
of Göttingen, he was responsible for major contributions
to number theory, geodesy, geometry, statistics (includ-
ing the least squares method), and physics. He took as
a motto Pauca sed matura (few, but ripe) and declined
to publish important manuscripts because they did not
satisfy this criterion.

Fig. 1.9 Carl Friedrich Gauss

In (1.224), Tjk··· can be a scalar or a component of a vector or tensor of
arbitrary rank, and the symbol n represents the unit normal vector to the
element ds (fig. 1.10).

dv

ds

n

Tij...

O

e2

e3

e1
x1

x3

x2

Fig. 1.10 Elements of surface and volume used in Gauss’ theorem

Take the case where Tjk··· = F (scalar function). Then the statement of
the theorem becomes∫

ω

∂F

∂xi
dv =

∫
ω

(
∇F

)
i
dv =

∫
∂ω

niF ds . (1.225)

If Tjk··· is a component of a vector function vi, we have∫
ω

∂vi
∂xi

dv =

∫
ω

div v dv =

∫
∂ω

nivi ds

=

∫
∂ω

n · v ds.
(1.226)
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The surface integral on the right-hand side expresses the flux of vector v passing
through the surface ∂ω. For a tensor quantity L the theorem is written as∫

ω

∂Lji
∂xi

dv =

∫
∂ω

Lji ni ds or

∫
ω

div L dv =

∫
∂ω

Ln ds . (1.227)

For an arbitrary property Q, the theorem gives∫
ω

∂Qvi
∂xi

dv =

∫
∂ω

Qvi ni ds or

∫
ω

div(vQ) dv =

∫
∂ω

Qv · n ds . (1.228)

Another important theorem used very often in fluid mechanics is Stokes’ theo-
rem.

Stokes’ Theorem

Stokes’ theorem equates the integral on an open surface to a contour integral
along the curve C that bounds the surface.∫

∂ω

curlv · n ds =

∮
C

v · dl , (1.229)

where the vector dl is tangent to C (see [67]).

George Gabriel Stokes (1819–1903) was an Irish mathe-
matician (born in Skreen in County Sligo). Named pro-
fessor of mathematics at Cambridge University at the age
of 30, he did much work in hydrodynamics, elasticity,
and optics. “Stokes’ law” for the motion of particles in
a viscous fluid was developed by him. He precisely wrote
the equations of viscous fluid dynamics now known as the
Navier-Stokes equations.

Fig. 1.11 George Gabriel Stokes

1.5 Exercises

1.1 Prove that the Kronecker delta function is a tensor of order 2.

1.2 Show that δijδikδjk = 3.

1.3 Prove that εijkuiuj = 0 and that δijεijk = 0.

1.4 Demonstrate that t× (u× v) = (t · v)u− (t · u)v .
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1.5 Calculate the expression equivalent to

(a× b)× (c× d)

where all vectors a, b, c, and d are non zero. Express the result in vector
notation.

1.6 Let a and b be two arbitrary vectors. Using the following notation,

[(a ·∇)b]i = aj
∂bi
∂xj

,

demonstrate the following identities:

∇ · (a× b) = (∇× a) · b− a · (∇× b) (1.230)

∇(a · b) = (a ·∇)b+ (b ·∇)a

+ a× (∇× b) + b× (∇× a) (1.231)

curl(a× b) = (b ·∇)a− (a ·∇)b+ adiv b− bdiva (1.232)

div(a⊗ b) = (∇a)b+ adiv b . (1.233)

1.7 Let a be an arbitrary vector function and Φ a continuously differentiable
scalar function.

Prove the following identities:

curl(Φa) = Φ curla− a×∇Φ (1.234)

∇(Φa) = Φ∇a+ a⊗∇Φ (1.235)

∇2 (∇Φ) = ∇
(
∇2Φ

)
(1.236)

∇×
(
∇2a

)
= ∇2 (∇× a) (1.237)

∆a = ∇ ·∇a =∇(∇ · a)− curl curl a . (1.238)

1.8 Let a be an arbitrary vector function, Φ a continuously differentiable scalar
function, and x the position vector. Show that

∇ (a · x) = a+ (∇a)
T
x (1.239)

∇2 (a · x) = 2 div a+ x ·
(
∇2a

)
(1.240)

∇2 (Φx) = 2∇Φ + x∇2Φ . (1.241)

1.9 Verify that tr (L) is an invariant.

1.10 Prove (1.69) and (1.71).

1.11 Derive relations (1.121).

1.12 Let [A] be a matrix with constant coefficients. Verify the following rela-
tion:

∇(Ajk xjxk) = (Aij +Aji)xjei . (1.242)
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1.13 Show that the quadratic form Dij xixj remains unchanged if we replace
Dij by its symmetric part.

1.14 Show that for an orthogonal tensor Q, the following conditions are sat-
isfied:

QTQ = QQT = I, ou QT = Q−1 (1.243)

det
(
QTQ

)
= (detQ)2 . (1.244)

1.15 Find the invariants of an antisymmetric tensor and its eigenvectors.

1.16 Using the characteristic equation of a tensor (1.120), relation (1.109), and
the property (1.59), prove (1.123).

1.17 Using the Cayley-Hamilton theorem (1.123), prove that the representa-
tion theorem (1.140) can be written in the form

L = α0

(
I1(T ), I2(T ), I3(T )

)
I + α1

(
I1(T ), I2(T ), I3(T )

)
T

+ α2

(
I1(T ), I2(T ), I3(T )

)
T−1 ,

(1.245)

where αi (i = 1, 2, 3) are scalar functions of the invariants of T .

1.18 For a matrix [A] of order 3, prove the following relations:

det[A] =
1

6
εijkεlmnAilAjmAkn (1.246)(

[A]−1
)
ij

=
1

2 det[A]
εiklεjmnAkmAln . (1.247)

1.19 Prove that for the scalar functions f and g, we have

∇2(fg) = f∇2g + g∇2f + 2∇f ·∇g . (1.248)





Chapter 2

Kinematics

of Continuous Media

2.1 Introduction

Kinematics is the study of the motion of solid or fluid bodies. This motion is
described by the successive positions of each point of the body as a function of
time. We are not interested in the cause of the motion. However, we impose
the condition that the body remains a continuous medium in the sense that
its density and all the other parameters describing the motion be continuous
spatial and temporal functions. In this chapter we will define the various pa-
rameters that characterize the motion of the body and present in detail how
its deformation is defined; the properties and significance of these descriptions
will be highlighted. In addition, the invariance of these various parameters
with respect to a reference frame associated with an observer will be discussed.
This description will be general and not limited to a particular form of motion
or the composition of the body.

The kinematics of continuous media is covered in the following works: [15,
20, 24, 29, 31, 33, 34, 36, 49, 59].

2.2 Bodies, Configurations and Motion

A body B is a set of particles or material points. These particles corre-
spond to infinitesimal volumes surrounding the points. At any time t, each
particle occupies a point in a three-dimensional Euclidean space. The volume
V occupied by all particles of B at time t is called the configuration Rt or
R. In particular, the configuration of B at time t = 0 is defined as the initial
configuration and will be named R0 (fig. 2.1). In addition, the boundary of
the body is indicated by ∂R0 or ∂R.
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Fig. 2.1 Initial configuration at t = 0 and configuration at the time t of B

A motion of B is a continuous sequence of configurations of B as seen by
an observer . The notion of motion is clearly linked to that of the reference
frame. In rational mechanics, a reference frame is a set of N points (N ≥ 4),
that are not coplanar, that are immobile with respect to each other, and with
respect to which motion can be studied. The choice of the reference frame
being arbitrary, an inertial, or Galilean, reference frame is often used in classical
mechanics. Reference frames and coordinate systems should not be confused;
for a given reference frame an infinite number of coordinate systems exist. As
in classical mechanics, we will define the concept of an observer by

an observer = a clock + a coordinate system .

In the observer’s fixed Cartesian coordinate system, having O as origin, the
position P0 of a particle of B at t = 0 is represented by the initial position
vector X and its current position p at time t ≥ 0 by the current position
vector x. Thus, the motion of B is described by a vector function χ defined
over time t that depends on X:

x = χ(X, t) . (2.1)

The vector function χ is called the motion or deformation of the body.
Furthermore, if the reference configuration (t = 0) coincides with the current
form, the function χ must satisfy the condition

X = χ(X, 0) . (2.2)

The motion χ is a bijection between the configurations R0 and R; that is,
there is a one-to-one correspondence between the initial and current positions
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of the particles of B. The existence of the function χ : R0 → R and its inverse
χ−1 : R → R0

X = χ−1(x, t) (2.3)

with

X = χ−1(X, 0) (2.4)

guarantees the integrality and the unity of the body. The continuity of the
motion function and its inverse rule out any separation (fragmentation) or lo-
cal fusion (junction, superposition) of the material. Continuity implies that a
connected domain remains connected throughout the motion, that two points
infinitesimally close in the initial configuration remain so in the deformed con-
figurations (t > 0). We assume that the functions χ and χ−1 are continuously
differentiable at least two times with respect to spatial and temporal variables.
These hypotheses then allow, without difficulty, the preservation of the regu-
larity of the body, the definition and calculation of velocities and accelerations,
deformation tensors, as well as of the equilibrium and compatibility equations.

The equation above says that X is the initial position of a particle that is
currently found at x. Equations (2.3) and (2.4) were obtained from (2.1) by
calculating X as a function of x. By definition, this means that

χ
(
χ−1(x, t), t

)
= x

χ−1
(
χ(X, t), t

)
= X .

Also by definition, referring to figure 2.1, the vector displacement u is
the vector difference

u = x−X = χ(X, t)−X = x− χ−1(x, t) , (2.5)

where (2.1) and (2.3) are used in the second and third equations.

Joseph-Louis de Lagrange (1736–1813) was a French
mathematician (born in Turin). After teaching at the
Academy of Artillery in Turin, he succeeded Euler as di-
rector of mathematics at the Berlin Academy. Later he
taught at the École Normale and École Polytechnique in
Paris. His book Mécanique analytique was a mathemati-
cal presentation of mechanics; its publication in 1788 was
approved by a committee including Laplace and Legendre.

Fig. 2.2 Joseph-Louis de Lagrange.
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2.3 Material and Spatial Descriptions

In mechanics of continuous media the material description , also called the
Lagrangian description , signifies the study of physical or mechanical phe-
nomena under consideration by observing what happens to a particle P of
the body . Alternatively the spatial description , known as the Eulerian
description , consists of observing the events occurring at a fixed point
in space . Thus, when the events at all fixed points in space are recorded,
we obtain the spatial description. In what follows we will consider the same
coordinate system to describe the motion of a body in material and spatial
description and that the origins of the basis vectors in the two descriptions
coincide and are indicated as ei, (i = 1, 2, 3) (fig. 2.1).

Figure 2.3 shows the two representations for the case of a fluid flowing in
a tube with a varying section.

χ(X, t
1
)

χ(X, t
2
)

P

χ(X, t
0
)

P P
x

Fig. 2.3 Schematic of the material and spatial descriptions for a fluid flow repre-
sented by the arrows

From a practical point of view, problems in solid mechanics are often easiest
to formulate and solve with a material description while those in fluid mechanics
are easier in a spatial description.

In order to exactly define the material and spatial descriptions, we first
introduce the notion of the reference configuration . By definition, it is a
particular configuration Rr used to identify each particle of B. In the following,
the configuration R0 of B at t = 0 will be chosen as the reference configuration.
Thus, we have the following definitions.

Material description:
description in which the components of the initial vector position X
are independent spatial variables.

Spatial description:
description in which the components of the vector position at later
times x are independent spatial variables.
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When we calculate the partial derivatives of the various functions that are
pertinent for the mechanics of continuous media, we can use either the material
coordinates or the spatial coordinates as independent variables, that is X or
x. Since X and x are related, we also need to relate the derivatives of the
function with respect to these variables. This is done with the application of
the rule for derivatives of composite functions (chain rule).

Fig. 2.4 Leonhard Euler (1707–1783) was a famous Swiss mathematician born in
Basel. He succeeded Daniel Bernoulli at the Saint Petersburg Academy of Sciences.
Later he taught at the Berlin Academy. Besides being one of the best mathematicians
of all time, in mechanics Euler conceived the“Euler equations”which describe inviscid
fluid dynamics. For a long time he was honored by appearing on the Swiss 10 franc
note with his hydraulic turbine project. Euler was the prolific author of many books
and nearly 900 memoirs (articles, as we say today). With the basics of the calculus
of variations, he opened the door to modern methods of scientific calculation. In
his Lettres à une Princesse d’Allemagne [14], he described, in French and without
equations, the knowledge of physics of his time. There are also numerous religious
reflections in them, as Euler was a fervent believer.
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To simplify the derivation, we introduce the following convention:

• functions written with small letters refer to functions of spatial vari-
ables, for example, f(x, t);

• functions written with capital letters refer to functions of material vari-
ables, for example, F (X, t).

With this convention, we can write

f(x, t) −→ f
(
χ(X, t), t

)
= F (X, t) (2.6)

F (X, t) −→ F
(
χ−1(x, t), t

)
= f(x, t) . (2.7)

In (2.6) we substituted x as a function of X, while in (2.7) we substituted X
as a function of x. We note that the functions f and F are different although
they represent the same physical phenomena. However, their values at the
corresponding points X and x are equal, as shown in equations (2.6) and (2.7).

Consider the following example: let θ(x, t) be the temperature at time t
and position x, and Θ(X, t) be the temperature at time t of a particle that
was initially located at X. We have, according to (2.6) and (2.7),

θ(x, t) −→ θ
(
χ(X, t), t

)
= Θ(X, t)

Θ(X, t) −→ Θ
(
χ−1(x, t), t

)
= θ(x, t) .

Equations (2.6) and (2.7) illustrate the transformation between the spatial
description (Eulerian) and the material description (Lagrangian).

These terms are more precisely defined in the following way.

Spatial description:
x, t are the independant variables.

Material description:
X, t are the independent variables.

An observer can measure the velocity, the density, etc., at a given point in
space. If these measurements are made for each point in the region of interest,
we have a spatial description. To obtain the material description, the observer
performs the measurements while travelling with a particle, at its velocity.

In most cases we assume that the reference condition is the configuration
at time t = 0 (that is, the Lagrangian configuration). The material and spatial
coordinates are generally measured with respect to the same coordinate axes.
Note that for fluids as well as solids, the choice of the reference configuration
is arbitrary.
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Now consider a particle initially (t = 0) at X which, after a certain time t,
is found at the position x. In figure 2.1, we see that

x = χ(X, t) = X +U(X, t) , (2.8)

where U(X, t) is the displacement in material coordinates. In spatial coordi-
nates the displacement is given by

u(x, t) = U
(
χ−1(x, t), t

)
= U(X, t) . (2.9)

It is seen that the two vector functions u and U are equal, as they represent
the same physical reality. This equation, while taking into account (2.3), allows
us to write (2.8) in the form

x = χ−1(x, t) + u(x, t) . (2.10)

This equation says that the initial position of a particle located at the present
time at x plus the displacement of the particle evaluated at x is equal to its
position at that time.

The reader should not be confused by the use of U as a material displace-
ment vector in (2.8) and the tensor U in (1.126) and in polar decomposition
(1.132). The distinction should be clear from the context of the expressions.

Example 2.1

The transformation of a body is described by

x1 = X1 + aX2

x2 = X2 + aX1 (2.11)

x3 = X3 ,

where a is a constant.

1) Express the motion and the displacements of the body in material and
spatial coordinates.

2) For a cubic body defined by

Ω =
{
X ∈ E3 | 0 ≤ X1 ≤ 1, 0 ≤ X2 ≤ 1, 0 ≤ X3 ≤ 1

}
, (2.12)

sketch Ω in its deformed configuration after the transformation (2.11) for
a = 1/3.

3) After deformation, what is the form of the surface defined by

Ω =
{
X ∈ E3 | X2

1 +X2
2 ≤ 1/(1− a2), X3 = 0

}
? (2.13)
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Fig. 2.5 Solid unit cube: initial configuration

1) The motion in the spatial description is obtained by inverting relations
(2.11)

X1 = (x1 − ax2)/(1− a2)

X2 = (x2 − ax1)/(1− a2) (2.14)

X3 = x3 .

Using (2.8), the components of the displacement vector in material coordi-
nates are

U1 = x1 −X1 = X1 + aX2 −X1 = aX2

U2 = x2 −X2 = X2 + aX1 −X2 = aX1 (2.15)

U3 = x3 −X3 = 0 .

Using (2.10), the components of the displacement vector in spatial coordi-
nates are

u1 = x1 −X1 = a(x2 − ax1)/(1− a2)

u2 = x2 −X2 = a(x1 − ax2)/(1− a2) (2.16)

u3 = x3 −X3 = 0 .

Note that u(x, t) = U
(
χ−1(x, t), t

)
.

2) By giving values to the variables Xi in equation (2.15), we can construct
the deformed body. For example, consider the following cases:
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For the edge X1 = X1, X2 = X3 = 0, we have U1 = U3 = 0, U2 = aX1.

For the edge X1 = 0, X2 = X2, X3 = 0, we have U1 = aX2, U2 = U3 = 0.

For the edge X1 = X2 = 0, X3 = X3, one obtains U1 = U2 = U3 = 0.

A

B

C

D

E

F

G

H

X3, x3

X1, x1

X2, x2

Fig. 2.6 Solid unit cube: deformed configuration

3) The surface given is a cylinder described by

X2
1 +X2

2 ≤ 1/(1− a2) .

Inserting (2.14) in the last expression, we obtain(
x1 − ax2

1− a2

)2

+

(
x2 − ax1

1− a2

)2

≤ 1/(1− a2) ,

that we can also write as

x2
1(1 + a2) + x2

2(1 + a2)− 4ax1x2 ≤ (1− a2) ,

which is an elliptic surface.
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2.4 Velocity, Material Derivative and Acceleration

2.4.1 Velocity

The velocity of a material particle at time t is the derivative of the motion
function with respect to time. By definition, in the material description we
have

V (X, t) =
∂χ(X, t)

∂t
(2.17)

Vi(X, t) =
∂χi(X, t)

∂t
. (2.18)

The vector V (X, t) expresses the velocity at time t of the particle that initially
was at X. Note that (2.17) is obtained using (2.1), taking into account that
X is one of the independent variables. From (2.8) we also have

V (X, t) =
∂U(X, t)

∂t
. (2.19)

The spatial description of velocity, written as v according to our convention, is
obtained by

v(x, t) = V
(
χ−1(x, t), t

)
= V (X, t) . (2.20)

The vector v(x, t) expresses the velocity at an instant t of the particle that, at
that time, passes through the position x.

2.4.2 Material Derivative

Now we introduce the notion of the material derivative for a spatial field.
Let ϕ be a scalar field of B. (1) During a motion χ of B, the material derivative
of ϕ(x, t), written ϕ̇ or Dϕ/Dt, is the rate of change of ϕ(x, t) with time (the
derivative with respect to time) for a single particle of B. To obtain the
material derivative of the field ϕ(x, t), we use the chain rule. In the material
description, that is ϕ

(
χ(X, t), t

)
= Φ(X, t) (refer to equations (2.6) and (2.7)),

we simply have

Dϕ(x, t)

Dt
= ϕ̇ =

∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

. (2.21)

The last equation shows that the material derivative is applied to the same
particle. For that reason, some authors call it the particle derivative. Since we
can write Φ(X, t) = Φ

(
χ−1(x, t), t

)
= ϕ(x, t), we obtain

∂Φ(X, t)

∂t
=

∂ϕ

∂x1

∂χ1

∂t
+

∂ϕ

∂x2

∂χ2

∂t
+

∂ϕ

∂x3

∂χ3

∂t
+
∂ϕ

∂t

∣∣∣∣
x=χ(X,t)

. (2.22)

(1)We will sometimes omit the arguments of the vector and scalar functions in order to
simplify the equations.



Velocity, Material Derivative and Acceleration 65

Using the definition of the velocity (2.17), the preceding equation takes the
following form:

∂Φ(X, t)

∂t
=
∂ϕ

∂t

∣∣∣∣
x=χ(X,t)

+ Vi(X, t)
∂ϕ

∂xi

∣∣∣∣
x=χ(X,t)

. (2.23)

Since the goal is to express the rightmost term of (2.23) in spatial coordinates,
we make the substitution X = χ−1(x, t) in the last equation which gives

∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

=
∂ϕ

∂t
+ vi(x, t)

∂ϕ

∂xi
, (2.24)

where we used

Vi(X, t)
∣∣∣
X=χ−1(x,t)

= vi(x, t) . (2.25)

Now we can define the following derivative:

ϕ̇(x, t) =
Dϕ(x, t)

Dt
≡ ∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

, (2.26)

where, from (2.24),

Dϕ(x, t)

Dt
=
∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) , (2.27)

=
∂ϕ(x, t)

∂t
+ vj

∂ϕ(x, t)

∂xj
. (2.28)

The derivative Dϕ(x, t)/Dt is called the material derivative and represents
the rate of change of the function ϕ following the same particle whose velocity
is v(x, t). Alternatively, this derivative can be considered as giving the change
of ϕ over time, as seen by an observer moving with the particle that is at x.

As an example, consider the function ϕ that represents the temperature of
a fluid particle in a river, which we will denote here θ. We would like to know
the variation Dθ/Dt, and for that we have a thermometer. In the first phase of
the experiment, we get in a boat and immerse the thermometer in the water.
Riding with the flow, we measure the variation of θ of the fluid particle that we
are travelling with, that is, we measure ∂Θ/∂t corresponding to the last term
of equation (2.26). Thus the name particle derivative for that quantity. In the
second phase, we attach the thermometer to a bridge pillar. The thermometer
is located at point x. There we measure Dθ/Dt, which is composed of ∂θ/∂t,
that is, the time variation of the temperature at that point, and of the variation
due to the local advection v ·∇θ induced by the changing velocity field (eqn.
(2.27)).



66 Kinematics of Continuous Media

For a vector field w, we have a similar formula for its material derivatives:

Dw

Dt
= ẇ =

∂W (X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

(2.29)

Dwi
Dt

= ẇi =
∂Wi(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

ẇ =
∂w(x, t)

∂t
+
(
∇w(x, t)

)∂χ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

(2.30)

ẇi =
∂wi(x, t)

∂t
+
∂wi(x, t)

∂xj
vj .

Note that the material derivative of a field Φ(X, t) is the standard partial
derivative

Φ̇(X, t) =
DΦ(X, t)

Dt
=
∂Φ(X, t)

∂t
. (2.31)

2.4.3 Acceleration

The accelerationA of a material particle at time t is the derivative of its velocity
V with respect to time, that is, the material derivative of V . In the material
description we have

A(X, t) =
∂ V (X, t)

∂t
=
∂2χ(X, t)

∂t2
(2.32)

Ai = V̇i =
∂2χi(X, t)

∂t2
,

and in the spatial description, we have

a = v̇ =
∂v(x, t)

∂t
+
(
∇v(x, t)

)
v(x, t) (2.33)

ai = v̇i =
∂vi(x, t)

∂t
+
∂vi(x, t)

∂xj
vj(x, t) .

The first term on the right-hand side of (2.33) can be considered as the accel-
eration due to the time dependence of the velocity at a fixed point in space.
The second term can be interpreted as the contribution to the acceleration of
the material particle due to the heterogeneity of the velocity field. These terms
are sometimes called the local and convective (or advective) parts, respectively,
of the acceleration. The advection corresponds to the transport of the velocity
field by itself.

Note that equation (2.33) can also be written

a =
∂v(x, t)

∂t
+
(
v(x, t) ·∇

)
v(x, t) ,

with the definition

((v ·∇)v)i = vj
∂vi
∂xj

.

This expression is not to be confused with ∇ · v = ∂vj/∂xj .



Pathlines, Streamlines and Streaklines 67

2.5 Pathlines, Streamlines and Streaklines

Equation (2.1) gives the successive positions x of a particle X with time t
as a parameter and thus describes a curve in space. This curve is called the
pathline or trajectory of the particle X. In differential form it is given by
one of the following sets of equations:

dx = V (X, t) dt or dxi = Vi(X, t) dt (2.34)

dx = v(x, t) dt or dxi = vi(x, t) dt , (2.35)

with the initial condition x(0) = X.

A streamline at a given instant t is the curve in space that is everywhere
tangent to the velocity vector. It is thus determined in terms of a parameter s
by the differential equation

dx(s) = v
(
x(s), t

)
ds (2.36)

dxi(s) = vi
(
x(s), t

)
ds . (2.37)

The motion is said to be stationary if the velocity for all points x is time
independent, that is v = v(x, t) = v(x, 0) = v0(x), in which case, equation
(2.36) is identical to (2.35). Thus, for stationary motion, the streamlines
and the pathlines coincide .

The streakline through a given point in space x and at a given instant t
is the curve composed of all the particles that previously occupied x; stated
differently, all the particles that have passed through x for time between 0 and
t. This curve can be parameterized in t, as follows:

x = x
(
χ−1(x, t), t

)
0 ≤ t ≤ t . (2.38)

Example 2.2

Consider the following example where a plane flow is given by the velocity
field:

v1 =
x1

1 + t
v2 = x2 v3 = 0 . (2.39)

First we calculate the streamlines. Equation (2.37) applied to (2.39) gives

dx1 =
x1

1 + t
ds dx2 = x2 ds dx3 = 0 . (2.40)

Setting t = t and integrating yields

x1 = c1 e
s

1+t x2 = c2 e
s x3 = c3 . (2.41)

These are the equations of the streamline that passes through the point c.
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Fig. 2.7 Streamlines: (a) for t = 0, (b) for t = 1. The points shown on the lines
correspond to values of c uniformly distributed on a circle of radius R = 2.5

Figure 2.7 shows the streamlines that are curves in the plane x3 = c3 such
that

x2

c2
=

(
x1

c1

)(1+t)

. (2.42)

The calculation of the pathlines is achieved by combining (2.35) and (2.39).
The result is

∫ x1

X1

dx′1
x′1

=

∫ t

0

dt′

1 + t′

∫ x2

X2

dx′2
x′2

=

∫ t

0

dt′
∫ x3

X3

dx′3
x′3

= 0 . (2.43)

The first integral becomes lnx′1
∣∣x1

X1
= ln(1 + t′)

∣∣t
0

and thus lnx1 − lnX1 =

ln(1 + t) as x1 = X1 at time t = 0. We obtain, finally,

x1 = X1(1 + t) x2 = X2 e
t x3 = X3 . (2.44)

The pathlines are curves in the plane x3 = c3 given by

x2 = X2 e
(x1−X1)/X1 (2.45)

and are drawn in figure 2.8.
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Fig. 2.8 Pathlines; the points corresponding to X are the same as those in figure
2.7

To calculate the streaklines, we first invert the pathline relations

X1 =
x1

1 + t
X2 = x2 e

−t X3 = x3 . (2.46)

Since the particle passes through x at time t ≤ t, we have

X1 =
x1

1 + t
X2 = x2 e

−t X3 = x3 . (2.47)

Substituting (2.47) in (2.44) evaluated at time t, we obtain the parametric
equations of the streaklines

x1 = x1
1 + t

1 + t
x2 = x2 e

t−t x3 = x3 . (2.48)

2.6 Kinematic Equations for Rigid Body Motion

When referring to objectivity while discussing the general principles governing
the constitutive equations of continuous media, we will primarily examine the
rotation of a rigid body. To prepare for that, we will study a few relations of
rigid body kinematics. Rigid body motion is that for which lengths and angles
are conserved.

2.6.1 Translation of a Rigid Body

For the case illustrated in figure 2.9, the equation of motion is given by

x = χ(X, t) = X + c(t) , (2.49)

with c(0) = 0.
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Fig. 2.9 Translation of a rigid body

We notice that the displacement vector U is independent of X, as we have

U = x−X = c(t) . (2.50)

Thus every material point is displaced identically with the same magnitude and
direction at time t.

2.6.2 Rotation of a Rigid Body Around a Fixed Point

The motion illustrated in figure 2.10 is described by the equation

χ(X, t) = x = b+Q(t)(X − b) , (2.51)

where Q is an orthogonal tensor such that Q(0) = I and b is a constant vector.
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Fig. 2.10 Rotation of a rigid body around a fixed point
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We note that when the material point X = b coincides with the spatial
point x = b, the rotation is always about a fixed point x = b. If the center of
rotation is placed at the origin, then b = 0. The rotational motion is given by
x = Q(t)X.

2.6.3 General Rigid Body Motion

The motion illustrated in figure 2.11 is expressed by

x = χ(X, t) = Q(t)X + d(t) , (2.52)

whereQ is a rotation tensor as before and d(t) = −Q(t)b+c(t). The vector c(t)
is such that c(0) = b. Equation (2.52) indicates that the motion is composed
of a rotation Q(t) and a translation c(t) of a material point X = b.
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Fig. 2.11 General rigid body motion

The velocity is obtained by taking the derivative with respect to time of
equation (2.52)

V = Q̇(X − b) + ċ . (2.53)

Now from (2.52), we have

X − b = QT (x− c) . (2.54)

Taking into account (2.20), we can write

v = Q̇Q
T

(x− c) + ċ , (2.55)
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since the tensor Q is orthogonal, QQT = I (eqn. (1.243)). Taking the deriva-
tive of this last expression with respect to time, we obtain

Q̇QT +QQ̇
T

= 0 , (2.56)

which shows that Q̇Q
T

is antisymetric. Let us set

Q̇Q
T

= Ω , (2.57)

where Ω is an antisymmetric rotation tensor. Then, using the dual vector of
this tensor (see eqn. (1.104))

ωk = −1

2
εkijΩij , (2.58)

we obtain, successively, with the help of (1.107)

Ωij = −εijkωk = εikjωk (2.59)

Ωx = Ωij xjei = εikjωkxjei = ω × x . (2.60)

Using (2.60), we can rewrite equation (2.55) in the form

v = ω × (x− c) + ċ . (2.61)

Setting r = x − c, where r is the position vector of the material point offset
by a translation c, we obtain

v = ω × r + ċ . (2.62)

This relation shows that the spatial velocity v of any material point of a rigid
body is the sum of the angular velocity of rigid body rotation, ω × r, and a
translation velocity ċ of an arbitrarily chosen material point.

2.7 Gradient and Deformation Tensors

2.7.1 Definition

Consider a given particle whose position in the configuration R0 is X0, and
whose neighborhood is V. Its position in the configuration R is given by (2.1).
If V is sufficiently small, the relation (2.1) for the other particles of V can be
approximated using a Taylor expansion. LetX and x be the initial and current
positions of a particle. Then, if the function χ is sufficiently regular, we have

xi = χi(Xk, t)

= χi
(
X0
k , t
)

+
∂χi
∂Xj

∣∣∣∣
X0

k

(
Xj −X0

j

)
+O

(
‖X −X0‖2

)
,

(2.63)

where the last term signifies that

O
(∥∥X −X0

∥∥2
)
∼ C

∥∥X −X0
∥∥2

+ · · · , (2.64)
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with C being a bounded constant. The tensor F whose components are given
by

Fij =
∂χi
∂Xj

(2.65)

is called the deformation gradient tensor .

In the following, we will omit the variables of the functions, vectors, and
tensors in order to simplify the notation.

If the distance ‖X − X0‖ between X and X0 is much less than unity,
relation (2.63) can be closely approximated by

xi ∼= x0
i + Fij

(
Xj −X0

j

)
with x0

i = χi
(
X0
k , t
)
. (2.66)

In this case, the tensor F is represented (abusively) by

Fij =
∂xi
∂Xj

. (2.67)

Let J be the Jacobian of F :

J = det

(
∂χi
∂Xj

)
= detF . (2.68)

The assumption of continuity of the material and thus the existence of a con-
tinuous derivative for the deformation of the medium implies that

0 < J <∞ . (2.69)

This ensures the existence of the inverse F−1 of F with detF−1 = 1/J . Using
(2.8), (2.10), and (2.67), we can express F and F−1 in terms of displacement:

Fij = δij +
∂Ui
∂Xj

F−1
ij =

∂Xi

∂xj
= δij −

∂ui
∂xj

(2.70)

or

F = gradχ(X, t) = I +∇U F−1 = gradχ−1(x, t) = I −∇u . (2.71)

Another way to write (2.66) is

dx = F dX , (2.72)

where we see that F transforms a vector dX associated with X0 into a vector
dx associated with x (fig. 2.1). To guarantee the existence of F , derived from
the deformation (2.1) or (2.63), the condition

∂2xi
∂Xl∂Xk

=
∂2xi

∂Xk∂Xl

is necessary. This compatibility condition is also sufficient in a simply connected
region to ensure that (2.1) exists such that F is given by (2.67).



74 Kinematics of Continuous Media

According to the polar decomposition theorem (1.132), there exists a
unique rotation tensor R and two unique symmetric positive definite tensors
U and V , such that

F = RU = V R . (2.73)

For F = RU , the right polar decomposition of F , and for F = V R, the
left polar decomposition of F , the tensors U and V are called the right and
left stretch tensors. When R = I, (2.73) reduces to F = U = V and the
deformation is called pure deformation .

Inserting (2.73) in (2.72), we obtain

dx = RU dX . (2.74)

We will see later that this relation allows us to conclude that the configuration
change in the neighborhood of the material particle is obtained by the trans-
formation of vector dX to a vector U dX by a pure deformation U followed
by a local rotation R.

2.7.2 Deformation Tensors

Let us write (2.72) in the index notation

dxi = Fij dXj . (2.75)

Now, the square of the norm ds of the vector dx is given by

ds2 = ‖dx‖2 = dxm dxm = FmiFmj dXi dXj . (2.76)

The tensor C, defined by

C = F TF =
(
F TF

)T
Cij = FmiFmj , (2.77)

is the symmetric right Cauchy-Green deformation tensor .

Augustin Louis Cauchy (1789–1857) was a French math-
ematician born in Paris. He was a professor at the
École Polytechnique in Paris. His extensive body of work
treated all the major mathematical problems of his time.
He is notably responsible for holomorphic functions and
convergence criteria for series. His name is one of the 72
names of distinguished engineers and scientists inscribed
on the Eiffel tower.

Fig. 2.12 Augustin Louis Cauchy

This symmetric tensor is a metric tensor. As indicated by relation (2.76), it
can be used to calculate the length of dx as a function of the components of dX.
Inversely, the length dS of dX can be calculated in terms of the components
of dx:

dS2 = ‖dX‖2 = dXm dXm = F−1
mi F

−1
mj dxi dxj . (2.78)
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With the notation F−T =
(
F−1

)T
, the tensor c−1, defined by

c−1 = F−TF−1 =
(
F−TF−1

)T
c−1
ij = F−1

mi F
−1
mj , (2.79)

is the inverse of the symmetric left Cauchy-Green deformation tensor
c. The difference between ‖dx‖2 and ‖dX‖2 can be expressed in one of the
two following forms:

‖dx‖2 − ‖dX‖2 = Cij dXi dXj − dXm dXm = 2Eij dXi dXj (2.80)

‖dx‖2 − ‖dX‖2 = dxm dxm − c−1
ij dxi dxj = 2eij dxi dxj . (2.81)

The tensor E introduced in (2.80), whose components are

Eij =
1

2
(Cij − δij) , (2.82)

is called the Green-Lagrange strain tensor .

George Green (1793–1841) was an English mathemati-
cian born in Sneinton, near Nottingham. Practically self-
taught, he obtained a degree at the age of 44. He con-
tributed to potential theory by introducing the functions
which are now known by his name. He worked in optics,
acoustics, and hydrodynamics. His work, not well known
during his lifetime, was exposed to a larger public in 1846
by Lord Kelvin.

Fig. 2.13 George Green

The tensor e introduced in (2.81), whose components are

eij =
1

2

(
δij − c−1

ij

)
, (2.83)

is the Euler-Almansi strain tensor .

In terms of material and spatial displacements U and u, the deformation
tensors above are written as

Cij = FmiFmj =

(
δmi +

∂Um
∂Xi

)(
δmj +

∂Um
∂Xj

)
= δij +

∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Um
∂Xi

∂Um
∂Xj

(2.84)

c−1
ij = F−1

mi F
−1
mj =

(
δmi −

∂um
∂xi

)(
δmj −

∂um
∂xj

)
= δij −

∂ui
∂xj
− ∂uj
∂xi

+
∂um
∂xi

∂um
∂xj

(2.85)

Eij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Um
∂Xi

∂Um
∂Xj

)
(2.86)

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂um

∂xi

∂um
∂xj

)
. (2.87)
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The deformation tensors can also be written in terms of U and V . Directly
applying the polar decomposition (2.73), they are:

• right Cauchy-Green deformation tensor

C = F TF = URTRU = U2 ; (2.88)

• left Cauchy-Green deformation tensor and its inverse

c = FF T = V RRTV T = V 2 (2.89)

c−1 = F−TF−1 = V−2 ; (2.90)

• Green-Lagrange strain tensor

E =
1

2
(C − I) =

1

2

(
U2 − I

)
; (2.91)

• Euler-Almansi strain tensor

e =
1

2
(I − c−1) =

1

2

(
I − V −2

)
. (2.92)

It is important to observe that the rotation tensor R does not affect any
of the deformation tensors considered. It is necessarily so for the measurement
of deformation to have meaning; otherwise, a rigid body would be considered
deformable. In addition, we can easily verify that for rigid body motion (2.51),
F = Q and C = c = I and thus E = e = 0.

Based on the deformation gradient tensor F and the associated deformation
tensors, we can express the change in length of a linear element, a surface
element, and a volume element during a motion of the body (fig. 2.14). A linear
element dX in the reference configuration has norm ‖dX‖ = (dX · dX)1/2.
After the body moves (relation (2.1)), it becomes the element dx with norm
‖dx‖ = (dx · dx)1/2. Taking into account (2.72), the relation between the
squares of the norms in these two configurations is given by

‖dx‖2
‖dX‖2 =

F dX · F dX

‖dX‖2 =
dX · F TF dX

‖dX‖2 =
dX ·C dX

‖dX‖2 . (2.93)

As dX = N‖dX‖ where N is the unit vector in the direction dX, (2.93)
is written as

‖dx‖2
‖dX‖2 =

dX ·C dX

‖dX‖ ‖dX‖ = N ·CN = λ2
N . (2.94)

The parameter λN is called stretch or stretch ratio at X in the direction
of N . Stretch parameters are used in non-linear elastic response of solids
subjected to large deformation. This subject is treated in chapter 6.

By the relation (2.88) linking C and U , the stretch ratio can be expressed
with the equations

‖dx‖
‖dX‖ =

(
N ·U2N

)1/2
= (UN ·UN)1/2 = ‖UN‖ = λN . (2.95)
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n

N

R

ds

dS

dx

dy

dz

dZ

dX

dX

dx

dY

O

e2

e3

e1

R0

X3, x3

X1, x1

X2, x2

Fig. 2.14 Linear and surface elements in the configurationsR0 andRt of the body B

We can also express the angle between two linear elements similarly with the
following procedures. Suppose that two linear elements dX and dY intersect
with an angle between them of Θ in the reference configuration. Then,

cos Θ =
dX · dY
‖dX‖ ‖dY ‖ . (2.96)

After the motion, these two elements become dx and dy and the angle θ between
them is given by the expression

cos θ =
dx · dy
‖dx‖ ‖dy‖ . (2.97)

Using successively (2.72) and (2.88), this last relation becomes

cos θ =
F dX · F dY

‖F dX‖ ‖F dY ‖ =
dX · F TF dY

‖F dX‖ ‖F dY ‖

=
dX ·C dY

‖F dX‖ ‖F dY ‖ .
(2.98)

Since dX = Nx‖dX‖ and dY = Ny‖dY ‖ where Nx and Ny are the unit
vectors aligned with the linear elements, and as ‖F dX‖ = (F dX ·F dX)1/2 =
(dX ·C dX)1/2, (2.98) yields

cos θ =
Nx ·CNy

(Nx ·CNx)1/2(Ny ·CNy)1/2
. (2.99)

The angular difference Θ− θ is normally attributed to shear.
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In order to express the relation between the volume elements of the two
configurations, we consider three infinitesimal, non-coplanar, linear elements
dX, dY , and dZ (fig. 2.14) in the reference configuration such that

dV = dX · (dY × dZ) > 0 . (2.100)

In the deformed configuration, the three linear elements become dx, dy, and
dz, and the corresponding volume is given by

dv = dx · (dy × dz) . (2.101)

Since the volume is expressed as a determinant, from (2.75) we have

dv = det

 dx1 dy1 dz1

dx2 dy2 dz2

dx3 dy3 dz3

 = det

 F1j dXj F1j dYj F1j dZj
F2j dXj F2j dYj F2j dZj
F3j dXj F3j dYj F3j dZj

 .

(2.102)
With this determinant and (2.68), the volume element is transformed according
to the relation

dv = detF dV = J dV . (2.103)

To evaluate the change in a surface element (fig. 2.14), we start with the
expression of the volume element in the reference and deformed configurations

dV = dX′ ·N dS dv = dx′ · n ds , (2.104)

where the surface elements are indicated by N dS and n ds with N and n the
unit normal vectors corresponding to the surface elements. Taking into account
(2.72) and (2.104), (2.103) becomes

dv = F dX′ · n ds = J dX′ ·N dS (2.105)

or (
F Tn ds− JN dS

)
· dX′ = 0 . (2.106)

Since this relation is valid for an arbitrary choice of dX′, we conclude that

n ds = JF−TN dS or ds = JF−TN dS . (2.107)

This expression, called Nanson’s formula , relates the corresponding surface
elements between the reference and deformed configurations.

2.7.3 Geometric Interpretation

We can interpret (2.73) geometrically. In order to do so, we first need to
examine a few properties of the eigenvalues of U and V . Let λi (i = 1, 2, 3) be
the eigenvalues of U corresponding to the unit eigenvectors Ai, then

UAi = λiAi (no sum over i) . (2.108)
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As U is symmetric and positive definite, the λi are real and λi > 0. In addition,
by spectral decomposition (1.125), we have

U = λ1A1 ⊗A1 + λ2A2 ⊗A2 + λ3A3 ⊗A3 with Ai ·Aj = δij . (2.109)

Using (2.88) and (2.108), we can write

CAi = λ2
i Ai (no sum over i) . (2.110)

Thus, the tensor C has λ2
i for eigenvalues and Ai (i = 1, 2, 3) for eigenvectors.

As for the eigenvalues and eigenvectors of V , the use of (2.73) and (2.108) leads
to

V (RAi) = RUAi = λi(RAi) (no sum over i) . (2.111)

This shows that the λi are also the eigenvalues of V , corresponding to the
unit eigenvectors

bi = RAi . (2.112)

Thus the deformation transforms, with a rotation, the eigenvectors of U into
those of V . Similarly to (2.109), we can write

V = λ1b1 ⊗ b1 + λ2b2 ⊗ b2 + λ3b3 ⊗ b3 with bi · bj = δij . (2.113)

To obtain the eigenvalues and eigenvectors of c, we use (2.89) and (2.110)
to see that

V 2(RAi) = c(RAi) = λ2
i (RAi) (no sum over i) , (2.114)

which proves that the tensors V and c have λi and λ2
i for eigenvalues, respec-

tively, and the same eigenvectors bi (i = 1, 2, 3). In the literature, the λi are
also called the principal stretches of the tensor U , Ai the principal ma-
terial directions, and bi the principal spatial directions. In the case of a
pure deformation, the difference between Ai and bi disappears.

Now it is possible to give a geometric interpretation to (2.73). Consider a
body whose initial, reference configuration is a unit sphere centered at the origin
(fig. 2.15), and that undergoes the following homogeneous transformation (cf.
sect. 2.8):

x = FA with ‖A‖ ≤ 1 . (2.115)

Substituting (2.73) in (2.115), we obtain

x = RUA = V RA with ‖A‖ ≤ 1 . (2.116)

From this expression, and in the light of the previous discussion on the prop-
erties of the eigenvalues of U and V , the right and left polar decompositions
can be geometrically interpreted as follows (fig. 2.15), where we show only the
plane (Ox1x2):
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A1

b1

b1

b2
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U

R

R

V

1

λ1

λ1

λ2

λ2

Fig. 2.15 Geometric interpretation of F = RU = V R

Right Polar Decomposition:

• First, applying the right stretch tensor U to the unit sphere, the
radii in the directions of the principal material directions Ai are
lengthened (or shortened) to their final lengths λi, remaining aligned
with the principal material directions Ai. Thus the sphere becomes
an ellipsoid.

• Then, applying the rotation tensor R to the ellipsoid, the ellip-
soid undergoes rotation and takes its final orientation with the
axes, originally aligned with the principal material stretch direc-
tions, moving to alignment with bi.

Left Polar Decomposition:

• First, applying the rotation tensor R to the unit sphere, the axes
aligned with the principal material directionsAi undergo a rotation
and move to their final spatial orientations bi. The unit sphere
turns around itself.

• Then, applying the left stretch tensor V to the rotated unit sphere,
the radii aligned with the principal spatial directions bi are length-
ened (or shortened) to their final lengths λi, and the sphere becomes
an ellipsoid.

As we have seen, mutually orthogonal lines which are along the principal
material directions Ai before the transformation, remain mutually orthogonal
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after, and are aligned with the principal spatial directions bi. The rotation
tensor R can thus be expressed as a function of Ai and bi:

R = b1 ⊗A1 + b2 ⊗A2 + b3 ⊗A3 . (2.117)

This relation can be easily established as follows. The rotation tensor is ex-
pressed asR = RI and the identity tensor as I = Ai⊗Ai. Taking into account
(2.112) and the property (1.65), we obtain

R = RI = R(Ai ⊗Ai) = (RAi)⊗Ai =
3∑
i=1

bi ⊗Ai . (2.118)

The deformation gradient tensor F can be expressed in terms of the vectors
Ai, bi, and the principal stretches λi as

F =

3∑
i=1

λibi ⊗Ai . (2.119)

Next we present a method to determine the various kinematic tensors C,
U , c, V , and R. We can perform the concrete calculation of U , V , and R
for a given deformation gradient F . The tensors U , V , and R are determined
from the relations

U =
√
F TF V =

√
FF T R = FU−1 = V −1F . (2.120)

The principal difficulty is found in the calculation of U or the square root of
C = F TF . Let [P ] be the orthogonal matrix that diagonalizes the matrix [C]
of the tensor C, such that

[Λ2] = [P ][C][P ]T or Λ2
ij = PimCmnPjn , (2.121)

with [Λ2] = diag (λ2
1, λ

2
2, λ

2
3), where the notation diag denotes the diagonal

matrix, as in

diag (a, b, c) =

 a
b

c

 . (2.122)

Then, the matrix [U ] of the tensor U is given by

[U ] = [P ]T [Λ][P ] or Uij = PmiΛmnPnj , (2.123)

with [Λ] = diag (λ1, λ2, λ3). Having found U , we can calculate R by (1.135)
and V by (1.137) or with V = FRT .

2.8 Homogeneous Deformations

The deformation or transformation x of a body B is called homogeneous if the
corresponding deformation gradient F is independent of the particle’s position
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X. Geometrically, a homogeneous deformation transforms a straight line P0P
of R0 to a straight line p0p of R (fig. 2.16). Such a deformation x is an
affine transformation and has the following general form, with the notation
x0
i = χi(X

0
j , t),

xi = x0
i (t) +Mij(t)

(
Xj −X0

j

)
. (2.124)

In vector form, we have

x = x0(t) +M(t)
(
X −X0

)
, (2.125)

with 0 < detM <∞. The inverse relation is written as

X = X0 +M−1(t)
(
x− x0

)
. (2.126)

 

p
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e3

e1
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X1, x1

X2, x2

Fig. 2.16 Transformation of a vector in homogeneous deformation

Below we present some important examples of homogeneous deformations
obtained from relations (2.125) and (2.126).

Translation:
M is the unit tensor I; without loss of generality, we set X0 = 0. We
obtain

x = x0(t) +X . (2.127)

Rotation About the Origin:
X0 = x0 = 0, and M is the rotation tensor R with the property

RTR = RRT = I and det(R) = 1 . (2.128)
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In this case, (2.125) and (2.126) become

x = RX X = RTx . (2.129)

Thus rigid body motion can be decomposed into a rotation followed
by a translation.

Uniform Expansion or Compression:
M = mI and (2.124) takes the form (fig. 2.17)

xi = x0
i +m

(
Xi −X0

i

)
. (2.130)

pP0

p0

P

R

X
0

x
0

O

e2

e3

e1

R0

X3, x3

X1, x1

X2, x2

Fig. 2.17 Uniform expansion

Simple Shear:
in a Cartesian coordinate system (fig. 2.18), the matrix [M ] is given by

[M ] =

 1 k 0
0 1 0
0 0 1

 , (2.131)

or in vector notation, we have

x = MX = (I + k e1 ⊗ e2)X , (2.132)

taking the origin as fixed, X0 = x0 = 0. Explicitly, (2.124) and (2.131)
give

x1 = X1 + kX2 x2 = X2 x3 = X3 . (2.133)
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Example 2.3

As an example, let us calculate F , C, U , V , and R for simple shear.

The matrices of F and C can be calculated directly, while obtaining those
for U , V , and R requires solving an eigenvalue problem. The application
of the definitions of F and C yields

[F ] =

 1 k 0
0 1 0
0 0 1


[C] =

 1 k 0
k 1 + k2 0
0 0 1

 .

R

O

e2

e1

R0

X1, x1

X2, x2

Fig. 2.18 Simple shear

To calculate U =
√
C, we seek the diagonal matrix [Λ2] of C. For this,

we solve the eigenvalue problem (2.110). The corresponding characteristic
equation is

det
(
[C]− λ2

i [I]
)

=
(
λ4
i −

(
2 + k2

)
λ2
i + 1

) (
1− λ2

i

)
= 0 . (2.134)

The three solutions to this equation are

λ2
1 = 1 +

1

2
k2 + k

√
1 +

1

4
k2

λ2
2 = 1 +

1

2
k2 − k

√
1 +

1

4
k2

λ2
3 = 1 .

(2.135)

From which, we find the matrix [Λ] defined by (2.123) such that

[Λ] = diag (λ1, λ2, λ3) . (2.136)
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Now we have to find the matrix [P ] in (2.123) to obtain the matrix of U
with respect to the basis {e1, e2, e3} for which the axes are the normalized
eigenvectors Ai of C. The eigenvectors can be determined from equation
(2.110). After the calculations, we have the matrix rows

(A1) =

(
2 +

1

2
k2 + k

√
1 +

1

4
k2

)−1/2(
1 ,

√
1 +

1

4
k2 +

1

2
k , 0

)

(A2) =

(
2 +

1

2
k2 − k

√
1 +

1

4
k2

)−1/2(
−1 ,

√
1 +

1

4
k2 − 1

2
k , 0

)
(A3) = (0, 0, 1) ,

and the matrix [P ] is written as

[P ] =

 (A1)
(A2)
(A3)

 . (2.137)

Then we obtain

[U ] = [P ]T [Λ][P ] =
1√

1 +
k2

4

 1 k/2 0
k/2 1 + k2/2 0

0 0
√

1 + k2/4



[R] = [FU−1] =
1√

1 +
k2

4

 1 k/2 0
−k/2 1 0

0 0
√

1 + k2/4



[V ] = [FRT ] =
1√

1 +
k2

4

 1 + k2/2 k/2 0
k/2 1 0

0 0
√

1 + k2/4

 .

(2.138)

2.9 Small Displacements and Infinitesimal Strain Tensors

2.9.1 Small Displacements

Consider a displacement field dependent on a small real number ε (ε� 1) such
that

U(X) = εW (X) , (2.139)

where W (X) is a given material displacement field, considered to be fixed for
simplicity, to which the spatial field w(x) corresponds. From (2.86) and (2.87),
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the Green-Lagrange and Euler-Almansi strain tensors are given by

Eij = ε
1

2

(
∂Wi

∂Xj
+
∂Wj

∂Xi

)
+ ε2 1

2

∂Wm

∂Xi

∂Wm

∂Xj
(2.140)

eij = ε
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
− ε2 1

2

∂wm
∂xi

∂wm
∂xj

. (2.141)

When ε approaches zero, the terms of order 2 become negligible compared to
those of order 1. Thus we have

Eij ' ε
1

2

(
∂Wi

∂Xj
+
∂Wj

∂Xi

)
=

1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
(2.142)

eij ' ε
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.143)

In addition, starting from xi = Xi +Ui = Xi + εWi and Wi(Xk) = wi(xk), we
can write

∂Ui
∂Xj

= ε
∂Wi

∂Xj
= ε

∂wi
∂xk

∂xk
∂Xj

= ε
∂wi
∂xk

(
δkj + ε

∂Wk

∂Xj

)
=
∂ui
∂xj

+ ε2 ∂wi
∂xk

∂Wk

∂Xj

(2.144)

or
∂Ui
∂Xj

=
∂ui
∂xj

+O(ε2) ' ∂ui
∂xj

. (2.145)

Consequently, in the case of small displacements, O(ε2) → 0 and the distinc-
tion between the Green-Lagrange and Euler-Almansi description of strains is
negligible. Thus we can express the displacement derivatives with respect to
the position before or after the deformation.

Experimental results show that in most engineering applications, the dis-
placement gradient is also very small, such that∥∥∥∥ ∂Ui∂Xj

∥∥∥∥ = O(ε)� 1 . (2.146)

In these conditions, (2.70) and (2.68) can be written as

Fij = δij +O(ε), F−1
ij = δij −O(ε), J ≈ 1 +O(ε) . (2.147)

For a tensor L of order 2, we can write

∂L

∂Xj
=

∂xi
∂Xj

∂L

∂xi
= Fij

∂L

∂xi

=

(
δij +

∂Ui
∂Xj

)
∂L

∂xi
=
∂L

∂xj
+
∂Ui
∂Xj

∂L

∂xi
.

(2.148)

Since ∂Ui/∂Xj is very small, the last term of (2.148) is negligible. Thus the
material and spatial derivatives of the tensor L are approximately equal

∂L

∂Xj
≈ ∂L

∂xj
. (2.149)
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Relations (2.145)–(2.147) and (2.149) are the results of kinematic lineariza-
tion .

2.9.2 Infinitesimal Strain Tensor

We can now derive an important result from the preceding kinematic lineariza-
tion. Relation (2.145) shows that if the terms of order ε2 are negligible, there
is no difference between the Green-Lagrange and Euler-Almansi strain tensors.
It is thus natural to introduce the infinitesimal strain tensor ε:

εij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.150)

ε =
1

2

(
∇U + (∇U)T

)
=

1

2

(
∇u+ (∇u)T

)
.

Note that ε is a tensor since the gradient of the displacement vector is a ten-
sor (see sec. 1.4.3). Thus the transformation law for its components is given
by (1.52) and the eigenvalues, which correspond to the principal infinitesimal
strains, are from the solutions of equation (1.120) with L = ε. It is also in-
teresting to note that the tensor ε is linear in ∇u. Therefore for the strains
ε(1), ε(2), . . . resulting from the displacements u(1),u(2), . . . , the principle of
superposition applies, i.e., the total strain ε = ε(1) + ε(2) + . . . corresponds to
u = u(1) + u(2) + . . . .

We can interpret the components εij geometrically. Consider the small
displacements between R0 and R (fig. 2.19). Let dX be an infinitesimal vector
attached to the point X with components (dX1, 0, 0). The length ‖dx‖ of the
corresponding vector dx in R is given by (2.80):

‖dx‖2 = ‖dX‖2 + 2Eij dXi dXj = (1 + 2E11) dX2
1 . (2.151)

R

X

x

O

e2

e3

e1

R0

X3, x3

X1, x1

X2, x2

dx

dX

Fig. 2.19 Deformation of an infinitesimal vector aligned with e1
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Assuming small displacement gradients as discussed earlier, we can write

‖dx‖2 ∼= (1 + 2ε11)‖dX‖2

‖dx‖ ∼= (1 + 2ε11)1/2 dX1 = (1 + ε11)‖dX‖ ,
(2.152)

from which

ε11
∼= ‖dx‖ − ‖dX‖‖dX‖ . (2.153)

Thus, ε11 measures the relative extension of a material line element aligned
with direction 1. The other diagonal components ε22 and ε33 of ε have similar
interpretations.

As for the geometric meaning of ε12, consider two orthogonal vectors in R0

(fig. 2.20):
dX = (dX1, 0, 0) and dY = (0, dY2, 0) . (2.154)

In R, they are deformed and become the vectors dx and dy with components

dxi = Fi1 dX1 dyi = Fi2 dY2 . (2.155)

The lengths of dx and dy are

‖dx‖ ∼= (1 + ε11) dX1 ‖dy‖ ∼= (1 + ε22) dY2 . (2.156)

Denoting by γ12 the angle between dx and dy, we have

cos γ12 =
dx · dy
‖dx‖ ‖dy‖

∼= 2ε12

(1 + ε11)(1 + ε22)
∼= 2ε12 . (2.157)
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dY

x

dx
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X3, x3

X1, x1

X2, x2 γ12

Fig. 2.20 Modification of the angles between two vectors
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Introducing the slip angle φ12 between two orthogonal directions dX and dY
(fig. 2.20), defined by

φ12 =
π

2
− γ12 , (2.158)

relation (2.157) can then be written as follows:

cos γ12 = sinφ12
∼= φ12

∼= 2ε12 . (2.159)

That is, ε12 is half of the cosine of the angle between the directions of the
deformed infinitesimal vectors aligned with the directions 1 and 2 inR0. Similar
interpretations can be given to ε23 and ε31.

The relative variation of volume is expressed in terms of the relative ex-
tensions. Consider three orthogonal vectors dX = dX e1, dY = dY e2, dZ =
dZ e3 in the reference configuration. The volume of this cube is dV = dXdY dZ.
After deformation, each element is modified as follows:

dx = (1 + ε11)dX, dy = (1 + ε22)dY, dz = (1 + ε33)dZ , (2.160)

and the volume after deformation is expressed as

dv = dxdydz = (1 + ε11)(1 + ε22)(1 + ε33)dXdY dZ

= (1 + ε11)(1 + ε22)(1 + ε33)dV . (2.161)

Neglecting the higher order terms of the deformation, we obtain the relative
variation of the volume

dv − dV
dV

= ε11 + ε22 + ε33 = εii . (2.162)

Note that in this case of infinitesimal strain, expression (2.162) is the trace of
the gradient of the displacement vector, and using (2.150) we have

εii = divu = tr (∇u) . (2.163)

As we have seen with (2.150), the infinitesimal strain tensor εij corresponds
to the symmetric part of the displacement gradient ∂ui/∂xj . Thus we have

dui =
∂ui
∂xj

dxj =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
dxj +

1

2

(
∂ui
∂xj
− ∂uj
∂Xi

)
dxj (2.164)

du = ∇u dx =
1

2

(
∇u+ (∇u)T

)
dx+

1

2

(
∇u− (∇u)T

)
dx , (2.165)

and we can thus define the antisymmetric part

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.166)

ω =
1

2

(
∇u− (∇u)T

)
(2.167)
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as the infinitesimal rotation tensor ω and write

dui = εij dxj + ωij dxj .

Note that the curl of the displacement vector u is related to a rotation vector of
the body, whose components are those of the tensor ω multiplied by the factor
2, that is,

1

2
∇× u = ω32e1 + ω13e2 + ω21e3 . (2.168)

Consequently, the infinitesimal displacement can be decomposed into a sum
of a pure strain tensor and a pure rotation. However, an additive decomposition
of the displacement gradient is not possible for large strains (E 6= ε). In this
case we can use (2.73). A relation between the rotation tensor R (eqn. (2.73))
and the infinitesimal rotation tensor ω can be easily established (exercise 2.13).

2.9.3 Compatibility Equations for the Infinitesimal Strain Tensor

For a given displacement field u, the components of the infinitesimal strain
tensor are easily calculated:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(ui,j + uj,i) . (2.169)

However, for a given εij , a corresponding displacement field does not necessarily
exist. Now we will determine the conditions that the components εij must meet
to ensure the existence of a displacement u that satisfies (2.169). Differentiating
(2.169), we obtain

εij,kl =
1

2
(ui,jkl + uj,ikl) , (2.170)

where the indices k and l that follow a comma indicate, for example, the partial
derivatives with respect to xk and xl, respectively. Interchanging the indices,
we have

εkl,ij =
1

2
(uk,lij + ul,kij) (2.171)

εjl,ik =
1

2
(uj,lik + ul,jik) (2.172)

εik,jl =
1

2
(ui,kjl + uk,ijl) . (2.173)

Using the index symmetries of the partial derivatives of u, it is not difficult to
verify that

εij,kl + εkl,ij − εjl,ik − εik,jl = 0 . (2.174)

These are the Saint-Venant compatibility equations. Among the 81 equa-
tions represented by (2.174), only six are independent due to the symmetry of
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εij and their derivatives. Explicitly, these six compatibility equations are

∂2ε11

∂x2∂x3
=

∂

∂x1

(
−∂ε23

∂x1
+
∂ε31

∂x2
+
∂ε12

∂x3

)
∂2ε22

∂x3∂x1
=

∂

∂x2

(
−∂ε31

∂x2
+
∂ε12

∂x3
+
∂ε23

∂x1

)
∂2ε33

∂x1∂x2
=

∂

∂x3

(
−∂ε12

∂x3
+
∂ε23

∂x1
+
∂ε31

∂x2

)
∂2ε12

∂x1∂x2
=

1

2

(
∂2ε11

∂x2
2

+
∂2ε22

∂x1
2

)
∂2ε23

∂x2∂x3
=

1

2

(
∂2ε22

∂x3
2

+
∂2ε33

∂x2
2

)
∂2ε31

∂x3∂x1
=

1

2

(
∂2ε33

∂x1
2

+
∂2ε11

∂x3
2

)
.

(2.175)

It is clear from the procedure we have followed to obtain (2.175) that when
the displacement field is known, relations (2.175) are automatically satisfied.
When εij are given, these six equations are necessary and sufficient to ensure
the existence of a unique displacement field u satisfying (2.169), with possibly
an additional rigid body motion, only if the body B is simply connected .
For a multiply connected elastic solid, they are not sufficient and additional
conditions are necessary.

An interpretation of the compatibility conditions (2.175) is given by the
following thought experiment. Consider a two-dimensional body, for example,
a plate of uniform thickness, cut into small square pieces. When there is no
deformation of the plate, the pieces adjust perfectly to form the plate. Then
we impose on each piece an arbitrary strain field and we attempt to assemble
them again to reform the plate. While reconstructing the plate we see that, in
general, they do not all fit, as they are separated by spaces between some or all
of them. A perfect fit is not obtained unless the imposed strain on each square
satisfies (2.175).

2.10 Velocity Gradient and Associated Tensors

In numerous problems in mechanics of continuous media, an interesting kine-
matic quantity is not only the change in the shape of the body, but the rate
at which this change is produced . This is especially the case in fluid me-
chanics.

Let V be the neighborhood of the point P with coordinates xi, and Q an
arbitrary point belonging to V with coordinates xi + dxi. The spatial velocity
of Q is given by

vi(xj + dxj , t) = vi(xj , t) +
∂vi(xj , t)

∂xj
dxj + · · · . (2.176)
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The tensor L whose components are

Lij =
∂vi
∂xj

=
(
∇v
)
ij

(2.177)

is called the velocity gradient . We establish a relation between L and F as
follows:

Ḟij =
D

Dt

(
∂xi
∂Xj

)
=

∂ẋi
∂Xj

=
∂ẋi
∂xm

∂xm
∂Xj

=
∂vi
∂xm

∂xm
∂Xj

= LimFmj .

(2.178)

Then we have

Ḟ = LF . (2.179)

The symmetric part of L, that is,

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.180)

d =
1

2

(
∇v + (∇v)T

)
(2.181)

is called the strain rate tensor or the rate of deformation tensor , and
the antisymmetric part of L, that is,

ω̇ij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
(2.182)

ω̇ =
1

2

(
∇v − (∇v)T

)
(2.183)

is called the rotation rate tensor or the rate of rotation tensor . Thus we
can write

L = d+ ω̇ . (2.184)

With definitions (2.180) and (2.182), it follows from (2.176) that

vi(xj + dxj , t)− vi(xj , t) ∼= dij dxj + ω̇ij dxj . (2.185)

Comparison of (2.180) with the definition of εij gives

dij =
dεij
dt

. (2.186)

And it is for this reason that dij is called the rate of deformation tensor. How-
ever, we need to notice that the linearity of dij with respect to vi in (2.180) is
exact, no assumption of small displacements having been made during its cal-
culation. The dual vector Ω̇i (1.104) associated with the rotation rate tensor,
that is,

Ω̇i = −1

2
εijkω̇jk =

1

2

(
curlv

)
i
, (2.187)
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is called the rotation rate vector . Note that in fluid mechanics, one typically
introduces the vorticity vector ω with the definition as the curl of the velocity.
Then

ω = curlv =∇× v (2.188)

or

ωi = εijk
∂vk
∂xj

. (2.189)

And we easily deduce that

ω = 2Ω̇. (2.190)

To better understand the vorticity vector, consider the decomposition of a local
motion of a fluid. Let P be a point at position x and P′ a neighboring point
as shown in figure 2.21.

P

Pꞌ

v

v

v+ dv

x

dx

O

e2

e3

e1

x3

x1

x2

dv

Fig. 2.21 Relative motion of two fluid particles

The vector position of P′ relative to P is dx. After an infinitesimal lapse of
time, P and P′ occupy new positions. P moves with the local velocity v and P′

with the velocity v + dv. We consider P to be the principal fluid particle and,
subtracting its translational velocity, we describe the motion of P′ as observed
from this principal particle. This reasoning is thus valid only when the distance
dx is very small. We can decompose the motion of P and P′ into three distinct
parts: a translation, a rigid body rotation, and a strain. The translational
motion is given by the velocity v of P. All the other motions, taken together,
are given by dv, the velocity of P′ with respect to P. We then have

dv =
∂v

∂x
dx = L dx . (2.191)
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By (2.184), the strain motions (stretching, shortening, ...) of P′ with respect
to P are described by d. Consequently the rotational motion of P′ with respect
to P is taken into account by ω̇. We can write

dv(r) = ω̇ dx , (2.192)

where the superscript r refers to rotation.

The rigid body rotational motion of P′ with respect to P must have the
form of the equation v = Ω × x, where Ω is the rate of angular rotation (a
vector). By (2.187) and (2.190), we have −ω̇ij = 1

2εijkωk = ω̇ji. Thus the
rotational component of motion is given by

dv
(r)
j = ω̇ji dxi =

1

2
εijkωk dxi

=
1

2
εjki (ωk) dxi . (2.193)

This last equation is of the form dv = Ω × dx. The vorticity vector ω corre-
sponds to an angular velocity such that the vorticity ω is equal to 2Ω, that is
two times the vector rate of rigid body rotation of P′ with respect to P.

Note that in the case of rotation of a rigid body, the tensor L is obtained
from equation (2.55). With definition (2.57), we have

L = Q̇Q
T

= Ω , (2.194)

which is an antisymmetric tensor. This shows in this case that d = 0 and L =
ω̇. The rotation rate tensor is thus entirely determined by the instantaneous
rotation of the solid.

2.11 Objectivity of the Kinematic Quantities

The description of a physical quantity associated with the motion of a body
generally depends on the choice of observer or reference frame.

In physics, we frequently use the inertial reference frame for which space is
homogeneous and time is uniform. In this reference frame the Newtonian laws
of motion are valid. A body in uniform straight motion during an interval of
time experiences no force. Stated otherwise, in this reference frame we observe
that the center of mass of a body B moves along a straight line at uniform
velocity if no force is applied to the body.

In chapter 1, we developed the consequences induced by a change of the
coordinate system for the same vector (event) in the case of a single observer.
This development is the basis of tensor analysis and finds its origin in the
requirement that all laws of continuum physics must be independent of the
choice of coordinate system by the observer. However, when the same event
in space is seen by two observers or reference frames, the relations between
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the coordinates and the various kinematic parameters are different in the two
reference frames.

In the following, the observer or the reference frame will be denoted
by R = (O,x, t). We want to distinguish the kinematic parameters, scalars,
vectors, or tensors, which depend intrinsically on the observer from those that
are essentially independent. This will be a preparation for the future discussion
of the objectivity of the general or constitutive laws of physics. In mechanics
of continuous media, an event, that is, a physical process, is defined by its
coordinates in space x and the observation time t.

Consider an event viewed by two observers R and R∗, and noted respectively
by (x, t) and (x∗, t∗). The motion between two observers is a function of
space and time. If the effects due to relativity are negligible and we assume
that the observers measure the same distance between two events as well as
the same time intervals between events, we can show that the most general
transformation between the observations (x, t) and (x∗, t∗) of the same event
is given by

x∗ = Q(t)x+ c(t) t∗ = t− α , (2.195)

where Q(t) is an orthogonal rotation tensor with the time t as parameter, c(t)
a vector, and α a scalar constant.
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Fig. 2.22 Interpretation of (2.195). Two observers initially positioned at O•t=0 move
in two reference frames

The interpretation of (2.195) is shown in figure 2.22, where we have two
observers R and R∗ at time t. Suppose that an event (i.e., an experiment)
takes place in P. The vector position of P with respect to the observer R is x.
The same event viewed by the observer R∗ is not simply given by the vector
addition x∗ = c(t) +x, but rather by the general expression (2.195). We must
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take into account the rigid body rotation of observer R with respect to observer
R∗, for observer R∗ to see the same event. This rotation is accomplished by
the tensor Q(t), for which the components are functions of two angles, β and
γ, and time. We note that the change of reference frame represents more than
a simple coordinate transformation.

Therefore, the motion of a body B, described by χ(X, t) according to the
first observer, is described by the second observer as χ∗(X, t∗), and these two
descriptions are related as follows:

χ∗(X, t∗) = Q(t)χ(X, t) + c(t) t∗ = t− α . (2.196)

In order to examine the ramifications of the transformation (2.196), consider
two events simultaneously recorded by R as (x1, t) and (x2, t), and as (x∗1, t)
and (x∗2, t) by R∗. For these two events, the relative positions viewed by the
two observers are u = x2 − x1 and u∗ = x∗2 − x∗1, respectively. From relation
(2.196), we obtain

u∗ = Qu , t∗ = t− α . (2.197)

Since the tensor Q is orthogonal , we can write

u∗ · u∗ = (Qu) · (Qu) = u · (QTQ)u = u · u . (2.198)

This last equation shows that the norms of u and u∗ are the same, that is,
‖u∗‖ = ‖u‖ and that the transformation is that of a rigid body rotation (sec.
2.6.2). The vector fields which are transformed according to (2.197) are called
spatially objective or indifferent with respect to the reference frame.

By the definition of a spatially objective vector , we define a spatially
objective tensor of order 2. Let v andw be two vectors seen by the observer
R, related by the tensor L of order 2

w = Lv . (2.199)

Since v and w are objective, the observer R∗ sees them as w∗ = Qw and
v∗ = Qv. This observer considers the tensor of order 2 as L∗, such that
w∗ = L∗v∗. To relate L and L∗, we notice that

w∗ = Qw = QLv = QLQTv∗ . (2.200)

From this last relation we deduce the equation

L∗ = QLQT . (2.201)

Tensor fields of order 2, which are transformed according to (2.201) when the
observer is changed, are called spatially objective, or independent of the refer-
ence frame. As for a scalar field, it is called objective or independent of the
reference frame when

f∗(x∗, t) = f(x, t) . (2.202)
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In the following, we say that:

• a scalar quantity φ is objective if and only if (iff) φ∗ = φ;

• a vector quantity f is materially objective iff f∗ = f ;

• a vector quantity f is spatially objective iff f∗ = Qf ;

• a tensor quantity T is materially objective iff T ∗ = T ;

• a tensor quantity T is spatially objective iff T ∗ = QTQT .

In order to examine the objectivity of the velocity and acceleration of a
motion, we note that when differentiating (2.196) with respect to time, the
velocity V (X, t) = χ̇(X, t) and acceleration A(X, t) = χ̈(X, t) of a particle
X are transformed as follows:

V ∗(X, t∗) = Q(t)V (X, t) + ċ(t) + Q̇(t)χ(X, t) (2.203)

A∗(X, t∗) = χ̈∗(X, t∗)

= Q(t)χ̈(X, t) + c̈(t) + Q̈(t)χ(X, t)

+ 2Q̇(t)V (X, t) . (2.204)

Consequently, the definitions of the velocity and acceleration are relative and
inextricably linked to the observer. Applying the definition of the deforma-
tion gradient to (2.196), we obtain the transformation law

F ∗(X, t∗) =
∂χ∗(X, t)

∂X
=
∂χ∗(X, t)

∂χ(X, t)

∂χ(X, t)

∂X

= Q(t)F (X, t) .

(2.205)

This relation will play an important role in later discussions. Note that

J∗ = detF ∗(X, t∗) = detF (X, t) = J . (2.206)

Thus the scalar quantity J is not affected by a change of observer. Starting
from the definitions (2.77), (2.79), (2.82), and (2.83) and using (2.205), we have
the following transformation laws for deformation tensors:

C∗ = C E∗ = E (2.207)

c∗ = QcQT e∗ = QeQT . (2.208)

Thus, from these definitions, the Jacobian J is objective; the right Cauchy-
Green deformation tensor C and the Green-Lagrange strain tensor E are ma-
terially objective; and the Cauchy deformation tensor c and the Euler-Almansi
strain tensor e are spatially objective. On the other hand, the velocity, the
acceleration, and the deformation gradient are not objective . It is also im-
portant to notice that the material derivative of an objective material quantity
remains materially objective, whereas the material derivative of a spatially ob-
jective quantity is generally not spatially objective. For example,

Ė
∗

= Ė (2.209)

ċ∗ = QċQT + Q̇cQT +QcQ̇
T 6= QċQT . (2.210)
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In the context of a change of reference frame (2.195), we examine how the
velocity gradient tensor is transformed. Rewrite (2.203) and (2.204) in the
spatial representation

v∗ = ċ+ Q̇x+Qv (2.211)

a∗ = c̈+Qa+ 2Q̇v + Q̈x . (2.212)

From equation (2.211), we evaluate the velocity gradient tensor L∗. We
obtain

L∗ij =
∂v∗i
∂x∗j

=
∂v∗i
∂xk

∂xk
∂x∗j

.

With (2.195), we have
∂x∗j
∂xk

= Qjk .

Its inverse, ∂xk/∂x
∗
j , is Q−1

kj = QTkj . The evaluation of ∂v∗i /∂xk is performed
via equation (2.211). We have

∂v∗i
∂xk

= Q̇ik +Qil
∂vl
∂xk

.

Assembling these various relations, we write

L∗ = (QL+ Q̇)QT = QLQT + Ω , (2.213)

where we used definition (2.57).

Now we establish the relation between the notion of objectivity and rigid
body motion. For this, we compare the equation that describes rigid body
motion (2.52) and the transformation (2.195). Setting b = 0 to simplify (sec.
2.6.3), the motion described by (2.195) is rigid body motion when

x = Q(t)X + c(t) . (2.214)

This last equation can be generalized for two different motions x and y of a
continuous media. These two motions differ by a rigid body motion if

y = Q(t)x+ c(t) . (2.215)

The form of (2.215) resembles that of (2.195) with the following difference:
x and y are two distinct events for a single observer, whereas x and x∗ are
the positions of a single event recorded by two different observers. Thus, we
can consider the change of the observer, as defined in (2.195), as a rigid body
motion superimposed on the actual configuration of the medium.

The importance of the objectivity or the non-objectivity of a quantity will
appear when we discuss the constitutive equations of materials subject to large
transformations or displacements even when accompanied by small strains.

To conclude, we write relations (2.211) and (2.212) in another form. Equa-
tion (2.195) gives

QT (x∗ − c) = x. (2.216)
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Inserting (2.216) in (2.211), we have

v∗ = Qv + ċ+ Q̇QT (x∗ − c). (2.217)

Combining (2.216), (2.217), and (2.212), the acceleration becomes

a∗ = Qa+c̈+2Q̇QT (v∗ − ċ)−2
(
Q̇QT

)2

(x∗ − c)+Q̈QT (x∗ − c) . (2.218)

Using the rotation tensor (2.57), the velocity is written as

v∗ −Qv = ċ+ Ω (x∗ − c) , (2.219)

where the two terms on the right-hand side correspond to the translation and
rotation velocities of the two reference frames, while the acceleration takes the
form

a∗ −Qa = c̈+ 2Ω (v∗ − ċ) +
(
Ω̇−Ω2

)
(x∗ − c) . (2.220)

On the right-hand side of (2.220), the first term is the translation acceleration,
the second the Coriolis acceleration, and the following terms the rotational and
centripetal acceleration of the reference frame, respectively. To obtain (2.220),
we use the relation

Ω̇ = Q̈QT + Q̇Q̇
T

= Q̈QT + Q̇QTQQ̇
T

= Q̈QT −Ω2 . (2.221)

If the reference frame is Galilean, a special case of the inertial reference
frame such that Q̇ = Q̈ = 0 and c̈ = 0, then the acceleration is objective. In
the Galilean reference frame, Q = Q0 = cnst and c = c0 + c1t where c1 is a
constant velocity. In this case relation (2.195) simplifies to

x∗ = Q0x+ c0 + c1t , (2.222)

which is the Galilean transformation.

2.12 Exercises

2.1 A continuous medium in its deformed configuration is given by the rela-
tions

x1 =
1

2
X1 x2 = X2 x3 = X3 . (2.223)

Calculate the displacement field in material and spatial coordinates.

2.2 Consider simple shear as given by the matrix M in equation (2.132).
Calculate M−1 and the deformation tensors C, c, E, e.

2.3 Repeat the same exercise for the case of pure dilation given by M = mI,
where I is the unit tensor.



100 Kinematics of Continuous Media

2.4 A cube vibrates around its equilibrium position. The Lagrangian descrip-
tion of motion is given by the equations

x1 = X1 + a cos 2π(
t

T
− X1

L
)

x2 = X2 + b sin 2π(
t

T
− X1

L
)

x3 = X3 .

The symbols a, b, and L are constants with a dimension of length, and T is a
constant with a dimension of time.

1) Determine the trajectories of the material points.

2) Calculate the components of the velocity and acceleration.

3) Calculate the deformation gradient tensor F and its material derivative
DF /Dt.

4) In the Lagragian representation, calculate the velocity gradient tensor L.

5) Calculate the rate of deformation tensor d, the rate of rotation ω̇, and the
vorticity Ω̇.

2.5 For the deformation given in example 2.1:

1) Calculate the matrix of the deformation gradient F . Is the deformation
homogeneous? Does the deformation take place at constant volume? For
which values of a is the transformation invertible?

2) Calculate the matrices of C,E, and ε. Compare E and ε for the case
0 < a� 1.

3) Verify that the vectors aligned with the axis x3 and the diagonals AH and
DE are the eigenvectors of C. Using these results, calculate U =

√
C.

4) Calculate the matrix of the rotation tensor R in the polar decomposition
F = RU .

2.6 Use equation (2.205) to prove relations (2.207) and (2.208).

2.7 Use (2.205) and the third relation of (2.120) to show that R∗ = QR,
U∗ = U , and V ∗ = QV QT .

2.8 Show that Ċ = 2Ė = 2F TdF where d is the strain rate tensor (2.180).

2.9 For the following motion: x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, determine
the matrices of the tensors C, R, U , and E, the principal vectors of C and U
and their invariants.

2.10 Prove that e = F−TEF−1 and c = RCRT .

2.11 Demonstrate that FAi = λibi with λi the principal values of the tensor
U and with Ai (i = 1, 2, 3), the associated principal vectors, and then prove
relation (2.119).
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2.12 Using kinematic linearization (sec.2.9.1) and Nanson’s formula (2.107)
show that the corresponding area elements before and after deformation are
approximately the same.

2.13 Show that kinematic linearization (sec.2.9.1) results in the following re-
lations between the deformation tensors U , ε and rotation tensors R,ω:

U ≈ I + ε

R ≈ I + ω .

2.14 Derive relation (2.157).

2.15 The displacement of a body is described by the equations

u1 = u1(x1, x2)

u2 = u2(x1, x2)

u3 = 0 .

Let ABCD be an infinitesimal element with sides dx1 dx2 as shown in figure
2.23. From the deformed configuration A′B′C′D′, deduce the deformation-
displacement relations in the case of infinitesimal strain.

A

AꞌC

B

D

Bꞌ

Cꞌ

Dꞌ

X1, x1

X2, x2

x2

x1 dx1

dx2

u1

u2

Fig. 2.23 Deformation of an infinitesimal element

2.16 A plate with unit thickness in the plane Ox1x2 is subject to a uniform
deformation field given by

εij = 10−3

 2 1 0
1 2 0
0 0 −1

 . (2.224)
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Find the change in length of a linear element with initial length equal to 1:

1) parallel to the axis x1;

2) parallel to the axis x2;

3) that is at an angle of 450 degrees with the axis x1.

2.17 Prove that the strain εN for a linear element dS in the plane Ox1x2, in
direction N , which makes an angle θ with the horizontal axis is given by

εN = ε11 cos2 θ + ε22 sin2 θ + 2ε12 cos θ sin θ , (2.225)

where ε11, ε22, ε12 are the components of the infinitesimal strain tensor.



Chapter 3

Dynamics

of Continuous Media

3.1 Introduction

After the study of the motion of a body and introduction to the various pa-
rameters that describes it, the next step is the study of the conservation of
certain quantities, such as mass, momentum, and angular momentum during
the motion. In this context we will introduce the concept of stress and its
measurement; its properties will be studied in detail. In the mechanics of con-
tinuous media, the stress is the parameter that characterizes the mechanical
interaction with the environment and is the cause of motion. It is therefore
essential to develop the mechanics of continuous media as the generalization of
point mechanics and Newton’s laws. As was the case for kinematics in chapter
2, the type of material and the specification of the motion will not figure in the
development of this chapter.

The dynamics of continuous media is also developed in the following refer-
ences: [15, 20, 33, 34, 36].

3.2 Reynolds Transport Theorem

3.2.1 Background

The time derivative of a volume integral plays a very important role in the for-
mulation of the laws for mechanics of continuous media. For example, consider
the function I(t) given by

I(t) =

∫
Ω

Φ(X, t) dV , (3.1)

where Φ(X, t) is a scalar, vector, or tensor quantity, and Ω ⊆ R0 represents
the volume of the body in the initial configuration at time t = 0, or a part Π
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of it. We define the material time derivative of a volume integral by the
expression

DI(t)

Dt
=

d

dt

∫
Ω

Φ(X, t) dV . (3.2)

In the case where the boundary does not change with time, we can bring the
time derivative inside the integral and (3.2) becomes

DI(t)

Dt
=

d

dt

∫
Ω

Φ(X, t) dV =

∫
Ω

∂Φ(X, t)

∂t
dV . (3.3)

When the boundary of the body does change in time, the derivative applied
earlier is no longer valid and we need another method. That case will be
presented next.

Suppose that the scalar, vector, or tensor quantity ϕ(x, t) expresses a char-
acteristic of the body and that the body, or a part Π ⊆ B of it, occupies a
volume ω(t) ⊆ R with boundary ∂ω(t) ⊆ ∂R at time t. The balance equation
can be formulated in the following way: the rate of variation of the integral of
ϕ(x, t) in the volume ω(t) as a function of time is equal to the rate of variation
of ϕ(x, t) in ω(t) plus the total flux of ϕ(x, t) passing through the surface ∂ω(t).

Reynolds Transport Theorem

Mathematically, the balance equation is written as

d

dt

∫
ω(t)

ϕ(x, t) dv =

∫
ω(t)

∂ϕ(x, t)

∂t
dv +

∫
∂ω(t)

ϕ(x, t)v · n ds . (3.4)

This expression defines the Reynolds transport theorem. Using the diver-
gence theorem (sec. 1.4.13), we can also write it in the form

d

dt

∫
ω(t)

ϕ(x, t) dv =

∫
ω(t)

(
∂ϕ(x, t)

∂t
+

∂

∂xi

(
ϕ(x, t)vi

))
dv (3.5)

or with (2.27),

d

dt

∫
ω(t)

ϕ(x, t) dv =

∫
ω(t)

(
Dϕ(x, t)

Dt
+ ϕ(x, t) div v

)
dv . (3.6)

In the following equations, we denote ω(t) by ω and ∂ω(t) by ∂ω. To further
simplify the notation, we will on some occasions omit the arguments of tensor,
vector, and scalar functions.

Proof.
1) To demonstrate the Reynolds transport theorem, the time variation of the
Jacobian is required. We know from (2.103) that

dv = J(X, t) dV , (3.7)
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where the Jacobian J (2.68) can be expressed as

J(X, t) = det F = εijk Fi1Fj2Fk3 = εijk F1iF2jF3k , (3.8)

since by writing εijkFi1Fj2Fk3 and using the properties of εijk, we obtain

εijkFi1Fj2Fk3 = F11F22F33 + F21F32F13 + F31F12F23

− F11F32F23 − F31F22F13 − F21F12F33 .
(3.9)

The calculation of the material derivative of J(X, t) is easily carried out as
follows. We have

J̇ = εijk
∂χ̇1

∂Xi

∂χ2

∂Xj

∂χ3

∂Xk
+ εijk

∂χ1

∂Xi

∂χ̇2

∂Xj

∂χ3

∂Xk
+ εijk

∂χ1

∂Xi

∂χ2

∂Xj

∂χ̇3

∂Xk
. (3.10)

Introducing the velocity (2.20), and using the implicit function theorem, we
obtain

J̇ = εijk

(
∂v1

∂xp

∂xp
∂Xi

∂χ2

∂Xj

∂χ3

∂Xk
+
∂χ1

∂Xi

∂v2

∂xp

∂xp
∂Xj

∂χ3

∂Xk

+
∂χ1

∂Xi

∂χ2

∂Xj

∂v3

∂xp

∂xp
∂Xk

)
=
∂v1

∂xp
δ1pJ +

∂v2

∂xp
δ2pJ +

∂v3

∂xp
δ3pJ . (3.11)

Finally, we have

J̇ =
∂vi
∂xi

J(X, t) = ∇ · v
∣∣∣
x=χ(X,t)

J(X, t) . (3.12)

This expression, sometimes written as J̇/J = div v, is the rate of volume dila-
tion. As a final result of the previous developments, we can obtain the material
derivative of a volume element by combining (3.7) with (3.12). Then, succes-
sively,

Ddv

Dt
= J̇ dV =

J̇

J
dv = div vdv . (3.13)

2) We can derive the Reynolds transport theorem defined by (3.5) or (3.6). Let
the integral I(t) be defined by the relation

I(t) =

∫
ω

ϕ(x, t) dx1 dx2 dx3 , (3.14)

and evaluate the integral

DI(t)

Dt
=

d

dt

∫
ω

ϕ(x, t) dx1 dx2 dx3 . (3.15)

To do so, we cannot permute the derivative with respect to time with the
integral, since the latter is over a volume which depends on time. Thus we
change to the material representation

DI(t)

Dt
=

d

dt

∫
Ω

ϕ
(
χ(X, t), t

)
J(X, t) dX1 dX2 dX3 . (3.16)
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Osborne Reynolds (1842–1912) was an English mathe-
matician born in Belfast. He was appointed professor
of engineering at Owens College, now the University of
Manchester, in 1868. He made contributions in hydrody-
namics and fluid mechanics. He introduced the Reynolds
number, as well as the Reynolds decomposition for the
modeling of turbulence.

Fig. 3.1 Osborne Reynolds

Using (2.103), we have

dx1 dx2 dx3 = J(X, t) dX1 dX2 dX3 or dv = J(X, t) dV . (3.17)

Then, (3.16) can be expressed as

DI(t)

Dt
=

d

dt

∫
Ω

Φ(X, t)J(X, t) dX1 dX2 dX3 , (3.18)

where
Φ(X, t) = ϕ

(
χ(X, t), t

)
. (3.19)

Thus it is easier with relation (3.18) to express the derivative of the integral

DI(t)

Dt
=

∫
Ω

(
∂Φ(X, t)

∂t

∣∣∣∣
X

J(X, t)

+ Φ(X, t)
∂J(X, t)

∂t

∣∣∣∣
X

)
dX1 dX2dX3 .

(3.20)

Using relation (3.12), integral (3.20) can be written as follows:

DI(t)

Dt
=

∫
Ω

(
∂Φ(X, t)

∂t

∣∣∣∣
X

+ Φ(X, t)(∇ · v)
∣∣∣
x=χ(X,t)

)
J(X, t) dX1 dX2 dX3 .

(3.21)

Making the appropriate changes in the last integral and using (2.3), (3.17),
(3.19), and

∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

=
Dϕ(x, t)

Dt
, (3.22)

we have the final result

DI(t)

Dt
=

∫
ω

(
Dϕ(x, t)

Dt
+ ϕ(x, t)∇ · v(x, t)

)
dx1 dx2 dx3 . (3.23)

Expression (3.23) is the Reynolds transport theorem applied to a scalar
function ϕ(x, t).
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We can consider the Reynolds theorem to be a generalization of Leibnitz’
theorem:

d

dt

∫ b(t)

a(t)

ϕ(x, t) dx =

∫ b

a

∂ϕ

∂t
dx+

db

dt
ϕ(x = b, t)− da

dt
ϕ(x = a, t) . (3.24)

Since
Dϕ(x, t)

Dt
=
∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) , (3.25)

integral (3.23) can be written as

DI(t)

Dt
=

∫
ω

(
∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) +∇ · v(x, t)ϕ(x, t)

)
dv

=

∫
ω

(
∂ϕ(x, t)

∂t
+
(
v(x, t) · ∇ϕ(x, t) +∇ · v(x, t)ϕ(x, t)

))
dv

=

∫
ω

∂ϕ(x, t)

∂t
dv +

∫
ω

div
(
v(x, t)ϕ(x, t)

)
dv . (3.26)

Using the divergence theorem (1.228) for the second integral, we obtain

DI(t)

Dt
=

∫
ω

∂ϕ(x, t)

∂t
dv +

∫
∂ω

ϕ(x, t)v · n ds , (3.27)

which is none other than (3.4).

3.3 Conservation of Mass

In the mechanics of continuous media, the mass is treated as a fundamental
concept and considered as inherent to the body. The mass of the body B
signifies, first of all, the quantity of material that B contains. Experience
shows that this quantity does not depend on time, nor the transformation of
the material (for example, by a phase change), nor the deformation of B. In
addition, the quantity of material in two arbitrary parts of B is the quantity
of material in the first part plus that in the second. These aspects can be
formulated and thus rendered more precise in two different ways, depending on
whether we adopt the material or spatial descriptions to describe the motion
of B.

3.3.1 Material Form

Let R0 and R be, respectively, the initial (or reference) and the current con-
figurations of B (fig. 3.2). The initial mass density of the body B in the
material description is a positive and integrable scalar function P0(X),
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O

R0

R

X

x

u

Ω

ω
Π

X2, x2

X3, x3

X1, x1

e2

e3

e1

Fig. 3.2 Motion of an arbitrary part Π of B

defined on R0, such that the mass m(Ω) of an arbitrary part Π of B at time
t = 0 is given by

m(Ω) =

∫
Ω

P0(X) dV =

∫
Ω

P0(X) dX1 dX2 dX3 , (3.28)

where Ω ⊆ R0 is the initial configuration of Π ⊆ B. Similarly, at later times
the current density of B in the spatial description is a scalar , positive ,
and integrable function ρ(x, t) defined on R, such that the mass mt(ω) of
any part Π of B at a given instant t ≥ 0 is given by

mt(ω) =

∫
ω

ρ(x, t) dv =

∫
ω

ρ(x, t) dx1 dx2 dx3 , (3.29)

where ω ⊆ R is the configuration at time t of Π.

Principle of conservation of mass The mass contained in an arbitrary
part Π of the body B remains constant in time, that is,

mt(ω) = m(Ω) . (3.30)

By introducing (3.28) and (3.29) in (3.30), we obtain∫
ω

ρ(x, t) dv =

∫
Ω

P0(X) dV . (3.31)

In this expression the vector position at time t, x, of a particle in Π is related
to the initial vector position, X, by the equation of motion of B, given by (2.1).
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Taking (2.1) into account, (3.31) is mathematically equivalent to changing vari-
ables. Changing variables from x to X, the corresponding volume elements dv
and dV are related by (2.103). Then, using (2.1) in (3.31), we obtain∫

Ω

(
J(X, t)ρ

(
χ(X, t), t)

)
− P0(X)

)
dV = 0. (3.32)

If the density at time t, P (X, t), in the material description is defined
by

P (X, t) = ρ
(
χ(X, t), t)

)
, (3.33)

integral (3.32) can be written as∫
Ω

(
J(X, t)P (X, t)− P0(X)

)
dV = 0 . (3.34)

Expression (3.34) is the global material form of the principle of conservation
of mass. In order to obtain the local form of the principle of conservation of
mass, we exploit the fact that (3.34) is valid for an arbitrary initial part Ω of
R0, as long as the integrand of (3.34) is continuous with respect to X, and
we invoke the localization theorem.(1)

Localization Theorem

Let f be a continuous scalar, vector, or tensor function defined on an open
domain D of a three-dimensional Euclidean space. If∫

Ω

f dV = 0 (3.35)

for any closed sub-domain Ω of D, then

f = 0 (3.36)

for every point of D.

Consequently, the integrand of (3.34) must be zero. We obtain

J(X, t)P (X, t) = P0(X) . (3.37)

This equality represents the local material form of the principle of conserva-
tion of mass.

The body B or the material constituting B is said to be incompressible
if the density is invariable, that is, it does not depend on space or time. In this
case, P (X, t) = P0(X) and consequently

J(X, t) = 1 (3.38)

(1)The localization theorem is based on the Dubois-Reymond lemma used in the calculus
of variations.
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for every pointX of R0 and at every instant t. This condition is frequently met
in fluid mechanics and in the study of rubber-like solid materials. It follows
from (3.37) and (3.33) that the incompressibility condition (3.38) is equivalent
to

P (X, t) = ρ
(
χ(X, t), t

)
= P0(X) . (3.39)

A motion for which relation (3.38) is seen to be the case is a motion for
which the volume remains constant (see (3.7)) and is called isochoric motion .

3.3.2 Spatial Form

Consider equation (3.31) again. The derivative with respect to time, using the
Reynolds transport theorem, is

d

dt

∫
ω

ρ(x, t) dv =

∫
ω

(
Dρ(x, t)

Dt
+ ρ(x, t) div v(x, t)

)
dv = 0 . (3.40)

This is the global spatial form of the principle of conservation of mass. As-
suming that the integrand of (3.40) is continuous with respect to x, and by
applying the localization theorem to it, we obtain the local spatial form of
the principle of conservation of mass

Dρ(x, t)

Dt
+ ρ(x, t) div v(x, t) = 0 . (3.41)

This equation is also called the continuity equation . Since

Dρ(x, t)

Dt
=
∂ρ(x, t)

∂t
+∇ρ(x, t) · v(x, t) (3.42)

div
(
ρ(x, t)v(x, t)

)
= ρ(x, t) div v(x, t) +∇ρ(x, t) · v(x, t) , (3.43)

expression (3.41) can be written in the equivalent form

∂ρ(x, t)

∂t
+ div

(
ρ(x, t)v(x, t)

)
= 0 . (3.44)

Equation (3.41), or (3.44), is a basic equation for fluid mechanics while its
material equivalent (3.37) is used in solid mechanics. If the material is incom-
pressible, then from (3.39), the density ρ(x, t) is constant and Dρ(x, t)/Dt = 0.
It also follows from (3.41) that the incompressibility condition can be ex-
pressed by one of the following equivalent forms:

div v =
∂vi
∂xi

= dii = trd = I1(d) = 0 , (3.45)

where we have used the definition (2.180) of the strain rate tensor d. Note that
the velocity field that satisfies (3.45) is solenoidal. As div v = 0, it follows from
(3.12) that J̇ = 0 so J remains constant over time. Since J(X, 0) = 1, the
motion of an incompressible material takes place with constant volume and is
often called isochoric.
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Another way to deduce the continuity equation consists of the following
steps: consider in figure 3.3 a fluid that flows through a volume element
∆x1∆x2∆x3 with velocity vi(x1, x2, x3).

ρv
1|x1+ Δx1

ρv
1|x1

O

x2

x3

x1

(x1, x2, x3)

(x1 + Δx1, x2 + Δx2, x3 + Δx3)

Δx1

Δx3

Δx2

e2

e3

e1

Fig. 3.3 Mass balance in an elementary volume

If we suppose that the flow is oriented in the positive direction of the x1

axis, the quantity of mass entering the volume through the surface at x1 is
given by

ρv1

∣∣
x1

∆x2 ∆x3 . (3.46)

The quantity of mass leaving the volume through the surface at x1 + ∆x1 is
given by

ρv1

∣∣
x1+∆x1

∆x2 ∆x3 . (3.47)

In the same way, the quantities of mass entering and leaving in the directions
x2 and x3 are given by

in direction x2 ρv2

∣∣
x2

∆x3 ∆x1 ρv2

∣∣
x2+∆x2

∆x3 ∆x1

in direction x3 ρv3

∣∣
x3

∆x1 ∆x2 ρv3

∣∣
x3+∆x3

∆x1 ∆x2 .
(3.48)

The rate of change of the mass in the element of volume ∆x1 ∆x2 ∆x3 is

(∆x1 ∆x2 ∆x3)
∂ρ

∂t
. (3.49)

The result for the flow in the volume under consideration is given by[
rate of change

of mass

]
=

[
rate of

mass entering

]
−
[

rate of
mass leaving

]
.
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The balance equation for this result is written using relations (3.46)–(3.49)

(∆x1∆x2∆x3)
∂ρ

∂t
=
(
ρv1

∣∣
x1
− ρv1

∣∣
x1+∆x1

)
∆x2 ∆x3

+
(
ρv2

∣∣
x2
− ρv2

∣∣
x2+∆x2

)
∆x3 ∆x1

+
(
ρv3

∣∣
x3
− ρv3

∣∣
x3+∆x3

)
∆x1 ∆x2 .

(3.50)

Dividing (3.50) by the volume ∆x1∆x2∆x3 and taking the limits ∆x1 → 0,
∆x2 → 0, ∆x3 → 0, we have

∂ρ

∂t
= lim

∆x1→0

ρv1

∣∣
x1
− ρv1

∣∣
x1+∆x1

∆x1
+ lim

∆x2→0

ρv2

∣∣
x2
− ρv2

∣∣
x2+∆x2

∆x2

+ lim
∆x3→0

ρv3

∣∣
x3
− ρv3

∣∣
x3+∆x3

∆x3

= −
(
∂(ρv1)

∂x1
+
∂(ρv2)

∂x2
+
∂(ρv3)

∂x3

)
. (3.51)

Equation (3.51) can also be put in the form

∂ρ

∂t
+ v1

∂ρ

∂x1
+ v2

∂ρ

∂x2
+ v3

∂ρ

∂x3
= −ρ

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
. (3.52)

The left-hand side of this equation represents the material derivative of the
density and the right-hand side the divergence of the velocity field

Dρ

Dt
= −ρdiv v . (3.53)

We thus find the continuity equation as established for an elementary control
volume.

3.4 Volume Forces, Contact Forces and Cauchy’s Postulate

Like mass, force is a fundamental concept in the mechanics of continuous
media. The forces determine the interactions between the different internal
parts of a body or between the body and its external environment. A force can
only be detected by its effects; that is, it cannot be directly measured. For
this reason, force is one of the most abstract concepts in mechanics.

To elaborate this point, we cite an extract from letter LXXIV from Euler
to a German princess [14]: “for as a body, in virtue of it’s nature, preserves the
same state of motion, or of rest, and cannot be drawn out of it but by external
causes, it follows that, in order to a body’s changing it’s state, it must be forced
out of it by some external cause: without which it would always continue in the
same state. Hence it is, that we give to this external cause the name of power
or force. It is a term in common use, though many by whom it is employed
have but a very imperfect idea of it.”(2)

(2)Translation by Henry Hunter published in London in 1795.
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We will treat two types of forces: volume or body forces (acting at
a distance) such as gravity or electromagnetic forces, including the Lorentz
force, and contact forces. Let B be a body with the initial configuration
R0 and currently in configuration R. The volume force acting on B at time t
represents the action of its external environment on the interior points of B at
that instant. More precisely, if Π is an arbitrary, small part of B whose initial
and current configurations are Ω and ω (fig. 3.2), the volume force acting on
Π at time t is given by

f b(ω, t) =

∫
ω

ρ(x, t)b(x, t) dv , (3.54)

where b(x, t) is a vector function defined onR called the spatial volume force
density (per unit mass) at time t. The material version of (3.54) takes the
form

F b(Ω, t) =

∫
Ω

P0(X)B(X, t) dV, (3.55)

where B(X, t) is the material volume force density at time t. As f b(ω, t)
and F b(Ω, t) represent the same quantity, we can have f b(ω, t) = F b(Ω, t), that
is ∫

ω

ρ(x, t)b(x, t) dv −
∫

Ω

P0(X)B(X, t) dV = 0 . (3.56)

By changing the variables from x to X, then using (3.33) and (3.37), and
finally, by applying the localization theorem, we obtain the relation

B(X, t) = b
(
χ(X, t), t

)
. (3.57)

Contact forces can describe the interaction between two interior parts of a
body B separated by a surface (that is, internal cohesive forces) or the action
of external bodies directly in contact with the boundary of B. Let Π− and
Π+ be two arbitrary parts of a body B such that their initial configurations
Ω− ⊂ R0 and Ω+ ⊂ R0 are separated by a surface Γ0 and their configurations
at a later time, ω− ⊂ R and ω+ ⊂ R, by a surface Γ (fig. 3.4). In the spatial
description, the action of Π+ on Π− at the instant t across a surface element
δs(x) of Γ around x is represented by a contact force element δf c(x, t,Γ). By
writing this, we tacitly assume that the action of Π+ on Π− is influenced only
by the form of ω+ through its boundary Γ with ω−. In addition we assume
that the limit

t(x, t,Γ) = lim
δs→0

δf c(x, t,Γ)

δs(x)
(3.58)

exists. The vector t(x, t,Γ) is the force, per unit surface (spatial), exerted by
Π+ through Γ on Π−. This contact force density is called the spatial stress
vector (contact) or the surface stress vector .

According to (3.58), the stress vector t at x depends on the whole of the
surface Γ. However, in classical mechanics of continuous media, the following
hypothesis is applied.
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Cauchy’s Postulate The stress vector t at x on the surface Γ depends only
on the outward unit normal n of Γ at x, that is,

t(x, t,Γ) = t(x, t,n) . (3.59)

This postulate stipulates that if three different surfaces Γ1, Γ2, and Γ3 share
the same tangent plane at x, the stress vectors acting on these surfaces at x
are identical (fig. 3.5).

Finally, the action of Π+ on Π− through the surface Γ is described by the
contact force vector

f c(Γ, t) =

∫
Γ

t(x, t,n) ds . (3.60)

By analogy, the action of the external environment on a body B through the
boundary ∂R is given by

f c(∂R, t) =

∫
∂R
t(x, t,n) ds . (3.61)

In the following, the contact force is expressed with respect to the current,
deformed configurationR. However, in many important problems, in particular
in solid mechanics, the deformed configuration is not known in advance. It is
thus more convenient to express the contact force with respect to the initial,
reference configurationR0. The notions of the nominal contact stress vector
and material contact stress vector can be introduced. But, as the physical
and geometrical interpretation of these vectors is not intuitive, we will present
them in more detail in section 3.9.
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3.5 Conservation of Momentum and Angular Momentum

In physics, the momentum of a particle of mass m and velocity v is defined
by

m = mv mi = mvi , (3.62)

and the angular momentum of the particle with respect to the origin 0 by

m̂ = mx× v m̂i = mεijkxjvk . (3.63)

For a part Π of a body B in the initial configuration, R, and the current
configuration, Rt, (fig. 3.2), we have the following definitions of the momentum
and angular momentum with respect to the origin 0

m(ω, t) =

∫
ω

ρ(x, t)v(x, t) dv

mi(ω, t) =

∫
ω

ρ(x, t)vi(x, t) dv (3.64)

m̂(ω, t) =

∫
ω

ρ(x, t)x× v(x, t) dv

m̂i(ω, t) =

∫
ω

ρ(x, t)εijkxjvk(x, t) dv. (3.65)
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The material derivatives of the preceding quantities are expressed as

Dm(ω, t)

Dt
=

∫
ω

ρ(x, t)
Dv(x, t)

Dt
dv =

∫
ω

ρ(x, t)a(x, t) dv (3.66)

Dm̂(ω, t)

Dt
=

∫
ω

ρ(x, t)x× Dv(x, t)

Dt
dv

=

∫
ω

ρ(x, t)x× a(x, t) dv , (3.67)

where a is the spatial acceleration defined by (2.33). The Reynolds transport
theorem and the continuity equation (3.41) permit us to write equation (3.64)
in the form

Dmi(ω, t)

Dt
=

d

dt

∫
ω

ρvi dv =

∫
ω

(
D(ρvi)

Dt
+ ρvi

∂vm
∂xm

)
dv

=

∫
ω

(
Dρ

Dt
vi + ρ

Dvi
Dt

+ ρvi
∂vm
∂xm

)
dv

=

∫
ω

(
ρ
Dvi
Dt

+ vi

(
Dρ

Dt
+ ρ

∂vm
∂xm

))
dv

=

∫
ω

ρai dv .

The equality (3.66) is thus proved. Similarly, relation (3.67) is demonstrated
by writing

Dm̂i(ω, t)

Dt

=
d

dt

∫
ω

ρεijkxjvk dv

=

∫
ω

(
D(ρεijkxjvk)

Dt
+ ρεijkxjvk

∂vm
∂xm

)
dv

=

∫
ω

(
Dρ

Dt
εijkxjvk + ρεijk

(
Dxj
Dt

vk + xj
Dvk
Dt

+ xjvk
∂vm
∂xm

))
dv

=

∫
ω

(
ρεijkxj

Dvk
Dt

+ ρεijkvjvk + εijkxjvk

(
Dρ

Dt
+ ρ

∂vm
∂xm

))
dv

=

∫
ω

ρεijkxjak dv ,

where we have used the fact that εijkvjvk = 0. Now we will derive and state
the two fundamental principles of mechanics of continuous media, known as
Euler’s laws of motion .

Principle of conservation of momentum The rate of change of the mo-
mentum of an arbitrary part Π of a body B at time t is equal to the sum of the
forces applied to Π at that instant.



Cauchy’s Theorem and Equation of Motion 117

The sum of the forces is composed of the volume forces acting on the
particles Π and the contact forces acting on the boundary of Π. In the spatial
description, that is equivalent to the sum f b(ω, t) + f c(∂ω, t). With (3.54),
(3.60), and (3.64), the principle of conservation of momentum of Π has the
following spatial formulation:

d

dt

∫
ω

ρ(x, t)v(x, t) dv =

∫
ω

ρ(x, t)b(x, t) dv +

∫
∂ω

t(x, t,n) ds . (3.68)

With (3.66), we can write (3.68) as∫
ω

ρ(x, t)a(x, t) dv =

∫
ω

ρ(x, t)b(x, t) dv +

∫
∂ω

t(x, t,n) ds . (3.69)

Principle of conservation of angular momentum The rate of change
of angular momentum (with respect to the origin) of an arbitrary part Π of a
body B at time t is equal to the moment (with respect to the origin) of the forces
applied to Π at that instant.

In the spatial description, that is equivalent to stating

d

dt

∫
ω

ρ(x, t)x× v(x, t) dv

=

∫
ω

ρ(x, t)x× b(x, t) dv +

∫
∂ω

x× t(x, t,n) ds .

(3.70)

Applying (3.67), (3.70) becomes∫
ω

ρ(x, t)x× a(x, t) dv

=

∫
ω

ρ(x, t)x× b(x, t) dv +

∫
∂ω

x× t(x, t,n) ds .

(3.71)

We must point out that the existence of an observer is implicitly assumed
in these statements of Euler’s laws of motion and in expressions (3.68) and
(3.70). This then implies that the principles of conservation of momentum
and of angular momentum are not objective, that is, they are not invariant
when changing from one observer to another. This is because the velocity and
acceleration are not objective quantities, as has been shown in section 2.11.
Often, the observers for which (3.68) and (3.70) are invariants are qualified as
inertial or Galilean (see sec. 2.11).

3.6 Cauchy’s Theorem and Equation of Motion

We are now going to deduce important consequences of the principles of con-
servation of momentum and angular momentum. The first is an equivalent of
Newton’s third law.
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Cauchy’s Lemma If the stress vector t(x, t,n) is continuous with respect to
x, then the principle of conservation of momentum (3.69) implies that

t(x, t,−n) = −t(x, t,n) . (3.72)

This is none other than the principle of action and reaction.

Proof.
Let us cut the configuration ω of an arbitrary part Π of a body B into two
parts, ω− and ω+, with a surface Γ between them for which the unit normal
exiting ω− is n (fig. 3.6). The boundary of ω− is composed of two surfaces
Γ and Γ−, that is, ∂ω− = Γ ∪ Γ−. In the same way, the boundary of ω+ is
∂ω+ = Γ ∪ Γ+.

The principle of conservation of momentum is valid for ω− and for ω+∫
ω−

ρ(x, t)a(x, t) dv

=

∫
ω−

ρ(x, t)b(x, t) dv +

∫
∂ω−

t(x, t,n) ds

=

∫
ω−

ρ(x, t)b(x, t) dv +

∫
Γ−
t(x, t,n)ds+

∫
Γ

t(x, t,n) ds (3.73)

∫
ω+

ρ(x, t)a(x, t) dv

=

∫
ω+

ρ(x, t)b(x, t) dv +

∫
∂ω+

t(x, t,n) ds

=

∫
ω+

ρ(x, t)b(x, t) dv +

∫
Γ+

t(x, t,n) ds+

∫
Γ

t(x, t,−n) ds . (3.74)
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Fig. 3.6 Partition of ω into ω+ and ω− with a surface Γ
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Now, equation (3.69) is valid with ω = ω−∪ω+ and ∂ω = Γ−∪Γ+. Combining
(3.73) and (3.74) with (3.69), we obtain∫

Γ

(
t(x, t,−n) + t(x, t,n)

)
ds = 0 . (3.75)

Since t(x, t,n) is continuous at x and the choice of Γ is arbitrary, the applica-
tion of the localization theorem to (3.75) yields (3.72).

With Cauchy’s lemma, we are ready to state and prove one of the principal
results of mechanics of continuous media.

Cauchy’s Theorem (existence of the stress tensor)

If the stress vector t(x, t,n) is continuous with respect to x and if ρ(x, t)b(x, t)
and ρ(x, t)a(x, t) are bounded, then the principle of conservation of momen-
tum implies that there exists a stress tensor σ(x, t) such that

t(x, t,n) = σ(x, t)n or ti(x, t,n) = σij(x, t)nj . (3.76)

Proof.
Consider a tetrahedron ω0 for which the three faces Si are perpendicular to the
unit vectors ei (i = 1, 2, 3) and join at the position x of a particle of a body B
(fig. 3.7). Let the fourth face be S4, with area A and arbitrary unit normal
n = (cosα1, cosα2, cosα3)T . Then, a simple calculation shows that the area
Ai of the face Si with unit (outgoing) normal ei is given by

Ai = A cosαi cosαi = n · ei . (3.77)

Denoting the distance from x to S4 by h, the volume of the tetrahedron is

V =
1

3
hA . (3.78)

Consider another tetrahedron ω similar to the first, ω0 (fig. 3.7). Each linear
dimension in ω is proportional to that in ω0 with the ratio λ > 0. Then the
volume of ω is

v =
1

3
λ3hA . (3.79)

The area a of the face s4 of ω with n as outgoing unit vector is

a = λ2A , (3.80)

and the area ai of the face si of ω with outgoing unit normal ei is expressed as
follows:

ai = λ2An · ei = λ2A cosαi . (3.81)



120 Dynamics of Continuous Media

λb
λc

λa

a

n

c

b

x

O

X2, x2

X3, x3

X1, x1

e2

e3

e1

–e1

–e2

–e3

Fig. 3.7 Cauchy tetrahedron

For the tetrahedron ω, the principle of conservation of momentum (3.69) yields∫
ω

(
ρ(y, t)a(y, t)− ρ(y, t)b(y, t)

)
dv

=

∫
s4

t(y, t,n) ds+
3∑
i=1

∫
si

t(y, t,−ei) ds .
(3.82)

Since the stress vector t is, by hypothesis, continuous at y, then the mean value
theorem of integral calculus implies that there exists yi ∈ si such that∫

s4

t(y, t,n) ds = at(y4, t,n) = λ2A t(y4, t,n) (3.83)∫
si

t(y, t,−ei) ds = ait(yi, t,−ei) = λ2A cosαit(yi, t,−ei) . (3.84)

In this last relation there is no sum over i.

In addition, as ρ(y, t)b(y, t) and ρ(y, t)a(y, t) are assumed to be continuous
and bounded, there exists a finite constant M > 0 such that∥∥∥∥∫

ω

(
ρ(y, t)a(y, t)− ρ(y, t)b(y, t)

)
dv

∥∥∥∥ ≤Mv =
1

3
Mλ3hA . (3.85)

Taking into account (3.83), (3.84), and (3.85) in (3.82), we can write

0 ≤
∥∥∥∥∥λ2At(y4, t,n) +

3∑
i=1

λ2A cosαit(yi, t,−ei)
∥∥∥∥∥ ≤ 1

3
Mλ3hA , (3.86)
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that is,

0 ≤
∥∥∥∥∥t(y4, t,n) +

3∑
i=1

cosαit(yi, t,−ei)
∥∥∥∥∥ ≤ 1

3
Mλh . (3.87)

As λ→ 0, then yi → x for every i = 1, 2, 3, 4 and (3.87) becomes∥∥∥∥∥t(x, t,n) +
3∑
i=1

cosαit(x, t,−ei)
∥∥∥∥∥ = 0 . (3.88)

Using Cauchy’s lemma (3.72) and the second relation of (3.77), it follows from
(3.88) that

t(x, t,n)−
3∑
i=1

(n · ei)t(x, t, ei) = 0 , (3.89)

that is,

t(x, t,n) = (n · e1)t(x, t, e1) + (n · e2)t(x, t, e2) + (n · e3)t(x, t, e3) . (3.90)

The definition of the tensor product of two vectors (1.48) allows us to write
(3.90) in the form

t(x, t,n) =
(
t(x, t, e1)⊗ e1 + t(x, t, e2)⊗ e2 + t(x, t, e3)⊗ e3

)
n . (3.91)

Consequently, the existence of the Cauchy stress tensor

σ(x, t) = t(x, t, e1)⊗ e1 + t(x, t, e2)⊗ e2 + t(x, t, e3)⊗ e3 , (3.92)

such as (3.76), is valid and proved. A stress, being a force per unit surface, is
expressed in Pascals (Pa) in SI units.

Cauchy’s theorem expresses the linear dependence of t(x, t,n) with re-
spect to the unit normal. Thus, when the stress tensor σ(x, t) is known, the
stress vector acting at x on any surface with outgoing unit normal n is com-
pletely determined. Consequently, the state of stress at x (at time t) is
characterized by the stress tensor σ(x, t). Even if the main properties of the
stress tensor will be studied further on, it is useful to give a geometric inter-
pretation of its components σij in order to better understand its importance in
continuum mechanics.

The components σij of the matrix of σ with respect to the basis {e1, e2, e3}
are obtained by

σij = ei · σej = ei · tej tej = σej . (3.93)

This relation shows that σij is the component of the stress vector tej in the
direction i acting on a spatial surface element whose unit normal is aligned in
the direction of ej (fig. 3.8).
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For example, σ11 is the component in direction 1 of the stress vector acting
on a surface element with unit normal e1, and σ12 is the component in direction
1 of the stress vector acting on a surface element with unit normal e2. The
normal component of tej , that is,

σjj = ej · tej = ej · σej (no sum over j) , (3.94)

is called the normal stress. It corresponds to tension if it is positive or to
compression if it is negative. The tangent components of tej , that is,

σij = ei · tej = ei · σej with ei · ej = 0 , (3.95)

are called shear stresses. For example, σ11 is a normal stress and σ12 is a
shear stress.

We will now use Cauchy’s theorem and the divergence theorem to derive
the equations of motion for a continuous medium starting from the principle
of conservation of momentum.

Principle of conservation of momentum

Theorem

Suppose that the stress tensor σ(x, t) is continuously differentiable with
respect to x, and that ρ(x, t)b(x, t) and ρ(x, t)a(x, t) are continuous at x.
Then, the principle of conservation of momentum, that is (3.69), is satisfied
if and only if, for an arbitrary point x of R,

divσ(x, t) + ρ(x, t)b(x, t) = ρ(x, t)a(x, t) or σij,j + ρbi = ρai . (3.96)
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Proof.
Necessity . Introducing (3.76) in (3.69), we obtain∫

ω

ρ(x, t)ai(x, t) dv =

∫
ω

ρ(x, t)bi(x, t) dv +

∫
∂ω

σij(x, t)nj ds . (3.97)

Applying the divergence theorem to the last term, we obtain∫
ω

(
ρ(x, t)ai(x, t)− ρ(x, t)bi(x, t)− σij,j(x, t)

)
dv = 0 . (3.98)

Since the integrand is continuous at x, (3.96) follows from the localization
theorem.

Sufficiency . Suppose that (3.96) is valid for every interior point of R. Then,
for an arbitrary domain ω de R,∫

ω

(
ρ(x, t)ai(x, t)− ρ(x, t)bi(x, t)− σij,j(x, t)

)
dv = 0 . (3.99)

Applying Cauchy’s theorem and the divergence theorem to this equation, we
can conclude that (3.68) is verified.

Equation (3.96), derived by Cauchy, is called Cauchy’s equation of mo-
tion . When there is no acceleration, it is also called the equilibrium equa-
tion . As we will see, equation (3.96) is one of the most often used equations
in the mechanics of continuous media.

Principle of Conservation of Angular Momentum

Theorem

Suppose that the stress tensor σ(x, t) is continuously differentiable with
respect to x, and that ρ(x, t)b(x, t) and ρ(x, t)a(x, t) are continuous at x.
Then the principle of conservation of angular momentum (3.71) implies the
symmetry of the Cauchy stress tensor,

σT = σ or σij = σji . (3.100)

Proof.
Taking into account (3.76) in (3.71), we have∫

ω

ρ(x, t)εijkxjak(x, t) dv

=

∫
ω

ρ(x, t)εijkxjbk(x, t) dv +

∫
∂ω

εijkxjσkm(x, t)nm ds .

(3.101)
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Applying the divergence theorem to the last term and since xj,m = δjm (eqn.
(1.27)), we obtain∫

∂ω

εijkxjσkm(x, t)nm ds

=

∫
ω

εijk
(
xj,mσkm(x, t) + xjσkm,m(x, t)

)
dv

=

∫
ω

εijk
(
σkj(x, t) + xjσkm,m(x, t)

)
dv . (3.102)

The substitution of (3.102) in (3.101) yields∫
ω

εijkxj
(
ρ(x, t)ak(x, t)− ρ(x, t)bk(x, t)− σkm,m(x, t)

)
dv

=

∫
ω

εijkσkj(x, t) dv .

(3.103)

From (3.96), the left-hand side of this expression is equal to zero. Thus (3.103)
is reduced to ∫

ω

εijkσkj(x, t) dv = 0 . (3.104)

The localization theorem and expressing σij in symmetric and antisymmetric
parts lead to

εijkσkj =
1

2
εijk(σkj+σjk)−1

2
εijk(σjk−σkj) = −1

2
εijk(σjk−σkj) = 0 . (3.105)

This implies that σjk = σkj , that is, (3.100). Equation (3.100) tells us that

σ12 = σ21 σ23 = σ32 σ31 = σ13 . (3.106)

Consequently, among the nine components of the Cauchy stress tensor σ (fig.
3.8), six are independent. In addition, because of its symmetry, σ possesses
several properties which can be obtained by directly applying the results of
linear algebra for symmetric tensors. In particular, the spectral decomposition
theorem for a symmetric tensor can lead to a better understanding of σ. Finally,
we can point out that the symmetry of the tensor σ guarantees, by itself, the
conservation of angular momentum. The proof of this affirmation is performed
simply by inverting the order of the steps in the previous theorem. Thus,
Euler’s two laws of motion are satisfied if the stress tensor σ is symmetric and
satisfies equation (3.96).

3.7 Properties of the Cauchy Stress Tensor

Now we will study the main properties of σ(x, t), starting with (3.76) and
(3.100). In order to simplify the notation in this section, we will not consider the
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dependence of σ on x and t as the properties of σ remain valid independent of
the values of x and t. The stress vector is given by Cauchy’s theorem expressed
in relation (3.76)

t = σn or ti = σijnj . (3.107)

In general, t does not act in the direction of the unit normal n with which it
is associated. Thus, t not only has a normal component

tN = n · t = n · σn or tN = niti = σijninj , (3.108)

but also a tangential component associated with shear

tT =
∥∥t− (n · t)n

∥∥ =
∥∥(I − n⊗ n)t

∥∥ = (titi − t2N )1/2 . (3.109)

Nonetheless, it is possible for t to act uniquely in the direction of n. This
possibility leads to the following eigenvalue problem:

σn = λn or σijnj = λni . (3.110)

Linear algebra (sec. 1.3.8) allows us to state that the characteristic equation
associated with (3.110)

det(σ − λI) = 0 or det(σij − λδij) = 0 (3.111)

has three real roots σi (i = 1, 2, 3) because the tensor σ is symmetric. These
roots are the eigenvalues of σ which, in mechanics, are called the principal
stresses. In general, σ has three distinct principal stresses σ1, σ2, and σ3,
which are usually ordered so that σ1 ≥ σ2 ≥ σ3. The axes aligned with
the principal vectors ni associated with σi are called the principal stress
axes and the planes normal to these axes are called the principal planes.
In summary, a principal stress is the normal stress that acts on the principal
plane, where no shear stress exists.

In linear algebra it is proven that the eigenvectors corresponding to the
distinct eigenvalues of a symmetric tensor σ are mutually orthogonal. This
means that the two axes or principal planes associated with any two distinct
stresses are perpendicular. This property is used for the spectral decomposition
of σ

σ = σ1n1 ⊗ n1 + σ2n2 ⊗ n2 + σ3n3 ⊗ n3 , (3.112)

where ni · nj = δij for i, j = 1, 2, 3. In other words, with respect to the basis
{n1,n2,n3} composed of the orthonormal principal vectors ni, the matrix [σ]
of the Cauchy stress tensor is diagonal:

[σ] =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (3.113)

The state of stress of a particle of a body B is said to be three-dimensional
if σ1, σ2, and σ3 are all three non zero, two-dimensional , or plane, if two of
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the stresses σ1, σ2 and σ3 are non zero, and one-dimensional if only one of
the stresses σ1, σ2, and σ3 is non zero.

If equation (3.111) is developed, it becomes (eqn. (1.120))

λ3 − I1(σ)λ2 + I2(σ)λ− I3(σ) = 0 , (3.114)

where

I1(σ) = tr σ = σii (3.115)

I2(σ) =
1

2

(
(trσ)2 − trσ2

)
=

1

2

(
(σii)

2 − σmnσnm
)

(3.116)

I3(σ) = detσ = εijkσi1σj2σk3 (3.117)

are the principal invariants of σ with respect to different orthonormal bases.
As we will see, these invariants play a major role in the formulation of the con-
stitutive equations of isotropic materials. With (3.113), they can be expressed
in terms of the principal stresses

I1(σ) = σ1 + σ2 + σ3

I2(σ) = σ1σ2 + σ2σ3 + σ3σ1

I3(σ) = σ1σ2σ3 .

(3.118)

Note that the permutation of the indices 1, 2, and 3 does not change I1(σ),
I2(σ), or I3(σ). Note that since (3.118) are invariants, so are the principal
stresses.

Transformation of the Stress Tensor

In (3.93), the components σij of the matrix of σ are defined relative to the
orthonormal basis {e1, e2, e3} by

σij = ei · σej . (3.119)

Consider another orthonormal basis {e′1, e′2, e′3} obtained by rotation of
{e1, e2, e3}

e′i = cijej (i = 1, 2, 3) , (3.120)

where cij is given by relation (1.6). Then the components of σ′, with respect
to the orthonormal basis {e′1, e′2, e′3}, are related to σij (see (1.52)) by

σ′ij = e′i · σe′j = cimcjnem · σen = cimcjnσmn . (3.121)

Expression (3.121) is the Cauchy stress matrix transformation rule . It
is seen that the scalars given by (3.118) are said to be invariant in the sense
that

σii = σ′ii

(σii)
2 − σmnσmn = (σ′ii)

2 − σ′mnσ′mn
εijkσi1σj2σk3 = εijkσ

′
i1σ
′
j2σ
′
k3 .
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It is often useful to decompose σ in the following way (see (1.90) and (1.91)):

σ = s+ σ0I or σij = sij + σ0δij , (3.122)

where

s = σ − σ0I , σ0 =
1

3
I1(σ) =

1

3
σkk . (3.123)

The tensor s, so defined, is called the deviatoric stress tensor associated
with σ. By its construction, tr s = sii = 0. In other words, if the deviatoric
part of σ is zero, then σ takes the form σ = −pI with σ0 = −p. Note
that p = −(1/3) trσ. In this case, we have a state of pure hydrostatic
stress, and p is the hydrostatic pressure . The negative sign comes from the
conventional use of pressure in fluid mechanics, which is regarded as positive
when it causes compression.

Example 3.1

Let σ be the tensor whose elements are given by (1.122), which describes
the state of stress of a continuous medium (arbitrary units). Then, the
eigenvalue problem to solve is none other than that of finding the principal
stresses and directions. Using this same state of stress, find the stress vector
on the plane defined by the unit normal vector n = 2e1/3 + 2e2/3− e3/3:

[σ] =

 2 1 −2
1 4 −3
−2 −3 −2

 . (3.124)

To find the vector components on the given plane, we use Cauchy’s theorem
(3.76)  t1

t2
t3

 =

 2 1 −2
1 4 −3
−2 −3 −2

 2/3
2/3
−1/3

 =
1

3

 8
13
−8

 .

The normal and shear stress components on this plane are given by (3.108)
and (3.109); the values are, respectively,

tN = niti = 5.55 and tT =
(
titi − t2N

)1/2
= 1.48.

Now consider a coordinate system defined by the principal directions. With
respect to this system, we define a plane with a normal vector given by
m = (1/

√
3)n1 + (1/

√
3)n2 + (1/

√
3)n3. Using (3.76) the stress vector on

this plane is t1
t2
t3

 =

 6 0 0
0 1.65 0
0 0 −3.65

 1/
√

3

1/
√

3

1/
√

3

 =
1√
3

 6
1.65
−3.65

 .
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The normal and shear components are

tN = niti = 1.33 and tT =
(
titi − t2N

)1/2
= 3.94.

The plane defined by the unit vector above is called the octahedral plane and
the associated stresses are called the normal and shear octahedral stresses
or the comparison stresses. On this particular plane, it can be shown that

tN = I1(σ)/3

tT =
1

3

√
2I2

1 (σ)− 6I2(σ) .

The proof is left as an exercise for the reader.

The shear component can also be expressed in terms of the principal stresses
or of the second invariant I2(s) of the stress deviatoric tensor s (3.123)

tT =
1

3

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]1/2
=

√
2

3
I2(s) .

Note that an equivalent stress σe, the von Mises stress, proportional to tT ,

σe =

[
1

2

(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)]1/2

=

√
1

3
I2(s) .

is frequently used in solid mechanics to characterize the onset of plastic
deformation or rupture of materials.

3.8 Simplified Stress States

As has been mentioned, the equilibrium equations for a continuous medium
correspond to equation (3.96) without acceleration

∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
+ ρb1 = 0

∂σ21

∂x1
+
∂σ22

∂x2
+
∂σ23

∂x3
+ ρb2 = 0

∂σ31

∂x1
+
∂σ32

∂x2
+
∂σ33

∂x3
+ ρb3 = 0

(3.125)

or
∂σij
∂xj

+ ρbi = 0 . (3.126)

The volume force is often denoted as fi = ρbi.
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Example 3.2

Let the state of stress of a body be given by the following expressions:

σ11 = 10x3
1 + x2

2, σ12 = 2x3

σ22 = 20x3
1 + 100, σ13 = x3

2

σ33 = 30x2
2 + 10x2

3, σ23 = 52x3
1 .

We want to find the volume forces such that static equilibrium is satisfied.

The static equilibrium equations are given by (3.125). With the given stress
components, these equations yield

30x2
1 + ρb1 = 0

0 + ρb2 = 0

20x3 + ρb3 = 0 .

Thus the volume force which maintains the equilibrium is given by the
vector (−30x2

1, 0,−20x3). Equations (3.125) can be simplified if we assume
negligible volume forces. These three equations are insufficient to determine
the six components σij of σ, but they must be met for any body in the
absence of acceleration. Simple inspection reveals that if each component
of σ is independent of x, the three equations of (3.125), without volume
forces, are trivially satisfied. A state of stress is said to be homogeneous if
σ is independent of x. Such states of stress are important, not only because
a large number of static or quasi-static tests of continuous media are based
on them, but also because a good understanding of these states is necessary
before treating more complicated stress states.

Uniform Tension or Compression

Suppose that tension or compression is applied in direction 1. The tensor σ is
given by

σ = σn1 ⊗ n1 or [σ] =

 σ 0 0
0 0 0
0 0 0

 , (3.127)

where σ is constant. This tensor characterizes the state of stress in a prismatic
cylindrical bar parallel to e1, with no force on the lateral surfaces and with
normal stress uniformly applied at the two ends. The bar is said to be in
tension if σ > 0 and in compression if σ < 0. The principal axes of stress
include the one parallel to e1 and all those which are normal to e1. More
general than (3.127), uniform tension or compression in the direction defined
by a unit vector m is expressed as

σ = σ(m⊗m) or σij = σmimj , (3.128)

with σ as a constant.
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Uniform Shear Stress

Uniform shear stress is applied in direction 1 on the planes perpendicular to
e2. The tensor σ is given by

σ = τ(e1 ⊗ e2 + e2 ⊗ e1) or [σ] =

 0 τ 0
τ 0 0
0 0 0

 , (3.129)

where τ ≥ 0 is constant. This state of stress can be found in the laminar
flow of a viscous fluid parallel to e1 over a surface perpendicular to e2. The
characteristic equation (3.114) for this state of stress takes the form

λ(λ2 − τ2) = 0 . (3.130)

Consequently, the principal stresses are σ1 = τ , σ2 = 0, and σ3 = −τ , and
the corresponding principal directions are n1 = (e1 + e2)/

√
2, n2 = e3, and

n3 = (e1 − e2)/
√

2 . In summary, the spectral decomposition (3.112) for a
shear stress is

σ = τ(e1 + e2)⊗ e1 + e2

2
− τ(e1 − e2)⊗ e1 − e2

2
. (3.131)

Hydrostatic Pressure

We have already seen that the stress tensor corresponds to the form

σ = −p(x)I or σij = −p(x) δij , (3.132)

and the equilibrium equation (3.125) reduces to

−∇p+ ρb = 0 or − p,i + ρbi = 0 . (3.133)

Pure Bending

We suppose no volume forces and that σ is given by

σ = α(x2 − h0)e1 ⊗ e1 or [σ] =

 α(x2 − h0) 0 0
0 0 0
0 0 0

 , (3.134)

where α and h0 are constant. The three equations (3.125) are directly satisfied
by (3.134). The tensor σ gives an approximation of the stress field such as that
which appears in a prismatic beam parallel to e1 with moments applied at the
ends acting about the axis e3.
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Plane Stress

In this case,

σ = σ11e1 ⊗ e1 + σ22e2 ⊗ e2 + σ12(e1 ⊗ e2 + e2 ⊗ e1) (3.135)

or

[σ] =

 σ11 σ12 0
σ12 σ22 0
0 0 0

 , (3.136)

where σ11, σ22, and σ12 are functions only of x1 and x2. Then, with no volume
forces, equations (3.125) simplify to

∂σ11

∂x1
+
∂σ12

∂x2
= 0

∂σ21

∂x1
+
∂σ22

∂x2
= 0 . (3.137)

The stress field (3.136) can be used to approximate the stresses in a thin plate,
parallel to the plane, perpendicular to e3, on which forces parallel to the plane
act.

3.9 Piola-Kirchhoff Stress Tensors

3.9.1 General Considerations

Until now, the contact force has been expressed per unit area in the deformed
configuration R. The Cauchy stress tensor, σ, is expressed with respect to
the current, deformed configuration. This is the reason for which we call it
the real stress. Consequently, the principles of conservation of momentum and
angular momentum have been formulated only with respect to the deformed
configuration. As mentioned at the end of section 3.4, the solution of prob-
lems in solid mechanics requires a formulation with respect to the initial, or
reference, configuration R0. This is not only because it is difficult to know the
deformed condition of a solid beforehand, but also because it is more convenient
to analyze the experimental response of a solid with respect to its undeformed
configuration. However, there is not simply a change of variables in the equa-
tions of motion and the Cauchy stress components using (2.1), and so we need
to express the contact force in the current configuration per unit surface ele-
ment in the undeformed surface element. Consequently, measurements of stress
defined with respect to the undeformed configuration have been proposed. Two
of them, well known in the study of solids, are the Piola-Kirchhoff stress ten-
sors. The starting point for their definition is the expression of the contact force
actually acting on a surface in the deformed configuration by a stress vector
hypothetically applied to the corresponding surface in the initial configura-
tion. Such a definition of the stress permits us to reformulate the principles
stated in section 3.5 and reach similar conclusions to those of section 3.6.
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Gustav Kirchhoff (1824–1887) was born in Königsberg.
He taught at the University of Breslau, then at Heidel-
berg and finally at Humboldt University in Berlin. He
made important contributions to spectroscopy, black body
radiation and in elasticity. He reworked the Lagrangian
description of the stress tensor previously introduced by
Gabrio Piola (1794–1850).

Fig. 3.9 Gustav Kirchhoff

3.9.2 First and Second Piola-Kirchhoff Tensors

Let t(x, t,n) be the Cauchy stress vector acting on the actual surface element
n ds at x (fig. 3.10). To this vector we associate the vector T (X, t,N), called
the first Piola-Kirchhoff stress vector , to the corresponding reference sur-
face element NdS, and related to t(x, t,n) as follows:

T
(
X, t,N(X)

)
dS = t

(
x, t,n(x, t)

)
ds . (3.138)

Since dS and ds are both positive scalars, (3.138) implies that T and t have the
same direction . However, the stress vector T does not represent the actual
intensity at the current time t; it is often called the pseudo-stress vector and is
a function of X and the normal N on dS in the initial configuration. Relation
(3.138) yields the elementary contact force applied in both configurations. In
addition, dS and ds being different in general, ‖T ‖ and ‖t‖ generally are also
different.

Introducing Cauchy’s relation (3.76) in (3.138) and then using Nanson’s
formula (2.107), we obtain

T (X, t,N) dS = t
(
x, t,n

)
ds = σ

(
x, t
)
n ds

= J(X, t)σ
(
χ(X, t), t

)
F−TN dS . (3.139)

As dS > 0, we conclude that

T (X, t,N) = P (X, t)N , (3.140)

where
P (X, t) = J(X, t)σ

(
χ(X, t), t

)
F−T (3.141)

is the first Piola-Kirchhoff stress tensor . Equation (3.140) is none other
than an equivalent statement of Cauchy’s theorem (3.76). This result can be
deduced directly from the principle of conservation of momentum and is written
in the following form:∫

Ω

P0(X)a
(
χ(X, t), t

)
dV

=

∫
Ω

P0(X)B(X, t) dV +

∫
∂Ω

T (X, t,N) dS ,

(3.142)
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x

X

n

N

T
K

t

O

R

R0

X2, x2

X3, x3

X1, x1

dS

ds

e2

e3

e1

Fig. 3.10 Relations between the Cauchy stress vector t and the first and second
Piola-Kirchhoff stress vectors T and K

where P0(X) is the initial density defined by (3.28) and B(X, t) the volume
force density defined by (3.55).

Substituting (3.140) in (3.142) and employing the same arguments used
in the proof of (3.96), we can deduce the motion equation for a continuous
medium

divP (X, t) + P0(X)B(X, t) = P0(X)A(X, t) . (3.143)

Note that we performed the derivation here with respect to the material variable
X. Let us examine the properties of the tensor P . Using (3.100) and (3.141),
we can easily show that

PF T = FP T . (3.144)

Thus, not being symmetric, P does not possess the properties of the Cauchy
stress tensor σ presented in section 3.7, and the principle of conservation of
angular momentum is only satisfied if P meets condition (3.144).

Now consider the relation from Cauchy’s theorem (3.76) as seen by two
observers R and R∗. Assuming that the vectors t and n are objective and that
they are transformed according to (2.195), we can reason as follows. Starting
with t∗ = σ∗n∗ and the objectivity of t∗ and n∗, we can write

Qt = σ∗Qn . (3.145)

Moreover, from (3.76), we have

Qt = Qσn . (3.146)
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Comparing these two equations, we obtain

σ∗ = QσQT . (3.147)

Thus, the Cauchy stress tensor is objective. Now examine the first Piola-
Kirchhoff stress tensor P . For that, we write (3.141) for the observer R∗ as

P ∗F ∗T = J∗σ∗ . (3.148)

Using (2.205), (2.206), (3.141), and (3.147) in (3.148), we can write, succes-
sively,

P ∗(QF )T = JQσQT

P ∗F TQT = QJσQT = QPF TQT

P ∗ = QP . (3.149)

Thus, the tensor P is not objective when changing observers.

Although the first Piola-Kirchhoff stress tensor P can be used for problems
in solid mechanics, it is not symmetric and is not objective for a change of
observers. To avoid these inconveniences in the formulation of the constitutive
laws of solid materials undergoing large deformations, we often use the second
Piola-Kirchhoff stress tensor S, which is objective. This tensor can be
introduced as follows.

The second Piola-Kirchhoff stress vector K applied at X and acting
on the reference surface element NdS is defined by

K(X, t,N) dS = F−1(X, t) t
(
χ(X, t), t, n(X, t)

)
ds . (3.150)

This is the case as, by definition, K expresses the contact force per unit ref-
erence surface “transformed” by F−1 (physically, such a vector is not natural).
Then, with the same arguments used to derive (3.140) and (3.141), this vector
is written as

K(X, t,N) = S(X, t)N (3.151)

with

S(X, t) = J(X, t)F−1(X, t)σ
(
χ(X, t), t

)
F−T (X, t)

= F−1(X, t)P (X, t) .
(3.152)

As σ is symmetric, it is easy to show that S is too. However, unlike σ, S has no
physically significant interpretation. The equation of motion for a continuous
medium can also be expressed as a function of S; we see that P (X, t) =
F (X, t)S(X, t) and we only have to substitute this expression in (3.143). Note
that, when S is employed, conservation of angular momentum is automatically
satisfied due to the symmetry of S.
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3.9.3 Linearization of the Stress Tensors

Now we examine the effects on the stress tensors of kinematic linearization
introduced in section 2.9. The Piola-Kirchhoff tensor expressed by (3.144) is
written in index notation as

Pmk = Fmi(Pij)
T (Fjk)−T = FmiPjiF

−1
kj . (3.153)

Using (2.70) and (2.145) in (3.153), we obtain

Pmk = Pkm − Pjm
∂Uk
∂Xj

+ Pki
∂Um
∂Xi

− Pji
∂Um
∂Xi

∂Uk
∂Xj

. (3.154)

Similarly, with (3.152), (2.145), and the second equality from (2.70), the second
Piola-Kirchhoff tensor is expressed as

Sij = F−1
ik Pkj =

(
δik −

∂Ui
∂Xk

)
Pkj = Pij − Pkj

∂Ui
∂Xk

. (3.155)

Finally, for the Cauchy stress tensor, we write (3.141) as

σij = J−1Pik(Fkj)
T = J−1PikFjk . (3.156)

From (2.70) and (2.147), we have

σij = J−1Pik

(
δjk +

∂Uj
∂Xk

)
= J−1(Pij + Pik

∂Uj
∂Xk

) ≈ Pij + Pik
∂Uj
∂Xk

.

(3.157)

Neglecting the terms with the displacement gradient in (3.154), (3.155), and
(3.157), we end up with

Pmk ≈ Pkm Sij ≈ Pij σij ≈ Pij . (3.158)

Thus, the result of kinematic linearization, for small displacements and in-
finitesimal gradients, is expressed by the symmetry of the first Piola-Kirchhoff
tensor and by the approximate equality of the three stress tensors.

Example 3.3

To understand the differences between the three stress tensors, consider the
case of a circular prismatic bar, fixed at end A and subjected to a force Pt
at B, as shown in figure 3.11.
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Fig. 3.11 Cylindrical bar subjected to an axial force

The motion is given by the following expressions:

x1 = aX1

x2 = bX2 (3.159)

x3 = bX3 .

The length and radius before deformation are L and R, respectively. At
time t, these parameters become ` and r. For end B of the bar and according
to (3.159), we can write

` = aL ⇒ a = `/L

r = bR ⇒ b = r/R . (3.160)

From (3.160), relations (3.159) are expressed as

x1 =
`

L
X1

x2 =
r

R
X2 (3.161)

x3 =
r

R
X3 .

Thus, the matrix of the deformation gradient tensor (2.65) is

[F ] =

 `/L 0 0
0 r/R 0
0 0 r/R

 (3.162)

and its Jacobian J

J = det[F ] =
`

L

( r
R

)2

=
`

L

At
A0

, (3.163)

where A0 and At are the areas of the section at times t = 0 and t, respec-
tively.
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A force Pt, parallel to axis 1, acts at the center of gravity of the section at
end B. Thus the matrix of the Cauchy stress tensor is defined by the force
at time t, Pt, and the area of the section at time t:

[σ] =
Pt
At

 1 0 0
0 0 0
0 0 0

 or σ11 =
Pt
At

. (3.164)

With (3.141) and (3.152), the matrices of the first and second Piola-Kirchhoff
stress tensors are

[P ] = J [σ][F ]−T =
`

L

At
A0

 Pt

At
0 0

0 0 0
0 0 0

 L
` 0 0
0 R

r 0
0 0 R

r


=

Pt
A0

 1 0 0
0 0 0
0 0 0

 or P11 =
Pt
A0

.

[S] = J [F ]−1[σ][F ]−T

=
`

L

At
A0

 L
` 0 0
0 R

r 0
0 0 R

r

 Pt

At
0 0

0 0 0
0 0 0

 L
` 0 0
0 R

r 0
0 0 R

r


=

Pt
A0

L

`

 1 0 0
0 0 0
0 0 0

 or S11 =
Pt
A0

L

`
.

These expressions show that the component of the first Piola-Kirchhoff
tensor is given by the force at time t and the area of the section at time
t = 0 (or the initial section) and is often called engineering stress. The
component of the second tensor has no direct interpretation, unlike the other
two tensors. Nonetheless, it is useful for the modeling of solids undergoing
large deformations. This subject will be treated in chapter 6.

Since the deformation is homogeneous, the components of infinitesimal
strain are expressed as

`

L
=
L+ ∆`

L
= 1 + ε11

r

R
=
R+ ∆R

R
= 1 + ε22 .

Thus,

[F ] =

 1 + ε11 0 0
0 1 + ε22 0
0 0 1 + ε22

 .

When ε11, ε22 � 1, the three measures of stress are approximately the
same since A = A0(1 + ε22)2 ≈ A0, S11 = Pt

A0
(1 + ε11) ≈ Pt

A0
= P11, and

σ11 = Pt

At
≈ Pt

A0
, which are the results of kinematic linearization (see (2.146)

and (2.147)).
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3.10 Exercises

3.1 Show that the velocity field vi = Axi/r
3, where xixi = r2 and A is an arbi-

trary constant, satisfies the conservation of mass equation for an incompressible
fluid.

3.2 For a velocity field vi = xi/(1 + t), show that

ρ x1x2x3 = ρ0X1X2X3 .

3.3 Show that the flow given by the velocity field

vr =
(1− r2) cos θ

r2

vθ =
(1 + r2) sin θ

r2

vz = 0

satisfies the incompressibility equation when the density is constant.

3.4 The state of stress in a body is given by the following stress matrix:

[σ] =

 0 Cx1 0
Cx1 0 −Cx2

0 −Cx2 0

 , (3.165)

where C is an arbitrary constant.

1) Determine the volume force in order to satisfy static equilibrium.

2) Calculate at point P, with coordinates (4,−4, 7), the stress vector on the
plane defined by the equation 2x1 + 2x2 − x3 = −7, and on the sphere
x2

1 + x2
2 + x2

3 = 81 passing through P.

3) Determine the principal stresses, the maximum shear stress, and the prin-
cipal deviatoric stress at P.

3.5 In the absence of volume forces, determine if the following stress field
satisfies equilibrium:

σ11 = 4x2
1 + 8x1x2 − 5x2

2 σ22 = 5x2
1 +

1

2
x1x2 + 4x2

2

σ12 = −1

4
x2

1 − 8x1x2 − 4x2
2 σ33 = σ32 = σ31 = 0 .

(3.166)

3.6 Let B be a weightless three-dimensional body, subject to a uniform pres-
sure (normal) on its entire external surface. Show that B is in equilibrium.
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3.7 For each state of stress at a point given by the following matrices:

[σ] =

 p p p
p p p
p p p

 (3.167)

[σ] =

 p p p
p p p
p p −2p

 (3.168)

[σ] =

 0 p p
p 0 p
p p 0

 , (3.169)

with p a constant, determine the principal stresses. To which state of stress do
each of these cases correspond?

3.8 Show that the invariants of the stress deviatoric tensor s are related to
those of the stress tensor σ by the following expressions:

I1(s) = 0 (3.170)

I2(s) =
1

3
I2
1 (σ)− I2(σ) (3.171)

I3(s) =
2

27
I3
1 (σ)− 1

3
I1(σ)I2(σ) + I3(σ) . (3.172)

Note that in the characteristic equation (1.120), the second invariant I2(s) is
given by the negative of (1.121). This change results in a positive definite form
of I2(s).

3.9 If Pij...(x, t) is an arbitrary scalar, vector, or tensor function, prove that∫
∂ω

Pij...σpqnq ds =

∫
ω

(
σpqPij...,q + ρPij...(v̇p − bp)

)
dv . (3.173)

3.10 Using (3.141), prove equality (3.144).

3.11 Show that the second Piola-Kirchhoff stress tensor S satisfies the rela-
tions

S = ST and S∗ = S . (3.174)





Chapter 4

Energy

4.1 Introduction

Having described the principles of conservation of mass, momentum, and an-
gular momentum, we will now introduce the principles related to the thermo-
dynamics of continuous media in motion and the conservation of energy.

We can recall that all deformations in a material produce a thermal effect
in the same way that a thermal effect produces a deformation. This is easily
observed by heating a metal bar which lengthens under the action of the heat.

In this chapter, we will generally work in the spatial or Eulerian represen-
tation. The principle of conservation of total energy is first established. It
leads to the principle of conservation of internal energy. Then, we will con-
sider the conservation of mechanical energy in the Lagragian representation.
Later, we will show that from the principle of conservation of total energy, for
which objectivity is imposed, we can infer the other conservation laws. Finally,
the chapter ends with the introduction of entropy and the second law of ther-
modynamics, which is based on the Clausius–Duhem inequality, a measure of
the irreversibility of the phenomena associated with the physics of continuous
media.

Continuous media thermodynamics is covered in detail by the following
authors: [15, 17, 18, 22, 58, 68].

4.2 Conservation of Energy

Let ω(t) be the material volume of a continuous medium at the instant t, such
that ω(t) ⊆ R, the deformed configuration of the body B. We generalize the
concept of kinetic energy by defining it as the integral over the deformed volume
ω(t) of half the density, ρ(x, t), multiplied by the square of the local spatial
velocity, v(x, t). The kinetic energy of ω(t), which we denote Ek(t), is a scalar
given by the relation

Ek(t) =

∫
ω(t)

ρ(x, t)
v(x, t) · v(x, t)

2
dv . (4.1)
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To simplify, the dependence of ω with respect to time will no longer be explic-
itly shown in the following. Also for the sake of simplicity in the expressions,
we will omit the arguments of the functions on several occasions. Besides the
kinetic energy, the energy in a material region contains contributions from mo-
tion at the microscopic scale such as random translational motion, molecular
vibrations and rotations, and other microscopic energy modes. All these ener-
gies contribute to the internal energy Eint(t). For example, we know that
for two bodies B1 and B2 at rest (zero kinetic energy), if the temperature of
the first is higher that that of the second, then B1 contains more energy than
B2. The internal energy Eint(t) of B is expressed as the volume integral of the
internal energy density u(x, t) per unit mass. We have

Eint(t) =

∫
ω

ρ(x, t)u(x, t) dv . (4.2)

The sum of the kinetic and internal energies (the latter of which, for materials, is
the analog of the potential energy in classical mechanics) is the total energy
of B. The total energy can vary over time under the action of work done
by forces that act on B and by external contributions of heat energy. Before
discussing precisely the concept of work for a continuous medium, we will recall
its formulation in classical mechanics. Newton’s law for a particle of mass m
moving at velocity v is written as

m
dv

dt
= F . (4.3)

Taking the scalar product of the two sides of this relation with v, we obtain

mv · dv
dt

= m
d

dt

(
1

2
‖v‖2

)
= m

d

dt

(
1

2
v2

)
= F · v ,

which is a form of the theorem for kinetic energy.

The power , that is, the variation of work with respect to time, results from
the scalar product of the force F with the velocity. Only the force component
in the direction of the velocity increases the kinetic energy 1

2mv
2 of the particle.

The components of force orthogonal to the velocity induce a curvature in the
trajectory, but do not increase the kinetic energy.

In continuous media, power is thus given by the scalar product of the force
and the velocity of the material.

Consider again the body B. For the volume forces, this power is written as∫
ω

ρ(x, t) b(x, t) · v(x, t) dv . (4.4)

The power provided by the surface forces is given by the relation∫
∂ω

t · v ds =

∫
∂ω

σn · v ds , (4.5)
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where we have used Cauchy’s relation (3.107). The integral on the right-hand
side of (4.5) can be transformed by the divergence theorem. Using (1.228) and
by taking into account (1.69) and the symmetry of σ, we have∫

∂ω

σn · v ds =

∫
∂ω

n · σTv ds =

∫
ω

div(σTv) dv =

∫
ω

div (σv) dv . (4.6)

In index notation, we have∫
∂ω

σij vj ni ds =

∫
ω

∂

∂xi
(σijvj) dv =

∫
ω

(
∂σij
∂xi

vj + σij
∂vj
∂xi

)
dv , (4.7)

and by using the definition of the scalar product of two tensors of order 2 (1.94),
the last integral of (4.7) becomes∫

ω

(
∂σij
∂xi

vj + σij
∂vj
∂xi

)
dv =

∫
ω

(
(divσ) · v + σ :∇v

)
dv . (4.8)

In vector form, we write∫
∂ω

σn · v ds =

∫
ω

div(σv) dv =

∫
ω

((divσ) · v + σ :∇v) dv . (4.9)

Heat transfer is the second way in which energy is passed to the material. We
will first take into account a production/consumption term, in the form∫

ω

r(x, t) dv , (4.10)

where r(x, t) represents the heat produced or received per unit time and
volume. This could be the heat produced or consumed by a chemical reac-
tion in the material or heating by the Joule effect (a carbon electrode in the
material). It can also take into account the heat received by radiation from
possible external sources. Its dimensions are M L−1T−3 with the symbols M,
L, T designating mass, length, and time, respectively; the corresponding SI
unit is W/m3. The external contribution of heat is most often by conduction
through the surface ∂ω. Of course, other forms of heat transfer can be found,
radiation for example. We will ignore them from here on.

Let q be the scalar quantity that represents the heat that enters into B per unit
time and unit surface ds. Let n be the normal to ds. By analogy with Cauchy’s
postulate, we assume that q at the point x depends only on the outgoing unit
normal at point x, that is,

q = q(x, t,n) . (4.11)

Denote by q1, q2, q3 the heat flux obtained at a material point P when the
normal n is directed along the basis vectors e1, e2, e3 respectively. Then,

qi = q(x, t, ei) . (4.12)
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With our reasoning based on the conservation of energy in a tetrahedral
material element, we can show in a way analogous to that for Cauchy’s theorem
for the stress tensor (sec. 3.6) that the heat q is a linear combination of the
fluxes qi multiplied by the components ni

q = qini = q · n . (4.13)

By definition, q(x, t) is the heat flux vector. The rate of heat received by
conduction for the whole body is equal to

−
∫
∂ω

q · n ds . (4.14)

The negative sign introduced in (4.14) signifies that a positive heat rate is
obtained when q points into the interior of the material volume. The quantity
−q · n is thus the surface density of the rate of heat received by conduction
through ∂ω.

If for any evolution of the material we have q = 0 and r = 0, we say that
the evolution of the medium is adiabatic; there is no heat exchange with the
exterior. If we apply the divergence theorem to the integral (4.14), we have

−
∫
∂ω

q · n ds = −
∫
ω

div q dv . (4.15)

We are now ready to state the law of conservation of energy, which is the first
principle of thermodynamics.

First principle of thermodynamics The time derivative of the total energy
in B is equal to the sum of the power of the volume and contact forces and the
rate of heat received by the material.

Combining equations (4.1), (4.2), (4.4)–(4.6), (4.10), and (4.15), we write

d

dt

∫
ω

ρ
(v · v

2
+ u
)
dv =

∫
ω

(
ρb · v + div(σv)− div q + r

)
dv (4.16)

or, with definitions (4.1) and (4.2), and relation (4.8),

D

Dt

(
Ek(t) + Eint(t)

)
=

∫
ω

(ρ b · v + (divσ) · v + σ :∇v − div q + r) dv .
(4.17)

Using the Reynolds transport theorem and the conservation of mass (3.41), the
first term of (4.16) becomes

D

Dt

(
Ek(t) + Eint(t)

)
=

∫
ω

(
v · a+

Du

Dt

)
ρ dv

=

∫
ω

ρ
D

Dt

(v · v
2

+ u
)
dv .

(4.18)
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The body forces b can always be derived from a time independent potential
W (x). By definition,

b = −∇W , bi = −∂W
∂xi

. (4.19)

Thus for ρ b · v,

ρbivi = −ρvi
∂W

∂xi
= −ρDW

Dt
. (4.20)

Combining relations (4.16), (4.18), (4.19) and using the localization theorem,
we obtain the local form of conservation of total energy

ρ
D

Dt

(
u+

v · v
2

+W
)

= div(σv)− div q + r . (4.21)

If we do not take into account the potential W , in relations (4.16)–(4.18), we
can obtain∫
ω

(ρa− ρb− divσ) · v dv +

∫
ω

(
ρ
Du

Dt
− σ :∇v + div q − r

)
dv = 0 . (4.22)

The first integral of (4.22) is zero due to the principle of conservation of momen-
tum (3.96). Invoking the localization theorem for the second volume integral
of (4.22), the law of conservation of internal energy becomes

ρ
Du

Dt
= σ :∇v − div q + r . (4.23)

The first term on the right-hand side of (4.23), which we denote as D, can be
rewritten taking into account the symmetry of σij and relation (2.180)

D = σij
∂vi
∂xj

= σji
∂vi
∂xj

= σij
∂vj
∂xi

=
1

2
σij

(
∂vi
∂xj

+
∂vj
∂xi

)
= σijdij (4.24)

or
D = σ :∇v = σ : d . (4.25)

This term can be interpreted as the contact force power acting on the mate-
rial. We can also write D as tr(σL) from (1.95), or σ : L, where the notation
L designates the velocity gradient tensor ∂v/∂x defined by (2.177). Equation
(4.23) shows that the increase in internal energy is equal to the sum of the
power developed by the contact forces, the conductive heat transfer, and the
volume production of heat inside B.

We can obtain the kinetic energy theorem by subtracting relation (4.23)
from (4.21) and taking into account (4.20)

ρ
D

Dt

(v · v
2

)
= ρb · v + (divσ) · v . (4.26)

This theorem states that the time variation of kinetic energy is equal to
the power of the volume forces (first term on the right-hand side) and the
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contact forces (second term). We note that this relation is none other than the
conservation of momentum (3.96) as a scalar product with v.

Example 4.1

For a linear elastic body in equilibrium, subjected to volume forces b and
surface forces t, prove the following equality:∫

ω

σ : ε dv =

∫
ω

ρ b · u dv +

∫
∂ω

t · u ds , (4.27)

where σ, ε are the stress and strain tensors, ρ the density, and u the dis-
placement vector.

In index notation,∫
ω

σijεij dv =

∫
ω

ρ biuidv +

∫
∂ω

tiuids .

Using (3.76), the surface integral is converted to a volume integral as follows∫
∂ω

tiuids =

∫
∂ω

σijnjuids =

∫
∂ω

σijuinjds =

∫
ω

∂(σijui)

∂xj
dv

or∫
ω

∂(σijui)

∂xj
dv =

∫
ω

(
∂(σij)

∂xj
ui + σij

∂ui
∂xj

)
dv =

∫
ω

(σij,jui + σijui,j) dv .

Taking into account the equilibrium equations (3.126), the right-hand side
of (4.27) is written as∫

ω

(ρ biui + σij,jui + σijui,j) dv =

∫
ω

(ui(ρ bi + σij,j) + σijui,j) dv

=

∫
ω

σijui,jdv .

Because of the symmetry of the stress tensor, the integrand on the right
side can be modified,

σijui,j =
1

2
(σijui,j + σijui,j) =

1

2
(σijui,j + σjiuj,i) =

1

2
(σijui,j + σijuj,i)

=
1

2
σij(ui,j + uj,i) = σijεij .

Finally we have ∫
ω

σijui,jdv =

∫
ω

σijεijdv .
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4.3 Conservation of Mechanical Energy

in the Material Representation

The analysis of the conservation of energy shown earlier was done in the Eu-
lerian representation. A similar development to describe the different energy
components can be carried out in the material representation; we will do so in
this section. To simplify, we can ignore the heat flux q and the volume term r.

Using (4.5) and (4.6), the equation of conservation of energy (4.16) becomes

D

Dt

(
Ek(t) + Eint(t)

)
=

∫
ω

ρ
D

Dt

(v · v
2

)
dv +

∫
ω

ρ
Du

Dt
dv

=

∫
ω

ρ b · v dv +

∫
∂ω

t · v ds .
(4.28)

Taking into account (4.23) with q = r = 0 and (4.25), we have∫
ω

ρ
Du

Dt
dv =

∫
ω

σ :∇v dv =

∫
ω

σ : d dv . (4.29)

This last equation shows that by ignoring all thermal effects, the rate of change
of the internal energy is equal to the power of the internal forces. Since the
volume is arbitrary, we deduce the local form which is written as

ρu̇ = σ : d . (4.30)

Finally, the conservation of mechanical energy becomes∫
ω

ρ
D

Dt

(v · v
2

)
dv +

∫
ω

σ : d dv =

∫
ω

ρ b · v dv +

∫
∂ω

t · v ds . (4.31)

In order to write this last relation in material coordinates, first consider the
kinetic energy. From (2.103), (3.33), and the equation of conservation of mass
(3.37), we deduce that ρ dv = P0 dV . In addition, considering equation (2.20),
we have ∫

ω

ρ
v · v

2
dv =

∫
Ω

P0
V · V

2
dV . (4.32)

For the second term of the left-hand side of (4.31), according to (2.179), L =
Ḟ F−1. Since σ : d = σ :

(
Ḟ F−1

)
, we obtain∫

ω

σ : d dv =

∫
ω

σ :
(
Ḟ F−1

)
dv . (4.33)

Using tensor identity (1.97), the right-hand side of (4.33) is modified as follows:∫
ω

σ :
(
Ḟ F−1

)
dv =

∫
ω

(
σF−T

)
: Ḟ dv . (4.34)

With (3.141) and (2.103), we can write (4.34) in the material configuration
with the Piola-Kirchhoff tensor P∫

ω

σ :
(
Ḟ F−1

)
dv =

∫
ω

(
σF−T

)
: Ḟ dv

=

∫
Ω

(
J σF−T

)
: Ḟ dV =

∫
Ω

P : Ḟ dV .

(4.35)
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The contribution of the volume forces is easily expressed in material coordinates
using relations (2.20), (3.37), (3.57), and (2.103)∫

ω

ρ b · v dv =

∫
Ω

P0B · V dV . (4.36)

For the contact forces, we use (2.20) and (3.138) so that∫
∂ω

t · v ds =

∫
∂Ω

T · V dS . (4.37)

Finally, the principle of conservation of mechanical energy is expressed in the
reference configuration as∫

Ω

P0
D

Dt

(
V · V

2

)
dV +

∫
Ω

P : Ḟ dV

=

∫
Ω

P0B · V dV +

∫
∂Ω

T · V dS .

(4.38)

According to (4.28), the material derivative of the internal energy is expressed
as

D

Dt
Eint(t) =

∫
ω

ρ
Du

Dt
dv

=

∫
Ω

D

Dt
u
(
χ(X, t), t

)
J(X, t)P (X, t) dV .

(4.39)

Setting u
(
χ(X, t), t

)
= U(X, t), we have∫

Ω

D

Dt
u
(
χ(X, t), t

)
)J(X, t)P (X, t) dV

=

∫
Ω

D

Dt
U(X, t)P0(X) dV .

(4.40)

Consequently, the second term on the left-hand side of (4.38) can be expressed
as ∫

Ω

P : Ḟ dV =

∫
Ω

P0
DU

Dt
dV (4.41)

and locally as
P0U̇ = P : Ḟ . (4.42)

The expression of the internal energy can be modified using d = F−T ĖF−1

(see problem 2.8), equations (3.152) and (1.97). Then∫
ω

σ : d dv =

∫
Ω

J σ :
(
F−T ĖF−1

)
dV

=

∫
Ω

J
(
σF−T

)
:
(
F−T Ė

)
dV

=

∫
Ω

(
FS) : (F−T Ė

)
dV =

∫
Ω

S : Ė dV . (4.43)
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It is interesting to point out that mechanical power can be equally expressed as
the doubly contracted product of the Cauchy stress tensor and the strain rate
tensor (σ : d), or as the first Piola-Kirchhoff stress tensor and the deformation
gradient rate tensor

(
P : Ḟ

)
, or as the second Piola-Kirchhoff stress tensor and

the Green-Lagrange strain rate tensor
(
S : Ė

)
. Consequently, we can write the

following equality for the power produced by the internal stresses and the strain
per unit volume

Jρu̇ = P0U̇ = Jσ : d = P : Ḟ = S : Ė . (4.44)

Such pairs of parameters are called conjugate parameters because their inner
(scalar) products yield an energy. This is a very important result of mechanics
of continuous media which will allow us to deduce the constitutive equations
from a potential function. This subject will be treated in chapter 6.

4.4 Interpretation of the Conservation Laws

by the First Principle

In this section, we will revisit the laws of conservation of mass, momentum,
and angular momentum starting from the principles of conservation of energy
and objectivity.

The first principle of thermodynamics can be written according to relations
(4.16) and (4.17):

D

Dt

(
Ek(t) + Eint(t)

)
=

∫
ω

(ρb · v + div(σv)− div q + r) dv . (4.45)

With the transport theorem in the form (3.5), the left-hand side of (4.45)
becomes

D

Dt

(
Ek(t) + Eint(t)

)
=

∫
ω

(
∂

∂t
ρ

(
1

2
v · v + u

)
+ div

(
ρ

(
1

2
v · v + u

)
v

))
dv .

(4.46)

By applying the localization theorem, relation (4.45) can be written as

∂

∂t
ρ

(
u+

1

2
v · v

)
+ div

(
ρ

(
1

2
v · v + u

)
v

)
= ρb · v + r − div q + div(σv) .

(4.47)

This last equation can easily be put in the form

ρu̇− σ :∇v + div q − r + v · (ρa− divσ − ρb)

+

(
1

2
v · v + u

)(
ρ̇+ ρ div v

)
= 0 ,

(4.48)

where ρ̇ denotes the material derivative of ρ.
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Consider two reference frames, R = (0,x, t) and R∗ = (0∗,x∗, t∗), moving
with respect to each other such that the relative motion is described by (2.195).

If, in addition to (2.195), (2.211), (2.205), and (2.213), the following trans-
formation rules are valid:

ρ∗ = ρ (4.49)

u∗ = u (4.50)

q∗ = Qq (4.51)

σ∗ = QσQT (4.52)

r∗ = r , (4.53)

the quantities ρ, u, q, σ, and r are said to be objective (see sec. 2.11 and 3.9).

We show that the objectivity of the conservation of energy (4.48) remains
valid if we write it with the starred quantities, implying the laws of conservation
of mass, momentum and angular momentum.

4.4.1 First Case: Uniform Translation

Choose the reference frame R∗ in translation with respect to R at constant
translation velocity ċ(t). Let

ċ(t) = u (4.54)

Q = I . (4.55)

Then relation (2.211) becomes

v∗ = u+ v . (4.56)

Next we rewrite (4.48) with the starred quantities, replace v∗ with its value
(4.56), and from the resulting equation, subtract (4.48). Using relations (4.49)–
(4.53), we have

u · u
2

(ρ̇+ ρdiv v) + u · v(ρ̇+ ρdiv v) + u · (ρa− divσ − ρb) = 0 . (4.57)

If we change the scale of u to αu, we can impose that (4.57) is valid for any α.
We obtain

ρ̇+ ρdiv v = 0 (4.58)

ρ
Dv

Dt
− divσ − ρb+ v(ρ̇+ ρ div v) = 0 . (4.59)

This last relation can be put in the form

∂

∂t
(ρv) + div(ρv ⊗ v) = divσ + ρb . (4.60)

Equation (4.60) is the equation of the conservation of momentum where the
acceleration term is modified by the conservation of mass (4.58).
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4.4.2 Second Case: Rigid Body Rotation

If we now consider the reference frame R∗ in rotational motion with respect to
R such that we superimpose a rigid body rotation upon the existing velocity
field

c(t) = 0 (4.61)

Q(t) = I (4.62)

Q̇(t) = Ω , (4.63)

the velocity v∗ is written, taking into account (2.57) and (2.60), as

v∗ = v + ω × x . (4.64)

The vector ω is the dual vector of Ω (sec. 2.6.3). We apply the same reasoning
as before. The principle of conservation of energy yields the conservation of
angular momentum, such that

σ = σT . (4.65)

Note that, in general, the volume force term where b has the dimensions of an
acceleration, is expressed by (2.212) in the form

b∗ = Qb+ c̈+ 2Q̇v + Q̈x . (4.66)

In the case where the reference frame R∗ rotates at constant angular velocity
(c̈ = Q̈ = 0), this last relation becomes, taking into account (2.60),

b∗ = b+ 2Q̇v = b+ 2Ωv = b+ 2ω × v , (4.67)

where the Coriolis force term appears as ω × v.

4.5 The Notion of Entropy

The entropy of a system can be considered to be a measure of its disorder. Due
to the unending incoherent agitation of the molecules in a continuous medium,
two observation levels need to be distinguished. At the microscopic (molecular)
level, the physical system (X ) passes through (or can pass through) a very
large number of different states Xi, whereas at the macroscopic level, where we
habitually observe the system, these states are indistinguishable. We could say
that the disorder of the system comes from the number of states Xi, equivalent
from the macroscopic viewpoint, and that its entropy is related to this number.
Note that the usual kinematic and dynamic values of the material particle (for
example mass, velocity, contact forces) are measured at the macroscopic level,
but in reality correspond to averages of measurements made at the microscopic
level.
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More precisely, associating with each state Xi a probability pi, an exact
measurement of the disorder of X is given by its entropy which we denote s,
defined, within a multiplicative constant, by the relation

s(X ) = −
N∑
i=1

pi log pi . (4.68)

Note that this definition is close to that used in communication theory to
measure the entropy of information. It is evident that in the case of N different
states Xi, the maximum entropy is attained when these results are equally
probable. Thus as pi = 1/N , the maximum is

s(X ) = logN . (4.69)

Inversely, entropy is minimal (zero) if one state is certain and the others
are impossible. Another feature to notice in (4.68) is that for two independent
systems X and X ′, the probability of the microscopic state (Xi and X ′j) is pip

′
j ,

so that the entropy of the union of X and X ′ is given by

s
(
X ∪ X ′

)
= −

N∑
i,j=1

pip
′
j log

(
pip
′
j

)
= s(X ) + s(X ′) , (4.70)

as we always have
N∑
i

pi =
N∑
j

p′j = 1 . (4.71)

We thus see that entropy is an extensive parameter.

We also see that if a certain physical quantity takes the value Ai in the
state Xi, its macroscopic value is given by the formula

A =

N∑
i

piAi , (4.72)

which shows the mathematical relation between the two observation levels.

The concept of temperature appears first in common observation, but its
relation with statistical mechanics can be approached as follows. The internal
energy of a system is the total quantity of disordered energy that it contains,
that is, the energy differently distributed, from one state Xi to another, among
its molecules.

It is important to point out that in this definition, certain components of
the internal energy present in chemical reactions (and also in gas dynamics)
are excluded. Statistical analysis shows that the kinetic energy is distributed,
on average, in an equal way to each molecule, and over each degree of freedom
of disordered motion.
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The absolute temperature T is thus, within a multiplicative constant, the
disordered energy per molecule per degree of freedom. We can interpret the fact
that two different bodies placed in contact tend toward uniform temperature by
the statistical principle: that their disordered energy per molecule per degree of
freedom must become equal as they must be equal for each degree of freedom.

A relation obviously exists between absolute temperature and entropy which
can be developed with statistical mechanics. It is expressed by the relation

δu(X ) = T δs(X ) , (4.73)

which links the increases of δu(X ), the internal energy, and δs(X ), the system
entropy, when all the characteristics (density, deformation, etc.) of the system
remain constant.

We do not attempt to interpret this relation, which should be taken as
fundamental when we are at the macroscopic level.

At the same time, the irreversibility of physical phenomena is expressed
by the fact that the increase of entropy of a system is always greater than a
minimum equal to the heat transferred to the system δq(X ) divided by the
absolute temperature T , that is, we always have the inequality

δs(X ) ≥ δq(X )

T
, (4.74)

where equality only holds for reversible transformations. This inequality is
the basis for the formulation of the second principle of thermodynamics in
mechanics of continuous media.

An interesting viewpoint for the irreversibility of physical phenomena is
given by Boltzmann’s theory for hydrodynamics. Starting from a description
at the atomic scale of macroscopic systems by Newtonian mechanics, one is led
to resolve a set of N non-linear ordinary differential equations

mi
d2xi
dt2

= F i i = 1, . . . , N , (4.75)

where N is of the order of Avogadro’s number, NA ∼ 6 × 1023. The symbol
mi denotes the molecular mass, vi = dxi/dt is the molecular velocity, and F i
the force acting on the ith molecule due to molecular interactions. This prob-
lem is obviously unsolvable because of its enormous size (O(NA) equations),
and we move from the atomic level to kinetic theory of N bodies, which is
established from the Newton-Hamilton equations. This theory employs dis-
tribution functions fN (x1,v1, . . . ,xN ,vN ) which give the joint probability of
finding molecule 1 at position x1 with velocity v1 and molecule 2 at position
x2 with velocity v2 and so on until molecule N . The individual trajectories
in the Newtonian approach are replaced by a notion of phase space where the
dynamics is described by a partial differential equation known as the Liouville
equation with dimension 6N . We see that the mass of information has not
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been reduced from that of the Newtonian approach. Nonetheless, the Liou-
ville equation is a base for the application of a powerful and elegant procedure
which eliminates the redundant information. This leads to the definition of dis-
tribution functions fM ≡ f12...M ,M < N , which become a chain of equations
known by the name of the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon)
hierarchy. For the interesting macroscopic quantities, such as density, pressure,
temperature, etc., distributions with one or two bodies are sufficient and we
thus choose M = 1, 2 in the BBGKY hierarchy.

The most important single body equation is Boltzmann’s equation:

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C[f, f ] . (4.76)

Here a is the molecular acceleration. The function f(x,v, t) is the probability
density of finding a classical point particle at position x at time t with velocity
v. The left-hand side of (4.76) represents the free motion of the particles in
the phase space, while C[f, f ] is a binary collision operator in the form of
an integral that takes into account the molecular interactions; its definition is
beyond the scope of this discussion. Boltzmann’s equation is constructed on
the hypothesis of molecular chaos

f12(x1,v1,x2,v2, t) = f(x1,v1, t)f(x2,v2, t) , (4.77)

which breaks the time symmetry and reversibility that applies to Newtonian
mechanics at the atomic level, thus opening the door to irreversible behavior.
The irreversibility is measured by a quantity called H, (see [52]), related to
entropy by the relation s = −kBH, where kB is Boltzmann’s constant, which
is defined by

H =

∫
f(x,v, t) ln f(x,v, t) dv dx . (4.78)

The H theorem shows that dH/dt ≤ 0. Note that the definition of entropy
that we gave in (4.68) is a numerical approximation of the value −H.

We obtain the macroscopic variables such as density and velocity by inte-
gration on velocity space

ρ(x, t) = m

∫
f(x,v, t) dv (4.79)

ρ(x, t)u(x, t) = m

∫
f(x,v, t)v dv , (4.80)

where u denotes the velocity in physical space and m is the atomic or molecular
mass. Starting from these equations and (4.76), one can obtain the equations
of hydrodynamics, and in particular, the Navier-Stokes equations.

4.6 Second Principle of Thermodynamics

The second principle of thermodynamics in continuous media is also known by
the name of the Clausius-Duhem inequality.
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Rudolf Clausius (1822–1888) was born in Koslin (Prus-
sia), known today as Koszalin (Poland). He was professor
at the Artillary and Engineering School in Berlin, then
at the Swiss Institute of Technology in Zürich, then at
the Universities of Würzburg and Bonn. He made very
important contributions to thermodynamics, where he in-
troduced the notion of entropy, and to the kinetic theory
of gases.

Fig. 4.1 Rudolf Clausius

Second principle of thermodynamics For a material volume, the ma-
terial derivative of entropy is always greater than or equal to the sum of the
volume distribution of entropy sources in the body and the entropy flux across
the surface.

We can generalize (4.74) for a non-homogeneous medium, which, for a
material volume ω, takes the form

d

dt

∫
ω

ρs dv ≥
∫
ω

r

T
dv −

∫
∂ω

q · n
T

ds , (4.81)

where s is the entropy per unit mass. It is necessary to take into account the
temperatures at which the components of (r dv) and (−qini ds) are conveyed
to ω.

The local form of the second principle is obtained by the application
of the transport theorem to the material derivative, taking into account the
conservation of mass, the divergence theorem for the surface integral (the last
term), and finally, with the application of the localization theorem,

ρ
Ds

Dt
≥ r

T
− div

( q
T

)
. (4.82)

This inequality must be satisfied at every point, at all times, by every process.
The equality sign holds only for reversible processes.

To study the consequences of (4.82), we must eliminate the term in r, the
heat produced per unit mass and unit time, using the local form of the equation
of conservation of internal energy (4.23). This elimination is necessary, because
r is arbitrary since it refers to an action at a distance. Thus we find the
Clausius-Duhem inequality:

ρ
Ds

Dt
≥ 1

T

(
ρ
Du

Dt
− σ : d

)
+

1

T 2
q ·∇T , (4.83)

which must be satisfied by every thermodynamic process.
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Pierre Duhem (1861–1916) was born in Paris. He was
named professor at the University of Bordeaux. His work
in hydrodynamics and thermodynamics shows that he
was a pioneer in the study of irreversible phenomena in
thermodynamics. His principal publication was Traité de
l’énergétique published in 1911.

Fig. 4.2 Pierre Duhem

If we introduce the Helmholtz specific free energy ,

f = u− Ts , (4.84)

the Clausius-Duhem inequality (4.83) takes the form

ρ
Df

Dt
≤ σ : d− ρsDT

Dt
− q ·∇T

T
. (4.85)

The Clausius-Duhem inequality (4.83) can also be easily expressed in the
material description. In that case, the contact force power σ : d (4.25) can be
expressed as P : Ḟ (see (4.44)).

In finishing this chapter we note that the second principle of thermodynam-
ics is not a conservation principle but an inequality indicating the irreversible
nature (or direction) of the physical process that must always be satisfied. The
consequences (4.83) and (4.85) will be studied in sections 6.8 to 6.11 for some
simple cases.

Hermann von Helmholtz (1821–1894) was born in Pots-
dam. He was named professor at the University of Berlin.
His work in electrophysiology led him to write a book
called Physiological Basis for the Theory of Music. He
made major contributions in the domains of physics and
chemistry: potential energy, laws of vorticity, and the
Helmholtz decomposition (Helmholtz-Hodge theorem) for
a vector field.

Fig. 4.3 Hermann von Helmholtz

4.7 Exercises

4.1 Let Q be a scalar field defined in the deformed configuration ω of a body in
motion. Applying the Reynolds transport theorem and the continuity equation,
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show that
d

dt

∫
ω

ρ(x, t)Q(x, t) dv =

∫
ω

ρ(x, t)
DQ(x, t)

Dt
dv . (4.86)

Using this result, and knowing that the kinetic energy of the body is defined
by (4.1), derive the expression DEk/Dt.

4.2 Using the Reynolds theorem and the principle of conservation of mass,
show that the temporal derivative of the total energy is written as

D

Dt
(Ek + Eint) =

∫
ω

ρ

(
v · a+

Du

Dt

)
dv . (4.87)

Express the term v · a as a function only of v and explain this result.

4.3 The second principle of thermodynamics applied to a homogeneous medium
occupying a volume ω is expressed by equation (4.81).

1) State the local form of the second principle of thermodynamics.

2) Eliminate the term r for heat per unit mass, using the local form of the
law of conservation of energy, to establish the Clausius-Duhem inquality
(4.83).

3) What happens to this inequality if we introduce the Helmholtz specific free
energy (4.84)?

4.4 For a perfect fluid:

1) express the principle of conservation of internal energy for a perfect fluid
whose stress tensor is given by σ = −pI ;

2) rewrite the equation using the enthalpy per unit mass, defined as h =
u+ p/ρ ;

3) show that for an adiabatic flow, the conservation of energy takes the form

ρ
Dh

Dt
=
Dp

Dt
. (4.88)

4.5 Prove the symmetry of the stress tensor by performing the derivation in
detail for the case of rigid body rotation in paragraph 4.4.2.

Suggestion: in order to do this, first calculate v∗, then write the conservation
of energy equation in the starred reference frame and substitute the expression
v∗. Lastly, subtract the original equation from the expression obtained and
discuss the result.





Chapter 5

Constitutive Equations:

Basic Principles

5.1 Introduction

We have used tensor formalism to present the description of the properties of
a continuous medium. This permits us to reason in general terms, regardless
of the coordinate system to which we refer.

In chapter 2, we examined the local description of the motion of a medium,
which can be characterized by various tensors. Those that feature displace-
ments as variables will be more appropriate for the description of solids, whereas
tensors whose variables are velocities will be better applied to fluids.

The mechanics of continuous media is an axiomatic approach which leads
to a phenomenological model. With this tool, the objective is to predict the
motion of a material, taking into account the initial and boundary conditions.
We associate a thermodynamic variable with this motion; most often, this
variable will be the temperature.

Whichever model is chosen to describe the medium (perfect or viscous fluid,
elastic solid, viscoelastic solid, etc.), the conservation laws and the first principle
of thermodynamics must always be respected. The laws for mass, momentum,
angular momentum, and energy lead to a set of partial differential equations in
the local form. With respect to a Cartesian coordinate system, these equations
are as follows.

Conservation of mass:
Dρ

Dt
+ ρdiv v = 0 (5.1)

or
∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vi
∂xi

= 0 . (5.2)
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Conservation of momentum:

ρ
Dv

Dt
= divσ + ρb (5.3)

or

ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
=
∂σji
∂xj

+ ρbi . (5.4)

Conservation of angular momentum:

σT = σ (5.5)

or

σij = σji . (5.6)

Conservation of energy:

ρ
Du

Dt
= tr (σL)− div q + r (5.7)

or

ρ

(
∂u

∂t
+ vj

∂u

∂xj

)
= σij

∂vj
∂xi
− ∂qi
∂xi

+ r . (5.8)

This system contains eight independent equations (1 + 3 + 3 + 1), with the
body forces, b, and the volume production of heat, r, as given for the problem.

The unknown functions are the motion vector χ (2.1) and the temperature.
In the field equations we find the unknown variables ρ, σij , u, and qi. Note
that v is calculated from χ. Altogether, we have eighteen unknowns : χ(3),
T (1), ρ(1), σ(9), u(1), q(3).

If we assume that the conservation of angular momentum is satisfied, then
σ has only six unknowns. We thus have five partial differential equations for
fifteen unknowns.

In any case, our problem is incompletely posed. Until now, we have stated
the principles of conservation in general without reference to the model for the
continuous medium. In order to characterize the behavior of a material, we need
to take into account the constitutive equations. The nature and form of these
equations are based on the results from experiments obtained in the laboratory.
Figures 5.1 and 5.2 show typical stress-strain and stress-strain rate curves. The
constitutive equations are also proposed as axioms based on mathematical or
physical arguments. These equations give the dependence of σij , u, and qi
with respect to the history of the material deformation and temperature. For
a given model, we choose a certain number of kinematic and thermal variables
and express how σij , u, and qi depend on these variables.
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Fig. 5.1 Stress-strain rate relations: (a) linear; (b) nonlinear
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Fig. 5.2 Stress-strain relation for: (a) a solid elastic; (b) an elastoplastic solid; (c)
an elastomer; (d) a biological soft tissue

Together with the conservation relations, the constitutive equations estab-
lish the mathematical model of the continuous medium. This model, however,
is an idealization of the material response. Thus the behavior of a given mate-
rial should be described by various models according to the physical situation
where the models are applied. For example, at room temperature, glass is an
elastic material. In the transformation zone, around 600◦C, it is viscoelastic.
In a glass melting furnace, we can consider it to be like an incompressible
Newtonian viscous fluid. Another example is that of polymers, which in slow-
motion act like a viscous fluid, but act like an elastic solid when forced into
rapid motion.
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The constitutive equations must satisfy at least the following three fun-
damental principles:

1) objectivity and independence with respect to the observer or the reference
frame;

2) the properties of material symmetry for the medium;

3) the second principle of thermodynamics.

The founding principles for the development of the constitutive equations
are also largely developed in the following texts: [12, 17, 18, 19, 22, 49, 57]. The
text by Truesdell and Toupin [60] constitutes an important and very elaborate
contribution to the theory of continuous media.

5.2 General Principles

We will now introduce many general principles (including those above) which
must be satisfied absolutely by the constitutive equations that we establish.
Recall that χ represents the motion of a body B given by (2.1).

5.2.1 Hypothesis of Causality or Determinism

The stress at instant t in a material is determined by the history of the motion
of the material. Thus the Cauchy stress tensor σ(x, t) is given by

σ(x, t) = σ
(
χ(X, t), t

)
= Σ

τ≤t
Z ∈B

(
χ(Z, τ);X, t

)
, (5.9)

where the functional Σ characterizes in general the mechanical properties of
the body B. An explicit time dependence is allowed. In addition, the functional
can vary from one particle to another (dependence on X) expressing an inho-
mogeneous distribution of the material properties. In a simplified way, we can
interpret a functional as a function of another function (here, the function of
motion χ). In the mechanics of continuous media, it is often represented by an
integral over the past configurations χ(Z, τ) (Z ∈ B, τ < t) thus permitting
the description of the constitutive relations for different classes of materials.
Note that the way (5.9) is written expresses non-locality since there is a depen-
dence upon every point Z belonging to the body B. To simplify, we sometimes
denote the functional with respect to σ(x, t) as Σ(χ;X, t).

5.2.2 Local Action Principle

For a given particle X of the material, the functional Σ(χ;X, t) depends only
on the neighborhood of X. For two arbitrary motions χ and χ that coincide
in a neighborhood V(X) ⊂ B at any time τ ≤ t, the value of Σ is the same.
Formally, we write

Σ(χ;X, t) = Σ(χ;X, t) , (5.10)
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as long as there exists a neighborhood V(X) such that

χ(Z, τ) = χ(Z, τ) ∀Z ∈ V(X) ∀τ ≤ t . (5.11)

We observe that Σ(χ;X, t) is a functional of the function χ of two variables:
time τ and the particle Z in the neighborhood of the chosen particule X. In
this case, the tensor σ(x, t) is given by a relation analogous to (5.9) such that

σ(x, t) = σ(x, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ);X, t

)
. (5.12)

5.2.3 Principle of Objectivity

Not every constitutive equation that satisfies the local action principle is ad-
missible. It must also satisfy the principle of objectivity, or frame indifference,
which requires that the functional Σ be invariant in any change of the refer-
ence frame. We wish to write constitutive equations that are independent of the
observer, and, in particular, independent of superimposed rigid body motion.
More precisely, we have (sec. 2.11)

x∗ = χ∗(X, t∗) = c(t) +Q(t)χ(X, t) (5.13)

σ∗(X, t∗) = Q(t)σ(X, t)QT (t) (5.14)

t∗ = t− α . (5.15)

Using (5.13)–(5.15), the principle of objectivity becomes

σ∗(X, t∗) = Σ
τ∗≤t∗

Z ∈V(X)

(
χ∗(Z, τ∗);X, t∗

)
(5.16)

such that

Σ
τ∗≤t∗

Z ∈V(X)

(
χ∗(Z, τ∗);X, t∗

)
= Q(t) Σ

τ≤t
Z ∈V(X)

(
χ(Z, τ);X, t

)
QT (t) . (5.17)

In order to clarify the impact of this principle on the statement of the functional
Σ, we study three particular reference frame changes in succession.

In the following we take τ as the time variable; t will indicate the in-
stant at which the stress is evaluated. Then, Q(τ)QT (τ) = QT (τ)Q(τ) = I,
detQ(τ) = 1, ∀τ .

Rigid translation of the moving observer without changing the time scale:
Let us set Q(τ) = I, α = 0 and

c(τ) = −χ(X, τ) . (5.18)

This means that the reference frame is in rigid translation such that,
after the frame change, the material point X at time τ remains at the
origin. In addition, t∗ = t. From (5.13), we have for Z ∈ V(X)

χ∗(Z, τ) = χ(Z, τ)− χ(X, τ)
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and from (5.12), (5.14), and (5.16)

σ∗(X, t∗) = σ(X, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ)− χ(X, τ);X, t

)
. (5.19)

Change of the time scale in a fixed reference frame:
This situation corresponds to the following choice:

Q(τ) = I c(τ) = 0 t = α . (5.20)

The instant t is the reference time after the change. Thus we have from
(5.15) and (5.20)

τ∗ = τ − α = τ − t . (5.21)

At the instant t∗, using (5.21) and (5.14), we have

t∗ = t− t = 0 σ∗(X, t∗) = σ∗(X, 0) = σ(X, t) . (5.22)

From (5.13), (5.20), and (5.21) we find

χ∗(Z, τ∗) = χ(Z, τ) = χ(Z, t+ τ∗) . (5.23)

And from (5.22), (5.16), and (5.23), we obtain

σ(X, t) = σ∗(X, 0) = Σ
τ∗≤t∗

Z ∈V(X)

(
χ(Z, τ∗ + t);X, 0

)
= Σ

τ−t≤0
Z ∈V(X)

(
χ(Z, τ);X, 0

)
.

(5.24)

Consequently, the functional Σ does not depend explicitly on t. Now
introduce

τ = t− s 0 ≤ s ≤ ∞ . (5.25)

Combining (5.19) and (5.24), we obtain

σ(X, t) = Σ
s≥0

Z ∈V(X)

(
χ(Z, t− s)− χ(X, t− s);X

)
. (5.26)

Thus the functional Σ only depends on the relative motion starting
from the reference time of all the particles Z in B, that is Z ∈ V(X).

Rigid rotation of the reference frame:
We choose c(τ) = 0, α = 0, and arbitrary Q(τ). This corresponds to
unsteady rotation of the reference frame. In this rotation, the stress
tensor is transformed according to the relation

σ∗(X, t) = Q(t)σ(X, t)QT (t) . (5.27)

By combining (5.13), (5.14), (5.16), (5.26), and (5.27), we can write

Q(t)Σ
(
χ(Z, t− s)− χ(X, t− s),X

)
QT (t)

= Σ
(
χ∗(Z, t− s)− χ∗(X, t− s),X

)
= Σ

(
Q(t− s)

(
χ(Z, t− s)− χ(X, t− s)

)
,X
)
. (5.28)
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This last equation is the restriction that we must impose on the func-
tional Σ to ensure that it is objective. We can easily see that, inversely,
all constitutive equations of the form (5.26) that obey the condition
(5.28) satisfy the principle of frame indifference. This is due to the
fact that any general change of the reference frame can be obtained
by a sequence of the three particular changes described above. Hence,
equation (5.26), satisfying the condition (5.28), is the most general
constitutive equation for the theory of mechanics of continuous media.
More precisely, we observe that the stress is represented by an isotropic
tensor function with a tensor value (sec. 1.3.11).

5.2.4 Principle of Material Invariance

Solid materials have symmetry properties because of their crystallographic
characteristics: cubic, rhombohedral, etc. Certain fluids also possess this type
of property, for example, liquid crystal fluids. In this case, the constitutive
laws will not change form when the material coordinates (X1, X2, X3) become
(X1, X2,−X3). This represents a reflection operation on the coordinates with
respect to the plane X3 = 0. However, this condition imposes restrictions on
the equations.

Reflection through a symmetry plane including the origin 0 that is orthog-
onal to the unit vector n is defined by the tensor R. We have

X = RX = (I − 2n⊗ n)X .

In index notation we have

Rij = δij − 2ninj with det [R] = −1 . (5.29)

We denote by {O} a sub-group of the complete group of orthogonal trans-
formations for the material axes, and by {B} the group of translations of these
axes. Then the principle of material invariance is stated as follows.

The constitutive equation must be formally invariant with respect to a group
of orthogonal transformations {O} and a group of translations {B} of the
material coordinates. These restrictions come from the symmetry conditions
induced by {O} and {B} in the coordinate system X.

We then have a transformation of the form

X = OX +B , (5.30)

with
OOT = OTO = I and detO = ±1 . (5.31)

These conditions express the geometric symmetries represented by {O} and
the inhomogeneities represented by {B}, at X, of the physical properties of
the material body. When {O} is the proper orthogonal group characterized by
the matrice [O] such that det [O] = +1, the material is hemitropic; we can
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not perform the reflection of the axis Xi with respect to the plane Xi = 0.
When {O} is the complete group (det [O] = ±1), the material is said to be
isotropic. A material that is not hemitropic is called anisotropic.

When the functions do not depend on the translations, {B}, of the origin
of the material coordinates, we say that the material is homogeneous. If these
functions change with certain translations {B} of the material axes, then the
material is inhomogeneous.

If we combine the principle of material invariance and the principle of ob-
jectivity with a transformation relative to the material coordinates Xi, we have
the condition

Σ
(
χ(Z, t− s)− χ(X, t− s

)
,X)

= Σ
(
χ(OZ +B, t− s)− χ(OX +B, t− s),OX +B

)
.

(5.32)

5.2.5 Principle of Memory

The values of the variables in the constitutive relations in the remote past do
not have an appreciable impact on the current values of these variables.

We will return to this principle later and introduce the concept of fading
memory.

5.2.6 Principle of Admissibility

All the constitutive equations must be coherent with the fundamental principles
of mechanics of continuous media, that is, they must obey the conservation laws
of mass, momentum, and energy, as well as the Clausius-Duhem inequality.

5.3 Consequence of the Principle of Local Action

Assume, for simplicity, that the vector function χ(Z, t) can be expanded in a
Taylor series about Z for every τ ≤ t and Z ∈ V(X):

χ(Z, τ) = χ(X, τ) + (Z −X)
∂χ

∂X
(X, τ) +O

(
‖Z −X‖2

)
. (5.33)

The deformation gradient tensor F , introduced by the relation (2.65), appears
in this expression. We limit ourselves here to the case of materials that depend
only on the first order of the gradient and thus only consider the first term of
the expansion (5.33). We can then describe σ(X, t) as

σ(X, t) = Σ

(
∂χ

∂X
;X, t

)
. (5.34)

These are said to be simple materials.
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Combining what we have written for the result of the principle of local
action (5.34), as well as equation (5.26), we have

σ(X, t) = Σ
s≥0

(
∂χ

∂X
(t− s);Z −X,X

)
. (5.35)

In (5.35) we have written the explicit dependence with respect to the directional
vectors Z −X which have X as the origin in three spatial dimensions. More
simply, we can check that this dependence can be expressed as a function of the
vector basis ek of the material coordinates of X. This statement underlines
the dependence of the functional Σ on the choice of basis. The introduction of
Z−X in (5.35) represents the directional dependence of the material properties
at point X. When there is no ambiguity, we can drop Z−X in the arguments
of the functional. In addition, equation (5.35) expresses that the stress at time
t depends on the deformation gradient history. We have

σ(X, t) = Σ
s≥0

(
F (X, t− s),X

)
. (5.36)

If we impose the objectivity condition (5.28) on relation (5.36), we obtain

Q(t)Σ
(
F (X, t− s),X

)
QT (t) = Σ

(
Q(t− s)F (X, t− s),X

)
. (5.37)

With the polar decomposition theorem (2.73), we have

F (X, t− s) = R(t− s)U(X, t− s) ,

where R(t−s) and U(X, t−s) are the rotation tensor and the right symmetric
stretch tensor histories, respectively. If we make the particular choice that
Q(t− s) = RT (t− s), equation (5.37) becomes

RTΣ
(
F (X, t− s),X

)
R = Σ

(
U(X, t− s),X

)
. (5.38)

We can leave out the explicit dependence of Σ with respect to X as this is
already taken into account by F . This eases the expression without, however,
affecting the generality of what follows. Consequently, expression (5.36) for the
stress tensor can be written in the form

σ(X, t) = R(t)Σ
(
U(X, t− s)

)
RT (t) . (5.39)

This last relation is the general form of the constitutive equation of a simple
material. It yields the general solution of the functional relation (5.37). In
addition, it shows that the stress in a simple material is affected by the rotation
at the time under consideration, but past rotations have no influence.

Recalling the polar decomposition theorem and (2.88), we can put (5.39)
in the form

σ(t) = F
(
C(t− s)

)
, (5.40)

with

σ ≡ F TσF F
((
U(t− s)

)2) ≡ U(t)Σ
(
U(t− s)

)
U(t) .
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The tensor σ is the transported or convected stress tensor. Defining

L
(
C(t− s)

)
≡ C−1(t)F

(
C(t− s)

)
C−1(t) ,

then equation (5.40) becomes

σ(t) = FL
(
C(t− s)

)
F T . (5.41)

5.4 Thermomechanical Constitutive Equations

Until now we have considered materials in an isothermal situation. As soon
as we want to take into account thermal effects, we need to introduce a new
primary variable analogous to that of motion or deformation. For this purpose,
we use temperature, which we take as

T = T (X, t) . (5.42)

This means that in a thermomechanical problem, the independent constitutive
variables are motion χ and temperature T . The velocity will be obtained
simply by the time derivative of the motion and then the velocity gradient
tensor from v. The density is related to the motion by the continuity equation
(3.37) written in the form detF = P0/P = ρ0/ρ in spatial coordinates.

5.4.1 Principle of Determinism

Besides the motion history of the material, the stress is also influenced by the
temperature. Thus, equation (5.9) is generalized by the relation

σ(x, t) = Σ
τ≤t
Z ∈B

(
χ(Z, τ), T (Z, t);X, t

)
. (5.43)

Since we take into account thermal effects, we also need to define constitutive
relations for the heat flux vector, q, the internal energy, u, and the entropy
density, s. To (5.43) we add constitutive equations, such as the principle of
determinism, generalized as follows: the values of the thermomechanical func-
tions (σ, q, u, and s), at a material point X at time t, are determined by the
motion and temperature histories for all the points in the body B. Thus we
have

σ(X, t) = Σ(χ, T ;X, t) = Σ
(
x(Z, τ), T (Z, τ),X, t

)
(5.44)

q(X, t) = Q(χ, T ;X, t) (5.45)

u(X, t) = U(χ, T ;X, t) (5.46)

s(X, t) = S(χ, T ;X, t) . (5.47)

5.4.2 Principle of Equipresence

We assume that all the constitutive functionals are expressed as functions of
the same set of independent constitutive parameters, until proven otherwise.
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5.4.3 Principle of Local Action

The reasoning that we have applied in section 5.3 also applies to the tempera-
ture field. We perform a Taylor series expansion of T (Z, τ) around T (X, τ) to
write

T (Z, τ) = T (X, τ) + (Z −X)
∂T

∂X
+O

(
‖Z −X‖2

)
. (5.48)

Limiting ourselves to simple materials, the functional Σ only depends on gra-
dients of order 1. Then

T (Z, τ) ' T (X, τ) + (Z −X)
∂T

∂X

and

σ(X, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ),

∂χ(Z, τ)

∂X
, T (Z, τ),

∂T (Z, τ)

∂X
;X, t

)
. (5.49)

5.4.4 Principle of Objectivity

We have seen in chapter 2 that a scalar field is objective if and only if

T ∗ = T . (5.50)

For the rigid translation of the reference frame (5.18), the functional of σ is
written as

σ(X, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ)− χ(X, τ), T (Z, τ),X, t

)
. (5.51)

The considerations related to the change of the time scale lead to the relation

σ(X, t) = Σ
(
χ(Z, t− s)− χ(X, t− s), T (Z, t− s),X

)
. (5.52)

Finally, taking into account the rotation of the reference frame imposes the
condition

Q(t)Σ
(
χ(Z, t− s)− χ(X, t− s), T (Z, t− s),X

)
QT (t)

= Σ
(
Q(t− s)

(
χ(Z, t− s)− χ(X, t− s)

)
, T (Z, t− s),X

)
. (5.53)

Combining the results of the principles of local action (5.49) and objectivity,
we obtain the relation

σ(X, t) = Σ

(
∂χ

∂X
(t− s), T (t− s), ∂T

∂X
(t− s),Z −X,X

)
, (5.54)

which generalizes (5.35).

When the theory takes into account thermal effects, we should expect den-
sity to vary. We can show that, in general, the use of the polar decomposition
theorem in order to impose objectivity reveals the Cauchy-Green deformation
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tensor, but also the scalar invariant associated with the deformation gradient
tensor F , that is,

detF (t− s) =
(
detC(t− s)

)1/2
=

ρ0

ρ(t− s) . (5.55)

(see (2.68), (2.77), and (3.37)).

Consequently, the most general equation for simple materials is of the form

σ(X, t) = FL
(
C(t− s), ρ−1(t− s), T (t− s), ∂T

∂X
(t− s),X

)
F T , (5.56)

which is a generalization of (5.41).

5.5 Definition of a Fluid and a Solid

We define a fluid as a simple material for which we presume that the reference
configuration is, most often, that present at the time it is being considered. A
fluid is also a material incapable of “resisting” an applied shear: subject to this
stress it responds by flowing. Classical Newtonian fluids have an infinitesimally
short memory. This means that in the functional (5.56), the stress only depends
on C(t−s), for example, for 0 ≤ s ≤ ε with ε tending to zero. The stress tensor
has a quasi instantaneous memory.

We define a solid as a simple material medium that possesses preferred
configurations. One of these can be taken as the reference configuration and
we call it the reference state. In most cases, the material is not under stress in
this state (σ = 0). We call this the natural state of the material. If however,
in this reference state σ 6= 0, we say that the material is prestressed.

5.6 Principle of Regular Memory

We assume that the thermomechanical histories χ(X, τ) and T (X, τ) can be
expanded in a Taylor series with respect to τ around t and ∀X ∈ B. We have

χ(X, τ) = χ(X, t) + (τ − t)χ̇(X, t) + · · · (5.57)

and
T (X, τ) = T (X, t) + (τ − t)Ṫ (X, t) + · · · (5.58)

with the notation

χ̇ =
∂χ

∂t

∣∣∣∣
X

, Ṫ =
∂T

∂t

∣∣∣∣
X

. (5.59)

Recall that the first relation of (5.59) is identical to (2.17). To obtain the
principle of regular memory, we suppose that the functionals are as regular
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as possible in order to smooth the discontinuities in these functions and their
time derivatives. Consequently, the axiom of regular memory leads to the
replacement of (5.56) by

σ(X, t) = FL
(
C, Ċ, C̈, . . . ;

ρ−1, ρ̇, ρ̈, . . . ;T, Ṫ , T̈ , . . . ;
∂T

∂X
,
∂Ṫ

∂X
, . . . ,X

)
F T ,

(5.60)

where the time derivatives of various variables appear.

The concept of fading memory makes use of functions that vanish over
time, introduced in the constitutive equation in order to give more weight to
recent events near the present time t and less to the distant past. Typically
these functions are written in a form like e−β s with β constant. They are
especially useful in viscoelasticity to take into account the phenomena of creep,
that is, strain under constant stress; and stress relaxation, strain maintained
constant under time variable stress. Although the subject is important for a
large class of materials, it is beyond the introductory scope of this book.

5.7 Exercises

5.1 Let u(x, t) be an objective vector field. Show that its spatial gradient is
also objective, i.e., that it satisfies(

∇u
)∗

= Q∇uQT , (5.61)

where (∇u)∗ = ∂u∗/∂x∗ denotes the spatial gradient of the vector u∗.

5.2 Prove that the strain rate tensor d (and the rotation rate ω̇) is (is not)
objective.

5.3 Let T be an arbitrary spatially objective tensor of order 2. Is the material
derivative of T objective?

5.4 Let T be an arbitrary spatially objective tensor of order 2. Prove that the
expression

Ṫ + T ω̇ − ω̇T (5.62)

is objective, where Ṫ denotes the material derivative of T and ω̇ the rotation
rate tensor.

5.5 Prove that the tensor T of order 2, defined by the relation

T = 2ḋ+ 2dL+ 2LTd (5.63)

is spatially objective. The tensor d is the rate of deformation tensor and ḋ is
its material derivative. The tensor L is that for the velocity gradient. For the
proof, use the equation (also to be proven)

ḋ∗ = Q̇dQT +QdQ̇
T

+QḋQT . (5.64)





Chapter 6

Classical Constitutive Equations

6.1 Introduction

In this chapter we will examine the classical constitutive laws of Newtonian vis-
cous fluids, elastic and hyperelastic solids, and heat conduction. We will evalu-
ate some of these constitutive equations in the context of the second principle of
thermodynamics to verify that their formulations satisfy that inequality. The
section on the thermodynamics of an ideal fluid establishes the methodological
link between thermodynamics of continuous media and classical thermodynam-
ics in order to show that these two points of view are complementary. This
chapter ends with some considerations on the subject of thermoelasticity.

For the behavior of fluids, additional reading is proposed in [2, 12, 24, 38,
42, 57, 59, 60]. For solids, the reader is referred to [4, 6, 7, 15, 20, 32, 36, 41,
42, 47, 55].

6.2 Simple Fluids

In general, we can say that a fluid is a continuous medium such that in any
deformed configuration that leaves the density unchanged, the fluid retains no
memory of its past states. We can then propose the following definition: a fluid
is a material such that each configuration of the body that leaves the density
at a prescribed value may be considered to be the reference configuration [12].

If we limit ourselves to first-order partial derivatives (with respect to time
or space) in (5.60), we have the equation for simple thermomechanical materials

σ(X, t) = FL
(
C, Ċ, ρ−1, ρ̇, T, Ṫ ,

∂T

∂X
,
∂Ṫ

∂X
, X

)
F T . (6.1)

Since every configuration can be a reference configuration, we choose the cur-
rent deformed configuration as the reference configuration and we can write
x = X = χ with ρ given. From (2.179) and (2.181), it follows that

F = I C = I Ċ = Ḟ
T
F + F T Ḟ = 2d (6.2)

∂T

∂X
=
∂T

∂x
and

∂Ṫ

∂X
=
∂Ṫ

∂x
. (6.3)
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Using the equation of conservation of mass, ρ̇ = −ρ dii (3.41), we eliminate the
dependence with respect to ρ̇. Relation (6.1) thus becomes

σ(x, t) = K

(
d, ρ−1, T, Ṫ ,

∂T

∂x
,
∂Ṫ

∂x
, x

)
. (6.4)

In the following, we assume that the fluid behavior is independent of the tem-
perature gradient ∂T/∂x and of its temporal variation ∂Ṫ /∂x. This simplifi-
cation is consistent with experimental observations of fluid behavior. Equation
(6.4) becomes

σ(x, t) = K
(
d, ρ−1, T, Ṫ , x

)
. (6.5)

The steps from (6.1) to (6.5) caused the objective character of (6.1) to disap-
pear. We can restore it by applying the principle of objectivity to (6.5) which
shows that the functional K does not depend explicitly on x. We consider
that the stress depends on the instantaneous value of the temperature, and
that the history term, Ṫ , is obtained from the principle of conservation of en-
ergy. Consequently, a fluid is a medium where the constitutive law is of the
form

σ(x, t) = K
(
d, ρ−1, T

)
, (6.6)

with the condition imposed by objectivity

QKQT = K
(
QdQT , ρ−1, T

)
. (6.7)

Condition (6.7) imposes that the functional, now reduced to the function K,
be an isotropic function of the symmetric tensor d. By application of the rep-
resentation theorem (sec. 1.3.11) for isotropic functions of symmetric tensors,
relation (6.7) becomes

σ(x, t) = K0I +K1d+K2d
2 . (6.8)

The scalar functions Ki (i = 0, 1, 2) will be functions of the invariants of d, ρ−1

and T .

When the fluid is incompressible, its density is invariant. Thus, ρ0 = ρ
and detF = 1. In addition, the first invariant of d is zero. Therefore, the
constitutive equation of an incompressible fluid has the form

σ(x, t) = −pI +K1

(
I2(d), I3(d)

)
d+K2

(
I2(d), I3(d)

)
d2 , (6.9)

with p, the undetermined scalar pressure. We note that when the fluid is
at rest, d = 0 and σ = −pI. The behavior of the fluid is obtained from
hydrostatic equilibrium (eqn. (3.133)). Note also that the dependence of stress
on velocity is a function only of the symmetric strain rate tensor. This is a
direct consequence of the principle of objectivity which excludes the use of the
rate of rotation or vorticity tensor, as the latter is not objective and is also
antisymmetric.
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We notice that equation (6.9) is non-linear in d. It is in this case a non-
Newtonian fluid as opposed to a classical Newtonian fluid. The relation de-
scribes a fluid known by the name of a Rivlin-Ericksen fluid of complexity one
(see [59]).

6.3 Classical Fluids or Newtonian Viscous Fluids

A classical fluid is a medium for which the components of the stress tensor
are linear functions of the strain rate tensor. This definition imposes K2 = 0 in
equation (6.9). We note the particular case of perfect fluids, or inviscid fluids,
for which, by definition, the stress tensor is independent of d. The stress tensor
is thus spherical (non-diagonal components are zero). We write

σ = −pI (6.10)

p = p(ρ, T ) . (6.11)

In (6.11), we have used the definition that 1/ρ = v with v being the specific
volume as encountered in the laws of the physics of gases. If the fluid is incom-
pressible, the pressure is determined by the solution of the equations of motion.
Conversely, if the fluid is compressible, the pressure is given by a state equa-
tion derived from thermodynamic considerations. If the fluid is not perfect, it
is called viscous. We pose

σ = −pI + T , (6.12)

with T , the deviatoric part of the stress tensor that is called the extra-stress,
such that T = K1

(
I1(d), I2(d), I3(d)

)
d.

For classical fluids, T is a linear function of d and it can be shown that T
is necessarily of the form

T = λ trdI + 2µd , (6.13)

where λ and µ are scalar coefficients. The tensor T depends on the strain rate
tensor (and not the strain tensor) in a way such that it vanishes when the fluid
is in rigid body motion (that is, zero deformation rate). The pressure is a scalar
field which does not depend explicitly on the strain rate. The coefficient λ is the
volume viscosity , while µ is the coefficient of shear or dynamic viscosity. We
will see that λ and µ are always positive. These coefficients have dimensions
M L−1T−1 and the corresponding SI units are N s/m2 or Pa · s.

Table 6.1 Material constants for viscous fluids

µ (Pa · s) ρ (kg/m3) ν(m2 s−1)

air 1.776 10−5 1.225 14.5 10−6

water 0.0011 999.2 1.138 10−6



176 Classical Constitutive Equations

For example, in table 6.1 we give the material constants at room temper-
ature of two fluids widely used in industrial applications: air and water. The
kinematic viscosity ν is defined by ν = µ/ρ. In index notation, the constitutive
equation for a compressible Newtonian fluid is written as

σij = −p δij + λ dkk δij + 2µdij , (6.14)

with

p = p(ρ, T )

λ = λ(ρ, T )

µ = µ(ρ, T )

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (6.15)

The constitutive equation of an incompressible viscous fluid reduces to

σij = −p δij + 2µdij , (6.16)

with p being an undetermined scalar field and µ is a constant in most cases.
Note that taking the trace of (6.16), we obtain p = −(1/3) trσ and thus that
the pressure is the mean of the diagonal components of the stress tensor.

Example 6.1 (Simple Shear Flow)

Consider a simple shear flow established between two parallel walls. The
lower wall is fixed and the upper wall moves along its plane at a constant
velocity U . The velocity field is such that

v1 = kx2

v2 = 0

v3 = 0 .

Only the component d12 of the tensor d is non-zero. Then, at an arbitrary
point M in the fluid, as shown in figure 6.1, we have σ22 = −p and σ12 = µk.
The fluid above point M exerts on the fluid below a shear force proportional
to µ and to the velocity gradient k in the direction x2. Due to the presence
of viscosity, the fastest upper layers of fluid tend to speed up the lower layers
that they are in contact with; inversely, the slower moving layers tend to
slow down the faster flowing layers.

This physical interpretation confirms that it is reasonable to suppose that
µ > 0. This also shows that in a perfect fluid the different layers of fluid
exert no accelerating or decelerating influence on each other. They only
experience the forces due to pressure.
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U

p
e2

e1 x1

x2

M σ12 = µk

Fig. 6.1 Shear flow

It is understood that we have presented a drastic idealization of reality as
all real fluids are viscous and they may also be turbulent. When they are
slightly viscous, we can model them using the concept of a perfect fluid.

6.4 Isothermal Isotropic Elastic Media

We have seen previously that a solid has a special memory: it remembers its
reference configuration.

An isothermal elastic medium is a simple material such that, by (5.36),

σ(X, t) = Σ
(
F (X, t− s),X

)
. (6.17)

Taking into account the fact that F is the deformation gradient tensor that
relates the reference state to the deformed state, for an elastic material, we can
write

σ(X, t) = Σ
(
F (t)

)
. (6.18)

To simplify, in the following we consider that the dependence of σ on time t
is carried by F and we will no longer explicitly note t in σ. The principle of
objectivity requires

σ∗ = Σ
(
F ∗
)
. (6.19)

Using (2.205) and (3.147), we obtain

σ∗ = Σ
(
F ∗
)

= Σ(QF ) σ∗ = QσQT = QΣ(F )QT (6.20)

or
Σ(QF ) = QΣ(F )QT . (6.21)
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With the polar decomposition theorem and by setting Q = RT , this last equa-
tion becomes

Σ(QRU) = RTΣ(F )R (6.22)

and
σ = Σ(F ) = RΣ(U)RT (6.23)

∀F and R. Relation (6.23) expresses the result of imposing objectivity on
(6.18). The constitutive equation (6.23) expresses the Cauchy stress tensor
in terms of the deformation tensor U or C since C = U2 . Other forms of
constitutive equations can be written by means of the Piola-Kirchhoff stress
tensors P or S. Indeed, by combining (6.18) and (3.141), we obtain

P = JσF−T = JΣ(F )F−T = P(F ) , (6.24)

where P is a tensor function of F . Following steps similar to those that led to
(6.23) and taking into account (3.149), we obtain

P(F ) = RP(U) . (6.25)

To write the constitutive equation as a function of the tensor S, we introduce
(6.23) in (3.152) and we proceed in a similar way to arrive at

S = JF−1σF−T = JF−1RΣ(U)RTF−T . (6.26)

Employing the polar decomposition theorem, this last relation can be written
as

S = JU−1Σ(U)U−T (6.27)

or
S = S(U) , (6.28)

where S is a tensor function of U . Since U∗ = U and S∗ = S, the conditions
imposed by objectivity are satisfied. Equation (6.28) can be expressed as a
function of the Cauchy-Green tensor C since C = U2.

In the following we will construct a theory of isothermal, isotropic elastic
media. If the material is isotropic with respect to its reference configuration,
by the material invariance principle, we must have (sec. 5.2.4)

Σ(F ) = Σ
(
F
)
, (6.29)

where F is the deformation gradient tensor calculated for a material coordinate
system

X = OX +B , (5.30)

a relation in which {O} and {B} take into account, respectively, the symmetries
and the translations of the material axes (sec. 5.2.4). The deformation gradient
tensor F , according to (5.30), can be expressed as

F =
∂x

∂X

∂X

∂X
= FOT . (6.30)
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Combining (6.29) and (6.30), leads to

Σ(F ) = Σ
(
FOT

)
. (6.31)

The polar decomposition theorem yields the following solution: F = V R
(= RU). To make V appear in the functional Σ, we must choose O such
that FOT = V , thus O = R. We see from the polar decomposition that this
is an appropriate choice and we obtain, according to (6.18),

σ = Σ(V ) . (6.32)

From objectivity (5.28) and isotropy (6.31), for every orthogonal matrix O, we
have

OΣ(U)OT = Σ(OU) = Σ
(
OUOT

)
= Σ

(
FOT

)
= Σ(V ) . (6.33)

We conclude that the functional Σ is an isotropic function of V . For an
isotropic material, constitutive equations (6.18) and (6.32) can also be writ-
ten in other forms.

Taking into account that V 2 = FF T (eqn. (1.134)), the constitutive law
of an isotropic elastic material can be expressed by one of the equalities

σ = Σ
(
V ) σ =H(V 2) σ = K(e) , (6.34)

where e is the Euler-Almansi tensor defined by (2.83). As the tensor functions
Σ and H are isotropic and depend on symmetric tensors, we can write, for
example (see (1.140))

σ = k0

(
I1(e), I2(e), I3(e)

)
I + k1

(
I1(e), I2(e), I3(e)

)
e

+ k2

(
I1(e), I2(e), I3(e)

)
e2

(6.35)

with
kp = kp

(
I1(e), I2(e), I3(e)

)
p = 0, 1, 2 ,

which are scalar functions of the invariants of the tensor e. We can also notice
that the stress tensor σ and the strain tensor e have the same principal direc-
tions. In addition, relation (6.35) shows that for an isotropic material, three
parameters are necessary to characterize the constitutive response.

6.5 Hyperelastic Materials

Relation (6.35), presented in the preceding section, is the most general form
of the constitutive equation for an isotropic elastic material. We obtained this
constitutive equation from purely theoretical considerations without any refer-
ence to thermodynamics. This theory of elasticity, developed around (6.35), is
called Cauchy elasticity in the literature and the corresponding material is a
Cauchy elastic material . In this section, we develop a theory of constitutive
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equations based on the hypothesis of the existence of an energy function. The
theory is adapted to non-linear elastic materials where the deformations can
be large, that is, finite. It is normally called finite hyperelasticity or simply
hyperelasticity . The materials that it describes are called hyperelastic, or
Green elastic materials.

Assuming that the processes are isothermal and considering only mechani-
cal effects, we introduce the free energy function per unit volume in the material
description. Thus, we define the energy function W(X, t) such that

W(X, t) = P0(X)U(X, t) . (6.36)

From (4.44), we obtain

DW(X, t)

Dt
= Ẇ(X, t) = P0(X)U̇(X, t) = P : Ḟ . (6.37)

A hyperelastic, or Green elastic, material is one for which the elastic energy
is given by the free energy function such that

W(X, t) = P0(X)U
(
F (X, t),X

)
, (6.38)

which, for a homogeneous material, becomes

W(X, t) =W
(
F (X, t),X

)
=W(F ) . (6.39)

The free energy is zero for the reference configuration, that is W(I) = 0, and
also satisfies the condition W(F ) ≥ 0.

In order to establish the relation between the energy and the stresses, we
proceed as follows. First, we express the time derivative of W(F ) defined in
(1.167)

Ẇ(F ) =
DW(F )

Dt
=
DW(F )

DF
:
DF

Dt
=
∂W(F )

∂F
: Ḟ . (6.40)

Then, we combine (6.40) with (6.37) to obtain

∂W(F )

∂F
: Ḟ = P : Ḟ or

(
∂W(F )

∂F
− P

)
: Ḟ = 0 . (6.41)

Relation (6.41) is valid for arbitrary values of Ḟ . Thus, for a hyperelastic
material, the constitutive equation is written as

P =
∂W(F )

∂F
. (6.42)

Strictly speaking, both linear and non-linear elastic materials are hypere-
lastic. However, the name hyperelastic is conventionally used for non-linear
elastic behavior.

Expressing σ as a function of P as in (3.141), the constitutive equation
becomes

σ = J−1 ∂W(F )

∂F
F T . (6.43)
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We assume that the strain energy function is independent of the reference
frame. This implies that for two observers in relative motion as described by
(5.13), we have

W(F ) =W
(
F ?
)

=W(QF ) . (6.44)

Replacing F by its right polar decomposition F = RU and setting Q = RT ,
we obtain

W(F ) =W(RTRU) =W(U) , (6.45)

which expresses the necessary and sufficient conditions for the objectivity of
the energy function W(F ). Recalling that U = C1/2, we can write

W(F ) =W(U) = Ŵ(C) . (6.46)

In solid mechanics, we focus our attention on the formulation of the constitutive
relations as a function of the metric tensor C. It is thus necessary to express
∂W(F )/∂F in (6.42) or (6.43) as a function of C. Differentiating (6.46) with
respect to time, leads to

∂W(F )

∂F
: Ḟ =

∂Ŵ(C)

∂C
: Ċ . (6.47)

Taking into account C = CT = F TF and using (1.95) it can be shown that(
∂W(F )

∂F

)T
= 2

∂Ŵ(C)

∂C
F T . (6.48)

Due to the symmetry of C, ∂Ŵ(C)/∂C is also symmetric. Consequently, we
have

∂W(F )

∂F
= 2F

∂Ŵ(C)

∂C
, (6.49)

and we write (6.42) in the form

P = 2F
∂Ŵ(C)

∂C
. (6.50)

Inserting (6.50) in (3.152), the constitutive equation as a function of the second
Piola-Kirchhoff tensor becomes

S = 2
∂Ŵ(C)

∂C
. (6.51)

Equations (6.50) and (6.51) represent the general forms of the constitutive
equations for a hyperelastic material that satisfies objectivity.

6.5.1 Isotropic Hyperelastic Materials

Let us examine the constitutive equations of an isotropic elastic medium. Since
the symmetry of the material is not taken into account in the preceding equa-
tions, we will now study its consequences on the constitutive equation. Accord-
ing to (6.30), the strain energy must satisfy the relation

W(F ) =W(F ) =W
(
FOT

)
. (6.52)
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As O can be identified with Q (sec. 5.2.4), we can also have F = FQT , so
that

C = F
T
F = QF TFQT = QCQT . (6.53)

Taking into account (6.46), a material undergoing the transformation (5.30)
satisfies the following equalities:

W(F ) = Ŵ(C) = Ŵ
(
QCQT

)
(6.54)

Ŵ(C) = Ŵ
(
QCQT

)
. (6.55)

Relation (6.55) is the isotropic condition for the strain energy function (see

eq. (1.141)). It also implies that Ŵ(C) is an isotropic scalar function of the
symmetric tensor C. Because of the representation theorem for invariants [17],
the scalar function (6.55) can be written as a function of the principal invariants
of its argument C. We can thus replace (6.55) with the function

Ŵ(C) = Φ
(
I1(C), I2(C), I3(C)

)
. (6.56)

Since the principal values of C are λ2
1, λ2

2, λ2
3, the corresponding invariants are

given by

I1(C) = λ2
1 + λ2

2 + λ2
3

I2(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

I3(C) = λ2
1λ

2
2λ

2
3 .

(6.57)

To simplify, we use the same symbol for the energy function Φ, and the invari-
ants (6.57) will be specified without reference to the tensor C.

Inspecting function (6.56) and relations (6.50) and (6.51), the next step
in the formulation of the isotropic material constitutive equations is to differ-
entiate Φ(C) with respect to the invariants (6.57). Assuming that Φ(C) has
continuous derivatives with respect to the invariants, we have

∂Φ(C)

∂C
=
∂Φ

∂I1

∂I1
∂C

+
∂Φ

∂I2

∂I2
∂C

+
∂Φ

∂I3

∂I3
∂C

. (6.58)

The derivatives of Ii (i = 1, 2, 3) with respect to C are given by

∂I1
∂C

= I ,
∂I2
∂C

= I1I −C ,
∂I3
∂C

= I3C
−1 . (6.59)
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Example 6.2

For example, to prove the third equality, we proceed as follows. From
relations (1.144) and (2.110), we write the successive relations

∂I3
∂C

=
3∑
1

∂
(
λ2

1λ
2
2λ

2
3

)
∂λ2

i

(Ai ⊗Ai)

= λ2
2λ

2
3(A1 ⊗A1) + λ2

1λ
2
3(A2 ⊗A2) + λ2

2λ
2
1(A3 ⊗A3)

= λ2
1λ

2
2λ

2
3λ
−2
1 (A1 ⊗A1) + λ2

1λ
2
2λ

2
3λ
−2
2 (A2 ⊗A2) + λ2

1λ
2
2λ

2
3λ
−2
3 (A3 ⊗A3)

= I3

3∑
1

λ−2
i (Ai ⊗Ai) = I3C

−1 .

By substituting (6.59) in (6.58), we have

∂Φ(C)

∂C
= I3

∂Φ

∂I3
C−1 +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − ∂Φ

∂I2
C . (6.60)

And inserting (6.60) in (6.51), the general form of the constitutive equation of
a hyperelastic material becomes

S = 2

(
I3
∂Φ

∂I3
C−1 +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − ∂Φ

∂I2
C

)
. (6.61)

Note that when the deformation is zero, S = 0. In this case, C = I, or
λ1 = λ2 = λ3 = 1, or even, using the invariants of the tensor C, I1 = 3, I2 = 3,
I3 = 1. In addition, for S = 0 and C = I, the constitutive equation (6.61)
leads to the following condition for the partial derivatives

∂Φ

∂I1
+ 2

∂Φ

∂I2
+
∂Φ

∂I3
= 0 . (6.62)

Combining (3.152) and (6.61), we obtain the the constitutive equation for the
Cauchy stress

σ = 2J−1

(
I3(c)

∂Φ

∂I3(c)
I +

(
∂Φ

∂I1(c)
+ I1(c)

∂Φ

∂I2(c)

)
c− ∂Φ

∂I2(c)
c2

)
, (6.63)

where c is the Cauchy-Green deformation tensor (2.89). We recall that the
tensors C and c have the same principal stretches λ2

i (i = 1, 2, 3). Thus the
corresponding invariants are also equal.

Consequently, when the energy function of a certain hyperelastic material
is known, its constitutive relation is established either by (6.61) or by (6.63).
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For an isotropic material, the strain energy (6.56) can also be written as a
symmetric function of the principal stretches λi (i = 1, 2, 3)

Ŵ(C) = φ(λ1, λ2, λ3) . (6.64)

Differentiating (6.64), we obtain

∂Ŵ(C)

∂C
=

∂φ

∂λ2
i

∂λ2
i

∂C
=

1

2λi

∂φ

∂λi

∂λ2
i

∂C
. (6.65)

From the tensor analysis relation

∂λ2
i

∂C
= Ai ⊗Ai , (6.66)

where λ2
i are the principal values of C, and Ai are the corresponding prin-

cipal directions, we obtain

∂Ŵ(C)

∂C
=

3∑
i=1

1

2λi

∂φ

∂λi
Ai ⊗Ai . (6.67)

Combining this last relation with (6.51), we have

S =
3∑
i=1

1

λi

∂φ

∂λi
Ai ⊗Ai . (6.68)

From the spectral decomposition of a tensor (1.125), we have for the principal
values of the second Piola-Kirchhoff stress tensor Si (i = 1, 2, 3),

Si =
1

λi

∂φ

∂λi
. (6.69)

Recalling the relation between S and P and the developments in section 2.7.3,
the corresponding constitutive equation using the principal values of the first
Piola-Kirchoff tensor is obtained as follows:

P = FS = F

(
3∑
i=1

1

λi

∂φ

∂λi
Ai ⊗Ai

)

=
3∑
i=1

1

λi

∂φ

∂λi
(FA)i ⊗Ai =

3∑
i=1

∂φ

∂λi
bi ⊗Ai .

(6.70)

Thus,

Pi =
∂φ

∂λi
. (6.71)

The principal values σi of the Cauchy stress tensor are obtained using (3.141),
(2.113), the property (1.70), and FAi = λibi (see exercise 2.11),

σ = J−1FP T = J−1F

(
3∑
i=1

∂φ

∂λi
(bi ⊗Ai)

T

)

= J−1

(
3∑
i=1

∂φ

∂λi
FAi ⊗ bi

)
= J−1

(
3∑
i=1

λi
∂φ

∂λi
bi ⊗ bi

)
.

(6.72)
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Then,

σi = J−1λi
∂φ

∂λi
. (6.73)

The constitutive equations (6.61) and (6.63) are valid for an arbitrary hypere-
lastic material. However, hyperelastic materials for which the behavior in strain
is quasi incompressible do exist. This means that their volume remains al-
most unchanged during a deformation (i.e., isochoric motion). Such materials
include rubber and rubber-like materials as well as soft biological tissues. For
these materials we extract from (3.38) and (3.7)

J =
dv

dV
= λ1λ2λ3 = 1 . (6.74)

The incompressibility condition also introduces the following relation:

I3 = λ1
2λ2

2λ3
2 = 1 . (6.75)

In this case, the constitutive equation (6.61) becomes

S = −pC−1 + 2

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − 2

∂Φ

∂I2
C , (6.76)

where I3 ∂Φ/∂I3 = ∂Φ/∂I3 is replaced by −p/2 with p being a parameter
similar to pressure. When the Cauchy stress tensor is used for an incompressible
material, relation (6.63) becomes

σ = −pI + 2

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
c− 2

∂Φ

∂I2
c2 . (6.77)

In addition, when the strain energy function is expressed as a function of
the principal stretches, the constitutive relations (6.69), (6.71), and (6.73) take
the form

Si = − p

λi
2 +

1

λi

∂φ

∂λi
Pi = − p

λi
+
∂φ

∂λi
and σi = −p+ λi

∂φ

∂λi
. (6.78)

The parameter p is a constant which produces no work during the motion. It is
generally associated with a hydrostatic pressure and is calculated from the
equilibrium conditions and the boundary conditions.

It is often very useful to express the principal stresses as functions of the
principal stretches. This is easy to do since for an isotropic material the di-
rections of the principal stresses and stretches coincide. Consequently, as the
principal values of the Cauchy-Green deformation tensor c are λ2

1, λ
2
2, λ

2
3, the

principal stresses resulting from (6.77) are

σi = −p+ 2

(
∂Φ

∂I1
+
(
λ2

1 + λ2
2 + λ2

3

) ∂Φ

∂I2

)
λi

2 − 2
∂Φ

∂I2
λ4
i i = 1, 2, 3 . (6.79)
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6.5.2 Forms of the Strain Energy Function

The constitutive equation is specified once the energy function has been identi-
fied. The mathematical conditions imposed until now are based on objectivity
and isotropy. Other requirements can come from the type of boundary value
problem, the experimental configuration, and the uniqueness of the solution. In
general, the explicit definition of the energy function is based on methodological
developments, experimental data, and/or the material microstructure.

We have already shown that the strain energy of an isotropic material
can be expressed as a function of the three invariants Ii (i = 1, 2, 3) or as a
symmetric function of the principal stretches λ2

i (i = 1, 2, 3) of C. Assuming
that the function is of class C∞, (6.56) can be expressed as an infinite series of
powers of I1 − 3, I2 − 3, I3 − 1

Φ(I1, I2, I3) =
∞∑

i, j, k=0

Cijk(I1 − 3)i(I2 − 3)j(I3 − 1)k , (6.80)

where Cijk are material parameters, independent of the strain. In the reference
configuration, that is, in the case of no applied stress, I1 = I2 = 3, I3 = 1,
and Φ(3, 3, 1) = C000 = 0. In addition, from a physical point of view, the
energy function should increase with the strain such that Φ(I1, I2, I3) ≥ 0.
Alternatively, (6.80) can be written as

Φ(I1, I2, I3) =
∞∑

i,j=0

Cij0(I1 − 3)i(I2 − 3)j +
∞∑
k=1

(I3 − 1)k . (6.81)

In practice, only a limited number of terms are necessary in (6.80) or (6.81)
in order to correctly express the strain response of a particular material. For
incompressible materials, I3 = 1, and (6.80) or (6.81) becomes a function of
the first two invariants

Φ(I1, I2) =
∞∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j . (6.82)

To obtain a state without stress for zero strain, the first coefficient C00 must be
zero. Note that the material parameters are necessarily evaluated by a detailed
experiment with specific identification procedures, a process which becomes
more difficult when the number of parameters in the energy function increases.

In the recent past a certain number of energy functions have been pro-
posed. Among them, we retain a few for incompressible materials. The simplest
is the neo-Hookean model , which results from (6.82) with (i, j) = (1, 0)

Φ(I1) = C10(I1 − 3) . (6.83)

This model has its origin in the statistical theory of rubber elasticity and
gives satisfactory results for stretching ratios less than 2. The constant is
expressed by C10 = nkBT where n is the number of chains per unit volume,
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kB = 1.381 × 10−23 J K−1 is Boltzmann’s constant, and T is the absolute
temperature. This constant is normally related to the shear modulus of the
material.

Another often-used model for rubber elasticity is known as the Mooney or
Mooney-Rivlin strain energy function. From (6.82) for (i, j) = (1, 0) and
(i, j) = (0, 1), we obtain

Φ(I1, I2) = C10(I1 − 3) + C01(I2 − 3) . (6.84)

This model played an important role in the development of non-linear elasticity.
It can be used for stretch ratios up to 4. For larger stretches, the model becomes
inaccurate.

The model proposed by Valanis and Landel assumes that the strain energy
function can be written as the sum of three parts, each of which is a function
of a single stretch:

φ(λ1, λ2, λ3) = ω(λ1) + ω(λ2) + ω(λ3) . (6.85)

Here, ω(λi) indicates a function of λi (i = 1, 2, 3). The decomposition (6.85)
corresponds to the Valanis-Landel hypothesis.

A general form of the energy function was proposed by Ogden [36]. It is
expressed as a function of the principal stretches as follows:

φ(λ1, λ2, λ3) =
N∑
i=1

µi
αi

(
λαi

1 + λαi
2 + λαi

3 − 3
)
, (6.86)

where αi and µi are the material parameters. This model has been tested
for simple and biaxial tension and simple shear of rubber. Excellent results
are obtained for a large range of stretch ratios with the choice of N = 3.
Note that the models mentioned above, as well as many others available in the
literature, are special cases of (6.86). It reduces to the neo-Hookean model
with N = 1, α1 = 2, C10 = µ1/2 and using the expression for the first invariant
(6.57). We obtain the Mooney-Rivlin form (6.84) with N = 2, α1 = 2, α2 = −2,
C10 = µ1/2, C01 = −µ2/2 and using the expressions for the first and second
invariants (6.57). Note that with the Valanis-Landel hypothesis, the strain
energy (6.86) takes the form

φ(λ1, λ2, λ3) =
3∑
k=1

ω(λk) and ω(λk) =
N∑
i=1

µi
αi

(
λαi

k − 1
)
. (6.87)

For additional models of incompressible and compressible hyperplastic materi-
als the reader is referred to [4, 20, 36]. We finish this section with the definition
of the Saint-Venant-Kirchhoff model.

From the representation theorem (1.140) and with (6.51), we can write

S = β0I + β1C + β2C
2 , (6.88)
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where the parameters β0, β1, β2 are scalar functions of the invariants (6.57).
Assuming that S = 0 in the reference configuration for which C = I, we can
show that near the reference configuration

S = λ trE I + 2µE + o(E) , (6.89)

where E is the strain tensor (2.82) and o(E) are the higher order terms that are
negligible. We see that there are two parameters, λ, µ, in the approximation
of order 1; they are the Lamé coefficients or parameters.

Gabriel Lamé (1795–1870) was born in Tours. He was
sent with Clapeyron to Saint Petersburg to teach applied
mathematics and physics to the students at the School of
Public Works. Returning to Paris, he was named profes-
sor at the École Polytechnique and subsequently at the
Sorbonne. His main contributions were in applied math-
ematics and elasticity. He notably wrote Leçons sur la
théorie mathématique de l’élasticité des corps solides.

Fig. 6.2 Gabriel Lamé

Note that we should not confuse this constant λ with the stretch parameter
since in (6.89), we use the strain tensor E and not the invariants (6.57). When
we take the term o(E) to zero, we obtain

S = λ trE I + 2µE , (6.90)

which is the constitutive equation of a Saint-Venant-Kirchhoff material .
Relation (6.90) represents the classical non-linear model for compressible hy-
perelastic materials. It is adequate for the analysis of relatively small strains
of isotropic homogeneous elastic materials. It can also be applied in non-linear
analysis of large displacements with the displacement-strain relations given by
(2.86). Further discussions on the suitability of this model can be found in
[7, 20]. It can easily be shown that such a material is hyperelastic with the
strain energy function given by

Ŵ(E) =
λ

2

(
trE

)2
+ µ trE2 . (6.91)

We can also express (6.90) as a function of the first Piola-Kirchhoff tensor using
(3.152)

P = FS = λ(trE)F + 2µFE . (6.92)

6.5.3 Reduction to Simple Stress States

In this section we express the Cauchy stress tensor (6.79) for some simple cases
of loads applied to isotropic, incompressible materials. The reader is referred
to [4, 20, 36] for examples of compressible materials.
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Biaxial Stretch

This type of motion is encountered in the case of thin plates with a plane load
in two orthogonal directions; it is defined such that we have two independent
principal stretches λ1, λ2, and, by (6.74), λ3 = λ−1

1 λ−1
2 . The corresponding

stresses are σ1, σ2 6= 0 and σ3 = 0. Setting σ3 = 0 in (6.79), we obtain for the
parameter p

p = 2
1

λ2
1λ

2
2

∂Φ

∂I1
+ 2

λ2
1 + λ2

2

λ2
1λ

2
2

∂Φ

∂I2
. (6.93)

Introducing (6.93) in (6.79) and after a few algebraic manipulations, we can
write the following expressions for the stresses:

σ1 = 2

(
λ2

1 −
1

λ2
1λ

2
2

)(
∂Φ

∂I1
+ λ2

2

∂Φ

∂I2

)
σ2 = 2

(
λ2

2 −
1

λ2
1λ

2
2

)(
∂Φ

∂I1
+ λ2

1

∂Φ

∂I2

)
.

(6.94)

Equibiaxial Stretch

This type of motion is a special case of the preceding case with σ1 = σ2 and
σ3 = 0. Consequently, λ1 = λ2 = λ and σ1 = σ2 = σ. Using (6.94), the stress
σ becomes

σ = 2

(
λ2 − 1

λ4

)(
∂Φ

∂I1
+ λ2 ∂Φ

∂I2

)
. (6.95)

Such loads are found in spherical shells under pressure where the two stresses
tangent to the middle plane of the shell are equal and the third, normal to the
shell surface, is considered to be zero.

Uniaxial Stretch

When the material is loaded in only one direction, we have λ1 = λ and from
the incompressibility condition λ2 = λ3 = λ−1/2. The stresses are σ1 = σ and
σ2 = σ3 = 0. With these values of the parameters and (6.94), we obtain

σ = 2

(
λ2 − 1

λ

)(
∂Φ

∂I1
+

1

λ

∂Φ

∂I2

)
. (6.96)

Example 6.3

Inflation of a Balloon

As an example of hyperelasticity, we will present the case of inflation of
a balloon made of a rubber material. We will use here the neo-Hookean
and Mooney-Rivlin models to describe the pressure in a spherical balloon
as a function of the stretch and assume that the material is isotropic and
incompressible. The spherical balloon has an initial thickness ei and a
radius R such that R � ei. In the deformed configuration, the thickness
and the radius are e and r, respectively as we can see in figure 6.3.
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Fig. 6.3 Inflation of a balloon: (a) geometry and (b) boundary conditions

Because of the spherical symmetry of the load and geometry, the two princi-
pal stresses are equal, σ1 = σ2 = σ, while the third, σ3 = 0. Thus the state
of stress is equibiaxial. To relate the internal pressure, pi, to the stress,
σ, consider the equilibrium of a hemisphere in the deformed configuration.
The projection of the force due to the pressure onto the plane through the
center is in equilibrium with the stresses in the thickness of the balloon,
πr2pi = 2πreσ, from which we obtain

pi = 2
e

r
σ . (6.97)

To describe the deformation of the balloon, we define the stretch ratio
by λ = r/R. The incompressibility condition is expressed by setting the
material volume equal in the deformed and undeformed conditions, that is,
4πr2e = 4πR2ei. Thus

e

ei
=

1

λ2
. (6.98)

Combining the above expressions we obtain for the neo-Hookean model

σ = 2

(
λ2 − 1

λ4

)
∂Φ

∂I1
= 2C10

(
λ2 − 1

λ4

)
(6.99)

and the pressure

pi(λ) = 4C10
ei
R

1

λ

(
1− 1

λ6

)
. (6.100)

Taking C10 = ∂Φ/∂I1 and C01 = ∂Φ/∂I2 in the Mooney-Rivlin model, we
obtain for the stress

σ = 2

(
λ2 − 1

λ4

)(
C10 + λ2C01

)
. (6.101)
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Using (6.101) and (6.98) in (6.97), we obtain

pi(λ) = 4C10
ei
R

1

λ

(
1− 1

λ6

)(
1 + ηλ2

)
, (6.102)

with η = C01/C10. Setting ei/R = 0.01, the normalized pressure pi(λ)/C10

according to (6.102) is shown in figure 6.4 as a function of stretch ratio λ
for different values of η. The curve corresponding to η = 0 represents the
neo-Hookean model (6.100).
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Fig. 6.4 Normalized pressure in a balloon as a function of different values of η

6.6 Linear Infinitesimal Elasticity

Since in many cases the displacements and strains of elastic solids are small, we
use the linearized theory developed for infinitesimal displacements and strains
introduced in section 2.9.

Classical elasticity is thus a theory linearized around the natural state of a
material considered to be homogeneous and isotropic. For this case we showed
that the difference between the Green-Lagrange and Euler-Almansi tensors is
proportional to the terms of order 2, which are considered negligible in the
linearization. We thus use the infinitesimal strain tensor ε defined by (2.150),
such that

εij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.103)
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With this approximation, the Piola-Kirchhoff tensors reduce to the Cauchy
tensor σ (sec. 3.9). In addition, the principle of objectivity is satisfied (sec.
2.11). Also with these linearizations, the Saint-Venant-Kirchhoff equations
become

σ = λ tr εI + 2µε , (6.104)

where the scalar coefficients λ and µ are the Lamé coefficients of elasticity,
whose dimensions are force per unit surface (Pa). Thus, linear elasticity relates
the stress to the infinitesimal strain with a linear equation known as Hooke’s
law .

Robert Hooke (1635–1703) was born in Freshwater on the
Isle of Wight. The portrait is an artist’s impression. He
was a scientist and primarily an experimentalist. He con-
tributed to the domains of architecture, mechanics, chem-
istry, physics, etc. He is especially known for his law of
elasticity (ut tensio, sic vis).

Fig. 6.5 Robert Hooke

It is very easy to invert relation (6.104) in order to obtain ε as a function of σ
as follows. The trace of σ is obtained by

trσ = σmm = (3λ+ 2µ)εmm . (6.105)

With (6.104) and (6.105), we have

ε =
−λ

2µ(3λ+ 2µ)
trσI +

σ

2µ
. (6.106)

This relation exists only if

3λ+ 2µ 6= 0 and µ 6= 0 . (6.107)

Equation (6.106) can also be written as

ε = − ν
E

trσ I +
(1 + ν)

E
σ , (6.108)

where E is Young’s modulus (Pa) and ν is Poisson’s dimensionless ratio. These
coefficients are related to Lamé’s by

E =
µ(3λ+ 2µ)

λ+ µ
ν =

λ

2(λ+ µ)
. (6.109)

Table 6.2 shows values of Young’s modulus, Poisson’s ratio, and the density
of a few elastic materials used in engineering.
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Table 6.2 Material constants for elastic solids.

E (Pa) ν ρ (kg/m3)

steel 200 109 0.27 7 850

glass 69 109 0.19 2 500

rubber 0.05 109 0.50 850

We will offer an interpretation of the elastic coefficients by considering a
few simple cases. The first example is that of simple traction (fig. 6.6). A bar
is subjected to traction in direction x1. We assume that the lateral surfaces of
the bar are free with no contact forces acting on them.

x2

x1

e2

e1O

σ11 σ11

Fig. 6.6 Simple traction

The stress tensor has only a single non-zero component, namely σ11. To
calculate the strains, we use equations (6.106). We obtain

ε11 =
λ+ µ

µ(3λ+ 2µ)
σ11

ε22 = ε33 = − λ

2µ(3λ+ 2µ)
σ11 = − λ

2(λ+ µ)

λ+ µ

µ(3λ+ 2µ)
σ11

ε12 = ε23 = ε31 = 0 .

(6.110)

With (6.109), equations (6.110) become

ε11 =
1

E
σ11 ε22 = ε33 = − ν

E
σ11 = −νε11 . (6.111)

Poisson’s ratio thus corresponds to the lateral contraction of the sample under
traction. We can express the Lamé coefficients as functions of E and ν. This
follows by inverting (6.109)

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
. (6.112)

The modulus E is positive because experience shows that if σ11 > 0, then ε11

is also; the part stretches under traction. From experience we also see that ν
is also positive.
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Fig. 6.7 Simple shear

The second example is that of shear applied to a block (fig. 6.7) such that
the components of the stress tensor are written

σ12 = σ21 (6.113)

with
σij = 0 ∀(i, j) 6= (1, 2) and (2, 1) .

The strain tensor (6.106) with (6.113) gives

ε12 = ε21 =
σ12

2µ
, (6.114)

the other components being zero. As the component ε12 is half the complement
of the angle formed, after deformation, by directions initially oriented along the
directions x1 and x2 by (2.158), we have

σ12

µ
= φ12 . (6.115)

We call the Lamé coefficient µ the shear modulus, or also the modulus of
rigidity in shear .

The third example is that of uniform local contraction such that the stress
tensor is diagonal (or spherical) with

σij = −p δij , (6.116)

where p denotes the pressure. Then by (6.106), we calculate

εij = − p

(3λ+ 2µ)
δij (6.117)

or

p = −1

3
(3λ+ 2µ)εkk = −Kεkk . (6.118)

The coefficient defined by the relation

K =
(3λ+ 2µ)

3
=

1

3

E

1− 2ν
(6.119)

is the bulk modulus. For a given value of pressure, the volume variation εkk
will be smaller when K is larger. Experience shows that K is positive, which
leads to ν ≤ 0.5. The special case ν = 1/2 is that for incompressible elastic
materials for which K → ∞. An example of this type of material is rubber,
which we take to be incompressible.
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6.7 Heat Conduction

We have seen in section 5.4.1 that the heat flux is written as

q(X, t) =Q(χ, T,X, t) . (6.120)

Applying the general principles of the constitutive laws, we arrive at the equa-
tion

q(X, t) =Q
(
F , T,

∂T

∂X
, X

)
. (6.121)

We note that the heat flux depends on the temperature gradient. When we
study conductive heat transfer in fluids and solids, we can show that q depends
mostly on the temperature gradient ∂T/∂X and only weakly on F . This is
confirmed by experience. We should thus write, in the Eulerian representation,

qi = Kil
∂T

∂xl
. (6.122)

Furthermore, we can specialize equation (6.122) for the case where the heat
flux is given by Fourier’s law with Kil = −k δil

q = −k(T )∇T qi = −k ∂T
∂xi

. (6.123)

Parameter k is the coefficient of thermal conductivity. Its SI units are W m−1

K−1. Fourier’s law is valid for both fluids and solids.

Joseph Fourier (1768–1830) was born in Auxerre. A bril-
liant student at the École Polytechnique, he became a pro-
fessor at the age of 16. He participated in the Egyptian
campaign with Champollion. After returning to France,
Napoleon named him prefect of Isère. Elected to the
Académie des Sciences in 1817, he became its perpetual
secretary in 1822. Fourier wrote Théorie analytique de la
chaleur, where he introduced the partial differential equa-
tion for heat diffusion. He solved it with the series of

periodic functions which are named after him.

Fig. 6.8 Joseph Fourier

6.8 Second Principle of Thermodynamics

for Viscous Fluids

Inequality (4.83) is applied to Newtonian viscous fluids by introducing the forms
(6.14) for the stress field and (6.123) for the conductive heat flux. We also add
forms for the internal energy per unit mass, u, and the entropy per unit mass,
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s, taken as functions of only temperature T and density ρ. We will establish
the state equation:

ρ(du− T ds)− p

ρ
dρ = 0 . (6.124)

We also propose to show that the three coefficients κ, µ, and k must always be
positive, with the coefficient κ defined by

κ =
1

3
(3λ+ 2µ) . (6.125)

To start, we state the following postulate.

Postulate The Clausius-Duhem inequality (4.83) is satisfied at all times, for
arbitrary histories and independently of the temperature, density, deviatoric
strain rate, dd, and the thermal gradient, (∂T/∂x).

These quantities are called the thermodynamic model variables. Their
history, that is, their values as functions of time, for a given material point, is
called a thermodynamic process. We note that the constitutive equations
express σij , qi, u, and s as functions of the thermodynamic process (the history
of ρ giving that of trd by the conservation of mass). First, consider the following
relations, in index form:

ddij = dij −
1

3
dmm δij (6.126)

∂vi
∂xi

= dii = −1

ρ

Dρ

Dt
(6.127)

ddij d
d
ij = ddij

(
dij −

1

3
dmm δij

)
= ddij dij ,

since trdd = 0. The constitutive equation (6.14) can be rewritten with (6.125)
and (6.126):

σij = −p δij + κ dkk δij + 2µddij . (6.128)

We can then extract the following development from (4.24), (6.128), and (6.123):

σji
∂vi
∂xj
− qi
T

∂T

∂xi

= −p dii + κ (dmm)2 + 2µddij d
d
ij +

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
=
p

ρ

Dρ

Dt
+ κ (dmm)2 + 2µddij d

d
ij +

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
.

(6.129)

The Clausius-Duhem inequality (4.83) is thus written in the following form,
valid for any Newtonian viscous fluid:

ρ

(
Du

Dt
− T Ds

Dt

)
− p
ρ

Dρ

Dt
≤ κ (dmm)2 +2µddij d

d
ij+

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
. (6.130)
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This inequality must be satisfied for an arbitrary thermodynamic process (within
the limits of the model’s applicability). Hence, we can also require that it
be valid at any arbitrary time, regardless of the thermodynamic variables(
T, ρ, ddij , ∂T/∂xi

)
and their material derivatives (eqns. (6.1) and (6.6)). Let

T̂ , ρ̂, d̂dij , T̂ ,i be the values of the thermodynamic variables and ̂̇T , ̂̇ρ, . . ., be
those of their material derivatives. Then, by Taylor series expansion in time
about the values of the terms in inequality (6.130), we must have

E ≡ ρ̂
(
∂u

∂ρ
− T ∂s

∂ρ

)
(T̂ ,ρ̂)

̂̇ρ
+ ρ̂

(
∂u

∂T
− T ∂s

∂T

)
(T̂ ,ρ̂)

̂̇T − p(T̂ , ρ̂)

ρ̂
̂̇ρ

≤ κ
(
−
̂̇ρ
ρ̂

)2

+ 2µ d̂dij d̂
d
ij +

k

T̂
T̂ ,iT̂ ,i . (6.131)

According to the adopted postulate, we can, without changing T̂ , ρ̂, ̂̇T , and̂̇ρ, let the arbitrary values d̂dij and T̂ ,i be zero in (6.131). This amounts to
considering an identical thermodynamic process, but without heat flux nor a
deviatoric rate of deformation at the material point being followed. We thus
have the following inequality:

E ≤ κ
(
−
̂̇ρ
ρ̂

)2

. (6.132)

We can then, following the same postulate, multiply ̂̇T and ̂̇ρ by an arbi-
trary quantity ε, either positive or negative, without changing T̂ nor ρ̂ (which
amounts to slowing the process at the instant under study or to considering
a slow process in the opposite sense). We thereby obtain, for any ε ∈ R, the
inequality

εE ≤ ε2κ

(
−
̂̇ρ
ρ̂

)2

,

and thus inevitably the equality

E =

(
ρ

(
Du

Dt
− T Ds

Dt

)
− p

ρ

Dρ

Dt

)
(T̂ ,ρ̂,̂̇T ,̂̇ρ) = 0 . (6.133)

By writing (6.133) in differential form, we find the relation (6.124) we sought.
As soon as (6.124) is satisfied, the left-hand side of (6.131) becomes identically
zero. For the right-hand side to remain positive, it is necessary and sufficient
that the coefficients κ, µ, and k be positive. We observe then that we have
a linear combination of squares of independent expressions which must be a
positive definite quadratic form, and thus with positive coefficients.
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The right-hand side of inequality (6.130),

κ (dmm)2 + 2µddij d
d
ij +

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
, (6.134)

measures the local irreversibility of the process being studied.

6.9 Ideal Gas Thermodynamics

In this section we establish the relation between the thermodynamics of con-
tinuous mechanics and classical thermodynamics. For the latter, we refer to
the book by [35].

We introduce the definition of the enthalpy per unit mass

h = u+
p

ρ
(6.135)

for a Newtonian viscous fluid.

The constitutive equation (6.12), coupled with the hypothesis that the in-
ternal energy per unit mass does not depend on the density, and thus u = u(T ),
yields the ideal gas model. This gas satisfies Boyle’s law, or the Boyle-Mariotte
law, that is, “at constant temperature, the product of the pressure p and the
volume V is constant”. We deduce from (6.135) that the enthalpy per unit
mass does not depend on density either, so that we have the equations

p = ρRT (6.136)

u = u(T ) (6.137)

h = h(T ) . (6.138)

If we introduce the notion of specific volume v = 1/ρ, then the state equation,
(6.136), corresponds to pv = cnst in an isothermal process. Differentiating, we
define the specific heat capacities at constant volume and pressure

du = cv(T ) dT dh = cp(T ) dT . (6.139)

Also, differentiation of (6.135), taking into account (6.136) and (6.137), leads
to

dh = du+RdT , (6.140)

from which we obtain
cp(T )− cv(T ) = R . (6.141)

R is the ideal gas constant expressed in J kg−1 K−1. Various expressions of ds
are found by combining (6.124) and (6.137):

ds =

 cv d(log T )−Rd(log ρ)
cp d(log T )−Rd(log p)
cv d(log p)− cp d(log ρ) .

(6.142)
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Note that physical observations reveal that for an ideal gas, the coefficients
of viscosity and thermal conduction generally depend only on the absolute
temperature.

Important simplifications can be made if we assume that, for a certain
temperature range, the heat capacities are constant. In this case we can write,
within an additive constant, in the given temperature range

u = cvT (6.143)

h = cpT (6.144)

s = cv log p− cp log ρ .

An isentropic flow is one for which

p

ργ
= cnst , (6.145)

with the definition of the heat capacity ratio:

γ =
cp
cv
. (6.146)

A fluid in isentropic flow is a barotropic fluid for which the density is only a
function of pressure such that ρ = ρ(p). In this case, we easily show that

1

ρ(p)
∇p =∇

∫
dp

ρ(p)
. (6.147)

So, for a given function f(p), we have

∇ f(p) =
df

dp
∇p . (6.148)

Setting

f(p) =

∫
dp

ρ(p)
, (6.149)

then it follows that
df

dp
=

1

ρ(p)
. (6.150)

Finally, within a constant, we can write

h =
cp
R

p

ρ
=

γ

γ − 1

p

ρ
. (6.151)

The speed of sound a is defined by the relation

a2 =
∂p

∂ρ

∣∣∣∣
s

. (6.152)

In the special case of an ideal gas, (6.152) takes the form, with use of (6.145)

a2 = γ
p

ρ
, (6.153)
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so that with (6.151) we obtain, to within an additive constant,

h =
a2

γ − 1
. (6.154)

For air considered as an ideal gas, we have the following constants at 300◦K:
Rair = 287 J kg−1 K−1, γair = 1.401, cp = 1006 J kg−1 K−1. Air conducts heat
as predicted by Fourier’s law, (6.123), with k = 0.0262 W m−1 K−1. The speed
of sound in air is 340 m s−1 at standard temperature (288 degrees K). For
comparison, the speed of sound in sea water is about 1500 m s−1.

6.10 Second Principle of Thermodynamics for

Classical Elastic Media

We examine an elastic solid subjected to small displacements and infinitesimal
strains (sec. 2.9). Thus we express all quantities in terms of their material
description and use lowercase symbols for convenience. We also assume that
geometric changes are negligible and that the deformation process takes place
slowly enough so that thermodynamic equilibrium is maintained in the entire
body at all times. In this case, the internal energy and free energy defined by
equation (4.84) take the forms

u = u(ε, T ) f = f(ε, T ) . (6.155)

Classical elasticity assumes the reversibility of the thermodynamic phenom-
ena, given that the solid is not subject to permanent deformation. Then, the
Clausius-Duhem inequality (4.83) becomes an equality, that is,

ρ

(
Du

Dt
− T Ds

Dt

)
= σ : d− 1

T
q ·∇T . (6.156)

Assume an adiabatic process (q = 0). Using (4.84) and since for small defor-
mations d = ε̇, relation (6.156) becomes

ρ

(
Du

Dt
− T Ds

Dt

)
= σ : ε̇ = ρ

(
Df

Dt
+ s

DT

Dt

)
. (6.157)

From the second equality of (6.157), we obtain

1

ρ
σ dε− s dT = df . (6.158)

Accounting for (6.155), it follows in index notation

1

ρ
σij =

∂f

∂εij
s = − ∂f

∂T
. (6.159)
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The free energy is thus a potential for the tensor σ/ρ and also for the entropy,
s. If we reduce the dependence of f to be only on εij , by considering only
isothermal processes, then we can expand f in the neighborhood of the natural
state of the elastic material. We have

f = f0 +
∂f

∂εij

∣∣∣∣
0

εij + · · · , (6.160)

where the index zero denotes the unstressed natural state. From (6.159)1, the
coefficients of the linear term are zero (σij |0 = 0). Thus, (f − f0) is quadratic
in εij , and, in the identity

∂

∂εij

(
ρ(f − f0)

)
= ρ

∂f

∂εij
+ (f − f0)

∂ρ

∂εij
, (6.161)

the second term on the right-hand side is negligible by the linear theory. In
fact, if we combine (2.147) and (3.37) we obtain ρ = ρ0(1 + O(ε)) ≈ ρ0 (since
there is no distinction between the material and spatial description when the
strains are infinitesimal). Thus ρ ≈ ρ0 and density can be considered constant
during infinitesimal deformation. The first relation of (6.159) can be written
as

σij =
∂W

∂εij
, (6.162)

with
W = ρ(f − f0) (6.163)

being the strain energy per unit volume with σij and εij as corresponding
conjugate parameters. With equation (6.104), the potential energy W can be
set in the form (compare with (6.91))

W =
λ

2
εiiεkk + µεijεij . (6.164)

6.11 Thermoelasticity

We make the assumption of small strains and displacements and consider small
deviations from a reference temperature T0. Since we are developing an approx-
imate theory, we will expand f(ε, T ) in a Taylor series in the neighborhood of
ε = 0 and T = T0 which we truncate after the quadratic terms. As (6.163)
gives zero stress for ε = 0 and T = T0, the expansion has no linear term in
only ε. It is appropriate to work with ρf rather than with f [27]. We have

ρf = ρf0 − ρs0(T − T0) +
λ

2
εiiεkk

+ µεijεij + εijcij(T − T0)− ρc

2T0
(T − T0)2 ,

(6.165)

an expression for which the coefficients f0, s0, cij , and c are still to be de-
termined, and in which the factors ρ and ρ/T0 have been added to simplify
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subsequent steps. If we apply (6.165) to the case where ε = 0 and T = T0, we
observe that f0 is the free energy of the natural state.

If we impose isotropy on the elastic material, the tensor cij must be isotropic
and of the form a δij with a a scalar. Taking this scalar as a = −(3λ + 2µ)α,
with α yet to be determined, we obtain

cijεij(T − T0) = −(3λ+ 2µ)αεkk(T − T0) . (6.166)

We can easily calculate σij with the relation (6.159) applied to (6.165) and
accounting for (6.166) we obtain

σij = ρ
∂f

∂εij
= λεkk δij + 2µεij − (3λ+ 2µ)α(T − T0) δij . (6.167)

This is the generalization of Hooke’s law (6.104). We can invert the relation to
obtain ε as a function of σ

ε =
1

2µ

(
σ +

(
2µα(T − T0)− λ

3λ+ 2µ
tr σ

)
I

)
. (6.168)

This equation resembles (6.106) except for the additional term α(T − T0) δij
which comes from the thermal effects. It corresponds to a uniform extension
α(T − T0) in all directions, that is, to a dilation of volume 3α(T − T0). The
coefficient α is the thermal expansion coefficient . It has dimensions of an
inverse temperature.

If we now apply (6.159)2 to (6.165) and (6.166), we can evaluate the entropy

ρs = −ρ ∂f
∂T

= ρs0 + (3λ+ 2µ)αεkk +
ρc

T0
(T − T0) . (6.169)

The quantity s0 is the entropy of the natural state.

Having evaluated f and s, respectively, with (6.165) and (6.169), we can
obtain the internal energy

ρu = ρ(f + Ts)

= ρu0 +
λ

2
(tr ε)2 + µε : ε+ (3λ+ 2µ)αT0 tr ε+

ρc

2T0
(T 2 − T 2

0 )
(6.170)

with u0 being the internal energy in the natural state. Equation (6.170) shows
that the internal energy cannot be obtained simply by a linear combination
of the strain energy (first three terms of the right-hand side of (6.170)) and
a thermal energy (last term of (6.170)). Its structure is more complicated
implying a coupling between mechanical and thermal effects. Calculating the
partial derivative of u with respect to the temperature, we obtain

∂u

∂T

∣∣∣∣
T0

= c , (6.171)

which is the heat per unit mass at the temperature T = T0.
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6.12 Exercises

6.1 Prove that Ċ = 2d, from equations (6.2), is valid for a simple fluid.

6.2 Express the energy equation (4.23) for the case of a Newtonian viscous
fluid (6.14).

Simplify this expression for the case of a perfect fluid. If the fluid is an
ideal gas, what happens to the energy equation?

6.3 Express the energy equation (4.23) for the case of an incompressible New-
tonian viscous fluid (6.16).

Simplify this expression for the case of a perfect fluid.

6.4 Prove that

1) the tensors U,C, and S have the same principal directions;

2) the tensors V, c, and σ have the same principal directions.

6.5 From (6.61), (3.152), and relations (2.88)–(2.90), prove relation (6.63).

6.6 Use the Cayley-Hamilton equation, (1.123), to show that the stress rela-
tions (6.61) and (6.63) can be written as

S = 2

((
∂Φ

∂I1
+ I1

∂Φ

∂I2
+ I2

∂Φ

∂I3

)
I −

(
I1
∂Φ

∂I3
+
∂Φ

∂I2

)
C +

∂Φ

∂I3
C2

)
(6.172)

σ = 2J−1

((
I2
∂Φ

∂I2
+ I3

∂Φ

∂I3

)
I +

∂Φ

∂I1
c− I3

∂Φ

∂I2
c−1

)
. (6.173)

6.7 Using (6.80), prove that the energy is zero in the reference configuration
when C000 = 0 and that it is stress free when the coefficients satisfy the condi-
tion C100 + 2C010 + C001 = 0.

6.8 Using the expressions of the invariants (6.57) and relation (1.144), prove
the first two equalities of (6.59).

6.9 For the neo-Hookean model, find the stretch ratio for which the maximum
pressure is obtained in the case of a balloon under internal pressure (6.100).

6.10 Use the Ogden model (6.86) to express the stress components for the
cases of uniaxial, biaxial, and equibiaxial stretching of an incompressible ma-
terial. With the choice N = 3 and the material parameters α1 = 1.3, α2 = 5,
α3 = −2, µ1 = 0.63 M Pa, µ2 = 0.0012 M Pa, µ3 = −0.01 M Pa, sketch the
stress components as functions of the corresponding stretches for uniaxial and
equibiaxial stretching.

6.11 Calculate the free energy in a bar of linear elastic material subject to a
simple tension load σ11.
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6.12 Calculate the induced strain in a rectilinear bar of length L along the
axis x1 in a temperature field T = T0 + (T1 − T0)x1/L.

6.13 Given Fourier’s law of conduction and the ideal gas state equation for
a perfect compressible fluid, write the conservation of energy equation with
temperature as the principal unknown of the problem.

6.14 Written in index form, Hooke’s law (6.104) is,

σij = λ εkk δij + 2µ εij . (6.174)

1) Decompose the stress and strain tensors into their hydrostatic and devia-
toric parts

σij = σdij + σ0δij σ0 =
1

3
σkk σdij = σij −

1

3
σkkδij (6.175)

εij = εdij + ε0δij ε0 =
1

3
εkk εdij = εij −

1

3
εkkδij . (6.176)

Show that (6.174) is equivalent to

σdij = 2µεdij σ0 = 3Kε0 , (6.177)

where the bulk modulus K is defined in (6.119).

2) Show that the principal axes of the stress and strain tensors coincide.

3) Show that the potential strain energy is

W (ε) =
1

2
λ(εkk)2 + µεijεij =

9

2
K(ε0)2 + µεdijε

d
ij . (6.178)

4) Show that the stability condition W (ε) > 0 ∀ε 6= 0 amounts to imposing
the conditions K > 0 and µ > 0.

6.15 Consider a Hookean solid for which the stress-strain relation is given by
(6.104) and its inverse by (6.106).

1) If the state of stress is that of hydrostatic compression, that is,

σij = σ δij , (6.179)

show that the corresponding deformed state is given by

εij = ε δij ε =
σ

3K
, (6.180)

with K defined in (6.119).

2) If the state of strain is that of simple shear, that is,

εij =
1

2
γ(minj +mjni) mimi = nini = 1 mini = 0 , (6.181)

show that the corresponding stress state is given by

σji = τ(minj +mjni) τ = µγ . (6.182)

Thus µ is also called the modulus of rigidity.
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3) If the stress state is that of simple tension, that is,

σij = σninj nini = 1 , (6.183)

show that the corresponding state of strain is given by

εij = εnninj + εT (δij − ninj) εn =
σ

E
εT = −νεn , (6.184)

where Young’s modulus and Poisson’s ratio are found as defined in (6.109).





Chapter 7

Introduction to Solid Mechanics

7.1 Introduction

In a typical solid mechanics problem we are interested in the calculation of the
displacement, stress, and strain (which, in general, are functions of time) for
every point in the body. Often, for several materials, the stress-strain behavior
is non-linear, inelastic, and anisotropic and the corresponding mathematical
formulation is difficult. Many theories have been developed and are currently
used in engineering. Among these, we will mention linear and non-linear elas-
ticity, viscoelasticity, plasticity, and viscoplasticity. Their development has
been stimulated by the use of new materials. Each of these approaches aims to
model certain specific aspects of the material behavior. In solid mechanics one
of the simplest stress-strain relations is the case of linear dependence between
stress and strain. Such linear relations can be applied to all materials for small
loads or displacements and often yield satisfactory results. Also linear elastic
theory is the basis for the study of solid mechanics. For a large number of
materials, such as metals and ceramics, the strain remains small and obeys
Hooke’s law when the applied loads are not too large. In addition, the study of
linear elasticity is justified as a first step to the study of dissipative phenomena
such as viscoelastic and elastoplastic. In this chapter, we present the elements
of linear elastic theory of a homogeneous and isotropic medium subjected
to simple loads. The discussion is focused firstly on solids subjected to static
loads (i.e., independent of time) and secondly on the description of waves in
linear elastic media subjected to time dependent excitations. Representative
examples are given in both cases.

Additional reading can be found in the following texts: [6, 7, 30, 43, 47,
48, 54].

7.2 Fundamental Equations of Static Linear Elasticity

In this section we describe the deformation of a solid subjected to volume
forces as well as loads imposed on its boundary. We only consider isothermal
and stationary (static or elastostatic) problems.
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7.2.1 Static Linear Elastic Field Equations

In the context of static linear elasticity, the strains and the stresses are governed
by the system of equations composed as follows:

1) six equations that define the strain–displacement (2.150)

ε =
1

2

(
∇u+ (∇u)T

)
; (7.1)

2) three equilibrium equations (3.125)

divσ + f = 0 , (7.2)

with f = ρb being the volume force;

3) six equations that define the homogeneous isotropic constitutive law (6.104)

σ = λ tr εI + 2µε =
νE

(1 + ν)(1− 2ν)
tr ε I +

E

1 + ν
ε (7.3)

or its inverse (6.108)

ε =
−λ

2µ(3λ+ 2µ)
trσI +

σ

2µ
= − ν

E
trσI +

(1 + ν)

E
σ , (7.4)

where the elasticity coefficients λ, µ, E and ν are independent of position.

A simple count shows that there are fifteen unknowns (three displacement
components ui, six strain components εij , and six stress components σij) and
fifteen equations; the problem is thus well posed. We have shown in section
6.10 that a linear elastic solid satisfies the second principle of thermodynamics
and that there exists a potential function which, in this case, has a quadratic
form in the strains (6.164) or the stresses.

There are two ways to combine the preceding fifteen scalar equations. Tak-
ing first the three displacement components ui as the primary unknowns and
introducing (7.1) in (7.3), we obtain

σij = λuk,k δij + µ(ui,j + uj,i) (7.5)

and by substituting into (7.2)

(λ+ µ)uk,ki + µui,jj + fi = 0 . (7.6)

Relations (7.6) are Navier’s equations which we can also write in the form

(λ+ µ)∇(divu) + µ4u+ f = 0 , (7.7)

where the displacement must be continuously differentiable at least two times.
These equations can be solved when we impose the boundary conditions in
terms either of the displacement or the contact forces expressed as functions
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Claude Louis Marie Henri Navier (1785–1836) was born
in Dijon and died in Paris. Navier graduated from the
École Polytechnique and became an ordinary engineer for
the Ponts et Chaussées in 1808. His expertise was the re-
sistance of structures and bridges, for which he established
the equations of elasticity. His memoir was read at the
Académie des Sciences in May 1821 and published in 1827.
Following this work, he made the synthesis of inviscid fluid

dynamics proposed by Euler and with viscous effects. In 1822 at the Académie,
he presented the equations for the flows of viscous incompressible fluids. This
memoir was also published in 1827.

Fig. 7.1 Claude Louis Marie Henri Navier

of displacement with (7.5). Once the displacements are known, the strains can
be obtained by (7.1) and the stresses by (7.3).

We can also consider the six stress components σij as unknowns. Then,
substituting relations (7.4) in the six compatibility equations (2.174)

εij,kl + εkl,ij − εjl,ik − εik,jl = 0 , (7.8)

we obtain

(1 + ν)σij,kk − νσmm,nn δij + σpp,ij − (1 + ν)(σiq,qj + σjr,ri) = 0 . (7.9)

At the same time, from the equilibrium equation (7.2) we have the result
that

σiq,qj + σjr,ri = −fi,j − fj,i . (7.10)

Thus, (7.9) becomes

(1 + ν)σij,kk − νσmm,nn δij + σpp,ij + (1 + ν)(fi,j + fj,i) = 0 . (7.11)

Taking the trace of this equation, leads to

(1− ν)σmm,nn = −(1 + ν)fk,k (7.12)

which allows the simplification of relation (7.11) knowing that ν 6= 1

σij,kk +
1

1 + ν
σmm,ij + fi,j + fj,i +

ν

1− ν fn,nδij = 0 . (7.13)

These expressions are the Beltrami-Michell compatibility equations. If
the volume forces are constant, (7.13) reduces to

σij,kk +
1

1 + ν
σmm,ij = 0 . (7.14)

Note that equations (7.14) are trivially satisfied when the components σij are
affine functions of x. Subsequently, the stress field inside the body must sat-
isfy the three equilibrium equations, the Beltrami-Michell equations, and the
boundary conditions of the problem. When the stresses are known, the strains
are calculated with (7.4) and the displacements with (7.1).
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7.2.2 Boundary Conditions

The preceding system of equations can only be solved if the appropriate bound-
ary conditions are imposed. Let a solid occupy a domain Ω in R3 with boundary
∂Ω. In general, we can divide the surface ∂Ω into two parts: ∂Ω = Su ∪ St
with Su ∩ St = ∅, where

• Su represents the part of ∂Ω on which the displacement components ui are
imposed, that is,

ui = ui on Su , (7.15)

• St represent the part of ∂Ω on which components of the stress vector ti are
specified, that is,

ti = σijnj = ti on St , (7.16)

where nj are the outgoing unit normal vector components on St.

We can classify elastostatic problems into three types according to the
imposed boundary conditions:

• type I, where we only have displacement boundary conditions (7.15) and
Su is not empty;

• type II, where we only have stress boundary conditions (7.16) and St is not
empty;

• type III, or mixed, where the boundary conditions specify both displace-
ments and stresses with Su and St not empty at the same time.

Note that stress and displacement cannot both be imposed at the same
location.

Having formulated the boundary conditions, the questions of existence and
uniqueness of the solution to the linear elastic problem are posed. A discussion
on this subject can be found in [47].

Saint-Venant’s Principle

Although it is relatively easy to define the boundary conditions and their type,
it is often more difficult to specify them precisely, especially when we consider
surface forces. This is because information on the exact distribution of contact
forces is not easily known. In order to overcome this difficulty, the elasticity
boundary problem is replaced with another for the same body but with the sub-
stitution of boundary conditions by statically equivalent conditions. According
to Saint-Venant’s principle, the effects from this replacement of the real con-
ditions by statically equivalent conditions are local and sufficiently removed
from the boundary, and so the solution to the original problem is practically
identical to that of the equivalent problem. The distance at which the differ-
ences are no longer significant depends on the characteristic linear scale of the
structure under consideration. This principle has proven to be very useful in
many problems of practical interest.
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7.2.3 Superposition Principle

It is worth noting that in linear elastic theory, the fifteen equations (7.1)–(7.4),
as well as the boundary conditions, are linear. This leads to the formulation
of the superposition principle, which is stated as follows for a type II problem.
Let a body occupying the domain Ω of R3 be subject to forces ti(1) on ∂Ω and
to volume forces fi(1). The stress field produced in this body by these forces is

denoted σ
(1)
ij . The same body subject to surface forces ti(2) and volume forces

fi(2) leads to the stress field σij(2). The simultaneous application of the surface
forces (ti(1) + ti(2)) and the volume forces (fi(1) + fi(2)) results in the stress
field (σij(1) + σij(2)). Consequently, the strains in the body are obtained from
equations (7.4) by inserting the stresses (σij(1) + σij(2)).

The superposition principle applies equally to type I and III problems.

7.3 Plane Isotropic Linear Elasticity

Many important practical problems do not require the solution of the three-
dimensional problem for the state of stress and strain. Because of the particular
geometry of the solid and the form of the loads, the elasticity equations can
be considered as functions of only two spatial variables. The problem is then
reduced to a plane problem.

In this section, two important cases of plane linear elasticity are defined.
They are the cases of plane strain and plane stress.

7.3.1 Plane Strain States

Let a long prismatic bar be subject to lateral forces (fig. 7.2). We assume
that the volume force component along x3 is zero while the components in

x2

Q(x1, x2)

P(x1, x2)

x1

x3

Fig. 7.2 The case of a long prismatic structure loaded in plane strain
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directions x1 and x2 are functions of x1 and x2. Because of the long length of
the bar along the axis x3, we can assume that the displacement u3 at a certain
distance from the ends is a function only of the coordinate x3 and that the
displacements u1 and u2 only depend on x1 and x2

u1 = u1(x1, x2) u2 = u2(x1, x2) u3 = u3(x3) . (7.17)

For a prismatic structure of infinite length or when its ends are fixed, we can
assume in addition that u3 = 0 in each section. The strain components are
then given by

ε11 =
∂u1

∂x1
ε22 =

∂u2

∂x2
ε12 =

1

2

(
∂u1

∂x2
+
∂u2

∂x1

)
(7.18)

and

ε33 =
∂u3

∂x3
= 0

ε13 =
1

2

(
∂u1

∂x3
+
∂u3

∂x1

)
= 0

ε23 =
1

2

(
∂u2

∂x3
+
∂u3

∂x2

)
= 0 .

(7.19)

The strain state so defined is called plane strain. Using Hooke’s law (7.3),
we obtain that the stresses σ11, σ22, σ33, and σ12 are functions only of x1 and
x2, and that σ23 and σ31 are zero everywhere. Consequently, the equilibrium
equations (7.2) become

∂σ11

∂x1
+
∂σ12

∂x2
+ f1 = 0

∂σ21

∂x1
+
∂σ22

∂x2
+ f2 = 0 . (7.20)

Knowing the strains (equations (7.18) and (7.19)), we can employ the stress-
strain relations (7.3) to calculate the stresses as follows:

σ11 =
E

(1 + ν)(1− 2ν)

(
ε11(1− ν) + νε22

)
(7.21)

σ22 =
E

(1 + ν)(1− 2ν)

(
ε22(1− ν) + νε11

)
(7.22)

σ12 =
E

(1 + ν)
ε12 (7.23)

σ33 =
E

(1 + ν)(1− 2ν)
ν(ε11 + ε22) . (7.24)

Inversely, the strains are given by

ε11 =
1 + ν

E

(
(1− ν)σ11 − νσ22

)
(7.25)

ε22 =
1 + ν

E

(
(1− ν)σ22 − νσ11

)
(7.26)

ε12 =
1 + ν

E
σ12 . (7.27)
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We impose the same restrictions on the surface forces (fig. 7.3). The surface
forces t1 and t2 must be functions of only x1 and x2, with t3 = 0, in order that
the strain be truly plane. Thus, for conditions of type II, we write

t1 = σ11n1 + σ12n2 t2 = σ12n1 + σ22n2 , (7.28)

where n1 and n2 are the components of outgoing unit normal n on ∂Ω. When
the stresses are chosen as unknowns, the compatibility equations must be used.
Under the plane strain assumption, the only compatibility equation that is not
automatically satisfied is

∂2ε11

∂x2
2

+
∂2ε22

∂x1
2

= 2
∂2ε12

∂x1∂x2
. (7.29)

x2

x1
O

n

σ11

σ
σ

σ

t
2

t
1

t

σσ
σ

Fig. 7.3 Boundary conditions for plane elasticity

Thus, in the case of plane strain, eight quantities, ε11, ε22, ε12, σ11, σ22, σ12,
u1, and u2, must be determined to satisfy equations (7.18), (7.20), and (7.25)–
(7.27) as well as the boundary conditions, (7.28). The eight preceding scalar
equations can be reduced to three in the following way.

1) Introducing equations (7.25)–(7.27) in (7.29), it follows that

∂2

∂x2
2

(
(1− ν)σ11 − νσ22

)
+

∂2

∂x2
1

(
(1− ν)σ22 − νσ11

)
= 2

∂2σ12

∂x1∂x2
. (7.30)

2) Differentiating the first and second equations of (7.20) with respect to x1

and x2, respectively, and adding the two resulting equations, we obtain

−2
∂2σ12

∂x1∂x2
=

(
∂2σ11

∂x1
2

+
∂2σ22

∂x2
2

)
+

(
∂f1

∂x1
+
∂f2

∂x2

)
. (7.31)
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3) Substiting (7.31) in (7.30), we have(
∂2

∂x2
1

+
∂2

∂x2
2

)
(σ11 + σ22) = − 1

1− ν

(
∂f1

∂x1
+
∂f2

∂x2

)
, (7.32)

which is the compatibility equation as a function of the stress components.

After the preceding analysis, we now have a set of three equations: two
equilibrium equations (7.20) and a compatibility equation (7.32). These three
equations have σ11, σ22, and σ12 as unknowns. This system of equations, with
boundary conditions (7.28), can be used to obtain a solution for a plane strain
problem. We note that the solution satisfying this system is unique. After hav-
ing determined the stress components, the strains are calculated with equations
(7.25)–(7.27) and the displacements with (7.18).

Stress Function for Plane Strain Problems

The plane strain problem can be simplified to one equation with a single vari-
able. If we assume that the volume forces are derived from a potential V (x1, x2)

fi = − ∂V
∂xi

, i = 1, 2 , (7.33)

it is not difficult to show that the equilibrium equations are met if the stress
components are the derivatives of a function Φ(x1, x2), such that

σ11 = V +
∂2Φ

∂x2
2

σ22 = V +
∂2Φ

∂x1
2

σ12 = − ∂2Φ

∂x1∂x2
. (7.34)

Introducing these components in equation (7.32), we obtain

∂4Φ

∂x4
1

+ 2
∂4Φ

∂x2
1∂x

2
2

+
∂4Φ

∂x4
2

+
1− 2ν

1− ν

(
∂2V

∂x1
2

+
∂2V

∂x2
2

)
= 0 (7.35)

or

44Φ +
1− 2ν

1− ν 4V = 0 . (7.36)

When the volume forces are negligible, the stresses are given by

σ11 =
∂2Φ

∂x2
2

σ22 =
∂2Φ

∂x1
2

σ12 = − ∂2Φ

∂x1∂x2
(7.37)

and equation (7.36) becomes
44Φ = 0 , (7.38)

which is a biharmonic equation . The plane strain problem in linear elasticity
is thus reduced to seeking a function Φ, called an Airy stress function ,
satisfying (7.38) for the appropriate boundary conditions. The knowledge of
this function permits the determination of the stresses with (7.34), the strains
with (7.25)–(7.27), and the displacements with (7.18).
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7.3.2 Plane Stress States

Now we consider figure 7.4 where we have the opposite of the long bar of figure
7.2. We assume that the body has one dimension, along x3, that is very small
with respect to the dimensions in the plane x1x2. We also suppose that the
surface forces are applied parallel to the plane x1x2. The volume forces along
x3 are zero while in the directions x1 and x2, they are functions only of x1 and
x2. In view of the geometry and the applied loads, we can assume that the
stress components σ33, σ13, and σ23 are zero everywhere and that the other
components σ11, σ22, and σ12 remain almost constant across the thickness of
the plate. Such a stress state is called plane stress and is written as

σ11 = σ11(x1, x2) σ22 = σ22(x1, x2) σ12 = σ12(x1, x2) (7.39)

σ33 = σ13 = σ23 = 0 . (7.40)

The equilibrium equations are given by (7.20) and the boundary conditions by
(7.28). To obtain the stress-strain relations, we use relation (7.4) which reduces
to

ε11 =
1

E
(σ11 − νσ22) ε22 =

1

E
(σ22 − νσ11)

ε12 =
1 + ν

E
σ12

(7.41)

ε13 = ε23 = 0 ε33 = − ν
E

(σ11 + σ22) . (7.42)

x2

x1O

h

Fig. 7.4 Thin plate with plane loads
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Inverting these relations, we have the stresses

σ11 =
E

1− ν2
(ε11 + νε22)

σ22 =
E

1− ν2
(ε22 + νε11)

σ12 =
E

1 + ν
ε12 .

(7.43)

Extracting (σ11 +σ22) from equations (7.41) and inserting the result in the last
equation of (7.42), we obtain

ε33 = − ν

1− ν (ε11 + ε22) . (7.44)

This equation gives the normal strain “out of the plane” as a function of the
tangent strains “in the plane”. Note that ε33 is not among the quantities that
characterize the plane stress. Nonetheless, we can obtain it independently
using the last equation. We can naturally obtain u3 using ε33 = ∂u3/∂x3. The
displacements u1 and u2 are independent of x3 and the strain-displacement
relations are given by (7.18).

As for the compatibility equation, we have at our disposal relation (7.29)
and the following equations which come from the non-zero component ε33

∂ε33

∂x1
=
∂ε33

∂x2
=

∂2ε33

∂x1∂x2
= 0 . (7.45)

The integration of the last relation imposes the following condition on ε33

ε33 = A0 +A1x1 +A2x2 . (7.46)

In the solution of plane stress problems, this condition is generally too re-
strictive and is not satisfied; only equation (7.29) is considered. Although the
resulting solutions are approximate, they are satisfactory as long as the plate
thickness remains very small as compared to the planar dimensions.

As in plane strain, the equations for plane stress reduce to three equations
in which the three stress components σ11, σ22, and σ12 appear. This is evident
as equations (7.18) and (7.29) also apply to plane stress. The substitution of
the strain components (7.41) in (7.29) and the use of the equilibrium equations
(7.20) yield (

∂2

∂x2
1

+
∂2

∂x2
2

)
(σ11 + σ22) = −(1 + ν)

(
∂f1

∂x1
+
∂f2

∂x2

)
. (7.47)

This last equation and the equilibrium equations form a system of three equa-
tions in three unknowns. We also note that for a given problem, the solution
to this system is unique.
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Stress Function for Plane Stress Problems

Substituting equations (7.37) in equation (7.47) and neglecting the volume
forces, we again end up with a stress function satisfying

44Φ = 0 . (7.48)

To summarize, we have shown that one single differential equation governs
the stress function for the two cases of two-dimensional linear elasticity: plane
strain and plane stress. The distinction between these two cases appears after
the stress calculation, when the solution for the strains with equations (7.25)–
(7.27) and (7.41)–(7.42), respectively, for the states of plane strain and plane
stress is carried out.

Using the appropriate combinations of elastic constants, the plane strain
equations can be converted into the plane stress equations. That is:

From plane strain to plane stress:
the stress-strain relations (7.21)–(7.24) for the plane strain case can
be converted into those for plane stress (7.43) if we replace Young’s
modulus E in (7.43) with E(1 + 2ν)/(1 + ν)2 and Poisson’s ratio ν by
ν/(1 + ν).

From plane stress to plane strain:
similarly, the stress-strain relations (7.43) for the plane stress case can
be converted into those for plane strain (7.21)–(7.24) if we replace
Young’s modulus E in (7.43) with E/(1 − ν2) and Poisson’s ratio ν
with ν/(1− ν).

Then, the solution of a plane stress problem can be determined from the
corresponding problem in plane deformation, and vice-versa.

7.4 Solution Methods in Linear Elasticity

We have shown in section 7.2 that the solution of a three-dimensional isotropic
linear elasticity problem requires the treatment of fifteen equations in fifteen
unknowns satisfying the specified boundary conditions. These fifteen equations
are combined such that: (a) three unknowns are the displacement components,
solutions of equations (7.6), (b) six unknowns are the stress components, solu-
tions of equations (7.13). Plane elastic problems, either plane strain or plane
stress, can be reduced to eight equations in eight unknowns. The number of
equations and unknowns can also be reduced in a way similar to the three-
dimensional case.

Directly obtaining analytical solutions in elasticity problems is not easy, and
often, is not even possible. Consequently, methods based on the rigorous use of
applied mathematics are proposed to handle the different classes of problems,
while other techniques permit approximate solutions based on intuition and
experience. Below, we present a list of the methods most often used in linear
elasticity.
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• Inverse Method. In this method, the displacement or stress field is assigned
to the body and we determine all the other quantities, including external
forces. Although the solution to inverse problems pose no particular diffi-
culties, it is not always possible to find a solution that the engineer finds
interesting [6, 54].

• Method of Potential. To simplify the elasticity equations, we introduce
potential functions. Potentials for the displacements yield the solution to
Navier’s equations and those for stress yield systems of stress in equilibrium
[15, 47, 50, 65].

• Semi-Inverse Method. In this method, part of the stress and displacement
fields are specified. Then, knowing these elements and applying the elastic-
ity theory, the equations which must be satisfied by the remaining stresses
and displacements are determined. These equations are normally easy to
integrate, and combined with the portion of data originally specified, they
yield a complete and precise solution for many interesting problems in en-
gineering. Saint-Venant applied this method to the bending and torsion of
prismatic bars [6, 54, 61].

• Complex Variable Methods. This method uses analytic functions defined in
the complex plane to solve elasticity problems. It can only be applied to
plane problems [47].

• Variational Methods. These methods are based on the fact that the elastic-
ity equations can be obtained by minimizing a generalized energy function;
for example, see [15, 47].

• Others. Other methods include integral transform methods and numerical
approaches such as the finite element method; for example, see [15, 21, 48].

In this chapter we present the method of potential and semi-inverse method
for the solution of representative problems with the principal objective of high-
lighting the classical formulations of elasticity theory. The application of other
methods for the solution of various problems is abundantly treated in the lit-
erature [15, 47, 48, 54, 61].

In the preceding sections, we have shown that an elasticity problem can be
formulated in terms of displacements with Navier’s equations (7.6) as field equa-
tions. Another formulation is based on the stresses, for which the compatibility
equations (7.8) and the equilibrium equations (7.2) constitute a system of nine
equations. In this section, we develop a general context where the displacement
or stress functions are introduced in order to satisfy Navier’s equations (7.6) or
the Beltrami-Michell compatibility equations (7.13) and the equilibrium equa-
tions (7.2) respectively. We show that such functions provide the solution to
certain elasticity problems. For simplicity, we only consider the case where
there are no volume forces. When volume forces are taken into consideration,
the methodology becomes more difficult and is beyond the scope of this text.
The reader can find more advanced and pertinent complements in references
[15, 47].
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7.4.1 Displacement Functions

To solve Navier’s equations, potential or displacement functions are introduced
in such a way that the displacement vector in Navier’s equations is obtained
from the derivatives of these functions. These potential functions are governed
by Laplace’s equation or the biharmonic equation, well known in mathematical
physics. To advance further in that sense, we introduce Helmholtz’ decompo-
sition theorem; see [8] for a proof.

Helmholtz’ Theorem

A finite and continuous vector field a, that is zero at infinity, can be repre-
sented as the sum of an irrotational field b and a solenoidal field c

a = b+ c (7.49)

with
∇× b = 0 and div c = 0 . (7.50)

To formulate the solution to Navier’s equations in terms of potential func-
tions, we state the following definitions.

• For an irrotational field, there exists a scalar potential ϕ such that b =∇ϕ.
Since the gradient operator only involves first derivatives, the function ϕ is
determined to within an arbitrary additive constant.

• For a solenoidal field, there always exists a potential vector Ψ such that
c = ∇ × Ψ. This potential is determined to within an additive vector
function.

Thus a finite, continuous displacement field u, that goes to zero at infinity, can
be represented, following Helmholtz’ theorem, by the sum

u =∇ϕ+∇×Ψ (7.51)

with the conditions that ∇ × ∇ϕ = 0 and div(∇ × Ψ) = 0. Note that u
has three scalar components while ϕ and Ψ together have four. We can thus
impose the following condition without loss of generality:

div Ψ = 0 . (7.52)

It is interesting to examine the divergence and the curl of the displacement
expressed in (7.51). Using (7.52), (1.179), (1.188), and (1.190), we obtain

divu = div∇ϕ+ div(∇×Ψ) = div∇ϕ+ 0 = ∇2ϕ (7.53)

∇× u = ∇×∇ϕ+∇× (∇×Ψ) = 0 +∇× (∇×Ψ)

= ∇(div Ψ)−∇2Ψ = −∇2Ψ . (7.54)

Note that with (2.163), divu = εii and thus ∇2ϕ = εii. The curl of the
displacement vector, i.e., ∇× u, is related to the body rotation vector, whose
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components are those of the antisymmetric infinitesimal rotation tensor ω,
multiplied by the factor 2 (see eqn. (2.168)).

As was previously justified, we assume that f = 0 in (7.7). Introducing
(7.51) in (7.7) and with (7.53), also the vector identities (1.180), (1.188), and
relations (1.236), (1.237), we obtain

(λ+ 2µ)∇(∇2ϕ) + µ∇× (∇2Ψ) = 0 . (7.55)

Then, every pair of functions ϕ and Ψ satisfying (7.55) produces a displacement
field, given by (7.51), that is a solution to Navier’s equations. Inversely, for
any displacement u that satisfies Navier’s equations, there exists at least one
set of functions ϕ and Ψ satisfying (7.51); for example, see [6, 15, 65].

Lamé Strain Potential

Particular solutions of (7.55) are generated from the two equations

∇2ϕ = cnst and ∇2Ψ = cnst . (7.56)

When
∇2ϕ = cnst and Ψ = 0 , (7.57)

the function ϕ is called the Lamé strain potential and the displacement is
obtained from

u =∇ϕ , (7.58)

which satisfies Navier’s equation. To simplify the solution in the applications,
it is very common to write (7.58) in the form

u =
1

2µ
∇ϕ . (7.59)

Thus any function that satisfies Poisson’s equation (7.57) can serve as a strain
potential. When ϕ is known, the displacement vector is obtained with (7.59),
the strains with (7.1), and the stresses with (7.3). Note that all these quantities
are expressed as first and second derivatives of ϕ. As examples, we have

ui =
1

2µ
ϕ,i (7.60)

εij =
1

2
(ui,j + uj,i) =

1

2µ
ϕ,ij (7.61)

εkk = uk,k =
1

2µ
ϕ,kk (7.62)

σij = λδijεkk + 2µεij =
λ

2µ
ϕ,kkδij + ϕ,ij . (7.63)

In many practical elasticity problems, the objective is not to obtain a gen-
eral solution, but a particular solution. Thus, for simplicity, consider

∇2ϕ = 0 , (7.64)
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which is Laplace’s equation, and ϕ a harmonic function. Below we list a few
useful harmonic functions for the solution of certain practical problems:

ϕ(r, θ) = Crn cosnθ, r2 = x2
1 + x2

2, (7.65)

ϕ(r) = C ln
r

K
, r2 = x2

1 + x2
2, (7.66)

ϕ(θ) = Cθ, θ = tan−1 x2

x1
, (7.67)

ϕ(R) =
C

R
, R2 = x2

1 + x2
2 + x2

3 . (7.68)

When we use spherical coordinates from Appendix B in the following ex-
amples, we replace r with the symbol R. The two Poisson type functions below
are useful for the solution of the hollow sphere and cylinder subject to internal
and external pressure when combined with (7.66) and (7.68):

ϕ(R) = DR2, R2 = x2
1 + x2

2 + x2
3, (7.69)

ϕ(r) = Dr2, r2 = x2
1 + x2

2 . (7.70)

Hollow Sphere Subject to Internal and External Pressure

Let a hollow sphere with internal and external radii ri and re (fig. 7.5) be
subject to internal and external pressures Pi and Pe, respectively. The volume
forces are considered negligible.

ri

re

P
Pi

Pe

RO

x2

x1

Fig. 7.5 Hollow sphere subject to internal and external pressure loads

Because of spherical symmetry, we use spherical coordinates (R, θ, ϕ). In
this system all the shear stresses and strains are zero, and of the three compo-
nents of the vector displacement uR, uϕ, uθ, only uR is non-zero.

The solution to this problem can be obtained by combining the two poten-
tials (7.68) and (7.69)

ϕ(R) =
C

R
+DR2 . (7.71)
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This potential satisfies Poisson’s equation (7.56)1 and yields the stresses and
strains that fulfill all the geometric characteristics of the problem. With (7.60)
and the equations in Appendix B, the displacement components are

uR =
1

2µ

(
− C

R2
+ 2DR

)
, uθ = uϕ = 0 . (7.72)

With the displacement (7.72), the strains are obtained using relations (B.22)–
(B.24) from Appendix B

εRR =
1

2µ

(
2C

R3
+ 2D

)
, εϕϕ = εθθ =

1

2µ

(
− C

R3
+ 2D

)
εθϕ = εθR = εϕR = 0 . (7.73)

Inserting these components into Hooke’s law, (7.3), we obtain the stresses

σRR =
2C

R3
+ 2

1 + ν

1− 2ν
D, σϕϕ = σθθ = − C

R3
+ 2

1 + ν

1− 2ν
D

σθϕ = σθR = σϕR = 0 . (7.74)

The constants C and D in (7.74) are determined by imposing the boundary
conditions

σRR = −Pi at R = ri

σRR = −Pe at R = re . (7.75)

Applying these conditions to the expression for σRR, leads to

C =
1

2

r3
er

3
i (Pe − Pi)
r3
e − r3

i

D =
1

2

1− 2ν

1 + ν

r3
i Pi − r3

ePe
r3
e − r3

i

. (7.76)

Substituting these expressions in (7.74), we obtain the stresses

σRR =
1

R3

r3
er

3
i (Pe − Pi)
r3
e − r3

i

+
r3
i Pi − r3

ePe
r3
e − r3

i

= −
Pi

(
r3e
R3 − 1

)
(
r3e
r3i
− 1
) −

Pe

(
1− r3i

R3

)
(

1− r3i
r3e

) (7.77)

σϕϕ = σθθ = − 1

2R3

r3
er

3
i (Pe − Pi)
r3
e − r3

i

+
r3
i Pi − r3

ePe
r3
e − r3

i

=
1

2

Pi
(
r3e
R3 + 2

)
(
r3e
r3i
− 1
) −

Pe

(
r3i
R3 + 2

)
(

1− r3i
r3e

)
 . (7.78)
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The non-zero component of the displacement becomes

uR =
R

2µ

(
− 1

2R3

r3
er

3
i (Pe − Pi)
r3
e − r3

i

+
1− 2ν

1 + ν

r3
i Pi − r3

ePe
r3
e − r3

i

)

=
R

2µ

Pi 1
2
r3e
R3 + 1−2ν

1+ν

r3e
r3i
− 1

− Pe
1
2
r3i
R3 + 1−2ν

1+ν

1− r3i
r3e

 . (7.79)

It is interesting to notice that if re � ri, the stresses and displacements are
approximated by

σRR = −Pi
r3
i

R3
− Pe

(
1− r3

i

R3

)
(7.80)

σθθ = σϕϕ =
Pi
2

r3
i

R3
− Pe

2

(
r3
i

R3
+ 2

)
(7.81)

uR =
R

2µ

(
Pi
2

r3
i

R3
− Pe

(
1− 2ν

1 + ν
+

1

2

r3
i

R3

))
. (7.82)

On the internal surface of the sphere, R = ri, the stresses and displacements
become

σθθ|R=ri = σϕϕ|R=ri =
Pi
2
− 3Pe

2
, σRR|R=ri = −Pi (7.83)

uR|R=ri =
R

2µ

(
Pi
2
− 3Pe

2

1− ν
1 + ν

)
. (7.84)

When R→∞, ri/R→ 0 and equations (7.80)–(7.82) simplify to

σRR = σθθ = σϕϕ = −Pe and uR = −RPe
2µ

.
1− 2ν

1 + ν
(7.85)

Hollow Cylinder with Fixed Ends under Internal and External Pressure

A hollow cylinder with internal and external radii ri and re (fig. 7.6) is subject
to internal and external pressures Pi and Pe, respectively. The volume forces
are assumed to be zero.

Because of the cylindrical symmetry, it is in this case useful to use cylin-
drical coordinates (r, θ, z) (Appendix A). In this system, all the shear stresses
and strains are zero, and of the three displacement vector components, only
the component ur is non-zero. Here we are in the case of a plane strain prob-
lem, since no deformation is allowed in the direction of the axis of the cylinder,
subject to the boundary conditions

σrr = −Pi, σrθ = 0 at r = ri (7.86)

σrr = −Pe, σrθ = 0 at r = re . (7.87)
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O
P

r

z

re

ri

Pi
Pi

Pe

Pe

r
x1

x2

θ

Fig. 7.6 Hollow cylinder subject to internal and external pressure loads

The solution to this problem can be obtained by combining the two poten-
tials (7.66) and (7.70)

ϕ(r) = C1 ln
r

K
+ C2r

2 (7.88)

where C1,K, and C2 are constants to determine from the boundary conditions.
Applying the procedure from the preceding example, the stress and displace-
ment components are

σrr =
1

r2
e − r2

i

(
r2
i Pi − r2

ePe +
r2
i r

2
e

r2
(Pe − Pi)

)
σθθ =

1

r2
e − r2

i

(
r2
i Pi − r2

ePe −
r2
i r

2
e

r2
(Pe − Pi)

) (7.89)

σzz = 2ν
r2
i Pi − r2

ePe
r2
e − r2

i

(7.90)

σrθ = σrz = σθz = 0 (7.91)

ur =
r

2µ

(
− 1

r2

r2
er

2
i (Pe − Pi)
r2
e − r2

i

+
r2
i Pi − r2

ePe
r2
e − r2

i

(1− 2ν)

)
. (7.92)

This problem is also solved with two different methods, example 7.4, for the
case of a plane stress state.

Galerkin Vector

The displacement vector (7.51) is represented by a sum of first derivatives, via
the differential operator ∇(•) = ∂(•)/∂xi, of a scalar function ϕ and a vector
function Ψ. To be able to construct solutions devoted to general applications,
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the use of second order differential operators is more appropriate. The operators

of this type are the Laplacian ∇2 (sec. 1.4.8) and ∇(div(•)) = ∂
∂xi

(
∂(•)
∂xj

)
.

These operators can be expressed in an arbitrary coordinate system and are
applied to a vector function.

Let V be a vector function related to the displacement u by the expression

2µu = 2(1− ν)∇2V −∇(divV ) . (7.93)

The factor 2µ is introduced for simplicity in the applications. The vector V
is the Galerkin vector which yields a general solution of Navier’s equations.
Introducing (7.93) in (7.7), using vector identities (1.188), (1.191), and (1.236),
and bearing in mind that 2(1− ν) = (λ+ 2µ)/(λ+ µ), we obtain

∇2
(
∇2V

)
= 0 . (7.94)

Consequently, any biharmonic vector function can serve as a Galerkin vector,
and the displacement u in (7.93) will satisfy (7.7). Thus relations (7.93) and
(7.94) are equivalent to Navier’s equations. The comparison of (7.93) and (7.51)
allows us to write

ϕ = − 1

2µ
divV (7.95)

∇×Ψ =
2(1− ν)

2µ
∇2V . (7.96)

If we also impose the condition that V be harmonic, i.e., ∇2V = 0, then (7.96)
leads to ∇×Ψ = 0. In addition, because of vector identity (1.191), it follows
from (7.95) that ϕ is a harmonic function, ∇2ϕ = 0. Thus, ϕ is a Lamé strain
potential, defined earlier.

Love’s Strain Function

A particular case of the Galerkin vector appears when V = V3e3. Then, we
have Love’s strain function. Condition (7.94) becomes

∇2
(
∇2V3

)
= 0 , (7.97)

and (7.93) is written as

2µu = 2(1− ν)(∇2V3)e3 −∇(
∂V3

∂x3
) . (7.98)

The three displacement components are easily expressed in Cartesian coordi-
nates

2µu1 = − ∂2V3

∂x1∂x3
, 2µu2 = − ∂2V3

∂x2∂x3
, 2µu3 = 2(1− ν)∇2V3 −

∂2V3

∂x2
3

.

(7.99)
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Love introduced this particular form of the vector for the study of solids of
revolution under symmetric loads. In such cases, the displacement components
are expressed in terms of this function in cylindrical coordinates

2µur = − ∂
2Vz
∂r∂z

, 2µuθ = −1

r

∂2Vz
∂θ∂z

, 2µuz = 2(1− ν)∇2Vz−
∂2Vz
∂z2

. (7.100)

Kelvin’s Problem: Concentrated Force Inside an Infinite Body

An application of this strain potential is the problem of a single force concen-
trated inside an infinite body. This application is known as Kelvin’s problem,
defined in figure 7.7(a) [15].

P

z

r
O

P

R

θ
x1

x2

x3
σzz

σzz

h

h

O

(a) (b)

Fig. 7.7 (a) Infinite solid subject to a concentrated force (b) View of a section

A force P is applied to point O parallel to the axis x3. It satisfies the
following boundary conditions:

• all the stresses are zero at infinity;

• the singularity at the origin is equivalent to the applied force P . Thus the
concentrated force can be considered as the limit of a system of forces that
are applied to the surface of a small cavity situated at the origin.

The solution to this problem is obtained in cylindrical coordinates. Then,
because of angular symmetry, Love’s strain potential is independent of θ, i.e.,

Vz = Vz(r, z) . (7.101)

Using the strain–displacement and stress–strain relations (see Appendix A),
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the stress components are expressed by the relations

σrr =
∂

∂z

(
ν∇2Vz −

∂2Vz
∂r2

)
(7.102)

σθθ =
∂

∂z

(
ν∇2Vz −

1

r

∂Vz
∂r
− 1

r2

∂2Vz
∂θ2

)
(7.103)

σzz =
∂

∂z

(
(2− ν)∇2Vz −

∂2Vz
∂r2

)
(7.104)

σrθ = − ∂3

∂r∂θ∂z

(
Vz
r

)
(7.105)

σθz =
1

r

∂

∂θ

(
(1− ν)∇2Vz −

∂2Vz
∂z2

)
(7.106)

σzr =
∂

∂r

(
(1− ν)∇2Vz −

∂2Vz
∂z2

)
. (7.107)

The particular form of function (7.101) must satisfy (7.97) and its third deriva-
tives, which appear in the stress components (eqns. (7.102)–(7.107)), with the
latter going to zero at infinity with a singularity at the origin. A function that
meets these requirements is given by

Vz = K(r2 + z2)1/2 . (7.108)

Using (7.108) in (7.100) and (7.102)–(7.107), we have

2µur =
Krz

(r2 + z2)3/2
, 2µuθ = 0, (7.109)

2µuz = K

[
2(1− 2ν)

(r2 + z2)1/2
+

1

(r2 + z2)1/2
+

z2

(r2 + z2)3/2

]
σrr = K

[
(1− 2ν)z

(r2 + z2)3/2
− 3r2z

(r2 + z2)5/2

]
(7.110)

σθθ =
(1− 2ν)Kz

(r2 + z2)3/2
(7.111)

σzz = −K
[

(1− 2ν)z

(r2 + z2)3/2
+

3z3

(r2 + z2)5/2

]
(7.112)

σrz = −K
[

(1− 2ν)r

(r2 + z2)3/2
+

3rz2

(r2 + z2)5/2

]
(7.113)

σrθ = σθz = 0 . (7.114)

Note that the stresses are undefined at the origin where there is a singularity,
and that they go to zero at infinity. To determine the constant K, it is necessary
to consider the force equilibrium in the vertical direction. Consider a symmetric
horizontal band of height ±h that contains the horizontal axis and the point O
(fig. 7.7(b)). The equilibrium of the forces is written as

P =

∫ ∞
0

2π rdrσzz|z=−h −
∫ ∞

0

2π rdrσzz|z=+h . (7.115)
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Inserting (7.112) in (7.115) and integrating, we find the value of the constant

K =
P

8π(1− ν)
. (7.116)

This parameter is substituted in (7.109)–(7.113) to obtain the displacement
and the stress components, respectively.

Cerruti’s Problem: Tangential Force at the End of a Semi-Infinite Body

Using the potential method, we can solve certain problems by combining a
Lamé strain potential and a Galerkin vector. A well-known problem which
uses such an approach is Cerruti’s problem, where a tangential force P acts on
the surface of a semi-infinite solid body as exhibited in figure 7.8 [15].

x1

x2

x3

PO

z

r

θ

R

Fig. 7.8 Semi-infinite solid body subject to a tangential surface force

This problem can be solved with the combination of a Galerkin vector with
components

V1 = AR, V2 = 0, V3 = Bx1 ln(R+ x3) (7.117)

and a Lamé strain potential

ϕ =
Cx1

R+ x3
, (7.118)

where the coefficients A,B, and C are constants and R2 = x2
1 +x2

2 +x2
3. In this

case, the displacement vector is given by the superposition of equations (7.59)
and (7.93)

2µu =∇ϕ+ 2(1− ν)∇2V −∇(divV ) . (7.119)

The three constants A,B, and C are determined by the boundary conditions,
which are (fig. 7.8)

• on x3 = 0, σ33 = σ23 = 0,

• along x1 and ∀x3 > 0 the sum of the forces is zero:

P +
∫ +∞
−∞

∫ +∞
−∞ σ13 dx1 dx2 = 0.
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These conditions yield

A =
P

4π(1− ν)
, B =

P (1− 2ν)

4π(1− ν)
, C =

P (1− 2ν)

2π
. (7.120)

These constants can be inserted in (7.117) and (7.118) to calculate the dis-
placement. The strains come from (7.1) and the stresses from (7.3).

The Papkovich-Neuber Presentation

Note that equation (7.55) is of third order, while that which governs the
Galerkin vector, (7.94), is of fourth order. In the formulation we will now
present, we propose a system of equations of second order that is equivalent to
Navier’s equations. More precisely, the displacement vector is expressed by a
combination of harmonic functions [6, 13, 65]

2µu = α−∇
[
β +

α · x
4(1− ν)

]
, (7.121)

where α and β are vector and scalar fields, respectively, and x is the position
vector. Introducing u with f = 0 in (7.7), and using vector identities (1.188),
(1.236), and (1.240) as well as the relation between elastic constants (6.109),
we obtain the following equation:

µ∇2α− (λ+ 2µ)∇(∇2β)−
(
λ+ µ

2

)
∇(x · ∇2α) = 0 . (7.122)

This last equation is satisfied when

∇2α = 0, ∇2β = 0 . (7.123)

These equations are of second order, not higher as were equations (7.55) and
(7.94). It should be noted that the four scalar functions in (7.123) are not
independent. It can be shown that, for all convex domains, the number of
independent functions is reduced to 3 [13]. In addition, the vector α and the
scalar β are related to the Galerkin vector as follows:

α = 2(1− ν)∇2V (7.124)

β = ∇ · V − α · x
4(1− ν)

. (7.125)

A special case for these four functions, in cylindrical coordinates, is given
by relations

αr = αθ = 0, αz = αz(r, z), β = β(r, z) , (7.126)

which we will use to solve the following, very important, elasticity problem.



230 Introduction to Solid Mechanics

Boussinesq’s Problem: Vertical Force at the End of a Semi-Infinite Body

Let a semi-infinite solid body be subject to a force P acting in the direction of
the vertical axis, normal to the surface as is shown in figure 7.9.

x1

x2

x3

P

O

z

r

θ

R

Fig. 7.9 Semi-infinite solid body subject to a concentrated vertical force on its sur-
face

The boundary conditions for this problem are

• σrz = 0 everywhere on the surface,

• the resulting vertical force on a horizontal plane due to σzz at depth z is
equal to the applied force P . Note that σzz is undefined at the origin.

Referring to figure 7.9, we define the distance R2 = r2 + z2. The solution to
this problem is obtained by considering the following functions:

αr = αθ = 0

αz = 4(1− ν)
K

R
(7.127)

β = C ln(R+ z) .

The substitution of (7.127) in (7.121) gives

u =
4(1− ν)

2µ

K

R
ez −

1

2µ
∇
(
C ln(R+ z) +

Kz

R

)
, (7.128)

for which, in cylindrical components, the displacements are

ur = − Cr

2µR(R+ z)
+
Kzr

2µR3
, uθ = 0, uz =

(3− 4ν)K − C
2µR

+
Kz2

2µR3
. (7.129)

Inserting (7.129) in the strain–displacement relations, (A.24)–(A.26), and the
resulting strains in the corresponding stress–strain relations (7.3), the stresses
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that are necessary to apply the boundary conditions are

σrz =
r

R3

(
C −K(1− 2ν)− 3Kz2

R3

)
(7.130)

σzz = −3Kz3

R5
. (7.131)

The first boundary condition stated above leads to

C = K(1− 2ν) . (7.132)

In order to determine K, the accumulated force at depth z due to σzz is equal
to the applied force P

P =

∫ r=∞

r=0

3Kz3

R5
2π rdr . (7.133)

The integration of (7.133) yields

K = P/2π , (7.134)

and relation (7.132) leads to

C = P (1− 2ν)/2π . (7.135)

Inserting (7.134) and (7.135) in (7.129), the displacement components are

ur =
P

4πµR

(
zr

R2
− (1− 2ν)r

R+ z

)
, uθ = 0, uz =

P

4πµR

(
2(1− ν) +

z2

R2

)
.

(7.136)
With the displacements known, we can calculate the strain using (A24)–(A26).
These strains can be inserted in (7.3) to express the non-zero stress components
as follows:

σrr =
P

2πR2

(
−3r2z

R3
+
R(1− 2ν)

R+ z

)
(7.137)

σθθ =
(1− 2ν)P

2πR2

(
z

R
− R

R+ z

)
(7.138)

σzz = − 3Pz3

2πR5
, σrz = −3Prz3

2πR5
. (7.139)

To end this section, it is necessary to mention that many important practical
problems (for example, contact of solid bodies) imply the analysis of stresses
and strains in semi-infinite domains subject to loads applied on free surfaces.
The solutions to this type of problems are obtained by integration of Boussi-
nesq’s and Cerruti’s solutions as presented in this section. The reader can find
such solutions in the literature [23].
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7.4.2 Stress Functions and Airy Solutions for Plane Problems

In section 7.2, we showed that the stress field at every point in a body in
equilibrium is governed by equations (7.2), the Beltrami-Michell compatibility
equations (7.14), and the boundary conditions. In a manner similar to the
study of displacement functions, we proposed functions that yield stress fields
satisfying the systems of equations mentioned above. However, since the stress
is a second order tensor, the function we seek should also be a tensor. For
simplicity in the following exposition, we ignore the volume forces.

We introduce a tensor stress function Φ(x) that is symmetric and that
expresses the six stress components as follows:

σ11 =
∂2Φ22

∂x2
3

+
∂2Φ33

∂x2
2

− 2
∂2Φ23

∂x2∂x3
(7.140)

σ22 =
∂2Φ33

∂x2
1

+
∂2Φ11

∂x2
3

− 2
∂2Φ31

∂x3∂x1
(7.141)

σ33 =
∂2Φ11

∂x2
2

+
∂2Φ22

∂x2
1

− 2
∂2Φ12

∂x1∂x2
(7.142)

σ12 =
∂2Φ23

∂x3∂x1
+

∂2Φ31

∂x3∂x2
− ∂2Φ33

∂x1∂x2
− ∂2Φ12

∂x2
3

(7.143)

σ23 =
∂2Φ31

∂x1∂x2
+

∂2Φ12

∂x1∂x3
− ∂2Φ11

∂x2∂x3
− ∂2Φ23

∂x2
1

(7.144)

σ31 =
∂2Φ12

∂x2∂x3
+

∂2Φ23

∂x2∂x1
− ∂2Φ22

∂x3∂x1
− ∂2Φ31

∂x2
2

. (7.145)

It is easy to verify that the equilibrium equations (7.2) are satisfied with these
stress components (7.140)–(7.145) when there are no volume forces (f = 0).
Two alternatives have been proposed to generate complete solutions from the
stress functions [6, 30]. These are the Maxwell and Morera functions. More
precisely, if we keep only the diagonal components Φii, we define a Maxwell
system; in the case where we keep the off diagonal terms, we define a Morera
system. Each of these sets of stress functions is complete, in the sense that for
every stress distribution that satisfies the equilibrium equations there exists a
set of Maxwell functions and a set of Morera functions. In this section, we will
only discuss Maxwell functions.

We point out that if the component Φ33 is the only non-zero component in
the Maxwell formulation, then we have the Airy function for plane problems.
Since in plane problems we make the distinction between plane stress and plane
strain (sec. 7.3), we examine these two problems in terms of stress functions.
Starting from the single component Φ33 = Φ33(x1, x2), independent of x3,
equations (7.140)–(7.145) yield

σ11 =
∂2Φ33

∂x2
2

, σ22 =
∂2Φ33

∂x2
1

, σ12 = − ∂2Φ33

∂x1∂x2
(7.146)

σ33 = 0 (7.147)

σ23 = σ31 = 0 , (7.148)
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which corresponds to the case of plane stress since σ33 = 0. In order to further
examine the nature of Φ33, we must turn to the Beltrami-Michell compatibility
equations. The six equations (7.14) are all written explicitly as

∇2σ11 +
1

1 + ν

∂2σkk
∂x2

1

= 0 (7.149)

∇2σ22 +
1

1 + ν

∂2σkk
∂x2

2

= 0 (7.150)

∇2σ33 +
1

1 + ν

∂2σkk
∂x2

3

= 0 (7.151)

∇2σ12 +
1

1 + ν

∂2σkk
∂x1∂x2

= 0 (7.152)

∇2σ23 +
1

1 + ν

∂2σkk
∂x2∂x3

= 0 (7.153)

∇2σ31 +
1

1 + ν

∂2σkk
∂x3∂x1

= 0 . (7.154)

Note that, using (7.146), equations (7.151), (7.153), and (7.154) are satisfied,
while (7.149), (7.150), and (7.152) are not. This is because of the approximate
nature of the plane stress problem (sec. 7.3.2). Nonetheless, inserting (7.146)
in (7.149) and (7.150) and then adding them, we get easily that Φ33 satisfies
the biharmonic equation

∆∆Φ33 =
∂4Φ33

∂x4
1

+ 2
∂4Φ33

∂x2
1∂x

2
2

+
∂4Φ33

∂x4
2

= 0 . (7.155)

For plane strain problems, the stress component σ33 is related to compo-
nents σ11 and σ22 with

σ33 = ν(σ11 + σ22) . (7.156)

To satisfy this requirement in a Maxwell formulation, it is necessary to include
components Φ11 and Φ22 in addition to Φ33 and to impose the conditions

Φ11 = Φ22 = νΦ33 with Φ12 = Φ23 = Φ31 = 0 . (7.157)

In this case, each compatibility equation (7.149)–(7.151) leads to the bihar-
monic equation (7.155), while satisfying relations (7.152)–(7.154).

Comparing the results of this section with those in section 7.3, we notice
that the stress function Φ(x1, x2) defined in section 7.3 is a special case of the
Maxwell formulation.

Thus, for plane problems, when Φ33 is known and satisfies the biharmonic
equation (7.155), the stress components for plane stress (7.146) and those of
(7.146) and (7.156) for plane strain satisfy the equilibrium equations. We con-
sider that such a stress state is a solution to the problem if it satisfies the
boundary conditions.

Before presenting a few examples, we note that it is relatively easy to
find a stress function that satisfies (7.155). However, satisfying the boundary
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conditions is not always simple. In general, we should be guided by our intuition
and experience as to the nature of the necessary function. A common practice
consists of using polynomial forms and finding the appropriate combinations
which satisfy the boundary conditions. Replacing Φ33(x1, x2) with Φ(x1, x2),
an appropriate polynomial function can be written as

Φ(x1, x2) = a1x
2
1 + a2x1x2 + a3x

2
2 + b1x

3
1 + b2x

2
1x2 + b3x1x

2
2 + b4x

3
2

+c1x
4
1 + c2x

3
1x2 + c3x

2
1x

2
2 + c4x1x

3
2 + c5x

4
2 + · · · . (7.158)

Note that all polynomial terms of degree less than or equal to three satisfy
(7.155). Terms of higher order should not be considered, but if they must be
included, their coefficients should be chosen with care to satisfy the biharmonic
equation. This approach proves to be effective in many problems with rectan-
gular domains. However, polynomial functions cannot easily describe discon-
tinuities in the geometry and load distribution. Thus Saint-Venant’s principle
is often used to replace the real boundary conditions with statically equivalent
conditions. Note that the solution method that is based on a stress function
satisfying (7.155) is a semi-inverse method, since the polynomial function is
given and we seek a problem that can be solved with this function.

Because of the rotational symmetry of many practical problems, the Airy
functions are generally presented in cylindrical coordinates. The function pro-
posed by Michell [48] offers a solution to (7.155) for plane problems:

Φ(r, θ) = A0 +A1 ln r +A2r
2 +A3r

2 ln r

+ (A4 +A5 ln r +A6r
2 +A7r

2 ln r)θ

+

(
A11r +A12r ln r +

A13

r
+A14r

3 +A15rθ +A16rθ ln r

)
cos θ

+

(
B11r +B12r ln r +

B13

r
+B14r

3 +B15rθ +B16rθ ln r

)
sin θ

+
∞∑
n=2

(
An1r

n +An2r
2+n +An3r

−n +An4r
2−n) cosnθ

+
∞∑
n=2

(
Bn1r

n +Bn2r
2+n +Bn3r

−n +Bn4r
2−n) sinnθ . (7.159)

Here, Φ33(r, θ) has been replaced with Φ(r, θ). The coefficients A0, . . . , A7;
A11, . . . , A16; B11, . . . , B16; An1, . . . , An4; Bn1, . . . , Bn4 are constants and n is
an integer. We choose various terms in (7.159) to solve many different problems
in polar coordinates. A few examples are given below.

Normal Linear Load on the Flat Edge of a Semi-Infinite Plate

Consider a plate of unit thickness subject to a load P distributed along a line
across its thickness as shown in figure 7.10.
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(a) (b)(b)

b

Fig. 7.10 (a) Semi-infinite plate subject to a concentrated vertical force on its edge
surface (b) Circle of diameter d for each point of which the stress is the same

The plane stress problem has stress components in cylindrical coordinates
σrr, σθθ, σrθ. The boundary conditions for this problem are

• the stress components σθθ = σrθ = 0 for θ = ±π/2;

• the vertical force is in equilibrium with the vertical component of the radial
stress at a distance r.

The solution to the problem is obtained by setting the following Airy function:

Φ(r, θ) = Crθ sin θ . (7.160)

Knowing Φ, the stress components obtained from relations (7.146) in cylindrical
coordinates (A.28)–(A.30) are

σrr =
2C cos θ

r
, σθθ = σrθ = 0 . (7.161)

Applying the second boundary condition, the constant C is determined from
the relation

P +

∫ +π/2

−π/2
σrr cos θ(rdθ) = P + 2C

∫ +π/2

−π/2
cos2 θdθ = 0 and C = −P

π
.

(7.162)
Thus, the stress components are

σrr = −2P

π

cos θ

r
, σθθ = σrθ = 0 . (7.163)

We note for the circle of diameter d tangent to the surface at the origin, whose
center is on the vertical axis, that r = d cos θ, and that the stress (fig. 7.10(b))

σrr = −2P

π

1

d
(7.164)

is the same for all points on the circle.
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Once the stresses are known, the strains are obtained from Hooke’s law
(7.4) (see (A.24)–(A.26))

εrr =
∂ur
∂r

= − 2P

πE

cos θ

r

εθθ =
ur
r

+
1

r

∂uθ
∂θ

=
2Pν

πE

cos θ

r
(7.165)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
= 0 .

These equations can be integrated to calculate the displacements. The integra-
tion constants are then evaluated in order to eliminate the rigid body motion
of the plate. This is done by imposing uθ(r, θ)|θ=0 = 0 and ur(r, θ)|θ=0,r=b = 0,
where b is an arbitrary distance along axis x1 (fig. 7.10(a))

ur =
2P

πE
cos θ ln

b

r
− (1− ν)P

πE
θ sin θ

uθ =
(1 + ν)P

πE
sin θ − 2P

πE
sin θ ln

b

r
− (1− ν)P

πE
θ cos θ . (7.166)

Hollow Cylinder with Free Ends Subject to Internal and External Pressure

Given the cylindrical geometry of the body and applied loads, and by taking
the ends of the cylinder to be free, we can show that σzz = 0. Thus it is a plane
stress problem. The boundary conditions are independent of θ; in addition, as
the stress distribution is symmetric with respect to the axis x3, it is implied
that σrθ = 0. The boundary conditions of the problem are given by (7.86) and
(7.87).

This problem is solved by two methods. In the first method, we use Navier’s
equations (7.6). In the second method, we define an Airy stress function ap-
propriate for the problem, and we use it to calculate the stress, strain, and
displacement components.

In the first method, we consider that an element of the cylinder cannot
move axially because of the symmetry of the load and the geometry. Thus the
only non-zero component of displacement is ur, and the strain–displacement
relations in cylindrical coordinates become

εrr =
dur
dr

(7.167)

εθθ =
ur
r

(7.168)

εrθ =
1

2

(
duθ
dr
− uθ

r

)
= 0 (7.169)

εzz =
−ν

1− ν (εθθ + εrr) . (7.170)
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In the case of plane stress, the stress–strain relations (7.41) are

εrr =
1

E
(σrr − νσθθ) εθθ =

1

E
(σθθ − νσrr) . (7.171)

Solving these two relations for the stresses and using (7.167) and (7.168), we
have

σrr =
E

1− ν2

(
dur
dr

+ ν
ur
r

)
(7.172)

σθθ =
E

1− ν2

(
ur
r

+ ν
dur
dr

)
. (7.173)

With uθ = uz = 0, and ur 6= 0, only one of Navier’s equations is not satisfied.
Assuming no volume force, this one is written as

d2ur
dr2

+
1

r

dur
dr
− ur
r2

= 0 , (7.174)

the solution of which is given by

ur = C1r +
C2

r
. (7.175)

Using (7.175) in (7.172) and (7.173), leads to

σrr =
E

1− ν2

(
C1(1 + ν)− C2

1− ν
r2

)
(7.176)

σθθ =
E

1− ν2

(
C1(1 + ν) + C2

1− ν
r2

)
. (7.177)

We determine the constants C1 and C2 with the boundary conditions (7.86)
and (7.87), which yield

C1 =
1− ν
E

r2
i Pi − r2

ePe
r2
e − r2

i

C2 =
1 + ν

E

r2
i r

2
e(Pe − Pi)
r2
e − r2

i

. (7.178)

Finally, the stresses and displacements take the form

σrr =
1

r2
e − r2

i

(
r2
i Pi − r2

ePe +
r2
i r

2
e

r2
(Pe − Pi)

)
σθθ =

1

r2
e − r2

i

(
r2
i Pi − r2

ePe −
r2
i r

2
e

r2
(Pe − Pi)

) (7.179)

ur =
1− ν
E

r2
i Pi − r2

ePe
r2
e − r2

i

r − 1 + ν

E

(Pe − Pi)
r2
e − r2

i

r2
i r

2
e

r
. (7.180)

Now, let us verify the assumption σzz = 0. If the ends of the cylinder are free,
then εzz = cnst. Consequently, the stress–strain relations give

σzz = ν(σrr + σθθ) + Eεzz = c . (7.181)
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The constant c is determined by imposing that the total normal force at the
end of the cylinder is zero∫ re

ri

σzz2πr dr = πc
(
r2
e − r2

i

)
= 0 =⇒ c = 0 and σzz = 0 . (7.182)

In the second method, we define an appropriate stress function. Taking
into account the symmetry of the load and the geometry, the stress function Φ
is independent of θ and is then only a function of r. Therefore, a stress function
is taken in the form

Φ(r) = A ln r +Br2 + Cr2 ln r +D . (7.183)

Although this function is a general solution of the biharmonic equation (7.38),
(7.48), or also (7.155), the analysis of the radial displacement ur leads to the
conclusion that C = 0. The constant D does not affect the components of
stress. Thus, we only retain the two first terms of (7.183) in the following.
With this function, the biharmonic equation (7.38) in cylindrical coordinates
(A.27),

d4Φ

dr4
+

2

r

d3Φ

dr3
− 1

r2

d2Φ

dr2
+

1

r3

dΦ

dr
= 0 , (7.184)

is automatically satisfied and the stress components are

σrr =
1

r

dΦ

dr
=
A

r2
+ 2B

σθθ =
d2Φ

dr2
= −A

r2
+ 2B

σrθ = 0 .

(7.185)

With the boundary conditions (7.86) and (7.87), we obtain the constants

A =
r2
i r

2
e

r2
e − r2

i

(Pe − Pi) B =
r2
i Pi − r2

ePe
r2
e − r2

i

. (7.186)

Then the stresses are expressed

σrr =
1

r2
e − r2

i

(
r2
i Pi − r2

ePe +
r2
i r

2
e

r2
(Pe − Pi)

)
σθθ =

1

r2
e − r2

i

(
r2
i Pi − r2

ePe −
r2
i r

2
e

r2
(Pe − Pi)

)
,

(7.187)

which are the same as seen in expressions (7.179 ) and (7.89). The reason that
the stresses are the same in the two problems comes from the fact that the
Airy stress function is identical for plane stress and plane strain problems. The
difference only appears in the stress–strain relations and the displacements.
The stresses known, the strains are evaluated with (7.171).

The integration of the latter directly yields the displacement ur, (7.180).
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In the case of a thin-walled container under pressure with thickness e =
re − ri and e� ri, we can make the following approximations:

r2
e − r2

i = (re − ri)(re + ri) ≈ 2eri

r2
i Pi − r2

ePe ≈ r2
i (Pi − Pe)

r2
e ≈ r2

i r2 ≈ r2
i .

(7.188)

Taking these approximations into account, the stresses (7.187) reduce to the
expressions

σrr ≈ 0 (7.189)

σθθ ≈
ri(Pi − Pe)

e
. (7.190)

In the solutions given in texts on introductory material properties [54], it is
supposed that σrr is zero, because e� ri, while σθθ is obtained by equilibrium
of an element of the container.

We must point out that the solution given in this example is only valid for
sections sufficiently far from the ends of the cylinder.

Long, Thin Beam with a Uniform Load q

A long, thin beam with length l, height h, and thickness d = 1 is subject to a
uniformly distributed load q (N/m2) (fig. 7.11). We propose to determine the
stresses, strains, and displacements when the beam has simple supports. The
thickness d of the beam is assumed to be small relative to its plane dimensions,
(that is, h, l� d) and the load q is parallel to the plane (x1, x2). In this plane
stress problem we neglect the weight of the beam.

q = cnst

x2

x1

ql/2

l/2 l/2

h

d

ql/2

Fig. 7.11 A long, thin beam with a uniform load

The boundary conditions are

x2 = −h
2

σ22 = −q σ12 = 0

x2 =
h

2
σ22 = 0 σ12 = 0 .

(7.191)

The evaluation of the axial force N1 (along x1), the total moment M3 (with
respect to axis x3) and the tangential force N2 parallel to the section (along
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x2) at the ends x1 = ±l/2 of the beam, leads to

N1 =

∫ h/2

−h/2
σ11 dx2 = 0

M3 =

∫ h/2

−h/2
σ11x2 dx2 = 0

N2 =

∫ h/2

−h/2
σ21 dx2 = −ql

2
.

(7.192)

A stress function that yields a solution to the problem is written as

Φ(x1, x2) = Ax3
2

(
x2

1 −
x2

2

5

)
+Bx2

1x2 + Cx3
2 +Dx2

1 , (7.193)

where A,B,C, and D are constants which are determined later from the bound-
ary conditions (7.191) and (7.192). First we verify that this function satisfies
the biharmonic equation (7.38). Using equations (7.37), the three stress field
components are given by

σ11 = 6Ax2x
2
1 − 4Ax3

2 + 6Cx2

σ22 = 2Ax3
2 + 2Bx2 + 2D (7.194)

σ12 = −6Ax2
2x1 − 2Bx1 .

With boundary conditions (7.191), we obtain

− Ah3

4
−Bh+ 2D = −q

Ah3

4
+Bh+ 2D = 0

3Ah2

2
+ 2B = 0 .

(7.195)

This sytem of three equations in three unknowns has the following solution:

A = − q

h3
B =

3q

4h
D = −q

4
. (7.196)

The constant C is obtained from the condition M3 = 0 (N1 = 0 is satisfied for
all values of the constants)

C =
q

24I3

(
l2

2
− h2

5

)
, (7.197)

where I3 = h3/12 is the moment of inertia of the section with respect to x3.
It can easily be shown that the two remaining integrals of (7.192) are verified.
Inserting these values of the constants in (7.194), the stresses in the beam
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become

σ11 =
q

2I3
x2

(
l2

4
− x2

1

2

)
+

q

2I3
x2

(
2

3
x2

2 −
h2

20

)
σ22 = − q

2I3

(
x3

2

3
− h2x2

4
+
h3

12

)
(7.198)

σ12 = − q

2I3
x1

(
h2

4
− x2

2

)
.

The first term (of the equation for σ11) results from elementary beam theory.
The second is an additional term resulting from taking into consideration σ22,
which does not depend on x1 and which becomes negligible when l� h. Note
that the solution is only valid for sections sufficiently far from the supports.

With the stresses (7.198), the strains are given by (7.41). The displacements
are calculated by integrating relations (7.18) with the following boundary con-
ditions:

• at x1 and x2 = 0,

u1 = 0 u2 = f
∂u2

∂x1
= 0 ;

• at x1 = ±l/2 and x2 = 0,
u2 = 0 , (7.199)

where f is the maximum deflection at the center of the beam which we
determine next.

We have

u1 =
q

2EI3

((
l2x1

4
− x3

1

3

)
x2 +

(
2x3

2

3
− h2x2

10

)
x1

+ ν

(
x3

2

3
− h2x2

4
+
h3

12

)
x1

)
u2 = − q

2EI3

(
x4

2

12
− h2x2

2

8
+
h3x2

12
+ ν

((
l2
4
− x2

1

)
x2

2

2
+
x4

2

6
− h2x2

2

20

))
− q

2EI3

(
l2x2

1

8
− x4

1

12
− h2x2

1

20
+

(
1 +

1

2
ν

)
h2x2

1

4

)
+ f .

(7.200)
The deflection f at the center of the beam is obtained by using the expression
obtained for u2 in the first condition (7.199)

f =
5

384

ql4

EI3

(
1 +

12

5

h2

l2

(
4

5
+
ν

2

))
. (7.201)

Note that the first term of (7.201) is the deflection resulting from elementary
beam theory. The second term appears because we have taken σ22 into account
along x2. This term is especially important for short beams (that is l ∼ h).
For long, thin beams, we have l� h and this term becomes negligible.
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7.5 Wave Propagation in a Linear Elastic Medium

In this chapter up until now, we have presented static elastic problems. That
is, the solid is considered to be at rest under the loads which were applied
sufficiently slowly, such that the dynamic effects could be ignored. Such an
approach is justified for many practical elasticity problems; this is known as
“linear elastostatic” analysis. However, there are many problems in solid me-
chanics where we take into account the dynamic effects, that is, the inertial
forces. These emerge when the external loads are applied at high rates, in-
cluding vibrations, impacts, and explosions. Sudden displacements also create
dynamic effects such as the slipping of a seismic fault. Such dynamic loads pro-
duce stress and strain waves which are transmitted across the body at different
velocities dependent on the deformation mode.

To understand and analyze the dynamic response of an elastic medium,
the static equilibrium equations (7.7) must be replaced by motion equations
thus defining the linear elastodynamic problem. In this section we present the
general three-dimensional equations of motion for a linear elastic solid as well
as the wave propagation solutions in simple structural elements.

The reader can also consult [16, 54] for complementary information.

7.5.1 Shear and Dilatation Waves

The motion equation in terms of displacements can be obtained from Navier’s
equations (7.6) by adding an inertial force component and by taking the dis-
placements as functions of xi and t, ui = ui(xi, t). Assuming, as in the case of
static analysis (sec. 7.4), that there are no volume forces, the motion equations
(7.7) are

(λ+ µ)∇(div u) + µ∇2u = ρa , (7.202)

which in index form is

(λ+ µ)uk,ki + µui,jj = ρai . (7.203)

The acceleration can be expressed in terms of the displacement vector as
a = ∂2u/∂t2 or ai = ∂2ui/∂t

2. Note that because of the hypothesis of small
displacements in section 2.9, the non-linear acceleration term in (2.33) is of
second order in ε (eqn. (2.139)) and can thus be neglected. Consequently,
relation (7.203) becomes

(λ+ µ)uk,ki + µui,jj = ρ
∂2ui
∂t2

. (7.204)

Since the deformations are small, the motions examined in this model are small
elastic oscillations or elastic waves. According to the type of deformation, we
can distinguish two types of waves as follows. First, assume that the load
produces waves which are associated with no volume changes. Then εii =
div u = 0 and (7.204) can be replaced by

µui,jj = ρ
∂2ui
∂t2

. (7.205)
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The waves described by this last equation are called shear waves or distor-
tion waves. Next we assume that the deformation produced by the applied
load is irrotational. In other words, the rotation tensor (2.166) is zero, or

ω32 =
1

2

(
∂u3

∂x2
− ∂u2

∂x3

)
= 0, ω13 =

1

2

(
∂u1

∂x3
− ∂u3

∂x1

)
= 0 ,

ω21 =
1

2

(
∂u2

∂x1
− ∂u1

∂x2

)
= 0,

or finally

∂u2

∂x1
− ∂u1

∂x2
= 0,

∂u1

∂x3
− ∂u3

∂x1
= 0,

∂u3

∂x2
− ∂u2

∂x3
= 0 . (7.206)

These relations imply that u can be derived from a potential function φ(xi, t)

u =∇φ . (7.207)

We can easily see using (1.236) that relation (7.207) leads to the expressions

div u =
∂ui
∂xi

=
∂2φ

∂xi∂xi
= ∇2φ, and ∇(div u) = ∇2u =∇∇2φ . (7.208)

Using these expressions in (7.202), we obtain the irrotational or dilatational
wave equation

(λ+ 2µ)∇2u = ρ
∂2u

∂t2
, (7.209)

or

(λ+ 2µ)ui,jj = ρ
∂2ui
∂t2

. (7.210)

It is interesting to express equations (7.205) and (7.209) in a similar form

c2∇2u′ =
∂2u′

∂t2
, (7.211)

where we have

c = c1 =

√
λ+ 2µ

ρ
=

√
E(1− ν)

ρ(1− 2ν)(1 + ν)
, (7.212)

for dilatational waves, and

c = c2 =

√
µ

ρ
=

√
E

2ρ(1 + ν)
, (7.213)

for shear waves. Note that c1 and c2 have dimensions of a velocity, since
(MLT−2L−2M−1L3)1/2 = (L2T−2)1/2, and c1 > c2, thus showing that elastic
dilatation waves travel at a higher speed than elastic shear waves. Note that
the general case of wave propagation in a linear elastic medium can be obtained
by the superposition of dilatation and shear waves.
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To express the motion equations in terms of scalar and vector potentials
ϕ,Ψ, it is necessary to insert (7.51) in (7.202). To do that, we deduce the
second time derivative of u and its divergence as follows:

ü = ∇ϕ̈+∇× Ψ̈ (7.214)

div u = div(∇ϕ) + div(∇×Ψ) = ∇2ϕ (7.215)

∇2u = ∇2(∇ϕ+∇×Ψ) = ∇2(∇ϕ) +∇2(∇×Ψ)

= ∇(∇2ϕ) +∇× (∇2Ψ) . (7.216)

We used identities (1.188) and (1.180) to deduce (7.215), and relations (1.236)
and (1.237) to obtain (7.216). Thus the motion equation (7.202) becomes

(λ+ µ)∇(∇2ϕ) + µ
(
∇(∇2ϕ) +∇× (∇2Ψ)

)
= ρ(∇ϕ̈+∇× Ψ̈) , (7.217)

which we can rewrite in the form

∇
(
(λ+ 2µ)∇2ϕ− ρϕ̈

)
+∇×

(
µ∇2Ψ− ρΨ̈

)
= 0 . (7.218)

Equality (7.218) is satisfied if

(λ+ 2µ)∇2ϕ− ρϕ̈ = 0 (7.219)

µ∇2Ψ− ρΨ̈ = 0 . (7.220)

Finally, we can write

(λ+ 2µ)∇2ϕ = ρ
∂2ϕ

∂t2
(7.221)

µ∇2Ψ = ρ
∂2Ψ

∂t2
. (7.222)

It is interesting to note that (7.221) and (7.222) resemble relations (7.210)
and (7.205), respectively (see also exercises 7.5 and 7.6). Furthermore, using
representation (7.51) for the displacement field, the elastodynamic problem
reduces to the resolution of the wave equations (7.221) and (7.222).

7.5.2 Rayleigh Surface Waves

In the previous section, we examined the case of wave propagation in an infinite,
isotropic linear elastic body. Often, however, we must treat waves along free
surfaces or interfaces between two bodies. In this case, wave propagation be-
comes more complicated. Surface waves were analyzed by Rayleigh (fig. 7.12)
and involve longitudinal and transversal wave types at the same time. Surface
waves also appear after earthquakes, explosions, and impacts. In this section,
we summarize the essential equations for waves of this type. For a detailed
analysis, the reader is referred to more elaborate treatments of the subject [16].
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Lord Rayleigh (John William Strutt), born in 1842, stud-
ied mathematics at Trinity College in Cambridge. He in-
herited the title of Lord upon the death of his father in
1872 and devoted part of his time to the management of
the domain while being at the same time an active scien-
tist. In 1879, he became director of Cavendish Laboratory
at Cambridge, succeeding Maxwell. He died in 1919. His
contributions are numerous in the study of sound, vibra-
tions, electrodynamics, electromagnetism, and fluid and
solid mechanics. His text The Theory of Sound which ap-

peared in 1877 constitutes a classic reference in the domain. His most important
discovery was that of argon in 1894, for which he was awarded the Nobel prize
for physics in 1904.

Fig. 7.12 Lord Rayleigh

The schematic of a half space is shown in figure 7.13. The wave propagates
in the x1 direction, such that the displacement field is given by
u1(x1, x3, t), u3(x1, x3, t), u2 = 0. To solve this problem using representation
(7.51), we assume that

ϕ = ϕ(x1, x3, t) and Ψ = −Ψ2(x1, x3, t)e2 . (7.223)

x3

x1

cs

Fig. 7.13 Propagation of a Rayleigh wave in direction x1

Based on these expressions and (7.51), we deduce the displacement com-
ponents

u1(x1, x3, t) =
∂ϕ

∂x1
+
∂Ψ2

∂x3
, u3(x1, x3, t) =

∂ϕ

∂x3
− ∂Ψ2

∂x1
(7.224)

div u =
∂u1

∂x1
+
∂u3

∂x3
= ∇2ϕ , (7.225)
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as well as the components of the infinitesimal rotation tensor

ω13 =
1

2

(
∂u1

∂x3
− ∂u3

∂x1

)
= −1

2
∇2Ψ2

ω21 = ω32 = 0 . (7.226)

For this plane problem, the motion equations (7.203) reduce to

(λ+ µ)
∂

∂x1

(
∂u1

∂x1
+
∂u3

∂x3

)
+ µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
3

)
= ρ

∂2u1

∂t2

(λ+ µ)
∂

∂x3

(
∂u1

∂x1
+
∂u3

∂x3

)
+ µ

(
∂2u3

∂x2
1

+
∂2u3

∂x2
3

)
= ρ

∂2u3

∂t2
. (7.227)

Using (7.224)–(7.226) in (7.227), leads to

(λ+ 2µ)
∂

∂x1
∇2ϕ+ µ

∂

∂x3
(∇2Ψ2) = ρ

(
∂

∂x1

∂2ϕ

∂t2
+

∂

∂x3

∂2Ψ2

∂t2

)
(λ+ 2µ)

∂

∂x3
∇2ϕ− µ ∂

∂x1
(∇2Ψ2) = ρ

(
∂

∂x3

∂2ϕ

∂t2
− ∂

∂x1

∂2Ψ2

∂t2

)
. (7.228)

Note that these last equations are satisfied with (7.221) and (7.222). To con-
tinue further, we consider only harmonic forms of ϕ(x1, x3) and Ψ2(x1, x3) with
a wave propagating in direction x1

ϕ(x1, x3, t) = H(x3)ei(kx1−ωt)

Ψ2(x1, x3, t) = G(x3)ei(kx1−ωt) , (7.229)

where H(x3) and G(x3) are functions to be determined, k = ω/cs with cs
the wave speed on the surface, and i2 = −1. Inserting (7.229) in (7.221) and
(7.222), we obtain two ordinary differential equations of the form

d2H

dx2
3

−
(
k2 − ω2

c21

)
H = 0 (7.230)

d2G

dx2
3

−
(
k2 − ω2

c22

)
G = 0 . (7.231)

Defining the symbols

ζ2
1 =

(
k2 − ω2

c21

)
, ζ2

2 =

(
k2 − ω2

c22

)
, (7.232)

the solutions of (7.230) and (7.231) are written as follows:

H(x3) = A1e
−ζ1x3 +B1e

ζ1x3 (7.233)

G(x3) = A2e
−ζ2x3 +B2e

ζ2x3 . (7.234)

Reasoning about the phenomena from a physical viewpoint, the terms with a
positive exponent yield waves with unlimited amplitude, which is unrealistic.
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Thus the corresponding constants are zero: B1 = B2 = 0. Using (7.233) and
(7.234) in (7.229), the solution takes the form

ϕ(x1, x3, t) = A1e
−ζ1x3ei(kx1−ωt)

Ψ2(x1, x3, t) = A2e
−ζ2x3ei(kx1−ωt) . (7.235)

For this problem, the following boundary conditions must be satisfied on the
free surface

σ33 = σ31 = σ32 = 0 at x3 = 0 . (7.236)

To apply these conditions, we need to express the stresses (7.3) in terms of the
functions (7.51). Using the displacements (7.51), we calculate the strains and
inserting them in (7.3), we obtain

σ33 = λ∇2ϕ+ 2µ
∂2ϕ

∂x2
3

− 2µ
∂2Ψ2

∂x3∂x1

σ31 = µ

(
2

∂2ϕ

∂x3∂x1
− ∂2Ψ2

∂x2
1

+
∂2Ψ2

∂x2
3

)
. (7.237)

The component σ32 is zero, since the displacement field is independent of x2,
which eliminates all the derivatives with respect to x2. With assumptions
(7.223) and solution (7.235) known, (7.237) for x3 = 0 yields two homogeneous
equations

A1

[
(λ+ 2µ)ζ2

1 − λk2
]

+ 2iA2µζ2k = 0 (7.238)

−2iA1ζ1k +A2

[
ζ2
2 + k2

]
= 0 . (7.239)

A non-trivial solution for A1, A2, requires that the determinant of the system
of equations be zero, which leads to the following characteristic equation:(

cs
c2

)6

− 8

(
cs
c2

)4

+ (24− 16κ−2)

(
cs
c2

)2

+ 16(κ−2 − 1) = 0 , (7.240)

with κ−2 = c22/c
2
1 = µ/(λ + 2µ) = (1 − 2ν)/(1 − ν). Thus, the wave speed

cs depends on the material via Poisson’s coefficient. The polynomial equation
(7.240) is treated as a reduced cubic equation with (cs/c2)2 as unknown. In
the interest of simplicity, we consider a material with ν = 1/4. In this case
κ−2 = 1/3, and the roots of (7.240) are

c2s/c
2
2 = 4, 2 + 2/

√
2, 2− 2/

√
2. (7.241)

Among these three roots, two are not realistic, as they lead to imaginary values
for the parameters ζ1 and ζ2. Therefore, we retain the third root, which yields
cs/c2 = 0.9194 or

cs = 0.9194

√
µ

ρ
. (7.242)

For the case where ν = 0.5, corresponding to the largest value of Poisson’s
coefficient, we obtain cs = 0.9553

√
µ/ρ. Thus the speed of a surface wave is

slightly smaller than the speed of the shear waves (7.213).
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The next important parameters to calculate are the displacement compo-
nents (7.224). Knowing the solution (7.235), we can easily express the displace-
ment as follows:

u1(x1, x3, t) =
∂ϕ

∂x1
+
∂Ψ2

∂x3

=
(
iA1ke

−ζ1x3 −A2ζ2ke
−ζ2x3

)
ei(kx3−ωt) . (7.243)

Using (7.239) to eliminate A2 and Euler’s formula to replace the exponentials,
we have

u1(x1, x3, t) = −A1k

(
e−ζ1x3 − 2ζ1ζ2

ζ2
2 + k2

e−ζ2x3

)
sin(kx1 − ωt) . (7.244)

Similarly, we obtain a complex function for u3(x1, x3, t) of which the real part
is

u3(x1, x3, t) =
∂ϕ

∂x3
− ∂Ψ2

∂x1

= −A1ζ1

(
e−ζ1x3 − 2k2

ζ2
2 + k2

e−ζ2x3

)
cos(kx1 − ωt) . (7.245)

The motion we have calculated describes the displacement of a particle in the
vertical plane Ox1x3. We display in figure 7.13 schematics of these motions for
particles along the vertical axis. Note that the motion of a particle traces an
ellipse with the long axis normal to x1 and the short axis normal to x3. Recall
that the parametric equations of an ellipse are expressed as u1 = C1 sin θ and
u3 = C3 cos θ, where C1 and C3 are the ellipse’s semi-axes. This is due to the
fact that dilatation waves and shear waves are both present in surface wave
propagation. In addition, the solution expressed by (7.244) and (7.245) shows
that the amplitude of the Rayleigh wave diminishes very rapidly along the axis
x3. The rate of this decrease depends on the values of ζ1 and ζ2 defined by
(7.232).

7.5.3 One-Dimensional Elastic Plane Waves

When a dynamic perturbation occurs (impact load, earthquake, explosion, etc),
the waves propagate in all directions. At relatively large distances from the per-
turbation, we can consider the generated waves to propagate in a plane. Thus
the material particle is displaced either in the propagation direction or perpen-
dicular to it. These waves are called longitudinal and transversal waves,
respectively, and correspond to the dilatation and shear waves previously de-
fined.

Take a longitudinal wave travelling in direction x1. In this case, u2 = u3 = 0
and u1 is function only of x1 and time t, and (7.209) reduces to

c21
∂2u1

∂x2
1

=
∂2u1

∂t2
. (7.246)
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This last equation can be solved by the well-known method of separation of
variables which is presented in the next section. For this particular equation
however, there exists a special method called d’Alembert’s solution which is
described below.

We assume that there exists a function f with continuous first and second
derivatives. We obtain the first and second derivatives using the chain rule

∂f(x1 − c1t)
∂t

= −c1
∂f(x1 − c1t)

∂x1
, (7.247)

∂2f(x1 − c1t)
∂t2

= c21
∂2f(x1 − c1t)

∂x2
1

. (7.248)

Obviously, from the second equation, f satisfies the wave equation (7.246).
Similarly, we can show that for a function g, with continuous first and second
derivatives, g(x1 + c1t) is a solution of (7.246). Given that (7.246) is a linear
equation, the sum of f and g,

u1(x1, t) = f(x1 − c1t) + g(x1 + c1t), (7.249)

must also be a solution of (7.246). The solution (7.249) represents the prop-
agation of perturbations, to the right (function f(x1 − c1t)) and to the left
(function g(x1 + c1t)). For example, consider a cord stretched from −∞ to
+∞. The function f(x1 − c1t) is constant when x1 − c1t = constant. Thus
an increase in time is necessary to compensate for the increase of x1 to main-
tain the function constant as shown in figure 7.14. This behavior represents
propagation of an undeformed perturbation to the right along the cord as time
increases. Similarly, g(x1 + c1t) represents a perturbation travelling to the left.
To continue further in this analysis, it is necessary to define the functions f
and g.

x1

t1

u1

t2

c1

Fig. 7.14 Propagation of a perturbation given by f(x1 − c1t) in (7.249)

The specific forms of f and g are determined by the initial displacement
described by the function φ(x1) and the initial velocity of the cord, θ(x1), at
every point x1. With these two functions and (7.249), we obtain

u1(x1, 0) = φ(x1) = f(x1 − c1t)
∣∣
t=0

+ g(x1 + c1t)
∣∣
t=0

= f(x1) + g(x1) , (7.250)

∂u1(x1, t)

∂t

∣∣
x1,t=0

= θ(x1) = −c1
∂f(x1 − c1t)

∂x1

∣∣
t=0

+ c1
∂g(x1 + c1t)

∂x1

∣∣
t=0

= −c1
∂f(x1)

∂x1
+ c1

∂g(x1)

∂x1
. (7.251)
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Integrating (7.251) with respect to x1, leads to

−f(x1) + g(x1) =
1

c1

∫ x1

x0

θ(x′1)dx′1 . (7.252)

Combining (7.252) with (7.250), we find

f(x1) =
1

2

[
φ(x1)− 1

c1

∫ x1

x0

θ(x′1)dx′1

]
(7.253)

g(x1) =
1

2

[
φ(x1) +

1

c1

∫ x1

x0

θ(x′1)dx′1

]
. (7.254)

With the forms of f and g known, the complete solution is written as

u1(x1, t) = f(x1 − c1t) + g(x1 + c1t)

=

[
φ(x1 − c1t)

2
− 1

2c1

∫ x1−c1t

x0

θ(x′1)dx′1

]
+

[
φ(x1 + c1t)

2
+

1

2c1

∫ x1+c1t

x0

θ(x′1)dx′1

]
(7.255)

=
φ(x1 + c1t) + φ(x1 − c1t)

2
+

1

2c1

∫ x1+c1t

x1−c1t
θ(x′1)dx′1 .

Example 7.1

An infinite cord is subject to the initial conditions

φ(x1) =
0.02

1 + 9x2
1

, θ(x1) = 0 . (7.256)

Find the expression of the subsequent motion of the cord. We assume that
the wave speed is 220 ms−1.

Using (7.256) in (7.255), we obtain

u1(x1, t) =
1

2
[φ(x1 + c1t) + φ(x1 − c1t)]

=
1

2

0.02

1 + 9(x1 − c1t)2
+

1

2

0.02

1 + 9(x1 + c1t)2
. (7.257)

The motion is shown schematically in figure 7.15. The configuration at
time t0 = 0 shows the initial perturbation (7.256). Then, it splits into two
waves that propagate to the left and right as indicated in solution (7.257)
and shown in figure 7.15 for t0 < t1 < t2 < t3.
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x1x1

x1

u1

t0 = 0 t1 > t0

t2 > t1 t3 > t2

u1

u1

Fig. 7.15 Propagation of a perturbation along an infinite length cord in the initial
configuration (t0 = 0) and later times (t1, t2, t3)

7.5.4 Propagation of a Wave in an Elastic Cord

The vibration of a cord is a physical problem which illustrates many aspects of
wave propagation. It allows us to examine d’Alembert’s solution (7.249) and
has many applications in the study of musical instruments. In addition, the
mathematical analysis of a cord in tension has applications in the study of high
tension power transmission lines.

Consider an elastic cord subject to tension T between two points on the
axis as shown in figure 7.16(a). In the following formulation of the problem,
we make several hypotheses.

• The motion is entirely in a plane, and every particle of the cord moves at a
right angle with respect to the position of the cord in equilibrium. In this
case u1 = u3 = 0 and u2 is only a function of x1 and time t. For simplicity
in the expression of the equations, we set u2(x1, t) = v(x1, t).

• The cord can only transmit force in the direction of its length.

• The slopes of the deformed cord are small.

• The deflections of the cord are supposed small so that they do not signifi-
cantly affect the tension T and there is no energy dissipation.
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υ

x1 + Δx1x1 x1

Δx1
α|x1

α|x1 + Δx1

w(x1,υ,υ,t)

T

T

(a)

(b)

Fig. 7.16 (a) Deformed profile of a cord in tension (b) A segment of length ∆x1

The mass of the cord per unit length is a known function m′(x1). In addition
to the elastic and inertial forces inherent in the system, the cord can be subject
to a distributed load w(x1, v, v̇, t). Now consider a segment ∆x1 (fig. 7.16(b)).
Applying Newton’s law to the segment in figure 7.16(b), we can write

m′∆x1
∂2v

∂t2
= T sinα

∣∣
x1+∆x1

− T sinα
∣∣
x1

+ w∆x1 . (7.258)

The third hypothesis implies that sinα
∣∣
x1
≈ tanα

∣∣
x1

and sinα
∣∣
x1+∆x1

≈
tanα

∣∣
x1+∆x1

. Inserting these approximations in (7.258) and dividing by ∆x1

we have

m′
∂2v

∂t2
= T

tanα
∣∣
x1+∆x1

− tanα
∣∣
x1

∆x1
+ w . (7.259)

Then, by taking the limit ∆x1 → 0 and by observing that tanα
∣∣
x1

= ∂v
∂x1

and

that tanα
∣∣
x1+∆x1

= ∂v
∂x1

+ ∂2v
∂x2

1
dx1, relation (7.259) reduces to the following dif-

ferential equation:
∂2v

∂t2
=
T
m′

∂2v

∂x2
1

+
w

m′
. (7.260)

In the majority of practical problems, the external forces are negligible and
m′(x1) is constant along the cord. Thus w(x1, v, v̇, t) can be considered to be
zero and m′(x1) is replaced by a constant m′0. In these conditions, (7.260)
further reduces to

∂2v

∂t2
= a2 ∂

2v

∂x2
1

, a2 =
T
m′0

, (7.261)
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where a has the dimensions of a velocity, since (MLT−2M−1L)1/2 = (L2T−2)1/2.
Thus (7.261) is the equation of wave propagation (7.246) for which the solution

v(x1, t) = f(x1 − at) + g(x1 + at) (7.262)

represents two waves propagating along the cord at speed a, one to the right,
and one to the left as seen in figure 7.15.

It is worth noticing that in addition to describing the waves on a cord,
equation (7.261), or (7.246), is applicable to different types of wave propagation.
In particular, a sound wave v(xi, t) represents the displacement of a gas where
a wave propagates. In the case of electromagnetic waves, v(x1, t) represents
the electric or magnetic field component.

Now consider the solution of the partial differential equation by the method
of separation of variables. The solution by this method allows us to directly
treat the boundary problem encountered in many engineering and physics ap-
plications. According to this method, the solution of (7.261) is expressed in
the form

v(x1, t) = X(x1)T (t) . (7.263)

By substitution of (7.263) in (7.261), we obtain

a2 d
2X/dx2

1

X
=
d2T/dt2

T
= γ . (7.264)

Then, from (7.264) we have two ordinary differential equations

d2X

dx2
1

− γ

a2
X = 0 (7.265)

d2T

dt2
− γT = 0 . (7.266)

The solution of these equations depends on the positive, negative, or zero value
of the parameter γ. If γ > 0 or γ = 0, the solution of (7.261) is not periodic
and cannot describe the undamped vibration of a cord. The only values that
produce a periodically vibrating cord are those corresponding to γ < 0.

Since γ is negative, it is customary to define γ = −ω2. Then (7.265) and
(7.266) take the forms

d2X

dx2
1

+
(ω
a

)2

X = 0,
d2T

dt2
+ ω2T = 0 , (7.267)

for which the solutions are

X(x1) = A cos
ω

a
x1 +B sin

ω

a
x1 (7.268)

T (t) = C cosωt+D sinωt , (7.269)

such that

v(x1, t) =
(
A cos

ω

a
x1 +B sin

ω

a
x1

)
(C cosωt+D sinωt) , (7.270)
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where A,B,C, and D are arbitrary constants and ω can be interpreted as a
circular frequency that depends on the boundary conditions and which must
be evaluated. Note that the solution (7.270) is periodic since it is the same with
an increment of time by a factor 2π/ω. The first part of the expression defines
the form of the cord, the second, its motion.

Equation (7.270) can be rewritten in the following form

v(x1, t) = AC cos
ω

a
x1 cosωt+AD cos

ω

a
x1 sinωt

+ BC sin
ω

a
x1 cosωt+BD sin

ω

a
x1 sinωt . (7.271)

Using elementary trigonometric identities, we express (7.271) as

v(x1, t) = B1 sin
(ω
a
x1 + ωt

)
+B2 sin

(ω
a
x1 − ωt

)
+ B3 cos

(ω
a
x1 + ωt

)
+B4 cos

(ω
a
x1 − ωt

)
, (7.272)

where Bi(i = 1, 2, 3, 4) are arbitrary constants. It is interesting to note that this
last equation resembles d’Alembert’s solution (7.249) and expresses harmonic
wave propagation along a cord in tension. For example, one term of this solution

v(x1, t) = B4 cos
(ω
a
x1 − ωt

)
(7.273)

represents a wave propagating in direction x1 at speed a as we show in figure
7.17. It is clear that the other terms of (7.272) can be similarly interpreted.

υ

x1

t1

B4

–B4

a

t2 t3

Fig. 7.17 Transverse deviations at successive time intervals as result of wave prop-
agation (7.273)

Now let us examine the energy components during wave propagation. As-
suming that there is no energy dissipation, the cord contains kinetic and po-
tential energies of deformation. From (7.273), the speed and deformation are
expressed as

∂v

∂t
= −B4ω sin

(ω
a
x1 − ωt

)
(7.274)

ε12 =
1

2

∂v

∂x1
= −B4

1

2

ω

a
sin
(ω
a
x1 − ωt

)
. (7.275)
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Let S be the area of a transverse section of the cord. Using (7.273), the kinetic
and potential energies of an element dx1 are

dE =
1

2
ρSdx1

(
∂v

∂t

)2

=
1

2
ρ(B4ω)2 sin2

(ω
a
x1 − ωt

)
Sdx1 (7.276)

dU = 2µSε2
12dx1 = µ

1

2

(
B4

ω

a

)2

sin2
(ω
a
x1 − ωt

)
Sdx1 . (7.277)

Eliminating the parameter for the wave speed a with (7.213), it is obvious that
dE = dU .

Example 7.2

Vibration of an Elastic Cord

Now consider an elastic cord stretched between two points separated by
a distance ` (fig. 7.18). The general solution to this problem is given by
(7.270).

To obtain the solution for the cord in figure 7.18, we need to determine
the four constants A,B,C, and D and the parameter ω for the boundary
conditions v(0, t) = v(`, t) = 0 and the initial condition. In order to do so,
it is useful to choose the velocity of the cord as zero at time t = 0 and to
assume that at t = 0 the cord in its initial form is in a normal, or principal,
mode. We will define such a mode later in this section.

The two boundary conditions specified above lead to

0 = A (D sinωt+ C cosωt) ,

0 =
(
A cos

ω

a
`+B sin

ω

a
`
)

(C cosωt+D sinωt) . (7.278)

These must be satisfied at all times, thus

A = 0, B sin
ω

a
` = 0 . (7.279)

For a non-trivial solution, B cannot also be zero, thus sin ω
a ` = 0, from

which we obtain
ω

a
` = nπ , (7.280)

with n = 1, 2, 3, . . .. Therefore ω is given by

ω =
nπ

`
a , (7.281)

and the frequency and period of the wave are

f =
ω

2π
=

n

2`
a, T =

1

f
=

1

a

2`

n
. (7.282)
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υ

υ

ℓ

x1

Fig. 7.18 Deformed elastic cord between two points separated by a distance `

We will study two initial conditons in the following. Differentiating (7.270)
with respect to time, we find for the velocity

∂v

∂t
=
(
B sin

ω

a
x1

)
(D cosωt− C sinωt)ω . (7.283)

By imposing zero velocity at t = 0, we obtain D = 0 since B 6= 0. Conse-
quently the solution reduces to

v(x1, t) = BC sin
ω

a
x1 cosωt . (7.284)

At t = 0, this last equation yields

v(x1, 0) = BC sin
ω

a
x1 , (7.285)

which defines a principal mode configuration for the initial condition.
Finally, the solution to the vibrating cord is expressed by

v(x1, t) = A sin
ω

a
x1 cosωt = A sin

nπ

`
x1 cos

nπa

`
t , (7.286)

where A represents the maximum value (or amplitude) of the deviation
v(x1, t) and n = 1, 2, 3, . . .. Note that the first term in the product (7.286)
represents the configuration, and the second, the motion of the cord. The
wavelength xλ is defined by the length of a sinusoidal wave for sin ω

ax1, or

ω

a
x1 = 2π or xλ =

2`

n
. (7.287)

Figure 7.19 shows the forms of the three principal vibration modes according
to (7.286). They are

(a) n = 1, xλ = 2`, ω =
π

`
a ;

(b) n = 2, xλ = `, ω =
2π

`
a ;

(c) n = 3, xλ =
2

3
`, ω =

3π

`
a .
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A

3ℓ/2 3ℓ/2 3ℓ/2

Fig. 7.19 The first three principal vibration modes (a), (b), and (c) of a stretched
cord

The results of the analysis show that the cord’s motion goes up and down
passing through the equilibrium position. This kind of motion is called
a stationary wave. We also point out that (7.286) is the result of the
interference of two waves, one progressive, the other regressive, propagating
in opposite directions. To show this, we can use trigonometric identities to
rewrite (7.286) as follows:

v(x1, t) =
A
2

[ (
sin

ω

a
x1 cosωt+ cos

ω

a
x1 sinωt

)
+
(

sin
ω

a
x1 cosωt− cos

ω

a
x1 sinωt

) ]
= A

[
sin

ω

a
(x1 + at) + sin

ω

a
(x1 − at)

]
. (7.288)
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Also, since the stationary wave solution (7.286) represents a typical term of
(7.271), we can say that the general solution for the propagation of a wave
(7.272) can be derived from the solution for a stationary wave (7.271).

The method described in this section leads to the solution for the principal
vibrational modes of a stretched elastic cord. The solution is the same for
the principal vibrational modes of common types of elastic bodies. Although
these modes can exist in isolation, they can also occur simultaneously. In the
latter case, the solution consists of the sum of the principal mode solutions.

Thus the elastic cord solution (7.270) can be expressed as a sum over n of
the solutions

v(x1, t) =
∞∑
n=1

u1n(x1, t) (7.289)

=
∞∑
n=1

(
An cos

nπ

`
x1 +Bn sin

nπ

`
x1

)(
Cn cos

nπa

`
t+Dn sin

nπa

`
t
)
,

where (7.270) is used with ω given by (7.281). From a mathematical point
of view, this is an expression of the fact that since the wave equation (7.261)
is linear with many solutions that are functions of n (that is, n = 1, 2, 3, . . .),
the sum of the solutions is also a solution. The constants An, Bn, Cn, and
Dn, (n = 1, 2, 3, . . . ), are also related to the boundary and initial conditions.
This approach is explained in the study of torsional vibration of a circular
elastic shaft in the following example.

Torsional Vibration of a Circular Shaft

As a second problem leading to a partial differential equation similar to (7.261),
we consider a shaft of length ` (fig. 7.20(a)) subject to torsional vibration. The
material in the shaft is assumed to be homogeneous with a uniform density ρ,
and the area and shape of the section are constant.

θ

θ
∂Mt 

∂x1

x1

x1

x1

x1 + dx1

x1 + dx1

dx1

dx1

Mt

(a)

(b)

Mt +       dx1



Fig. 7.20 (a) A circular shaft subject to torque (b) An infinitesimal slice dx1
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In addition to the elastic and inertial forces inherent in the system, the
shaft could be subject to a torque distributed by unit length w(x1, θ, θ̇, t). In
the following formulation of the problem, we assume that

• the transversal sections of the shaft remain plane during deformation,

• a typical transverse section rotates around its center of gravity,

• the rotation of the shaft is small,

• there is no energy dissipation.

From elementary solid mechanics, we know that, for static conditions, the vari-
ation of the torsion angle θ(x1) along the shaft axis dθ/dx1 is expressed as
follows:

dθ(x1)

dx1
=
Mt(x1)

µIp
, (7.290)

where Mt(x1) is the applied torque, µ the shear modulus, and Ip the polar
moment of inertia of the transverse circular section. For the problem treated
here, the torsion angle is a function of the time and space variables. Then
(7.290) is rewritten as

∂θ(x1, t)

∂x1
=
Mt(x1, t)

µIp
. (7.291)

The partial derivative of (7.291) with respect to x1 yields

∂Mt(x1, t)

∂x1
= µIp

∂2θ(x1, t)

∂x2
1

. (7.292)

In order to establish the differential equation of motion, we consider an in-
finitesimal segment of the shaft, between two transversal sections separated by
distance dx1 (fig. 7.20(b)). The moment of inertia of this slice is

dJ =

∫
r2dm =

∫
ρr2dSdx1 = ρdx1

∫
r2dS = ρIpdx1 , (7.293)

where dm is the mass of an element at a distance r from the center of the section.
Applying Newton’s law in a torsional form to the infinitesimal segment dx1 (fig.
7.20(b)), we have

(Ip ρ dx1)
∂2θ(x1, t)

∂t2
=

(
Mt(x1, t) +

∂Mt(x1, t)

∂x1
dx1

)
−Mt(x1, t) + w dx1

=
∂Mt(x1, t)

∂x1
dx1 + w dx1 .

Dividing by dx1 and using (7.292) leads to

∂2θ(x1, t)

∂t2
= a2 ∂

2θ(x1, t)

∂x2
1

+ w . (7.294)

In many interesting cases, the external torque w can be neglected, that is,
w(x1, θ, θ̇, t) = 0. Then, relation (7.294) has the same form as the wave equation
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(7.246) or (7.261) for an elastic cord. Note that a =
√
µ/ρ has the dimensions

of a velocity.

By separation of variables, the solution is of the form

θ(x1, t) = X(x1)T (t) . (7.295)

Following the same procedure as for the cord problem treated in the preceding
section, the solution is expressed as

θ(x1, t) =
(
A cos

ω

a
x1 +B sin

ω

a
x1

)
(C cosωt+D sinωt) . (7.296)

The ends of the shaft can be fixed or free with respect to rotation. In this
section we study the case of a shaft with both ends free. To determine the
constants in (7.296), the boundary and initial conditions must be specified.
Given the case of free shaft ends, the torque there must be zero. Taking into
account (7.291), these conditions yield

∂θ(0, t)

∂x1
=
∂θ(`, t)

∂x1
= 0 . (7.297)

From (7.296), we find

∂θ

∂x1
=
(
−Aω

a
sin

ω

a
x1 +B

ω

a
cos

ω

a
x1

)
(C cosωt+D sinωt) . (7.298)

The first condition of (7.297) leads to

B
ω

a
(C cosωt+D sinωt) = 0,∀ t . (7.299)

Thus B = 0. And similarly, imposing the second condition (7.297), we have

−Aω
a

sin
ω

a
`(C cosωt+D sinωt) = 0,∀ t . (7.300)

For a non-trivial solution, A cannot be zero, so we must have

sin
ω

a
` = 0, or

ω

a
` = nπ . (7.301)

As for the case of the elastic cord, ω takes the following values

ωn =
nπa

`
, n = 1, 2, 3, . . . . (7.302)

It is clear that we have an infinite number of solutions. The nth solution of the
problem is

θn(x1, t) = cos
ωn
a
x1 (Cn cosωnt+Dn sinωnt) . (7.303)

Note that the constant An has been absorbed into the constants Cn and Dn.
Since the wave equation is linear, the sum over n of all the solutions is also a
solution

θ(x1, t) =
∞∑
n=1

θn(x1, t) =
∞∑
n=1

cos
nπx1

`

(
Cn cos

nπa

`
t+Dn sin

nπa

`
t
)
.

(7.304)
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Relation (7.304) must satisfy the following initial conditions

θ(x1, 0) = f(x1) and
∂θ(x1, 0)

∂t
= g(x1) , (7.305)

where the two functions f(x1) and g(x1) are known. To satisfy these conditions,
we must have

θ(x1, 0) = f(x1) =

∞∑
n=1

Cn cos
nπx1

`
. (7.306)

This last result implies that Cn are the coefficients in the half-range cosine
expansion of f(x1) over the interval (0, `)

Cn =
2

`

∫ `

0

f(x1) cos
nπx1

`
dx1 . (7.307)

The second initial condition imposes

∂θ(x1, t)

∂t

∣∣∣
t=0

= g(x1) =
∞∑
n=1

Dn
nπa

`
cos

nπx1

`
, (7.308)

such that Dn
nπa
` are the coefficients in the half-range cosine expansion of g(x1)

over the interval (0, `)

Dn
nπa

`
=

2

`

∫ `

0

g(x1) cos
nπx1

`
dx1 or Dn =

2

nπa

∫ `

0

g(x1) cos
nπx1

`
dx1 .

(7.309)
Note that the same analysis can be carried out for different boundary condi-
tions, that is, when both ends of the shaft are fixed or when one is fixed and
the other is free in rotation.

Longitudinal Vibration of a Prismatic Beam

Using elementary beam theory, and following the same procedure as for torsion
of the circular bar treated above, the equation for longitudinal waves in a beam
(fig. 7.21) is

∂2u1(x1, t)

∂t2
= a2 ∂

2u1(x1, t)

∂x2
1

, (7.310)

where

a =

√
E

ρ
(7.311)

is the longitudinal wave speed.
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dx1 u1 + du1

N + dN

u1

a

(a)

(b)
N

Fig. 7.21 (a) A thin beam subject to longitudinal vibrations (b) A slice of length
dx1

The derivation of (7.310) is left as an exercise for the reader.

We conclude this section with values of the wave speed in typical elas-
tic bodies. Using the properties from table 6.2, we obtain the values in the
following table.

Table 7.1 Wave speed in elastic solids

Wave speed (m/s) Steel Glass Rubber

Dilatation 5240 5505 →∞

Longitudinal 5047 5253 242

Shear or transversal 3169 3405 140

The first line for the wave speed corresponds to relation (7.212) and the
second to (7.311). The transversal wave speed is from (7.213). Note that the
dilatation wave speed for rubber is not defined, since we assume incompress-
ibility and ν = 0.5. Using expression (7.311), the longitudinal wave speed has a
finite value. For the other materials, the longitudinal speed is smaller by about
4%, because the lateral effects induced by Poisson’s coefficient are neglected in
elementary beam theory.
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7.6 Exercises

7.1 Show that in the case of plane strain, the equilibrium equations can be
written in terms of the displacement in the form

µ

(
∂2u1

∂x1
2

+
∂2u1

∂x2
2

)
+ (λ+ µ)

∂

∂x1

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f1 = 0 (7.312)

µ

(
∂2u2

∂x1
2

+
∂2u2

∂x2
2

)
+ (λ+ µ)

∂

∂x2

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f2 = 0 , (7.313)

where µ = E/2(1 + ν) is the shear modulus and λ is related to E and ν by
relation (6.112).

7.2 Show that in the case of plane stress, the equilibrium equations can be
expressed in terms of the displacement in the form

µ

(
∂2u1

∂x1
2

+
∂2u1

∂x2
2

)
+

E

2(1− ν)

∂

∂x1

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f1 = 0 (7.314)

µ

(
∂2u2

∂x1
2

+
∂2u2

∂x2
2

)
+

E

2(1− ν)

∂

∂x2

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f2 = 0 . (7.315)

7.3 Show that if a vector field g(x) is such that

gi,mmnn = 0 , (7.316)

then the displacement field defined by

ui =
λ+ 2µ

µ(λ+ µ)
gi,mm −

1

µ
gn,ni (7.317)

satisfies Navier’s equations without volume forces.

7.4 Prove that Navier’s equations (7.7) with f = 0 are equivalent to the
following equations:

1) (λ+ 2µ)∇2u+ (λ+ µ)∇×∇× u = 0 ,

2) (1− 2ν)∇2u+∇ ·∇u = 0 ,

3) (λ+ 2µ)∇∇ · u− µ∇×∇× u = 0 .

7.5 Express the wave equation (7.209) in terms of div u as follows:

(λ+ 2µ)∇2(div u) = ρ
∂2(div u)

∂t2
. (7.318)

7.6 Express the wave equation (7.205) in terms of the rotation components of
the displacement field ∇× u as follows:

µ∇2(∇× u) = ρ
∂2(∇× u)

∂t2
. (7.319)
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7.7 For the corner of angle 2α and unit thickness, with a moment M applied
as shown in figure 7.22, determine whether a stress function of the form

Φ(r, θ) = Aθ +B sin 2θ (7.320)

is a solution of the problem. Then show that σrr is given by

σrr = −2C

r2
sin 2θ , (7.321)

with C = M/(sin 2α− 2α cos 2α).

M

M

r

θ

αα

x1

x2

Fig. 7.22 Corner subject to a moment M

7.8 For a corner with angle 2α and unit thickness, with the load P as indicated
in figure 7.23.

(a) Prove that the stress function

Φ(r, θ) = Crθ sin θ (7.322)

provides a solution for the stresses of the problem. Then express the com-
ponents of the stress and determine the constant C.

(b) How can the stresses be found for a semi-infinite unit thickness plate with
a linear force load as in the previous case?
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σrr r

θ

αα

P

x1

x2

Fig. 7.23 Corner subject to a linear force P





Chapter 8

Introduction to Newtonian

Fluid Mechanics

8.1 Introduction

Fluids are omnipresent in nature, technology, and everyday life, for example,
in the water for washing one’s hands and coffee or tea, the air we breathe, the
blood circulating in our vascular system, etc. The two most common fluids, air
and water, are typical examples of the two major categories: compressible and
incompressible fluids.

We have all encountered a flat tire on our bicycle and have had to pump
air into the tube. Then we experimentally discover that air can be compressed,
thus the pressure increased, which is very useful in this particular case. As for
water, we generally consider it to be an incompressible fluid. It is an idealization
of reality, since the speed of sound in water is 1500 ms−1, that is, around five
times the speed of sound in air.

The effects of compressibility result in characteristic physical phenomena
such as the propagation of acoustic waves or the presence of shock waves in
supersonic flow. Nonetheless, we can treat air as an incompressible fluid when
the Mach number is small. This is common practice in automobile aerodynam-
ics. We can also treat water as a compressible fluid, if we are interested in the
propagation of acoustic waves, for example, in the oceans.

Another classification of fluids is made on the basis of their Newtonian
or non-Newtonian character. Air and water are Newtonian fluids. Molten
polymers, blood, mud, agro-alimentary liquids, paints, toothpaste, etc. are
non-Newtonian.

Couette flow between two circular cylinders is an adequate experiment to
discriminate these two fluid categories. We have two vertical, coaxial cylinders.
The outer one, for example, can be fixed, while the inner one is forced to
rotate at a constant speed of around a dozen revolutions per minute. The
annular space between them is filled with liquid fluid, up to a certain height.
At the free surface the liquid is in contact with air. In the case of a Newtonian
fluid (such as water), we observe that the free surface takes the form of a
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paraboloid of revolution under the action of centrifugal force. A non-Newtonian
fluid, however, accumulates around the rotating inner cylinder. This is the
Weissenberg effect.

The Navier-Stokes equations describe the dynamics of viscous flow. They
are derived starting from the conservation and constitutive equations. In this
chapter, we choose the constitutive equations of Newtonian viscous fluids, for
which the tensor σ is a linear function of the tensor d.

In some industrial processes we encounter materials whose behavior in the
fluid state departs from Newtonian character. In these cases we turn to concepts
from rheology to study the constitutive equation which best represents the
phenomena associated with fluid flow. The reader is referred to the monograph
[9] for more information.

Nonetheless, the Navier-Stokes equations constitute a sufficiently rich model
to be applied in a very large number of cases. We have chosen the Eulerian
representation of the conservation equations, as fluids generally experience very
large motions, but also because the common problems are defined in spatial (as
opposed to material) coordinate systems.

The physics of Newtonian fluids is characterized by the non-dimensional
Reynolds number defined by the relation

Re =
UL

ν
, (8.1)

where U and L are, respectively, a reference velocity and length for the flow
under consideration, and ν is the kinematic viscosity of the fluid. This number
can take values from zero to several million. When Re is near zero, the flows
are laminar. Their geometric configuration and dynamics are relatively simple.
Their interpretation with analytic solutions permits a profound understanding
of the associated physics. As Re increases, the laminar flows experience in-
stabilities which gradually lead to fully developed turbulence. It is the latter
condition that we experience during a flight when an aircraft is violently shaken
by atmospheric turbulence. Understanding turbulence still remains one of the
great challenges of physics.

The reader can find additional information in the following texts: [2, 3, 25,
26, 28, 56, 64].

8.2 Physical Considerations for Laminar and Turbulent

Incompressible Flows

In this section we only consider incompressible fluid flows as a function of the
Reynolds number (eqn. (8.1)). As we have already stated, the physics of flow
changes drastically, going from creeping flows at a very low Reynolds number
to those for which Re ∼ 106 ∼ 107.

Creeping fluid flows are laminar (from the Latin word laminae: thin layers);
they are very often stationary, and the streamlines follow the contours of the
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obstacles placed in the flow. These flows present effects that are easy to predict
and to interpret, as they correspond to the linear Stokes equation. They can
be found in lava, terrestrial magma, molten glass, and very viscous polymers.

As Re increases, the non-linear terms of the Navier-Stokes equations be-
come preponderant and for values of a few dozen, the laminar flows become
unstable and secondary flows are produced. These are called transitional flows.

Fig. 8.1 Flow around a cylinder at Re ' 0

An excellent example is the uniform, parallel flow upstream of a horizontal
circular cylinder. The Reynolds number is defined by U , the uniform upstream
velocity, L = D, the diameter of the cylinder, and ν, the kinematic viscosity of
the fluid. Figure 8.1(1) shows the flow at Re ' 0 for which the streamlines are
symmetric with respect to the horizontal, vertical, and diagonal directions.

As Re grows, for the values 13.1 and 26 shown in figure 8.2, it is seen that
the flow is stationary and symmetric with respect to the horizontal axis. How-
ever, two counter-rotating recirculation zones appear behind the cylinder. The

Fig. 8.2 Flow around a cylinder for (left) Re = 13.1 and (right) 26

(1)Figures 8.1–8.4, 8.7, and 8.11 are taken from text [62]. Attempts to identify the
copyright owner have not as yet succeeded, and he or she is invited to contact the
publisher.
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length of the recirculation zone increases linearly with Re while the distance
separating the centers of the vortices grows as

√
Re.

At Re = 47.5, the first critical Reynolds number is reached, at which point
the physical phenomena become unstable. A von Kármán vortex street is
produced behind the cylinder with vortices alternately shed above and below.
A similar vortex street is shown in figure 8.3 for Re = 140, taken from [62]. The
shed vortices are regularly produced at a frequency corresponding to a limit
cycle in phase space: a Hopf bifurcation. This frequency, denoted f , leads to
the definition of the Strouhal number, St

St =
fD

U
. (8.2)

For values of Re around one hundred, St is 0.13.

Fig. 8.3 von Kármán vortex street for Re = 140

Stability analyses are based on the Ginzburg-Landau equation ([10]) which
determines the non-linear development of perturbations superimposed on an
underlying flow. This theory extends over a vast domain that this book cannot
cover. We refer the reader to specialized texts, for example, [5, 11, 44]. If
the Reynolds number is further increased, the flow passes through transitional
regimes before finally attaining the turbulent state. An excellent synthesis of
the dynamics of the wakes of circular cylinders is that of Williamson [66].

Figure 8.4 shows the flow pattern for weak turbulence. The boundary layer,
where viscous effects are of the same order of magnitude as inertial effects, is
laminar in front of the cylinder, develops around it, undergoes a separation, and
produces a turbulent wake. It is still possible to observe two vortices resulting
from the non-linear dynamics.

At Re = 104 as in figure 8.5, the flow has roughly the same form, with two
identifiable vortices.
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Fig. 8.4 von Kármán vortex street for Re = 2000

Fig. 8.5 von Kármán vortex street for Re = 104

When the Reynolds number reaches a few tens of thousands, or millions,
the physics of the flow presents a multitude of spatial and temporal scales; fully
developed turbulence is present. Turbulence exists in the majority of flows in
nature. Everyone has certainly experienced it during a flight: the chaotic and
random effects of turbulence which correspond to dynamics with very rapid
variation. However, understanding of turbulence is one of the rare challenges
in modern physics that has not been completely attained.

Non-linear equations as a rule are very difficult to solve analytically, and
the Navier-Stokes equations do not escape this rule. It is one of the reasons why
numerical simulation has come to dominate as the only way of performing an
in-depth analysis of such complex phenomena. The volume and finite element
methods constitute a pertinent choice to perform this type of calculation [40].
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8.3 Physical Considerations for Compressible Fluid Flows

Compressible fluids, such as air or gases in general, present phenomena that
are complex and very interesting for scientists and engineers.

Compressible flows and their effects need to be taken into account for high
speed flows in particular, which we refer to as of gas dynamics. In this case, the
values of the Reynolds number are very large. For example, as the kinematic
viscosity of air at room temperature is νair = 1.45 10−5 m2s−1, with speeds
of the order of hundreds of meters per second, the Reynolds number is in the
millions. The flows are obviously turbulent. In aerodynamics, viscous effects
are present in zones near the body or obstacles in the flow. This is one reason
for which we can neglect turbulence and viscous effects and only take into
account pressure as an important variable. It is the pressure that will produce
the necessary lift on the wing for the flight of an aircraft. The modeling of
these problems thus uses the Euler equations for a perfect fluid. If viscous
and turbulent effects are taken into account, the Navier-Stokes equations are
needed to compute the drag , that is, the force acting in the opposite direction
of a rigid body in steady translation in a fluid at rest at infinity.

Compressible flows are characterized by the global Mach number

M =
U

a
, (8.3)

where U is a reference velocity such as that of the flow upstream of a body, and a
is the speed of sound defined by (6.152). The Mach number typically is between
0 and 8. The case M = 0 is that of an incompressible fluid corresponding to
infinite speed of sound as ρ = cnst.

8.3.1 Subsonic, Supersonic and Hypersonic Flows

Consider a gas in uniform stationary flow with velocity v = Ue1. The presence
of a fixed object in this flow at a point P generates a perturbation, or sound
wave, which propagates in space at the speed of sound (for the gas or air).
This perturbation produces pressure and density fluctuations. The velocity at
which the perturbation propagates with respect to a fixed coordinate system
is thus the sum of the velocity of the gas plus the speed of sound a in all
directions, characterized by a unit vector n. The resulting velocities, v + an,
of the perturbation from P depend on the various directions of n in space.
Graphically, they can be obtained by drawing a horizontal vector v from P; at
its end, construct the sphere of radius a. All vectors from P to a point on the
sphere are possible solutions for the speed and direction of the propagation.

For 0 < M < 1, we have subsonic flow with U < a. Referring to figure
8.6(a), we note that the resulting velocity propagates into all space as the sphere
encloses the point P. The flow can also be interpreted in the following way. As
the flow is moving from left to right at velocity ‖v‖ < a, the emitted wave at the
initial time t = t0 is found at time t = t1 > t0 on the sphere of radius a(t1− t0).
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v vP
α

anan
P

(a) (b)

Fig. 8.6 Propagation of perturbations in a gas: (a) subsonic case and (b) supersonic
case

During this time the flow has moved a distance (t1 − t0)v. As ‖v‖ < a, the
point P remains inside the sphere created by the initial perturbation.

If M > 1, the flow is supersonic. Figure 8.6(b) shows that the resulting
velocity is contained within a cone that has its vertex at P and is tangent to
the sphere centered at the end of v. This cone has a half angle of α at the apex
such that

sinα =
a

‖v‖ =
1

M
, (8.4)

and the sine is inversely proportional to the Mach number. Note that the Mach
number in (8.4) is based on the velocity v; it is thus a local Mach number which
varies with the position. In a supersonic flow, all perturbations propagate
downstream in a cone whose angle decreases as M increases. The angle α
defined by (8.4) is the Mach angle .

In summary, subsonic flow around a body affects all space in front of and
behind the body. The amplitude of the perturbation diminishes with distance.
For supersonic flow, the perturbation is produced when the flow reaches the
obstacle and only propagates downstream. It cannot “advance” upstream. This
phenomenological difference is explained by the mathematical model associated
with propagation of acoustic waves. For the subsonic case the equation is
elliptic, while for the supersonic case the equation becomes hyperbolic.

The special case M = 1 corresponds to a sonic flow and the Mach angle is
90o. All the spherically propagating perturbations are tangent to a plane per-
pendicular to v. The small (infinitesimal) perturbations accumulate to create
a finite amplitude perturbation: the sound barrier .

Flow for M > 5 is called hypersonic. In this case, the air molecules dis-
associate and the gas becomes ionized. Then one must take into account the
chemical reactions between the ionized gas components, and the thermody-
namic effects become dominant. These flows are encountered around missiles
or reentry vehicles, as, for example, space shuttles.

8.3.2 Shock Waves

When a flying object is not small (e.g., not a slender body), the generated
perturbations are no longer infinitesimal, and the separation between the zone
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of silence and the zone where the perturbations propagate becomes a curved
surface across which the pressure, density, and velocity are subjected to sudden
changes of finite amplitude. This abrupt change of the physical quantities is
called a shock and the associated surface is the shock wave . Note that the
shock wave is a compression wave. In reality, a shock wave has a certain
thickness of the order of a few millimeters. However, when the body is a
complete airplane, we approximate the shock wave as a discontinuous surface
which simplifies the mathematical treatment.

The following photographs were obtained by shadowgraphy, which accen-
tuates the index of refraction variations due to the variations of density. Light
is viewed after passing through the flow, on the opposite side; the source itself
is blocked in a focal plane, leaving only the deviated light to form an image.
The highlights thus correspond to strong refraction in the gas and sketch the
geometric configuration of the flow. These photographs were published by von
Kármán [63].

Going from M = 0.84 to M = 0.971, we see in figures 8.7 and 8.8 the
configuration of the shock waves that are produced by a projectile in free flight
through air with an incidence angle less than 1.5o. We can also recognize
the presence of a turbulent wake behind the body. Note that the nose of the
projectile has a half angle equal to 20o.

Nearing the speed of sound, the configuration of the shock waves extends
laterally over greater distances. Figures 8.9 and 8.10 show all the complexity
of the waves and their interactions.

M = 0.840

M = 0.885

M = 0.900

Fig. 8.7 Subsonic flow around a projectile at M = 0.84, 0.885, and 0.9
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M = 0.946

M = 0.971

Fig. 8.8 Subsonic flow around a projectile at M = 0.946 and 0.971

M = 0.978

Fig. 8.9 Flow near the speed of sound, M = 0.978
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M = 0.990

Fig. 8.10 Flow near the speed of sound, M = 0.99

Finally, in figure 8.11 we have a supersonic flow around a sphere of diameter
1.27 cm in free flight in air. The Mach number is M = 1.53. The shock wave
produced is curved and detached from the body taking a position in front of it.
Behind the shock, the flow returns to subsonic and covers the spherical surface
to around 45o, where 0o is the horizontal, upstream pole of the sphere. At an
angle around 90o, the laminar boundary layer separates with an oblique shock
and becomes turbulent. The wake downstream of the sphere produces a system
of weak perturbations which result in a second shock wave.

8.4 Navier-Stokes Equations

In this section we formulate the Navier-Stokes equations for compressible New-
tonian fluids, and then for an incompressible Newtonian fluid.

8.4.1 Navier-Stokes Equations for an Ideal Gas with

Constant Heat Capacity

Let us write the Navier-Stokes equations for the special case of a compressible
ideal gas with constant heat capacities.
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Fig. 8.11 Supersonic flow around a sphere at M = 1.53

With relation (6.143), the energy equation (4.23) can be put in the form

ρcv
DT

Dt
= σ :∇v − div q + r . (8.5)

The expression σ :∇v can be written as

σij
∂vi
∂xj

= σij dij = −p δij dij + λ dkk dij δij + 2µ(dij)
2

= −p dii + λ(dii)
2 + 2µ(dij)

2 ,

or by using (4.25)

σ : L = σ : d = −p trd+ λ(trd)2 + 2µ(d : d) . (8.6)
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From the equation of conservation of mass (3.41), we have the equality

trd = −1

ρ

Dρ

Dt
.

Then, the energy equation (8.5) becomes

ρcv
DT

Dt
=
p

ρ

Dρ

Dt
+ λ (trd)

2
+ 2µd : d− div q + r . (8.7)

Using the equation of state (6.136), we transform (8.7), which becomes

ρcv
DT

Dt
=
Dp

Dt
− ρRDT

Dt
+ λ(trd)2 + 2µd : d− div q + r . (8.8)

In order to obtain the full set of equations, we use the conservation of mass
(3.41), insert the constitutive equation (6.14) in the conservation of momentum
(3.96), and finally, we modify the energy equation (8.8) with Fourier’s law
(6.123) and relation (6.141). The Navier-Stokes system of equations is then
written in index form as

∂ρ

∂t
+
∂ρvi
∂xi

= 0 (8.9)

ρ
Dvi
Dt

= − ∂p

∂xi
+

∂

∂xi
(λdkk) +

∂

∂xj
(2µdij) + ρbi (8.10)

ρcp

(
DT

Dt
− γ − 1

γ

T

p

Dp

Dt

)
=

∂

∂xj

(
k
∂T

∂xj

)
+ λ

(
∂vi
∂xi

)2

+ 2µdij dij + r

(8.11)

p = ρRT . (8.12)

Note that ρcp
γ−1
γ

T
p = 1.

Equations (8.10) and (8.11) are simplified when λ, µ, and k are constants.
In addition, we use Stokes’ hypothesis

3λ+ 2µ = 0 . (8.13)

This relation has been established based on reasoning from the kinetic theory of
gases. Although this hypothesis is valid for monatomic gases, it is not valid for
polyatomic gases. Nonetheless it is widely used in aerodynamics applications.

Equations (8.10) and (8.11) then become

ρ
Dvi
Dt

= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

+
µ

3

∂

∂xi
(dkk) + ρbi (8.14)

ρcp

(
DT

Dt
− γ − 1

γ

T

p

Dp

Dt

)
= k

∂2T

∂xj∂xj
− 2

3
µ(dkk)2 + 2µdij dij + r . (8.15)
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8.4.2 Navier-Stokes Equations for an Incompressible Fluid

in Isothermal Flow

For an isothermal flow, T = cnst; the principle of conservation of energy is
trivially satisfied. Taking into account the incompressibility (ρ = cnst), the
preceding equations are simplified as

div v = 0 (8.16)

ρ
Dv

Dt
= −∇p+ µ4v + ρb . (8.17)

Equation (8.17) is a non-linear second-order partial differential equation. It
states that acceleration is produced by the actions of the pressure gradient, the
viscous forces, and the body forces.

8.5 Non-Dimensional Form of the Navier-Stokes Equations

8.5.1 Compressible Fluid Case

Denote the reference values of length, speed, pressure, density, and temperature
that characterize the flow under consideration by L, U , p0, ρ0, and T0. The
time scale is L/U and the scale for inertial forces is U2/L. Now we introduce
non-dimensional variables and functions (denoted with primes) with relations

xi = Lx′i t =
L

U
t′ vi = Uv′i p = p0p

′

ρ = ρ0ρ
′ T = T0T

′ bi = U2 b
′
i

L
.

Furthermore, for the sake of simplicity, we make the hypothesis that r = 0.

We reformulate equations (8.9), (8.12), (8.14), and (8.15) with non-dimensional
values, including constant characteristic values µ0 and k0 estimated at the tem-
perature T0, as well as cp, γ, and R:

∂ρ′

∂t′
+ v′j

∂ρ′

∂x′j
+ ρ′

∂v′j
∂x′j

= 0 (8.18)

∂v′i
∂t′

+ v′k
∂v′i
∂x′k

= − p0

ρ0U2

1

ρ′
∂p′

∂x′i
+

µ0

ULρ0

1

ρ′

(
∂2v′i
∂x′j

2 +
1

3

∂

∂x′i
(d′kk)

)
+ b′i (8.19)

ρ′
(
DT ′

Dt′
− γ − 1

γ

T ′

p′
Dp′

Dt′

)

=
k0

µ0cp

µ0

ρ0UL

∂2T ′

∂x′j
2 −

µ0

ρ0UL

U2

cpT0

2

3
(d′kk)2 − 1

2

(
∂v′i
∂x′j

+
∂v′j
∂x′i

)2
 (8.20)

p′ = ρ′ T ′ , (8.21)

if we set p0 = ρ0RT0.
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In relations (8.18)–(8.20) three non-dimensional numbers appear:

• the Reynolds number

Re = ρ0
UL

µ0
=
UL

ν0
;

• the Prandtl number
Pr =

cpµ0

k0
=
ν0

Λ
;

• the Mach number

M =
U

a0
,

which appear also in the group

p0

ρ0U2
=
RT0

U2
=

a2
0

γU2
=

1

γM2
.

The denominator of the Mach number a0 is the characteristic speed of
sound (eqn. (6.153)). The coefficient Λ defined by relation

Λ =
k0

ρ0cp

appearing in the Prandtl number is called the thermal diffusivity .

The Reynolds number expresses the relative importance of the inertial
forces with respect to the viscous forces. It takes values from zero up to several
million. For Re = 0, the Navier-Stokes equations reduce to the Stokes equation.
They govern the dynamics of slow or creeping laminar flows. For Re ∼ 106,
the flow is turbulent. The Prandtl number estimates the relative importance of
the viscous and thermal diffusion phenomena (Pr = 0.71 for room temperature
air). The Mach number characterizes the compressibility effects. Its value is
M = 0 for incompressible fluids. It is between 0 < M < 1 for subsonic flows
and M > 1 for supersonic flows.

The Navier-Stokes equations take the non-dimensional form

Dρ′

Dt′
+ ρ′ div v′ = 0 (8.22)

ρ′
Dv′

Dt′
= − 1

γM2
∇p′ + 1

Re

(
∇2v′ +

1

3
∇ (div v′)

)
+ ρ′b′ (8.23)

ρ′
(
DT ′

Dt′
− γ − 1

γ

T ′

ρ′
Dp′

Dt′

)
=

1

PrRe
∇2T ′ − (γ − 1)

M2

Re

(
2

3

(
div v′

)2 − 1

2

(
∂v′i
∂xj

+
∂v′j
∂xi

)2
)

(8.24)

p′ = ρ′ T ′ . (8.25)

If we fix the coordinates xi, time t, and all the parameters M , Pr, γ,
and take Re → ∞, then the system (8.22)–(8.25) leads to the Euler system
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of equations for perfect (inviscid) fluids. Taking the limit where the Mach
number goes to zero, with all the other parameters fixed, should lead to the
Navier-Stokes equations for an incompressible fluid.

However, examination of the system (8.22)–(8.25) shows that this is not
so, and that the term −(1/γM2)∇p becomes dominant. This behavior is due
to the choice of the non-dimensional pressure p′ = p/p0, which was made by
considering pressure to be a thermodynamic variable. The motion equation
reveals that pressure is also a dynamic variable. It is more natural to choose

p∗ =
p− p0

ρ0U2

for the non-dimensional pressure.

In this case, equation (8.23) becomes

ρ′
Dv′

Dt′
= −∇p∗ +

1

Re

(
∇2v′ +

1

3
∇
(
div v′

))
+ ρ′b′ . (8.26)

The limiting case of equations (8.18), (8.26), (8.20), and (8.21) when the Mach
number goes to zero, yields the relations

Dρ′

Dt′
+ ρ′ div v′ = 0 (8.27)

ρ′
Dv′

Dt′
= −∇p∗ +

1

Re

(
∇2v′ +

1

3
∇(div v′)

)
+ ρ′b′ (8.28)

ρ′
DT ′

Dt′
=

1

PrRe
∇2T ′ (8.29)

ρ′T ′ = 1 , (8.30)

which are those for an incompressible fluid , but which still may experience
thermal expansion.

To obtain (8.29), we calculate

Dp′

Dt′
=

1

p0

Dp

Dt′
=
ρ0U

2

p0

Dp∗

Dt′
=

U2

RT0

Dp∗

Dt′
= γM2Dp

∗

Dt′
.

Equation (8.30) comes from the following evaluation:

p′ = ρ′T ′ =
p

p0
= 1 + p∗

U2

RT0
= 1 + γM2p∗ .

If, in addition, we assume that at the domain wall T ′ = 1, then equations
(8.29) and (8.30) as well as the boundary conditions on T ′ are satisfied by

ρ′ = 1 (8.31)

T ′ = 1 . (8.32)

Consequently, in this case, equations (8.27) and (8.28) reduce to the equations
of an isothermal, incompressible flow.
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8.5.2 Case of an Incompressible Fluid in Isothermal Flow

In a first case, we examine the aerodynamic point of view. We state the hy-
pothesis that the body force is that due to gravity: b = g. We use the same
scales of time, length, and speed as in the section above. For the pressure, we
set

p′ =
p− p0

ρU2

and for the gravity force, we introduce

g′ =
g

g
,

where g = ‖g‖ is the gravitational acceleration. Equation (8.17), in reduced
form, becomes

Dv′

Dt′
= −∇p′ + 1

Re
∇2v′ +

1

Fr
g′ . (8.33)

Another non-dimensional quantity appears, the Froude number

Fr =
U2

Lg
.

This number compares the inertial forces to the gravitational forces.

In a second case, we develop the point of view of rheologists for whom
the flow phenomena are dominated by viscous effects. Going back to equation
(8.17), but normalizing the reduced forms of time and pressure by the viscosity

t′ =
νt

L2
and p′ =

p− p0

µU

L

,

the reduced form of the Navier-Stokes equations for an incompressible
fluid is written as

∂v′i
∂t′

+Re

(
v′k
∂v′i
∂x′k

)
= − ∂p

′

∂x′i
+∇2v′i +

Re

Fr
g′ . (8.34)

Equations (8.33) and (8.34) are different because the normalization of time is,
on one hand, by the advection time (inertial term) L/U , and on the other, by
the characteristic time of molecular diffusion L2/ν.

Consequently, the limiting form of the Navier-Stokes equations is obtained
from (8.33) as Re→∞

Dv′

Dt′
= −∇p′ + 1

Fr
g′ . (8.35)

These are the Euler equations in non-dimensional form. The dimensional form
is

ρ
Dv

Dt
= −∇p+ ρ g . (8.36)
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Inversely, when Re→ 0, equation (8.34) simplifies to

∂v′

∂t′
= −∇p′ +∇2v′ . (8.37)

This is the non-dimensional Stokes equation . This equation is linear, unlike
the Navier-Stokes equations which are non-linear. In dimensional form, it is
written as

ρ
∂v

∂t
= −∇p+ µ∇2v . (8.38)

Recall that the kinematic viscosity of water is νwater = 10−6m2s−1. Thus if
U and L are both of order 1, the Reynolds number will be O(106). This value is
typical for turbulence, a subject which itself merits an entire book. The reader
is referred to the specialized literature [9, 39, 53].

8.6 Boundary and Initial Conditions

8.6.1 Viscous Fluid

A viscous fluid in contact with a rigid wall will adhere to the wall due to the
effects of viscosity. The no-slip condition can therefore be written as

vfluid = vwall . (8.39)

Otherwise, if the fluid (liquid) is in contact with a gaseous medium, we
assume that the contact forces are in equilibrium on both sides of the contact
surface and we write

niσ
fluid
ij = niσ

gas
ij .

If the gas is inviscid, this becomes

niσ
fluid
ij = −njpgas . (8.40)

Projecting (8.40) onto the interface normal, we obtain

ninjσ
fluid
ij = −pgas . (8.41)

For the tangential component, we have

niτjσ
fluid
ij = −njτjpgas = 0 , (8.42)

since n ·τ = 0, where τ denotes the unit tangent vector at the contact surface.

Relations (8.41) and (8.42) express the conditions which are said to be on
a “free surface”. They imply that we know the form of the surface for their
application. However, the form of the surface is itself part of the solution of
the problem at hand. We find then that free surface problems constitute one
of the biggest difficulties in fluid mechanics as they are intrinsically non-linear.



284 Introduction to Newtonian Fluid Mechanics

For certain fluids, condition (8.41) needs to be extended to take into account
surface tension. Then we have

ninjσ
fluid
ij = −pgas + σ

(
1

R1
+

1

R2

)
, (8.43)

in which R1 and R2 are the principal radii of curvature of the surface, and σ
is the liquid-gas surface tension coefficient expressed in N/m.

In practice, we generally limit the study to a part of the zone occupied
by the fluid. In this case, it is necessary to add the conditions on the entry
section, where the velocity vector is typically imposed, and the exit surface,
where contact forces are usually imposed. The latter are most often taken to
be zero, which corresponds to a situation where the fluid is allowed to exit at
its own speed.

For the case of a transient problem, the initial conditions are the velocities,
which are often zero at the start.

8.6.2 Perfect Fluid

As viscosity plays no role here, the fluid can slip along a wall. The adherence
condition no longer applies. We impose that the normal component of velocity
of the fluid be zero with respect to the wall with which it is in contact. The
slip condition is then written as

vfluid · n = vwall · n . (8.44)

Similarly, we impose the value of the normal component of the fluid velocity
for the entry section and the pressure on the exit section. For transient flows,
we proceed as for viscous flows.

Finally, in aerodynamics (external flows, for example, the flow around a
wing profile or an airfoil), we very often find conditions to impose on an im-
material boundary (which may be at infinity). The typical example is a finite
obstacle placed in an unconfined flow. In this case we impose the condition
that the flow is uniform at infinity.

8.7 Exact Solutions of the Navier-Stokes Equations

8.7.1 Plane Stationary Flows

In this section, we examine some exact solutions of the Navier-Stokes equations
for plane stationary flows.
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Plane Couette Flow of an Incompressible Fluid

We consider the two-dimensional stationary flow of an incompressible viscous
fluid between parallel plates.

h

x2

x1

U

Fig. 8.12 Plane Couette flow

Figure 8.12 shows the flow domain. We see that the lower boundary is fixed
while the upper boundary moves in its own plane at a given constant velocity
U in the direction x1.

Since the flow is two-dimensional, the vector v reduces to two components,
v = (v1, v2, 0). We assume that the flow is developed, that is, that the transient
effects and those from the upstream edges of the plates are negligible. Then,
we can have v1 as a function only of x2. The incompressibility condition (8.16)
becomes

∂v2

∂x2
= 0 (8.45)

indicating that v2 is not a function of x2; it is thus a function of x1. However,
since at the two boundaries v2 is zero for all x1, we conclude that v2 = 0
everywhere. We write the two-dimensional Navier-Stokes equation (8.17) for
the velocity component v1 as

ρ(
∂v1

∂t
+ v1

∂v1

∂x1
+ v2

∂v1

∂x2
) = − ∂p

∂x1
+ µ4v1 + ρb1. (8.46)

As the gravitational force is oriented along the negative direction of the axis
x2, b1 = 0. In addition, the problem is stationary, thus ∂v1/∂t = 0. The term
v1∂v1/∂x1 is zero as v1 = v1(x2). Finally v2∂v1/∂x2 is also zero since v2 = 0.
We can assume that the horizontal component of the pressure gradient is zero
as the flow is forced kinematically by the motion of the upper plate. Thus, we
are left with

µ
d2v1

dx2
2

= 0 . (8.47)

Integrating (8.47) once, we obtain

µ
dv1

dx2
= C . (8.48)
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This relation shows that the shear stress is constant across the height of the
channel. Integrating again leads to

v1 = Ax2 +B. (8.49)

The no-slip boundary conditions

v1(x2 = 0) = 0, v1(x2 = h) = U (8.50)

permit us to determine the integration constants; we obtain a linear velocity
profile

v1 =
Ux2

h
. (8.51)

This is the profile that was used in example 6.1.

The shear stress component (6.16) obtained with (8.51) is a constant

σ12 = µ
dv1

dx2
= µ

U

h
. (8.52)

If we examine the second Navier-Stokes equation, in direction x2, we have

0 = − ∂p

∂x2
− ρg, (8.53)

with g the gravitational acceleration. Integrating this relation and taking into
account the independence of p with respect to x1, leads to

p = −ρgx2 + C. (8.54)

As the pressure in an incompressible fluid is only known to an arbitrary con-
stant, we choose it by imposing p(x2 = h) = 0 which yields C = ρgh. The
pressure is in hydrostatic equilibrium

p = ρg(h− x2) . (8.55)

Plane Poiseuille Flow of an Incompressible Fluid

Consider the two-dimensional stationary flow of a viscous incompressible fluid
in a channel formed by two fixed walls. Figure 8.13 shows the geometric con-
figuration of the domain. In this case, a longitudinal pressure gradient, along
direction x1, is established. We assume that the flow is developed and that the
fluid particles move on paths parallel to the walls. Reasoning as for Couette
flow, we can write v1 = v1(x2), v2 = 0.
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h

x2

x1

Fig. 8.13 Plane Poiseuille flow

The dynamic equation for velocity v1 is relation (8.17), which for Poiseuille
flow reduces to

0 = − ∂p

∂x1
+ µ

∂2v1

∂x2
2
. (8.56)

As for Couette flow, the pressure in the vertical direction is in hydrostatic
equilibrium

0 = − ∂p

∂x2
− ρg . (8.57)

Integrating this relation, we obtain

p = −ρgx2 + P (x1) . (8.58)

The term introduced by integration, P (x1), is the pressure on the lower wall,
for x2 = 0. The pressure gradient in direction x1 can be written as

∂p

∂x1
=
dP

dx1
, (8.59)

as it is a function only of x1. Equation (8.56) yields

d2v1

dx2
2

=
1

µ

dP

dx1
= C. (8.60)

We see that the first term is a function of x2 while the second is a function of
x1. It follows that these two terms must be equal to the same constant C. The
integration of (8.60) gives us

v1 =
1

µ

dP

dx1

x2
2

2
+Ax2 +B. (8.61)

Imposing the boundary conditions

v1(x2 = 0) = v1(x2 = h) = 0, (8.62)
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yields the parabolic Poiseuille velocity profile

v1 = −h
2

2µ

dP

dx1

x2

h
(1− x2

h
) . (8.63)

As the pressure in the channel diminishes linearly with distance x1, dP/dx1 < 0,
and the flow is in the positive direction of the axis x1.

The shear stress component obtained from (8.63) is

σ12 = µ
dv1

dx2
= −h

2

dP

dx1
(1− 2x2

h
) . (8.64)

We note that the shear (8.64) is zero on the axis of symmetry of the channel,
x2 = h/2, and the absolute value is at a maximum on the two walls.

We can calculate the volume flux or flow rate through the section S of the
channel. The general definition of the volume flux is given by the relation

Q =

∫
S

v · n dS . (8.65)

Considering a unit surface for direction x3, the flow rate in the two-dimensional
channel is written

Q =

∫ h

0

v1 dx2 = − h3

12µ

dP

dx1
=

h3

12µ

4p
L
, (8.66)

with4P the pressure difference observed at two points with the same ordinate,
x2, separated by a distance L in direction x1. We define the average velocity
by Q = vavg h, from which we have

vavg =
h2

12µ

4P
L

. (8.67)

As the maximum velocity, vmax, is attained on the axis of symmetry of the
channel, at x2/h = 1/2, it follows that

vmax =
h2

8µ

4P
L

(8.68)

and, consequently

vavg =
2

3
vmax . (8.69)

In the case where the two-dimensional channel is replaced by a pipe with cir-
cular section (see sec. 8.7.2), we obtain the average velocity equal to half the
maximum velocity. This shows that the zone of high velocity constitutes a
smaller fraction of the section.
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Flow of an Incompressible Fluid on an Inclined Plane

We have a stationary, two-dimensional flow of a Newtonian viscous fluid on a
plane inclined at angle α to the vertical (fig. 8.14). The thickness of the fluid
layer is uniform and equal to h. At the free surface, the fluid is in contact with
ambient air which we consider to be a perfect fluid at atmospheric pressure pa.
We assume that the flow in the air does not affect the flow of the viscous fluid.
The flow is parallel because the trajectories of the fluid particles are parallel to
the inclined plane. Then, v = (v1, 0, 0). From incompressibility we obtain

∂v1

∂x1
= 0, (8.70)

therefore we deduce that v1 = v1(x2). The only components of the stress tensor
are σ12 or σ21. As the pressure is uniform at the free surface, the pressure in
the viscous fluid can not depend on direction x1, but only on x2.

h

g
α

x2

x1

Fig. 8.14 Flow on an inclined plane

From the motion equation (3.96), written in direction x1, it follows that

∂σ12

∂x2
+ ρb1 =

∂σ12

∂x2
+ ρgcosα = 0 . (8.71)

Integrating this relation, we have

σ12 = −ρg x2cosα+ C . (8.72)

At the free surface, x2 = h, the shear stress should be zero. We obtain

σ12 = ρgcosα(h− x2) . (8.73)
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As σ12 = µdv1/dx2, we can evaluate the component v1 by integrating with
respect to x2, taking into account the boundary condition v1(x2 = 0) = 0. The
velocity profile is given by the relation

v1 =
ρgcosα

2µ
x2(2h− x2) . (8.74)

The Navier-Stokes equation for direction x2 yields the relation

− ∂p

∂x2
+ ρb2 = − ∂p

∂x2
− ρgsinα = 0 . (8.75)

Integrating with respect to x2 and taking into account the condition on the
free surface p(x2 = h) = pa, we can write

p = pa − (ρ gsinα)(x2 − h) . (8.76)

The flow rate per unit length in direction x3 is obtained from

Q =

∫ h

0

v1 dx2 =
ρgcosα h3

2µ
. (8.77)

Plane Couette Flow of a Compressible Fluid

Consider the stationary, developed, two-dimensional flow of a viscous compress-
ible fluid between two parallel planes. We will follow the development proposed
by Panton [38]. We neglect gravity in this problem. Figure 8.15 shows the flow
domain. The lower wall is fixed, and the upper wall moves in its own plane
at the given constant velocity U in direction x1. Since the compressible fluid
has material properties that depend on the density and the temperature (see
eqn. (6.15)), the energy equation is incorporated in our model and we must
give boundary conditions for the temperature. Here, the temperature is fixed
on the upper wall at the constant value T0, while the condition on the lower
wall is adiabatic, that is, q2 = −k ∂T/∂x2 = 0. To simplify the problem, we
assume that no material property depends on x1, x3, or t. The unknowns of
the problem are then such that

v =
(
v1(x2), v2(x2), 0

)
ρ = ρ(x2) T = T (x2) . (8.78)

The equation for the conservation of mass (8.9) becomes

d(ρv2)

dx2
= 0 . (8.79)

By integration, ρv2 is a constant. Since the vertical velocity component v2 is
zero at the two walls, we must have v2 = 0 everywhere. The Navier-Stokes
equations (8.10) become

0 =
d

dx2

(
µ
dv1

dx2

)
, (8.80)

0 = − dp

dx2
. (8.81)
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U T = T0

∂T/∂x2= 0

h

x2

x1

Fig. 8.15 Plane Couette flow for a compressible fluid

Relation (8.81) shows that the pressure is constant everywhere. Conse-
quently, we can assume that the material properties are functions only of tem-
perature, since p = ρRT = cnst. The integration of (8.80) yields

µ
dv1

dx2
= σ0 . (8.82)

with the convention that σ0 represents a constant shear stress.

The heat flux has only one non-zero component: q2, given our assumption
for the temperature field. In this case, the energy equation (8.11) is

0 =
d

dx2

(
k
dT

dx2

)
+ µ

(
dv1

dx2

)2

= −d q2

dx2
+ σ0

dv1

dx2
. (8.83)

Integration of (8.83) yields

−q2 + σ0v1 = C . (8.84)

Since we have an adiabatic condition on the fixed lower wall where v1(x2 =
0) = 0, the imposition of the boundary conditions on (8.84) gives C = 0, and
we obtain

k
dT

dx2
+ σ0v1 = k

dT

dx2
+ µv1

dv1

dx2
= 0 . (8.85)

Writing (8.85) in the form

d

dx2

(
1

2
v2

1

)
= −k

µ

dT

dx2
(8.86)

and taking into account relations k = k(T ) and µ = µ(T ), the integration from
a point with ordinate x2 to the upper wall gives

1

2
(U2 − v2

1) = −
∫ T0

T

k(T ′)

µ(T ′)
dT ′ . (8.87)
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This equation yields v1 as a function of T . However, since k and µ are positive
functions of T (sec. 6.8), the integral in (8.87) is a monotonic function of T
and we can thus find the inverse function T (v1). With this inverse function,
equation (8.82) becomes

µ
(
T (v1)

)
dv1 = σ0 dx2 , (8.88)

and integrating from the lower wall, where v1 = 0, to an arbitrarily chosen
point with ordinate x2, we obtain

x2 =
1

σ0

∫ v1

0

µ
(
T (v′1)

)
dv1
′ . (8.89)

This equation is the velocity profile given in inverse form x2 = x2(v1).

We will illustrate this theory with results calculated with power law models
of viscosity and thermal conductivity

µ = µ0

(
T

T0

)n
k = k0

(
T

T0

)n
. (8.90)

The exponent n of the power law is obtained by a polynomial approximation
of experimental data (by least squares) in the range of temperatures concerned
in the problem under consideration. The reference quantities µ0 and k0 are
the values corresponding to the reference temperature T0 of the upper wall.
Combining (8.87) and (8.90), leads to

1

2
(U2 − v2

1) = − k0

µ0

∫ T0

T

dT ′ (8.91)

and thus
T = T0 +

µ0

2k0
(U2 − v2

1) . (8.92)

The inverse form of the velocity profile is evaluated by inserting (8.90) in (8.89):

x2 =
µ0

σ0

∫ v1

0

(
T

T0

)n
dv′1

=
µ0

σ0

∫ v1

0

(
1 +

µ0

2k0T0

(
U2 − v′1

2))n
dv′1 . (8.93)

Consider two cases: n = 0 for constant properties and n = 1 which is close
to the behavior of an ideal gas.

When n = 0, relation (8.93) produces

x2 =
µ0

σ0
v1 . (8.94)

Evaluating σ0 at the upper wall, we again find the Couette profile for an in-
compressible fluid (8.51). The temperature profile (8.92) becomes

T = T0 +
µ0U

2

2k0

(
1−

(x2

h

)2)
. (8.95)
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The case n = 1 leads to the inverse form of the velocity profile

x2

h
=
v1

U

1 +
µ0 U

2

2k0T0

(
1− 1

3

(v1

U

)2
)

1 +
µ0U

2

3k0T0

. (8.96)

Relation (8.96) cannot be explicitly inverted to obtain the solution v1. We
thus can not obtain an explicit form of the temperature that always satisfies
equation (8.92).

8.7.2 Stationary Axisymmetric Flows

In this section we consider exact solutions of the Navier-Stokes equations for
stationary flows in axisymmetric geometries of revolution. We integrate the
Navier-Stokes equations expressed in a cylindrical coordinate system. The vec-
tor velocity has components vr, vθ, and vz which we call the radial, azimuthal,
and axial velocities, respectively.

Circular Couette Flow

Consider the stationary flow of an incompressible Newtonian viscous fluid be-
tween two concentric cylinders supposed to be of infinite axial length. We
denote by R1 and R2 the radii of the internal and external cylinders, respec-
tively, and ω1 and ω2 their respective rates of angular rotation, as shown in
figure 8.16. We want to calculate the azimuthal velocity vθ. This flow is known
by the name of circular Couette flow. We neglect the effects of the volume
forces. The flow has no axial velocity since there is no pressure gradient in
that direction. In addition, due to the symmetry of revolution, it also does not
depend on the azimuthal coordinate, thus ∂(•)/∂θ = 0. The two velocity com-
ponents vr and vθ, stationary, thus independent of time, are functions uniquely
of the radial coordinate, r, so vr = vr(r) and vθ = vθ(r). Applying adherence
to the wall, the boundary conditions are

vr(R1) = vr(R2) = 0, vθ(R1) = ω1R1, vθ(R2) = ω2R2 . (8.97)

With these assumptions about the velocity profile, the continuity equation
(A.31) becomes

1

r

d

dr
(r vr) = 0 . (8.98)

Taking into account the condition that vr is zero at the boundaries (8.97),
the solution is

vr = 0 . (8.99)

In this case the Navier-Stokes equations (A.32)–(A.33) reduce to

1

ρ

∂p

∂r
=
v2
θ

r
, (8.100)

1

r

∂

∂r

(
r
∂vθ
∂r

)
− vθ
r2

= 0 . (8.101)
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Fig. 8.16 Circular Couette flow

The solution for the component vθ is in the form vθ =
∑+∞
−∞ anr

n. Plugging
this series into (8.101), we easily find that n = ±1. Imposing the boundary
conditions leads to

vθ = Ar +
B

r
=
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

r − (ω2 − ω1)R2
1R

2
2

R2
2 −R2

1

1

r
(8.102)

after solving for the constants A and B. The first term on the right-hand side
corresponds to rotation of all the fluid around the central axis. If ω1 = ω2 = ω,
the velocity becomes vθ = ωr, which shows that the fluid rotates as a rigid
body around the axis. The second term on the right-hand side corresponds
to a deformation of the particles over time. If R2 → ∞ and ω2 = 0, then
we have the case of a cylinder in an infinite fluid. The velocity vθ = ω1R

2
1/r

gives circular streamlines around the cylinder, and the velocity distribution is
irrotational, that is, curl v = 0.

A tangential shear stress σθr acts on a surface element with a radial normal,
which is expressed by (A.5)

σθr = µ

(
∂vθ
∂r
− vθ

r
+

1

r

∂vr
∂θ

)
= µ

(
∂vθ
∂r
− vθ

r

)
= µ r

∂

∂r

(vθ
r

)
. (8.103)

Combining (8.102) and (8.103), we obtain

σθr = −2Bµ

r2
. (8.104)

Next we calculate the viscous moment, M , that acts on the interior cylinder
per unit axial length. This moment is equal to the component σθr evaluated at
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r = R1 and the area, 2πR1, on which this stress acts, multiplied by the lever
arm, R1, the distance between the axis and the point where the force acts. We
have

M = −2πR2
1

2Bµ

R2
1

= 4πµ
(ω2 − ω1)R2

1R
2
2

R2
2 −R2

1

. (8.105)

This last relation indicates that we can measure the viscosity µ of a fluid in
a Couette viscometer where the drive motor imposes a torque on one of the
cylinders and we measure the resulting rotation speed of the other one.

Circular Poiseuille Flow in a Cylindrical Pipe

Poiseuille flow in a circular pipe with radius R is subject to the action of an
imposed pressure gradient in direction z (fig. 8.17). The flow is stationary.
From the Navier-Stokes equations in cylindrical coordinates, we show first that
the only non-zero component of the velocity is vz.

L

R

z

Fig. 8.17 Poiseuille flow in a circular section cylindrical pipe

Given the hypotheses of axial symmetry and stationary flow, vθ = 0 and
the only two components of velocity, vr and vz, are functions only of r. The
continuity equation (A.31) is then

1

r

∂

∂r
(r vr) = 0 . (8.106)

Integration yields

rvr = f(z) .

But, since vr = 0 at the wall, r = R, we conclude that f(z) = 0 and thus that
vr is zero everywhere in the flow. The Navier-Stokes equation for the radial
component of velocity (A.32) reduces to ∂p/∂r = 0. The pressure depends only
on z and not on r. The equation for the velocity component vz (A.34) yields

−dp
dz

+ µ

(
∂2vz
∂r2

+
1

r

∂vz
∂r

)
= 0
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or

dp

dz
=
µ

r

d

dr

(
r
dvz
dr

)
.

The left-hand side term only depends on z; on the right-hand side there is only
dependence on r. Thus the two terms must be equal to a constant. Integrating,
we obtain

vz =

(
dp

dz

)
1

µ

(
r2

4
+A ln r +B

)
.

The velocity must be finite on the axis r = 0. This leads to A ≡ 0. Taking into
account the condition vz(R) = 0, we have

vz = −
(
dp

dz

)
R2

4µ

(
1−

( r
R

)2
)
.

In Poiseuille flow, the velocity profile is parabolic. The maximum velocity at
the center is

vmax = −
(
dp

dz

)
R2

4µ
. (8.107)

The flow rate is obtained by integration over the section of the pipe. We have

Q = 2π

∫ R

0

vz(r) r dr = −
(
dp

dz

)
πR4

8µ
=
πR2vmax

2
. (8.108)

The average, or flux, velocity obtained from the flux divided by the area of the
section S is

vavg =
Q

S
=
vmax

2
. (8.109)

The maximum velocity is thus equal to twice the average velocity. The shear
stress at the cylinder wall, which we denote τw, is given by the component σzr
evaluated at r = R

τw = −µdvz
dr
|r=R= −

(
dp

dz

)
R

2
=

2µvmax
R

=
4µvavg
R

. (8.110)

The sign change between τw and σzr comes from the fact that τw represents
the shear force exercised on the wall by the fluid. The friction coefficient is
defined by the ratio of the stress at the wall to the average dynamic pressure

Cf =
τw
ρv2avg

2

=
8µ

ρRvavg
=

8ν

Rvavg
=

16

ReD
, (8.111)

with ReD being the Reynolds number based on the average velocity and the
diameter of the section. It is common to define the head loss coefficient λ by
the relation

−
(
dp

dz

)
=
ρv2
avg

2

λ

D
. (8.112)

Thus it follows that

λ = 4Cf =
64

ReD
. (8.113)
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8.7.3 Plane Non-Stationary Flows

In this section we turn our attention to plane flows that depend on time. This
situation leads to partial differential equations with independent variables of
space and time. In order to arrive at an analytic solution of the problem, we
use a change of variables to obtain an ordinary differential equation that is
easier to solve.

Transient Flow in a Semi-Infinite Space

An incompressible Newtonian viscous fluid occupies a half space (x2 ≥ 0), and
is at rest for t < 0 (fig. 8.18). At time t = 0, the rigid plane which limits the
half space is instantaneously put into motion at the constant velocity U in the
positive direction of axis x1. The motion is two-dimensional such that v3 = 0.

x
1

x
2

U(t ≥ 0)

Fig. 8.18 Unsteady flow in an infinite half space

The boundary and initial conditions are given by

t < 0, v1 = v2 = 0, ∀x1, x2 (8.114)

t ≥ 0, v1 = U, v2 = 0, forx2 = 0, (8.115)

v1 = v2 = 0, forx2 →∞. (8.116)

We assume that v1 and v2 are functions of x2 and t

v1 = v1(x2, t), v2 = v2(x2, t) , (8.117)

and that the pressure p is a function only of x2 (there is no horizontal pressure
gradient; the flow is generated entirely by the motion of the moving wall). The
conservation of mass becomes

∂v2(x2, t)

∂x2
= 0 . (8.118)

The component v2 only depends on time, and with conditions (8.115) and
(8.116), it is identically zero for all t. The Navier-Stokes equations become

ρ
∂v1

∂t
= µ

∂2v1

∂x2
2

, (8.119)

∂p

∂x2
= 0 . (8.120)

The pressure p is constant.
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We can, if we wish, include the effect of gravity in the pressure calculation,
by writing

∂p

∂x2
= −ρgx2 . (8.121)

Integration of this relation leads to the calculation of the hydrostatic pressure,
where the pressure at a point is equal to the weight of the column of fluid
located above that position. The hydrostatic pressure, as its name suggests,
does not participate in the dynamics of the flow.

The motion equation (8.119) is a diffusion equation, of the same type as
the “heat equation”. We can transform this partial differential equation into
an ordinary differential equation with a variable change that we obtain from
dimensional analysis. Since the problem has no spatial scale other than the
variable x2 nor time scale other than that of t itself, we combine them to form
the non-dimensional group

η =
x2

2
√
νt

. (8.122)

This permits us to obtain an ordinary differential equation for which the solu-
tion is a function of η. It is called a self similar solution because the velocity
profile with respect to the variable x2 is similar for all times t.

Setting
v1 = U f(η) , (8.123)

relation (8.119) becomes
f ′′ + 2ηf ′ = 0 , (8.124)

with conditions
η = 0, f = 1; η →∞, f = 0 . (8.125)

Integrating (8.124), we obtain

f = A

∫ η

0

e−η
′2
dη′ +B . (8.126)

Taking into account conditions (8.125), we have for η = 0, B = 1 and for
η = ∞, A = −2/

√
π where we introduced the error function erf(x) defined by

[1]

erf (x) =
2√
π

∫ x

0

e−τ
2

dτ , (8.127)

such that erf(∞) = 1. Then

f = 1− erf η , (8.128)

and from (8.123) the velocity of the fluid for t > 0 is

v1 = U [1− erf(
x2

2
√
νt

)] . (8.129)

The velocity profile v1/U as a function of η is shown in figure 8.19. For a
fixed value of t, the variable η is proportional to x2. Then, we can deduce the
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Fig. 8.19 Transient flow in an infinite half space

velocity profile at every instant as a function of the distance from the wall.
An interesting question is to know the depth of the penetration of the wall
motion into the semi-infinite space. More precisely, for a given t, what is the
distance at which the velocity attains, for example, one per cent of the value
of U? Examining the function erf, 1− erf has the value 0.01 for η ∼ 2. Defined
as such, the penetration depth δ is given by

ηδ =
δ

2
√
νt
' 2, δ ' 4

√
νt , (8.130)

which is proportional to the square root of the kinematic viscosity and time.
Thus, if the viscosity is very small, the fluid “sticks” less to the wall and it has
a weak effect. If t tends to infinity, the velocity at every point in the half space
goes to U .

Flow on an Oscillating Plane

Consider the flow produced by the periodic horizontal oscillation of a plate in
its plane (fig. 8.20).

x
1

x
2

U cos ωt

Fig. 8.20 Unsteady flow on an oscillating plane
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Equation (8.119) still applies, and we must solve it with the boundary
conditions

v1 = U cosωt for x2 = 0 . (8.131)

After the initial transient phenomena, the fluid velocity gradually becomes a
periodic function of time at the same frequency as the oscillation of the plate.
Here we examine this periodic regime. Assume that solution v1 is of the form

v1 = <
(
eiωtf(x2)

)
. (8.132)

The combination of (8.119) and (8.132) yields

iωf = ν
d2f

dx2
2

.

Thus the only solution that remains finite as x2 →∞ is

f = A exp
(
−(1 + i)(ω/2ν)1/2x2

)
.

The imposition of the boundary condition (8.131) leads to A = U and the
solution becomes

v1 = U exp
(
−(ω/2ν)1/2x2

)
cos
(
ωt− (ω/2ν)1/2x2

)
. (8.133)

The velocity profile represents a damped harmonic oscillation of amplitude

Ue−x2

√
ω/2ν in a fluid where a layer at distance x2 has a phase lag of x2

√
ω/2ν

with respect to the motion at the wall. Two layers of fluid separated by the
distance 2π(2ν/ω)1/2 oscillate in phase. This distance constitutes an estimation
of the length of the motion and is called the viscous wave penetration depth.

8.8 Stokes Flow

In this section, consider first the Stokes equation, valid for very slow flows that
we conventionally call creeping flows or Stokes flows. These flows are domi-
nated by viscous forces which are much larger than inertial forces. Examples
come from technologies in such diverse domains as convection currents in high
temperature glass melting furnaces, lubricants in bearings, and the flow of oils
and mud (although the latter may have pronounced non-Newtonian behavior).
In nature (another source of interesting cases), we find convection in terrestrial
magma, the flow of lava, the swimming of fish, the propulsion of microorgan-
isms, and the squirming of spermatozoon.

We assume that the Reynolds number Re � 1 and therefore the Navier-
Stokes equations reduce to the Stokes equation. As the latter is linear, a com-
plete analytic treatment is possible.
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Taking the divergence of the Stokes equation (8.38) and taking into account
the solenoidal character of the velocity field, we get

∆p = 0 . (8.134)

The pressure is thus a harmonic function for a Stokes flow.

Taking the curl of the Stokes equation (8.38), we obtain

∂ω

∂t
= ν∆ω , (8.135)

where we have introduced the vorticity, ω = curlv using equation (2.188).
If the flow is stationary, the components of the vorticity are also harmonic
functions.

8.8.1 Plane Creeping Flows

Consider a plane flow for which we have

v = (v1(x1, x2, t), v2(x1, x2, t), 0); p = p(x1, x2, t) . (8.136)

In such a two-dimensional problem, incompressibility (8.16) is automatically
satisfied by the introduction of a stream function ψ so that

v1 =
∂ψ

∂x2
, v2 = − ∂ψ

∂x1
. (8.137)

As the vorticity reduces to a single component ω = (0, 0, ω), it follows that

ω =
∂v2

∂x1
− ∂v1

∂x2
= −∆ψ , (8.138)

and relation (8.135) becomes

∂∆ψ

∂t
= ν∆∆ψ . (8.139)

For a stationary problem, we will have

∆∆ψ = 0 , (8.140)

showing that in this case the stream function is a biharmonic function.

In polar coordinates (r, θ), the conservation of mass becomes

1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

= 0 . (8.141)

A stream function ψ also exists such that

vr =
1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
. (8.142)
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Example 8.1

Flow in a Corner

Let us consider the flow in a corner as presented in figure 8.21. The lower
wall is fixed while the wall inclined at an angle θ0 is in uniform translational
motion at the constant velocity U in the direction x1. Near the origin, the
velocity gradients are large; nonetheless, we expect the viscous forces to
dominate in the neighborhood of the origin. To formulate the problem in
steady state, we choose a coordinate system with the origin at the inter-
section of the two walls, in motion with the inclined wall. In this case, the
boundary conditions are written as

1

r

∂ψ

∂θ
= −U, ∂ψ

∂r
= 0 at θ = 0 (8.143)

1

r

∂ψ

∂θ
= 0,

∂ψ

∂r
= 0 at θ = θ0 . (8.144)

x
2

x
1

U

θ0

Fig. 8.21 Flow in a corner of angle θ0. The coordinate system moves at the upper
wall velocity U

The form of the boundary conditions suggests that we can write ψ in the
following form:

ψ = r f(θ) . (8.145)

Substituting (8.145) in the biharmonic equation (8.140), we find the relation

1

r3

(
d4f

dθ4
+ 2

d2f

dθ2
+ f

)
= 0 , (8.146)

for which the solution is

f(θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ . (8.147)

(Recall that if H is a harmonic function, θH is a biharmonic function).
The imposition of the boundary conditions (8.143) and (8.144) allows us to
evaluate the constants which are
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A,B,C,D =
(
−θ2

0, 0, θ0 − sin θ0 cos θ0, sin
2 θ0

) U

θ2
0 − sin2 θ0

. (8.148)

For the special case of a right angle, we have

ψ =
rU

(π2 )2 − 1

(
−(
π

2
)2 sin θ +

π

2
θ sin θ + θ cos θ

)
, (8.149)

from which we can easily obtain the velocity components

vr =
U

(π2 )2 − 1

(
(1− π2

4
) cos θ +

π

2
(sin θ + θ cos θ)− θ cos θ

)
(8.150)

vθ = − U

(π2 )2 − 1

(
−(
π

2
)2 sin θ +

π

2
θ sin θ + θ cos θ

)
. (8.151)

In retrospect we can examine the correctness of the creeping flow assump-
tion. We see that the acceleration components (A.11) and (A.12) evaluated
with the preceding solution are proportional to U2/r with a factor that
depends on θ, that is, of the order of unity. As for the viscous effects, they
are of the order of µU/r2. Thus the creeping flow assumption is met when
ρrU/µ � 1. This is the case in the region close to the origin such that
r � νU . Further away, the solution will no longer be correct as the inertial
forces rapidly become of the same order of magnitude as the viscous forces.

8.8.2 Parallel Flow Around a Sphere

A sphere of radius R is in a viscous steady state flow for which the velocity at
infinity upstream is U . We assume a creeping flow such that we can have a so-
lution of the Stokes equation (8.38). We place the Cartesian coordinate system
such that the axis x3 is oriented in the direction of the flow incident on the
sphere (fig. 8.22). The boundary conditions expressed in spherical coordinates
(see fig. 1.7) are

v = 0 at r = R, (8.152)

v = Ue3 at r =∞ . (8.153)

The problem thus posed is symmetric about the axis Ox3, and with respect to
the longitude of the sphere. Consequently, ∂(•)/∂ϕ ≡ 0. Also then, vϕ = 0.
Thus the mass conservation equation (B.30) reduces to

1

r2

∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) = 0 . (8.154)

We deduce that a stream function ψ exists such that

vr =
1

r2 sin θ

∂ψ

∂θ
, vθ = − 1

r sin θ

∂ψ

∂r
. (8.155)
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ϕ
R

U

x3θ

Fig. 8.22 Flow around a sphere

Given the two-dimensional character of the flow, the vorticity will have a single
component in the direction of the vector eϕ that we denote ω. We can then
write (see eqn. (B.5))

ω(r, θ) = −1

r

[
1

sin θ

∂2ψ

∂r2
+

1

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)]
. (8.156)

In the case of the Stokes equation, vorticity is a harmonic function. We have
(recall that the Laplacian of a vector is not equal to the Laplacian of its com-
ponents, cf. (B.7))

∆ω − ω

r2 sin2 θ
=

1

r2

(
∂

∂r

(
r2 ∂ω

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ω

∂θ

)
− ω

sin2 θ

)
=

1

r

∂2

∂r2
(rω) +

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ
(ω sin θ)

)
. (8.157)

The combination of relations (8.156)–(8.157) gives the following biharmonic
equation: (

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

))2

ψ = 0 . (8.158)

The boundary conditions (8.152) and (8.153), expressed in terms of the stream
function, become

∂ψ

∂θ
=
∂ψ

∂r
= 0, at r = R,

vr = U cos θ,
∂ψ

∂θ
= Ur2 sin θ cos θ, at r =∞ (8.159)

vθ = −U sin θ,
∂ψ

∂r
= Ur sin2 θ.

The condition at infinity can be easily integrated. It follows that

ψ∞ =
1

2
Ur2 sin2 θ . (8.160)

The form of this expression for ψ suggests that the stream function can be
written in the general form

ψ = sin2 θ f(r) . (8.161)
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Introducing (8.161) into (8.158), we find

d4f

dr4
− 4

r2

d2f

dr2
+

8

r3

df

dr
− 8

r4
f = 0 . (8.162)

Seeking a solution as a power series in rn, we obtain the characteristic polyno-
mial

(n− 2)(n− 1)
(
n2 − 3n− 4

)
= 0 ,

whose roots are n = −1, 1, 2, and 4. The function f(r) is thus

f =
C−1

r
+ C1 r + C2 r

2 + C4 r
4 . (8.163)

The imposition of the boundary condition at infinity, (8.160), requires C4 = 0
and C2 = 1

2U , while at the sphere, with vr = vθ = 0, we can determine
C−1 = (1/4)U R3, C1 = −(3/4)U R. The stream function is then

ψ =
UR2

2
sin2 θ

(
R

2r
− 3

2

r

R
+ (

r

R
)2

)
. (8.164)

We can easily deduce the velocities from (8.155). The vorticity field is written
(cf. (8.156))

ω = −3

2
UR (

sin θ

r2
) . (8.165)

The calculation of the pressure field can easily be accomplished by taking
into account the vector identity (1.238) which leads to the Stokes equation

∇p = −µ curlω . (8.166)

With (B.5), this leads to the system of equations

∂p

∂r
= − µ

r sin θ

∂

∂θ
(ω sin θ) = 3µU R

cos θ

r3
, (8.167)

1

r

∂p

∂θ
=
µ

r

∂(rω)

∂r
=

3µ

2
U R

sin θ

r3
. (8.168)

Integration of (8.167) yields

p = −3µ

2
U R

cos θ

r2
+ q(θ) .

Inserting this result in (8.168), we have

3µ

2
U R

sin θ

r3
+
q′(θ)

r
=

3µ

2
U R

sin θ

r3
.

The pressure field is then finally given by

p = −3µ

2
U R

cos θ

r2
+ p0 , (8.169)

with p0 a constant reference pressure.
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The uniform velocity flow around a sphere will generate pressure and shear
forces. To calculate the pressure force in direction Ox3, we integrate the ele-
mentary forces over the surface of the sphere

dF3,p = −(
3µ

2
U

cos θ

R
+ p0) cos θ (2πR2 sin θ) dθ . (8.170)

The factor 2π comes from the symmetry of the problem which permits us to
take into account the longitudinal part of the integral. Integrating from θ = 0
to θ = π, we obtain

F3,p = −2πµU R . (8.171)

Friction drag is obtained by integration over the sphere of the shear stress that
acts on it, that is, σrθ which is −3µU sin θ/(2R) for r = R. This leads to

F3,σ = −
∫ θ=π

θ=0

(σrθ |r=R sin θ) (2πR2 sin θ) dθ = −4πµU R . (8.172)

Total drag, F3 = F3,p+F3,σ, known as Stokes drag , is the sum of the pressure
force and the friction force

F3 = −6πµU R . (8.173)

If we define the drag coefficient by

CD =
F3

1
2ρU

2 πR2
, (8.174)

we obtain

CD =
24

Re
, (8.175)

where Re = 2UR/ν. Note that the pressure drag represents a third of the total
drag. Relation (8.175) is verified by experiments when Re < 1 which is valid
in the neighborhood of the sphere. When we move away, the importance of
the inertial terms grows and Stokes solution diverges from the exact solution.
Note that the solution that we have obtained is not applicable to the case of a
set of spherical particles, as the presence of a spherical obstacle in the flow has
impact relatively far away since the velocity profiles decrease as 1/r.

The solution for uniform flow around a fixed sphere can be transposed to
the case of translation at uniform velocity U of a sphere of radius R in a fluid
at rest at infinity. In this case, the coordinate system is still attached to the
sphere and thus in translation at uniform velocity. This modifies the sign of
U to become −U for the pressure and the vorticity. As for the velocity in
the fluid, this is relative to the coordinate system, which leads to the following
modifications: for the velocity and the stream function, U becomes −U and the
uniform velocity field must also be subtracted from the corresponding relations.
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Oseen’s Improvement

The Stokes solution was improved by Oseen [37] who proposed the solution
of the Navier-Stokes equations (8.17) as a sum of uniform velocity field and a
perturbation such that

v = U e3 + v′ . (8.176)

In the case of the flow around a fixed sphere, the velocity v′ then takes into
account the perturbation caused by the sphere in a flow uniform at infinity.
With (8.176), the stationary inertial term takes the form

ρ
Dv

Dt
= ρ

(
v′j
∂v′i
∂xj

+ U
∂v′i
∂x3

)
. (8.177)

Oseen’s assumption amounts to neglecting the first term with respect to the
second term on the right-hand side of equation (8.177). We obtain a linearized
Navier-Stokes equation

ρU
∂v′

∂x3
= −∇ p+ µ∆v′ + ρb . (8.178)

The drag coefficient obtained with Oseen’s solution is

CD =
24

Re
(1 +

3

16
Re) . (8.179)

Experimental results show that (8.179) is approximately valid for Re < 5.
Using matched asymptotic expansions [28], the corrected coefficient becomes

CD =
24

Re
(1 +

3

16
Re− 19

1280
Re2 +O(Re3)) . (8.180)

8.9 Vorticity and Vortex Kinematics

In section 8.4, the Navier-Stokes equations were derived for a Newtonian viscous
fluid in terms of primitive variables: velocity and pressure. The interactions
observed in fluid flows have been interpreted by an equilibrium between the
inertial forces, the pressure gradient, the volume forces such as gravity, and the
viscous forces. In this section, we take a different point of view based on the
concept of vorticity.

The presence of vorticity in a flow is an indication of the importance of the
viscous effects, given that they are generated by viscous stresses. Therefore,
under certain assumptions, vorticity possesses the following properties:

i) in the absence of viscosity, it is transported by the flow as an elementary
material vector;

ii) in the presence of viscosity, it diffuses into the surrounding fluid while being
continually produced at the solid walls that delimit the flow.
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Thus the vorticity produced on a solid wall introduces the notion of a
boundary layer for which we are led to modify certain conclusions coming from
the theory of irrotational perfect fluids. In turbulence, flow dynamics are mostly
the result of the stretching or shortening of vortex lines and their deformation.

Kinematic Considerations

The velocity gradient tensor L can be decomposed into the sum of a symmetric
strain rate tensor d and an antisymmetric rotation rate tensor ω̇ according to
equation (2.184). The tensor d is given by (2.181) and ω̇ by (2.183). Recall that
the dual vector Ω̇, corresponding to the rotation rate tensor, is the rotation
rate vector introduced by (2.187).

In fluid mechanics, we classically introduce the vorticity vector ω, defining
it as the curl of the velocity (2.188). To acquire familiarity with the concept of
vorticity, we study the flow near a stagnation point at the origin. The velocity
components are such that we have, with a constant C,

v1 = Cx1, v2 = −Cx2, v3 = 0 . (8.181)

We easily calculate that for this flow ω = 0. A flow with zero vorticity is
called irrotational . Note that the corresponding stream function introduced
in (8.137) is ψ = Cx1x2 which is represented by hyperbolas.

Now consider the plane Poiseuille flow in a channel of height h. If the
coordinate system has its origin on the lower wall, the velocity profile, (8.63)
with definition (8.68), is given by the relation

v1 = 4vmax
x2

h
(1− x2

h
) , (8.182)

with vmax being the maximum velocity on the centerline of the channel at
x2 = h/2. The only component of the vorticity is ω3. It is perpendicular to
the plane of the flow and its value is

ω3 = ε321
∂v1

∂x2
= −4vmax

h
(1− 2x2

h
) . (8.183)

In this case, the absolute value of the vorticity attains a maximum at the two
walls and goes to zero on the centerline of the channel.

From these examples we can conclude that the concept of vorticity has no
relation to the curvature of the streamlines. In the first case, the streamlines are
curved, but the vorticity is zero; while in the second example, the streamlines
are straight lines and there is finite vorticity.

From the definition of vorticity, (2.188), and Stokes theorem, (1.229), we
obtain the identity

I(S) =

∫
S

ω · n dS =

∫
S

curlv · n dS =

∮
v · τ dl = Γ . (8.184)
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Fig. 8.23 Vortex tube

The curvilinear integral in (8.184) defines the velocity circulation, Γ, along the
closed curve C, of the unit tangent vector τ . It is thus equal to the vorticity
vector flux through an arbitrary surface bounded by the curve. In the following,
this property will permit us to systematically link the concept of circulation to
an interpretation in terms of vorticity. Recall that a vortex line (fig. 8.23) is
a line tangent at all its points to the vorticity vector, and that a vortex tube
is a family of vortex lines circumscribed by a closed curve. The intensity of a
vortex tube, for a surface S defined by a closed line enclosing the vortex tube,
is the flux I(S) of vorticity through the surface.

Helmholtz Theorem (Vorticity properties)

Helmholtz main theorems about vorticity are as follows:
• the vorticity flux through a closed surface is always zero;
• the intensity of a vortex tube does not depend on the transverse section

considered;
• a vortex tube can only end connected to itself or extend to infinity unless

it is cut by a wall.

The proof of these theorems can be found in Panton’s book [38].
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8.10 Dynamic Vorticity Equation

8.10.1 General Equation

The formulation of the equation that governs vorticity dynamics requires the
establishment of certain preliminary relations.

First, the acceleration term a can be written as follows:

a =
∂v

∂t
+ ω × v + grad

(v · v
2

)
, (8.185)

from which we can deduce the relations

ai =
∂vi
∂t

+ εijkωjvk +
∂

∂xi

(vjvj
2

)
,

=
∂vi
∂t

+ εijkεjlm

(
∂vm
∂xl

)
vk + vj

∂vj
∂xi

,

=
∂vi
∂t

+ (δklδim − δkmδil)
(
∂vm
∂xl

vk

)
+ vj

∂vj
∂xi

,

or

ai =
∂vi
∂t

+ vk
∂vi
∂xk

.

This last expression is none other than the definition of acceleration (2.33).

Thus, relation

1

ρ
curla =

D

Dt

(
ω

ρ

)
− 1

ρ
(ω · grad)v (8.186)

is an identity. As can be seen, applying the curl operator to relation (8.185)
leads to

curla =
∂

∂t
curlv + curl(ω × v) + curl grad

(v · v
2

)
or

curla =
∂ω

∂t
+ curl(ω × v) . (8.187)

The term curl(ω × v) can be developed as follows:

curl(ω × v) = v · gradω − (∇v) ω + ω divv − v divω . (8.188)

The last term of (8.188) is zero from (1.180). From (8.187) and (8.188), it
follows that

curla =
Dω

Dt
− (∇v) ω + ω divv .

From the mass conservation equation (3.41), we obtain the relation

1

ρ
curla =

1

ρ

Dω

Dt
− (∇v)

(
ω

ρ

)
− 1

ρ2

Dρ

Dt
ω ,
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which is equivalent to equation (8.186) and which can be written in the form

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v +

1

ρ
curla . (8.189)

This relation constitutes a first description of the temporal evolution of vortic-
ity. It is known as the Beltrami diffusion equation [46].

From the conservation of momentum (3.96), we write

D

Dt

(
ω

ρ

)
= (

ω

ρ
· grad)v +

1

ρ
curl (b+

1

ρ
divσ) . (8.190)

In order to separate the effects of pressure and viscosity, we use the constitutive
equation (6.12) in (8.190). We have

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v +

1

ρ
curl b+

1

ρ
curl(−1

ρ
∇p) +

1

ρ
curl(

1

ρ
divT ) ,

(8.191)
with the deviatoric extra-stress tensor T . Using relation (1.234), we write

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v+

1

ρ
curl b+

∇p
ρ
×∇(

1

ρ
)+

1

ρ
curl(

1

ρ
divT ) . (8.192)

The left-hand side of relation (8.192) contains the material derivative of the
vorticity relative to the local density. On the right-hand side, we find two terms
that describe the deformation (stretching and shrinking) and the curvature
(bending-tilting) of the vortex lines, then the baroclinicity term (related to
pressure) and, finally, the viscous diffusion of the vorticity.

If the volume force is conservative, it can be derived from a potential χ, as
is the case for gravity. Then we write

b = −∇χ . (8.193)

Consequently, curl b = 0, and this term disappears from (8.192). We adopt
this hypothesis for the rest of this discussion.

8.10.2 Physical Interpretation of Vorticity Dynamics

Incompressible Perfect Fluid Case

For an incompressible fluid (∇ρ = 0), that is inviscid (T = 0), equation (8.192)
simplifies to

D

Dt
ω = (∇v) ω = (ω ·∇)v . (8.194)

The term
(ω ·∇)v

does not correspond to any term in the Navier-Stokes equations written with
the primitive variables, velocity and pressure. Let us examine what it means
for the flow from the physical point of view.
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Fig. 8.24 Portion of a vortex line

In figure 8.24, consider two neighboring points P and Q on a vortex line.
The points P and Q also define a material line of length dx =‖ dx ‖, and we
can show the equality as

D(dxi)

Dt
= dvi =

∂vi
∂xj

dxj or,
D(dx)

Dt
= dx · gradv . (8.195)

This last equation simultaneously expresses the changes in length and direction
of a material line element. Comparison of (8.194) and (8.195) shows that the
vorticity vector ω plays a role analogous to that of the vector dx. Thus, ω
behaves as if it were a material line element instantaneously coinciding with a
portion of the vortex line. Let δv be the relative velocity of the fluid at Q with
respect to P. In relation (8.194), we can make the substitution

(∇v) ω =‖ ω ‖ lim
PQ→0

δv

PQ
.

One part of the change of ω measured by (8.194) comes from the rigid body
rotation of the material line element (from the component of δv normal to ω),
and the other part is generated by the shrinking or stretching of the elementary
line (from the component δv parallel to ω). Finally, equation (8.194) can be
interpreted as follows: the vorticity is transported by the fluid particles, while
being oriented and deformed as if it were an elementary material vector.

Compressible Perfect Fluid Case

The term∇ρ 6= 0 is present in (8.192). The production of vorticity by baroclin-
icity occurs in flows where the constant pressure and constant density (isobaric
and isopycnal) surfaces are not parallel. This can occur in some domains, in-
cluding meteorology, oceanography, and astrophysics. In these cases, the center
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of gravity of the fluid does not coincide with the center of pressure, the lat-
ter being where the resulting vector for all the pressure forces is applied; the
resulting force then acts as a torque, locally turning the fluid and creating
circulation.

In the case of a barotropic fluid for which the density is only a function of
the pressure (sec. 6.9), we have

ρ = ρ(p) or p = p(ρ) , (8.196)

then the isobars and the isopycnal surfaces are parallel, and the baroclinic term
is zero.

8.11 Vorticity Equation for a Newtonian Viscous Fluid

We assume now that the viscosities λ and µ are invariable. With (6.13), we
write

1

ρ
divT =

λ

ρ
grad (divv) + 2ν grad (divv)− ν curl curlv (8.197)

or

1

ρ
divT = grad

(
λ+ 2µ

ρ
divv

)
− grad

(
λ+ 2µ

ρ

)
divv − ν curl curlv .

(8.198)
Taking the curl of (8.198) and accounting for (1.234), leads to

curl(
1

ρ
divT ) =

λ+ 2µ

ρ2
∇ρ×∇(divv)− curl(ν curlω) . (8.199)

The vorticity dynamics equation is obtained by combining (8.192) and (8.199):

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v +

1

ρ3
∇ρ×∇p

+
λ+ 2µ

ρ3
∇ρ×∇(divv)− 1

ρ
curl(ν curlω) . (8.200)

This equation simplifies if the fluid is either compressible and barotropic (8.196)
(∇ρ is parallel to ∇p) or incompressible (∇ρ = 0). We then have

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· gradv

)
− 1

ρ
curl (ν curlω) . (8.201)
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Special Case for Two-Dimensional Flow

For an incompressible two-dimensional flow, equation (8.201) becomes, with
the notation ω3 = ω,

Dω

Dt
= ν ∆ω , (8.202)

because in this special case the term (ω · gradv) is zero since ω is orthogonal to
the flow plane and thus to gradv. We note that equation (8.202) is analogous
to that for heat conduction, with the kinematic viscosity replacing the thermal
diffusivity. We also notice that equation (8.202) is satisfied for ω = 0, that is, for
an irrotational flow. However, that solution is inadequate. To understand why,
we reason by analogy with the heat equation, which also allows an identically
zero solution. We know from the study of heat flow, that any non-uniform
distribution of temperature at the wall or non-zero heat flux will generate
a variable temperature field in the material. Thus the analogy leads us to
conclude that, in the case of a viscous fluid, the vorticity that is generated at
the walls will diffuse out by shear and then be carried away by the flow. The
creation of vorticity at the wall is the result of the shear stress on the wall. To
obtain the value of vorticity at the wall, we resort to the classical method of
Green’s functions [51].

8.12 Circulation Equation

In the context of the hypotheses introduced in the previous section, we prove
that for a material curve C(t), along which the circulation of the velocity vector
is Γ(t), we can write the following:

dΓ

dt
= −

∮
C(t)

ν(curl curlv) · dl . (8.203)

This relation expresses the fact that the variation of the circulation along the
material curve is due to the viscosity which dampens the motion.

To obtain (8.203), we must first prove that for a material curve C(t), we
have the following identity:

dΓ

dt
=

∮
C(t)

a · dx . (8.204)

For that, we can write the equation

dΓ

dt
=

d

dt

∮
C(t)

vidxi =
d

dt

∮
C0

Vi
∂xi
∂Xj

dXj ,

in which C0 denotes the material curve C(t) at the instant t = t0 and Xi are
the associated Lagrangian coordinates. Denoting by Ai and Vi the Lagrangian
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representations of acceleration (2.32) and velocity (2.17), we have:

d

dt

∮
C0

Vi
∂xi
∂Xj

dXj =

∮
C0

(
Ai

∂xi
∂Xj

+ Vi
∂Vi
∂Xj

)
dXj

=

∮
C(t)

aidxi +

∮
C0

∂

∂Xj

(
ViVi

2

)
dXj .

The last term of the right-hand side of this equality is zero on a closed curve.

With relation (6.14), which we use in the motion equation (3.96), taking
into account vector identity (1.238) and equation (8.10), we can write

a = −gradχ− 1

ρ
grad p+

(
λ

ρ
+ 2ν

)
grad (divv)− ν curl curlv .

And with the conservation of mass, it leads to

a = −grad
(
p

ρ
+ χ− λ+ 2µ

ρ
divv

)
− λ+ 2µ

ρ3

Dρ

Dt
grad ρ− ν curl curlv .

(8.205)

In the case of fluid that is weakly viscous or compressible, we consider the
second term on the right-hand side to be of second order with respect to the
term in the pressure gradient; we thus neglect it in the following. Inserting
(8.205) in (8.204), we obtain (8.203).

8.13 Vorticity Equation for a Perfect Fluid

For an incompressible, perfect (ν = 0), or barotropic fluid (especially in isen-
tropic flow, ds = 0), the vorticity dynamics theorem (8.201) becomes

D

Dt

(
ω

ρ

)
=

(
ω

ρ

)
· gradv . (8.206)

In the two-dimensional case, ω is orthogonal to gradv and this relation
reduces to

D

Dt

(
ω

ρ

)
= 0 . (8.207)

From equation (8.206), we deduce that, for a perfect barotropic or in-
compressible fluid, if the flow is irrotational at an instant, it remains so. In
particular, an initially uniform flow will remain irrotational afterwards. This
proposition, applied to isentropic flows of compressible, perfect fluids, is named
Crocco’s theorem [3].

In the case of a perfect fluid, equation (8.203) yields Kelvin’s theorem [64]:

dΓ

dt
= 0 . (8.208)

The circulation of the velocity along a closed material line does not change, for
an incompressible or barotropic perfect fluid (and particularly, in an isentropic
flow).
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8.14 Bernoulli’s Equation

Bernoulli’s equation is obtained from the Euler equation (8.36), for perfect
fluids. Assume that the volume forces can be derived from a potential (8.193),
then

Dv

Dt
= −1

ρ
∇ p−∇χ . (8.209)

Using the vector identity

v ·∇v = ω × v +∇
(v · v

2

)
, (8.210)

in the material derivative of the velocity, we obtain

∂v

∂t
= −ω × v − 1

ρ
∇ p−∇

(
v2

2
+ χ

)
. (8.211)

We also assume that the flow is irrotational, ω = 0. This assumption is strong,
because real fluids produce rotational flows, such as those produced, for ex-
ample, by the viscous effects near a wall. Thus, equation (8.211) can now be
written as

∂v

∂t
= −1

ρ
∇ p−∇

(
v2

2
+ χ

)
. (8.212)

Since the flow is irrotational, the velocity field can be derived from a potential,
Φ, such that

v =∇Φ . (8.213)

The Euler equation yields

∇
(
∂Φ

∂t
+
v2

2
+ χ

)
= −1

ρ
∇ p. (8.214)

As the left-hand side of (8.214) corresponds to the gradient of a scalar function,
the same must be the case for the right-hand side. This is not possible unless
the density ρ is a function of p. This then amounts to requiring that the flow
under consideration be that of a barotropic fluid according to relation (6.147).
Consequently, equation (8.214) becomes

∇
(
∂Φ

∂t
+
v2

2
+ χ+

∫
dp

ρ(p)

)
= 0 . (8.215)

We integrate this equation to obtain the general form of Bernoulli’s equation:

∂Φ

∂t
+

∫
dp

ρ(p)
+
v2

2
+ χ = C(t) . (8.216)

If the flow is stationary, then (8.216) yields the steady state form of Bernoulli’s
equation ∫

dp

ρ(p)
+
v2

2
+ χ = cnst, (8.217)
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which, as is suggested by the second term, is an integral of the energy. There-
fore, Bernoulli’s equation is a first integral of the Euler equation for the case
of a stationary, irrotational, perfect fluid.

If the flow is isentropic, the state relation (6.145) allows us to evaluate the
pressure term in (8.217). We obtain∫

dp

ρ(p)
=

γ

γ − 1

p

ρ
=

a2

γ − 1
, (8.218)

where we have used (6.153) to deduce the last expression. With (8.218) and
the definition q2 = vivi, the steady state Bernoulli’s equation is written as

a2

γ − 1
+
q2

2
+ χ = cnst . (8.219)

Assuming that the adiabatic flow of the ideal fluid is stationary and with
no volume force, we have

a2

γ − 1
+
q2

2
= cnst . (8.220)

Since γ > 1, we easily find from (6.145) and (6.153) that a2 = γ(p0/ρ
γ
0) ργ−1 =

γC ργ−1. Thus, we obtain a = 0 when ρ = 0. Bernoulli’s equation (8.220)
becomes

a2

γ − 1
+
q2

2
=

γ + 1

2(γ − 1)
a2
∗ =

q2
max

2
. (8.221)

The two constants a∗ and qmax denote the critical speed of sound and the
maximum velocity on the streamline, respectively. It can easily be seen that if
q = a, then q = a = a∗. This last equation defines the critical speed of sound.
If a = 0, the velocity q of the fluid is equal to the maximum velocity qmax.
Equation (8.220) is especially used in aerodynamics.

If the flow is incompressible, then ρ = cnst and Bernoulli’s equation (8.216)
yields

∂Φ

∂t
+
p

ρ
+
v2

2
+ χ = C(t) . (8.222)

For stationary flow of an incompressible, perfect fluid, Bernoulli’s equation
takes the well-known form

p+
ρv2

2
+ ρχ = C , (8.223)

where C is a constant.

8.15 Acoustic Waves

Acoustic waves are generated by weak amplitude perturbations of the pres-
sure or density and propagate at a certain velocity in a fluid flow. When the
amplitudes are finite, a shock wave is produced.
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We study a compressible, perfect fluid, in uniform isothermal flow, charac-
terized by the variables p0, ρ0, and v0. The sound wave creates a perturbation
p′, ρ′,v′ such that the resulting flow is given by

p = p0 + p′, ρ = ρ0 + ρ′, v = v0 + v′ . (8.224)

As we assume that the perturbation is infinitesimal, we have the following
estimations of magnitude:

|p′|
p0
,
|ρ′|
ρ0
,
‖v′‖√
p0
ρ0

� 1 . (8.225)

The equations for conservation of mass and momentum are

∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vi
∂xi

= 0 , (8.226)

∂vi
∂t

+ vj
∂vi
∂xj

+
1

ρ

∂p

∂xi
= 0 . (8.227)

Inserting relations (8.224) in (8.226) and (8.227), we then linearize the equa-
tions, only retaining the first-order terms, and we assume that the underlying
unperturbed flow satisfies the mass and momentum conversation equations.
Then, it follows that

∂ρ′

∂t
+ v0j

∂ρ′

∂xj
+ ρ0

∂v′i
∂xi

= 0 , (8.228)

∂v0i

∂t
+ v0j

∂v′i
∂xj

+
1

ρ0

∂p′

∂xi
= 0 . (8.229)

Assuming, in addition, that the flow is globally isentropic (ds = 0), from
(6.142), it follows for an ideal gas

dp′

p0 + p′
= γ

dρ′

ρ0 + ρ′
,

or from (6.153) and (8.225)

∇p′ = γ
p0

ρ0
∇ρ′ . (8.230)

In order to simplify the expression, we define the material derivative of the
unperturbed flow

D0(•)
Dt

=
∂(•)
∂t

+ v0j
∂(•)
∂xj

. (8.231)

The dynamic equations of the perturbation become

D0ρ
′

Dt
+ ρ0 div v′ = 0 , (8.232)

D0v
′

Dt
+

1

ρ0
∇p′ = 0 . (8.233)
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Inserting (8.230) in (8.232), we obtain

D0v
′

Dt
+ γ

p0

ρ2
0

∇ρ′ = 0 . (8.234)

Applying the divergence operator to (8.234) and using (1.189) leads to the
relation

ρ0 div
D0v

′

Dt
+ γ

p0

ρ0
∆ρ′ = 0 . (8.235)

The material derivative of (8.232) yields

D2
0ρ
′

Dt2
+ ρ0 div

D0v
′

Dt
= 0 . (8.236)

Combining (8.235) and (8.236), we produce the wave equation

D2
0ρ
′

Dt2
= γ

p0

ρ0
∆ρ′ . (8.237)

The perturbation propagates with respect to the uniform flow at a velocity
given by √

γ
p0

ρ0
, (8.238)

called the speed of sound . In the general case of a non-uniform flow, we
obtain the speed of sound

a =

√
γ
p

ρ
, (8.239)

which is none other than expression (6.153). Note that with (8.230), we can
write (8.237) in the form

D2
0p
′

Dt2
= γ

p0

ρ0
∆p′ . (8.240)

Similarly, we have
D2

0v
′
i

Dt2
= γ

p0

ρ0
∆v′i . (8.241)

Thus all the variables of the problem satisfy the wave equation.

Since the wave equation is linear with constant coefficients, we can consider
that a Fourier harmonic is a solution, then

p′(k, t) =
∑
k

p̂k e
i(k·x−ωt) , (8.242)

where we have the wave vector k, the time frequency ω, and the complex
amplitude p̂k for the modes. The dispersion relation is obtained by introducing
(8.242) in (8.240):

ω2 = a2k2 . (8.243)

The phase velocity of the wave is obtained by |ω|/|k| = a which shows that the
speed of sound does not depend on the wave number; acoustic waves are not dis-
persive. In the case of air, with T0 = 288K, we have a =

√
γRT0 = 340ms−1.

For an acoustic wave with frequency ω/(2π) = 1000 Hz, the wavelength,
λ = 2π/(ω/a), is 0.34 m.
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8.16 Stationary, Irrotational, Isentropic Flow of a

Compressible Perfect Fluid

Consider the steady flow of a compressible perfect fluid for which we neglect the
volume forces. We assume that the flow is adiabatic and thermodynamically
reversible. This means that we exclude the presence of shocks. The flow is thus
isentropic; the fluid is barotropic and its model corresponds to equation (6.147).
Then, we assume that the flow is irrotational since this property is conserved
in time for barotropic perfect fluids. With these hypotheses, the conservation
equations simplify

∂

∂xi
(ρvi) = 0 , (8.244)

vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
. (8.245)

For an isentropic flow, with (6.152), it follows that

∂p

∂xi
=
∂p

∂ρ

∂ρ

∂xi
= a2 ∂ρ

∂xi
. (8.246)

Equation (8.245) becomes

vj
∂vi
∂xj

+
a2

ρ

∂ρ

∂xi
= 0 . (8.247)

Multiplying (8.247) by vi and (8.244) by a2/ρ and then combining the two
relations so obtained, we have

vivj
a2

∂vi
∂xj

=
∂vi
∂xi

. (8.248)

Note that the speed of sound a in (8.248) is a function of position. It is
calculated from the fluid velocity with the ideal gas energy equation (8.221).

The irrotationality of the flow allows the introduction of a potential for the
velocities (8.213). Inserting it in (8.248), we have

1

a2

∂Φ

∂xi

∂Φ

∂xj

∂2Φ

∂xi∂xj
= ∆Φ . (8.249)

Bernoulli’s equation (8.221) yields

1

2

(
∂Φ

∂xi

)2

+
a2

γ − 1
= cnst . (8.250)

Since relations (8.249) and (8.250) are non-linear, we must make simplifications
in order to find an analytic solution.
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8.16.1 Small Perturbation Theory

We assume a uniform, parallel flow at velocity U in direction x1, perturbed
by a thin obstacle of length L as is shown in figure 8.25 or by walls slightly
inclined with respect to the horizontal.

O

U

x
1

x
3

x
2

L

Fig. 8.25 Thin obstacle in a uniform compressible flow

These geometries generate perturbations such that

vi = Ue1 + v′i , (8.251)

with the inequalities ∣∣∣∣v′iU
∣∣∣∣� 1, i = 1, 2, 3 . (8.252)

The velocity field depends on the potential Φ(xi) which we write in the form

Φ(xi) = Ux1 + ϕ(xi) , (8.253)

where ϕ denotes the perturbation potential.

We linearize equations (8.248) and (8.221), by neglecting all terms of order
two or higher in the perturbation and retaining only those of first order. It
follows for (8.248)

∂vi
∂xi

=
U2

a2

∂v1

∂x1
=
U2

a2

∂v′1
∂x1

. (8.254)

Note that (8.254) is not linear, as the local speed of sound a depends on the
perturbations v′i.

Bernoulli’s equation (8.221) can be written

q2

2
+

a2

γ − 1
=
U2

2
+

a2
∞

γ − 1
, (8.255)
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where a∞ is the speed of sound upstream at infinity. The linearization leads
us to write

a2 = a2
∞ +

γ − 1

2

(
U2 − q2

)
= a2

∞ +
γ − 1

2

[
U2 − (U + v′1)2 − v′22 − v′23

]
= a2

∞ − (γ − 1)Uv′1 + . . . (8.256)

Taking into account inequality (8.252), relation (8.256) is approximated by

a2 ≈ a2
∞ . (8.257)

Combining relations (8.254)–(8.257), we obtain(
1− U2

a2
∞

)
∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

+
∂2ϕ

∂x2
3

= 0 . (8.258)

With the definition of the Mach number (8.3), relation (8.258) becomes

(
1−M2

∞
) ∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

+
∂2ϕ

∂x2
3

= 0 . (8.259)

When the Mach number is close to one, equation (8.259) degenerates and is
no longer valid. We therefore cannot use it for the sonic (or transonic) case.
Mathematically, equation (8.259) is elliptic for the subsonic case M∞ < 1, and
hyperbolic in the supersonic case M∞ > 1. This difference in the mathematical
nature also results in different physical behaviors.

The potential equation (8.259) is subject to boundary conditions that im-
pose that the velocity vector v be parallel to the walls in their neighborhood. It
is also necessary to verify that the perturbation method truly satisfies (8.252).

If the flow is delimited by the walls F (x1, x2, x3) = 0, near them we have

v′2
U
≈ v′2
U + v′1

=
dx2

dx1

∣∣∣∣
x3

= − (∂F/∂x1)

(∂F/∂x2)
(8.260)

v′3
U
≈ v′3
U + v′1

= − (∂F/∂x1)

(∂F/∂x3)
. (8.261)

Thus the conditions

|∂F/∂x1| � |∂F/∂x2| and |∂F/∂x1| � |∂F/∂x3| (8.262)

must be respected.

8.16.2 Two-Dimensional Flow of a Compressible Fluid in the Neighborhood

of a Sinusoidal Wavy Wall

Consider the two-dimensional, stationary flow of a compressible perfect fluid in
the neighborhood of a wavy wall of the form x2 = f(x1) = ε sin(αx1), for which
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x1

x2

ε

π/α

Fig. 8.26 Wavy wall

the amplitude ε is small compared to the wavelength λ = 2π
α , i.e., εα� 2π as

shown in figure 8.26.

We solve (
1−M2

∞
) ∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

= 0 (8.263)

with the condition at the wall F (x1, x2) = x2 − f(x1) = 0 (eqn. (8.260),

∂f

∂x1
=

v′2
U + v′1

≈ v′2
U

∣∣∣∣
x2=f(x1)

. (8.264)

We can express the last term of (8.264) as

v′2
U

(x1, ε sinαx1) =
1

U

[
v′2(x1, 0) + (

∂v′2
∂x2

)

∣∣∣∣
x2=0

ε sinαx1 + . . .

]
. (8.265)

The condition at the wall becomes, with the same level of approximation,

v′2(x1, 0)

U
=

∂f

∂x1
= εα cosαx1 . (8.266)

This amounts to imposing the condition on the average plane x2 = 0; and thus
the needed assumption εα � 1 < 2π. As x2 → ∞, for the subsonic case, we
impose v′1 = v′2 = 0.

Subsonic Flow

We use the method of separation of variables, by setting in equation (8.263)

ϕ(x1, x2) = ϕ1(x1)ϕ2(x2) (8.267)

which yields, with n2 = 1−M2
∞,

n2ϕ
′′
1

ϕ1
+
ϕ′′2
ϕ2

= 0 , (8.268)

where ϕ′′1 and ϕ′′2 are second-order derivatives. The boundary condition (8.266)
becomes

v′2(x1, 0)

U
=

1

U

∂ϕ

∂x2
(x1, 0) = εα cosαx1 , (8.269)
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from which we have
ϕ1(x1)ϕ′2(0) = Uεα cosαx1 . (8.270)

We deduce that
ϕ1(x1) = A cosαx1 . (8.271)

Now, putting (8.271) in (8.268), leads to

ϕ′′2
ϕ2

= n2α2 . (8.272)

Integrating (8.272), we obtain

ϕ2(x2) = Be−nαx2 + Cenαx2 . (8.273)

The condition for zero velocity at x2 → ∞ imposes C = 0, if we suppose that
n > 0. With (8.270), we then have

ϕ1(x1) = − εU
Bn

cosαx1 (8.274)

and finally,

ϕ(x1, x2) = −εU
n

(cosαx1)e−nαx2 . (8.275)

We can easily verify that the condition |v′1/U | � 1 implies

εα

n
� 1 . (8.276)

This is the case when n 6= 0, that is, when we are not too close to the transonic
domain.

Supersonic Flow

Set M2
∞ − 1 = m2. Equation (8.263) becomes

∂2ϕ

∂x2
2

− 1

m2

∂2ϕ

∂x2
1

= 0 . (8.277)

According to d’Alembert (sec. 7.5.3), the general solution of this wave equation
is

ϕ = f(x1 −mx2) + g(x1 +mx2) . (8.278)

The second term g is neglected for the case where the flow is situated in the
plane above the wall in the positive direction of the axis x1. The boundary
condition (8.269) yields

∂ϕ

∂x2
(x1, 0) = Uεα cosαx1 = −mf ′(x1) . (8.279)

Integration leads to

ϕ = f(x1 −mx2) = −Uε
m

sinα(x1 −mx2) . (8.280)
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The small perturbation condition implies that εα/m � 1. Note that the per-
turbation potential retains the same values on lines inclined downstream with
angular coefficient dx2/dx1 = 1/m = tanα, where the angle α is the Mach
angle (8.4). The perturbation thus propagates downstream to infinity, whereas
in the subsonic case, its amplitude diminishes rapidly as it moves away from
the wall.

8.17 Exercises

8.1 Starting from the conservation of momentum equation, (3.96), derive the
Navier-Stokes for a Newtonian viscous fluid. What happens to these equa-
tions when the coefficients λ and µ are constant? Look in particular at the
incompressible fluid case (isochoric motion).

8.2 Consider two-dimensional Couette-Poiseuille flow obtained by superimpos-
ing Couette flow induced by the constant velocity motion U of the upper wall
and Poiseuille flow resulting from a pressure gradient in direction x1. Calculate
the velocity profile, the shear stress, and the flow rate.

8.3 Consider the helical flow of an incompressible viscous fluid between two
rotating circular cylinders as in a Couette flow. The interior cylinder of radius
R1 and the exterior cylinder of radius R2 have rotational velocities of ω1 and
ω2, respectively. The fluid between the two cylinders is also subject to an
axial pressure gradient. Calculate the non-zero velocity components vθ and vz.
Calculate also the pressure field p = p(r, z).

8.4 A solid sphere of radius R is immersed in an incompressible Newtonian
viscous fluid that fills the space and is at rest at infinity. The sphere rotates
about its diameter at a constant angular velocity Ω. Assume that the Reynolds
number is less than one and neglect the volume forces. The streamlines are cir-
cles centered on the rotation axis in planes perpendicular to this axis. Working
in spherical coordinates, calculate the velocity profile.

8.5 With the same hypotheses as in the preceding exercise, examine the flow of
a fluid between two spheres of radii R1 and R2 such that R1 < R2, which rotate
at the angular velocities Ω1 and Ω2 about a common, fixed axis. Calculate the
velocity profile.

8.6 By applying Bernoulli’s theorem for perfect fluids (8.223), show that the
velocity of a jet exiting an orifice in a wall at a distance h from the free surface
of the fluid is

v =
√

2gh . (8.281)
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8.7 Consider the flow of a viscous fluid in a tube with an arbitrary section.
With the hypothesis that the velocity field is of the form

v1 = v1(x2, x3), v2 = v3 = 0 ,

show that the velocity field satisfies the equation

∂2v1

∂x2
2

+
∂2v1

∂x2
3

=
1

µ

dp

dx1
= C = cnst .

If the tube section is an ellipse with semi-axes a and b such that(x2

a

)2

+
(x3

b

)2

= 1 ,

the velocity field is written

v1 = A

[(x2

a

)2

+
(x3

b

)2
]

+B .

Find the constants A and B.

8.8 A cylinder of radius R1 moves parallel to its axis with a constant velocity
U inside a fixed, coaxial cylinder of radius R2.

Calculate the velocity field of a viscous fluid which fills the space between
the two cylinders. Find the friction force per unit length that acts on the
moving cylinder.



Appendix A

Cylindrical Coordinates

We list here some differential operators as well as the principal equations for a
system of cylindrical coordinates. Shown in figure A.1 are the components of
the stress tensor in the cylindrical coordinate system (r, θ, z).

dz

z

O

θ

dθ

r

x1

x2

x3

σzz

σθz

σrz σzr

σzθ

σrθ  

σθθ

σrr
σθr

σrθ

Fig. A.1 Stress tensor components in a cylindrical coordinate system

Divergence of a vector field v(r, θ, z):

div v =
1

r
vr +

∂vr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(A.1)

or

div v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

. (A.2)
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Divergence of a tensor field σ(r, θ, z):

divσ =

(
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r

)
er

+

(
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

)
eθ

+

(
∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

)
ez .

(A.3)

Gradient of a scalar field f(r, θ, z):

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez . (A.4)

Gradient of a vector field v(r, θ, z):

∇v =



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

∂vr
∂z

∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z

 . (A.5)

Curl of a vector field v(r, θ, z):

curlv =

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
er +

(
∂vr
∂z
− ∂vz

∂r

)
eθ

+
1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
ez .

(A.6)

Laplacian of a scalar field f(r, θ, z):

∆f = ∇2f =
1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
(A.7)

or

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
. (A.8)

Laplacian of a vector field v(r, θ, z):

∇2v =

(
∇2vr −

2

r2

∂vθ
∂θ
− vr
r2

)
er

+

(
∇2vθ +

2

r2

∂vr
∂θ
− vθ
r2

)
eθ

+
(
∇2vz

)
ez .

(A.9)
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Material derivative of a scalar field f(r, θ, z):

Df

Dt
=
∂f

∂t
+ vr

∂f

∂r
+
vθ
r

∂f

∂θ
+ vz

∂f

∂z
. (A.10)

Acceleration:

Dvr
Dt

=
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
+ vz

∂vr
∂z

(A.11)

Dvθ
Dt

=
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

(A.12)

Dvz
Dt

=
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

. (A.13)

Conservation of mass equation:

∂ρ

∂t
+
∂(ρvr)

∂r
+
ρvr
r

+
1

r

∂(ρvθ)

∂θ
+
∂(ρvz)

∂z
= 0 . (A.14)

Motion equations:

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2

θ

r

)
=
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
+ ρbr (A.15)

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

)
=
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

+ ρbθ (A.16)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
=
∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

+ ρbz . (A.17)

Equilibrium equations:

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
+ ρbr = 0 (A.18)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

+ ρbθ = 0 (A.19)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

+ ρbz = 0 . (A.20)
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Navier’s equations:

µ

(
∇2ur −

ur
r2
− 2

r2

∂uθ
∂θ

)
+ (λ+ µ)

∂

∂r

(
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

)
+ fr = 0 (A.21)

µ

(
∇2uθ −

uθ
r2
− 2

r2

∂ur
∂θ

)
+ (λ+ µ)

1

r

∂

∂θ

(
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

)
+ fθ = 0 (A.22)

µ∇2uz + (λ+ µ)
∂

∂z

(
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

)
+ fz = 0 . (A.23)

Strain components as functions of displacement:

εrr =
∂ur
∂r

εθθ =
ur
r

+
1

r

∂uθ
∂θ

εzz =
∂uz
∂z

(A.24)

εzr =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
εrθ =

1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
(A.25)

εzθ =
1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
. (A.26)

Note that the constitutive equations are obtained by replacing the
Cartesian components in (7.3) and (7.4) with the components above.

Biharmonic equation:

∇4Φ =

(
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2

)(
1

r

∂Φ

∂r
+
∂2Φ

∂r2
+

1

r2

∂2Φ

∂θ2

)
= 0 .

(A.27)

Stress components:

Via the Airy stress function for a plane stress state

σrr =
1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
(A.28)

σθθ =
∂2Φ

∂r2
(A.29)

σrθ =
1

r2

∂Φ

∂θ
− 1

r

∂2Φ

∂r∂θ
. (A.30)
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Incompressible Navier-Stokes equations:

Conservation of mass equation

∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

= 0 . (A.31)

Motion equations

ρ(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2

θ

r
) =

−∂p
∂r

+ µ(4vr −
vr
r2
− 2

r2

∂vθ
∂θ

) + ρbr (A.32)

ρ(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

) =

−1

r

∂p

∂θ
+ µ(4vθ −

vθ
r2

+
2

r2

∂vr
∂θ

) + ρbθ (A.33)

ρ(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

) =

−∂p
∂z

+ µ∆vz + ρbz (A.34)

with the Lapacian operator defined by (A.7) or (A.8).
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Spherical Coordinates

We list here some differential operators as well as the principal equations for
a system of spherical coordinates. Shown in figure B.1 are the components of
the stress tensor in the spherical coordinate system r, θ, ϕ.

O

x2

x1

x

φ

σrr

θ

dθ

dφ

r

σφφ

σθθ

σ
φr

σφφ

σrφ

σrr

σφφ

σθrσθφ

σφr

σrφ

σθθ

σθφ

σrr

Fig. B.1 Stress tensor components in a spherical coordinate system

Divergence of a vector field v(r, θ, ϕ):

div v =
1

r2

∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vϕ
∂ϕ

(B.1)
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Divergence of a tensor field σ(r, θ, ϕ):

divσ =

(
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
[2σrr − σθθ − σϕϕ + σrθ cot θ]

)
er

+

(
∂σθr
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
[3σrθ + (σθθ − σϕϕ) cot θ]

)
eθ

+

(
∂σϕr
∂r

+
1

r

∂σϕθ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
[3σrϕ + 2σθϕ cot θ]

)
eϕ .

(B.2)

Gradient of a scalar field f(r, θ, ϕ):

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ . (B.3)

Gradient of a vector field v(r, θ, ϕ):

∇v =



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

1

r sin θ

∂vr
∂ϕ
− vϕ

r
∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

1

r sin θ

∂vθ
∂ϕ
− vϕ
r tan θ

∂vϕ
∂r

1

r

∂vϕ
∂θ

1

r sin θ

[
∂vϕ
∂ϕ

+ vr sin θ + vθ cos θ

]

 .

(B.4)

Curl of a vector field v(r, θ, ϕ):

curl v =
1

r sin θ

(
∂(vϕ sin θ)

∂θ
− ∂vθ
∂ϕ

)
er +

(
1

r sin θ

∂vr
∂ϕ
− 1

r

∂(rvϕ)

∂r

)
eθ

+
1

r

(
∂(r vθ)

∂r
− ∂vr

∂θ

)
eϕ . (B.5)

Laplacian of a scalar field f(r, θ, ϕ):

∆f = ∇2f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
.

(B.6)

Laplacian of a vector field v(r, θ, ϕ):

∇2v =

(
∆vr −

2vr
r2
− 2

r2

∂vθ
∂θ
− 2vθ cot θ

r2
− 2

r2 sin θ

∂vϕ
∂ϕ

)
er

+

(
∆vθ −

vθ

r2 sin2 θ
+

2

r2

∂vr
∂θ
− 2 cos θ

r2 sin2 θ

∂vϕ
∂ϕ

)
eθ (B.7)

+

(
∆vϕ −

vϕ

r2 sin2 θ
+

2

r2 sin θ

∂vr
∂ϕ

+
2 cos θ

r2 sin2 θ

∂vθ
∂ϕ

)
eϕ .
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Material derivative of a scalar field f(r, θ, ϕ):

Df

Dt
=
∂f

∂t
+ vr

∂f

∂r
+
vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ
. (B.8)

Acceleration:

ar =
Dvr
Dt
− v2

ϕ + v2
θ

r
(B.9)

aθ =
Dvθ
Dt

+
vrvθ − v2

ϕ cot θ

r
(B.10)

aϕ =
Dvϕ
Dt

+
vrvϕ + vϕvθ cot θ

r
. (B.11)

Conservation of mass equation:

∂ρ

∂t
+

1

r2

∂(r2 ρ vr)

∂r
+

1

r sin θ

∂(ρ vθ sin θ)

∂θ
+

1

r sin θ

∂(ρ vϕ)

∂ϕ
= 0 . (B.12)

Motion equations:

ρ

(
Dvr
Dt
− v2

ϕ + v2
θ

r

)
=
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
(2σrr − σθθ − σϕϕ + σrθ cot θ) + ρ br (B.13)

ρ

(
Dvθ
Dt

+
vrvθ − v2

ϕ cot θ

r

)
=
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
[(σθθ − σϕϕ) cot θ + 3σrθ] + ρ bθ (B.14)

ρ

(
Dvϕ
Dt

+
vrvϕ + vϕvθ cot θ

r

)
=
∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
(3σrϕ + 2σθϕ cot θ) + ρ bϕ . (B.15)
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Equilibrium equations:

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
(2σrr − σθθ − σϕϕ + σrθ cot θ) + ρ br = 0 (B.16)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
[(σθθ − σϕϕ) cot θ + 3σrθ] + ρ bθ = 0 (B.17)

∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
(3σrϕ + 2σθϕ cot θ) + ρ bϕ = 0 . (B.18)

Navier’s equations:

µ

(
∇2ur −

2ur
r2
− 2

r2

∂uθ
∂θ
− 2uθ cot θ

r2
− 2 cot θ

r2 sin θ

∂uϕ
∂ϕ

)
+ (λ+ µ)

∂

∂r

(
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

)
+ fr = 0 (B.19)

µ

(
∇2uθ +

2

r2

∂ur
∂θ
− uθ

r2 sin2 θ
− 2 cot θ

r2 sin2 θ

∂uϕ
∂ϕ

)
+ (λ+ µ)

1

r

∂

∂θ

(
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

)
+ fθ = 0 (B.20)

µ

(
∇2uϕ −

uϕ

r2 sin2 θ
+

2

r2 sin2 θ

∂ur
∂ϕ

+
2 cot θ

r2 sin2 θ

∂uθ
∂ϕ

)
+ (λ+ µ)

1

r sin θ

∂

∂ϕ

(
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

)
+ fϕ = 0 . (B.21)

Strain components as functions of displacement:

εrr =
∂ur
∂r

εθθ =
ur
r

+
1

r

∂uθ
∂θ

εϕϕ =
1

r sin θ

∂uϕ
∂ϕ

+
ur
r

+
uθ
r

cot θ

(B.22)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
εrϕ =

1

2

(
1

r sin θ

∂ur
∂ϕ

+
∂uϕ
∂r
− uθ

r

)
(B.23)

εθϕ =
1

2

(
1

r

∂uϕ
∂θ

+
1

r sin θ

∂uθ
∂ϕ
− uϕ

r
cot θ

)
. (B.24)
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Note that the constitutive equations are obtained by replacing the
Cartesian components in (7.3) and (7.4) with the components above.

Strain rate components:

drr =
∂vr
∂r

, dθθ =
1

r

∂vθ
∂θ

+
vr
r
, (B.25)

dϕϕ =
1

r sin θ

∂vϕ
∂ϕ

+
vr
r

+
vθ cot θ

r
, (B.26)

dϕθ =
1

2

(
1

r sin θ

∂vθ
∂ϕ

+
1

r

∂vϕ
∂θ
− vϕ cot θ

r

)
, (B.27)

dϕr =
1

2

(
∂vϕ
∂r

+
1

r sin θ

∂vr
∂ϕ
− vϕ

r

)
, (B.28)

drθ =
1

2

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
. (B.29)

Incompressible Navier-Stokes equations:

Conservation of mass equation

1

r2

∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vϕ
∂ϕ

= 0 . (B.30)

Motion equations

ρ

(
Dvr
Dt
− v2

ϕ + v2
θ

r

)
= −∂p

∂r

+ µ

(
∆vr −

2vr
r2
− 2

r2

∂vθ
∂θ
− 2vθ cot θ

r2
− 2

r2 sin θ

∂vϕ
∂ϕ

)
+ ρbr (B.31)

ρ

(
Dvθ
Dt

+
vrvθ − v2

ϕ cot θ

r

)
= −1

r

∂p

∂θ

+ µ

(
∆vθ −

vθ

r2 sin2 θ
+

2

r2

∂vr
∂θ
− 2 cos θ

r2 sin2 θ

∂vϕ
∂ϕ

)
+ ρbθ (B.32)

ρ

(
Dvϕ
Dt

+
vrvϕ + vϕvθ cot θ

r

)
= − 1

r sin θ

∂p

∂ϕ

+ µ

(
∆vϕ −

vϕ

r2 sin2 θ
+

2

r2 sin θ

∂vr
∂ϕ

+
2 cos θ

r2 sin2 θ

∂vθ
∂ϕ

)
+ ρbϕ (B.33)

with the Laplacian operator defined by (B.6).





List of Symbols

This list of symbols gathers the principal notations used in this monograph.
Those that are not shown here are defined where they appear and their context
supplies all the necessary information for their understanding and use.

Symbol Description Units

Latin alphabet

a speed of sound m s−1

ai area of the face si m2

ai components of the acceleration m s−2

a acceleration vector (spatial) m s−2

A tensor of order n –
Ai1···in components of the tensor of order n –
A area m2

A acceleration vector (material) m s−2

Ai unit material eigenvectors –
b volume force per unit mass N kg−1

B volume force per unit mass N kg−1

bi unit spatial eigenvectors –
B body –
c left Cauchy-Green deformation tensor –
C right Cauchy-Green deformation tensor –
Cijk material parameters –
cp heat capacity at constant pressure J kg−1K−1

cv heat capacity at constant volume J kg−1K−1

CD drag coefficient –
d rate of deformation tensor s−1

di dual vector components –
e thickness m
e Euler-Almansi strain tensor –
ei basis vector –
E Young’s modulus Pa
Ek kinetic energy J
Eint internal energy J
E Green-Lagrange strain tensor –
E3 vector space –
F deformation gradient tensor –

f b volume force N
fc contact force N
f Helmholtz free energy J kg−1

f deflection m
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Symbol Description Units

f frequency s−1

f(T ) tensor function of tensor T –

F b volume force N
Fr Froude number –
gi basis vectors in curvilinear coordinates –
g acceleration of gravity m s−2

h height m
h enthalpy per unit mass J kg−1

Ii scalar invariants –
I3 moment of inertia with respect to x3 m4

I identity tensor –
J Jacobian –
kB Boltzmann’s constant

(= 1.381 10−23)
J K−1

k coefficient of thermal conductivity W m−1K−1

K modulus of rigidity Pa
K second Piola-Kirchhoff stress vector Pa
l length m
L length m
L velocity gradient tensor s−1

m mass kg
m momentum kg m s−1

m̂ angular momentum kg m2 s−1

M Mach number –
M moment N
M deformation tensor –
N unit vector –
NA Avogadro number

(= 6 1023)
mol−1

n unit outgoing vector of a domain –
ni unit eigenvectors –
O orthogonal tensor –
O zero tensor –
p pressure Pa
P first Piola-Kirchhoff stress tensor Pa
P0 initial density kg m−3

P current density
in the material description

kg m−3

Pi internal pressure Pa
Pe external pressure Pa
p0 reference pressure Pa
pi pressure Pa
pi probability –
Pr Prandtl number –
Q flow rate m3 s−1

Q orthogonal tensor –
q heat flux vector Wm−2

q uniformly distributed load N m−2

R configuration –
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Symbol Description Units

R orthogonal tensor –
R3 Euclidean space –
R radius m
R ideal gas constant J kg−1 K−1

Re Reynolds number –
R = (O,x, t) observer or reference frame –
r volume heat production W m−3

ri internal radius of a cylinder m
re external radius of a cylinder m
S second Piola-Kirchhoff stress tensor Pa
Su surface m2

St surface m2

s entropy density J kg−1 K−1

s time s
dS surface element m2

ds surface element m2

si face m2

t time s
T temperature K
T deviatoric extra-stress tensor Pa
T first Piola-Kirchhoff stress vector Pa
t stress vector Pa
tei stress vector in direction ei Pa
tN normal component of vector t Pa
tT tangential component of vector t Pa
u displacement vector (spatial) m
u internal energy density (spatial) J kg−1

U displacement vector (material) m
U second-order tensor –
U internal energy density (material) J kg−1

U velocity m s−1

V neighborhood –
v velocity vector (spatial) ms−1

V velocity vector (material) m s−1

V potential function Pa
V volume in material coordinates m3

v volume in spatial coordinates m3

vmoy average velocity m s−1

vmax maximum velocity m s−1

W displacement vector m
W strain energy function J m−3

W scalar function of a tensor T –

W, Ŵ strain energy function J m−3

x position vector (spatial) m
X position vector (material) m
X physical system –
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Symbol Description Units

Greek alphabet

α constant –
α angle –
α thermal expansion coefficient K−1

αi material parameter –
β angle –
βi scalar function –
Γ,Γ−,Γ+,Γ1 surface m2

γ heat capacity ratio –
γ deformation –
γ12 angle –
γ0 thermal diffusivity m2 s−1

δ Kronecker delta, components δij –
δ growth –
∆ increment
ε infinitesimal strain tensor,

components εij

–

εijk permutation symbol –
ε real number –
θ angle –
Θ angle –
θi curvilinear coordinates –
λ eigenvalue –
λ head loss –
λi eigenvector –
λN stretch ratio –
λi principal stretches of the tensor U –
λ2
i principal stretches of the tensor C –
λ Lamé coefficient Pa
λ volume viscosity Pa s
Λ thermal diffusivity m2 s−1

µ Lamé coefficient Pa
µ dynamic viscosity Pa s
µ shear modulus

or modulus of rigidity
Pa

µi parameter –
ν Poisson’s coefficient –
ν kinematic viscosity (= µ/ρ) m2 s−1

Π,Π−,Π+ portions of the body B –
ρ current density kg m−3

Σ stress functional Pa
Σ tensor functional –
σ Cauchy stress tensor,

components σij

Pa

σi principal stresses of σ Pa
σ stress Pa
σ surface tension coefficient N m−1

σ0 hydrostatic stress Pa
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Symbol Description Units

τ time s
τ shear stress Pa
ϕ function –
φ strain energy function J m−3

Φ Airy function Pa m2

Φ strain energy function J m−3

Φ function
χ vector motion function m

Ω̇ rotation rate tensor s−1

Ω domain in the material representation –
∂Ω surface of domain Ω m2

ω domain in the spatial representation –
ω1, ω2 rates of angular rotation s−1

∂ω surface of the domain ω m2

ω̇ rotation rate tensor s−1

ω infinitesimal rotation tensor –

Indices and exponents

i,j,k indices of vectors and tensors, values 1, 2, or 3

i index for a face, a physical value

0 initial, reference or in the natural state
∗ with respect to the reference frame R∗

or non-dimensional
. imposed value

x,y,z Cartesian components

r,θ,z components in cylindrical coordinates

r,ϕ,θ components in spherical coordinates

Notations

[ · ] matrix
[ · ]T transposed matrix
[ · ]−1 inverse matrix
v,σ vector or tensor
LS symmetric tensor
LA antisymmetric tensor
Ls spherical tensor

Ld deviatoric tensor
O(·) order of term
o( · ) remainder of an expansion going to 0

when its argument goes to 0

Operators

· scalar product
⊗ tensor product of two vectors
× vector product
: scalar product of two tensors
C∞ class of infinitely differentiable functions



344 Mechanics of Continuous Media: an Introduction

Symbol Description Units

det determinant of a matrix
diag(a, b, c) diagonal matrix of components a, b, c
∇ gradient
div divergence of a vector field
div divergence of a tensor field
curl = ∇× curl of a vector field
‖ · ‖ norm of a vector or tensor
tr trace of a tensor
4 Laplacian
44 biharmonic operator
D

Dt
material derivative

D0

D0t
material derivative

∂

∂t
partial derivative with respect to time

∂

∂xi
partial derivative with respect to

coordinate xi∑n
i=1 sum over i from 1 to n



Suggestions for Solutions to the

Exercises

Chapter 1

1.3 Follow the steps of example 1.2 (sec. 1.2.5).

1.4 Follow the steps of example 1.2 (sec. 1.2.5).

1.6 Follow the steps of examples in sections 1.4.6–8.

1.7 Follow the steps of examples in sections 1.4.6–8.

1.8 Follow the steps of examples in sections 1.4.6–8.

1.15 Follow the steps of examples in section 1.3.8 for an antisymmetric tensor.

1.16 Use relation (1.123) to express tensor T by its inverse and use it to replace
T 2 in relation (1.140).

Chapter 2

2.4 Eliminate the parameter t from the motion equations.

2.8 Use (2.77), (2.91), (2.167), and (2.181).

2.11 Use (2.108), (2.111), (2.112), and (2.109).

2.12 Introduce (2.147) in (2.107)1 and eliminate the products with O(ε).

2.13 (a) Use (2.70) in (2.120) (in index form) and implement the approxima-
tions due to linearization.

2.13 (b) Show first that U−1 ≈ I − ε and use (2.73).

2.14 Express the vectors dx and dy as functions of εij and use the approxi-
mation (1 + α)n ≈ 1 + nα, when α� 1.

2.17 Use (2.81) when eij is replaced by εij and use the following definitions
cos θ = dx1

dS , sin θ = dx2

dS .
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Chapter 3

3.2 Apply the conservation of mass equation to the given velocity field and
deduce from it a relation for the density, ρ. Calculate the trajectories and
combine the results to obtain the equality.

3.4 (2) Find the normal vector on the plane and the sphere using the gradient
and use (3.76).

3.6 Consider the force and moment components as vector components. Ex-
press the equilibrium of the force and the moment on the surface and use the
divergence theorem.

3.9 With the divergence theorem, convert the surface integral to a volume
integral. Then use the principle of conservation of momentum.

3.11 Use (3.141) and (3.152); (3.149), (2.205), and (3.152).

Chapter 4

4.4 (1) For the perfect fluid, the term σ : d becomes −p trd = −p∇ · v.

4.4 (2) The relation to evaluate is written ρDhDt = Dp
Dt −

∂qi
∂xi

+ r.

Chapter 5

5.2 Use relations (2.213), (2.181), (2.183), and (2.56).

5.3 Note that D/Dt∗ = D/Dt.

5.4 Use the results of exercises 5.2 and 5.3.

5.5 Relation (5.64) is that resulting from exercise 5.3 for T = d.

Chapter 6

6.1 Use (2.77) and (2.179).

6.2 Insert (6.14) in (4.23).

6.4 Use (2.88), (2.108), and (2.110); use (6.61).

6.6 Express C−1 using (1.123) to modify (6.172); express c2 using (1.123) to
modify (6.173).
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6.10 Use (6.78) in (6.86) for the state of plane stress and follow the steps of
section 6.5.3.

6.11 Simplify (6.159)1 for simple traction and use (6.110)1.

6.14 (1) Introduce (6.175) and (6.176) in (6.174) and determine the trace of
the resulting equation.

6.14 (2) Use (1.109) and (6.175)–(6.177) to show that the principal axes of
σij , σ

d
ij , εij and εdij coincide.

6.14 (3) Introduce (6.176) in the first part of (6.178).

6.15 (2) Introduce (6.182) in (6.104).

6.15 (3) Introduce (6.183) in (6.106).

Chapter 7

7.1 Insert (7.18) in (7.21)–(7.23) and use (7.20).

7.2 Insert (7.18) in (7.43) and use (7.20).

7.3 Insert (7.317) in (7.7).

7.4 (1) Use (1.190) to modify (7.7).

7.4 (2) Use (6.109)2 to modify (7.7).

7.4 (3) Use (1.190) to modify (7.7).

7.5 Take the divergence of (7.209) and use (1.191).

7.6 Take the curl of (7.205) and use (1.237).

7.7 Prove (7.38) and follow the steps of the example 7.3.

7.8 Prove (7.38) and follow the steps of the example 7.3.

Chapter 8

8.2 Obtain the solution by combining two-dimensional Couette and Poiseuille
flows.
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8.3 First show that vr is zero. To calculate the pressure, recall that the inte-
gration of

1

ρ

∂p

∂r
=
v2
θ

r

yields

p = ρ

∫ r

R1

v2
θ

r′
dr′ + f(z) ,

with r′ being a working variable.

8.4 Show that in taking into account the problem symmetries, the only non-
zero velocity component is vϕ = vϕ(r, θ). The condition imposed on this com-
ponent on the sphere depends on the colatitude angle. Integrate relation (B.33)
by separation of variables such that vϕ = f(r)g(θ). The boundary condition at
infinity must also be taken into account.

8.5 Same steps as for problem 8.4. In this case, a no-slip boundary condition
is imposed on the outer sphere.

8.7 First impose the condition at the boundary on the velocity component v1

and take into account the relation that links the velocity field to the pressure
gradient.

8.8 Express the problem in cylindrical coordinates. Show that the only veloc-
ity component is vz = vz(r) where the axis of the geometry is aligned with the
coordinate z. To calculate the friction force, use the stress component σrz.
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Index

acceleration, 5, 66
Coriolis, 99

affine transformation, 82
Airy stress function, 214
angle

Mach, 273
angular momentum, 115
axis

principal stress, 125

basis
canonical, 4
orthogonal, 4

beam
long, 241
long and thin, 239
long and thin with uniform load q,

239
short, 241

Beltrami-Michell compatibility equa-
tions, 209

Boltzmann’s theory, 153
boundary conditions, 239
boundary layer, 270, 276, 308
Boussinesq’s problem, 230

Cauchy
deformation tensor, 97
stress tensor, 121, 134
tetrahedron, 120

Cauchy elastic material, 179
Cauchy stress tensor, 184
Cauchy’s

equation of motion, 123
lemma, 118
postulate, 114
theorem, 119, 132, 144

Cauchy, Augustin Louis, 74
Cauchy-Green deformation tensor,

74–76, 97
Cayley-Hamilton theorem, 30

Cerruti’s problem, 228

circulation of the velocity, 309, 314

Clausius, Rudolf, 155

Clausius-Duhem

inequality, 156, 166, 196, 200

coefficient

friction, 296

Lamé, 188

Lamé elasticity, 192

thermal expansion, 202

compatibility equation, 90

compression, 122, 129

uniform, 129

concept of fading memory, 171

condition

boundary, 210

free surface, 283

incompressibility, 110, 185

configuration, 55, 77

conjugate parameter, 149

conservation

of angular momentum, 117, 123,
149

of energy, 141

of mass, 107, 108, 149, 278

of mechanical energy, 147

of momentum, 116, 122, 149

continuity equation, 110

coordinate system, 6

coordinates

Cartesian, 6

curvilinear, 42, 43

cylindrical, 43, 45

spherical, 43–45

Couette

two-dimensional flow, 290

creeping flow, 268

curl of a vector field, 39

cylinder

hollow, under pressure, 223
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d’Alembert
solution, 249

decomposition
polar, 32, 74
spectral, of a tensor, 30

definition
of a fluid, 170
of a solid, 170

deformation, 56
homogeneous, 81
pure, 74

density, 5
initial, 107
spatial volume force, 113

derivative
material, 64, 65
material of the internal energy, 148
material w.r.t. time, 104
of a tensor function, 35
of a vector function, 35

description
Eulerian, 58
Lagrangian, 58
material, 58, 60
spatial, 58, 60

determinant, 16
direction

principal, 27, 184
principal material, 79

direction cosine, 6
displacement, 57

material, 61
small, 85
spatial, 61

displacement (small), 135
divergence

of a tensor, 38, 39
of a vector, 38

drag, 272
Stokes, 306

Duhem, Pierre, 156

eigenvalue, 79
eigenvalue of a tensor, 26
eigenvector, 31

normalized, 26
unit, 78

elastic cord, 251
elasticity

linear infinitesimal, 191
elastodynamic, 244

energy

free, 180, 201

Helmholtz specific free, 156

internal, 142

kinetic, 142

strain, 181, 201, 202

total, 142

wave propagation, 254

enthalpy, 198

entropy of a system, 151

equation

Beltrami diffusion, 311

Beltrami-Michell compatibility,
209, 218, 233

Bernoulli, 316

biharmonic, 214, 238, 240

Boltzmann’s, 154

characteristic, 27, 84

compatibility, 90, 209

constitutive, 160, 178, 182, 196,
208

continuity, 110, 112

deformation-displacement, 208

equilibrium, 123, 128, 208

Laplace, 41

Liouville, 153

motion, 133, 242

motion in terms of potentials, 244

motion, Cauchy’s, 123

Navier, 208, 218, 263

Navier-Stokes, 154, 276, 280, 290

Navier-Stokes, form reduced, 282

Newton-Hamilton, 153

Poisson, 41

Saint-Venant-Kirchhoff, 192

Stokes, 283

wave, 319

wave propagation, 253

Euler-Almansi strain tensor, 75, 76, 97

evolution

adiabatic, 144

extension

relative, 88

extra-stress, 175

fading memory, concept, 171

field

irrotational, 39

solenoidal, 38

first



Mechanics of Continuous Media : an Introduction 355

Piola-Kirchhoff stress tensor, 132,
149

Piola-Kirchhoff stress vector, 132
principle of thermodynamics, 144,

149
flow

circular Couette, 293
hypersonic, 273
irrotational, 308
isentropic, 199
on an inclined plane, 289
subsonic, 272
supersonic, 273
two-dimensional Couette, 285
two-dimensional Couette for a

compressible fluid, 290
two-dimensional Poiseuille, 286

flow rate, 288, 290, 296
fluid

barotropic, 199, 313
classical, 175
incompressible, 174, 175, 281
inviscid, 175
Newtonian viscous, 195
non-Newtonian, 175
perfect, 175
Rivlin-Ericksen, 175
simple, 173

flux, 48
heat, 143, 195, 291

force, 112
contact, 113, 148
Coriolis, 151
volume, 113, 129, 148

form
global material of conservation of

mass, 109
local of the second principle, 155
material of conservation of mass,

107
of the strain energy function, 186
reduced Navier-Stokes equations,

282
spatial of conservation of mass, 110

formula
Nanson’s, 78, 132

Fourier’s law, 195
Fourier, Joseph, 195
frequency

circular, 254
wave, 255

function
Airy, 235
Airy stress, 214
displacement, 219
energy, 180, 183, 186
isotropic, 33
isotropic tensor, 179
Love’s strain, 225
Maxwell, 232
Morera, 232
scalar, of a tensor, 34
strain energy, 186
stress, 232, 238
stress for plane strain problems,

214
stress for plane stress problems,

217

Galerkin vector, 224, 225, 228
Galilean

observer, 117
reference frame, 99
transformation, 99

gas dynamics, 272
Gauss’ theorem, 49
Gauss, Carl Friedrich, 50
gradient

deformation, 97
of a scalar field, 36
of a scalar in orthogonal curvilinear

coordinates, 46
of a scalar valued tensor function,

38
of a vector, 37
of a vector in orthogonal curvilin-

ear coordinates, 46
of tensor valued tensor function, 38
velocity, 91, 92

Green elastic material, 180
Green, George, 75
Green-Lagrange strain tensor, 75, 76,

97

head loss, 296
heat

per unit mass, 202
produced, 143
received, 143

heat capacity ratio, 199
heat conduction, 195
heat flux, 144
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Helmholtz free energy, 156
Helmholtz’ theorem, 219
hollow cylinder under pressure, 236
Hooke’s law, 202, 212
Hooke, Robert, 192
hyperelasticity, 180
hypothesis

causality, 162
determinism, 162
Stokes, 278
Valanis-Landel, 187

ideal gas, 198
ideal gas thermodynamics, 198
inequality

Clausius-Duhem, 156, 166, 196,
200

infinite cord, 250
inflation of a balloon, 189
invariant

principal, 126, 182
isochoric, 110

Jacobian, 73, 105

Kelvin
problem, 226

kinematics, 55
continuum, 55

Kirchhoff, Gustav, 132
Kronecker delta, 8, 14

Lagrange, Joseph-Louis de, 57
Lamé coefficient, 188, 192
Lamé, Gabriel, 188
laminar flow, 268
Laplacian

of a scalar field, 40
of a vector field, 41

law
classical behavior, 173
conservation of internal energy, 145
Fourier, 195
Hooke, 192, 202, 212

Leibnitz’ theorem, 107
lemma

Cauchy’s, 118
line

vortex, 309
linear elastic theory, 207
linear load, 234

linear static elasticity, 208
linearization

kinematic, 87
of the stress tensors, 135

Liouville equation, 153
local irreversibility, 198
Lord Rayleigh, 245

Mach number, 280, 281
mass, 107
material

Cauchy elastic, 179
Green elastic, 180
homogeneous, 166
incompressible, 185, 186
isotropic, 166
isotropic hyperelastic, 181
linear elastic, 180
Saint-Venant-Kirchhoff, 188
simple, 166

matrix
associated with a tensor, 16
orthogonal, 8

maximum beam deflection, 241
mechanics

Newtonian, 153
media

continuous, 55
medium

isothermal elastic, 177
method

complex variables, 218
finite elements, 218, 271
inverse, 218
potential, 218
semi-inverse, 218, 234
separation of variables, 253, 323
variational, 218

model
Mooney-Rivlin, 187, 189
neo-Hookean, 186, 189
Valanis-Landel, 187

modulus
bulk, 194
of rigidity, 194
shear, 194
Young’s, 192

momentum, 115
Mooney-Rivlin model, 187, 189
motion, 56

constant volume, 110
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rigid body, 69, 71, 83, 98

Nanson’s formula, 78, 132
Navier’s equations, 208
Navier, Claude Louis, 209
Navier-Stokes equations, 276, 280,

282, 290
Newton-Hamilton equation, 153
norm

vector, 4
number

Avogadro, 1, 153
Froude, 282
Knudsen, 1
Mach, 272, 280, 281
Prandtl, 280
Reynolds, 268, 280
Strouhal, 270

objectivity
acceleration, 97
and rigid body motion, 98
notion, 98
of the conservation of energy, 150
of the kinematic quantities, 94
velocity, 97

observer, 56
operator

Laplacian, 40
linear, 16

Papkovich-Neuber presentation, 229
pathline, 67
penetration depth, 299, 300
period

wave, 255
permutation symbol, 12
physical components, 46
Piola-Kirchhoff

first stress tensor, 132
first stress vector, 132
second stress tensor, 134
second stress vector, 134

Piola-Kirchhoff stress tensor, 178, 184
plane

principal, 125
point

fixed, 70
material, 55

Poisson’s ratio, 192
postulate

Cauchy’s, 114
potential

Lamé strain, 220
power, 142

contact force, 145
mechanical, 149

Prandtl number, 280
presentation

Papkovich-Neuber, 229
pressure, 175, 176, 185

hydrostatic, 127, 130, 185
principal mode, 256
principle

admissibility, 166
conservation of angular momen-

tum, 117, 123, 133
conservation of mass, 108
conservation of mechanical energy,

148
conservation of momentum, 116,

122
determinism, 168
equipresence, 168
local action, 162, 169
material invariance, 165, 178
memory, 166
objectivity, 163, 169, 174, 177, 192
regular memory, 170
Saint-Venant’s, 210, 234
superposition, 211
thermodynamics, first, 144
thermodynamics, second, 154

problem
Boussinesq, 230
Cerruti, 228
Kelvin, 226

product
exterior, of two tensors , 19
scalar, 12
scalar, of two tensors, 24
scalar, of two vectors, 4, 11, 14
tensor, of two vectors, 16
vector, 12
vector, of two vectors, 13

pure bending, 130

quantity
materially objective tensor, 97
materially objective vector, 97
objective, 97
physical, 94
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spatially objective tensor, 97
spatially objective vector, 97

ratio
Poisson, 192

Rayleigh surface wave, 244
reference frame, 56
relation

constitutive, 181
Reynolds

transport theorem, 106, 110, 116
Reynolds number, 280
Reynolds, Osborne, 106
rigid body

motion, 69, 71, 83
rotation, 70, 151
translation, 69

Rivlin-Ericksen theorem, 33
rotation, 82

rigid body, 72, 151
rigid body, around a fixed point,

70

Saint-Venant
compatibility equation, 90

Saint-Venant’s Principle, 210
Saint-Venant-Kirchhoff equation, 192
Saint-Venant-Kirchhoff material, 188
scalar, 9
scalar product, 4, 11, 12, 14
second principle of thermodynamics,

154
shear, 194

simple, 83
shear angle, 89
shock, 274
SI, 5
simple material, 167
solution

d’Alembert, 249, 324
elastic cord, 258
self similar, 298

solution in linear elasticity, 217
sound barrier, 273
space

Euclidean, 3
vector, 4

speed
surface wave, 246, 247
waves in elastic solids, 262

speed of sound, 199, 319, 320

Sphere
hollow, under pressure, 221

state
of homogeneous stress, 129
one-dimensional stress, 126
plane strain, 211
plane stress, 215
pure hydrostatic stress, 127
stress, 121
three-dimensional stress, 125
two-dimensional stress, 125

Stokes
equation, 283

Stokes’ hypothesis, 278
Stokes’ theorem, 51
Stokes, George Gabriel, 51
strain potential

Lamé, 220
streakline, 67
stream function, 301
streamline, 67
stress

comparison, 128
material contact, 114
nominal contact, 114
normal, 122
octahedral, 128
plane, 131, 236, 239
principal, 125
shear, 122
uniform shear, 130
von Mises, 128

stretch
biaxial, 189
equibiaxial, 189
principal, 79, 187
uniaxial, 189

sum
of tensors, 20

summation convention, 7
surface tension, 284
symbol

permutation, 12

tension, 122, 129
uniform, 129

tensor, 3, 17
Green-Lagrange strain, 76
of order 2, 18
right Cauchy-Green deformation,

74
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antisymmetric, 22, 72
Cauchy deformation, 97
Cauchy stress, 121, 134, 149, 184
Cauchy-Green deformation, 75, 97
components, 15
contraction, 19
deformation gradient, 73, 166
deviatoric, 23
deviatoric stress, 127
divergence of, 39
dual vector, 25
eigenvalue, 26
Euler-Almansi strain, 75, 76, 97
first Piola-Kirchhoff stress, 149,

184
Green-Lagrange strain, 75, 97
Green-Lagrange strain rate, 149
infinitesimal strain, 87, 191
invariants, 28
inverse, 22
left Cauchy-Green deformation

and its inverse, 76
matrix, 15
of order n, 18
of order 2, 14
orthogonal, 24, 96
Piola-Kirchhoff stress, 178
positive definite, 30
product of two, 19
rate of deformation, 92
rate of rotation, 92
right Cauchy-Green deformation,

76
rotation, 71
rotation infinitesimal, 90
rotation rate, 92
scalar function of, 34
second Piola-Kirchhoff, 181
second Piola-Kirchhoff stress, 134,

149
singular, 16
spatially objective, 96
spectral decomposition, 30
strain rate, 92
stress, 119
symmetric, 22
trace of, 23
transpose, 21
unit, 15, 26
zero, 15, 19

tensors

interior product of two, 20
equivalent, 19
sum of, 20

tetrahedron
Cauchy, 120

theorem
Rivlin-Ericksen representation, 33
Cauchy’s, 119, 132, 144
Cayley-Hamilton, 30
Crocco, 315
divergence, 49, 107, 122, 143
Gauss, 49
H, 154
Helmholtz, 219, 309
Kelvin, 315
kinetic energy, 145
Leibnitz’, 107
localization, 109
polar decomposition, 32, 74, 167,

178
Reynolds transport, 106, 110, 116,

144
square root, 30
Stokes’, 51

theory
Boltzmann’s for hydrodynamics,

153
kinetic gas, 278
of elasticity, 179

thermal diffusivity, 280
thermoelasticity, 201
thin-walled container under pressure,

239
traction

simple, 193
transformation rule, 17
translation, 82

rigid body, 69
uniform, 150

uniform compression, 83
uniform expansion, 83

Valanis-Landel
hypothesis, 187
model, 187

value
principal, 184

variable
material, 60
spatial, 60
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vector, 3, 10

dual, 72, 151

Galerkin, 224

product, 8

rotation rate, 93

second Piola-Kirchhoff stress, 134

spatial stress, 113

spatially objective, 96

stress, 125

surface stress, 113

vector product, 13

velocity, 64

average flux, 296

vibration of an elastic cord, 255

viscosity

dynamic, 175

kinematic, 176

shear, 175

volume, 175

volume flux, 288
von Helmholtz, Hermann, 156
vortex, 270, 307
vortex tube, 309
vorticity, 93, 310, 313, 315

wave
compression, 243, 248
dilatation, 242
distortion, 243
elastic plane, 248
longitudinal in a beam, 261
Rayleigh surface, 244
shear, 242, 243, 248
shock, 274
stationary, 257

wavelength, 256
Weissenberg effect, 268

Young’s modulus, 192
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