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Préface de la seconde édition

Les responsables de la collection « Traité de la Physique » nous ont proposé
d’incorporer notre ouvrage Mécanique des milieux continus. Nous avons accepté
cette initiative qui aboutit & cette deuxieme édition de la monographie.

Toutes les erreurs de la premiere édition ont été corrigées. Faisant suite
a notre expérience pédagogique de cet enseignement, un certain nombre de
concepts ont été développés plus explicitement et de nombreux exemples ont
été ajoutés. L’ancien chapitre 7 a été abandonné au profit de deux nouveaux
chapitres. Le chapitre 7 de la seconde édition traite de 'introduction a la mé-
canique des solides. Nous nous sommes restraints volontairement a 1’élasticité
linéaire. Le chapitre 8 est une introduction a la mécanique des fluides newto-
niens. Une annexe supplémentaire décrit les divers opérateurs et équations en
coordonnées sphériques. A la différence de la premiere édition, les ouvrages de
la bibliographie sont cités dans le cours du texte.

Comme les nouveaux chapitres abordent des matieres appartenant a des
disciplines bien établies, nous nous sommes ralliés a utiliser les notations clas-
siques que 'on rencontre dans les ouvrages couvrant ces sujets. Ceci entraine
parfois des conflits de notation, qui sont résolus par le contexte ou ils appa-
raissent.

Tous nos remerciements vont a Laurent Humbert et Georgios Pappas qui
nous ont aidés pour la production des figures.

John Botsis

Michel Deuville
Lausanne
Septembre 2015






Avant-propos

La mécanique est le paradis des sciences mathématiques
parce que par son entremise, on aboutit
aux fruits des mathématiques.
Carnets, vol. 1, chap. 20
Leonardo da Vinci

Ce livre est le résultat de notre enseignement de la mécanique des milieux
continus aux étudiants de seconde année dans la section de génie mécanique
de 'EPFL. Cette discipline a connu un développement considérable dans la
seconde moitié du xx' siecle et aujourd’hui, dans le nouveau millénaire, elle
est promise a des développements tout aussi spectaculaires. Les raisons en in-
combent a la modélisation de matériaux nouveaux qui ont des comportements
mécaniques inhabituels que ce soit sous forme solide ou fluide. Si on s’en tient
aux milieux continus classiques que sont ’air ou I’eau, les phénomenes des écou-
lements turbulents sont loin d’étre compris dans leur totalité et ce domaine est
encore un lieu de recherches tres intenses.

L’ingénierie moderne fait appel & des outils sophistiqués pour la conception
de machines telles les avions, les trains a grande vitesse, les moteurs ou encore
pour la prédiction de la phénomeénologie des matériaux comme les polymeres,
les céramiques, les composites, mais aussi pour la construction de ponts, de bar-
rages, etc. Ces outils sont réalisés dans des logiciels de simulation qui procedent
a l'intégration numérique des équations aux dérivées partielles composant les
modeles continus. Les techniques expérimentales ouvrent également des hori-
zons nouveaux. Afin de pouvoir analyser les résultats obtenus, qu’ils soient
numériques ou expérimentaux, 'ingénieur doit avoir une base théorique solide.
Ce livre y contribue modestement.

Le premier chapitre consacré aux tenseurs cartésiens met en place l'ou-
til mathématique nécessaire pour la mécanique des milieux continus. En effet,
les lois de conservation et de comportement s’expriment facilement dans ce
contexte. Le chapitre 2 présente la cinématique du milieu continu et définit
les concepts associés tels que la déformation, la vitesse, 'accélération, le gra-
dient de vitesse et les tenseurs associés. Au chapitre 3, intitulé Dynamique des
milieux continus, on trouve les lois de conservation : la masse, la quantité de
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mouvement, le moment cinétique. On introduit le concept clé de tenseur des
contraintes. Le chapitre 4 est consacré a la thermodynamique des milieux conti-
nus. Apres le premier principe qui traite de la conservation de 1’énergie totale,
on trouve l'inégalité de Clausius-Duhem qui prend en compte l'irréversibilité
des phénomenes auxquels le milieu continu est soumis. Les principes généraux
a la base des lois de comportement sont décrits au chapitre 5. Parmi ceux-ci,
I'objectivité ou encore l'invariance par rapport au référentiel est fondamentale.
On aboutit a ’écriture des équations constitutives pour les fluides et les solides
en toute généralité. Le chapitre 6 introduit les lois des fluides classiques newto-
niens et des milieux solides élastiques linéaires et non linéaires (hyperélasticité).
Apres avoir énoncé la loi de Fourier pour la conduction de la chaleur, on montre
que Décriture de ’équation du fluide visqueux newtonien est compatible avec
le second principe de la thermodynamique. Ceci démontre que 1’écriture cor-
recte d’équation de comportement est soumise aux diverses lois qui régissent
la physique des milieux continus. Le chapitre se termine sur des considérations
de thermoélasticité. Enfin, le dernier chapitre déduit les équations de Navier-
Stokes pour les fluides et les équations de Navier pour les solides. Pour chaque
cas, des exemples d’applications simples permettent d’obtenir des solutions
analytiques qui illustrent la puissance de la modélisation ainsi proposée. Des
annexes contiennent les données complémentaires : liste des symboles, glossaire,
équations en coordonnées cylindriques.

Ce livre s’adresse aux étudiants ingénieurs, aux physiciens et aux scienti-
fiques qui désirent connaitre les principes de base de la mécanique des milieux
continus. Puissent-ils trouver dans cet ouvrage une introduction complete qui
leur ouvre la porte de ce vaste territoire du savoir. Comme il ne s’agit que d’une
introduction, le lecteur curieux pourra parcourir ce domaine en se référant aux
nombreux textes qui sont cités dans la bibliographie. Nous souhaitons a chacun
autant de plaisir dans la lecture et I’étude de cette matiere que nous en avons
eu nous-mémes en rédigeant cet ouvrage.

Remerciements

M. Deville remercie Marcel Crochet qui fut son directeur de these a 1’Université
catholique de Louvain (UCL) pour lui avoir ouvert les portes de cet immense
domaine intellectuel que représente la MMC. Que soit aussi remercié son col-
legue de 'UCL, Francois Dupret, pour les nombreuses heures de discussion sur
la MMC, spécialement la thermodynamique et les fluides visqueux. Certains
développements ont été inspirés des notes de cours : « Introduction a la mé-
canique des milieux continus » de M. Crochet, UCL, 1992 et « Mécanique des
Fluides » de M. Deville, F. Dupret et P. Wauters, UCL, 1992.

Nous sommes reconnaissants de 1’aide qu'un certain nombre de personnes
ont apportée par leurs remarques, leur intérét pour le sujet et pour la confection
des figures. Il s’agit de Roland Bouffanais, Matteo Galli, David LoJacono et
Aissa Mellal.

Qi-Chang He a corédigé en 1997 la version initiale de certaines sections des
chapitres 2 et 3.
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Nous adressons un merci tout spécial a Laurent Humbert. Sa lecture soi-
gnée et profonde du manuscrit nous a permis d’éclaircir beaucoup de points
de lexposé. Rien n’a échappé a sa minutie. Ses commentaires pertinents et ses
propositions ont amélioré la totalité de la rédaction.

Regles générales pour les notations

Dans cet ouvrage, les quantités scalaires sont en caractéres italiques comme
p, T. Les vecteurs et les tenseurs sont en caracteres italiques gras v, o, L.
Les matrices sont en italique entre crochets comme [C]. Lorsque les tenseurs
sont écrits en notation indicielle, les indices sont choisis dans la majorité des
cas parmi les lettres i, j, k, [, m, n. C’est ainsi que le vecteur v aura pour
composantes v; et le tenseur du second ordre o aura les composantes o;;.

Dans la bibliographie, nous mentionnons plus précisément les chapitres ot
la référence est utile pour un approfondissement des concepts et la démarche
scientifique et/ou pédagogique.
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CHAPITRE 1

Tenseurs cartésiens

1.1 Introduction

La mécanique des milieux continus (MMC) est la partie de la mécanique qui mo-
délise le comportement des matériaux fluides ou solides. On sait grace aux consi-
dérations physiques que la matiere est composée de particules élémentaires. A
léchelle atomique (de 'ordre du nanomeétre ou aux échelles inférieures), on fait
usuellement appel a la mécanique statistique pour décrire les phénomenes phy-
siques. En effet, chaque « particule » constituante peut étre décrite par une loi
de Newton, mais la valeur du nombre d’Avogadro N4 = 61022 par mole rend
impossible toute résolution du systeme résultant d’équations par voie analy-
tique ou numérique.

Pour le cas des fluides compressibles, la théorie cinétique des gaz est un
bel exemple de I'approche statistique ol on recourt & une fonction de densité
de probabilité déterminant la particule via une description basée sur ’espace
de phase qui implique position et vitesse. Ces particules sont soumises a un
mouvement brownien aléatoire caractérisé par le libre parcours moyen A. Ceci
conduit & la définition du nombre de Knudsen Kn = A/L qui est le rapport du
libre parcours moyen & une longueur L de référence pour le probléme examiné.
Si Kn < 1 alors le milieu est suffisamment dense pour éviter de considérer
chaque particule individuellement et ’hypotheése de milieu continu dont 1’échelle
spatiale pertinente est L, est valable. Si, au contraire, Kn ~ 1 ou Kn > 1, alors
le modele de milieu continu n’est plus approprié. On constate donc que la notion
de milieu continu dépend directement de ’échelle d’observation.

Une autre fagon de définir la notion de milieu continu consiste en 1’étude
de l’évolution de la densité de masse d’un cube en fonction de sa taille. Par
souci de simplicité, nous considérons I’eau comme systeéme physique et un cube
centré autour d’un point P avec une longueur de coté h. Dans le cube se trouve
un certain nombre de molécules ayant une masse volumique moyenne pj, définie
comme pj, = My, /h3, ot M}, est la masse d’eau dans le cube.

On va maintenant considérer la variation de p, en fonction de h a un
moment donné. Lorsque h est tres petit, le cube contient quelques molécules et
un petit changement de h entraine une forte fluctuation de py, puisque plusieurs
molécules peuvent étre exclues en réduisant k. Notez que 1 cm?® contient environ
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3 x 10?2 molécules d’eau et quand h est d’environ 10~7 cm il y a environ 30
molécules d’eau dans le cube. Par conséquent, de grandes fluctuations de py,
sont attendues pour des valeurs inférieures a h* ~ 1077 cm (fig. 1.1).

Ph

Pt

107 h (cm)

Fig. 1.1 Variation qualitative de la densité de la masse moyenne a l'intérieur d’'un
cube de taille h pour I'eau.

Au-dessus de cette valeur de h, la densité est constante, en supposant une
température uniforme dans le milieu, et elle est considérée comme la masse
volumique de I’eau au point P lorsque ’approximation continue est considérée.
Les vitesse, accélération, etc., continues peuvent étre définies en utilisant des
considérations similaires. Un autre exemple ot I’hypothese du milieu continu
peut étre facilement violée et ou la taille du cube doit étre précisément définie,
est celui d’un systeme physique avec structure poreuse. Lorsque h est tres faible,
de faibles variations de sa dimension peuvent provoquer de grandes variations
de la densité de masse (fig. 1.2).

Ph

h* h
Fig. 1.2 Variation qualitative de la densité de la masse moyenne a l'intérieur d’un
cube de taille A pour un matériau poreux.
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La densité devient indépendante de h (et donc de la taille du cube) apres une
certaine valeur limite h*, aussi longtemps que la microstructure du solide est
similaire. En général, de grandes variations de la densité ou d’autres grandeurs
physiques sont observées, lorsque h est de I'ordre de la dimension de longueur
dans la microstructure (c’est-a-dire la distance entre les molécules, ou bien les
parametres de longueur caractéristiques dans des matériaux ayant des micro-
structures complexes comme des matériaux poreux ou composites).

Donc, pour des considérations d’ingénierie et de conception, il n’est pas
nécessaire de raisonner a ’échelle atomique ou microstructurelle. A cette fin,
on considere que les matériaux sont des milieux continus qui seront traités a
I’échelle macroscopique. Cette abstraction de la réalité ignore 1’aspect discret
de la matiere et considere que les propriétés comme la viscosité, la masse volu-
mique, le module d’élasticité, etc., attribuées & un point du milieu continu, sont
des fonctions continues des variables d’espace. Ces quantités sont des moyennes
obtenues sur un grand nombre de particules a I'intérieur d’un petit volume de
la matiere contenant le point. La dimension h spécifique de I’élément de volume
dépend de la structure du milieu et nécessite des techniques mathématiques et
des arguments physiques a définir.

La théorie que nous développerons est une théorie phénoménologique, c’est-
a-dire qu’elle représente la généralisation des lois de la mécanique rationnelle
(mécanique du point) aux milieux continus. Par rapport a la mécanique sta-
tistique, les modeles que nous établirons sont aussi satisfaisants du point de
vue mathématique. On considérera que la transformation entre deux régions
de T'espace, que le matériau peut occuper a des instants différents, est une
transformation continue. Grace a cette abstraction, on pourra parler de la vi-
tesse en un point d’une maniere plus adéquate que la méme notion basée sur
un modele moléculaire. En effet, pour ce dernier modele, il faut prendre la vi-
tesse moyenne des molécules au voisinage du point considéré. La question de
la définition du voisinage devient cruciale. Si celui-ci est trop grand, alors son
lien avec le point s’estompe; s’il est trop petit, alors la notion de moyenne
est en question. Pour établir un lien valable entre les modeles moléculaires et
continus, il faut faire appel & des notions de moyennes plus sophistiquées qui
sont en dehors des considérations de cette monographie.

Le débutant en MMC peut se poser la question de savoir pourquoi les
premiers concepts introduits sont consacrés aux vecteurs et aux temseurs. La
raison est que le calcul tensoriel et I’algebre qui lui est associée constituent les
outils naturels de la théorie des champs ou du continu. Plus particulierement,
on désire que les quantités physiques qui décrivent un milieu continu soient
indépendantes du systéme de coordonnées dans lequel on travaille. Cet objectif
n’est réalisé qu’en faisant appel aux tenseurs.

De nombreuses publications dédiées a la MMC traitent des outils vectoriels
et tensoriels de la MMC. Sans vouloir étre exhaustifs, nous renvoyons le lecteur
aux ouvrages suivants pour un complément de lecture : [2, 15, 32, 35, 47, 57].
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1.2 Algebre vectorielle

1.2.1 Généralités sur les scalaires, vecteurs et tenseurs

En mécanique des milieux continus, la description du mouvement et des gran-
deurs physiques associées se fait dans I’espace ponctuel euclidien R3 (espace
physique ambiant) auquel est associé un espace vectoriel E® de dimension 3.
Les éléments de R? et E3 sont appelés respectivement des points et des vec-
teurs. Les scalaires, vecteurs et tenseurs qui décriront les grandeurs mécaniques
introduites plus loin sont également attachés (pour la plupart) aux points d’un
espace ponctuel (typiquement R3) formant alors ce qu'on appelle des champs
scalaires, vectoriels ou tensoriels.

On rappelle tout d’abord qu'un espace vectoriel est défini uniquement a
partir des propriétés opératoires de ses éléments et suppose au préalable I’exis-
tence d’un corps arbitraire (typiquement le corps des nombres réels R) dont les
éléments sont appelés scalaires. L’espace vectoriel E3 est alors ensemble des
éléments notés u, v, w, ... tels que

u+tve E3 au € E3
(u+v)+w=u+(v+w) lu=u

J0e B2 |u+0=u a(bu) = (ab)u (1.1)
J-ue B3 lu+(—u)=0 (a+b)u =au + bu
utv=v+u a(u+v) = au + av

pour tout u,v,w € E3 et a,b € R. On remarque que les axiomes (1.1) se
scindent en deux parties. La premiére concerne la structure additive de 'es-
pace vectoriel et montre que E® est un groupe commutatif par rapport a I’ad-
dition. Les axiomes restants traduisent I’action du corps R sur ’espace vectoriel
(distributivité par rapport a l’addition vectorielle et 1'addition des scalaires).

En munissant E? d’un produit scalaire afin de calculer ultérieurement des
longueurs et des angles, il prend le nom d’espace euclidien. Le produit scalaire
associe & tout couple de vecteurs uw,v € E3 un scalaire noté u - v avec les
propriétés suivantes :

uUu-v=7v-u

u- (av + fw) = a(u-v) + f(u - w) (1.2)
w-u>0

pour tout uw,v,w € E> et a, 8 € R. Le produit scalaire est par conséquent
une application de E® x E3 dans R qui est linéaire par rapport & chacun de
ses arguments. On 'appelle également une forme bilinéaire définie positive. La
positivité vient de la derniére relation dans (1.2). Le produit scalaire permet
de définir la norme d’un vecteur w, notée ||ul|| par la relation

[ull = Vu-u. (1.3)

Le vecteur u est dit unitaire lorsque ||u|| = 1 et deux vecteurs u et v sont or-
thogonaux si et seulement si u - v = 0. Tout vecteur de £ peut se décomposer
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de maniere unique selon une base formée de trois vecteurs linéairement indé-
pendants de E3. Le choix de la base est arbitraire mais on utilise généralement
la base canonique (e1, ez, es) définie par

1 sii=j
el'eﬂ{o sii#j, 4,j=123. (1.4)

Comme le montre (1.4), les vecteurs de la base canonique sont unitaires et
deux & deux orthogonaux (c.-a-d. orthonormés). La base est dite orthogonale
lorsque les vecteurs ne sont plus unitaires tout en restant bien str orthogonaux.

En choisissant un point 0 fixe (mais arbitraire) de 1'espace ponctuel R3,
on fait correspondre & tout vecteur & de E® un point P de R? et un seul
(différent de 0) tel que OP = x . Le repere cartésien (0, eq, ea, e3) de l'espace
R3 est par définition I’ensemble formé du point 0 pris comme origine et des trois
vecteurs de base orthonormés (e1, es, e3) issus de cette origine. Les coordonnées
cartésiennes du point P dans le repere ainsi que les composantes du vecteur @
dans la base (e, ea, e3) associée sont alors représentées par un unique triplet
de nombres (z1,x2,x3) tels que OP = ¢ = Zle x;e; (dans ce contexte, x
est le vecteur position du point P). En utilisant les propriétés (1.2) et (1.4), le
produit scalaire de deux vecteurs & = 2?21 Tie; et y = 2?21 yje; est donné
par

3
i=1

La simplicité du résultat (1.5) montre clairement I'intérét d’utiliser ultérieure-
ment la base canonique (ou tout autre base orthonormée) pour effectuer des
opérations sur les vecteurs.

Il existe beaucoup de quantités physiques auxquelles seule une valeur peut
étre associée. Par exemple, I'une d’entre elles est la masse volumique d’un
matériau. On la notera p et elle a pour unités des kg/m? et pour dimensions
ML~3 avec M la masse et L une longueur. Pour I’eau, & température ambiante,
p vaut 1000 kg/m3. On remarquera que p est abusivement appelée densité
par de nombreux auteurs (notamment dans la littérature anglo-saxonne). La
densité est en toute rigueur le rapport de la masse volumique d’un matériau
donné sur celle de ’eau. En conséquence, la densité de ’eau est égale a I'unité.

Dans le voisinage d’un point, cette masse volumique est pratiquement
constante et de plus, il n’y a pas de direction associée a cette grandeur. On
parle alors d’une quantité scalaire.

D’autres quantités ont non seulement une grandeur, mais aussi une direc-
tion. Une force d’'un Newton est celle qui, appliquée en un point, lui donne une
accélération d’1 ms~2. Puisque cette force a une direction, ¢’est un vecteur. On
sait que les vecteurs sont exprimés en fonction du repere dans lequel ils sont
décrits. Dans un repere particulier, ce vecteur est spécifié par ses composantes.
En passant d’un systéeme d’axes a un autre, seules les composantes du vecteur
changeront par une loi de transformation.

Enfin, le concept de tenseur peut étre introduit de maniére rudimentaire
comme suit. Par exemple, une contrainte est une force par unité de surface. Or
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une force est un vecteur. Il en est de méme d’un élément de surface puisqu’on
doit spécifier a la fois sa taille et son orientation, c’est-a-dire la direction du
vecteur normal. Si f décrit le vecteur force et s le vecteur de norme égale a
la surface S dans la direction de sa normale, alors on pourrait penser que la
contrainte T s’exprime par f/s. Cependant, comme la division de deux vecteurs
est une opération indéfinie, on contourne la difficulté en disant qu’étant donné
s, on peut trouver f par la multiplication de s par une nouvelle entité T telle
que

f(s)=Ts.

Ce nouvel étre mathématique est un tenseur qui donne la contrainte en un point.
Dans ce cas, il s’agit d’un tenseur d’ordre 2. On sent intuitivement que cette
quantité est associée a deux directions spatiales, et non a une seule comme pour
les vecteurs ou zéro pour les scalaires. En fait, ce tenseur peut étre représenté
par une matrice a deux indices, chaque indice correspondant & une direction
de Plespace euclidien. C’est donc une entité & 9 composantes. A nouveau, on
désire que la quantité physique (le tenseur) reste invariante lorsqu’on change
de systemes d’axes. Des lors, les composantes d’un tenseur suivront une loi de
transformation lors d’'un changement de systéme de coordonnées.

1.2.2 Changement de coordonnées

Dans D’espace physique euclidien (R?), soit le systéme orthonormé de coor-
données cartésiennes rectangulaires (0, eq, es, €3), que nous noterons aussi en
raccourci Oz; (¢ = 1,2,3), d’origine 0 et portant des vecteurs unitaires e; (i =
1,2,3) dirigés suivant les axes Oz; (fig. 1.3). Le systéme d’axes 0z} (i = 1,2,3)
ayant les vecteurs unitaires e} définit un autre systéme de coordonnées carté-
siennes de méme origine 0. Les cosinus (directeurs) du systéme x; par rapport
aux axes I;, notés par cp;, sont donnés par les produits scalaires des vecteurs
de base

Cpi = €08 (T, 1) = €, - € i,p=1,2,3. (1.6)

De méme, les cosinus directeurs du premier systéme par rapport au second sont
donnés par
/

Cpi = €p e, = cip, (1.7)

la derniere égalité étant obtenue par (1.6).

Soit un point P de coordonnées x; dans le premier systéme et x} dans le
second. Par la relation (1.6), les coordonnées ) sont liées & celles z; par les
équations
Ty = C11T1 + C12T9 + C13T3

Ty = C21T1 + C22T2 + C23T3 (1.8)
T3 = 3171 + C32T2 + C3373 .

On peut écrire (1.8) sous la forme

3
v =i i=1,2,3. (1.9)
j=1
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Fig. 1.3 Systeme de coordonnées cartésiennes rectangulaires.

On peut voir facilement que les inverses de (1.8) sont données par

’ ’ ’
T1 = €11%7 + €21T9 + €31T3
’ ’ /
Ty = C12T7 + C22%9 + C3273 (1.10)

/ / /
T3 = C13%7 + C23%T5 + C33%3

ou encore
3 3
! / !/
x; = E Cjix = E CiiT5 - (1.11)
i=1 i=1

On peut éviter d’utiliser le symbole de sommation ) en adoptant par la suite
la convention de sommation d’Einstein sur les indices répétés, c’est-a-dire
que lorsqu’un indice apparait deux fois dans un produit, on effectue la somme
par rapport & cet indice en lui faisant prendre successivement toutes les valeurs
possibles (ici, i = 1,2, 3). Des lors, les équations (1.9) et (1.11) s’écrivent sous

forme compacte

x; = CijTy Tr; = Cji(E;- _] = 1,2,3. (112)
On pourra écrire par exemple,
3
0in; = ZUijnj = 0i1N1 + 042N2 + 04313
j=1
3 3
045NNy = Z Zaijnjni = 0'1171% + 0'2271% + Uggng + (012 + 0'21)%1”2
j=1i=1

+ (023 + 032)nan3 + (031 + 013)N3N .
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Dans l'expression o;;n;, I'indice 4 est fixé. Il a une valeur dans 1,2, 3. On I'ap-
pelle I'indice franc.

Le symbole u; désignera I’ensemble des 3! quantités uy, u, uz (3 pour I'es-
pace et 1 pour l'indice franc). De méme, le symbole L;; signifie I’ensemble des
32 quantités L11, L1a, L13, Lo1, Laa, Loz, L31, 3o, L33 (3 pour l’espace et 2 pour
les indices francs). Pour un scalaire, on a 3° = 1 quantité. On peut écrire

3
Ly = ZLu‘ = L1+ Lag + L33

=1

3 3
AiByC; = > AiBiCi = B Y AiCi = Br(A1Cy + A3Cy + A3Ch)

i=1 i=1
3
ds® = dz% + dx% + dx?,) = Z dr; dx; = dx; dx;
i=1

Mijkuivjwk = Mjikujviwk = Mikjuivkwj = ...

On remarquera que l'indice sur lequel la sommation porte, est un indice muet ;
on peut changer de notation pour cet indice sans changer la signification de la
somme. C’est ainsi que

045Ny = OigNg = 04N -

Un indice muet ne peut pas apparaitre plus de deux fois dans une expression.
Par conséquent pour insérer la deuxieéme équation (1.12) dans la premiere, on
doit la réécrire par exemple sous la forme

Tj = qulli; .
D’ou il vient,
Tp = cijcqir, et deméme  m; = ¢jiCigTy . (1.13)

Il est évident que le coefficient de z, dans la premiere équation (1.13) doit étre
égal a P'unité pour ¢ = ¢ et 0 pour ¢ # ¢q. Ceci est vrai également pour la
deuxieme équation (1.13). Si on introduit le symbole de Kronecker

|1 sii=3j
5”—{0 siidt], (1.14)
alors on obtient
CijCqj = (Siq . (1.15)

Les composantes c¢;; forment une matrice orthogonale [C] telle que sa transposée
soit égale & son inverse, ce qui donne

Cikc;;jl = CixCjk = Oij ou [C] [C]*l = [C] [C]T = [1], (1.16)
avec [I] dénotant la matrice unité. La matrice des ¢;; est telle que

det [C] =e; - (e2 X e3), (1.17)
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c’est-a-dire det [C] = £1. Le signe + ou — caractérise un systeme direct ou
rétrograde. Le symbole X représente le produit vectoriel.

Notons qu’en utilisant le symbole de Kronecker, 'indice d’une composante
peut étre changé comme suit

Ly, = 045 Lji,
AiBiC; = 65, A:BiC;,
ou; Buk
895? = uj; = 5“87:5,» = OkjUk,i
821@' 5 82ui 5
O0x ;0 ik Jl@mlamk JrT Ik

1.2.3 Scalaires

Soit un point P d’un milieu continu, et F(P) la valeur réelle d’une fonction
continue de P. Si la valeur F(P) ne dépend pas du systéme de coordonnées,
alors la fonction F' est appelée fonction scalaire, ou scalaire, ou encore tenseur
d’ordre 0. C’est par exemple le cas de la température, de la pression, de ’énergie
cinétique, etc. Ce n’est pas le cas des composantes (du vecteur) de la vitesse
qui dépendent du systeme de coordonnées. Bien stir, ceci ne veut pas dire que
la fonction qui fournit la valeur F(P) soit indépendante du systéme choisi.
Si le point P a pour coordonnées z; et si F(P) a pour valeur f(z;), alors le
changement de coordonnées de la deuxiéme équation (1.12) entraine pour le
scalaire F'(P)

F(P) = f(z:) = flesia}) = f'(x}). (118)

Prenons, par exemple, un champ de température T'(P) linéaire donné dans
un systeme de coordonnées x; par
T —Tp
I Z1,
tel que T'(0) = To et T(L) = T;. Par rotation de 45° autour de l’axe x3, on
passe au systéme de coordonnées x; par la transformation

s
2 2
a=| v v
2 2
0 0 1

En toute généralité, la matrice qui exprime un changement de systéme de co-
ordonnées par rotation autour de ’axe e d’un angle 6 est donnée par

cosf sinf 0
[C]=| —sinf cosf O
0 0 1
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La température dans le nouveau systeme de coordonnées devient

T —To V2
T'(xi‘):TO‘F%?(ﬂﬁll—xé)

puisque par (1.11)

/ / /
T1 = C11T7 + C21T5 + C31T3

\/? , \/§ ,
— ] — —— .
2 2

1.2.4 Vecteurs

Soit un vecteur v = PQ ayant son origine au point P et son extrémité au point
Q. Ce vecteur a une direction et trois composantes v;. Le vecteur lui-méme est
indépendant du systéeme de coordonnées.

Etudions les représentations de v dans les deux systemes de coordonnées
liés par les relations

T =cijry et mp=ciuay. (1.19)

Soient x;, y; les coordonnées des points P et (Q dans le premier systéeme d’axes
et af, y; celles dans le second. Les composantes de v dans le premier systéme
s’écrivent
Vi =Yi — T4
et
r_ /
Vi =Y — &
dans le second. On relie les composantes v} & celles v; par la loi de transforma-
tion
v =y — X = ¢ (Y — x5) = ¢iv; . (1.20)
Comme dans un systéme d’axes cartésiens, les cosinus directeurs ¢;; sont indé-
pendants des coordonnées de P, on peut écrire

A =cji 1.21
ox; 7 oa7, ~ 7 (1.21)
et donc
o x|
En combinant (1.20) et (1.21), on obtient
oz Oz;
v = 8? v; ou V= 6—3%-. (1.22)
J i

On dira par définition qu’un objet mathématique v caractérisé par les trois
composantes v; dans un systéeme de coordonnées cartésiennes est un vecteur ou
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un tenseur d’ordre 1 si lors d’un changement de systeme de coordonnées, ses
composantes se transforment suivant la loi (1.22). En conséquence, un triplet
de nombres dans un systéeme de coordonnées ne donne pas nécessairement un
vecteur. C’est la loi de transformation (1.22) associée au caractére invariant
du vecteur qui en assure la nature. La notation indicée permet de mettre en
ceuvre l'algebre standard des vecteurs et de leurs composantes scalaires. Par
exemple, si a est un scalaire, la i'®™° composante de av est av;. Par (1.22), on
peut montrer que la multiplication av’ est un vecteur puisque

(avy) = cij(av;) = 87; (av;) -

J

L’addition de deux vecteurs s’obtient par ’addition de leurs composantes res-
pectives, c’est-a-dire

En notation vectorielle, on a
w=u-+uv.

On traite maintenant le cas du produit scalaire de deux vecteurs. On note

le produit b comme la somme u;v;. Sous forme symbolique, b = u-v =v - u
tandis que

b = u;v; = uv1 + UsVs + U3V3 . (1.24)

Examinons si le produit b est affecté par un changement d’axes. La relation
(1.20) peut se mettre sous la forme

/ / /
vi =y — x; = cji(y; — ;) = ¢jivj -

En conséquence, il vient

li /
b=wuv; = CjiljChi V)
!’/
= cjickiujvk
S S
= 0jkU; V)

o
—ujvj.

Donc le produit u;v; est un scalaire (1.18) puisque sa valeur ne change pas lors
d’un changement de repere. Par la géométrie vectorielle, on peut montrer que

b= |u|||v| cosb, (1.25)

ou |lu| et ||v|| sont les normes des vecteurs u et v respectivement, tandis que
0 est ’angle entre les deux vecteurs.

On rappelle qu’une conséquence importante de (1.25) est que deux vecteurs
(non nuls) orthogonaux ont un produit scalaire nul. Un autre résultat intéres-
sant provient de ce que le produit scalaire du vecteur par lui-méme fournit le
carré de sa norme :

viv; = ||| (1.26)
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Si le vecteur considéré est issu de l'origine et repere un point P de ’espace
euclidien, ce vecteur est le vecteur position x tel que = x(z1,z2,x3) = OP.
Le vecteur position est un concept fondamental de la cinématique des milieux
continus que nous décrirons plus completement au chapitre 2. Ce vecteur dé-
pend des coordonnées spatiales. Dés lors, on peut écrire

3xi
— 6 1.2

1.2.5 Symbole de permutation et produit vectoriel

Le symbole de permutation est défini de la maniere suivante :

1 si ijk est une permutation paire de 123
€ijk = —1 siijk est une permutation impaire de 123 (1.28)
0 dans tous les autres cas

ou encore

- %(i—j)(j—k:)(kz—i). (1.29)

Suite & la définition (1.28), on peut déplacer un indice de 'avant vers l'arriere
et inversement

€ijk = €jki = Ekij -

La permutation de deux indices adjacents induit un changement de signe

Cijk = —Ejik
Eijk = —Eikyj -
Par (1.28) et la définition du symbole de Kronecker (1.14), on peut prouver
Iidentité tres utile
€ijkEilm = 0j10km — OjmOki - (1.30)

Dans une base orthonormée de R3, le produit vectoriel de deux vecteurs w =
u X v, noté parfois u A v, se définit par I'égalité

Wy = €4k UV - (1.31)
Par exemple, on peut évaluer que
W1 = €123U2V3 + €132U3V2 = U2V3 — U3V2 .

On peut faire de méme pour wy et ws.

Un point important de la notation (1.31) est que le premier indice de €
doit étre celui de la composante du vecteur w, le deuxieme doit étre le méme
que celui du premier vecteur du produit u X v et le dernier doit étre associé au
dernier vecteur du produit.
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La norme d’un produit vectoriel est égale au produit des normes des vec-
teurs multiplié par le sinus de ’angle 8 que forment ces vecteurs :

[wl| = [Jull [[v]|sin 6. (1.32)

Un certain nombre de formules en notation symbolique présente des combinai-
sons diverses de produits scalaires et vectoriels. Par exemple

UXV=—-vXuU (1.33)
ux (V+w)=uxv+uxw (1.34)
(uxv) - w=wWxw) u=(wxu) v (1.35)
(axb)-(exd)=(a-c)(b-d)—(a-d)(b-c). (1.36)

EXEMPLE 1.1

Le produit vectoriel engendre un vecteur perpendiculaire au plan des deux
vecteurs et les trois vecteurs u, v, w forment un systeme direct. On peut
démontrer que w est orthogonal a v en montrant que le produit scalaire
v - w est nul. En utilisant (1.28), il vient

VWi = Vi€45kU;VE = E4jkV;VEU

1
= 3 (eijkvivkuj- aF E,'jkvwkuj) = 3 (sijkvivkuj + ekjivkviuj)
1
= 5 (ajkvivkuj — Eijkvwkuj) =0.

EXEMPLE 1.2
On utilisera 1’algebre de la notation indicée pour vérifier 'identité (1.36).
Le membre de gauche & s’écrit

6 = (a x b) - (c x d) = gixa;bpeumcidm -
Avec (1.30), on obtient

& = (0;10km — OjmOxi) @ibrcidm

= 010 C10kmbrdm — 0jma;dmOrbicy .

Par les propriétés du symbole de Kronecker d;;, on pose | = j et m = k
dans le premier terme et m = j et [ = k dans le second. On a

6 = ajcjbkdk — ajdjbkck °

Le membre de droite de cette derniere relation n’est rien d’autre que la
notation indicée du membre correspondant de droite de (1.36).
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EXEMPLE 1.3
Si P; = e;5,ur,; ou u; sont des fonctions continues de z; avec des dérivées
partielles continues, démontrer que P;; = 0.

On utilise des propriétés du symbole de permutation pour modifier I’expres-
sion de maniere suivante

P = eijruk; = Pii = €kl ji = €jikUk,ij
Ejik = —E€ijks  Uk,ij = Uk,ji
= Pii = €ijkU,ji = —€ijkUk,ji

2P = €ijkuk,ji — €Uk, =0 = F;=0.

)

1.3 Algebre tensorielle

1.3.1 Définition des tenseurs d’ordre 2

La notion de tenseur d’ordre 2 est introduite par I’examen de la représentation
d’un objet invariant. Soit E? I’espace vectoriel euclidien des vecteurs associé a
R3 et L une transformation linéaire sur E® qui transforme un vecteur en un
autre, c’est-a-dire

L:E?— B3 tel que u— Lu. (1.37)
Si L transforme u; en v et ug en v par les relations

L’LLl = U

L’U,Q = V2
et si L a les propriétés suivantes

L(u1 + ’u,g) = Luy + Lusy

L(au,) = aLu, (1.38)

avec u; et uo deux vecteurs arbitraires de E? et o € R, alors on dit que L est
une transformation linéaire. C’est aussi un tenseur d’ordre 2 ou simplement un
tenseur. Les tenseurs unité I et nul O sont définis par les relations u = T'u
et 0 = Owu, respectivement.

Pour tout vecteur u, le vecteur v est tel que 'on a
v=Lu= Luiei = uiLei . (139)
Les composantes de v sont obtenues en prenant le produit scalaire

Vi —=€; V. (140)
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Par combinaison de (1.39) et (1.40), il vient
v, = € - (’LLjLEj) = U;€; - L€j . (141)

Les termes tels que, par exemple, e1-Le; et es- Le; sont les composantes suivant
ey et es de Leq. On convient d’écrire ces composantes comme Lq; = eq - Ley,
Loy = ey - Leq, etc. En général, on aura

Lij =€; - Lej . (142)

Les éléments L;; sont les composantes du tenseur L. Par (1.41) et (1.42), on
obtient

V; = Liju]* . (143)
Cette derniere relation peut s’écrire sous forme matricielle
U1 Ly Lz L Uy
V2 = L21 L22 L23 U2 . (144)
U3 L3; L3z L33 u3
La matrice
Ly L2 Lis
Loy Loy Lo
L31 L3a Las

est la matrice du tenseur L par rapport aux vecteurs de base {e;}. On remar-
quera que les composantes de la premiere colonne sont celles du vecteur Leq,
celle de la seconde colonne sont les composantes du vecteur Les et ainsi de
suite. Donc, on a

Le; = Liiey + Lares + Lz1es = Lje;,

c’est-a-dire
Lei = Ljiej . (145)

On constate donc que les composantes d’un tenseur dépendent du systeme de
coordonnées défini par la base {e;} de la méme maniére que les composantes
d’un vecteur en dépendent également.

Cependant, un tenseur qui est un opérateur linéaire invariant, est une gran-
deur intrinseéque, comme par exemple, une force par unité de surface. Seules ses
composantes seront affectées par un changement de base. On notera la matrice
associée au tenseur L

L1y Lip Lis
[L]=| La L2z Lo (1.46)
Lz L3z Lss
et son déterminant par
Lyy Lz Ly
det L = det[L] = det L21 LQQ L23 . (147)
L3 L3z L3

Un tenseur est dit singulier si et seulement si det L = 0.
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1.3.2 Produit tensoriel ou dyadique de deux vecteurs

Le produit tensoriel ou produit dyadique a ® b de deux vecteurs a et b est
défini comme le tenseur qui assigne & chaque vecteur v le vecteur (b- v)a

(a®@bjv=(b-v)a=a(b-v) (1.48)
Pour tout vecteur v et w et o, B € R, on a

(a®@b)(av + pw) = (b- (av + fw))a

= (a(b-v) + B(b-w))a
= a(b-v)a+ (b -w)a
— a(a®b)o + fla® bw

Ceci démontrera que (a ® b) est un tenseur. Ses composantes par rapport a la
base {e;} (i =1,2,3) sont

(CL ® b)lj =€; - (a X b)ej =e€;- ((b . ej)a) =e€;- (abj) = (ei . a)bj = aibj .

Donc, on a
((1 &® b)ij = aibj . (149)

La matrice correspondante sera donnée par

ai arbr  aiby  aibs
[a (4 b] = a9 ( b1 bg b3 ) = CLle a262 a2b3
as asbi agby asbs

En général, (u ® v) # (v ® u). Evaluons le produit tensoriel e; ® e;. On a
(ei®@ej)u=(e; -u)e; =uje;. (1.50)
Par (1.50) et (1.43), on peut écrire
v=ve;=Lu=L;uje;=L;(e;@e;)u
Par conséquent, on obtient

L= Lij(ei & Ej) . (151)

EXEMPLE 1.4
Les tenseurs identité I et le produit dyadique peuvent s’exprimer comme
I = (sij(ei & Ej)
a®b = al-bj(ei X Ej) .
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1.3.3 Loi de transformation des composantes cartésiennes des tenseurs

La représentation dans le systéme de coordonnées cartésiennes x; de 'opérateur
linéaire L, qui est invariant, est donnée par ses composantes L;; (1.42). Dans
le systéme de coordonnées x, les composantes de L s’expriment comme

L'ij =e,- Le; .
On peut évaluer facilement la relation entre les composantes L;; et L] ;- En
effet, par (1.20), la relation précédente donne
L;j = (cikek) . L(leel) = CipCji€} - Le; = Cikclekl . (1.52)

En invoquant (1.21), on a

oz’ O0x'; Oz, Ox
o= _J L. = Ly . 1.53
Y Oz, Oy M ou Yo ozl ox'; M (1.53)
En notation matricielle, I’équation (1.52) s’écrit
(L] = [CIIL][C]" (1.54)

Par définition, une matrice [L] & 9 composantes correspond & un tenseur d’ordre
2 si lors d’un changement de coordonnées, ses composantes se transforment sui-
vant (1.53). Par extension, on parlera aussi du tenseur L;;. Les lois de transfor-
mation (1.53) garantissent I'invariance de L vis-a-vis du choix de coordonnées.

A titre d’exemple, vérifions que le produit tensoriel T' = a®b est un tenseur
d’ordre 2. Il vient
oz 0x'. oz’ 0x'.
Tl-/-:a;b/-: % Jakl: 7 J el -
J I Oxy, Oxy Oxy, Oy

1.3.4 Tenseurs d’ordre quelconque

Rappelons les lois de transformation des vecteurs (tenseurs d’ordre 1) et des

tenseurs d’ordre 2 pour un changement de coordonnées
! ! /

, 636”}‘ ,“:8@-% y
J t 3$k a’rl

’ al‘j

En généralisant ces lois, on peut définir un tenseur d’ordre n. Soit 7~ un objet
dont la valeur dans un systeme de coordonnées z; est donnée par 3" compo-
santes T;,4y..i,,, Ol les indices 4; prennent la valeur 1, 2 ou 3. Par définition, 7~
est un tenseur d’ordre n si lors d’'un changement de coordonnées, ses compo-
santes se transforment selon la loi

or, Ox! ox’,
T = " 2 .. In g 1.55
7;112~~~zn ale a$j2 6l'j” 7;1]2 In ( )

On notera que pour n = 1 et 2, on retrouve les lois de transformation des
vecteurs et des tenseurs d’ordre 2.
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On peut aussi vérifier que le symbole de permutation introduit & I’équation
(1.28) est un tenseur d’ordre 3. Pour le montrer, on applique & ¢;;; la trans-
formation tensorielle (1.55) et on vérifie que les composantes ¢}, satisfont les
relations (1.28). Par (1.21), on écrit

!
6ijk = CimCjinCkpEmnp -
On peut développer le second membre en tenant compte de (1.28). On obtient
/
€ijk = Ci1Cj2Ck3 + Ci2€Cj3CK1 + Ci3Cj1CK2 — Ci2Cj1Ck3 — Ci1Cj3Ck2 — Ci3Cj2Ck1 -

Le membre de droite de cette équation n’est autre que le déterminant de la
matrice

Cit G2 G3

Cj1 Cj2 Cj3

Ck1  Cg2 Cg3
qui est la matrice orthogonale des cosinus directeurs. Lorsque (4,7, k) est une
permutation paire de (1, 2, 3), €/ i, vaut 1 sile systéme d’axes est direct ; lorsque
(4,7, k) est une permutation impaire de (1,2,3), les lignes sont permutées un
nombre impair de fois, et le déterminant vaut —1. Enfin, dans tous les autres
cas, deux lignes au moins sont égales et le déterminant est nul.

Les tenseurs d’ordre n satisfont les regles suivantes.

Multiplication par un scalaire :
la multiplication d’'un tenseur d’ordre n par un scalaire s’effectue en
multipliant chaque composante du tenseur par le scalaire. Le résultat
est un tenseur d’ordre n.

Combinaison linéaire :
la combinaison linéaire de deux tenseurs d’ordre n s’effectue par la
combinaison linéaire des composantes correspondantes. On obtient un
tenseur de méme ordre.

Tenseur nul :
c’est le tenseur dont toutes les composantes sont égales a zéro.

Tenseurs égaux :
lorsque les composantes de deux tenseurs du méme ordre sont égales
terme a terme dans un systeme de coordonnées, elles le sont dans tout
autre systeme ; les tenseurs sont égaux. Par conséquent, si une relation
tensorielle est vérifiée dans un systeme de coordonnées, elle est vraie
dans tout systeme de coordonnées.

Produit extérieur de tenseurs :
soient Aj;, ...;, et Bj,...;,. les composantes respectives d’un tenseur d’ordre
n et d’un tenseur d’ordre m dans un systéme de coordonnées. Les 37T™
quantités obtenues par

Ciyovvingrjm = Aiyevvin Biy i

forment un tenseur C d’ordre n + m. A titre d’exemple, on a montré
précédemment que le produit tensoriel (dyadique) de deux vecteurs
donne un tenseur d’ordre 2.
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Contraction d’un tenseur :
soit LA un tenseur d’ordre n dont les composantes dans un systéme de
coordonnées sont A;,...;, .
L’opération de contraction consiste a égaler deux indices du tenseur,
par exemple le j®™€ et le k*™¢ avec j et k < n, et en sommant sur ces
indices (j = k = 1,2,3) pour former un tenseur d’ordre n — 2 compre-
nant donc 372 composantes. Ce tenseur sera obtenu par contraction
des indices j et k.
Par exemple, L;; est la seule contraction possible de L;;. Ce n’est plus
un tenseur d’ordre 2, mais un scalaire (tenseur d’ordre 0).

Considérons deux tenseurs S et T' d’ordre 2. Leur produit extérieur en-
gendre un tenseur d’ordre 4 dont les composantes sont

Rijrr = SijTh -

Les composantes obtenues par contraction sur les deuxiéme et troisieme indices
de R sont
Rimml = Slmel .
Montrons qu’il s’agit bien d’'un tenseur d’ordre 2. Par la loi de transformation
(1.55), on a
i

Rijkt = CipCiqChrCis Rpgrs -
De méme, on a

!

Rimml = Cipc'rnqcm'rclstqrs .

Par (1.15), on obtient

’
imml — CipCls 6qupqrs = Cipclstrrs

/ /
Ox; %’R

prIYs -
Oz, Oz,

Cette derniere égalité prouve le caractere tensoriel d’ordre 2 de Rimmi-

A posteriori, on peut s’apercevoir que le membre de gauche de 1’équation
(1.30) €4jk€im est un tenseur d’ordre 4 obtenu par contraction. De la méme
maniere, la contraction

€ijkEijl = 20 (1.56)
fournit un tenseur d’ordre 2 et la relation
EijkEijk = 6

donne un scalaire.
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1.3.5 Algebre des tenseurs d’ordre 2

Somme de tenseurs

Soient L et T deux tenseurs d’ordre 2. Leur somme notée (T'+ L) est telle que
pour tout vecteur a, on ait

(T+L)a=Ta+ La. (1.57)
Les composantes de (T + L) sont telles que
(T—FL),L] =e€;- (T—|—L)e] = €; -Tej —i—ei -Lej

ou encore
(T'+ L)y =Ti; + Lij - (1.58)

Produit intérieur de deux tenseurs

Si L et T sont deux tenseurs d’ordre 2, alors LT et TL sont définis par les
équations
(LT)a = L(Ta) (1.59)

et
(TL)a=T(La) (1.60)

Les composantes de LT s’obtiennent comme suit, en tenant compte de (1.45),
(LT);; = e; - (LT)e; =e; - L(Te;)
= €; - Lijem = ijei . Lem .
Il vient
(LT)ij = LiyTomj - (1.61)

De méme, on a
(TL)ij = Tim Ly - (1.62)

On remarquera que le produit intérieur des tenseurs L et T est une multipli-
cation contractée des tenseurs d’ordre 2, dans laquelle la contraction porte sur
le dernier indice du premier tenseur et sur le premier indice du second ten-
seur. Sous forme matricielle, on peut écrire que la matrice relative au produit
intérieur est égale au produit des matrices des deux tenseurs tel que

(L)) =[] et [(TL)] = [T][L].

On remarquera que le produit intérieur de tenseurs n’est pas commutatif en
général, c’est-a-dire LT # TL.
Si L, T et S sont trois tenseurs, alors on peut évaluer

(L(ST))a = (L(ST)a) = L(S(Ta))

et
(LS)(Ta) = L(S(Ta)).
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Donc, on obtient
L(ST)=(LS)T. (1.63)

Le produit intérieur des tenseurs est associatif. Lorsque L = T, on peut intro-
duire les notations suivantes TT = T?, TT? = T?, etc.

On a la propriété

det (ST) = det S detT (1.64)

Notons aussi les relations
La®b)=(La)®b (1.65)
(uev)(a®b)=(v-a)ub=uxb(v-a). (1.66)

EXEMPLE 1.5
On utilise l'algebre de la notation indicée pour vérifier I'identité (1.65)

(L(a X b))” = Lim(a & b)mj = Limambj
= (La)ib; = ((La) ® b)ij :

1.3.6 Propriétés des tenseurs

Tenseur transposé

Le tenseur transposé d’un tenseur est celui obtenu en échangeant deux indices :
le transposé de L;; est Lj;. On le notera LT, et donc, on a la relation

(L") =Lj;. (1.67)

En conséquence, on peut établir aisément que

(LS)" = sTL” (1.68)
et
w-L'v=Lu-v=v-Lu. (1.69)
Pour la dyade, on a
(a2b)! =b®a, (1.70)
(a®@b)L = a® L"b. (1.71)

On notera également la propriété

det L” = det L. (1.72)
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Inverse d’un tenseur

Pour un tenseur régulier L, c’est-a-dire det L # 0, il existe un tenseur unique
appelé le tenseur inverse L™ de L qui satisfait la relation

LL ' '=L'L=1I. (1.73)

Par définition de 'inverse, on peut montrer que

(L '=1L (1.74)
(al)™! = éL’l (1.75)
det (L™Y) = (det L) " (1.76)
Pour deux tenseurs inversibles S et T', on a
(ST) t=1"'8"". (1.77)

Tenseurs symétriques

On dit qu’un tenseur est symétrique lorsqu’il est égal a son transposé. Le tenseur
L est symétrique si
L=L", (1.78)

c’est-a-dire si

Par conséquent, un tenseur symétrique a six composantes indépendantes.

Tenseurs antisymétriques

Un tenseur L est dit antisymétrique s’il est égal a I'opposé de son transposé,
ou encore

L=-L", (1.80)

c’est-a-dire
Lij = _Lji . (181)

Dans ce dernier cas, les composantes diagonales de L sont nulles et seules trois
composantes sont indépendantes.

Des lors, on peut prouver que tout tenseur L d’ordre 2 peut étre décomposé
de maniere unique en la somme d’un tenseur symétrique L et d’un tenseur
antisymétrique L*. Pour montrer que cette décomposition est possible, on écrit

I ) A
Li; = Lj; + Lj;
1
S
Lij = 5 (Lij + Lyi) (1.82)
1
i = 5 (Lig = L)
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Pour démontrer 'unicité, supposons qu’il existe deux décompositions, c’est-a-
dire
_ 7158 A _ 718 1A
Lij=Lj;+ Li; = Li7 + Ljj

La derniere égalité donne
IS [/S — /A _ A

Le membre de gauche de (1.83) est symétrique, le membre de droite est anti-
symétrique. Seul le tenseur nul (toutes ses composantes sont nulles) satisfait la
condition (1.83). On a donc

S _ 718 A _ 7/A
Ly =L L =Ly,

Trace d’un tenseur

La trace d’un tenseur L d’ordre 2, notée tr, est la somme de ses composantes
diagonales

tr (L) = tr (LU (ei (%9 Ej)) = Lij tr (ei X Ej) = Lij 51'3' = L“ . (184)

La trace du produit tensoriel de deux vecteurs se réduit au produit scalaire des
vecteurs

tr(a®b)=a-b. (1.85)

Les propriétés de la trace sont

trL =tr L

tr (S+T)=trS+trT
tr(al)=atrL

tr (AL) =tr (LA),

ou « € R.

Tenseurs déviateurs

Un tenseur L peut étre décomposé en la somme d’un tenseur sphérique L et
d’un tenseur a trace nulle Ld, dit déviateur tel qu’on ait

L=1L°+L". (1.90)

La composante sphérique L° est le tiers de sa trace, soit L, = %kaéij. Les

composantes déviatoires L? seront définies par
d 1

Ces composantes Lf.lj ne sont pas indépendantes car la trace de L est nulle.
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Tenseur orthogonal

Un tenseur @ est orthogonal s’il satisfait la condition
Qu-Qu=u-v (1.92)
pour tout vecteur u et v. En utilisant (1.69), la condition (1.92) s’écrit
u-QTQu=u-v. (1.93)

Donc un tenseur orthogonal satisfait 1'égalité QT Q = I. Puisque u - v est
préservé dans cette transformation, angle entre les vecteurs et leur norme ||ul|,
|lv]] sont aussi préservés. Le tenseur @ possede la propriété que det @ = +1.
Si det Q = +1, le tenseur est appelé orthogonal propre; il correspond & une
rotation. Lorsque det @ = —1, il est appelé impropre et correspond a une
réflexion. Il est important de remarquer le lien entre le tenseur orthogonal Q
et le changement de coordonnées résultant de la rotation des axes effectuée
dans le paragraphe 1.2.2. On y a défini une nouvelle base vectorielle e} (i =
1,2,3) par rotation de la base vectorielle e; (i = 1,2,3), les deux systemes
d’axes étant cartésiens orthogonaux. Puisque par (1.92), Pangle entre vecteurs
est conservé, le changement de coordonnées peut étre considéré comme une
transformation orthogonale qui effectue la rotation des vecteurs de base e; en
e,. Par conséquent, la matrice du tenseur Q est égale & la matrice [C].

Produit scalaire de deux tenseurs

Le produit scalaire de deux tenseurs d’ordre 2 est le scalaire défini par la double
somme

a = Sz’jTZ‘j . (194)

Symboliquement, on le note a = S : T. On remarquera qu’il s’agit d’une
multiplication avec double contraction. En effet, on peut écrire successivement

S:T=tr(STT)=tr (T"S) =tr (STT) =tr(TST)=T:8.  (1.95)
La norme d’un tenseur || L|| est définie par la relation

IL|| = (L : L)"? = (LijLij)'? > 0. (1.96)

Le produit scalaire satisfait aussi les propriétés suivantes :

L:(ST)=(S"L):T=(LT"):S (1.97)
(u®v):(a®b)=(u-a)(v-b) (1.98)
L:(a®b)=a-Lb=(a®b): L. (1.99)
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EXEMPLE 1.6

On utilisera 1’algebre de la notation indicée pour vérifier 'identité (1.99).
Avec la définition (1.94), il vient

L : (a®b) = Lij(a®b)ij = Lijaib]’ = aiLijbj =a-Lb. ﬂ (1100)

EXEMPLE 1.7

On considere les tenseurs A et B tels que A;; = Aj; est symétrique et B;; =
— Bj; antisymétrique. Le produit de ces deux tenseurs s’annule. (Notons que
A;;B;;j = A;;B;; puisque le résultat est un scalaire.) Dapres les définitions
(1.78), (1.80) et (1.94), on a

1
(A:B) = Ay;B;; = 3 (AijBij + Ai;Bij) = 5 (AijBij — AijBji)

1 1
= 5 (AijBij — A;Bij) = 5

1
2
(AijBij — AijBij) = 0. (1.101)

Produit a droite d’un tenseur et d’un vecteur

Le produit & droite d'un tenseur L et d’un vecteur u est défini comme
v = uiLij = L”uz . (1.102)

On le note uwL. Ici, ordre des symboles est important, ce qui n’est pas le cas
pour la notation indicée. La forme symbolique Lu représente un autre vecteur
qui en notation indicée, s’écrit

w; = Lijuj = 'LLjLZ'j . (1103)

On remarquera que cette derniére relation n’est autre que (1.43).

1.3.7 Vecteur dual d’un tenseur d’ordre 2

Les composantes d; du vecteur dual (ou axial) d’un tenseur L sont définies par
le produit

1 1
dz‘ = 5 Eikijk = —5 Eijijk' (1104)
soit explicitement
1 1
dy = —5 (e123L923 + €132 L32) = —5 (L23 — L32)
1 1
dy = —5 (€231 L31 + €213L13) = —5 (Ls1 — Li3)

1 1
d3 = 3 (e312L12 + €321 L01) = 5 (L12 — Lo1) .
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On remarque au passage que si le tenseur L est symétrique, le vecteur dual d
est nul. Décomposant L en ses parties symétrique et antisymétrique, il vient
par (1.82)
1

d; = 3 (&'jkak + €ijkL3'4k) . (1.105)
Comme ¢€;;;, est par définition antisymétrique par rapport a n’importe quel
couple de ses indices, le premier terme du membre de droite s’annule puisque
c’est le produit intérieur d’un tenseur symétrique par un tenseur antisymétrique
(1.101). Donc le vecteur dual dépend uniquement de la partie antisymétrique

d’un tenseur )
d; = -3 gijully - (1.106)

L’inverse de la relation (1.104) s’obtient en multipliant les deux membres par
Eilm, C’est-a-dire

1
Eilmdi = Elmidi = _5 Eilmgijijk .

Grace a (1.30), on obtient successivement

1
Eitmd; = —5 (015 Ok — Otk Omy) Lijk
1
= _5 (le - Lml) = _Lﬁn
ou encore
—L{ = eimid; . (1.107)

Les trois composantes indépendantes d'un tenseur antisymétrique (les com-
posantes diagonales sont nulles) sont équivalentes aux trois composantes du
vecteur dual pour ce qui concerne l'information qu’elles fournissent, puisque
di = —Liy, dy = —L4,, d3 = — L3,

1.3.8 Valeurs propres et vecteurs propres d’un tenseur

Soit un tenseur L. Si u est un vecteur qui sous I'application de L se transforme
en un vecteur parallele a lui-méme, c’est-a-dire

Lu = \u, (1.108)

alors le vecteur u est un vecteur propre de L et A est la valeur propre corres-
pondante. On sait que les vecteurs propres sont de longueur arbitraire, en toute
généralité. Cependant, pour la facilité, nous allons les normaliser a I'unité. Soit
n un vecteur propre unitaire. Alors, si on introduit I le tenseur unité, on peut
écrire
Ln=Xn=\n, (1.109)
ce qui donne
(L-=XI)n=0 avec n-n=1. (1.110)

Sous forme indicée, avec i = n;e;, on a

(Lij — Adij)n; =0 nin; =1. (1.111)
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Comme 1’équation (1.111) est valable pour tout n # 0, on doit résoudre
I’équation
det([L] — A[I]) =0 (1.112)
pour obtenir une solution.

Si le tenseur L est symétrique, alors ’équation caractéristique (1.112) per-
met d’invoquer un théoreme de l’algebre linéaire qui s’énonce ainsi.

Théoréme

Les valeurs propres d’une matrice réelle symétrique sont toutes réelles.

Il en sera de méme pour les valeurs propres correspondantes du tenseur L,
qu’on appellera valeurs principales. Les vecteurs propres associés définissent les
directions principales.

Montrons que pour un tenseur symétrique, il y a toujours trois directions
principales orthogonales entre elles. Soient n; et my deux vecteurs propres
correspondant aux valeurs propres respectives A\; et Ay du tenseur L. Alors,

Ln, = \ny (1.113)
et
Lny = Aons . (1.114)
Effectuons le produit scalaire de (1.113) par ng et de (1.114) par n5. On obtient
en passant a la forme indicée
Lij(n1);(n2)i = Ar(n1)i(na); (1.115)
et
Lij(n2);j(n1); = A2(n2)i(na); . (1.116)

Le premier membre de (1.116) peut se transformer grace & la propriété de
symétrie de L. On écrit

Lji(nl)j(ng)i = )\g(ng)i(ﬂl)i . (1.117)
Soustrayant (1.115) et (1.117), il en résulte

Puisque A1 # Ag, alors n; - ny = 0 et n1, ny sont orthogonaux. Donc, on
peut conclure que si les valeurs propres sont toutes distinctes, alors les trois
directions principales sont mutuellement orthogonales.

Si A1 = Ao # A3, on ang -ng = ng - ng = 0. Les directions n; et ny sont
choisies mutuellement orthogonales et normales a ng.

Si A1 = Ay = Ag, les directions ny, ns et mg sont choisies mutuellement
orthogonales sans aucune restriction.
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Examinons quelle est la forme de la matrice d’un tenseur par rapport a ses
directions principales. Notons n1, no, ng les vecteurs unitaires dans ces direc-
tions. Si on utilise ces vecteurs comme vecteurs de base, alors les composantes
du tenseur deviennent

Liy=ny-Lny =n; - (Mny) =\

Los = Ay
L3z =\
8 s (1.119)
Lis =mn1-Lngy = (n1-Aang) =0= Loy
Li3=1L3 =0
Loz = L3 =0.

Donc la matrice est diagonale et ses éléments diagonaux sont les valeurs propres.

Invariants scalaires d’un tenseur et théoréme de Cayley-Hamilton

L’équation caractéristique d’un tenseur (1.112) est cubique en A. On peut
I’écrire

N — [(L)\? + I,(L)\ — I3(L) = 0, (1.120)
ou I1(L), Io(L), I3(L) sont les invariants scalaires du tenseur L. Ceux-ci sont
tels que

Il(L) = Lii =trL

L(L) = Ly Lo Los Lo Ly L3
Loy Lo L3z L33 Ls1  Las
=3 (Li;Lj; — LijLj;) (1.121)
1 1
=3 ((tr L)> —tr (LL)) = 3 ((tr L)? — tr (L?))

I3(L) = eijpLin Ljo Lz = det L.

Comme par définition les valeurs propres de L sont indépendantes des vec-
teurs de base {e;}, alors les coefficients de la cubique doivent étre les mémes
pour tout {e;}. C’est la raison de leur nom « invariants scalaires ».

EXEMPLE 1.8
Trouver les valeurs principales (valeurs propres) et les vecteurs unitaires
correspondants (vecteurs propres) du tenseur symétrique

2 1 -2
L= 1 4 -3 (1.122)
2 -3 -2
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En utilisant les expressions (1.121), les invariants correspondants sont
L(L) =4, I)(L)=-18, I3(L)= —36,
et équation caractéristique correspondante (1.112) est donnée par
A3 —4X% — 18X +36 = 0.

Cette équation a trois racines distinctes qui sont les valeurs principales de
L
A =6, A=1,65 A3=—3,65.

Supposons que le vecteur propre mn; correspondant a A\; a comme compo-
santes (n1)1, (n1)2, (n1)s. Pour cette valeur propre particuliere, 'équation
(1.111) donne le systeme d’équations suivant

(2=6)(n1)1 + (n1)2 —2(n1)3 = 0
(n1)1+ (4 =6)(n1)2 —3(n1)s = 0
—2(“1)1 — 3(%1)2 — (2 aF 6)(7’L1)3 =0

Les deux premieres équations donnent (n1)s = —2(np)s. En insérant ce
résultat dans la troisieme équation, on obtient (n1); = —(n1)s. La relation
d’orthogonalité est

()i + ()3 + (n1)5 =1

Avec cette condition et les résultats pour (ni)1,(n1)s2, on obtient (ni)s =
0,4082. Avec cette valeur, les autres composantes sont (nq); = —0,4082,
(n1)2 = —0,8165. Par une démarche similaire on calcule les vecteurs uni-
taires pour les deux autres valeurs principales. Finalement, il vient

A =6 :(n1) =—0,4082,(n1); = —0, 8165, (n1)s = +0, 4082
/\2 = 1.65 5 (712)1 = +O, 8736, (TLQ)Q = —0,4792, (Tlg)g = —O, 0849
A3 =—3,65 : (n3); = 40,2650, (n3)2 = 40,3220, (n3)3 = +0,9089 .

EXEMPLE 1.9

Démontrer que Pexpression a = L&t LisLit est un invariant du tenseur
q p 2¢1j J

symétrique L.

On utilise I'identité (1.30) pour modifier ’expression de la maniére suivante
2a = €ijk€istLjsLit = (850Kt — 05¢0ks) Ljs Lt

= 0jsLjsOktLit — 05t LjsOns Lkt
= LjjLgr — LtsLst = LjjLgk — LtsLys -
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Théoreme de Cayley-Hamilton

Tout tenseur L satisfait sa propre équation caractéristique (cf. exercice
1.17)
L3 - (L)L*> 4+ I,(L)L — (L) I =0 (1.123)

Tenseur défini positif

Introduisons la notion de tenseur défini positif. Un tenseur L sera dit défini
positif si pour tout vecteur v différent de zéro, il satisfait 'inégalité

Vv e E® wv-Lv>0. (1.124)

On montre de maniere simple que les valeurs propres d’un tenseur défini positif
sont strictement positives. En effet, soit A une valeur propre d’un tenseur défini
positif L et soit n le vecteur propre unitaire correspondant. Puisque Ln = An
et que ||n|| = 1, alors

n-Lm=X\A>0.

Décomposition spectrale d’un tenseur

Soit le tenseur L symétrique qui possede trois valeurs propres réelles \; et trois
vecteurs propres réels orthogonaux m;. Ces vecteurs propres forment la base
de décomposition spectrale qui s’écrit comme la somme de trois auto-dyades
principales n; ® n;

3
L= \n;®n;. (1.125)
=1

Cette expression est connue comme la décomposition spectrale ou représenta-
tion spectrale d’un tenseur L. Elle est facilement établie en exprimant L = LI,
L =n; ® n; et en utilisant (1.65) et (1.109).

1.3.9 Racine carrée d’un tenseur

Théoréme

Soit C un tenseur symétrique, défini positif dont les valeurs propres sont A2
et les vecteurs propres correspondants n;. Alors, il existe un tenseur unique,
symétrique, défini positif U tel que

Ul=cC. (1.126)

On écrira /C =U.
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DEMONSTRATION.
1) Ewistence. Soit par (1.125)

3
C=> XNn;an;. (1.127)
i=1
Définissons U par la relation
3
U=> \n;@n,;. (1.128)
i=1

Alors, I’équation (1.126) est la conséquence directe de

3
U?=UU = Z)\ n; @n;)(n; @n;) Z)\2 n;®n;)=C

i=1
car, en toute généralité,

0 sii#j

(ni @ ny)(n; @ n;) = { (n;®@mn;) sii=j.

2) Unicité. Supposons qu'il y a deux tenseurs U et V tels que
Ul=v’=C.
Soit n le vecteur propre de C' correspondant a la valeur propre A > 0. Alors,
0= (U*-XNI)n=(U+X){U - A)n. (1.129)
Posons
v=(U-\)n. (1.130)

Alors il vient par (1.129)
Uv=-)\v.

Mais le vecteur v doit s’annuler, sinon —\ serait une valeur propre de U, ce
qui est impossible puisque U est défini positif et A > 0. Donc, par (1.130), on
obtient

Un=n. (1.131)
De maniere semblable, on a Vn = An et donc Un = Vn pour tout vecteur

propre n de C. Puisqu’on peut former une base de vecteurs propres de C, alors
U et V doivent coincider. O
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1.3.10 Théoréme de décomposition polaire

Théoréme

Soit F' un tenseur appartenant a l’ensemble des tenseurs F de déterminant
det F' > 0. Alors, il existe des tenseurs symétriques, définis positifs U, V'
et une rotation, c¢’est-a-dire un tenseur orthogonal de déterminant positif
(et égal a 1), R tels que

F=RU=VR. (1.132)
Chacune de ces décompositions est unique. En fait, on a

U=VF'F, V =VFF". (1.133)

La représentation F = RU (respectivement F = V R) est la décomposition
polaire a droite (respectivement a gauche) de F'.

DEMONSTRATION.

1) Montrons que FTF et FFT appartiennent & 'ensemble de tous les tenseurs
symétriques, définis positifs. Les deux tenseurs sont a ’évidence symétriques.
De plus,

v - FT Fv = ’l}ijZ‘ij'Ui = Fmiui ij’l}j = (F’U) . (F’U) Z 0.

Ce dernier produit scalaire ne peut étre égal a zéro que si Fv = 0. Des lors,
il ne s’annulera que si v = 0. Donc, FT F appartient & I’ensemble des tenseurs
symétriques, définis positifs. Un raisonnement analogue tient pour FFT .

2) Unicité. Soit F = RU la décomposition polaire a droite de F'. Puisque R
est une rotation, il vient

FTF=UR"RU =U?.

Mais par le théoreme de la racine carrée, il ne peut y avoir qu'un seul tenseur
U appartenant a ’ensemble des tenseurs symétriques définis positifs, dont le
carré est FTF. Donc, la premitre relation de (1.133) est valable et U est
unique. Puisque R = FU ™', R est aussi unique. D’autre part, si F = VR est
la décomposition polaire a gauche, alors

FFT =Vv? (1.134)

et V est déterminé par (1.133) avec R =V 'F.

3) Existence. Soit un tenseur U appartenant a l’ensemble des tenseurs symé-
triques, définis positifs donné par (1.133) et soit

R=FU". (1.135)
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Pour vérifier que F' = RU est bien une décomposition polaire, on doit montrer
que R appartient a I’ensemble de toutes les rotations.

Comme det F' > 0 et detU > 0, alors det R > 0 (detU > 0 parce que
toutes les valeurs propres de U sont strictement positives). On doit alors seule-
ment montrer que R appartient a ’ensemble des tenseurs orthogonaux.

On procede comme suit :
R'TR=U'F'FU'=U'U*U ' =1. (1.136)

Montrons que det R = 1. On sait que det F' = J > 0. Donc, det U? = J? et
detU ™" =1/J > 0. Par (1.136), on a det R = +1. La relation (1.135) permet
de déduire det R = 41, ce qui correspond & une rotation. Si on définit

V =RUR", (1.137)
alors V' appartient a I’ensemble des tenseurs symétriques définis positifs et

VR=RUR'R=RU=F .

1.3.11 Fonction tensorielle isotrope d’un tenseur symétrique

Une fonction tensorielle isotrope, dont la variable T' est un tenseur symétrique
d’ordre 2, satisfait par définition 'identité

Qf (TQ" = f(QTQ) (1.138)

quel que soit le tenseur orthogonal Q. Alors 'application de I'espace vectoriel
des tenseurs symétriques dans lui-méme engendre un tenseur symétrique tel
que

L=gf(T). (1.139)

Nous présentons ci-apres sans démonstration le théoréme de représentation.

Théoreme de Rivlin-Ericksen
L’expression (1.139) peut s’écrire sous la forme

L = ¢o(Ii(T), L(T), I3(T)) I + 1 (11 (T), I(T), I3(T))T

+ 2 (I (T), I(T), I3(T)) T?, (1.140)

ot les p; (i= 0, 1, 2) sont des fonctions scalaires des invariants de T'.

Pour une fonction isotrope (1.140), les directions principales de T et de
f(T) coincident ; T et f(T) sont appelés tenseurs co-axiaux.
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1.3.12 Fonction scalaire d’un tenseur

Une fonction W(T') est appelée fonction a valeur scalaire du tenseur T'. Lorsque
T est symétrique et que la condition

W(T) =W(QTQ") (1.141)

est satisfaite, la fonction W(T') est appelée fonction tensorielle isotrope & valeur
scalaire du tenseur T'. Elle peut étre représentée par la relation

W(T) = ®(I,(T), I(T), I5(T)) . (1.142)

Cette fonction est aussi un invariant scalaire du tenseur T'. La représentation
précédente est équivalente a

W(T) = ¢(A1, A2, A3) (1.143)

ou les \; (i =1,2,3) sont les valeurs propres de T.

On peut montrer que pour une fonction isotrope W(T'), sa dérivée par
rapport a T s’exprime sous la forme

- = n; ¥n;, (1144)

avec n; (i = 1,2,3) les directions principales correspondant aux A;. Il s’ensuit
que
ow oW
or  or
Cette derniere relation indique que les deux tenseurs T et OW/OT sont co-
axiaux ou ont les mémes vecteurs propres ou directions principales.

(1.145)

1.4 Analyse tensorielle

Dans cette section, nous allons introduire des concepts liés a la dérivation et la
différentiation des tenseurs. On notera par exemple F' un scalaire, v; une compo-
sante vectorielle et L;; la composante d’un tenseur qui sont toutes des fonctions
de la position z; dans l'espace. La notation F'(x) signifie F(z1, 22, x3), tandis
que la notation v;(x,,) couvre les trois fonctions v (x1, 2, x3), va(x1, T2, x3) €t
1)3(.’)31, o, 1‘3).

Donc lorsque z; est compris entre parenthéses pour indiquer une fonction,
les regles de sommation ne s’appliquent pas & la variable indépendante : F(x;)
n’est pas un vecteur mais c’est un champ scalaire, tandis que v;(z,,) est un
champ vectoriel.
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1.4.1 Dérivée d’une fonction vectorielle ou tensorielle d’un scalaire

Soit L = L(t) une fonction tensorielle d’un scalaire ¢ (par exemple le temps).
La dérivée de L par rapport a t est le tenseur d’ordre 2 donné par

_dL L+ A - L(t)

L="ar = "™ At (1.146)
En fonction de ses composantes, on a
. dL;(t .
L= djt( ) ei®ej :Lijei®ej' (1147)

La dérivée premiere d’une fonction vectorielle v(t) par rapport & ¢ est définie
de maniere semblable ¥ = dv/dt. En terme de composantes, on a

dv

et la dérivée seconde s’écrit
d2
d—t;’ == i (t)e; . (1.149)

On peut établir facilement les identités suivantes :

%(u:l:v) = %i% (1.150)
%(u@v)z%@v—ku@% (1.151)
%(LiT):%i% (1.152)
%(a(t)L) = d‘;‘lf) L+a(t)% (1.153)
%(LT) = %TJFL% (1.154)
%(La) = %a—kL% (1.155)

%(LT) _ (CZJ)T (1.156)
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Démontrons par exemple (1.155). Par la définition (1.146), on obtient

d . L(t+ Abta(t+ At) — L(t)a(t)
%(La) o Altn—r>10 At

= lim é (L(t + Ab)a(t + At) — L(t)a(t)

+ L(t)a(t + At) — L(t)a(t + At))

(L(t + At) — L(t))a(t + At)

Atlglo At
L(t t+ At) —a(t
+ i DO(alt+ A1) — a(t)
At—0 At
dL da
= a+L.
at * T w

1.4.2 Gradient d’un champ scalaire

A un champ scalaire F(x), on associe un champ vectoriel appelé le gradient
de F'. Ce gradient est noté VF' ou encore grad F'. Il est tel que son produit
scalaire avec dx donne la différence entre les valeurs de F' évaluées en x + dx
et . On obtient

dF = F(x +dx) — F(z) =VF -dx. (1.157)

Si on désigne par dzx la norme de dx et par e le vecteur unitaire dans la direction
de dx (e = dz/dx), alors I'équation (1.157) donne

dF
() =VF - e. (1.158)
da dans la direction e

Cette derniere relation montre que la composante de VF dans la direction e
donne la variation de F' dans cette direction (dérivée directionnelle). Puisqu’on

a
dF OF
<> =_—=VF-.e =(VF);
dx dans la direction ey (91171

et des relations analogues dans les directions 2 et 3, les composantes carté-
siennes de V F sont OF /dz;. 11 vient

F F F F
VF:i61+i62+i63:iei- (1.159)

_0e), 2(3:2) e, + 2 3('} e (1.160)

ou (e) indique une fonction quelconque.
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Il est facile de montrer que le gradient d’'un champ scalaire est un vecteur.
En effet, par la relation (1.18), on a

OF(z) 0 ., , _ 0 /
oz = 871';]0 (%) = aing(fﬂm(mj))
(9 (3'Z'k - 8xk 3 F(zc)

= o T G = Bar Bap

Cette équation est une transformation de la forme (1.22).

1.4.3 Gradient d’un champ vectoriel

Au champ vectoriel v(x), on associe un champ tensoriel, appelé le gradient de
v et noté Vwv. C’est un tenseur d’ordre 2 qui, appliqué a dx, donne la différence
de v en x +dx et . On a

dv =v(x + dx) —v(x) = (Vv)dex. (1.161)

Soit & nouveau dx = ||dz|| et e = dx/dx. On obtient

dv)
<d.13 dans la direction e

Le tenseur (Vv) d’ordre 2 (on laisse au lecteur le soin de démontrer qu’il s’agit
bien d’'un tenseur d’ordre 2) transforme un vecteur unitaire e en un vecteur
décrivant la variation de v dans cette direction. Puisque

dv ov
(d = = (Vo) ey,
€L dans la direction e; T1

alors dans un systeme d’axes cartésiens, on a

ov 0 ovy
(Vv)u_ell(vv)el_el'a?l_aixl(el'” _87331'

En toute généralité, un raisonnement analogue conduit a écrire

8%
(V'U)ij = a$j . (1.163)

Le tenseur Vv s’exprime comme (voir (1.49) et (1.51))

Vo-Veuv-Dieae,). (1.164)
837]'
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1.4.4 Gradient d’une fonction tensorielle & valeur scalaire

Pour une fonction tensorielle non linéaire W(T') & valeur scalaire réguliere d’un
tenseur T d’ordre 2, les deux premiers termes d’un développement en série de
Taylor autour de T sont

W(T + dT) = W(T') + dW(T) + o(dT), (1.165)

o o(dT) est le reste du développement qui tend vers zéro lorsque dT
— 0, selon la relation

o(dT)
A T 0. (1.166)
La différentielle totale s’exprime comme suit
OW(T) ow(T)\"
= M = . 11
aw(T) T dT = tr (( T dr (1.167)
En notation indicée,
OW(T) OW(T)
aw(T) = dT;; = dTs;; 1.168
W) = S o (1.168)

Le tenseur OW(T')/OT d’ordre 2 est appelé le gradient de W(T') en T'.

1.4.5 Gradient d’une fonction tensorielle & valeur tensorielle

Pour une fonction tensorielle non linéaire a valeur tensorielle, réguliere, S(T')
d’un tenseur T" d’ordre 2, les deux premiers termes d’un développement en série
de Taylor autour de T sont

S(T +dT) = S(T)+dS(T) + o(dT) . (1.169)
Lorsque dT' — 0, on a
_0s(T) |
dS(T) = T ar . (1.170)
En notation indicée,
ds,; = 95 g, (1.171)
ij — aTkl kl .

Le tenseur 9S(T')/9T d’ordre 4 est le gradient de S(T') en T'.

1.4.6 Divergence d’un vecteur et d’un tenseur

Soit v(x) un champ vectoriel. La divergence de v(x) est le résultat scalaire
obtenu par un processus de contraction. Ainsi
8v¢

dive = pr tr (Vo). (1.172)

Notons que lorsque la divergence d’un champ vectoriel v est nulle, c-a-d. dive =
0, le champ v est dit champ solénoidal.
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On peut aussi exprimer la divergence du champ v comme le produit scalaire
suivant

. (%i
n 8.1‘1' '

Pour un tenseur, la divergence de L est le champ vectoriel noté div L, par
contraction

V-wv

(1.173)

ou encore
divL = OLi (e;@ex)e; = OLi (er - €j)e;
9z Ozj (1.175)
= %51«6‘ = OLi; e
al'j (A 8;vj v

1.4.7 Rotationnel d’un champ vectoriel

Soit v(x) un champ vectoriel. Le rotationnel de v est le champ vectoriel défini
par ’équation

rotv=V xwv. (1.176)
Sous forme indicée, on a
(rot v); = &y, v (1.177)
i — Cijk aSUj . .
Par les propriétés du symbole de permutation, on peut vérifier facilement que
61)3 81}2
to), = — — =
(I‘O ’0)1 8£E2 8$3
81)1 67]3
tv)y = — — =2
(rot v) Ors Oxy
802 51}1
t = — - —. 1.178
(rot v)3 92, O (1.178)

Si le rotationnel du champ v s’annule, c-a-d. V x v = 0, ce champ est irrota-
tionnel.

EXEMPLE 1.10
Démontrer que

rot (Vo) =V x V& =V x (V&) =0 . (1.179)

Il vient successivement

9 0% 02 0*® 020
D) =eijp—(5—) = €ijk = Cikj T
(VX V@) =ik g (5ar) = Sk gy par = %9 g8y — 5% 308

0P
Donc, QEijkm =
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EXEMPLE 1.11
Démontrer que

div(V x a) =divrota =0 . (1.180)
En tenant compte de (1.177), on obtient

. 0 da 0%a
div(V x a) = oz (%kax’;) = Eijkiaxial;j

En suivant la méme démarche que dans I’exemple précédent, on montre que
(1.180) est satisfaite.

EXEMPLE 1.12
Démontrer que

div(®a) = ® diva+a- (VD) . (1.181)
En tenant compte de (1.172), on a

d(Pa;) 0D da;
Bxi - ail'iaz + (I)a.’L'Z

div(®a) = =(V®)-a+®diva .

1.4.8 Opérateur laplacien

Laplacien d’un champ scalaire

On rencontre aussi des dérivées secondes dans des expressions physiques. Par
exemple, la divergence d’un gradient d’une fonction scalaire est

O*F

9.0, ou encore V- (VF) ou div(grad F) (1.182)

qui est aussi le laplacien de F, noté symboliquement V2F ou encore AF,

9°F  *F  9*F O°F

= . 1.183
8$i8.’£1‘ 8$12 8(E22 8(,632 ( )

Une fonction F' qui satisfait ’équation
V2F =0 (1.184)

est dite harmonique. L’équation (1.184) est connue comme celle de Laplace.
Si
ViF =f, (1.185)

ou f est une fonction scalaire, I’équation est celle de Poisson.
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Laplacien d’un champ vectoriel

On peut aussi traiter une fonction vectorielle de la méme maniere. La divergence
du gradient d’un vecteur s’écrit

82Uj

ou encore V - (Vv) ou div(Vv). (1.186)

Le résultat de ces opérations est un vecteur. On note cette opération de dérivée
V2, c’est-a-dire

V- (Vv)=V. (1.187)

Le symbole V2v ne pose pas de probleme en coordonnées rectangulaires puisque
V2v possede trois composantes telles que

(VQ’U) = v2’0i .

i
La difficulté survient dans des systemes de coordonnées curvilignes oti on a

(V2v), # V3 (vy).

EXEMPLE 1.13

Démontrer que
div(V®) = V2. (1.188)

En effet, on a successivement

. 0 (0P %P .
div(V®) = oz, (8:81) = Doz AVAKi (1.189)

EXEMPLE 1.14
Démontrer que

V x (V x a) = V(diva) — Va . (1.190)
Sous forme indicée, on a
0 8ak 82%
(V X (V X a))l — Elmz% (81]kaxj> — Elmzez]km .
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A Taide de (1.30) et des propriétés du symbole de permtation, il vient

82ak 82ak
Elmifijkm = (5lj5mlc - 5lk5mj>m
62% aQGk
= 01;0m O1kOm
DOk gm0y " OO
82am 82(11

00X, 01y - O0x;0x;
- i aam _ 82al
9z \ Oz, O0xj0x;

% (diva) — V?a; = (V(diva) — V?a), ,
l

et donc
(V% (V xa)), = (V(diva) - V?a), ,

expression valable pour les trois composantes du vecteur a.

EXEMPLE 1.15
Démontrer que

div (V?a) = V?(diva) . (1.191)
Sous forme indicée, on a
0%a;
V2a). = L
( )l 8xj8mj

Donc

0 &%a; 52 oa;
o 2 _ Y 7 _ ens _ 2 0
(@ (va),) = 5 (g ) = o (5 ) = ¥ (v

1.4.9 Coordonnées curvilignes

Soient z; les coordonnées cartésiennes d’un point P. Dans un systeme de coor-
données curvilignes 6; (par exemple, cylindriques ou sphériques), la position du
point P est donnée par les trois nombres 6; qui représentent les courbes de coor-
données passant par P (fig. 1.4), c’est-a-dire par les courbes sur lesquelles deux
des trois coordonnées 6; sont constantes. Les coordonnées curvilignes peuvent
étre considérées comme des fonctions des coordonnées cartésiennes

91' = Gi(mj), (1.192)

et si la condition que le jacobien J défini par J = det(96;/0z;) ne s’annule pas
est satisfaite, alors la transformation (1.192) est inversible.
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T

€

e Iy

€3

T3

Fig. 1.4 Systeme de coordonnées curvilignes.

Le lieu des points pour lesquels la coordonnée curviligne #; est une constante
est une surface d’équation

0;(z;) = cste. (1.193)

Considérons successivement les systemes de coordonnées cylindriques et sphé-
riques. En se référant a la figure 1.5, ou a la figure 1.6, on passe respectivement
des coordonnées cylindriques ou sphériques aux coordonnées cartésiennes par
les relations

0p =r=/2?+ 23
0y = 0 = tan~* 2 (1.194)
T

0 =r =2+ 23+ 23
7 2
By — 6 — tan~ ' YILE T2 (1.195)
xs3
63 = ¢ = tan " 2
)

L’angle ¢ est la longitude et 8 la colatitude.
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Fig. 1.5 Systeme de coordonnées cylindriques.
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Fig. 1.6 Systéme de coordonnées sphériques.
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Les relations inverses s’obtiennent aisément :

Coordonnées cylindriques :

x1 = rcosb
To = rsinf
r3 = Z2.

Coordonnées sphériques :

x1 =rsinfcosy
To = Tsinfsin @
T3 =1rcost.
Pour le calcul d’intégrales de volume, I’élément dV s’écrit dans les divers
systemes de coordonnées :
o cartésiennes dV = dr dydz,
o cylindriques dV = rdr df dz,
o sphériques dV = r2sin 0 dr df de.
Le vecteur position d’un point P en coordonnées cartésiennes s’écrit

OP =r = ze;. (1.196)

En coordonnées curvilignes, les vecteurs de base au point P sont les trois vec-
teurs de longueur unitaire tangents aux lignes de coordonnées passant par P.
On les définit par les relations

Q

r

g, = 2. (1.197)

D
]

H 90,

Les vecteurs g, sont représentés aux figures 1.4 & 1.6 dans leur contexte respec-
tif.
En coordonnées cylindriques, on écrit

r = rcosfe; + rsinfes + zes

or ) or or
Ezcosﬂel + sin feq ”(‘97‘ =1 gT:E
ar . or 1 0r (1.198)
%:—Tsmeel + r cos e, H(’?G = goz;%
ar
9 = €3 g.=es3.
Par le méme raisonnement, on obtient en coordonnées sphériques
_or _1or 1 or

_ i = —_— 1.1
Ir or 9o r 00 9y rsinf dy (1.199)
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On remarque que les vecteurs de base en coordonnées cylindriques et sphériques
sont orthogonaux. Les coordonnées curvilignes correspondantes sont orthogo-
nales.

Les cosinus directeurs des vecteurs de base g, par rapport a la base e;

s’obtiennent suivant (1.6)
Cij =9; " €;j. (1.200)

En coordonnées cylindriques, par (1.198) et (1.200), il vient

cosf sinf 0
[C]=| —sinf cosf 0 |. (1.201)
0 0 1

Cette derniere matrice est orthogonale.

1.4.10 Scalaires, vecteurs et tenseurs en coordonnées
curvilignes orthogonales

La valeur d’'un champ scalaire est donné soit en coordonnées cartésiennes soit
curvilignes par la transformation

F(P) = f(x:) = f(zi(0;)) = f'(6;)- (1.202)

Soit v un vecteur en un point P de coordonnées x;, ;. Les composantes phy-
siques v} du vecteur v en coordonnées curvilignes au point P sont ses compo-
santes suivant les vecteurs de base g,, c’est-a-dire

v =ve; = v.g,;. (1.203)

On obtient
UZ{ =g, €;V; = Cij;V; . (1204)

Si un tenseur L appliqué a un vecteur u produit le vecteur v suivant v =
Lu, les composantes physiques de L en coordonnées curvilignes au point P
sont telles que

v; = Li;uf;. (1.205)
On vérifie aisément que
L;j = Cikclelcl . (1.206)

1.4.11 Gradient d’un champ scalaire et d’un vecteur en coordonnées
curvilignes orthogonales

Le gradient de la propriété F donnée par (1.159) est un vecteur h de compo-
santes 0f/0x; dans les coordonnées cartésiennes. En coordonnées curvilignes,
on aura pour les composantes physiques de ce vecteur

af 90,

I L= O —
h; = cijh; = cij 20, Dz, .

(1.207)
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En coordonnées cylindriques, on a avec l'aide des relations (1.194)

or T1 or T

= —cosh =2 _ging

oy r €08 0o r St (1.208)
ﬁiiﬁiisinG ﬁiﬂicosﬂ ’
or1 2 r drs 12

Par combinaison des équations (1.207) et (1.208), on obtient facilement

af 10f af
12 r_ -2 I
by = or o r 00 e 9z

(1.209)

Si on considere une fonction scalaire f définie dans les deux systémes de coor-
données, cartésiennes et cylindriques, puisque x; et #; sont liés par la relation
(1.192), on a

o 90, 9

0 o\ 9 9 [0 0
Oty \Ox; )  Ory0x;  Oxp \Oz; 005 )

La derniere relation donne

02 B 020; 0 00y 00, 02 (1.210)
Orm0x;  Orm0r; 90; Oz, Ox; 00,00; '
On peut alors calculer pour les dérivées premieres
0 0 sinf 0
— = — — — 1.211
T S (1.211)
0 0 cosf O
. —§nf—+ /- 1.21
0o Sma@r + r 00 (1.212)
0 0]
— = — 1.21
O0xs 0z’ (1.213)
et pour les dérivées secondes
0 ‘208—2— sin20 9?2 +sin20ﬁ
022 = P oz T T 900 T 2 o0
sin?6 9 sin?0 02
" E—’— T 502 (1.214)
372_.29872+sin29 & sin20 9
oxr3 S r ordd r2 00
cos? 9 cos?0 0?2
— o T T 5 (1.215)
2 2
0 0 (1.216)

52 " 9
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En combinant les relations (1.214)-(1.216), on obtient pour 'opérateur laplacien

2 2 2
V2f=18—f+ﬂ+ia—f+ﬁ. (1.217)
ror  Or2  r?2 902 022
Pour exprimer le gradient d 7un vecteur en coordonnées cylindriques et sphé-
riques, il nous faut définir les tenseurs métriques des ces systémes de coordon-
neées et faire appel a une analyse plus avancée que celle que nous présentons
dans ce livre. Le lecteur peut trouver un complément de lecture dans [2, 15, 59].
A titre d’exemple, pour le gradient d’un vecteur, on aura

L = Vv

v, 10v, vy Ov,
or r a0 r 0z
Ovg 1 0vg v, Ovg
o ro6 - 0z
v, 1 Ov, ov,
or r 00 9z

(1.218)

Les autres opérations, telles que la divergence d’un vecteur, les composantes
du rotationnel et les composantes du laplacien d’un vecteur, sont données in
extenso dans 'annexe A pour les coordonnées cylindriques.

L’annexe B rassemble toutes les expressions nécessaires pour le cas des
coordonnées sphériques.

1.4.12 Définition de la notion de flux

Considérons a la figure 1.7 un corps dans un espace tridimensionnel ainsi qu’une
surface d’aire ds sur ce corps. Le volume de matiere traversant ds durant 'in-
tervalle de temps dt est donné par

ving dt ds ou v-ndtds, (1.219)

ol v;n; dt correspond a la hauteur du cylindre de matiere ayant traversé la
surface pendant l'intervalle de temps dt. Alors, on a les définitions suivantes en
adoptant la notation dw pour la surface qui enveloppe le volume w :

o le flux d’un vecteur

/ v;n; ds ou / v-nds; (1.220)
Ow Ow

e le flux d’une quantité scalaire quelconque p au travers de la surface d’un
corps (quantité scalaire)

/ puin; ds ou / pv-nds ; (1.221)
ow Ow

o le flux d’énergie cinétique (quantité scalaire)

1 1
/ 3 PUivivT; ds ou / 5 p(v-v)(v-n)ds; (1.222)
dw dw
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o le flux d’une propriété @Q par

Quin;ds ou Q(v-n)ds. (1.223)
ow ow

Dans ce dernier cas, Q peut étre un scalaire, un vecteur ou un tenseur.

v

Zy

€9

e, Sl
€3

T3

Fig. 1.7 La notion de flux.

1.4.13 Formules intégrales de Gauss et Stokes

Théoréme de Gauss ou de la divergence

Le théoreme de base de ’analyse établit la relation entre 'intégrale et la dérivée
de lintégrand. Si pour U'intégrand on a f = dF'/dx, alors

[lbfdx:/ab(fl—idx:F(b)—F(a).

Le théoreme équivalent pour une intégrale de volume est appelé le théoreme
de Gauss. Ecrivons-le pour une fonction tensorielle arbitraire T)y...(z;)

OTjy,...

oz, dv = /aw n;Tjg... ds . (1.224)

w

Le théoreme de Gauss est le plus souvent utilisé sous la forme du théoréme
de la divergence. Ce théoreme transforme l'intégrale volumique de la divergence
d’une propriété d’un milieu continu en une intégrale de surface.
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Carl Friedrich Gauss (1777-1855) fut un mathématicien
doué au point tel qu’il s’est vu couronné comme le « prince
des mathématiques » a I'age de 24 ans par des savants
de toute 'Europe. Nommé professeur de mathématiques
a "Université de Gottingen, il apporta des contributions
majeures a la théorie des nombres, la géodésie, la géomé-
trie, les statistiques (méthode des moindres carrés) et la
physique. Il avait pris pour devise « Pauca sed matura ».
Il renonca a publier d’importants manuscrits parce qu’ils
ne satisfaisaient pas ce critere.

Fig. 1.8 Carl Friedrich Gauss.
Dans (1.224), Tjk... peut étre un scalaire, un vecteur ou un tenseur de rang
arbitraire et le symbole n représente le vecteur unitaire normal & ds (fig. 6.8).

T

=]

e; ol
€3

3

Fig. 1.9 Surface et volume élémentaire utilisés dans le théoreme de Gauss.

Prenons le cas out Tji... = F (fonction scalaire). Alors le théoreme devient
oF
dv :/(VF),dv =/ nFds . (1.225)
w Ox; w ! Ow

Si Tjy... est la composante d'une fonction vectorielle v;, on a

/6% dv:/divvdv:/ n;v; ds
waxi w Ow
:/ n-vds.
ow

(1.226)
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L’intégrale de surface du membre de droite exprime le flux du vecteur v a travers
la surface Ow. Pour une quantité tensorielle telle que T' = L, le théoreme s’écrit

L
/3 J dv:/ Lj; nids ou /div Ldv:/ Lnds. (1.227)
w Ox; Ow w Ow

Pour une propriété @ quelconque, le théoreme s’écrit

[ o= [ Qumdson [avwQiao= [ Queomds. (1229
w Ow w

aii ow

Théoréme de Stokes

Dans ce cas, on relie 'intégrale de surface a une intégrale de contour le long de
la courbe C' qui borde la surface. Plus précisément, le théoreme s’écrit

/ rotv~nds:?{v'dl, (1.229)
ow C

ol le vecteur dl est tangent a C.

George Gabriel Stokes (1819-1903) est un mathématicien
irlandais (né & Skreen dans le comté de Sligo). Nommé
professeur de mathématiques a I’Université de Cambridge
al’age de 30 ans, il a beaucoup ceuvré en hydrodynamique,
en élasticité et en optique. On lui doit la loi de « Stokes »
pour le mouvement des particules dans un fluide visqueux.
Il a écrit, de maniere tres précise, les équations de la dy-
namique des fluides visqueux connues sous le nom d’équa-
tions de Navier-Stokes.

Fig. 1.10 George Gabriel Stokes.

1.5 Exercices

Démontrer que le symbole de Kronecker est un tenseur d’ordre 2.
Démontrer que 8;;0;10;5 = 3.
Démontrer que ;j,u;u; = 0 et que d;;¢;55 = 0.
Démontrer que t X (u X v) = (t-v)u — (t-u)v .
Calculer 'expression équivalente &
(axb)x(cxd)

ou les vecteurs a, b, ¢, d sont non nuls. Ecrire le résultat en notation vectorielle.
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Soient a et b deux vecteurs quelconques. Dans la suite, nous utiliserons la
notation suivante :

0b;
(a- V)bl = a5t
Démontrer les identités suivantes :
V-(axb)=(Vxa)-b—a-(V xb) (1.230)
V(a-b) =(a-V)b+(b-V)a
+ax(Vxb)+bx(Vxa) (1.231)
rot(a x b) = (b-V)a—(a-V)b+adivb—bdiva. (1.232)
divia®b) = (Va)b+ adivb (1.233)

Soient a une fonction vectorielle quelconque et ® une fonction scalaire,
continiment différentiable.

Démontrer les identités suivantes :

rot(®a) = drota—a x VO ( )
V(®a) = ®Va+ax VP ( )
VZ(V®) = V (V?®) (1.236)
V x (V?a) = V*(V xa) . ( )
Aa =V -Va=V(V-a)—rotrota. ( )

Soient a une fonction vectorielle quelconque, ® une fonction scalaire, conti-
niment différentiable et x le vecteur position. Démontrer

V(e -z) =a+ (Va) = (1.239)
V’(a-xz) = 2diva+z-(Va) (1.240)
V2 (®x) = 2VP + xV3d . (1.241)

Vérifier que tr (L) est un invariant.

Démontrer (1.69) et (1.71).

Etablir les relations (1.121)

Soit [A] une matrice & coefficients constants. Vérifier la relation suivante :
V(Ajrzjzk) = (Aij + Aji)zje; . (1.242)

Montrer que la forme quadratique D;; z;x; reste inchangée si on remplace
D;; par sa partie symétrique.

Montrer que pour un tenseur orthogonal @, les conditions suivantes sont
satisfaites :

R'Q=QQ"=1, ou Q"=Q"" (1.243)
det(Q"Q) = (detQ)* . (1.244)
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Trouver les invariants d’un tenseur antisymétrique et ses valeurs propres.

En utilisant le théoréme de Cayley-Hamilton (1.123), démontrer que le
théoréme de représentation (1.140) peut s’écrire sous la forme

L =ayg(I(T), L(T), I5(T)I + a1 (I,(T), (T), I;(T)) T

. (1.245)
+ s (I1(T), I(T), Is(T)) T~ .
ou les «; (i =1,2,3) sont des fonctions scalaires des invariants de T.

En utilisant 1’équation caractéristique d’un tenseur (1.120), la relation
(1.109) et la propriété (1.59), démontrer (1.123).

Pour une matrice [A] d’ordre 3, démontrer les relations suivantes :

1
detlA] = & €ijkimnai@jmarn (1.246)
1
A_l i o197 A1t imnWkmWin - 1.247
(A7), 2 det[A] CiMEImnAkm (1.247)

Démontrer que pour les fonctions scalaires f et g, on a

V2(f9) = Vg + gV f+2Vf-Vy. (1.248)






CHAPITRE 2

Cinématique des milieux

continus

2.1 Introduction

La cinématique est I’étude du mouvement d’un corps qu’il soit solide ou fluide.
Ce mouvement est décrit par les positions consécutives de chaque point du
corps en fonction du temps. Nous ne nous intéresserons pas aux causes de ce
mouvement. Cependant, nous imposerons la condition que le corps reste un
milieu continu au sens ou sa masse volumique et tous les autres parametres
décrivant le mouvement sont des fonctions continues des variables spatiales et
du temps. Dans ce chapitre, on définira les divers parametres qui caractérisent
le mouvement du corps et on présentera de maniere détaillée des mesures de
sa déformation. Leurs propriétés et leur signification seront mises en valeur.
De plus, I'invariance de ces divers parametres par rapport a un référentiel, en
relation avec un observateur, sera discutée. La description sera générale et ne
sera pas limitée a une forme particuliere des mouvements ou de la constitution
du corps.

La cinématique des milieux continus est couverte dans les monographies
suivantes : [14, 22, 23, 24, 32, 35, 39, 41, 44, 45, 47, 61, 69].

2.2 Corps, configurations et mouvement

Un corps C est un ensemble de particules ou de points matériels. Ces particules
correspondent dans la réalité & un volume matériel infinitésimal. A tout instant
t, chaque particule occupe un point d’un espace euclidien tridimensionnel. Le
volume V' occupé par toutes les particules de C au temps t est appelé la confi-
guration R; ou R. En particulier, la configuration de C au temps ¢t = 0 est
définie comme la configuration initiale et sera notée R (fig. 2.1). De plus,
la frontiere du corps est indiquée par IR, ou OR.
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X5,
2, Ty R,
' R
u+du
Vdx
d:
” e
IR
ey X
T
(0]
€1 X17 Z
€3

Xg, a3

Fig. 2.1 Configurations initiale en t = 0 et actuelle au temps présent ¢ de C.

Un mouvement de C est une séquence continue de configurations de C vue
par un observateur. La notion de mouvement est évidemment liée a celle de
référentiel. En mécanique rationnelle [1, 27], un référentiel est un ensemble de
N points (N > 4), non coplanaires, immobiles les uns par rapport aux autres,
et par rapport auxquels on étudie le mouvement. Le choix du référentiel étant
arbitraire, en mécanique classique, on utilise souvent un référentiel d’inertie ou
galiléen. Il ne faut pas confondre les notions de référentiel et de repere : pour
un référentiel donné, il existe une infinité de reperes. Comme en mécanique
classique, nous définirons le concept d’observateur par

un observateur = un chronomeétre + un repére .

Dans le repere cartésien orthogonal fixe (de observateur), ayant pour ori-
gine 0, la position P® d’une particule de C & t = 0 est représentée par le vecteur
position initiale X et sa position p au temps présent t > 0 par le vecteur
position actuelle x. Donc, le mouvement de C est décrit par une fonction
vectorielle x définie a tout instant ¢ et qui dépend de X :

xr=x(X,t). (2.1)

La fonction vectorielle x est appelée mouvement ou déformation du
corps. Par ailleurs, si la forme originelle de référence (¢t = 0) coincide avec la
forme actuelle, la fonction x doit satisfaire la condition

X = x(X,0). (2.2)

Le mouvement x est une bijection entre les configurations initiale R et
actuelle R, assurant une correspondance biunivoque entre les positions initiales
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et actuelles des particules de C. L’existence de la fonction x : Rg — R et de
son inverse x ' : R — Ry

X = x"'(a,1) (2.3)

avec

X =x"1(X,0) (2.4)

garantit I'intégralité et 1'unité du corps. La continuité de la fonction du mou-
vement et son inverse interdisent respectivement toute séparation (fissuration)
et fusion locale (soudure, superposition) de la matiere. La continuité implique
qu'un domaine connexe le reste durant le mouvement, que deux points infini-
ment voisins dans la configuration initiale restent comme tels dans les confi-
gurations déformées (t > 0). On supposera que les fonctions x et x~! sont
deux fois continiment différentiables par rapport aux variables d’espace et de
temps. Ces hypotheéses permettront par la suite de préserver la régularité du
corps, de définir et calculer les vitesses et accélérations, ainsi que les équations
d’équilibre et de compatibilité, sans encombre.

Ceci signifie que X est la position initiale d’une particule située maintenant
en x. Naturellement les équations (2.3) et (2.4) sont obtenues & partir de (2.1)
en calculant X en fonction de . Par définition, ceci implique que

Par définition en se référant a la figure 2.1, le vecteur déplacement u est
la différence vectorielle

u=x—-X=x(X,t) - X =x— x (,1), (2.5)

ou (2.1) et (2.3) sont utilisées dans les deuxiéme et troisieme égalités.

Joseph-Louis de Lagrange (1736-1813) est un mathémati-
cien francais (né & Turin). Aprés avoir enseigné a I’école
d’artillerie de Turin, il succede a Euler a ’académie de
Berlin comme directeur de la classe mathématique. Il fut
plus tard enseignant & I’Ecole Normale et a ’Ecole Po-
lytechnique de Paris. Son livre de Mécanique Analytique
publié en 1788 constitue une présentation mathématique
de la mécanique, dont la parution fut approuvée par un
comité qui comprenait Laplace et Legendre.

Fig. 2.2 Joseph-Louis de Lagrange.
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2.3 Descriptions matérielle et spatiale

La description matérielle, appelée aussi description lagrangienne, de
la mécanique des milieux continus signifie que I'on étudie le phénomene phy-
sique ou mécanique concerné en regardant ce qui se passe pour une particule
P du corps. Par contre, la description spatiale ou encore description eu-
lérienne, consiste a observer les événements se produisant en un point fize
de l’espace. Donc lorsque les événements en tout point fixe de I’espace sont
enregistrés, on obtient la description spatiale. La figure 2.3 montre les deux
représentations dans le cas d’un fluide s’écoulant dans une conduite de section
variable.
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\ b I .-
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Fig. 2.3 Schéma de la descrition matérielle et spatiale dans le cas d’un fluide repré-
senté par les fleches.

D’un point de vue pratique, les problemes de mécanique des solides sont
souvent plus faciles a formuler et a résoudre en description matérielle, et ceux
de mécanique des fluides le sont en description spatiale.

Afin de définir exactement les descriptions matérielle et spatiale, nous in-
troduisons d’abord la notion de configuration de référence. Par définition,
il s’agit d’une configuration particuliere R, utilisée pour identifier chaque par-
ticule de C. Par la suite, la configuration Ry de C a ¢ = 0 sera choisie comme
la configuration de référence. Ainsi, nous avons les définitions suivantes.

Description matérielle :
c’est celle ou les composantes du vecteur position initiale X sont les
variables indépendantes spatiales.

Description spatiale :
c’est celle ou les composantes du vecteur position actuelle & sont les
variables indépendantes spatiales.

Quand nous calculons des dérivées partielles de diverses quantités (fonc-
tions) relevant du modele de la mécanique des milieux continus, nous pouvons
utiliser les coordonnées matérielles ou les coordonnées spatiales comme va-
riables indépendantes, c’est-a-dire X ou @x. Puisque X et « sont liés, nous
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avons aussi besoin de relier les dérivées de fonctions relativement a ces va-
riables. Ceci est réalisé par I'application de la reégle des dérivées d’une fonction
composée.

Fig. 2.4 Leonhard Euler (15/04/1707-18/09/1783) est un célébre mathématicien
suisse né a Bale. Il succéde a Daniel Bernoulli & ’Académie des Sciences de Saint-
Pétersbourg. Il fut plus tard enseignant a I’Académie des Sciences de Berlin. Outre
qu’il fut un des meilleurs mathématiciens de tous les temps, Euler comme mécanicien
a congu les « équations d’Euler » qui décrivent la dynamique des fluides non visqueux.
Il a eu ’honneur de figurer pendant de longues années sur les billets de dix francs
suisses avec son projet de turbine hydraulique. Euler a été l'auteur prolifique de
nombreux livres et de pres de 900 mémoires (on dirait aujourd’hui articles). Avec les
fondements du calcul des variations, il a ouvert la porte aux méthodes modernes du
calcul scientifique. Dans ses Lettres a une princesse d’Allemagne [21], il expose en
francais et sans équations, la physique de son temps. De nombreuses considérations
religieuses y sont également présentes, car Euler était un croyant fervent.
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Pour faciliter la dérivation, nous introduisons la convention suivante :

o les fonctions indiquées en lettres minuscules font référence aux fonctions de
variables spatiales, par exemple, f(x,t);

o les fonctions indiquées en lettres majuscules font référence aux fonctions de
variables matérielles, par exemple, F(X ).

Par conséquent, nous pouvons écrire

flx,t) — f(x(X,t),t) = F(X,t)
F(X,t) — F(x Y(z,t),t) = f(z,t).

Dans (2.6) nous avons substitué « en fonction de X, alors que dans (2.7) nous
avons substitué X en fonction de . Nous notons que les fonctions f et F
sont des fonctions différentes. Elles représentent le méme phénomeéne physique.
Leurs valeurs aux points correspondants X et x sont par contre égales comme
lindiquent les équations (2.6) et (2.7).

Considérons I'exemple suivant : soit §(x,t) la température au temps t, &
la position x. Soit ©(X,t) la température au temps ¢ d’une particule qui était
initialement localisée en X . Nous avons, d’apres (2.6) et (2.7),

O(x,t) — 0(x(X,1),t) = O(X,1)
O(X,t) — O(x '(z,t),t) = 0(z,1).

Les équations (2.6) et (2.7) illustrent la transformation entre la description
spatiale (ou eulérienne) et la description matérielle (ou lagrangienne).

Ces termes sont définis plus précisément de la maniére suivante.

Description spatiale :
x, t sont les variables indépendantes.

Description matérielle :
X, t sont les variables indépendantes.

Un observateur peut mesurer la vitesse, la masse volumique, etc., en un
certain point de I’espace. Si ces mesures sont faites pour chaque point dans la
région qui nous intéresse, nous avons la description spatiale. Pour obtenir la
description matérielle, ’observateur effectuerait de telles mesures en voyageant
avec la particule, a sa vitesse propre.

Dans la plupart des cas, nous supposons que la configuration de référence
est la configuration occupée au temps t = 0 (c.-a-d. la configuration lagran-
gienne). Les coordonnées matérielles et spatiales sont généralement mesurées
par rapport aux mémes axes de coordonnées. Notons qu’aussi bien pour les
fluides que pour les solides, la configuration de référence peut étre arbitraire-
ment choisie.
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Considérons maintenant une particule initialement (¢ = 0) située en X et
qui, apres un certain temps t, se trouve a la position . Sur la figure 2.1, nous
voyons que

z=x(X,t)=X+U(X,t), (2.8)

ou U(X,t) est le déplacement en coordonnées matérielles. En coordonnées
spatiales le déplacement est donné par

u(w,t) =U(x (), t) =U(X,1t). (2.9)

On notera que les deux fonctions vectorielles u et U ont la méme valeur, puis-
qu’elles représentent la méme réalité physique. Cette derniere équation, en te-
nant compte de (2.3), nous permet d’écrire (2.8) sous la forme

x=x"(x,t)+u(x,t). (2.10)

Cette derniere équation se lit : la position initiale d’une particule située a
I'instant présent en x plus le déplacement de cette particule évalué en x est
égale a sa position actuelle.

EXEMPLE 2.1
La transformation d’un corps est décrite par

1 = X1+ aXs
X9 = X2 +(1X1 (211)
z3 = X3,

ou a est une constante.

1) Exprimer le mouvement et les déplacements du corps en coordonnées
matérielles et spatiales.

2) Pour un corps cubique défini par
Q={XeF|0<X;<1,0<X,<1,0<X3<1}, (2.12)

esquisser la déformée de  apres la transformation (2.11) pour a = 1/3.

3) Quelle est la forme apres déformation de la surface définie par

Q={XeE|X{+X;<1/(1-a®),X5=0}? (2.13)
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Fig. 2.5 Cube solide unitaire : configuration initiale.

1) Le mouvement en description spatiale s’obtient en inversant les relations
(2.11)
X, = (21 — azs) /(1 — a?)
Xy = (20 —az1)/(1 — a?) (2.14)
X3 = I3 .
En utilisant (2.8), les composantes du vecteur déplacement en coordonnées
matérielles sont
U =21 —X1=X1+aXs — X1 =aXs
U2 = (EQ—XQ :X2+GX1—X2:(ZX1 (215)
U3 = I3 — Xg =0.
En utilisant (2.10), les composantes du vecteur déplacement en coordonnées
spatiales sont
up = 21 — X1 = a(zz —azy)/(1 — a?)
uy = 13 — Xo = a(w; — axz)/(1 — a?) (2.16)
us = Iz — X3 =0 .
On notera que u(x,t) = U (x (=, 1),1).
2) En donnant des valeurs aux variables X; dans ’équation (2.15), on peut

construire la déformée du corps. A titre d’exemple, considérons les cas sui-
vants :
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Pour aréte X1 = X1, Xo =X3=0,onaU; =U3 =0,U; =aX;.
Pour 'aréte X1 =0, Xo = X5, X3 =0, 0n a U; = aXs, Uy =U;z =0.
Pour l'aréte X; = Xy =0, X3 = X3, il résulte Uy = Uy = Uz = 0.

X27 Ty

Xy, oy

Fig. 2.6 Cube solide unitaire : configuration déformée.

3) La surface donnée est un cylindre décrit par la relation
X2+ X2<1/(1-d?) .
En insérant (2.14) dans cette derniére expression, on obtient
Tl — axs 2 To — ATy ? 2
(1_) * <1_> <1/1=a%,
qu’on peut aussi écrire comme
23(1+a®) + 23(1 + a?) — dar20 < (1 —a?)

qui est une surface elliptique.
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2.4 Vitesse, dérivée matérielle et accélération

2.4.1 Vitesse

La wvitesse d’une particule matérielle au temps ¢ est la dérivée de la fonction du
mouvement par rapport au temps. Par définition, on a en description matérielle

V(X,t) = w (2.17)
Vi(X,t) = W. (2.18)

Le vecteur V(X t) exprime la vitesse a I'instant ¢ de la particule qui, a I'instant
initial, se trouvait en X. Notons que (2.17) est obtenue en utilisant (2.1),
compte tenu que X est une des variables indépendantes. Par (2.8) nous avons
aussi

U (X, t)

VX, 1) =

. (2.19)

La description spatiale de la vitesse, notée v selon la convention, est obtenue
par
v(z,t) =V(x '(z,t),t) = V(X,1). (2.20)

Le vecteur v(x,t) exprime la vitesse & l'instant ¢ de la particule qui, & cet
instant, passe par la position .

2.4.2 Dérivée matérielle

Introduisons la notion de dérivée matérielle pour un champ spatial. Soit ¢ un
champ scalaire de C. Lors d’'un mouvement x de C, la dérivée matérielle de ¢,
notée ¢ ou D/ Dt, est le taux de changement de ¢ avec le temps (la dérivée par
rapport au temps) en une particule fize de C. Pour établir la dérivée matérielle
du champ ¢(x,t), nous utilisons les opérations sur les fonctions composées. En
description matérielle, ¢’est-a-dire go(x(X, t), t) = ®(X,t) (pour rappel, cf. éq.
(2.6) et (2.7)), nous avons simplement

D(p_

. 0%(X 1)
Dt 7

7 (2.21)

ot ’X_xl(m,t)
La derniere égalité montre que la dérivée matérielle s’applique pour la méme
particule. Certains auteurs I’appellent pour cette raison la dérivée particulaire.
Puisqu’on peut écrire ®(X,t) = ®(x " (w,1),t) = ¢(x, t), il vient

00(X,t) _ Op Ox1 | Op Ox> | Op Oxs  Op

= 2.22
ot Oxy Ot Oxy Ot Oxs Ot ot ( )

z=x(X,t)

Utilisant la définition de la vitesse (2.17), la relation précédente prend la forme
suivante :

00(X,t) _ 9y v
ot M lpmxy Oz

(2.23)

z=x(X,t)
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Puisque le but est d’exprimer le membre de droite de (2.23) en termes des
coordonnées spatiales, nous devons faire la substitution X = x~!(z,t) dans la
derniére équation qui donne

0P(X,t 0 0
92(X. 1) L (2.24)
ot X=x"1(z,t) ot 81’7
ou l'on a utilisé
V; X,t‘ = v;(z, ). 2.25
x|, =u@) (225)
Maintenant, on peut définir la dérivée suivante :
. Do(x,t 0P(X,t
oz, t) = [()t ) _ (8t )’ , (2.26)
X=x""1(=1)
ou, d’apres (2.24),
De(z,t) _ dp(x,t)
= t)- t 2.2
- S () Vol ), (227)
dp(x, 1) Ip(x, t)
= ; . 2.28
ot Y o, (2.28)

La dérivée Dp(x,t)/ Dt est appelée dérivée matérielle (ou dérivée substan-
tielle, ou dérivée particulaire) et représente le taux de changement de la fonction
© en conservant la méme particule dont la vitesse est v(x,t). Alternativement,
cette dérivée peut étre considérée comme donnant le changement de ¢ avec le
temps, vu par un observateur accompagnant la particule qui est actuellement
située en x.

A titre d’exemple, considérons que la fonction ¢ représente la température
d’une particule fluide dans une riviere ; nous la noterons 6. On désire connaitre
la variation DO/Dt et a cette fin, nous disposons d’un thermometre. Dans
une premiere phase de ’expérience, nous montons a bord d’un canot et nous
plongeons le thermometre dans I'eau. Larguant les amarres, nous mesurons la
variation de € pour la particule fluide que nous accompagnons, c.-a-d. nous
mesurons 00(X,t)/dt correspondant au dernier terme de I’équation (2.26).
D’ou le nom de dérivée particulaire pour cette quantité. Dans la seconde phase,
nous accrochons le thermometre au pilier d’'un pont. Le thermometre se situe
au point . On y mesure D8/Dt qui se compose de 90/0t, c.-a-d. la variation
temporelle de la température en ce point, ainsi que la variation due & ’advection
locale v - V§ induite par le champ de vitesse changeant (éq. (2.27)).
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Pour un champ vectoriel w, nous avons la formule similaire pour ses dérivées
matérielles :

Dw _ o= 5W(X¢>’ (2.29)
D¢ ot X=x""(,t)
gy =
Dt ot X =x—1(a,t)
X
W — dw(z,t) + (Vw(%t))aX(’t)‘ (2.30)
ot ot X=x""(,t)

awi(wat) awi(wvt) )
ot " or

w; =
Notons que la dérivée matérielle d’'un champ matériel ®(X,t) est la dérivée
partielle standard :

: D®(X,t)  0D(X,t
(X, 1) = E)t - (875)

. (2.31)

2.4.3 Accélération

L’accélération A d’une particule matérielle au temps ¢ est la dérivée de sa
vitesse V' par rapport au temps, c’est-a-dire la dérivée matérielle de V. En
description matérielle, on a

oV(X.t) _ ?x(X,t)

A(X,t) = 2.32
(X.1) = S S (2:32)
2y .
Ay, PN
ot
et en description spatiale, on a

a=7v= % + (Vo(z, t))v(z, t) (2.33)
. Ov(=z,t) | Ovi(=,t)

a;i =V = —o + oz, vi(x,t).

Le premier terme du membre de droite de (2.33) peut étre considéré comme
I'accélération due a la dépendance temporelle de la vitesse, en un endroit fixe
de l'espace. Le deuxieme terme peut étre interprété comme la contribution a
l’accélération de la particule matérielle due a I’hétérogénéité du champ de vi-
tesse. Ces termes sont parfois appelés parties locale et (convective) advective de
I’accélération, respectivement. L’advection correspond au transport du champ
de vitesse par lui-méme.

Notons que 1’équation (2.33) peut également s’écrire

o ov(x,t)

=5+ (v(z,t)- V)v(z,t)
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avec la définition

8’Ui

i — Uy )
Ga:j

expression qu'il ne faut pas confondre avec V - v = 0v; /0z;.

((v-V)ov)

2.5 Trajectoires, lignes de courant et lignes d’émission

L’équation (2.1) donne les positions successives @ d’une particule X avec le
temps ¢ comme parametre et décrit donc une courbe dans ’espace. Cette courbe
est appelée trajectoire de la particule X. Sous forme différentielle, elle est
définie par une des équations suivantes :

de = V(X,t)dt ou da; = Vi(X,t)dt (2.34)
der = v(z,t)dt ou dx; = vi(z,t)dt , (2.35)

avec la condition initiale z(0) = X.

Une ligne de courant & un instant ¢ donné est une courbe dans 1’espace
qui est en tout point tangente au vecteur vitesse. Elle est donc déterminée en
terme d’un parametre s par I’équation différentielle

dx(s) = v(x(s),t) ds (2.36)
dzi(s) = vi(x(s),1) ds. (2.37)

Un mouvement est dit stationnaire si la vitesse en tout point x est indé-
pendante du temps c’est-a-dire v = v(x,t) = v(x,0) = vo(x). Dans ce cas,
I’équation (2.36) est identique & (2.35). Ainsi, dans un mouvement stationnaire,
les lignes de courant coincident avec les trajectoires.

La ligne d’émission a travers un point donné de l’espace T & un instant
donné t est la courbe constituée de toutes les particules qui ont occupé T
précédemment, autrement dit de toutes les particules qui sont passées par la
position Z pour une valeur du temps comprise entre 0 et ¢. Cette courbe peut
étre paramétrée, en terme de t, comme suit :

z=x(x '(Z,t),7) 0

IN
~
IN
|

(2.38)

EXEMPLE 2.2
Considérons l’exemple suivant ou un écoulement plan est donné par le
champ de vitesse

1
14¢

v = Vo = X9 V3 = 0. (239)

Calculons d’abord les lignes de courant. L’équation (2.37) appliquée a (2.39)
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donne
T

T 1+t

Posant t = ¢, il vient en intégrant

dx ds dxo = xo ds drs =0. (2.40)

s

T1 = cpel+t Tog = cg €° T3 = C3. (2.41)

C’est I’équation de la ligne de courant qui passe par le point c.

Fig. 2.7 Lignes de courant : (a) pour ¢ = 0, (b) pour ¢ = 1. Les points sur les
lignes sont ceux correspondant & ¢ répartis de maniere uniforme sur le cercle de rayon
R =2.5.

La figure 2.7 montre ces lignes de courant qui sont des courbes du plan

x3 = c3 telles que

(14%)

Tz _ () . (2.42)
Co C1

Le calcul des trajectoires s’effectue par la combinaison de (2.35) et (2.39).
11 vient

[ A S VR o W
x: T o 1+¢ X, T 0 Xy T3

La premiere intégrale donne In 2 |§(11 =1In(1+ t’)|(t) et donc Inzy —In X; =

In(1 + ¢) puisque x; = X; au temps ¢ = 0. Finalement, on obtient
x1 = X1(1+¢) o= Xset x3 = X3. (2.44)
Les trajectoires sont des courbes du plan x3 = c3 données par
Ty = Xy el®1= X0/ X1 (2.45)

Elles sont dessinées a la figure 2.8.
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Fig. 2.8 Trajectoires; les points correspondant a X sont les mémes que ceux de la
figure 2.7.

Pour le calcul des lignes d’émission, on inverse tout d’abord les relations
des trajectoires

I

= t X‘: . 246
1+¢ 3T (2.46)

X2 = X9 e

X1

Comme la particule passe par T aux temps ¢ < f, on a

14t

X1 X2 = T2 €7t X3 = T3 . (247)
En substituant (2.47) dans (2.44) évaluée au temps ¢, on obtient les équa-
tions paramétriques de la ligne d’émission

_ 1+t

I :x11+t To = T ezft T3 = T3 . (248)

2.6 Equations de la cinématique du mouvement
du corps rigide

Lorsque nous ferons appel a ’objectivité dans le cadre des principes généraux
régissant les lois de comportement des milieux continus, nous examinerons es-
sentiellement la rotation dite de corps rigide (ou mouvement rigidifiant). Afin
de nous y préparer, nous allons étudier quelques relations de la cinématique du
corps rigide. Un mouvement de corps rigide est celui dans lequel les longueurs
et les angles sont conservés.
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2.6.1 Translation de corps rigide

Dans ce cas illustré a la figure 2.9, I’équation du mouvement est donnée par la
relation

x=x(X,t) =X +c(t) (2.49)

avec ¢(0) = 0.

Fig. 2.9 Translation de corps rigide.

Nous pouvons constater que le vecteur déplacement U est indépendant de
X, puisqu’on a

U=z—-X=c(t). (2.50)
Chaque point matériel se trouve déplacé de maniere identique avec la méme
grandeur et la méme direction au temps t.
2.6.2 Rotation de corps rigide autour d’un point fixe
Le mouvement illustré a la figure 2.10 est décrit par ’équation
x(X,t)=x=b+Q(t)(X —b), (2.51)

ol Q est un tenseur de rotation orthogonal tel que Q(0) = I et b est un vecteur
constant.
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Fig. 2.10 Rotation de corps rigide autour d’un point fixe.

On constate que lorsque le point matériel X = b coincide avec le point
spatial @ = b, la rotation a toujours lieu autour du point fixe x = b. Si le
centre de rotation est placé a ’origine, alors b = 0 et le mouvement de rotation
est donné par x = Q(t)X.

2.6.3 Mouvement général du corps rigide
Le mouvement illustré a la figure 2.11 s’écrit
2 = X(X,1) = QU)X +d(t), (2.52)

ol @ est un tenseur de rotation comme précédemment et d(t) = —Q(t)b+c(t).
Le vecteur ¢(t) est tel que ¢(0) = b. L’équation (2.52) indique que le mouvement
est composé d’une rotation Q(t) et de la translation ¢(t) d’un point matériel

X =b.
La vitesse est obtenue en dérivant par rapport au temps la relation (2.52)
V=Q(X-b)+¢. (2.53)
Or par (2.52), on a
X-b=Q"(x-c). (2.54)

En tenant compte de (2.20), on peut écrire

v = QQT(:U —c)+¢. (2.55)

Le tenseur @ étant orthogonal, on a QQ” = I (éq. (1.243)). En dérivant cette
derniere égalité par rapport au temps, on obtient

QQ"+QQ" =0 . (2.56)
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Fig. 2.11 Mouvement général de corps rigide.

. T
qui démontre que QQ est antisymétrique. Posons

QQ' -, (2.57)

ou {2 est le tenseur antisymétrique de rotation. Alors, en utilisant le vecteur
dual de ce tenseur (cf. éq. (1.104))

1
WE = _E’SkijQija (2.58)

on obtient successivement a 1’aide de (1.107)

Qij = —Eijkwk = Eikjwk (2.59)

Qx = Q5 2,e; = ipjwiTje; =W X T. (2.60)
A T’aide de (2.60), on peut réécrire 'équation (2.55) sous la forme
v=wx(x—c)+ec. (2.61)

Posons » = & — ¢, ol r est le vecteur position du point matériel général a la
translation ¢ pres. Finalement, on a

v=wXxXr+eé. (2.62)

Cette relation montre que la vitesse spatiale v d’un point matériel quelconque
d’un corps rigide est la somme de la vitesse de rotation angulaire du corps w
et d’une vitesse de translation ¢ d’un point matériel choisi arbitrairement.
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2.7 Gradient et tenseurs de déformation

2.7.1 Définition

Considérons une particule donnée dont la position dans la configuration Rg est
X", et son voisinage V. Sa position dans la configuration R est donnée par
(2.1). Si V est suffisamment petit, la relation (2.1) pour les autres particules
de V peut étre approchée en utilisant la formule de Taylor. Soient X et x les
positions initiale et actuelle d’une particule dans V; alors, si la fonction x est
suffisamment réguliére, nous avons

z; = Xi(Xk, t)
= xi(XP,t) + g;?j “ (X5 — X9) +0(||X — X)), (2.63)
oit le dernier terme signifie
(1% = x°IF) ~ X = X+ (2.64)

avec C une constante bornée. Le tenseur F' dont les composantes sont données
par
X
F; = 2.65
] GXJ ( )
est appelé tenseur du gradient de déformation. Dans la suite de ce cha-
pitre, on omettra les arguments des fonctions (vectorielles ou tensorielles) afin

d’alléger les notations.

Si la distance || X — X°|| entre X et X" est de loin inférieure & 'unité, la
relation (2.63) peut étre approchée par

x>l 4 Eyj (Xj - X;)) avec zd = Xi(X;g,t) . (2.66)

Dans ce cas, le tenseur F' est représenté (abusivement) par

53:1-
Fyj = X, - (2.67)
Soit J le jacobien de F' :
J—det( 25 Z et F (2.68)
N 0x;) ' '

L’hypothese de continuité du matériau et donc de dérivabilité continue pour la
déformation du milieu continu implique que

0<J<o0. (2.69)

Ceci assure Uexistence de 'inverse F~' de F avec det F~* = 1/J . En utilisant
(2.8), (2.10) et (2.67), nous pouvons calculer F et F~! en terme du déplacement
8Ul -1 8X1 - aui

Fij = di; F =0 — —b
1= % gy, W "z, % og,

(2.70)
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ou
F=gradx(X,t) =1+ VU F'=gradx '(z,t)=1— Vu. (2.71)

Une autre fagon d’écrire (2.66) est
de = FdX (2.72)

otl nous voyons que F' transforme un vecteur dX 1ié & X° en un vecteur da lié
a x (fig. 2.1).

D’apres le théoreme de décomposition polaire (1.132), il existe un tenseur
unique de rotation R et deux tenseurs uniques, symétriques, définis positifs U
et V, tels que

F=RU=VR. (2.73)

Habituellement, pour F' = RU, la décomposition polaire droite de F', et pour
F = VR, la décomposition polaire gauche de F', les tenseurs U et V sont
appelés tenseurs d’élongation droit et gauche. Lorsque R = I, (2.73) se réduit
a F=U =V et la déformation est appelée déformation pure.

En insérant (2.73) dans (2.72), on obtient
de = RU dX . (2.74)

Nous verrons plus loin que cette relation permet de conclure que le change-
ment de configuration au voisinage de la particule matérielle s’obtient par la
transformation du vecteur dX en un vecteur U dX par une déformation pure
U suivie d’une rotation locale R.

2.7.2 Tenseurs de déformation

Ecrivons (2.72) sous la forme indicielle
dx; = Fi; dX; . (2.75)
Alors, le carré de la norme ds du vecteur dx est donné par
ds® = ||dz||* = dvy, dvy = FrniFnjdX; dX; . (2.76)
Le tenseur C' défini par
Cc=F"F=(F'F)" Cij = FoniFm; (2.77)

est le tenseur symétrique de déformation de Cauchy-Green droit.

Ce tenseur symétrique est un tenseur métrique. Comme 'indique la relation
(2.76), il permet de calculer la longueur de dx en fonction des composantes
de dX. A Tlinverse, la longueur dS de dX peut étre calculée en termes des
composantes de dx :

[dX||* = dXp dXo, = [ F, ¢ day day . (2.78)
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Augustin Louis Cauchy (1789-1857) est un mathématicien
francais né a Paris. Il fut professeur a 1’Ecole Polytech-
nique de Paris. Son ceuvre abondante a traité de tous les
grands problemes mathématiques de son époque. On lui
doit notamment les fonctions holomorphes et des critéres
_de convergence pour les suites. Son nom figure sur la liste
L des 72 savants inscrits sur la tour Eiffel.

Fig. 2.12 Augustin Louis Cauchy.

Avec la notation F~71 = (F_I)T, le tenseur ¢~ !, défini par

¢ =FTF = (FTF Y il =FF] (2.79)

-1
17 mi T myg

est 'inverse du tenseur symétrique de déformation de Cauchy-Green
gauche. La différence entre ||dz||? et [|[dX||?> peut étre exprimée sous 'une des
deux formes suivantes :

|dz|? — [|[dX||* = Cy; dX; dX; — dX,m dX,, = 2F;; dX; dX;  (2.80)
ldz||* — |dX||* = dzp, dz,, — ci_jl dx; dx; = 2e;5 dxy dxj . (2.81)

Le tenseur E introduit dans (2.80), dont les composantes sont

! (Cij = di5) 5 (2.82)

Eij:2

est appelé le tenseur de déformation de Green-Lagrange.

George Green (1793-1841) est un mathématicien anglais
né a Sneiton, prés de Nottingham. Pratiquement autodi-
dacte, il obtint un titre de bachelor a I’dge de 44 ans. 1l
contribua & la théorie du potentiel en introduisant les fonc-
tions qui portent son nom. Il a traité d’optique, d’acous-
tique et d’hydrodynamique. Ses travaux peu connus de son
vivant furent remis en évidence en 1846 par Lord Kelvin.

Fig. 2.13 George Green.

Le tenseur e introduit dans (2.81), dont les composantes sont

Ly -, (2.83)

€ij = 5 ij

est le tenseur de déformation de Euler-Almansi .



76 Cinématique des milieux continus

En termes de déplacements matériel et spatial U et w, les tenseurs de
déformation ci-dessus s’écrivent

oU,, oU,,
Cij = FniFmy = (6mi + 6X,> (5m] + 6‘XJ>
oU,  OU; AU, OU,,

= 0i; + 0X; ' 90X, = 0X; 0X; (2.84)
it = E b = (3= 5 (50 - 52

S e G g s
Fo =3 (5 + o o 75 o
v % <§§; i ZZJ - ?91;? aai?) ~ (2.87)

Les tenseurs de déformation peuvent aussi s’écrire en fonction de U et V. Par
application directe de la décomposition polaire (2.73), ils ont pour expressions :

o le tenseur de déformation de Cauchy-Green droit
C=F'F=UR"RU =U? (2.88)
e le tenseur de déformation de Cauchy-Green gauche et son inverse

c=FF'=VRR'VT =Vv? (2.89)
clt=FTF1=v2, (2.90)

o le tenseur de déformation de Green-Lagrange

1 1
E=-(C-1==(U*-1); 2.91
o le tenseur de déformation d’Euler-Almansi
1 1
e= 5(I—c*) =5 (I-v™2). (2.92)

Une observation importante est que le tenseur de rotation R n’affecte aucun
des tenseurs de déformation considérés. En fait, c’est un besoin élémentaire
pour donner un sens a une mesure de déformation, autrement un corps rigide
serait pris comme déformable. De plus, on peut vérifier facilement que pour le
mouvement du corps rigide (2.51), F=Q et C =c=1 et donc E =e =0.

Sur la base du tenseur du gradient de déformation F' et des tenseurs de
déformation associés, on peut exprimer le changement de longueur d’un élé-
ment linéaire, d’un élément de surface et d’un élément de volume au cours du
mouvement du corps (fig. 2.14). Un élément lindaire d X dans la configuration
de référence est de norme ||[dX || = (dX - dX)'/2. A cause du mouvement du
corps (2.1), il devient I’élément da de norme ||dz| = (dx - dz)'/?. En tenant
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compte de (2.72), le rapport du carré des normes dans ces deux configurations
est donné par

|dz||> FdX-FdX dX -F'FdX dX-CdX
[[dX]? [dX][? [|dX[|> ldX[|?

(2.93)

X27 T

€

€ X, o
€3

X3, @3

Fig. 2.14 Eléments linéaire et de surface dans les configurations R et R+ du corps

C.

Comme dX = N||dX| o N est le vecteur unitaire dans la direction d X,
(2.93) s’écrit
[dx]? dX-CdX

_N. 2
Jax |z = faxyaxy - N N = (2:94)

Le parametre Ay est appelé la dilatation. Par la relation (2.88) entre C et U,
il peut s’exprimer par les égalités

e _

X = (N-U?N)"? = (UN-UN)"? = [UN| = Ay . (2.95)

On peut exprimer I’angle entre deux éléments linéaires par les procédures simi-
laires qui suivent. Supposons que deux éléments linéaires d X et dY se coupent
avec un angle © dans la configuration de référence. Alors,

dX -dY
cos®@=—— " (2.96)
[aX || |dY]]
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Apres le mouvement, ces deux éléments deviennent dx et dy et leur angle 0 est
donné par une expression semblable

dx - dy

_ar-dy (2.97)
[ de|| {|dy|]

cosf =

En utilisant successivement (2.72) et (2.88), cette derniére relation devient

FdX - -Fdy dX -FTFdy

cosf = =
|FdX||[FdY| [FdX]||FdY]|| (2.98)
__adaX-0dY
|FdX|||FdY| "

Puisque dX = N, ||dX| et dY = N,||dY || ot N, et N, sont les vecteurs uni-
taires suivant les éléments linéaires, et comme ||F dX| = (FdX - FdX)'/? =
(dX -CdX)'/2, (2.98) donne

N.-CN,
(N, -CN,)'/2(N,-CN,)/2"

cosf = (2.99)

La différence angulaire © — 6 est attribuée au cisaillement.

Afin d’exprimer la relation entre les éléments volumiques dans les deux
configurations, nous considérons trois éléments linéaires infinitésimaux et non
coplanaires dX, dY, dZ (fig. 2.14) dans la configuration de référence en sorte
que

dV =dX - (dY xdZ) > 0. (2.100)

Dans la nouvelle configuration, les trois éléments linéaires deviennent dx, dy,
dz et le volume correspondant est donné par

dv =dx - (dy x dz). (2.101)

Comme le volume s’exprime comme un déterminant, par (2.75), on a

dl‘l dyl le Flj de Flj dY} Flj de
dv = det dafg dyg dZQ = det F2j de ng d}/j ng de
dll?g dy3 ng ng de ng d}/] ng dZ]

(2.102)
On voit facilement par ce déterminant et (2.68) que le volume élémentaire est
transformé suivant la relation

dv = det FdV = JdV (2.103)

Pour évaluer les changements d’un élément de surface (fig. 2.14), nous com-
mencgons par ’expression de 1’élément de volume dans les configurations de
référence et actuelle

dV =dX -NdS dv=dz -nds (2.104)
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ol les éléments de surface sont indiqués par N dS et nds avec N et n les
vecteurs unitaires sur les éléments de surface correspondants. En tenant compte
de (2.72) et (2.104), (2.103) devient

dv=FdX nds=JdX -NdS (2.105)

ou
(F'nds—JNdS) dX =0. (2.106)

Puisque cette relation est valable pour un choix arbitraire de dX, on conclut
que
nds=JF T'NdS ou ds=JF 'NdS. (2.107)

Cette expression, appelée formule de Nanson, relie les éléments de surface
correspondants entre les configurations de référence et actuelle.

2.7.3 Interprétation géométrique

Donnons une interprétation géométrique de (2.73). A cette fin, nous devons
d’abord examiner quelques propriétés des valeurs propres de U et V. Soit
Ai (i = 1,2,3) les valeurs propres de U correspondant aux vecteurs propres
unitaires A;, alors

UA, = \A; (sans sommation sur 7). (2.108)

Comme U est symétrique défini positif, les \; sont réelles et A\; > 0; de plus,
par la décomposition spectrale (1.125), on a

U = /\1A1 ® A1 + )\2A2 ® A2 + )\3A3 ® A3 avec Ai . Aj = (Sij . (2.109)
En utilisant (2.88) et (2.108), on peut écrire
CA;, =)\ A, (sans sommation sur 7). (2.110)

Des lors, le tenseur C' a A\? comme valeurs propres et A; (i = 1,2,3) comme
vecteurs propres. Concernant les valeurs propres et les vecteurs propres de V,
l'utilisation de (2.73) et (2.108) conduit &

V(RA;) = RUA,; = \{(RA;) (sans sommation sur ). (2.111)

Ceci montre que les \; sont aussi les valeurs propres de V', correspondant aux
vecteurs propres unitaires
b;=RA,. (2.112)

Donc la déformation transforme, par une rotation, les vecteurs propres de U
en ceux de V. De maniére similaire & (2.109), on peut écrire

V = )\1b1 & b1 + )\ng (%9 b2 + )\3b3 X b3 avec bl . bj = 5ij . (2113)
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Pour obtenir les valeurs propres et vecteurs propres de ¢, nous utilisons
(2.89) et (2.110) pour obtenir

VZ(RA;) = ¢(RA;) = M?(RA,) (sans sommation sur %) (2.114)

ce qui démontre que les tenseurs V et ¢ ont \; et A\? comme valeurs propres,
respectivement, et les mémes vecteurs propres b;, (i = 1,2,3). Dans la littéra-
ture, les \; sont aussi appelées les €longations principales du tenseur U, A; les
directions d’élongation principales matérielles, et b; les directions d’élongation
principales spatiales. Dans le cas d’une déformation pure, la différence entre A;
et b; disparait.

Il est maintenant possible de donner une interprétation géométrique a
(2.73). Considérons un corps dont la configuration initiale ou de référence est
une sphere unitaire centrée a lorigine (fig. 2.15), et qui subit la transformation
homogene (cf. sect. 2.8) suivante :

r=FA avec |A] <1. (2.115)
,\1
e
o

Fig. 2.15 Interprétation géométrique de F = RU = V R.

En substituant (2.73) dans (2.115), on obtient
r=RUA=VRA avec A <1. (2.116)

A partir de cette expression et & la lumieére de la discussion précédente sur les
propriétés des valeurs propres de U et V', les décompositions polaires droite et
gauche peuvent s’interpréter géométriquement de la fagon suivante (fig. 2.15)
ol on montre seulement le plan (0,x1,x2) :
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Décomposition polaire droite :

o Premierement, en appliquant le tenseur d’élongation droit U a la
sphere unitaire, les rayons dirigés le long des directions d’élongation
principales matérielles A; sont allongés (ou raccourcis) jusqu’a leurs
longueurs finales \; tout en restant dirigés le long des directions
d’élongation principales matérielles A;. De ce fait, la sphere devient
un ellipsoide.

« Ensuite, en appliquant le tenseur de rotation R a l’ellipsoide, les
lignes dirigées le long des directions d’élongation principales maté-
rielles subissent une rotation et prennent leurs orientations finales

b;.
Décomposition polaire gauche :

e Premierement, en appliquant le tenseur de rotation R a la sphere
unitaire, les lignes dirigées le long des directions d’élongation princi-
pales matérielles A; subissent une rotation et prennent leurs orien-
tations finales b;. La spheére unitaire, quant & elle, tourne sur elle-
méme.

« Ensuite, en appliquant le tenseur d’élongation gauche V' a la sphere
unité (ayant subi la rotation), les rayons dirigés le long des direc-
tions d’élongation principales spatiales b; sont allongés (ou rac-
courcis) jusqu'a leurs longueurs finales A; et la sphere devient un
ellipsoide.

Comme nous avons pu le voir, les éléments de lignes mutuellement ortho-
gonaux dirigés le long des directions d’élongation matérielles principales A;
avant transformation restent mutuellement orthogonaux apres transformation
et sont dirigés le long des directions d’élongation principales spatiales b;. Donc
le tenseur de rotation R peut étre exprimé en fonction de A; et b; :

R=b®A;+by® Ay +b3R® As. (2.117)

Cette derniere relation s’établit facilement comme suit. Le tenseur de rotation
est exprimé comme R = RI et le tenseur identité comme I = A; ® A;. En
tenant compte de (2.112) et de la propriété (1.65), nous obtenons

3
R=RI=R(A;® A))=(RA)® A; =) b;® A;. (2.118)
i=1
Le tenseur du gradient de déformation F' peut s’exprimer en fonction des vec-

teurs A;, b; et des élongations principales A\; comme

3
F= inbi@@Ai. (2.119)

i=1

Nous allons présenter une méthode pour déterminer les divers tenseurs
cinématiques C, U, ¢, V et R. Nous pouvons effectuer le calcul concret de U,
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V et R pour un gradient de déformation F' donné. Les tenseurs U, V et R
sont déterminés a partir des relations

U=VF'F V=VFF' R=FU'=V'F. (2.120)
La principale difficulté réside dans le calcul de U ou de la racine carrée de
C = FTF. Soit [P] la matrice orthogonale diagonalisant la matrice [C] du
tenseur C, telle que
[A?] = [P][C][P)" ou A}; = PiyCron Pjn (2.121)
avec [A?] = diag (A\?, A2, \2) ou la notation diag désigne la matrice diagonale
a
diag (a,b,c) = b . (2.122)
Alors la matrice [U] du tenseur U est donnée par
[U] = [P)"[A][P] ou Uij = Pril\mn Prj (2.123)

avec [A] = diag (A1, A2, A3). Apres avoir trouvé U, nous pouvons calculer R par
(1.135) et V par (1.137) ou par V = FR”.

2.8 Déformations homogenes

La déformation ou transformation & d’un corps C est dite homogéne si le
gradient de déformation correspondant F' est indépendant de la particule X.
Géométriquement, une déformation homogene transforme une ligne droite de
Ro en une ligne droite de R (fig. 2.16). Une telle déformation x est une transfor-
mation affine ; elle a la forme générale suivante, avec la notation x? = Xi(XJQ, t),

zi =) (t) + Mi; (1) (X; — X7) . (2.124)
Sous forme vectorielle, on a
z=2a"t)+ M(t)(X - X°). (2.125)
avec 0 < det M < oo. La relation inverse s’écrit

X=X+M"'t)(z-=z"). (2.126)
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Xy, Ty
Ry
P
P R
p
X0
€
20
O,
€ Xy,
€3

X3, 23

Fig. 2.16 Transformation d’un vecteur dans une déformation homogene.

Nous donnons ci-dessous plusieurs exemples importants de déformations
homogenes obtenus & partir des relations (2.125) et (2.126).

Translation :

M est le tenseur unité I et sans perte de généralité, on pose X° = 0.
On obtient

z=z2"t)+X. (2.127)

Rotation autour de lorigine :
X% =2%=0, et M est le tenseur de rotation R avec la propriété

RTR=RR" =1 et det(R) =1. (2.128)
Dans ce cas, (2.124) et (2.126) deviennent
x = RX X =R'z. (2.129)

Le mouvement d’un corps rigide peut étre décomposé en une ro-
tation suivie d’une translation.

Ezpansion ou compression uniforme :
M = mlI et (2.124) prend la forme (fig. 2.17)

z; =) + m(X; — X7). (2.130)
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X27 Ta

P

PO P
Ry
0
X0
€
0 R
(0]
€ le Ty
€3

X3, a3

Fig. 2.17 Expansion uniforme.

Cisaillement simple :

dans un systéme de coordonnées cartésiennes (fig. 2.18), la matrice [M]
est donnée par

1 k 0
M= 0 1 0 (2.131)
00 1

ou en notation vectorielle, on a
r=MX = (I+k61®€2)X (2132)

en prenant lorigine comme point fixe X° = 2 = 0. Explicitement,
(2.124) et (2.131) donnent

1= X1+ kXs To = Xo r3 = X3. (2133)
A titre d’exemple, nous allons calculer F', C, U, V et R pour le cisaillement
simple.

Les matrices de F' et C peuvent étre directement calculées, alors que I'ob-
tention de celles de U, V et R requiert la solution d’un probleme aux valeurs
propres. L’application des définitions de F' et C donne

1 k0

Fl=| 0 1 0
00 1
1 k0

Cl= k% 1+% 0
o 0 1
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_____

Xy, Ty
!
1

() ”
X17 a1

(0]
€
Fig. 2.18 Cisaillement simple.

Pour calculer U = +/C, nous cherchons la matrice diagonale [A%] de C. A
cet effet, on résout le probléme aux valeurs propres (2.110). L’équation carac-
(2.134)

téristique correspondante est
det([C] = N[I]) = (Af = (24 K2)A7 +1) (1= A7)
Les trois solutions de cette équation sont
1 1
M =14k +k\/1+ k2
1 + 5 + + 1
1 (2.135)

(2.136)

D’ot, on calcule la matrice [A] définie par (2.123) telle que
[A] = diag (/\17 )\2, )\3) .

Il reste & trouver la matrice [P] dans (2.123) pour obtenir la matrice de U

par rapport a la base {e1, ez, ez} dont les lignes sont constituées des vecteurs

propres A; normés de C. Les vecteurs propres peuvent étre déterminés a partir
de I’équation (2.110). Apres calculs, nous avons les matrices lignes

—1/2

1 [ 1 [ 1 1

A = (24 2K 1+ - k2 1,41+ k24 =

(A1) <+2k:+k +4k> < +4k+2k,o>
1 )\ 1 1
As) = (24 2 K? —ky/1+ = k2 —1,4/14+ k2 — =

(Az) <+2k k\/+4k:> ( 1k 2k,0>

(2.137)

(As) = (0,0,1),
et la matrice [P] s’écrit
(A1)
[P] =
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Nous calculons ensuite

1 k2 0

U] = [PITA[P) = ———— [ k/2 1+k%2 0

,/sz2 0 0 V1+ k24
R = [FU '] = ———— —kl:/2 A (2.138)

JisE\ o o itra '
1

X 14522 k)2 0

V]=[FR"| = —— k/2 1 0
] +%2 0 0 VI+k/4

2.9 Petits déplacements et tenseur de déformation
infinitésimale

2.9.1 Petits déplacements

Considérons un champ de déplacement dépendant d’un petit nombre réel e
(e < 1) tel que

UX)=eW(X), (2.139)
ou W(X) est un champ de déplacement matériel donné, auquel correspond
le champ spatial w(x). Par (2.86) et (2.87), les tenseurs de déformation de
Green-Lagrange et Euler-Almansi sont donnés par

1 /oWy OW; 51 OW,, OW,,
Eij =5 (an + 8Xi) 5 Ox, ox, (2.140)
1 /0w, Ow; o1 Ow,, Owp,
=es 2o . 2.141
€ij 62 <8xj + 31'1) ¢ 2 8951 (%cj ( )

Quand ¢ tend vers zéro, les termes d’ordre 2 sont négligeables devant ceux
d’ordre 1. On a

1 (oW,  OW;\ 1 [dU; U,
Eij =<3 (axj - ax,-) ) (axj - 8X1;> (2.142)

De plus, en partant de z; = X; + U; = X; + eW; et W;(Xk) = w;(x), nous
pouvons écrire

oxX;  “0X, 0w, 0X;
oWy, . Ou; Qawi oWy,
(6k] +Ean> o 8:6]- ¢ 8xk 8XJ

(2.144)

8’(1}1'
=&
k

ox
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et, par conséquent, il vient

an - 8u,
an o &rj

+0(?). (2.145)
Comme le déplacement U;(Xy) est nul dans la configuration de référence, un

petit déplacement implique un petit gradient tel que

oU;
0X;

<1. (2.146)

En effet, pour la fonction Ul-(XjQ), on peut écrire

oU;(X;)

U(X) +dX;) = Ui(X?) + . |xo
J J

J

dx; .

Si U;(X}) = 0 dans la configuration de référence, un petit déplacement ||U; (X;) | <
1 a pour conséquence (2.146).

Sous ces conditions, (2.70) et (2.68) peuvent s’écrire

oU;
0X;

=|Fi; — 6]l < 1 J=1+0(). (2.147)

Pour un tenseur L d’ordre 2, nous pouvons écrire

OL  dz; OL _ _ 0L
0X; ~ 0X; 0z, Yo

B (5~+ an> OL _ 0L | 0U; OL

* 0X;) 0x; Oxz; 0X; Ox;

(2.148)

Puisque 0U; /90X est tres petit, le dernier terme dans (2.148) est négligeable.
Donc les gradients matériels et spatiaux du tenseur L sont approximativement

égaux
OL 0L

9x; ~ oz,

Cette derniere relation est le résultat de la linéarisation cinématique.

(2.149)

2.9.2 Tenseur de déformation infinitésimale

Nous pouvons maintenant déduire un résultat important a partir de la linéa-
risation cinématique précédente. La relation (2.145) montre que, si les termes
d’ordre €2 sont négligés, il n’y a pas de différence entre les tenseurs de défor-
mation de Green-Lagrange et d’Euler-Almansi. Il est donc naturel d’introduire
le tenseur de déformation infinitésimale ¢ :

o 1 8UZ 8UJ o 1 (“)ul auj
&g = 2 <6X] + 8X1> B 2 (8.13] + 8.731> (2150)

(VU +(VO)") == (Vu+ (Vu)").

E =

N
N
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Notons que € est un tenseur puisque le gradient du vecteur déplacement est
un tenseur (voir § 1.4.3). Donc la loi de transformation de ses composantes est
donnée par (1.52) et les valeurs propres, qui correspondent aux déformations
infinitésimales principales, par les solutions de I’équation (1.120).

Donnons une interprétation géométrique des composantes €;;. Pour ceci,
considérons de petits déplacements entre R et R (fig. 2.19). Soit d X un vecteur
infinitésimal attaché au point X avec les composantes (dX7,0,0). La longueur
|ldz|| du vecteur correspondant de dans R est donnée par (2.80) :

|d||* = |dX||* + 2E;; dX; dX; = (1 + 2E1;) dX?. (2.151)
XZ’ Ty
R
T
€ Ry
X
o)
€ X17 sl
€3
X3, 13

Fig. 2.19 Déformation d’un vecteur infinitésimal dirigé le long de e;.

Par 'hypothese des petits déplacements, on peut écrire
[da||* 2 (1 + 2e11) | dX ||

(2.152)
dee|| = (14 2e11)2dX) = (1 +e11)]dX]||

d’ou

lde|| — [[dX]]
[l X]|

Ainsi, €11 mesure 'extension relative d’'un élément de ligne matérielle dirigé

dans la direction 1. Les autres composantes diagonales €29 et £33 de € ont des

interprétations similaires.

o~

€11 = (2153)

Concernant la signification géométrique de €12, considérons deux vecteurs
orthogonaux dans Ry (fig. 2.20) :

dX = (dX1,0,0) et  dY = (0,dY3,0). (2.154)
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Dans R, ils se déforment et deviennent les vecteurs dx et dy de composantes
dz; = Fjp dX, dy; = FiadYs. (2.155)

Les longueurs de dx et dy sont
lda| = (1 +e11) dXy ldyl| = (1 + e92) dYs. (2.156)

En notant ;2 I'angle entre dx et dy, nous avons

de-dy 2e12

Ccos = [~ > 9c19. 2.157
"2 ey~ O tem)(tem) 2 (2.157)
X27 1‘2
R
€T
€9 RO
X
O, .
€ X, o
€3
X37 T3

Fig. 2.20 Modification des angles entre deux vecteurs.

En introduisant ’angle ¢12 de glissement entre deux directions orthogonales
dX et dY (fig. 2.20), défini par

™
P12 = 5 ~ Mz, (2.158)

la relation (2.157) peut s’écrire de la fagon suivante :
cos 12 = singiz = ¢12 = 2e12. (2.159)

En d’autres termes, €15 est la moitié du cosinus de I’angle entre les directions
des déformées des vecteurs infinitésimaux dirigés dans les directions 1 et 2 dans
Ro. Des interprétations similaires peuvent étre données a eo3 et €31.
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La variation relative du volume est exprimée en termes des extensions rela-
tives. Considérons trois vecteurs orthogonaux dX = dX e1,dY =dY ey, dZ =
dZ e3 dans la configuration de référence. Le volume de ce cube est dV =
dXdYdZ. Apres déformation, chaque élément se déforme comme suit

de =(14dX)e11, dy=(1+dY)es, dz=(1+dZ)ess, (2.160)
et le volume apres déformation s’exprime
dv = dedydz = (1 4+ ¢€11)(1 + €22)(1 + £33)dXdYdZ
= (14+e11)(1 +e22)(1 +e33)dV . (2.161)

En négligeant les puissances de degré supérieur en la déformation, on obtient
la variation relative de volume

dv —dV
av
Notons que dans le cas des déformations infinitésimales, I'expression (2.162) est
la trace du gradient du vecteur déplacement et d’apres (2.150)

gy =divu = tr (Vu) . (2.163)

= €11 + €22 + €33 = €44 - (2.162)

Comme nous l'avons vu par (2.150), le tenseur de déformation infinitésimale
€i; correspond a la partie symétrique du gradient de déplacement du;/0X;. En

effet, on a
- 1 8uz 8’&]' 1 81% 8’u]‘
du; = 3 (8Xj + aXZ_) dX; + 5 (an — 8Xi> dX; (2.164)

du

% (Vu+ (Vu)")dX + % (Vu— (Vu)')dX . (2.165)

Nous pouvons ainsi définir la partie antisymétrique

- 1 8ui 8uj
Wil g (an N axi> (2.166)
w = % (Vu — (Vu)") (2.167)

comme le tenseur de rotation infinitésimale w et écrire
dui = &ij de + Wij de .

Notons que le rotationnel du vecteur déplacement w est lié a un vecteur de
rotation du corps, dont les composantes sont celles du tenseur w multipliées
par le facteur 2, c.-a-d.

%V X U = wsge] + wizes + wa€3 . (2168)

Par conséquent, le déplacement infinitésimal peut étre décomposé en un
tenseur de déformation pure et un tenseur de rotation pure. Cependant, une dé-
composition additive du gradient de déplacement n’est pas possible en grandes
déformations (E # €). Dans de tels cas nous pouvons utiliser le théoreme de
la décomposition polaire.
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2.9.3 Equations de compatibilité pour le tenseur de déformation
infinitésimale

Pour un champ de déplacement w donné, les composantes du tenseur de défor-
mation infinitésimale se calculent facilement :

2 (3331 " 8%) =g (g + ). (2.169)

Eij =

Cependant, pour €;; donné, il n’existe pas forcément un champ de déplacement
correspondant. Nous allons maintenant déterminer les conditions que les com-
posantes €;; doivent satisfaire pour assurer ’existence d’un déplacement u sa-
tisfaisant (2.169). En dérivant (2.169), nous obtenons

1
Eijht = 5 (Wignt + Wjim) (2.170)
ou les indices k et | qui suivent une virgule indiquent, par exemple, les dérivées
partielles par rapport a xj et x;, respectivement. En interchangeant les indices,
nous avons

1
Eklyij = 5 (Uk 1 + Ui, kij) (2.171)
1
jlik = 5 \Ujli Jji .
Ejl,ik 2(“glk+ulgk) (2.172)
1
ik, gl = o (Wi kj Jigl) - .
€ik,jl 5 (Wi kg1 + Uk,ij1) (2.173)

En utilisant les symétries indicielles des dérivées de w, il n’est pas difficile de
vérifier que

€ijkl + Eklij — €jlik — Eik,ji = 0. (2.174)
Ce sont les équations de compatibilité de Saint-Venant. Parmi les 81 équa-
tions représentées par (2.174), seules six d’entre elles sont indépendantes en

raison de la symétrie des €;; et de leurs dérivées. Explicitement, ces six équa-
tions de compatibilité sont

%11 0 [ Oey . Oesz1 n Oc12
8x28x3 8$1 8]}1 8.132 8$3
82522 0 (_ 8831 + 8812 + 8523)

8$38$1 871:2 31‘2 8:63 61‘1
82533 _ 0 8612 + 8823 + 8831
8$18$2 6x3 3173 fEl IQ
5 > (2.175)
0 €12 0 511 8 E22
8$16$2 B 8x2
82523 - 8 522 8 £33
8%28%3 -

8%3 8952 )
D%es1 0? 833 e
8x38x1 2 8 8953



92 Cinématique des milieux continus

Il est clair & partir de la procédure que nous avons suivie pour obtenir (2.175)
que lorsque le champ de déplacement est connu, les relations (2.175) sont au-
tomatiquement satisfaites. Lorsque €;; est donné, ces six équations sont néces-
saires et suffisantes pour assurer l’existence d’un champ unique de déplacement
u satisfaisant (2.169) & un mouvement rigide prés seulement si le corps C est
simplement connexe. Pour un solide élastique multiplement connexe, elles sont
suffisantes et des conditions additionnelles sont nécessaires.

Une interprétation des conditions de compatibilité (2.175) est donnée par
I'expérience virtuelle suivante. Considérons un corps bidimensionnel, par
exemple, une plaque d’épaisseur uniforme, coupée en petits morceaux carrés.
Quand il n’y a pas de déformation sur la plaque, les morceaux s’ajustent parfai-
tement pour former celle-ci. Ensuite, nous imposons, sur chaque petit morceau
carré, des champs de déformations arbitraires et nous essayons de les assembler
a nouveau pour reformer la plaque. Dans le processus de reconstruction, nous
remarquons qu’en général, ils ne produisent pas la plaque d’origine, mais qu’ils
sont séparés par des espaces entre tous ou certains d’entre eux. Cependant, un
raccord parfait n’est obtenu que lorsque la déformation prescrite imposée sur
chaque carré satisfait (2.175).

2.10 Gradient de vitesse et tenseurs associés

Dans de nombreux problemes de mécanique des milieux continus, la grandeur
cinématique la plus intéressante n’est pas le changement de forme d’un corps,
mais le taux auquel ce changement se produit. Ceci est spécialement le cas pour
la mécanique des fluides.

Soient V un voisinage du point P de coordonnées x; et () un point quel-
conque appartenant a V de coordonnées z; + dx;. La vitesse spatiale de @ est
donnée par

ov;(x;,t
vi(xj—i-da?j,t):vi(xj,t)+%dxj+~n (2.176)
J
Le tenseur L dont les composantes sont
8'Ui
Lij = or; (V'v)ij (2.177)

est appelé le gradient de vitesse. On établit une relation entre L et F' de la
maniere suivante :

. D 81;1- 833"1' 81), 8.Tm
e (55) - 5

an h 8XJ o al’m 8XJ (2 178)
o 6'Ui axm — L. F . .
= Oay 0X;  mImIe

On a donc _
F=LF. (2.179)
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La partie symétrique de L, c’est-a-dire

o 1 6’[}1‘ 81}]‘
dij = By <8xj + 8%) (2.180)
d = % (Vo + (Vo)) (2.181)

est appelée le tenseur des taux de déformation, et sa partie antisymétrique
de L, c’est-a-dire

. o 1 8vi 81}]‘
Wij = 5 <al'] B 8@) (2182)
w = %(Vv — (Vo)) (2.183)

le tenseur des taux de rotation. Donc, on peut écrire
L=d+w. (2.184)
Avec les définitions (2.180) et (2.182), il s’ensuit de (2.176) que
vi(zj +dxj,t) —vi(z,,t) = d;j doe; + W,y de; (2.185)
La comparaison de (2.180) avec la définition de ¢;; donne

dé?ij
dt

dij = (2.186)
C’est pour cette raison que d;; est appelé le tenseur des taux de déformation.
Cependant, il faut noter que la linéarité de d;; par rapport & v; dans (2.180) est
exacte, aucune hypothese de petits déplacements n’étant faite lors de son calcul.
Le vecteur dual €; (1.104) associé au tenseur des taux de rotation, c’est-a-dire

. 1 . 1
Q) = — - €ijrWik = =

5 5 (rotv)

i (2.187)
est appelé le vecteur tourbillon ou vecteur des taux de rotation. Notons
qu’en mécanique des fluides, il est classique d’introduire le vecteur vorticité ou
tourbillon w en le définissant comme le rotationnel de la vitesse. Il vient

w=rotv=V xwv, (2.188)
ou encore 5
v,
= i 2.189
w € Jk axj ( )
On déduit facilement que )
w =200 (2.190)

Afin de donner une interprétation au vecteur tourbillon, considérons la décom-
position d’'un mouvement local du fluide en ses parties élémentaires. Soit un
point P de position & et un point voisin P’ a la figure 2.21.
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To
v+ dv
P/
<Zv
v
dx
P
e v
T
(0)
€1 51

€3

T3

Fig. 2.21 Mouvement relatif de deux particules fluides.

Le vecteur position de P’ relatif a P est dz. Apres un temps infinitésimal, P
et P’ occupent de nouvelles positions. P se déplace avec la vitesse locale v et
P’ avec la vitesse v + dv. On considére que P est la particule fluide principale
et apres soustraction de sa vitesse de translation, on décrit le mouvement de
P’ comme si on 1'observait & partir de la particule principale. Le raisonnement
tenu ci-dessous n’est donc valable que localement lorsque la distance dx devient
petite. On peut décomposer le mouvement de P et P’ en trois parties distinctes :
une translation, une rotation de corps rigide et une déformation. Le mouvement
de translation est donné par la vitesse v de P. Tous les autres mouvements pris
ensemble sont donnés par dv, la vitesse de P’ par rapport & P. On a donc
I’expression
_ Ov

dv = a—mdw = Ldx . (2.191)

Par (2.184), les mouvements de déformation (allongement, raccourcissement,...)
de P’ par rapport & P sont décrits par d. En conséquence, le mouvement de
rotation de P’ par rapport & P est pris en compte par w. On peut écrire

dv'") = G dx | (2.192)

ou l'indice supérieur r fait référence a la rotation.

Le mouvement de rotation de corps rigide de P’ par rapport & P doit avoir
la forme de I'équation v = € X x, ou 2 est la vitesse de rotation angulaire.
Par (2.187) et (2.190), on a —w;; = %sijkwk = wj;. Donc la composante du
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mouvement de rotation est donnée par

r . 1
dl}j(- ) = Wjji da:i = igijka dxl
1
= iajki (wg) dz; . (2.193)

Cette derniere équation est de la forme dv = € x dx. Le vecteur vorticité
w correspond a une vitesse angulaire telle que la vorticité w est égale a 22,
c’est-a-dire deux fois la vitesse angulaire de rotation de corps rigide de P’ par
rapport a P.

On remarquera que dans le cas du corps rigide en rotation, le tenseur L
s’obtient par I’équation (2.55). On a

L=0Q =9 (2.194)

qui est un tenseur antisymétrique. Ceci montre que dans ce cas d = 0 et que le
tenseur L = w. Le tenseur des taux de rotation est donc entierement déterminé
par la rotation instantanée du solide.

2.11 Objectivité des quantités cinématiques

La description d’une quantité physique ou mécanique associée au mouvement
d’un corps dépend en général du choix de 'observateur ou de référentiel.

En physique, on utilise tres fréquemment un référentiel inertiel pour lequel
I’espace est homogene et isotrope et le temps uniforme. Dans ce référentiel,
les lois de la mécanique newtonienne sont valables. Un corps en mouvement
rectiligne uniforme pendant un intervalle de temps fini subit une force nulle.
Une autre interprétation de cette situation physique dans ce référentiel consiste
dans I'observation que le centre de masse du corps C se déplace le long d’une
droite & vitesse uniforme si le corps n’est soumis a aucune force.

Au chapitre 1, on a traité les conséquences induites par les changements du
choix du systeme de coordonnées ou de repere dans le cas d’un seul observateur.
Ce traitement est la base de ’analyse tensorielle et trouve son origine dans
I’exigence que toutes les lois de la physique d’un milieu continu ne doivent pas
dépendre du choix du systeme de coordonnées par un observateur. Cependant,
lorsque le méme événement dans l'espace est vu par deux observateurs situés
dans deux référentiels différents, les relations entre les coordonnées et les divers
parametres cinématiques dans les deux référentiels sont différentes.

Dans la suite, I'observateur ou le référentiel sera désigné par R = (O, x, t).
Notre but ici est de distinguer les quantités cinématiques scalaires, vectorielles
ou tensorielles qui dépendent intrinsequement de I'observateur de celles qui en
sont essentiellement indépendantes. Ceci constitue une préparation a la future
discussion sur 'objectivité des lois physiques générales ou constitutives. Rap-
pelons qu’en mécanique des milieux continus, un événement, c’est-a-dire un
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processus physique, est défini par ses coordonnées dans ’espace x et le temps
d’observation t.

Considérons un événement vu par deux observateurs R et R*, et notés res-
pectivement par (z,t) et (z*,t"). Le mouvement entre deux observateurs est
une fonction de I'espace et du temps. Si les effets dus a la relativité sont né-
gligés et si on suppose que les observateurs mesurent la méme distance entre
deux événements simultanés et les mémes intervalles de temps entre deux évé-
nements séquentiels, on montre que la transformation la plus générale entre les
observations (x,t) et (x*,t*) du méme événement est donnée par

a* = Q(t)z + c(t) t=t-a, (2.195)

o1 Q(t) est un tenseur de rotation orthogonal avec le temps ¢ comme parametre,
c(t) un vecteur et o une constante scalaire. L’interprétation de (2.195) est mon-
trée a la figure 2.22, ou on voit deux observateurs R et R* au temps ¢. Supposons
qu'un événement (i.e. une expérience) ait lieu en P. Le vecteur position de P
par rapport a l'observateur R est . Le méme événement vu par 1’observateur
R* n’est simplement pas donné par l’addition vectorielle x* = ¢(t) + x, mais
par lexpression générale (2.195). En effet, on doit prendre en compte la rota-
tion de corps rigide de 'observateur R par rapport a l'observateur R*, pour
que 'observateur R* voie le méme événement. Cette rotation est accomplie par
le tenseur de rotation Q(t), dont les composantes sont des fonctions des deux
angles 3, v et du temps. On constate que le changement de référentiel représente
plus qu’une simple transformation de coordonnées induite par un changement
de repere.
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Fig. 2.22 Interprétation de (2.195). Les deux observateurs initialement positionnés
en Oi—¢ se déplacent dans deux référentiels.
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Donc le mouvement d’un corps C décrit par x (X, t) selon le premier obser-
vateur est décrit par le second observateur par x*(X,t*), et ces deux descrip-
tions sont reliées de la maniere suivante :

X' (X, ) = Q) x(X,t) + c(t) t=t-a. (2.196)

Afin d’examiner les ramifications de la transformation (2.196), considérons deux
événements simultanés enregistrés par R comme (x1,t) et (x2,t), et (xF,t) et
(x3,t) par R*. Pour ces deux événements, les positions relatives vues par les
deux observateurs sont u = 2 — x1 et u* = x5 — ], respectivement. De la
relation (2.196), on obtient

u = Qu. (2.197)

Puisque le tenseur Q est orthogonal, on peut écrire

uut=(Qu) (Qu)=u- (QTQu=u-u. (2.198)

Cette derniere égalité montre que les normes de u et u* sont les mémes, c’est-
a~dire |[u*|| = ||u| et que la transformation est celle d’une rotation de corps
rigide (§ 2.6.2). Les champs vectoriels qui se transforment suivant (2.197) sont
appelés objectifs ou indifférents par rapport au référentiel.

Au moyen de la définition d’un vecteur spatialement objectif , nous définis-
sons un tenseur d’ordre 2 spatialement objectif. Soient deux vecteurs v et w
vus par I'observateur R, liés par le tenseur L d’ordre 2

w=Lv. (2.199)

Puisque v et w sont objectifs, 'observateur R* les voit comme w* = Qw et
v* = Qu. Cet observateur considere le tenseur d’ordre 2 comme L* tel que
w* = L*v*. Pour relier L et L™, on remarque que

w* = Qw =QLv=QLQTv*. (2.200)
De cette derniere relation, on déduit 1’égalité
L*=QLQ". (2.201)

Les champs tensoriels qui se transforment suivant (2.201) lors d’un changement
d’observateur sont appelés champs tensoriels d’ordre 2 spatialement objectifs
ou indépendants du référentiel. En ce qui concerne un champ scalaire, celui-ci
sera dit objectif ou indépendant du référentiel lorsque

@t t) = f(=,1). (2.202)

Dans ce qui suit, nous dirons que :

« une quantité scalaire ¢ est objective si et seulement si (ssi) ¢* = ¢;
« une quantité vectorielle f est matériellement objective ssi f* = f;

« une quantité vectorielle f est spatialement objective ssi f* = Qf ;
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o une quantité tensorielle T est matériellement objective ssi T* = T';
« une quantité tensorielle T est spatialement objective ssi T* = QT Q™.
Afin d’examiner I'objectivité de la vitesse et de I’accélération d’un mouve-
ment, nous remarquons qu’en dérivant (2.196) par rapport au temps, la vitesse
V(X,t) = x(X,t) et laccélération A(X,t) = X(X,t) d’une particule X se
transforment de la fagon suivante :

VH(X,t") = QHV(X,t) + e(t) + Q(t)x (X, t) (2.203)
A*(Xat*) = X*(th*)

= Q)X (X, 1) +&(t) + Q(t)x(X, 1)
+2Q(t)V (X, 1). (2.204)

Par conséquent, les définitions de la vitesse et de ’accélération sont relatives et
inextricablement liées a un observateur. En appliquant la définition du gradient
de déformation & (2.196), nous obtenons la loi de transformation

. o XXt ox(X, 1) ox(X, 1)
F(X,t) = 0X  ox(X,t) 00X (2.205)
=Q)F(X,t).

Cette relation jouera un role important dans les discussions ultérieures. Notons
que

J* =det F*(X,t*) = det F(X,t) = J . (2.206)

Donc la quantité scalaire J n’est pas affectée par un changement d’observateur.
En partant des définitions (2.77), (2.79), (2.82) et (2.83) et en utilisant (2.205),
nous avons les lois de transformation des tenseurs de déformation suivantes

c*=C E'=FE (2.207)
¢ = QcQT e =QeQT. (2.208)

Ainsi, d’apres ces définitions, le jacobien J est objectif; le tenseur de défor-
mation de Cauchy-Green droit C et le tenseur de déformation de Green-
Lagrange E sont matériellement objectifs ; le tenseur de déformation de Cauchy
c et le tenseur de déformation de Euler-Almansi e sont spatialement objectifs.
D’autre part, la vitesse, I’accélération et le gradient de déformation ne sont pas
objectifs. De plus, il est important de remarquer que la dérivée matérielle d’une
quantité matériellement objective reste matériellement objective, alors que la
dérivée matérielle d’'une quantité spatialement objective n’est généralement pas
spatialement objective. Par exemple,

E =E (2.209)
& =QeQ" +QcQ” + QeQ’ # QeQ” . (2.210)
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Dans le cadre du changement de référentiel (2.195), examinons comment le
tenseur des gradients de vitesse se transforme. Réécrivons (2.203) et (2.204) en
représentation spatiale

v = e+ Qx+ Qu (2.211)
a* =¢+Qa+2Qu+ Q. (2.212)

A partir de I’équation (2.211), on évalue le tenseur des gradients de vitesse

L*. On obtient
Lo oui ome
g o} " Oy o’ '

Par (2.195), il vient

ox; 0

Bxk T ik
Son inverse dxy, /833;* est Q,;jl = ij. L’évaluation de dv}/0xy, s’effectue via
léquation (2.211). On a

oy . v,
ka - sz + Qzl al'k .

En assemblant ces diverses relations, on écrit
L*=(QL+Q)Q" =QLQ" + 1, (2.213)

ou on a fait appel & la définition (2.57).

Etablissons le lien entre la notion d’objectivité et le mouvement rigidifiant.
A cette fin, comparons ’équation qui décrit le mouvement de corps rigide (2.52)
et la transformation (2.195). En posant b = 0 pour simplifier, le mouvement
décrit par (2.195) est rigide lorsque

x=Q(t)X +clt) . (2.214)

Cette derniere équation peut se généraliser pour deux mouvements différents
x et y d’un milieu continu. Ces deux mouvements different par un mouvement
de corps rigide si

y=Q)x +c(t). (2.215)

La forme (2.215) est semblable & (2.195) avec la différence suivante : x et
y sont deux événements distincts, tandis que x et * sont les lieux d’un seul
événement enregistré par deux observateurs différents. Donc, on peut considérer
le changement d’observateur défini par (2.195) comme un mouvement de corps
rigide superposé sur la configuration actuelle d’un milieu continu.

L’importance de I'objectivité ou de la non-objectivité d’'une quantité appa-
raitra lors de la discussion des lois de comportement des matériaux soumis a
de grandes transformations ou de grands déplacements, méme accompagnés de
petites déformations.
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Pour clore cette section, écrivons les relations (2.211) et (2.212) sous une
autre forme. En effet, ’équation (2.195) donne

Q' (x* —c)==x. (2.216)
Insérant (2.216) dans (2.211), il vient
=Qu+e+QQT(z" —c). (2.217)
En combinant (2.216), (2.217) et (2.212), 'accélération devient

o . 2 -
= Qa+é+2QQT (v —¢)—2 (QQ ) (z" — )+ QQT (x* —c) . (2.218)
En utilisant le tenseur de rotation (2.57), la vitesse s’écrit
v'—Qu=¢+Q((x"—c) , (2.219)

ou les deux termes du membre de droite correspondent aux vitesses de transla-
tion et de rotation des deux référentiels, tandis que 'accélération se met sous
la forme

a*—Qa=é+2Q (v —é) + (n - 92) (z* —c) . (2.220)

Dans le membre de droite de (2.220), le premier terme est 'accélération de
translation, le second l'accélération de Coriolis et les termes suivants I'accé-
lération de rotation et centripete du référentiel, respectivement. Pour obtenir
(2.220), on a utilisé la relation

Q=Q0Q"+QQ" =QQ" +0Q"QQ" = 4Q" - . (2.221)

Si le référentiel est galiléen, un cas spécial de référentiel inertiel tel que
Q = Q = 0 et & = 0, alors 'accélération est objective. Dans le référentiel
galiléen, Q = Q, = cst et ¢ = ¢p + c1t ol c¢; est une vitesse constante. Dans
ce cas la relation (2.195) se simplifie

*=Qpx+co+ it (2.222)

qui est la transformation galiléenne.

2.12 Exercices

Un milieu continu dans sa configuration déformée est donné par les rela-
tions

1
1= §X1 To = X2 T3 — X3 . (2223)

Calculer le champ de déplacement en coordonnées matérielles et spatiales.
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Soit la déformation de cisaillement simple donnée par la matrice M de
I’équation (2.132). On demande de calculer M ! et les tenseurs de déformation
C,c E,e.

(2.3) Répéter le méme exercice dans le cas de la dilatation pure donnée par
M = mlI, ou I est le tenseur unité.

Un cube vibre autour de sa position de repos. La description lagrangienne
du mouvement est donnée par les équations

t X

1 = X, +acosQ7r(T—T1)
. t X

x9 = Xo +bs1n27r(f - fl)

I3 =X3.

Les symboles a, b, L sont des constantes qui ont pour dimension une longueur
et T est une constante qui a pour dimension le temps.

1) Déterminer les trajectoires des points matériels.

2) Calculer les composantes de la vitesse et de 'accélération.

3) Calculer le tenseur du gradient de déformation F et sa dérivée matérielle
DF/Dt.

4) En représentation lagrangienne, calculer le tenseur du gradient de vitesse
L.

5) Calculer le tenseur des taux de déformation d et des taux de rotation w.
Calculer le vecteur tourbillon €.

Pour la transformation donnée & I’exemple 2.1 :

1) Calculer la matrice du gradient de la déformation F'. La déformation est-
elle homogene? La déformation est-elle isochore (déformation & volume
constant) ? Pour quelles valeurs de a la transformation est-elle inversible ?

2) Calculer les matrices de C, E et celle de e. Comparer E et € dans le cas
0<ax 1

3) Vérifier que les vecteurs dirigés selon I'axe x3 et les diagonales AH et DE
sont les vecteurs propres de C'. En utilisant ces résultats, calculer U = vC.

4) Calculer la matrice du tenseur de rotation R dans la décomposition polaire
F = RU.

Au moyen de 1’équation (2.205), démontrer les relations (2.207) et (2.208).

A Taide de (2.205) et la troisieme relation de (2.120), montrer que R* =
QR U =Uet V' =QVQ".
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Montrer que C =2E =2FTd F ot d est le tenseur des taux de déforma-
tion (2.180).

Pour le mouvement suivant x1 = A X1, 22 = Ao Xo, 3 = A3X3, détermi-
ner les matrices des tenseurs C, R, U et E, les valeurs principales de C' et U
et leurs invariants.

Démontrer que e = F"TEF~! et ¢ = RCR”.

Démontrer que FA; = \;b; avec \; les valeurs principales du tenseur U
et A; (i =1,2,3), ses vecteurs propres associés, et ensuite la relation (2.119).

Déduire la relation (2.157).

Le déplacement d’un corps est décrit par les équations

uy = U1($17I2)
U = U2(JC17$2)

U3:0.

Soit un élément infinitésimal ABCD de cotés dry drs donné a la figure
2.23. A partir de la configuration déformée A'B’C'D’, déduire les relations
déformations-déplacements pour le cas des déformations infinitésimales.

X’_)a T
oD
dzx,
T A l
Ty } }
l l
T T
| | Xy, o
! dz,

Fig. 2.23 Déformation d’un élément infinitésimal.
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Une plaque d’épaisseur unitaire située dans le plan z; x5 est soumise &
un champ de déformation uniforme donné par

;=103 (2.224)

O =N
O N =
(an)

Trouver le changement de longueur d’un élément linéaire de longueur initiale
égale a 1:

1) parallele a l'axe 7 ;

2) parallele a Paxe @ ;

3) faisant un angle de 45 degrés avec 'axe x1.

Démontrer que la déformation £y pour un élément linéaire dS du plan
Oz1zo , dans la direction IN, qui fait un angle 6 avec ’axe horizontal est donnée
par

eN = €11 €082 0 + £99 sin? 6 + 2&15 cos O sin O (2.225)

oll €11, €29, €12 sont les composantes du tenseur de déformation infinitésimale.






CHAPITRE 3

Dynamique des milieux continus

3.1 Introduction

Apres ’étude du mouvement du corps et l'introduction des divers parametres
qui le décrivent, ’étape suivante consiste dans I’examen de la conservation de
certaines quantités pendant ce mouvement, comme la masse, la quantité de
mouvement et le moment cinétique. Dans ce contexte, on introduira le concept
important de contrainte et de sa mesure; ses propriétés seront étudiées en
détail. En mécanique des milieux continus, la contrainte est le parametre qui
caractérise l'interaction mécanique d’un corps avec son environnement. Cette
contrainte est la cause du mouvement. Des lors, il est essentiel de développer la
mécanique du milieu continu qui est la généralisation de la mécanique du point
et des lois de Newton [1, 27]. De maniére similaire au cas de la cinématique du
chapitre 2, le type de matériau et la spécification du mouvement n’interviennent
pas dans les développements de ce chapitre.

La dynamique des milieux continus est également développée dans les ré-
férences [14, 22, 23, 32, 44, 45].

3.2 Théoreme du transport de Reynolds

3.2.1 Définitions

La dérivée temporelle d’une intégrale de volume joue un role trés important
dans la formulation des lois de bilan en mécanique des milieux continus. Consi-
dérons, par exemple, la fonction I(t) donnée par

H@=AMXMMC (3.1)

ou ® est une grandeur scalaire, vectorielle ou tensorielle et 2 C Rg représente
le volume du corps dans la configuration initiale au temps ¢ = 0 ou d’une par-
tie IT de celui-ci. Nous définissons la dérivée matérielle temporelle d’une
intégrale de volume par I'expression

DI d

Aﬁfﬁéyxww. (3.2)
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Dans le cas ou la frontiere ne change pas avec le temps, alors on peut permuter
la dérivée temporelle et 'intégrale. L’équation (3.2) devient

DI d [ 9B(X,1)
E_£/Q<I>(X,t)dv—/QTdV. (3.3)

Quand la frontiere d’un corps change avec le temps, la dérivation directe
ci-dessus ne s’applique plus et nous avons besoin d’une autre méthode. Celle-ci
est présentée dans la suite.

Supposons que la grandeur scalaire, vectorielle ou tensorielle ¢ exprime une
caractéristique du corps considéré et que ce dernier, ou une partie Il C C de
ce dernier, occupe un volume w(t) € R de frontiere dw(t) C IR au temps
t. L’équation de bilan peut étre formulée de la maniére suivante : le taux de
variation de l'intégrale de ¢(x,t) dans le volume w(t) dépendant du temps est
égal au taux de variation de p(x,t) dans w(t) plus le flux total de (x,t) a
travers la surface Ow(t). Mathématiquement, 1’équation de bilan s’écrit

i/ o(x,t)dv = / Mdzﬂr/ oz, t)v-nds. (3.4)
dt Jo Wy Ot dw(t)

Cette expression est appelée le théoreme du transport de Reynolds. En utilisant
le théoreme de divergence (§ 1.4.13), on peut aussi 'écrire sous la forme

jt/w(t) o, t) dv = /w(t) (%f’t) + aii (w(w7t)vi)> dv  (3.5)

ou encore a l'aide de (2.27),

d Dy(x,t) .
— t)dv = _— t)d dv. .
i, smna=[ (2o avo)a. @0

Dans les équations suivantes, nous noterons w(t) par w et dw(t) par dw.

3.2.2 Transformation d’un élément de volume

Dans les lois de conservation que nous allons établir dans la suite apparaissent
des éléments de volume. Il est utile d’exprimer le changement de volume au
temps t de la représentation eulérienne par rapport au volume initial dans la
représentation lagrangienne. On sait par (2.103) que

dv=JdV, (3.7)

ol le jacobien J peut s’exprimer comme
J =det F = e, Fin FjaFys = €iji F1iF Fap (3.8)
puisqu’en écrivant €5, F;1 FjoFr3 et en utilisant les propriétés de €;51, on obtient

gijuFinFjoFys = F11FooF33 + Fo1 F3oFy3 + F31FiaFhs

3.9
— F11F30F53 — F51F5oFi3 — For1 FioFsg. (39)
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Le calcul de la dérivée matérielle de J se fait aisément. On a

Ox1 Ox2 Oxs Ox1 0x2 Oxs Ox1 Ox2 0X3

9X, 9X, 9%, T ax, aX, 9%, | ox; ax; ax,y 1Y)

J = Eijk

En introduisant la vitesse (2.20), on obtient en utilisant le théoreme des fonc-
tions implicites

8:17p 3X aX an 8X1 8:1:10 3XJ an
0x: O va O,
0X; 0X; Oz, 0X),

vy Ovsy Ovs
= a4 g byl 5 (3.11)

jZEijk (81}1 dz, Ox2 Ox3 N Ix1 Ovy Ozp Oxs

Finalement, il vient

8’01'
J=V- J(X,1). 3.12
9,7 =V ixn) (X, 1) (3.12)

j =
Cette expression s'interpréte parfois en exprimant que J /J =divw est le taux
de dilatation volumique. Comme résultat final des développements précédents,
on peut obtenir la dérivée matérielle d’un élément de volume en combinant
(3.7) avec (3.12). On a successivement

Ddv . J :
DL = JdV = jdv =divuodv. (3.13)

3.2.3 Théoréme du transport de Reynolds

Nous pouvons établir le théoréme du transport de Reynolds défini par (3.5) ou
(3.6). Soit U'intégrale I(t) définie par la relation

I(t) = / o(x,t) dry dee das . (3.14)

On désire évaluer l'intégrale

DIt d

Pour évaluer cette expression, on ne peut pas permuter la dérivée par rapport
au temps et 'intégrale, puisque cette derniére porte sur un volume dépendant
du temps. On passe alors a la représentation matérielle

DI d
Dt dt J,
A Taide de (2.103), on a

day dwy dzs = J(X,t)dX1dX2dXs ou dv=J(X,t)dV. (3.17)
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Osborne Reynolds (1842-1912) est un mathématicien an-
glais né a Belfast. Il fut nommé professeur d’ingénierie a
I’Owens College de I’Université de Manchester en 1868.
Ses contributions portent sur 'hydrodynamique et la mé-
canique des fluides. On lui doit 'introduction du nombre
de Reynolds, ainsi que la décomposition de Reynolds pour
la modélisation de la turbulence.

Fig. 3.1 Osborne Reynolds.

Alors, (3.16) peut s’exprimer par

DI d

—=— | ®(X,t)J(X,t)dX1dXsdX 3.18

B = o L X DIX X 4% dX (315)
ol
A partir de la relation (3.18), il est plus aisé d’effectuer la dérivation de I'inté-
grale

DI d(X,t

7:/ ORX D rix )

Dt Jo o |y

9I(X.1) (3.20)
+ @(X,t)” )Xm dXodXs5 .
ot x

En utilisant la relation (3.12), I'intégrale (3.20) peut s’écrire de la fagon suivante

E_/ 0P(X,t)
Dt Jq ot |x

+O(X, (V- v)

(3.21)

) J(X,t)dX; dXs dXs .
z=x(X,t)

En faisant les changements appropriés dans la derniere intégrale et en utilisant
(2.3), (3.17) et (3.19) et

Ot | xey1(wu Dt
nous avons le résultat final
DI Do(x,t
B = /w ((pl()t) + o(x, t)V - v(x, t)) dzy dzg dxs . (3.23)

L’expression (3.23) est le théoréme du transport de Reynolds appliqué a
une fonction scalaire p(x,t). On peut considérer que le théoreme de Reynolds
est une généralisation du théoreme de Leibnitz

d [t® b dp db da
— t)der = —d — =b,t) — — =a,t). .24
il pwte= [ G Gea=bn - Foe=an.  G2)
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Comme
Do(z,t) _ dp(x,t)

Dt ot

I'intégrale (3.23) peut s’écrire

+v(z,t) - Vo(x, t), (3.25)

% - /w (‘Ma"’;t) +o(z,t) - V(e t) + V- v(w,t)w(w,t)) dv

= /w (%ﬁ’t) + (’u(a:,t) -Vo(z,t)+ V- ’U(wat)@(wat))) dv
_ /w % dv + /w div(v(z, t)p(, 1)) dv. (3.26)

En utilisant le théoréme de divergence (1.228) pour la deuxiéme intégrale, on

obtient (@1
DI Op(x,t
_ . 2
Dt /w 5 dv + /&d p(x,t)v-nds (3.27)

qui n’est rien d’autre que (3.4)

3.3 Conservation de la masse

En mécanique des milieux continus, la masse est traitée comme un concept
primitif et considérée comme inhérente au corps. La masse du corps C signifie
tout d’abord la quantité de matiere que C contient. L’expérience montre que
cette quantité ne dépend ni du temps, ni de la transformation matérielle (par
exemple, un changement de phase) ni de la déformation de C. De plus, la
quantité de matiere de deux parties quelconques de C est la quantité de matiere
de la premieére partie plus celle de la seconde partie. Ces aspects peuvent étre
formulés et donc rendus plus précis de deux manieres différentes, selon que 1’on
adopte la description matérielle ou spatiale pour décrire le mouvement de C.

3.3.1 Forme matérielle

Soient Ry et R les configurations initiale (ou de référence) et actuelle de C
(fig. 3.2). La densité initiale de masse du corps C en description matérielle est
une fonction scalaire positive et intégrable Py(X) définie sur Ry, telle que la
masse m(§2) d’une partie quelconque IT de C au temps t = 0 soit donnée par

ou 2 C Ry est la configuration initiale de II C C. D’une fagon similaire, la
densité actuelle de masse de C en description spatiale est une fonction scalaire,
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X2~, T
Q
u W
11
RO
X
€
T
R
O
€ X, 7
€3

X3, a3

Fig. 3.2 Mouvement d’une partie arbitraire II de C.

positive et intégrable p(x,t) définie sur R, telle que la masse m;(w) de n’'importe
quelle partie IT de C & l'instant présent ¢ > 0 soit donnée par

my(w) = / plx,t)dv = / p(x,t) dry deo das, (3.29)
ou w C R est la configuration actuelle de II.

PRINCIPE DE CONSERVATION DE LA MASSE

La masse contenue dans une partie quelconque 11 du corps C reste inchangée
avec le temps, c’est-a-dire
me(w) =m(Q). (3.30)

En introduisant (3.28) et (3.29) dans (3.30), on obtient

/wp(:at)dv:/QPo(X) av. (3.31)

Dans cette expression, le vecteur position actuel & d’une particule de II est
relié au vecteur position initial X par I’équation du mouvement de C donnée
par (2.1). La prise en compte de (2.1) dans (3.31) revient mathématiquement &
faire un changement de variables. Or, lors d’un changement de variables de x a
X, les éléments de volume correspondants dv et dV sont reliés par la relation
(2.103). En utilisant ensuite (2.1) dans (3.31), on obtient

| X 00(X.0).0) ~ R(X)) av =0, (3.32)
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Sila densité de masse actuelle P(X,t) en description matérielle est définie
par
P(X,t) = p(x(X,1),1)) , (3.33)

I'intégrale (3.32) peut étre écrite
/ (J(X.)P(X,t) — Po(X))dV = 0. (3.34)
Q

L’expression (3.34) est la forme matérielle globale du principe de conservation
de la masse. Afin d’obtenir la forme locale du principe de conservation de la
masse, nous exploitons le fait que (3.34) est valable pour une partie initiale
arbitraire de R, pour autant que 'intégrand de (3.34) soit continu par rapport
a X et on invoque le théoreme de localisation.

Théoréme de localisation

Soit f une fonction scalaire, vectorielle ou tensorielle continue définie sur
un domaine ouwvert D d’un espace euclidien tridimensionnel. Si

/ Fdv =0 (3.35)
Q
quel que soit le sous-domaine fermé Q de D, alors

f=0 (3.36)

en tout point de D.

Par conséquent, I'intégrand de (3.34) doit étre nul. On obtient
J(X,H)P(X,t) = Py(X). (3.37)
Cette égalité représente la forme matérielle locale du principe de conservation

de la masse.

Le corps C ou le matériau constituant C est dit incompressible si sa masse
volumique est invariable, c’est-a-dire qu’elle ne dépend ni de I'espace ni du
temps. Des lors, P(X,t) = Py(X) et par conséquent

J(X,t)=1 (3.38)

pour chaque point X de Ry et a chaque instant ¢. Cette condition se présente
fréquemment en mécanique des fluides et dans 1’étude des matériaux solides
caoutchouteux. I découle de (3.37) et de (3.33) que la condition d’incompres-
sibilité (3.38) est équivalente &

P(X,t) = p(X(Xat)vt) = PO(X) (339)

Le mouvement pour lequel la relation (3.38) est vérifiée est isochore. C’est
donc un mouvement pour lequel le volume du corps reste constant (cf. (3.7)).
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3.3.2 Forme spatiale

Reprenons ’équation (3.31). La dérivée par rapport au temps donne, en utili-
sant le théoreme du transport de Reynolds,

Dp(, t)

% [ ety do = /w <m + p(w, 1) divv(m,t)) dv=0.  (3.40)

Ceci est la forme spatiale globale du principe de conservation de la masse. En
faisant ’hypotheése que l'intégrand de (3.40) est continu par rapport & x, et
en appliquant ensuite le théoréme de localisation & (3.40), on obtient la forme
spatiale locale du principe de conservation de la masse

Dp(, t)

T + p(x,t) divo(x,t) =0. (3.41)

Cette équation est aussi appelée équation de continuité. Comme

Dp(Da;,t) _ ap(a:i,t) 4 Vp(a,t) - vz, b) (3.42)

div(p(z, t)v(x, 1)) = p(x, t) divo(z,t) + Vp(z, t) - v(z, t), (3.43)

Pexpression (3.41) peut étre écrite sous la forme équivalente

w + div(p(z, t)v(z,t)) =0. (3.44)
L’équation (3.41) ou (3.44) est une équation de base de la mécanique des fluides
alors que son homologue matérielle (3.37) est utilisée en mécanique des solides.
Si le matériau est incompressible, d’apres (3.39), la masse volumique p(x,t) est
constante et Dp(x,t)/Dt = 0. II découle ainsi de (3.41) que la condition d’in-
compressibilité peut étre exprimée par une des formes équivalentes suivantes :

divv:%:d”:trd:h(d):o, (3.45)
T

ou l'on a utilisé la définition (2.180) du tenseur des taux de déformation d.
Notons que le champ de vitesse qui satisfait (3.45) est solénoidal. Comme
divv = 0, il en résulte par (3.12) que J = 0 et J reste constant au cours
du temps. Puisque J(X,0) = 1, le mouvement du matériau incompressible est
isochore.

Une autre maniere de déduire 1’équation de continuité consiste dans la
démarche suivante : considérons a la figure 3.3 un fluide qui s’écoule a travers
un élément de volume Az AxoAxs a la vitesse v;(x1, 2, x3).
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Fig. 3.3 Bilan de masse dans un volume élémentaire.

Si on suppose que I’écoulement est orienté principalement dans la direction
positive de I'axe x1, la quantité de masse entrant dans le volume par la surface
en x; est donnée par

pU1 |w1 Axy Azxs. (3.46)

La quantité de masse sortant du volume par la surface en x1 + Axq est donnée
par

pU1 |z1+Aw1 Az Azs . (3.47)

De maniere analogue, les quantités de masse entrante et sortante dans les di-
rections x5 et x3 sont données par

selon zo pv2|w2 Axz Az, pv2|w2+Aw2 Axz Az, (3.48)
selon x3 PU3 |9c3 Az Azg PU3 |x3+A:c3 Az Azs .

Le taux de changement de la masse dans [’élément de volume
Ax1 Axo Axs est

(A!L‘l A,TQ AQ?;),) ap

= (3.49)

Le bilan pour I’écoulement dans le volume considéré est donné par

taux de changement | taux de _ taux de
de la masse " | masse entrant masse sortant
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L’équation de bilan s’écrit en utilisant les relations (3.46)-(3.49)

0
(AwlAmgAxg)a—i = (pvl‘ml — pv1|m1+Aml> Azy Azs
+ (peal,, = 003l sy ) D3 A (3.50)
+ (p’l}3|x3 — pv3|x3+Ax3> Az Az, .

En divisant (3.50) par le volume Az AzyAxg et en passant a la limite Az — 0,
Axo — 0, Axz — 0, il vient

8,0 . pU1|x1 B pvl’xl—&-Azl . pv2‘mg B pvz‘mg+Axg
— = lim + lim
Ot  Az1—0 Axq Azy—0 Axo

pv?”m;; B pv3’m3+A:¢3

T Almlgg() A.’Eg
d(pv1) | 9(pv2) | O(pvs)
=— . 3.51
( 8:01 + 81'2 + 6903 ( )
L’équation (3.51) peut également se mettre sous la forme

op ap ap ap Ovy  Ovy  Ovs
— — — — =—pl—+—+—. .52
ot " omy 0w T 0ns - P\om T 0ny 0 (3:52)

Le membre de gauche de ’équation représente la dérivée matérielle de la masse
volumique et le membre de droite la divergence du champ de vitesse

Dp

— = —pdivo. 3.53

D= P (3.53)
On retrouve I’équation de continuité établie pour un volume de controle élé-
mentaire.

3.4 Forces volumiques, forces de contact
et postulat de Cauchy

Comme la masse, la force est un concept primitif en mécanique des milieux
continus. Fondamentalement, les forces désignent les interactions entre les dif-
férentes parties intérieures d’'un corps ou entre le corps et son environnement
extérieur. Une force ne peut étre pergue qu’au travers de ses effets; en d’autres
termes, elle ne peut pas étre directement mesurée. Pour cette raison, la force
est un des concepts les plus abstraits de la mécanique.

Pour nous en convaincre, nous citons un extrait de la lettre LXXIV d’Euler
& une princesse d’Allemagne [21] : « Puisqu’un corps, en vertu de sa nature,
conserve le méme état tant de mouvement que de repos, et qu’il n’en sauroit étre
détourné que par des causes externes, il s’ensuit que pour qu’un corps change
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d’état, il faut qu’il y soit forcé par quelque cause étrangere, et que sans cela il
demeureroit toujours dans le méme état. De la vient qu’on donne a cette cause
externe le nom de Force : c’est un terme dont on se sert communément, quoique
beaucoup de ceux qui ’emploient n’en aient qu'une idée fort imparfaite. »

Nous allons traiter deux types de forces : les forces volumiques (& dis-
tance) comme la pesanteur ou des forces électro-magnétiques comme la force
de Lorenz et les forces de contact. Soit C un corps de configuration initiale
Ro et de configuration actuelle R. La force volumique exercée sur C au temps
t représente ’action de son environnement extérieur sur les point intérieurs
de C a cet instant. Plus précisément, si Il est une partie arbitraire de C dont
les configurations initiale et actuelle sont Q et w (fig. 3.1), la force de volume
agissant sur Il au temps ¢ est donnée par

Folwnt) = / o, )b(x, 1) do, (3.54)

o b(x,t) est une fonction vectorielle définie sur R appelée densité massique
spatiale de force volumique (par unité de masse) au temps t. La version
matérielle de (3.54) prend la forme

F'(Q,t) = / Py(X)B(X,t)dV, (3.55)

ou B(X,t) est la densité matérielle de force volumique au temps t. Comme
FP(w,t) et F°(Q,t) représentent la méme quantité, nous devons avoir f°(w,t) =
F*(Q, 1), c’est-a-dire

/p(oc,t)b(ar:,t) dv — /QPO(X)B(X,t) v =0. (3.56)

En changeant d’abord les variables de & X, en utilisant ensuite (3.33) et
(3.37), et en appliquant finalement le théoreme de localisation, on obtient la
relation

B(X,t) =b(x(X,1),t). (3.57)

Les forces de contact permettent de décrire I'interaction entre deux parties
intérieures d’un corps C séparées par une surface (c.-a-d. les forces internes
de cohésion) ou laction des corps extérieurs qui agissent directement (& treés
courte distance) sur la frontiere de C. Soient I~ et [T deux parties quelconques
d’un corps C telles que leurs configurations initiales Q= C Rg et QT C Ro
soient séparées par une surface I'g et leurs configurations actuelles w™ C R et
wt C R par une surface ' (fig. 3.4). En description spatiale, 'action de IT™
sur II™ a l'instant ¢ au travers d’un élément de surface ds(x) de I'" autour de
x est représentée par un élément de force de contact 0 f°(x,t,T"). En écrivant
ceci, nous faisons I’hypothese tacite que I’action de IIT sur II™ n’est influencée
par la forme de wt qu’au travers de la forme de sa frontiere I' avec w™. Nous
faisons de plus 'hypothese que la limite

t(x,t,T') = lim of (@t.1)

5s—0  ds(x) (3:58)



116 Dynamique des milieux continus

X27 T

€

e Xy, o
€3

X3, a3

Fig. 3.4 Force de contact et vecteur contrainte de contact.

existe. Le vecteur t(x,t,T") est la force, par unité de surface (spatiale), exercée
par IIT au travers de I' sur II~. Cette densité des forces de contact est appe-
lée le vecteur contrainte spatiale (de contact) ou vecteur de traction
surfacique.

D’apres (3.58), le vecteur contrainte ¢t en x dépend de ’ensemble de la
surface I sur laquelle x se trouve. Cependant la mécanique des milieux continus
classique admet I’hypothese fondamentale suivante.

PosTuLAT DE CAUCHY

Le vecteur contrainte t en x ne dépend de la surface I' que par la normale
unitaire sortante n a I' en x, c’est-a-dire

t(x,t,T) =t(xz,t,n). (3.59)

Ce postulat stipule que, si trois surfaces différentes I';, I's et T's ont un
méme plan tangent en x, les vecteurs contraintes agissant sur ces surfaces en
x sont identiques (fig. 3.5).

Finalement, I’action de IIT sur II~ au travers de la surface I' est décrite
par le vecteur de force de contact

rer, ) :/Ft(x,t,n)ds. (3.60)
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Fig. 3.5 Interprétation du postulat de Cauchy.

Par analogie, ’action de I’environnement extérieur sur un corps C au travers
de sa frontiere IR est donnée par

FE(OR,t) = / t(xz,t,n)ds. (3.61)
R

Par la suite, la force de contact est exprimée par rapport a la configuration
actuelle (ou déformée) R. Cependant, dans un grand nombre de problemes
de grand intérét, en particulier en mécanique des solides, la configuration ac-
tuelle n’est pas connue a ’avance. Ainsi convient-il mieux d’exprimer la force de
contact par rapport a la configuration initiale (ou de référence) Ry. Les notions
de vecteur contrainte de contact nominale et vecteur contrainte de contact ma-
térielle peuvent alors étre introduites. Toutefois, comme l'interprétation phy-
sique et géométrique de ces vecteurs est peu intuitive, nous présenterons ces
notions plus en détail a la section 3.9.

3.5 Conservation de la quantité de mouvement et
du moment cinétique

En physique, la quantité de mouvement d’une particule de masse m et de
vitesse v est définie par

m = mv m; = muv;, (3.62)
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et son moment cinétique par rapport a l'origine 0 par
m=mx X v m; = MEi;RT ;U . (3.63)

Pour une partie IT d'un corps C dans les configurations initiale 2 et actuelle
w (fig. 3.2), on a les définitions suivantes de la quantité de mouvement et du
moment cinétique par rapport a l'origine O :

m(w,t):/p(:c,t)v(m,t) dv
ﬁi(w,t):/p(m,t)vi(m,t) dv (3.64)

plx,t)x x v(x,t)dv

mi(w,t) :/p(a:,t)eijkxjvk(ac,t) dv. (3.65)

Les dérivées matérielles des grandeurs précédentes ont pour expression

%;W :/wp(w,t)mg”)d _/wp(:c,t)a(w,t) dv (3.66)
%(:’t) :/wp(w,t):c X %ﬁ’t)dv
:/pwthaxt)d (3.67)

ol a est l'accélération spatiale définie par (2.33). En effet, le théoreme du
transport de Reynolds et ’équation de continuité (3.41) permettent d’écrire
Péquation (3.64) sous la forme

/wpvi dv = /w (Dg:z) +p”i§;:> dv

Dp Dv; OV,
=F Zom ) g
<Dtv’+th +pvzaxm v

sz n Dp+ Ovm, d
Por T\ Di &cm v

pa; dv .

Dmi (w, t)
Dt

I
—— e =
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L’égalité (3.66) est ainsi démontrée. D’ une fagon similaire, la relation (3.67) est
prouvée en écrivant

Dii(w, t)
Dt
d

= &/pgijkmjvk dv

D(peijrrjor) v
:/w(ljjtj—‘y—pa‘”kxjvka - dv
—/ Dp Tiv + Dz v—i—xD +xv8vm dv
= \ D SRR TPk Ty Uk T T T R

Dy, Dp Ovp,
— PEIRT—— Dr + PEijLVjVE + E4jRT U D1 + p@x dv

= / pPEijkTjar dv,
w

ou I'on a utilisé le fait que €;;5v;v; = 0. Nous allons maintenant établir et
formuler les deux principes fondamentaux de la mécanique des milieux continus,
connus sous le nom de lois du mouvement d’Euler.

PRINCIPE DE CONSERVATION DE LA QUANTITE DE MOUVEMENT

Le taux de changement de la quantité de mouvement d’une partie quelconque
IT d’un corps C au temps t est égal a la force résultante appliquée a I1 a cet
instant.

La force résultante est constituée de la résultante des forces volumiques
agissant sur les particules de II, et de la résultante des forces de contact agis-
sant sur la frontiere de II. En description spatiale, cela équivaut a la somme
FP(w,t) 4+ £¢(Bw, t). Par (3.54), (3.60) et (3.64), le principe de la conservation
de la quantité de mouvement pour II a la formulation spatiale suivante :

d
%/wp(w,t)v(:c,t)dv—/wp(w,t)b(w,t) dv—i—/@wt(m,t,n) ds. (3.68)

A Taide de (3.66), nous pouvons écrire (3.68) comme

/p(:c,t)a(m,t) dv:/p(m,t)b(m,t) dv+/6 t(x,t,n)ds. (3.69)

PRINCIPE DE CONSERVATION DU MOMENT CINETIQUE

Le tauz de changement du moment cinétique (par rapport a Uorigine) d’une
partie quelconque de I1 d’un corps C au temps t est égal auw moment (par rapport
a Dorigine) des forces appliquées a 11 4 cet instant.
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En description spatiale, cela équivaut a écrire

%/ plx,t)x x v(x,t)dv
" (3.70)
= / p(x,t)x x b(x,t) dv —|—/ x X t(x,t,n)ds.
w ow
En appliquant (3.67), (3.70) devient
/ plx,t)x x a(x,t) dv
© (3.71)

/ p(x,t)x x b(x,t)dv +/ x X t(x,t,n)ds.
w ow

Il faut relever que ’existence d’un observateur est implicitement supposée dans
les énoncés des lois du mouvement d’Euler ou dans les expressions (3.68) et
(3.70). Ceci implique que le principe de conservation de la quantité de mouve-
ment et le principe de conservation du moment cinétique ne sont pas objectifs,
c’est-a~-dire qu’ils ne sont pas invariants lors du passage d’un observateur a
un autre. Ceci est dii au fait que la vitesse ou 'accélération ne sont pas des
quantités objectives, comme cela a été montré au chapitre 2. Souvent, les ob-
servateurs pour lesquels (3.68) et (3.70) sont invariants sont qualifiés d’inertiels
ou galiléens. Dans ce cas, le référentiel est en translation pure avec une vitesse
uniforme ¢; telle que Q(t) = cste, et ¢(t) = 1t + ¢, out ¢; et ¢y sont des
constantes.

3.6 Théoreme de Cauchy.
Equation du mouvement pour un milieu continu

Nous allons maintenant déduire des conséquences de premiere importance des
principes de conservation de la quantité de mouvement et du moment cinétique.
La premiere est un équivalent de la loi de Newton en mécanique du point.

LEMME DE CAUCHY

Si le vecteur contrainte t(x,t,n) est continu par rapport ¢ x, alors le principe
de la conservation de la quantité de mouvement (3.69) implique que

t(x,t,—m) = —t(x,t,n). (3.72)
Ceci n’est rien d’autre que le principe de l'action et de la réaction.
DEMONSTRATION.

Coupons la configuration actuelle w d’une partie quelconque IT d’un corps C en
deux parties w™ et wT par une surface I' dont la normale unitaire & I" sortant
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de w™ est n (fig. 3.6). La frontiere de w™ est composée de deux surfaces I' et
'™, c’est-a-dire dw™ = T'UT'". De méme, la frontiére de w™ est dw™ =T UTT.

Le principe de la conservation de la quantité de mouvement est valable
pour w™ et pour wT

/7 o, a(e, t) dv

oz, )b(, 1) dv + /M t(a,1,m) ds
x,t)b(

plz,

|
/W b(z, t) dU+/7t(m,t,n)ds+/rt(w,t,n) ds  (3.73)
/w+ p(z,t)a(x,t) dv

= /w+ p(z,t)b(z,t) dv+/ t(z,t,n)ds

Owt
:/ p(x, t)b(z, ) dv—l—/ t(a:,t,n)ds+/t(az,t, —n)ds. (3.74)
wt T+ T

Xy,

I
r
r

~ R
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€ Xy, 7y
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Fig. 3.6 Partition de w en w™ et w™ par une surface I'.

Or ’équation (3.69) est valable avec w = w™ Uw™t et w = T~ UTT. En
combinant (3.73) et (3.74) avec (3.69), nous obtenons

/(t(:v,t7 —n)+t(z,t,n))ds=0. (3.75)
r

Comme t(x,t,n) est continu en x et que le choix de I' est arbitraire, ’applica-
tion du théoréme de localisation & (3.75) donne (3.72). O



122 Dynamique des milieux continus

Avec le lemme de Cauchy, nous sommes en mesure d’établir et de prouver
un des résultats principaux de la mécanique des milieux continus.

Théoréme de Cauchy (existence du tenseur des contraintes)

Si le vecteur des contraintes t(x,t,m) est continu par rapport a x, et si
p(x, t)b(x,t) et p(x,t)a(x,t) sont bornés, alors le principe de la conser-
vation de la quantité de mouvement implique qu’il existe un tenseur des
contraintes o(x,t) tel que

t(xz,t,n) =o(x,t)n ou ti(x,t,n) = 0;(xz,t)n, . (3.76)

DEMONSTRATION.
Considérons un tétraedre wy dont les trois faces S; sont perpendiculaires aux
vecteurs unitaires e; (i = 1,2,3) et sont concourantes & la position actuelle x
d’une particule d'un corps C (fig. 3.7). Soit la quatrieme face Sy, d’aire A et
de normale unitaire arbitraire n = (cosaq, cos ag, cosaz)?. Alors, un simple
calcul montre que aire A4; de la face S; de normale unitaire (extérieure) e; est
donnée par

A; = Acos o COSQ; =N -€;. (3.77)

En notant h la distance de & a Sy, le volume du tétraedre est
1

Considérons un autre tétraedre w similaire au premier wy (fig. 3.7). Le rapport
de similitude pour chaque dimension linéaire dans w et wp est égal a A > 0.
Alors le volume de w est

v= é/\?’hA. (3.79)
O

L’aire a de la face s4 de w avec m comme normale unitaire externe est
a=M\A, (3.80)

et laire a; de la face s; de w de normale unitaire externe e; a l’expression
suivante :

a; =NAn-e; = A2 Acosq; . (3.81)

Le principe de conservation de la quantité de mouvement (3.69), pour le tétra-
edre w donne

[ (el t1aty.t) - ply. b5 1)) o
N 3
:/ t(y,t,n)ds—i—Z/ t(y,t,—e;)ds.
54 i=1" %

(3.82)



Théoreme de Cauchy. Equation du mouvement pour un milieu continu 123

Xy, @y

e

Ab

Aa

e |

—ey

€ Xla I
€3

X3, x3

Fig. 3.7 Tétraedre de Cauchy.

Puisque le vecteur contrainte ¢ est, par hypothése, continu en y, alors le théo-
reme de la valeur moyenne du calcul intégral implique qu’il existe y,; € s; tel
que

/ t(y,t,n)ds = at(g,,t,n) = \2At(yg,,t,n) (3.83)

S4

/ t(y,t, —e;) ds = a;t(y;,t, —e;) = \>Acos a;t(y;, t, —e;) . (3.84)
Sq

Dans cette derniere relation, il n’y a pas sommation sur .

De plus, comme p(y,t)b(y,t) et p(y,t)a(y,t) sont supposés continus et
bornés, alors il existe une constante finie M > 0 telle que

1
< Mv= MMNhA. (3.85)

/ (p(y. Daly. t) — ply. )by, 1)) dv

En tenant compte de (3.83), (3.84) et (3.85) dans (3.82), nous pouvons
écrire

3

1

0 < |INAt(gy,t,n) + Z A2 A cos it (g, t, —e;)|| < 3 MMNhA, (3.86)
i=1
c’est-a-dire
3

_ _ 1

0 < ||t(yy,t,n) + Z cos a;t(Yi, t, —e;)|| < 3 MM\h. (3.87)
i=1
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Lorsque A — 0, alors gy; — « pour tout i = 1,2, 3,4 et (3.87) devient

3
t(x,t,n) + Z cos a;t(x,t, —e;)
i=1

=0. (3.88)

En utilisant le lemme de Cauchy (3.72) et la seconde relation de (3.77), il
découle de (3.88) que

3
t(x,t,n) Z n-e;)t(x,t,e;)) =0, (3.89)
=1

c’est-a-dire

t(z,t,n) = (n-e)t(x,t,e1)+ (n-ex)t(x,t,e3) + (n-e3)t(x,t,e3). (3.90)

La définition du produit tensoriel de deux vecteurs (1.48) nous permet
d’écrire (3.90) sous la forme

t(x,t,n) = (t(x,t,e1) ® ey +t(x,t,e2) ®ex +t(w,t,e3) ez)n.  (3.91)
Par conséquent, 'existence du tenseur de contrainte de Cauchy
o(xz,t) =t(x,t,e1) ®er +t(x,t,e2) @ e + t(x,t,e3) Res, (3.92)

tel que (3.76) est valable, est ainsi démontrée. Une contrainte étant une force par
unité de surface, elle s’exprimera en Pascal (Pa) dans le systéme international
des unités.

Le théoreme de Cauchy exprime la dépendance linéaire de t(x,t,n) par
rapport & la normale unitaire. Ainsi, lorsque le tenseur des contraintes o (x, t)
est connu, le vecteur contrainte agissant en @ sur toute surface de normale
unitaire extérieure nm est completement déterminé. Par conséquent, 1’état de
contrainte en x (& linstant t) est caractérisé par le tenseur des contraintes
o(x,t). Méme si les propriétés principales du tenseur des contraintes seront
étudiées plus loin, il est utile de donner une interprétation géométrique de ses
composantes o;; afin de mieux cerner o.

Les composantes o;; de la matrice o relative a la base {e1,ez,e3} sont
obtenues par

Uij:ei'aej:ertej te

,=0oe;j. (3.93)
Cette relation montre que o;; est la composante du vecteur contrainte t.; dans
la direction ¢ agissant sur un élément de surface spatiale dont la normale unitaire
est dirigée dans la direction e; (fig. 3.8).
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Fig. 3.8 Composantes matricielles du tenseur des contraintes de Cauchy o.

Par exemple, 011 est la composante dans la direction 1 du vecteur contrainte
agissant sur un élément de surface de normale unitaire eq, et 015 est la com-
posante dans la direction 1 du vecteur contrainte agissant sur un élément de
surface de normale unitaire ez. La composante normale de t.;, c’est-a-dire

055 = € ~te.

,=€ej-oe; (sans sommation sur j), (3.94)

est appelée contrainte normale. Elle correspond a une traction si elle est
positive ou a une compression si elle est négative. Les composantes tangentielles
de t.;, c’est-a-dire

ogij=e; te, =e;-oe; avec e -e =0, (3.95)
sont appelées contraintes de cisaillement. Par exemple, 011 est une contrainte

normale et 012 est une contrainte de cisaillement.

Nous allons maintenant utiliser le théoreme de Cauchy et le théoreme de
la divergence pour établir les équations du mouvement pour un milieu continu
a partir du principe de la conservation de la quantité de mouvement.

PRINCIPE DE LA CONSERVATION DE LA QUANTIT]:Z DE MOUVEMENT

Théoréme

Supposons que le tenseur des contraintes o(x,t) est continiment différen-
tiable par rapport a x, et que p(x,t)b(x,t) et p(x,t)a(x,t) sont continus
en x. Alors, le principe de la conservation de la quantité de mouvement,
c’est-a-dire (3.69), est satisfait si et seulement si, pour un point quelconque
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x de R,

divo(z,t) + p(x,t)b(z,t) = p(x,t)a(z,t) ou o4 + pb; = pa;. (3.96)

DEMONSTRATION.
Nécessité. En introduisant (3.76) dans (3.69), on obtient

/p(a:,t)ai(:c,t)dv:/p(:c,t)bi(m,t)dv+/a oij(x,t)n; ds. (3.97)

En appliquant le théoreme de la divergence au dernier terme, on peut écrire
cette expression

/ (ol Das(z, t) — pla, Obi(x, 1) — 0y (@) do=0.  (3.98)

Comme I'intégrand est continu en x, (3.96) découle du théoreme de localisation.

Suffisance. Supposons que (3.96) est valable pour tout point intérieur de R.
Alors, pour un domaine arbitraire w de R,

/ (p(z, t)a;(x,t) — p(z,t)b;(x, t) — 04, (w, 1)) dv = 0. (3.99)

En appliquant le théoreme de Cauchy et le théoreme de divergence a cette
dernieére équation, nous concluons que (3.68) est vérifié. O

L’équation (3.96), due & Cauchy, est appelée équation du mouvement
de Cauchy. Lorsqu’il n’y a pas d’accélération, elle est aussi appelée équa-
tion d’équilibre. Comme nous le constaterons, ’équation (3.96) est 'une des
équations les plus utilisées en mécanique des milieux continus.

PRINCIPE DE LA CONSERVATION DU MOMENT CINETIQUE

Théoréme (Symétrie du tenseur des contraintes de Cauchy)

Supposons que le tenseur des contraintes o(x,t) est continiment différen-
tiable par rapport a x, et que p(x,t)b(x,t) et p(x,t)a(x,t) sont continus en
x. Alors le principe de la conservation du moment cinétique (3.71) implique
la symétrie du tenseur des contraintes de Cauchy,

ol =0 ou iy = @ - (3.100)



Théoréeme de Cauchy. Equation du mouvement pour un milieu continu 127

DEMONSTRATION.
Compte tenu de (3.76) dans (3.71), il vient

/p(m,t)eijkxjak(a:,t)dv
© (3.101)
:/p(m,t)sijkijk(:c,t) dv+/ €ijkTjOkm (&, )N, ds .

ow

En appliquant le théoreme de la divergence au dernier terme et par le fait que
Zjm = 0jm (éq. (1.27)), on obtient

/a €ijkLjOhm (X, )N, ds
= / €ijk (xj,mokm(a;t) + xjokm,m(azt)) dv
= / ik (O (T, 1) + TjOhm,m (@, 1)) dv. (3.102)
La substitution de (3.102) dans (3.101) donne

/ giji; (p(m, t)ar(x,t) — p(x, )b (@, 1) — Opm,m (1)) dv
“ (3.103)
= / €ijkOkj ((E, t) dv .

Par (3.96), le membre gauche de cette expression est égal & zéro. Ainsi (3.103)
est réduit a

/ e’:‘ijkO'kj(SC,t) dv=0. (3.104)
Le théoréme de localisation conduit a
1
€ijkOkj = 3 eijk(ojr —orj) =0. (3.105)

Ceci implique que o, = oyj, c'est-a-dire (3.100). L’équation (3.100) signifie
que
012 = 0921 0923 =— 0392 031 — 013 . (3106)

Par conséquent, parmi les 9 composantes du tenseur des contraintes de Cau-
chy o (fig. 3.8), 6 sont indépendantes. De plus, dii & sa symétrie, o possede
un grand nombre de propriétés qui peuvent étre obtenues en appliquant di-
rectement les résultats de I'algebre linéaire relatifs aux tenseurs symétriques.
En particulier, le théoreme de décomposition spectrale pour un tenseur symé-
trique permet une plus grande connaissance de o. Finalement, on peut relever
que la symétrie du tenseur o garantit a elle seule le respect du principe de la
conservation du moment cinétique. La démonstration de cette affirmation est
faite simplement en inversant la démarche du théoréme précédent. Ainsi, les
deux lois du mouvement d’Euler sont vérifiées si le tenseur des contraintes o
est symétrique et qu’il satisfait ’équation (3.96). (I
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3.7 Propriétés du tenseur de contrainte de Cauchy

Nous allons maintenant étudier les principales propriétés de o(x,t), a partir
de (3.76) et de (3.100). Afin de simplifier les notations durant cette étude,
la dépendance de o par rapport a x et a t ne sera pas considérée, car les
propriétés de o restent valables indépendamment des valeurs de x et de t. Le
vecteur contrainte est donné par le théoreme de Cauchy exprimé par la relation
(3.76)

t=on ou  ty=oyn;. (3.107)

De maniere générale, t n’agit pas dans la direction de la normale unitaire n a
laquelle il est associé. Donc, t a non seulement une composante normale

tn=m-t=n-on ou ty = nit; = oynn; (3.108)
mais aussi une composante tangentielle (de cisaillement)
o=t~ (ol = (4 - me ] = (- 8072 @109

Cependant, il peut arriver que ¢ agisse uniquement dans la direction de n.. Cette
possibilité conduit a étudier le probleme aux valeurs propres suivant :

on = \n ou 0Ny = An; . (3.110)

L’algebre lindaire (§ 1.3.8) permet d’affirmer que l’équation caractéristique
associée a (3.110)

det(c — AI) =0 ou det(o;; — Ad;5) =0 (3.111)

possede trois racines réelles o; (i = 1,2,3) car le tenseur o est symétrique.
Ces racines sont les valeurs principales de o qui, en mécanique, sont appelées
contraintes principales. Dans le cas général, o possede trois contraintes
principales distinctes o1, o2 et o3, qui sont habituellement ordonnées de facon
a ce que o1 > 09 > 03. Les axes dirigés le long des vecteurs propres n; associés
aux o; sont appelés axes principauxr de contrainte et les plans normaux a
ces axes sont appelés plans principaux. En résumé, une contrainte principale
est la contrainte normale qui agit sur un plan principal ou aucune contrainte
de cisaillement n’existe.

Par ailleurs, en algebre linéaire, il est démontré que les vecteurs principaux
correspondant aux valeurs principales distinctes d’un tenseur symétrique o sont
mutuellement orthogonaux. Ceci signifie que deux axes ou plans principaux
associés a deux contraintes distinctes sont perpendiculaires. Cette propriété est
utilisée pour la décomposition spectrale de o

0'201”1®TL1+O’2’I’LQ®TL2+O’3’I’L3®7’L3, (3112)

ol n; - n; = 6;; pour ¢,j = 1,2,3. En d’autres termes, relativement a la base
{n1,n2,n3} constituée des vecteurs propres orthonormaux n,, la matrice o;;
du tenseur de contrainte de Cauchy est diagonale :
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g1 0 0
[ol=1 0 o2 0 |. (3.113)
0 0 03

L’état de contrainte d’une particule d’un corps C est dit tridimensionnel si
o1, 09 et o3 sont toutes les trois non nulles, bidimensionnel ou plan si deux
des contraintes o1, o9 ou o3 sont non nulles, et unidimensionnel si seulement
I'une des contraintes o1, o2 et o3 est non nulle.

Si ’équation (3.111) est développée, elle devient (éq. (1.120))

N -1 (o)A + (o)A —I3(0) =0, (3.114)
ol
Li(o) =tro=o0y (3.115)
1 1
Iy(o) = 3 ( tra)2 —tr 0'2) = 5(((71»1-)2 — a,,manm) (3.116)
I3(0) = deto = €ijk0:10)20k3 , (3.117)

sont les invariants principauxr de o. Comme nous le verrons, ces invariants
jouent un role prépondérant dans la formulation des équations constitutives des
matériaux isotropes. A aide de (3.113), ils peuvent étre exprimés en fonction
des contraintes principales

11(0') =01 +02 +0’3
IQ(O‘) = 0102 + 0203 + 0301 (3.118)
13(0') —= 010203 .

Notons que la permutation des indices 1, 2, et 3 ne change pas I (o), Iz(o) et

13(0')

Rappel de la définition des invariants

Dans la formule (3.93), les composantes o;; de la matrice de o sont définies
relativement & la base orthonormée {e;, e2, es} par

05 = €;-0€j . (3119)

Considérons une autre base orthonormée {e}, e}, e4} obtenue par rotation de
{e1, ez, es}
e, =cije; (i=1,2,3), (3.120)

ol ¢;; est donné par la relation (1.6). Alors les composantes de o”, relatives a
la base orthonormée {e}, €5, e5} sont reliées a o;; par
r_

/ /
0ij = €; O€; = CimCin€m * T€n = CimCinTmn - (3.121)
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L’expression (3.121) est la régle de transformation pour les matrices de
contraintes de Cauchy. En fait, les scalaires donnés par (3.118) sont dits in-
variants au sens ol
o
Oii = 04
2 /7 \2 / /
(Uii) — OmnOmn = (011) ~ OmnOmn
/ / /
€ijk0i10520k3 = €ijk0;10 203 -

Il est souvent utile de décomposer o de la maniére suivante (éq. (1.90) et (1.91))

o=s+ ool ou Oij = Sij + O'o(sij s (3122)
ou 1 )
s=o0 —ool, o9 = 511(0') =3 Okk- (3.123)

Le tenseur s défini ainsi est appelé tenseur déviateur des contraintes as-
socié a o. Par construction, trs = s;; = 0. En d’autres termes, si la partie
déviatrice de o est nulle, alors o est de la forme o = —plI avec oy = —p.
Dans ce cas, il s’agit d’un état de contrainte hydrostatique pure, et p est
une pression hydrostatique. Le signe négatif vient du fait qu’en mécanique des
fluides, par convention, la pression est positive.

EXEMPLE 3.1

Soit le tenseur o dont les éléments sont donnés par (1.122), donnant 1’état
de contrainte d’un milieu continu (en unités arbitraires). Ainsi, le probléme
aux valeurs propres résolu dans cet exemple n’est autre que celui de trouver
les contraintes principales et les directions principales. En utilisant ce méme
état de contrainte, trouver le vecteur de contrainte sur le plan défini par le
vecteur normal unitaire n = 2/3e; + 2/3es — 1/3es.

2 1 -2
=] 1 4 -3 (3.124)
—2 -3 -2

Pour trouver les composantes du vecteur contrainte sur le plan prescrit, on
utilise le théoreme de Cauchy (3.76)

t 2 1 -2 2/3 8
ts | = 1 4 -3 2/3 | == 13
ts —2 -3 -2 ~1/3 -8

Les composantes de contrainte normale et de cisaillement sur ce plan sont
données par (3.108) et (3.109), respectivement. Leurs valeurs sont

tn =niti =555 et tp = (tit; — t3)"" = 4,56.
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Considérons maintenant un systeme de coordonnées défini par les directions
principales. Par rapport a ce systéme, nous définissons un plan avec un
vecteur normal donné par m = 1/v/3n; + 1/v/3n, + 1/\/§n3. En utilisant
(3.76) le vecteur de contrainte sur ce plan est

i 6 0 0 1/V3 1 6
ty | =0 165 0 1/V3 | =—=|[ 165
t3 0 0 —365 1/v3 V3 —3,65

Les composantes normale et de cisaillement sont
2\1/2
tN = niti = 1,33 et tT = (titi — tN) = 3,94.

Le plan défini par le vecteur unitaire ci-dessus est appelé plan octaédrique
et les contraintes associées les contraintes octaédriques normales et de ci-
saillement ou contraintes de comparaison. Sur ce plan particulier, on peut
montrer que

tN = _[1(0')/3
% 212(0) — 61(cr) .

tr

La démonstration de ces expressions est laissée en exercice au lecteur. La
composante de cisaillement peut en outre s’exprimer en termes de contraintes
principales ou du deuxiéme invariant I5(s) du tenseur déviateur
des contraintes s (3.123)

/2

tr = [(01 - 02)2 + (o2 — 03)2 + (o3 — 01)2] %Ig(s) .

W =

Notons qu’'une contrainte équivalente o, ou contrainte de von Mises, pro-
portionnelle a tr,

1/2
Oe = % ((01 = 02)* + (02 — 03)* + (03 — 01)2)} = %IQ(S)

est utilisée fréquemment en mécanique des matériaux comme déformation
plastique ou rupture des matériaux.
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3.8 Etats de contrainte simplifiés

Comme cela a été mentionné, les équations d’équilibre pour un milieu continu
correspondent & I’équation (3.96) sans accélération

60’11 80’12 60'13
b1 =0
81‘1 + 31‘2 + 82133 +p !

0021 0022 5023
bo = 3.125
6371 + 61}2 + 81‘3 +p 2 0 ( )

Oos;  Oozy | 0033
bs =0
(9331 + 8;52 + 8$3 + Po3

ou 6
Uij

;=0. 12

axj+pb 0 (3.126)

Souvent, la force de volume est notée comme f; = pb;.

EXEMPLE 3.2
Soit I’état de contrainte d’un corps donné par les expressions suivantes

011 = 10.%? +IE%, 012 = 2173
029 = 2023 +100, o013 = 3

o33 = 30x3 + 1022, 093 = 52z3 .

On demande de trouver les forces de volume telles que 1’équilibre statique
soit vérifié.

Les équations de ’équilibre statique sont données par (3.125). Avec les
composantes de la contrainte données, ces équations donnent

3023 + pby = 0
0 + pbsy 0
20x3 + pbs = 0 .

Donc les forces de volume qui assurent ’équilibre sont données par le vec-
teur (—30z3, 0, —20z3). Les équations (3.125) peuvent étre simplifiées si 'on
suppose les forces volumiques négligeables. Ces trois équations ne sont pas
suffisantes pour déterminer les 6 composantes 0;; de o, mais elles doivent
étre vérifiées pour tout corps en I’absence d’accélération. Une simple ins-
pection révele que, si chaque composante de o est indépendante de x, les
trois équations de (3.125) sans forces volumiques sont identiquement vé-
rifiées. Un état de contrainte est dit homogéne si o est indépendant de
x. De tels états de contrainte sont importants, non seulement parce quun
grand nombre d’essais d’identification statiques ou quasi statiques en mé-
canique des milieux continus sont basés sur eux, mais aussi parce qu’'une
bonne compréhension de ces états est nécessaire pour traiter des états de
contrainte plus compliqués.
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Traction ou compression uniforme

On supposera que cette traction ou compression s’exerce dans la direction 1.
Le tenseur o est donné par

c 0 0
o=0n; QN ou [c]= 0 0 0 |, (3.127)
0 0 0

ol o est constant. Ce tenseur caractérise 1’état de contrainte dans une barre
cylindrique droite parallele a ey, sans force sur sa surface latérale et avec des
contraintes normales, uniformément appliquées sur les deux bases. La barre est
dite en traction si 0 > 0 et en compression si o < 0. Les axes principaux
de contrainte sont ceux qui sont paralleles & ey et tous ceux qui sont normaux
a ey. De facon plus générale que (3.127), la traction ou compression uniforme
dans la direction définie par un vecteur unitaire m a pour expression

o=oc(mem) ou o = om;m; (3.128)
avec o constant.

Contrainte uniforme de cisaillement

Celle-ci s’effectue dans la direction 1 sur des plans perpendiculaires a es. Le
tenseur o est donné par

0 7 0
oc=T1(e; e +esRe) ou o= 7 0 0 |, (3.129)
0 0 O

ou 7 > 0 est constant. Cet état de contrainte peut se présenter dans un écou-
lement laminaire d’un fluide visqueux dont la direction est parallele & e; mais
sur une surface perpendiculaire & es. L’équation caractéristique (3.114) pour
cet état de contrainte prend la forme

A2 —72) =0. (3.130)

Par conséquent, les contraintes principales sont 01 = 7, 00 =0 et 03 = —7 et
les directions principales correspondantes sont n; = (e; + es)/v/2, no = e3 et
n3 = (e; — e3)/v/2 . En résumé, la décomposition spectrale (3.112) pour une
contrainte de cisaillement est

e+ e
2

€1 — €

027(61-‘1-62)@ 9

— T(el — 62) & (3'131)

Pression hydrostatique

Nous avons vu que le tenseur des contraintes correspondant a la forme
o=—-plx)I ou oij = —p(x) 5 , (3.132)
et ’équation d’équilibre (3.125) est réduite &
—Vp+pb=0 ou —pi+pb;=0. (3.133)
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Flexion pure

On suppose qu’il n’y a pas de forces volumiques et que o est donné par

0&(.732 - ho) 0 0
oc=alxes—hy)egr®e; ou [o] = 0 0 0|, (3.134)
0 0 0

ol v et hg sont constants. Les trois équations de (3.125) sont immédiatement
satisfaites par (3.134). Le tenseur o donne une approximation du champ de
contraintes telles qu’elles apparaissent dans une poutre prismatique parallele a
e, soumise & deux couples appliqués a ses extrémités et agissant sur des axes
le long de eg.

Contrainte plane

Dans ce cas,

o =011€1 ey +02pex R e+ 0'12(61 X eq+ ez 81) (3135)
ou
o o012 0
o] = o012 022 0 |, (3.136)
0 0 0

ou 011, 022 et 012 sont uniquement fonction de x; et de x5. Alors, en ’absence
de forces de volume les équations (3.125) se simplifient en

O0o11 0012 - O0oa1 0022
8%1 + 83:2 =0 8x1 + 8x2

=0. (3.137)

Le champ de contrainte (3.136) peut étre utilisé pour approcher les contraintes
présentes dans une plaque mince, parallele au plan normal & e3, et soumise a des
forces paralleles au plan. Ceci inclut la flexion pure comme un cas particulier.

3.9 Tenseurs des contraintes de Piola-Kirchhoff

3.9.1 Considérations générales

Jusqu’a présent, la force de contact a été exprimée par unité d’aire ou de surface
de la configuration actuelle (ou déformée) R. Donc, le tenseur des contraintes
de Cauchy est exprimé en fonction de sa valeur actuelle agissant sur la sur-
face courante. C’est la raison pour laquelle on 'appelle la contrainte vraie. Par
conséquent, le principe de la conservation de la quantité de mouvement et celui
de la conservation du moment cinétique ont été formulés seulement par rapport
a la configuration actuelle. Comme mentionné a la fin de la section 3.4, la ré-
solution de probléemes en relation avec des solides requiert une formulation par
rapport a la configuration initiale ou de référence Ry. Ce n’est pas seulement
parce qu’il est difficile de connaitre a priori la configuration déformée du solide,
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mais aussi parce qu’il est plus commode d’analyser sa réponse expérimentale-
ment par rapport a la configuration non déformée. Par conséquent, des mesures
de contraintes définies par rapport a la configuration non déformée ont été pro-
posées. Deux pareilles mesures bien connues dans I'étude des solides sont les
tenseurs des contraintes de Piola-Kirchhoff. Le point de départ pour définir ces
tenseurs est d’exprimer la force de contact agissant effectivement sur une sur-
face dans la configuration actuelle par un vecteur de contrainte artificiellernent
appliqué a la surface correspondante dans la configuration initiale. Une telle
définition du vecteur de contrainte nous permet de reformuler les principes de
la section 3.5 et d’en tirer des conclusions similaires a celles de la section 3.6.

Gustav Kirchhoff (1824-1887) est né & Konigsberg. Il en-
seigna successivement a I’Université de Breslau, d’Heidel-
berg et enfin, & I’Université Humboldt & Berlin. Ses contri-
butions sont importantes en spectroscopie, en théorie du
corps noir et en élasticité. Il a repris la description la-
grangienne du tenseur des contraintes que Gabrio Piola
(1794-1850) avait introduite auparavant.

Fig. 3.9 Gustav Kirchhoff.

3.9.2 Premier et second tenseurs de Piola-Kirchhoff

Soit t(x,t,n) le vecteur contrainte de Cauchy en x agissant sur un élément
de surface déformée nds (fig. 3.10). Le premier vecteur contrainte de Piola-
Kirchhoff T(X,t,N) appliqué en X et agissant sur I’élément de surface de
référence INdS associé a nds est défini par

T(X,t,N(X))dS =t(z,t,n(x,t))ds. (3.138)

Comme dS et ds sont tous deux des scalaires positifs, (3.138) implique que T
et t ont la méme direction. Cependant, le vecteur de contrainte T' ne représente
pas l'intensité actuelle; il est souvent appelé le vecteur de pseudo-contrainte.
Il agit sur la configuration présente et est une fonction de X et de la normale
N en dS dans la configuration initiale. La relation (3.138) fournit la force
élémentaire appliquée a la configuration présente.

De plus, dS et ds étant généralement différents, ||T'|| et ||| le sont généralement
aussi.

En introduisant le théoréme de Cauchy (3.76) dans (3.138) et en utilisant
ensuite la formule de Nanson (2.107), on obtient

T(X,t,N)dS = t(w,t, n) ds = a’(a:,t)nds
= J(X,t)o(x(X,t),t)F"TNdS. (3.139)
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Fig. 3.10 Relations entre le vecteur de contrainte de Cauchy t et les premier et
second vecteurs de contrainte de Piola-Kirchhoff T et K.

Comme dS > 0, on en déduit que
T(X,t,N)=P(X,t)N, (3.140)

ou

P(X.t)=J(X,t)o(x(X,t),t)F " (3.141)
est le premier tenseur de contrainte de Piola-Kirchhoff. L’équation
(3.140) n’est rien d’autre qu’un équivalent du théoreme de Cauchy (3.76). Ce
résultat peut étre déduit directement du principe de la conservation de la quan-
tité de mouvement et est écrit sous la forme suivante :

| PXa(x(x.0.6)dv

Q (3.142)

:/PO(X)B(X,t)dV-I— T(X,t,N)ds,
Q oN

olt Py(X) est la densité de masse initiale définie par (3.28) et B(X,t) la densité
de force volumique définie par (3.55).

En substituant (3.140) dans (3.142) et en faisant appel aux mémes argu-
ments utilisés pour la démonstration de (3.96), on peut déduire 1’équation du
mouvement pour un milieu continu

div P(X,t) + Py(X)B(X,t) = Po(X)a(x(X,),1). (3.143)
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Notons que la dérivation est effectuée ici par rapport a la variable matérielle
X . Examinons les propriétés du tenseur P. En utilisant (3.100) et (3.141), on
montre facilement que

PFT" =FpP". (3.144)
Donc, par manque de symétrie, P ne possede pas les propriétés du tenseur
de contrainte de Cauchy o présentées dans la section 3.7 et le principe de la
conservation du moment cinétique est satisfait si et seulement si P vérifie la
condition (3.144).

Considérons maintenant la relation de Cauchy (3.76) vue par deux ob-
servateurs R et R*. En supposant que les vecteurs ¢t et n sont objectifs, en
Poccurrence qu’ils se transforment suivant (2.195), on peut raisonner comme
suit. A partir de t* = o*n* et I'objectivité de t* et n*, on peut écrire

Qt = o*Qn. (3.145)
D’autre part, a partir de (3.76), on a

Qt =Qon. (3.146)
En comparant les deux dernieres équations, on obtient

o' =QoQ". (3.147)

Donc, le tenseur des contraintes de Cauchy est objectif. Examinons mainte-
nant le premier tenseur des contraintes de Piola-Kirchhoff P. A cette fin, nous
écrivons (3.141) pour l'observateur R* comme

P FT = Jo. (3.148)

En utilisant (2.205), (2.206), (3.141) et (3.147) dans (3.148), on peut écrire
successivement

P (QF)" =JQoQ"
P'FTQ" = QJoQ” = QPFTQ"
P =QP. (3.149)

Donc, le tenseur P n’est pas objectif lors d’'un changement d’observateur.

Bien que le premier tenseur de contraintes de Piola-Kirchhoff P convienne
pour des problemes en mécanique des solides, il n’est pas symétrique et il n’est
pas objectif lors d’un changement d’observateur. Pour éviter cet inconvénient
dans la formulation des lois constitutives de matériaux solides soumis a de
grandes déformations, on utilise souvent le second tenseur de contrainte
de Piola-Kirchhoff S qui est objectif. Ce tenseur peut étre introduit de la
fagon suivante.

Premierement, le second vecteur de contrainte de Piola-Kirchhoff K ap-
pliqué en X et agissant sur 1’élément de surface de référence INdS est défini
par

K(X,t,N)dS =F '(X,t)t(x(X,t), t, n(X,t)) ds. (3.150)
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Ainsi, d’apres la définition, K exprime la force de contact par unité d’aire
de référence « transformée » par F~ 1. (Physiquement parlant, un tel vecteur
de contrainte n’est pas naturel.) Alors, par les mémes arguments utilisés pour
déduire (3.140) et (3.141), ce vecteur s’écrit

K(X,t,N)=S(X,t)N (3.151)

S(X,t)=J(X,)F (X, t)o(x(X,t),t)F T (X,t)

1 (3.152)

=F (X,t)P(X,1).
Comme o est symétrique, il est facile de montrer que S I’est aussi. Cependant,
au contraire de o, S n’a pas d’interprétation physique significative. L’équation
du mouvement pour un milieu continu peut aussi étre exprimée en fonction de
S'; on remarque que P(X,t) = F(X,t)S(X,t) et il suffit alors de substituer
cette expression dans (3.143). D’un autre coté, lorsque S est employé, le prin-
cipe de la conservation du moment cinétique est automatiquement vérifié grace
a la symétrie de S.

3.9.3 Linéarisation des tenseurs de contraintes

Examinons les effets de la linéarisation cinématique introduite a la section 2.9
sur les tenseurs de contraintes. Le tenseur de Piola-Kirchhoff calculé par (3.144)
s’écrit en notation indicielle

Pk = Fini(Pij)" (Fji) ™" = FiPjiFt (3.153)
En utilisant (2.70) et (2.145) dans (3.153), on obtient

Uk | p OUn _ p, OUn OV

Pyt = Pim — P; . .
kT kI g X 0x, 'oX; 0X;

(3.154)

De méme, avec (3.152), (2.145) et la deuxieme égalité de (2.70), le second
tenseur de Piola-Kirchhoff s’exprime comme

s
T 9X,

) Py = Py — Py 291 (3.155)

Sij = Fiy Pij = (5 oX,

Finalement, pour le tenseur de contrainte de Cauchy, nous écrivons (3.141)
comme

0ij = J 7' Pi(Fyy)" = J 7' Py . (3.156)
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Par (2.70) et (2.147), nous avons

oU;
oij = J 7 P ( Ok + 7
0X;; (3.157)
—J_l(P“—i—P- an)Np,,+P.% .
= 1) zkan ~ Ly Zkan'

En négligeant les termes contenant le gradient du déplacement dans (3.154),
(3.155) et (3.157), il vient

Pmk ~ Pkm Sij ~ ]Dij 045 ~ -Pij . (3158)

Dongc, le résultat de la linéarisation cinématique, pour des petits déplacements
et des gradients infinitésimaux, s’exprime par la symétrie du premier tenseur de
Piola-Kirchhoff et par ’égalité approximative des trois tenseurs des contraintes.

EXEMPLE 3.3

Pour apprécier les différences entre les trois tenseurs de contraintes, considé-
rons le cas uni-axial d’un barreau prismatique de section circulaire, encastré
a l'extrémité A et soumis a une force P, comme le montre la figure 3.11.

X27 Ty

€

Fig. 3.11 Barreau cylindrique soumis a une contrainte uni-axiale.

Le mouvement est donné par les expressions suivantes :

r1 = aXy
o = bX2 (3159)

La longueur et le rayon avant déformation sont ¢y et Ry, respectivement. Au
temps t, ces parametres deviennent ¢; et R;. Pour I'extrémité B du barreau
et selon (3.159), on peut écrire

by = aly = a:ft/fo
R = bRy = b=R:/Ry. (3.160)
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Selon (3.160), les relations (3.159) s’expriment comme

= —X
€1 7 1
Ry
= —X 3.161
€2 Ro 2 ( )
R,
= —X3.
TR, ?

Dongc, la matrice du tenseur du gradient de déformation (2.65) est

L/l 0 0
[F] = 0 R:/Ry 0 (3.162)
0 0 R:/ Ry
et son jacobien J
6 (R\® 4 A
=det[Fl=—=—| =——. 1
J et[F] % <R0> %o Ao (3.163)

ou Ag et A; sont les aires de la section au temps t = 0 et ¢, respectivement.

Une force P;, parallele a 'axe 1 agit au centre de gravité de la section a
Pextrémité B. Donc la matrice des contraintes de Cauchy est définie par la
force au temps t, P;, et Iaire de la section au temps ¢

1 0 0
[cl=—1 0 0 0 ou oy =— . (3.164)
0 0 0

Avec (3.141) et (3.152), la matrice des contraintes des premier et deuxieme
tenseurs de Piola-Kirchhoff sont

P, Lo
20 0 (] 0
6 A [ A 2
[Pl = JPllFI " =25+ 0 0 o 0 & o
020\ 0 0 0 0 0
1 00
P, P,
=A—t 00 0 ou Pu—A—t
o\ 0o 0 0 0
[S] = JIF]~ [o][F]~"
L o0 0 B9 ¢ L o0 0
Lt Ay £y
:ﬁi% 0 % 0 0 0 0 0 0
P\ o o0 % 0 00 0 0 %
N P, 0
= ——— O 0 O ou 511:7*
AOZt 0 0 0 AOEt
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Les expressions précédentes montrent que la composante du premier tenseur
de Piola-Kirchhoff est donnée par la force au temps t et ’aire de la section
au temps ¢t = 0 (ou la section initiale). La composante du second tenseur
n’a pas d’interprétation directe, comme les deux autres tenseurs. Il sera
cependant utile a la modélisation des solides en grandes déformations. Ce
sujet sera traité au chapitre 6.

Puisque la déformation est homogene, les composantes de déformation in-
finitésimales sont exprimées comme

4y by + AL
—_—=s — = 1
A A 4 Enal
Ry Ro+ AR
— = — =1 .
Ro Ro + €99
Donc,
1+e1q 0 0
[F] = 0 1+ e9o 0
0 0 1+ 99

On montre facilement que si €11, 29 < 1, les trois mesures de contraintes
sont approximativement les mémes. Ce résultat est une conséquence de la
linéarisation cinématique.

3.10 Exercices

Montrer que le champ de vitesse v; = Az;/r3 ol z;x; = r? et A est une
constante arbitraire, satisfait I’équation de conservation de la masse pour un
fluide incompressible.

(3.2] Pour le champ de vitesse v; = z;/(1 + t) montrer que

PL1T2T3 = p0X1X2X3 .

Montrer que I’écoulement donné par le champ de vitesse

(1 —72)cosf
Uy = T

(1+7?)sin6
Vg = T
v, =0

satisfait I’équation d’incompressibilité lorsque la masse volumique p est constante.



142 Dynamique des milieux continus

L’état des contraintes dans un corps est donné par la matrice des contraintes
suivant :

0 Cx1 0
[(T} = Cl‘l 0 _CfL'Q , (3165)
0 —C.Z‘Q 0
ou C est une constante arbitraire.

1) Déterminer la force volumique pour que 1’équilibre statique soit satisfait.

2) Calculer au point P de coordonnées (4,—4,7) le vecteur de contraintes
sur le plan d’équation 2x; + 2x5 — x3 = —7, et sur la sphere d’équation
2?2 + a3 + 2% = 81.

3) Déterminer les contraintes principales, le maximum des contraintes de ci-
saillement et des contraintes déviatrices principales en P.

(3.5) En l'absence de forces de volume, déterminer si le champ de contrainte
suivant satisfait 1’équilibre

1
011 :41'?4-8‘%11'2 —51’% 022 :5$?+§$1"E2+4.’E§
) (3.166)
0‘12:—1 1’%—&%1%2-41’3 033 = 032 = 031 =0

Soit C un corps tridimensionnel non pesant, soumis a une pression uniforme
(normale) sur toute sa surface extérieure. Montrer que C est en équilibre.

(3.7) Pour chaque état de contrainte en un point donné par les matrices sui-
vantes :

P p P

ol={» p » (3.167)
p p D
pp P

l={p» p (3.168)
p p —2p
0O pop

[ol= p» 0 p (3.169)
p p O

avec p une constante, déterminer les contraintes principales. A quel état de
contrainte correspond chacun de ces cas?

Montrer que les invariants du tenseur déviateur des contraintes s sont
reliés a ceux du tenseur des contraintes o par les expressions suivantes

Ii(s) =0 (3.170)
I(s) = 313 (0) - (o) (3.171)
I3(s) = 2371%(0) - %11(0')[2(0') + I3(o) . (3.172)
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Si P;;. (x,t) est une fonction arbitraire scalaire, vectorielle ou tensorielle,
démontrer qu’'on a

/6 Pij'__(qunq ds = / (O—pqpij...,q + pRJ(Up - bp)) dv . (3173)

w

En utilisant (3.141), démontrer 1’égalité (3.144).

Montrer que le second tenseur des contraintes de Piola-Kirchhoff S sa-
tisfait les relations
S=8" e S =85. (3.174)






CHAPITRE 4

Energétique

4.1 Introduction

Apres avoir décrit les principes de conservation de la masse, de la quantité
de mouvement et du moment cinétique, nous allons introduire maintenant les
principes reliés a la thermodynamique d’un milieu continu en mouvement, ainsi
qu’a la conservation de I’énergie.

Nous rappelons que toute déformation dans un matériau produit un effet
thermique de la méme maniére qu’'un effet thermique produit une déformation.
11 suffit pour s’en convaincre de chauffer une barre de métal, qui sous 'action
de la chaleur, s’allonge.

Dans ce chapitre, nous travaillerons généralement en représentation spatiale
ou eulérienne. Le principe de conservation de 1’énergie totale est d’abord établi.
Il conduit a I’écriture du principe de conservation de 1’énergie interne. Ensuite,
nous considérons la conservation de 1’énergie mécanique en représentation la-
grangienne. Ultérieurement, on montrera que, du principe de conservation de
I’énergie totale auquel 'objectivité est imposée, on peut inférer les autres lois de
conservation. Enfin, le chapitre se termine par I'introduction de I'entropie et le
second principe de la thermodynamique qui repose sur I'inégalité de Clausius—
Duhem, une mesure de l'irréversibilité des phénomenes associés a la physique
des milieux continus.

La thermodynamique des milieux continus a retenu particulierement 1’at-
tention des auteurs suivants : [22, 28, 33, 68, 76].

4.2 Conservation de I’énergie

Soit w le volume matériel d’un milieu continu a l'instant ¢, tel que w C R, la
configuration actuelle du corps C. On généralise le concept d’énergie cinétique
en définissant celle-ci comme D'intégrale sur le volume actuel w(t) de la moitié
de la masse volumique p(,t) multipliée par le carré de la norme de la vitesse
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spatiale locale v(x,t). L’énergie cinétique de w(t), que nous noterons E.(t), est
un scalaire donné par la relation

v(x,t) - v(x,t)

E.(t) = /(t) p(w,t)f dv. (4.1)

Pour simplifier, la dépendance de w par rapport au temps ne sera plus indiquée
dans la suite. Outre ’énergie cinétique, I’énergie d’'une région matérielle contient
des contributions provenant de mouvements & 1’échelle microscopique tels que
des mouvements de translation aléatoires, des vibrations moléculaires, des ro-
tations de molécules et d’autres modes énergétiques microscopiques. Toutes ces
énergies contribuent a ’énergie interne Ein(t). Par exemple, on sait que pour
deux corps C; et Cy au repos (énergie cinétique nulle), si la température du
premier est plus élevée que celle du second, alors C; contient plus d’énergie que
Co. Lénergie interne Fiy(t) de C s’exprime comme 'intégrale de volume de la
densité d’énergie interne u(x,t) par unité de masse. On a

Ei(t) = / plz,t)u(x,t)dv. (4.2)

La somme de I’énergie cinétique et de ’énergie interne (qui est I’analogue pour
un matériau de I’énergie potentielle en mécanique du point) est 1’énergie totale
de C. L’énergie totale peut varier au cours du temps sous 'action du travail
exercé par les forces qui agissent sur C et par les apports extérieurs d’énergie
calorifique. Avant de préciser le concept de travail pour un milieu continu,
remémorons-nous sa formulation en mécanique classique du point. La loi de
Newton pour une particule de masse m se déplagant a la vitesse v s’écrit

dv
— =F. 4.
"t (43)

En effectuant le produit scalaire des deux membres de cette relation par v, on

obtient J 4 /1 i /1
v 2 2
T T (2 ol ) " (2” ) v

qui est une forme du théoreme de ’énergie cinétique.

La puissance, c’est-a-dire la variation du travail au cours du temps, résulte
du produit scalaire de la force par la vitesse. Seule la composante de la force
dans la direction de la vitesse accroit 1’énergie cinétique %va de la particule.
La composante de la force orthogonale & la vitesse induit une courbure de la
trajectoire, mais elle n’augmente pas 1’énergie cinétique.

La puissance dans un milieu continu est donc donnée par la composante de
la force dans la direction du mouvement multipliée scalairement par la vitesse
du matériau.

Considérons a nouveau le corps C. Pour les forces de volume, cette puissance
4 3
s’'écrit

/ p(x,t)blx,t) - v(x,t)dv. (4.4)
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La puissance fournie par les forces de surface est donnée par la relation :

/t-vds:/ on-vds, (4.5)
ow ow

ol on a fait appel & la relation de Cauchy (3.107). La derniére intégrale dans
(4.5) peut se transformer par le théoreme de la divergence. En utilisant (1.228)
et en tenant compte de (1.69) et de la symétrie de o, on a

/ o-n~'vds:/ n-O'T'vds:/div(o-T'u)dv:/div(a'u)dv. (4.6)
dw Ow w

w

Sous forme indicielle, on a

o 0 - aO'ij 8vj
/aw 0 vjn; ds = /w pr (0iv5) dv = /w ( oz, v + U”&m) dv, (4.7)

et en faisant appel a la notion de produit scalaire de deux tenseurs d’ordre 2
(1.94), la derniére intégrale de (4.7) devient

0o _ % _/ . .
/w(axi vj +J”8x )dv— w((dlva) 'v—i—a.Vv) dv. (4.8)

%

Deés lors, sous forme vectorielle, on écrit
/ on-vds= / div(owv)dv = /((divo‘) cv+o0:Vou)dv. (4.9)
ow w w

Le transfert de chaleur constitue la seconde voie par laquelle de 1’énergie
est fournie au volume matériel. Nous allons tenir compte d’abord d’un terme
de production/consommation de chaleur en son sein, de la forme

/ r(z,t)dv, (4.10)

ou r(x,t) représente la chaleur produite ou re¢ue par unité de temps et de
volume. Ce pourrait étre la chaleur dégagée ou consommée par une réaction
chimique dans le milieu ou un chauffage par effet Joule (électrode de carbone
dans un milieu en fusion). Il peut également prendre en compte la chaleur regue
par rayonnement de la part d’éventuelles sources extérieures. Sa dimension est
ML™'T3 avec les symboles M, L, T désignant la masse, la longueur et le
temps, respectivement, et 1'unité SI correspondante est le W/m?. L’apport
extérieur de chaleur se fait le plus souvent par conduction a travers la surface
Ow. On peut bien entendu trouver d’autres modes de transfert de chaleur, par
exemple par radiation. Nous les ignorerons dans la suite.

Désignons par ¢ la quantité scalaire qui représente la chaleur qui entre dans
C par unité de temps et par unité de surface ds. Soit n la normale a ds. Par
analogie avec le postulat de Cauchy, nous supposerons que ¢ au point & dépend
uniquement de la normale unitaire pointant vers I’extérieur au point x, c’est-
a-dire

qg=q(z,t,n). (4.11)
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Notons par q1, g2, q3 les flux de chaleur obtenus en un point matériel P lorsque
la normale n est dirigée respectivement suivant les vecteurs de base ey, es, es.
Des lors,

g = q(z,t,e;). (4.12)

Par un raisonnement basé sur la conservation de 1’énergie dans un élément
matériel tétraédrique, on montre d’une maniere analogue a celle du théoreme
de Cauchy pour le tenseur des contraintes (sect. 3.6) que le flux de chaleur ¢
est une combinaison linéaire des flux ¢; multipliés par les composantes n;

q=¢qn;=q - n. (4.13)

Par définition, g(ax,t) est le vecteur flux de chaleur. Le taux de chaleur regu
par conduction par le corps entier est égal a

—/ qg-nds. (4.14)
ow

Le signe négatif introduit dans (4.14) signifie quun taux de chaleur positif est
obtenu lorsque q pointe vers 'intérieur du volume matériel. La quantité —q-n
est donc la densité surfacique du taux de chaleur regue par conduction a travers

ow.

Si pour toute évolution du matériau, on a ¢ = 0 et r = 0, on dit que
I’évolution du milieu est adiabatique. Il n’y a pas d’échange calorifique avec
lextérieur. Si on applique le théoreme de la divergence & 'intégrale (4.14), il

vient
—/ q-ndSZ—/diquv. (4.15)
Ow w

Nous sommes maintenant en mesure d’énoncer la loi de conservation de 1’éner-
gie, qui constitue le premier principe de la thermodynamique.

PREMIER PRINCIPE DE LA THERMODYNAMIQUE

La dérivée temporelle de l’énergie totale dans C est €gale a la somme de la
puissance des forces de volume et de contact et du taux de chaleur regue par le
matériau.

En vertu des équations (4.1), (4.2), (4.4)-(4.6), (4.10) et (4.15), on écrit

d .
L[ (22w ao= [ (pbevdivion) ~divasrja (@19
a ), \ 2 -

soit avec les définitions (4.1) et (4.2), et la relation (4.8),

( t)"'Emt( ))
(4.17)
/ (pb-v+ (dive) - v+o:Vo—divg+r)dv.
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A T’aide du théoreme du transport de Reynolds, de la conservation de la masse
(3.41), le premier membre de (4.16) devient

;(Ec(t)-l-Eint(t)):/w(v.a—kll);;)pdv (4.18)
fom (e

Les forces & distance b peuvent toujours dériver d’un potentiel W (x) indépen-
dant du temps. Par définition, on a

ow

b=-VW by =— . 4.19
, - (419)
Il vient alors pour pb - v
ow DW
bivi = —po — 2 4.20
pbiv PUig. P Dy (4.20)

En combinant les relations (4.16), (4.18), (4.19) et en faisant appel au théoréme
de localisation, on obtient la forme locale de la conservation de 1’énergie totale :

D .

p— (u + 20y W) =div(ov) —divg +r. (4.21)
Dt 2

Avec les relations (4.16)-(4.18), on peut encore obtenir, si on ne fait pas appel

au potentiel W,

D
/(pa—pb—diva)'vvar/ <pl;:—a':Vv+divq—r> dv=10. (4.22)

La premiere intégrale de (4.22) s’annule par le principe de conservation de la
quantité de mouvement (3.96). En invoquant le théoréme de localisation pour
la seconde intégrale de volume de (4.22), la loi de conservation de ’énergie

interne devient
Du

"Dt
Le premier terme du membre de droite © de (4.23) peut étre réécrit en tenant
compte de la symétrie de o;; et de la relation (2.180)

=0:Vv—divg+r. (4.23)

= 0ij—=— — =045
JaCCZ‘ 2 J

ov; ov; ov; 1 ov;  Ov;
D= UijGTj = O'jia7j J <8;EJ + asz> = Uijdij (424)

ou encore
D=0c:Vv=o0o:d. (4.25)

On interpréte ce terme comme la puissance des forces de contact au sein du
matériau. On peut aussi écrire © comme étant tr(o L) via (1.95) ou encore
o : L, ou la notation L désigne le tenseur des gradients de vitesse Qv /0x défini
par (2.177). L’équation (4.23) montre que I’accroissement d’énergie interne est
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égal a la somme de la puissance développée par les forces de contact, le transfert
de chaleur par conduction et la production volumique de chaleur au sein de C.

On peut faire apparaitre le théoreme de 1’énergie cinétique en soustrayant
la relation (4.23) de (4.21) et en tenant compte de (4.20)

D /v-v .
P (T) =pb-v+ (dive) -v. (4.26)

Ce théoréme exprime que la variation dans le temps de I’énergie cinétique
est égale a la puissance des efforts engendrés par les forces de volume (pre-
mier terme du second membre) et par les forces de contact (second terme
du second membre). On remarquera que cette relation n’est rien d’autre que
la conservation de la quantité de mouvement (3.96) multipliée scalairement
par v.

EXEMPLE 4.1
Pour un corps élastique linéaire en équilibre, soumis & des forces de volume
b et de surface ¢, démontrer 1’égalité suivante :

/a:sdv:/pb-udv+/ t-uds, (4.27)
w w ow

ou o, e sont les tenseurs de contrainte et de déformation.

Sous forme indicielle, on a

/Uijgij dv:/pbiuidv‘i‘/ tiu;ds .
G w ow

En utilisant (3.76), l'intégrale de surface se modifie en une intégrale de
volume comme suit

O(oijui
/ tiuids:/ oijnjuids:/ aijumjds:/wdv
Ow Ow Ow w 8$j

ou encore

oijui) , d(aij) Ju; B
/w B dv —/w 9z, U; + 0 9z, dv —/w(a,u7]uz—|—azju,7])dv.

En tenant compte des équations d’équilibre (3.126), le membre de droite de
(4.27) s’écrit comme

/(pbiui+aij,jui+aijui7j)dv :/(ui(pbi—kaij,j)+U¢jui7j)dv

w

= / aijumdv
w
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L’intégrand a droite s’écrit grace a la symétrie du tenseur des contraintes
1
ijtig = 5 (05U + 0igttig) = 5(0ij5u + 0jit) = 5(0i,4 + 0iju;,)

= 501 (g +ujs) = oijeij -

/Uijui’jdv:/aijsijdv .
w w

Finalement on a

4.3 Conservation de I’énergie mécanique
en représentation matérielle

L’analyse de la conservation de I’énergie qui a été faite ci-dessus a été menée
en représentation eulérienne. Un développement semblable peut s’effectuer en
représentation matérielle pour décrire les diverses composantes de 1’énergie.
C’est l'objet de cette section. Pour simplifier, nous supposerons que le flux de
chaleur q et le terme de volume r sont nuls.

En utilisant (4.5) et (4.6), '’équation de conservation de ’énergie (4.16)
devient

D D /v-v Du
i (Ec(t) + B (1)) :/wpﬁt(7> dv+/wpﬁdv

(4.28)
:/pb-vdv+/ t-vds.
w Ow
En prenant en compte (4.23) avec ¢ =r = 0 et (4.25), on a
D
pﬁdv:/a:V'vdv:/a:ddv. (4.29)

Cette derniere équation montre qu’en ignorant tous les effets thermiques, le taux
de changement de 1’énergie interne est égal a la puissance des forces internes.
Puisque le volume est arbitraire, on déduit la forme locale qui s’écrit

pu=o0:d. (4.30)

Finalement, la conservation de 1’énergie mécanique devient

D /v-v
/ijt(T)dv+/w0'.ddvf/wpb~vdv+/8wt~'vds. (4.31)

Afin d’écrire cette derniere relation en coordonnées matérielles, considérons
tout d’abord D’énergie cinétique. A partir de (2.103), (3.33) et de I’équation
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de conservation de la masse (3.37), on déduit que pdv = Py dV. De plus, en
considérant ’équation (2.20), on a

/p”'”dv:/POV'VdV. (4.32)
w 2 Q 2

Pour le second terme du membre de gauche de (4.31), on a d’apres (2.179)
L=FF ' Puisqueo:d=o0: (FFfl), on obtient

/wcr:ddv:/wa: (FF ') dv. (4.33)

En utilisant I'identité tensorielle (1.97), le second membre de (4.33) se modifie

comme suit
/a:(FFfl)dv:/(aFfT):de. (4.34)

w

A Taide de (3.141) et (2.103), on peut écrire (4.34) dans la configuration ma-
térielle avec le tenseur de Piola-Kirchhoff P

/W‘T 1 (FFfl)dv:/w(UF,T) i
:/Q(JO‘F*T) :FdV:/QP:de, (4.35)

La contribution des forces de volume s’exprime facilement en coordonnées ma-

térielles au moyen des relations (2.20), (3.37), (3.57) et (2.103)
/pb-vdU:/QPoB-VdV. (4.36)
Pour les forces de contact, on fait appel a (2.20) et (3.138) de sorte que
/ t-wds= | T-VdS. (4.37)
ow a0

Finalement, le principe de conservation de I’énergie mécanique s’écrit dans la
configuration de référence

D (V.V .
P (X Nav+ [ PFav
o (57) v+ |

:/P0B~VdV+ T.VdS.
Q o0

(4.38)

D’apres (4.28), la dérivée matérielle de I’énergie interne s’exprime successive-
ment comme

(4.39)
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En posant u(x(X,t),t) = U(X,t), on a

/ x(X,t),t))J(X,t)P(X,t)dV
(4.40)
/—UX t) Po(X)dV .

Par conséquent, le second terme du premier membre de (4.38) peut s’exprimer
comme suit

/P Fav = /Po—dV (4.41)

et localement ' )

PU=P:F. (4.42)
L’expression de I’énergie interne peut étre modifiée en utilisant d = FTEF!
(cf. probleme 2.8) et les équations (3.152) et (1.97). Il vient

/o-:ddv = / Jo:(FTEF')av
w Q

_ / J(oF~T): (F-TE)dv

- /(FS) ((FTE) dV:/S:EdV. (4.43)
Q Q

Il est intéressant de noter que la puissance mécanique peut s’exprimer indiffé-
remment comme le produit doublement contracté du tenseur des contraintes
de Cauchy et du tenseur des taux de déformation (o : d), du premier ten-
seur des contraintes de Piola-Kirchhoff et du tenseur des taux du gradient de
déformation (P : F.’)7 ou encore du second tenseur des contraintes de Piola-
Kirchhoff et du tenseur des taux de déformation de Green-Lagrange (S : E)
En conséquence, nous pouvons écrire 1’égalité suivante pour la puissance des
efforts intérieurs (puissance effectuée par les contraintes internes et la déforma-
tion) par unité de volume

Jpi=PU=Jo:d=P:F=S:E. (4.44)

De telles paires de parametres sont appelées paramétres conjugués parce
que leur produit interne (scalaire) fournit une énergie. C’est un résultat tres
important de la mécanique des milieux continus qui permettra de déduire les
équations de comportement & partir d’une fonction potentielle. Ce sujet sera
abordé au chapitre 6.

4.4 Interprétation des lois de conservation
par le premier principe

Dans cette section, nous allons retrouver les lois de conservation de la masse,
de la quantité de mouvement et du moment cinétique a partir du seul principe
de conservation de I’énergie, ainsi que du principe d’objectivité.
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Le premier principe de la thermodynamique peut s’écrire en vertu des re-
lations (4.16) et (4.17)
D
Di (Ec(t) + Eing (1)) = / (pb-v+div(ewv) —div g+ ) dv. (4.45)

w

Avec le théoreéme du transport sous la forme (3.5), le premier membre de (4.45)
devient

(Ec + Elnt ))

/w( ( v- v+u>+div<p<;v.v+u>v)>dv. (4.46)

En appliquant de plus le théoréme de localisation, la relation (4.45) s’écrit

4 < +1fv v)+div( (lv v+u)v>
Zoolu+ Zow- .
ot " 2 P\ 2 (4.47)

=pb-v+r—divg+div(ov).

Sl

Cette derniere équation peut se mettre aisément sous la forme

pu—o:Vvo+divg—r+v-(pa—dive — pb)

1 4.48
+(2v-v+u> (p—i—pdivv):O, ( )

ou la notation p désigne la dérivée particulaire.
Considérons deux reférentiels R = (0, x,t) et R* = (0%, x*, t*) se déplagant
Pun par rapport & lautre et dont le mouvement relatif est décrit par (2.195).

Si, en plus de (2.195), (2.211), (2.205) et (2.213), les regles de transforma-
tion suivantes sont valables :

pr=p (4.49)
u =u (4.50)
q =Qq (4.51)
o' =QoQ" (4.52)
rf=r (4.53)

les quantités p, u, g, o et r sont objectives.

On montre que l'objectivité de la conservation de 1’énergie (4.48), c’est-a-
dire qu’elle reste valable si on 1’écrit avec les quantités *, implique les lois de
conservation de la masse, de la quantité de mouvement et du moment cinétique.

4.4.1 Premier cas : translation uniforme

Choisissons le référentiel R* en translation par rapport a R avec une vitesse de
vitesse translation ¢(t) constante. Soit,

et) =u (4.54)
Q=1I. (4.55)
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Alors la relation (2.211) devient
v =u+wv. (4.56)

On rééerit (4.48) avec des quantités étoilées. On y remplace v* par sa valeur
(4.56) et de I’équation résultante, on retranche (4.48). On a en utilisant les
relations (4.49)-(4.53)

%([J—deivv) tu-v(p+pdive) +u-(pa—dive — pb) = 0.  (4.57)

Si on fait un changement d’échelle sur uw en passant a awu, on demande que
(4.57) soit vérifié quelle que soit or. On obtient

p+pdive=0 (4.58)
Dv ] . .
P Di —dive —pb+v(p+ p dive) =0. (4.59)
Cette derniere relation peut se mettre sous la forme
0
g (pv) + div(pv @ v) =diveo + pb. (4.60)

L’équation (4.60) est ’équation de la conservation de la quantité de mouvement
ou le terme d’accélération est modifié par la conservation de la masse (4.58).

4.4.2 Deuxiéme cas : rotation de corps rigide

Si maintenant on considere le référentiel R* dans un mouvement de rotation
par rapport a R tel qu’a 'ancien champ de vitesses, on superpose une rotation
de corps rigide

c(t) =0 (4.61)
Q=1 (4.62)
Qit)=9Q, (4.63)

le champ de vitesse v* s’écrit en tenant compte de (2.57) et de (2.60)
v'=v4+wxex. (4.64)

Le vecteur w est le vecteur dual de € (§ 2.6.3). On applique un raisonnement
analogue au cas précédent. Le principe de conservation de ’énergie fournit la
conservation du moment de la quantité de mouvement telle que

oc=ol. (4.65)

Il faut remarquer qu’en toute généralité, le terme de force de volume ou b a les
dimensions d’une accélération, s’exprime par (2.212) sous la forme

b* = Qb+¢+2Qu+ Q. (4.66)

Dans le cas ou le référentiel R* tourne a vitesse angulaire constante, cette
derniere relation devient en tenant compte de (2.60)

b*=b+2Qu=b+2Qv=>b+ 2w x v, (4.67)

ol apparait le terme de force de Coriolis w X v.
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4.5 Notion d’entropie

L’entropie d’un systéme peut étre considérée comme une mesure de son désordre.
En raison de 'agitation continuelle et incohérente des molécules d’un milieu
continu, deux niveaux d’observation doivent étre distingués. Au niveau micro-
scopique (moléculaire), le systéme physique (X') passe (ou peut passer) par un
trés grand nombre d’états différents X;, alors qu’au niveau macroscopique, qui
est celui de 'observation habituelle, ces états sont indiscernables. D’une cer-
taine maniere, on peut dire que le désordre du systéeme vient du nombre des
états X; équivalents du point de vue macroscopique et que son entropie est liée
a ce nombre. Notons que les grandeurs cinématiques et dynamiques usuelles
(par ex. la masse volumique, les vitesses, les forces de contact) sont mesurées
au niveau macroscopique sur la particule de matériau, mais correspondent en
fait & des moyennes sur des mesures faites au niveau microscopique.

Plus précisément, en associant a chaque état X; une probabilité p;, une
mesure exacte du désordre de X est donnée par son entropie, que nous noterons
s, définie a une constante multiplicative pres par la relation

N
s(X) == pilogp; - (4.68)
=1

Remarquons que cette définition est proche de celle utilisée en théorie de la com-
munication pour mesurer l’entropie de l'information. On constate sans peine
que dans le cas de N états X; différents, ’entropie maximale est atteinte si ces
résultats sont équiprobables. Comme p; = 1/N, elle vaut alors

s(X)=1logN. (4.69)

Par contre, entropie est minimale (et nulle) si un état est certain et les
(N — 1) autres impossibles. Une autre constatation tirée de (4.68) est que
dans le cas de deux systémes indépendants X et X', la probabilité de ’état
microscopique (X; et X]{ ) est pip;, de sorte que ’entropie de la réunion de X
et X’ est donnée par I'expression

N
s(XUX') =— Z piplog(pip)) = s(X) + s(X) (4.70)

ij=1

car on a toujours les relations

N N
dopi=> pi=1. (4.71)
t J

On voit ainsi que I’entropie est une grandeur extensive.
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D’autre part, si une certaine grandeur physique prend les valeurs A; dans
les états X, sa valeur macroscopique est donnée par la formule :

N
A= "piA; (4.72)

ce qui montre le lien mathématique entre les deux niveaux d’observation.

Le concept de température releve d’abord de I'observation courante, mais
son lien avec la mécanique statistique peut étre approché comme suit : I’énergie
interne d’un systeme est la quantité totale d’énergie désordonnée qu’il contient,
c’est-a-dire d’énergie répartie différemment, d’'un état X; a l'autre, sur ses mo-
lécules.

Il est important de noter que dans cette définition certaines composantes de
Pénergie interne, présentes dans le cas de réactions chimiques (et entre autres
en dynamique des gaz), sont exclues. L’analyse statistique montre que cette
énergie cinétique se répartit en moyenne de maniere égale sur chaque molécule,
et suivant chaque degré de liberté de mouvement désordonné.

La température absolue T est alors, a une constante multiplicative pres,
I’énergie désordonnée par molécule et par degré de liberté. On peut interpré-
ter le fait physique que deux corps différents mis en contact ont tendance a
uniformiser leurs températures, par le principe statistique que leurs énergies
désordonnées par molécule et par degré de liberté doivent devenir égales, de
méme qu’elles sont égales pour chaque degré de liberté.

Un lien existe de toute évidence entre température absolue et entropie et
pourrait étre développé a l'aide de la mécanique statistique. Il s’exprime par la
relation

ou(X) =Tos(X) (4.73)

qui lie les accroissements du(X) et ds(X) de 'énergie interne et de l'entropie
du systeme lorsque toutes ses caractéristiques cinématiques (masse volumique,
déformation, etc.) sont maintenues constantes.

Nous ne cherchons pas a interpréter cette relation, qui doit étre regardée
comme fondamentale lorsqu’on se place au niveau macroscopique.

Parallelement, lirréversibilité des phénomenes physiques s’exprime par le
fait que 'accroissement d’entropie d’un systéme est toujours supérieur a une
borne minimale égale a la chaleur fournie au systeme dg(X) divisée par la
température absolue T', c’est-a-dire qu’on a toujours I'inégalité

dgq(X)

>
ds(X) > T

(4.74)

I’égalité n’ayant lieu que pour une transformation réversible. Cette derniére in-
égalité est la base de la formulation du second principe de la thermodynamique
en mécanique des milieux continus.

Un point de vue intéressant sur l'irréversibilité des phénomenes physiques
est apporté par la théorie de Boltzmann pour I’hydrodynamique. Partant d’une
description a ’échelle atomique des systémes macroscopiques par la mécanique
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newtonienne, on est amené a résoudre un ensemble de N équations différen-
tielles ordinaires non linéaires
2

mi%:m i=1,...,N, (4.75)
ol N est de l'ordre du nombre d’Avogadro N4 ~ 61023, Les symboles m;
notent les masses moléculaires, v; = da;/dt sont les vitesses moléculaires et
F; des forces agissant sur la i®™° molécule dues aux interactions moléculaires.
Ce probleme est évidemment insoluble vu sa taille énorme (d’ordre Ny4) et on
passe du niveau atomique au niveau de la théorie cinétique & N corps, qui est
établie a partir des équations de Newton-Hamilton. Cette théorie fait appel a
des fonctions de distribution fy(x1,v1,..., 2N, vy) qui donnent la probabilité
jointe de trouver la molécule 1 a la position x; avec la vitesse vy et la molé-
cule 2 a la position xo avec la vitesse vo et ainsi de suite jusqu’a la molécule
N. Les trajectoires de I’approche newtonienne sont remplacées par la notion
d’espace des phases ou I’équation de la dynamique est décrite par une équation
aux dérivées partielles connue sous le nom d’équation de Liouville qui est de
dimension 6/N. On constate que la masse d’information n’a pas été réduite par
rapport a ’approche newtonienne. Cependant, 1’équation de Liouvillle permet
de mettre en ceuvre une procédure puissante et élégante qui élimine 'infor-
mation redondante. Ceci conduit & la définition de fonctions de distribution
réduites fas = fi2..m,M < N. Du point de vue des équations dynamiques,
celles-ci deviennent une chaine d’équations connue sous le nom de hiérarchie
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon). Pour les quantités macro-
scopiques intéressantes comme la masse volumique, la pression, la température,
etc., des distributions & un ou deux corps suffisent et on choisit donc M = 1,2
dans la hiérarchie BBGKY.

L’équation & un corps la plus importante est celle de Boltzmann

of  of of
o T e T e

Ici, a est Paccélération moléculaire. La fonction f(x,v,t) est la densité de pro-
babilité de trouver une particule ponctuelle classique a la position & au temps
t avec la vitesse v. Le membre de gauche de (4.76) représente le mouvement
libre des particules dans le plan de phase, tandis que C[f, f] est un opérateur de
collision binaire sous la forme d’une intégrale qui tient compte des interactions
moléculaires, dont la définition précise sort du cadre de I'exposé. L’équation de
Boltzmann repose sur I’hypothese du chaos moléculaire

fi2(m1,v1,®2,v2,t) = f(21,01,1) f(T2, V2, 1) (4.77)

qui brise la symétrie de la réversibilité du temps qui s’applique a la mécanique
newtonienne du niveau atomique. Cette brisure de symétrie ouvre la porte au
comportement irréversible. Cette irréversibilité est mesurée par une quantité
appelée H, (cf. [63]), qui est reliée & lentropie par la relation s = —kpH avec
kp la constante de Boltzmann et qui est définie par

Clf, f]. (4.76)

H= /f(w,v,t) In f(x,v,t) dvde. (4.78)
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Le théoreme H montre que dH/dt < 0. Notons que la définition de I’entro-
pie que nous avons donnée par (4.68) est une approximation numérique de la
quantité —H.

On obtient des variables macroscopiques comme la masse volumique et la
vitesse par intégration sur 'espace des vitesses

o, 1) :m/f(m,'v,t) dv (4.79)
plx, t)u(x,t) = m/f(a:,v,t)'v dv, (4.80)
ol u est la notation de la vitesse dans ’espace physique et m est la masse
atomique ou moléculaire. A partir de (4.76) et des relations ci-dessus, on peut

arriver aux équations de ’hydrodynamique, en 'occurrence, les équations de
Navier-Stokes.

4.6 Second principe de la thermodynamique

Le second principe de la thermodynamique des milieux continus est aussi connu
sous le nom d’inégalité de Clausius-Duhem.

Rudolf Clausius (1822-1888) naquit & Koslin (Prusse), au-
jourd’hui Koszalin (Pologne). Il fut successivement profes-
seur a I'Ecole d’artillerie de Berlin, puis & 'ETH Ziirich, et
aux universités de Wiirzburg et Bonn. Ses contributions
sont tres importantes en thermodynamique, ou il intro-
duisit la notion d’entropie, et en théorie cinétique des gaz.

Fig. 4.1 Rudolf Clausius.

SECOND PRINCIPE DE LA THERMODYNAMIQUE

Pour un volume matériel, la dérivée particulaire de l’entropie est a tout ins-
tant supérieure ou €gale a la somme de la distribution volumique de sources
d’entropie dans le corps et du flurz d’entropie a travers la surface.

Des lors, on généralise (4.74) & un milieu non homogene qui prend, sur un
volume matériel w, la forme :

d r q-n
— > — — - .
p prdv > /w Tdv /&J s, (4.81)
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s étant 'entropie massique. Il faut en effet tenir compte des différences de tem-
pérature auxquelles les chaleurs élémentaires (r dv) et (—g;n; ds) sont fournies
aw.

La forme locale du second principe s’obtient par application du théoreme
de transport a la dérivée particulaire en tenant compte de la conservation de
la masse, par application du théoreme de la divergence a l'intégrale de sur-
face (dernier terme de l'inéquation) et enfin, par application du principe de
localisation

255 T iy (2) . (4.82)

Cette inégalité doit étre vérifiée, en tout point et a tout instant, par tout pro-
cessus.

Pour mesurer les conséquences de (4.82), il faut y éliminer le terme r de
chaleur massique produite par unité de temps, a l’aide de la forme locale (4.23)
de ’équation de conservation de I’énergie interne. Cette élimination est néces-
saire parce que r est arbitraire, puisqu’il s’agit d’'une action a distance. On
trouve donc I'inégalité de Clausius-Duhem :

—q-VT (4.83)

qui doit elle-méme étre satisfaite par tout processus thermodynamique.

Pierre Duhem (1861-1916) naquit & Paris. I fut nommé
professeur & I’Université de Bordeaux. Ses travaux en hy-
. drodynamique et en thermodynamique montrent qu’il fut
| un pionnier de I’étude de la thermodynamique des phéno-
menes irréversibles. Son ouvrage principal est le Traité de
l’énergétique publié en 1911.

2

Fig. 4.2 Pierre Duhem.

Si on introduit ’énergie libre spécifique de Helmholtz,
f=u—-"Ts, (4.84)
I'inégalité de Clausius-Duhem (4.83) prend la forme

Df DT q- VT

L < (o) — ps— —
rpp Stlel) —ps T T

(4.85)
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Hermann von Helmholtz (1821-1894) naquit & Postdam. I
fut nommé professeur a I'’Université de Berlin. Ses travaux
en électrophysiologie le conduisent a rédiger un ouvrage
intitulé Théorie physiologique de la musique. Ses contri-
butions dans le domaine de la physique et de la chimie
sont majeures. Citons 1’énergie potentielle, la loi sur les
tourbillons, la décomposition de Helmholtz (Théoreme de
Helmholtz-Hodge) pour un champ vectoriel.

Fig. 4.3 Hermann von Helmholtz.

4.7 Exercices

Soit @ un champ scalaire sous forme spatiale dans la configuration pré-
sente w d’un corps en mouvement. En appliquant le théoreme du transport de
Reynolds et ’équation de continuité, montrer que

DQ(x,t)

p(x,t) Q(x,t) dv = / plz,t) ————=dv. (4.86)

dt J, 3 Dt

Utiliser ce résultat pour trouver l'expression DE./Dt, sachant que ’énergie
cinétique du corps est définie par (4.1).

En utilisant le théoréme de Reynolds et le principe de conservation de la
masse, établir que la dérivée temporelle de I’énergie totale s’écrit

D
2 (Be+ Fu) = /

w

Du
. — . 4.
p(v a+ Dt)dv (4.87)

Exprimer le terme v - @ en fonction de v uniquement et commenter le résultat.

Le second principe de le thermodynamique appliqué & un milieu homogene
occupant un volume w(t) est exprimé par 1’équation (4.81).
1) Etablir la forme locale du second principe de le thermodynamique.

2) Eliminer ensuite le terme r de chaleur massique, en utilisant la forme locale
de la loi de conservation de 1’énergie, pour établir I'inégalité de Clausius-
Duhem (4.83).

3) Que devient cette inégalité si on introduit ’énergie libre spécifique de Helm-
holtz (4.84)7?

Pour un fluide parfait :
1) exprimer le principe de conservation de l’énergie interne pour un fluide
parfait dont le tenseur des contraintes est donné par o = —pI ;

2) réécrire ’équation obtenue en faisant apparaitre 'enthalpie massique définie
par h =u+p/p;
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3) montrer que pour un écoulement adiabatique la conservation de
I’énergie prend la forme
Dh D
p = 2P (4.88)
Dt Dt
Démontrer la symétrie du tenseur des contraintes en effectuant le détail de
la dérivation lorsqu’on considere le cas de rotation de corps rigide du paragraphe
4.4.2.

Suggestion : A cette fin, il faut d’abord calculer v*, ensuite écrire I’équation de
conservation d’énergie dans le repere étoilé et y substituer 'expression de v*.
Enfin, on retranche I’équation de départ de ’expression obtenue précédemment
et on analyse le résultat obtenu.



CHAPITRE 5

Lois de comportement :

principes de base

5.1 Introduction

Nous avons fait appel au formalisme tensoriel afin de présenter la description
des propriétés d’un milieu continu. Ceci nous permet de raisonner en termes
généraux applicables quel que soit le systeme d’axes auquel on se réfere.

Au chapitre 2, on s’est intéressé a la description locale du mouvement du
milieu, qui peut étre caractérisé par divers tenseurs. Ceux qui font apparaitre
les déplacements comme variables seront plus appropriés pour la description
des solides tandis que les tenseurs ou les variables sont les vitesses, seront plus
adéquatement appliqués aux matériaux fluides.

La mécanique des milieux continus constitue une démarche axiomatique
qui débouche sur un modele phénoménologique. Grace & cet outil, le but est de
prédire, en tenant compte des conditions initiales et des conditions aux limites,
le mouvement d’un matériau, auquel on associe une variable thermodynamique.
Le plus souvent, cette derniere sera la température.

Des lors, quel que soit le modele choisi pour la description du milieu (fluide
parfait, fluide visqueux, solide élastique, solide viscoélastique, etc.), les lois de
la dynamique et le premier principe de la thermodynamique doivent toujours
étre respectés. Ces lois de conservation de la masse, de la quantité de mouve-
ment, du moment cinétique et de 1’énergie conduisent sous forme locale a écrire
un systeme d’équations aux dérivées partielles. Ces équations rapportées au
systeme d’axes cartésiens rectangulaires sont les suivantes.

Conservation de la masse :

Dp N

Fterdlvva (5.1)

" 0 0 0
Py 2P Y
ot " Vion, TP

ol (5.2)
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Conservation de la quantité de mouvement :

D
pﬁ': = divo + pb (5.3)
ou
avi 8’1% 80’ji
—-— — | = b; . 5.4
p(at +UJ6I]'> ij +p ( )
Conservation du moment cinétique :
ol =0 (5.5)
ou
Oij = 0ji (5.6)
Conservation de [’énergie :
D
pFQ; =tr(ocL)—divg+r. (5.7)
ou
ou ou ov;  Og;
e — ) =0y — . 5.8
p(5t+vjaxj) UJ@mi 8(E1+T ( )

Ce systeéme contient 8 équations indépendantes (1 + 3 + 3 + 1), avec les
forces a distance b et la production volumique de chaleur r données pour le
probleme.

Les fonctions inconnues sont le vecteur x du mouvement (2.1) et la tempé-
rature. Dans les équations de champ, on trouve les variables inconnues p, o;;,
u, ¢;. Notons au passage que v est calculé & partir de x. Au total, nous avons
18 inconnues, & savoir x(3), T'(1), p(1), o(9), u(1), q(3).

Si on admet comme hypothese que la conservation du moment cinétique est
satisfaite, alors o ne compte plus que 6 inconnues. Nous avons donc 5 équations
aux dérivées partielles pour 15 variables.

Cependant, on peut remarquer que notre probleme est posé de maniere in-
complete. En effet, jusqu’ici, nous avons établi les principes de conservation en
toute généralité sans nous poser la question du modele de milieu continu. Afin
de caractériser le comportement d’un matériau, il nous faut tenir compte des
équations de comportement ou équations de constitution. L’écriture de telles
équations se base sur les résultats expérimentaux obtenus en laboratoire. Les
figures 5.1 et 5.2 montrent des courbes typiques de contrainte-déformation ou
de contrainte-taux de déformation. Les équations constitutives sont aussi pro-
posées de maniere axiomatique en se basant sur des arguments mathématiques
et physiques. Ces équations donnent la dépendance des variables o;;, u et g;
par rapport a Ihistoire de la déformation du matériau et de la température.
Pour un modele donné, on choisit un certain nombre de variables cinématiques
et thermiques et on exprime comment o0;;, u et ¢; dépendent de ces variables.
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contrainte
contrainte

taux de déformation taux de déformation

(a) (b)

Fig. 5.1 Relation contrainte-taux de déformation (a) linéaire et (b) non linéaire.

contrainte
contrainte

déformation déformation

contrainte
contrainte

déformation déformation
(c) (d)

Fig. 5.2 Relation contrainte-déformation pour un solide élastique (a); un solide
élastoplastique (b) ; un élastomere (c) et un tissu biologique mou (d).

L’ensemble des relations formé par les équations de conservation et les équa-
tions de comportement établit le modele mathématique du milieu continu. Ce
modele constitue une idéalisation du comportement du matériau. C’est ainsi
que le comportement d’'un méme matériau peut étre décrit par divers modeles
selon les circonstances des situations physiques ou ces modeles sont appliqués.
Par exemple, a température ambiante, le verre est un matériau élastique ; dans
la zone dite de transformation, vers 600 °C, il est viscoélastique. Dans le four de
fusion, on peut le considérer comme un fluide visqueux newtonien incompres-
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sible. Un autre exemple est fourni par les polymeres qui dans un mouvement
lent se comportent comme un fluide visqueux, tandis que sollicités dans un
mouvement rapide, ils réagissent comme un solide élastique.

Les équations de comportement doivent au minimum satisfaire les trois
principes fondamentaux suivants :

1) objectivité et indépendance de 1'observateur par rapport au référentiel ;

2) prise en compte des propriétés de symétrie matérielle du milieu continu
considéré;
3) respect du second principe de la thermodynamique.

Les principes fondateurs pour I’écriture des équations de comportement
sont également largement développés dans les ouvrages suivants : [19, 28, 30,
33, 61, 67]. Le texte de Truesdell et Toupin [70] constitue un apport important
et tres élaboré de la théorie des milieux continus.

5.2 Principes généraux

Nous allons & présent introduire plusieurs principes généraux (incluant les pré-
cédents) que I’on doit généralement voir absolument vérifiés lorsque I'on établit
une loi de comportement. On rappelle que x représente le mouvement d’un
corps C donné par (2.1).

5.2.1 Hypothese de causalité ou de déterminisme

La contrainte actuelle a l'instant présent ¢ dans un matériau est déterminée
par ’histoire du mouvement de ce matériau. Donc, le tenseur des contraintes
de Cauchy o (x,t) est donné par

o(z,t) =o(x(X,t),t) = T§<]t (x(Z,7); X,t), (5.9)
zZec

ou la fonctionnelle 3 caractérise de fagon générale les propriétés mécaniques
du corps C. Une dépendance explicite du temps est permise. De plus, la fonc-
tionnelle peut varier d’une particule a une autre (dépendance en X) traduisant
une distribution inhomogene des propriétés du matériau. On peut interpréter,
de maniere simplifiée, une fonctionnelle comme une fonction d’une autre fonc-
tion (ici, de la fonction du mouvement x). En mécanique des milieux continus,
elle est représentée tres souvent par une intégrale sur les configurations passées
x(Z,7) (Z € C, T < t) permettant ainsi d’écrire les lois de comportement pour
les différentes classes de matériaux. Notons que 1’écriture de (5.9) exprime une
non-localité puisqu’on trouve une dépendance par rapport a chaque point Z
appartenant au corps C. Pour simplifier, nous noterons parfois la fonctionnelle
relative & o(x,t) par X(x; X, t).
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5.2.2 Principe d’action locale

Pour une particule donnée X du matériau, la fonctionnelle X (x; X, t) ne dé-
pend que du voisinage de X . Pour deux mouvements quelconques x et X coin-
cidant dans un voisinage V(X) C C quel que soit le temps 7 < ¢, la valeur de
3 est inchangée. Formellement, on écrit

S X, t) =20 X,1) (5.10)
pourvu qu’il existe un voisinage V(X)) tel que
x(Z,7)=%x(Z,7) VZ eV(X) V1 <t. (5.11)

On observe que X(x; X,t) est une fonctionnelle de la fonction x & deux va-
riables, a savoir le temps 7 et la particule Z au voisinage de la particule fixée
X. Dans ce cas, le tenseur o(x,t) est donné par une relation analogue & (5.9)
telle que
o(x,t) =o(x,t) = T§<3t (X(Z,T);X,t) . (5.12)
ZeV(X)

5.2.3 Principe d’objectivité

Toutes les équations de comportement qui satisfont le principe d’action locale
ne sont pas admissibles. Elles doivent en outre satisfaire le principe d’objecti-
vité ou d’indifférence matérielle qui exprime que la fonctionnelle 3 est inva-
riante dans tout changement continu de référentiel. On désire écrire des lois
de comportement qui sont indépendantes de 'observateur, et notamment, in-
dépendantes des mouvements rigides superposés. Plus précisément, on a (sect.
2.11)

' =x"(X,t") =c(t) + Q(t)x(X,t) (5.13)
o (X, 1) = Q1) (X, QT (1) (5.14)
t"=t—a. (5.15)

En utilisant (5.13)-(5.15), le principe d’objectivité se traduit par

(X )= B (X (Z7)X.0) (5.16)
TF<t*
Z e V(X)
tel que
B @)X =0 = (20 X.0QT(1.  (G17)
ZeV(X) ZeV(X)

Afin de mettre en lumiere I'incidence de ce principe sur I’écriture de la fonction-
nelle 3, on étudie successivement trois changements particuliers de référentiel.

Dans la suite nous prendrons 7 comme variable temporelle et ¢ indiquera
linstant présent (ou actuel), auquel la contrainte est évaluée. Des lors,

Q(NQ"(r)=Q"(1)Q(r) =1, det Q(r) = 1, V7.
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Translation rigide du repére spatial sans décalage de I’échelle de temps :
Posons Q(7) =I, a =0 et
c(r) = —x(X,7). (5.18)

Cela signifie que le repere spatial est en translation rigide de sorte
qu’apres changement de référentiel, le point matériel X au temps 7
reste a origine. De plus, t* = t. Par (5.13), on a pour Z € V(X)

X*(ZvT) = X(ZvT) - X(X’T)
et par (5.12), (5.14) et (5.16), il vient
(X, t)=0(X,t)= = (x(Z,7)-x(X,7);X,t). (5.19)

T<t
ZcV(X)

Changement d’échelle de temps et repére fixe :
Cette situation correspond au choix suivant :

Q(r)=1 c(r) =0 t=a. (5.20)

Le temps présent t est le temps de référence apres le changement de
repere. On a donc respectivement par (5.15) et (5.20)

r=r—a=T1—t. (5.21)
A Tinstant t*, on a en utilisant (5.21) et (5.14)
tr=t—t=0 of (X, t) =o*(X,0)=0(X,t).  (5.22)
Par (5.13), (5.20) et (5.21) on obtient

X'(Z,77) =x(Z,7) =x(Z,t+77). (5.23)
A partir de (5.22), (5.16) et (5.23), on obtient
o(X,t)=0"(X,0) = §<3 (x(Z,7* +1); X,0)
T <t*
S ;EW; ; (5.24)
- T—tSO (X( 77-)7 I ) .
ZeV(X)

Par conséquent, la fonctionnelle ¥ ne dépend pas explicitement de t.
On introduit

T=t— 0<s< 0. (5.25)
Combinant (5.19) et (5.24), on obtient
o(X,t) = §0 (x(Z,t—s)—x(X,t—s); X). (5.26)
V(X)

On constate donc que la fonctionnelle ¥ dépend uniquement des mou-
vements relatifs a partir du temps présent de toutes les particules Z
dans C, c’est-a-dire Z € V(X).
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Rotation rigide du repeére :
On choisit ¢(7) = 0, a = 0 et Q(7) arbitraire. Ceci correspond & une
rotation instationnaire du référentiel. Dans cette rotation, le tenseur
des contraintes se transforme suivant la relation

o*(X,t) = Q(t)o(X,1)Q" (). (5.27)

Par combinaison de (5.13), (5.14), (5.16), (5.26) et (5.27), on écrit

QME(x(Z,t—s) — x(X,t—5), X)Q"(t)
= E(X*(Zat_ 8) _X*(th_ S)aX)
=2 (QUt—s)(x(Z,t—s)—x(X,t—5s)),X). (5.28)

Cette derniére équation est la restriction qu’on doit imposer a la fonc-
tionnelle ¥ pour qu’elle soit objective. On peut voir aisément qu’in-
versement, toute équation de constitution de la forme (5.26) obéissant
a la condition (5.28) satisfait le principe d’indifférence matérielle. Ceci
est du au fait que tout changement général de référentiel peut étre ob-
tenu par une succession des trois changements particuliers envisagés
ci-dessus. Deés lors, 1'équation (5.26) avec la condition (5.28) satisfaite
est ’équation de comportement la plus générale pour la théorie mé-
canique des milieux matériels continus. Plus précisément, on constate
que la contrainte est représentée par une fonction tensorielle isotrope,
a valeur tensorielle.

5.2.4 Principe d’invariance matérielle

Les matériaux solides ont des propriétés de symétrie dues a leurs caractéris-
tiques cristallographiques : solide a réseau cristallin cubique, rhomboédrique,
etc. Certains fluides possedent également ce type de propriétés; par exemple,
les fluides & cristaux liquides. Dans ce cas, les fonctionnelles de comportement
ne vont pas changer de forme lorsque les coordonnées matérielles (X1, X5, X3)
deviennent (X7, X2, —X3). Ceci représente une opération de réflexion du repere
par rapport au plan X3 = 0. Cette condition cependant impose des restrictions
sur les équations de constitution.

La réflexion a travers un plan de symétrie passant par l'origine 0 et ortho-
gonal au vecteur unitaire n est définie par le tenseur R de composantes

Rij = (51']' - 2nm]— avec det [R] =-—1. (529)

Notons {O} un sous-groupe du groupe complet des transformations ortho-
gonales pour les axes matériels et {B} le groupe de translations de ces axes.
Alors le principe d’invariance matérielle s’énonce comme suit.
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PRINCIPE D’INVARIANCE MATERIELLE

Les équations de comportement doivent étre invariantes formellement par rap-
port & un groupe de transformations orthogonales {O} et d’un groupe de transla-
tions { B} des coordonnées matérielles. Ces restrictions proviennent des condi-
tions de symétrie induites par {O} et {B} dans le systéme de coordonnées X .

On aura donc une transformation de la forme
X =0X + B, (5.30)

avec
00" =0"0=1 et  detO=+1. (5.31)

Ces conditions expriment des symétries géométriques représentées par {O}
et des inhomogénéités représentées par {B}, au point X, des propriétés phy-
siques du corps matériel. Lorsque {O} est le groupe orthogonal propre caracté-
risé par la matrice [O] telle que det [O] = +1, le matériau est hémitrope. On
ne peut pas opérer de réflexion de ’axe z; par rapport au plan z; = 0. Lorsque
{O} est le groupe complet (det [O] = £1), le matériau est dit isotrope. Un
matériau qui n’est pas hémitrope est appelé anisotrope.

Lorsque les fonctions ne dépendent pas des translations { B} de l'origine des
coordonnées matérielles, on dit que le matériau est homogéne. Si ces fonctions
changent avec certaines translations { B} des axes matériels, alors le matériau
est tnhomogéne.

Si on couple le principe d’invariance matérielle et le principe d’objectivité
avec une transformation relative aux coordonnées matérielles X;, on a la condi-
tion

E(X(Z,t—S)—X(X,t—S),X) (532)
=% (x(0Z+ B,t—s)—x(OX + B,t —s),0X + B). '

5.2.5 Principe de mémoire

Les valeurs des variables de comportement dans un passé lointain n’affectent pas
de maniere appréciable les valeurs actuelles de ces variables au temps présent.

Nous reviendrons sur ce principe dans la suite en le précisant et en intro-
duisant le concept de mémoire évanescente.

5.2.6 Principe d’admissibilité

Toutes les équations de comportement doivent étre cohérentes avec les principes
fondamentaux de la mécanique des milieux continus, c¢’est-a-dire qu’elles sont
soumises aux lois de conservation : masse, quantité de mouvement, énergie ainsi
qu’a 'inégalité de Clausius-Duhem.
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5.3 Conséquence du principe d’action locale

Supposons pour simplifier que la fonction vectorielle x(Z,t) puisse étre déve-
loppée en série de Taylor autour de Z = X pour tout 7 < t et pout tout
ZeV(X):

xX(Z,7)=x(X,7)+(Z - X)% (X,7)+0(]|Z2-X|). (5.33)
On voit apparaitre dans cette expression le tenseur du gradient de déformation
F introduit par la relation (2.65). Nous nous restreindrons au cas de maté-
riaux qui ne dépendent que des gradients du premier ordre en nous limitant au
premier terme du développement (5.33). On aboutit & une écriture de o(X, 1)
telle que

o(X,t) = 2(%;){,75) . (5.34)

Ces matériaux sont dits simples.

En combinant I’écriture résultant du principe d’action locale réguliere (5.34),
ainsi que 1’équation (5.26), il vient

U(X’t):s§0 (C,?;(((t—s),Z—X,X). (5.35)

On a écrit dans (5.35) la dépendance explicite par rapport aux vecteurs direc-
tionnels Z — X qui ont pour origine X a trois dimensions spatiales. On peut
écrire plus simplement que cette dépendance s’exprime en fonction de la base
vectorielle ey des coordonnées matérielles de X . Cette écriture rappelle que
la forme de la fonctionnelle 3 dépend du choix des bases. L’introduction de
Z — X dans (5.35) traduit la dépendance directionnelle des propriétés maté-
rielles au point X. Lorsqu’aucune ambiguité n’est permise, on peut négliger
Z — X dans les arguments de la fonctionnelle constitutive. De plus, I’équation
(5.35) exprime que la contrainte au temps ¢ dépend de I'histoire du gradient de
déformation. On a

o(X,t)= X (F(X,t—s),X). (5.36)

s>0

Si on impose la condition d’objectivité (5.28) & la relation (5.36), on obtient
QUE(F(X,t—35),X)Q"(t) =%(Q(t — s)F(X,t —s), X). (5.37)
Par le théoreme de décomposition polaire (2.73), on a
F(X,t—s)=R(t—s)UX,t—s),

ou R(t—s) et U(X,t—s) sont les histoires du tenseur de rotation et du tenseur
symétrique d’élongation a droite, respectivement. Si on fait le choix particulier
Q(t —s) = R (t — s), Péquation (5.37) devient

R'"S(F(X,t-s),X)R=2(U(X,t-s),X). (5.38)
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On peut omettre d’incorporer la dépendance explicite de 3 par rapport a X
car celle-ci est déja prise en compte par F'. Cela facilite I’écriture et cependant,
ceci n’affecte pas la généralité des considérations qui suivent. En conséquence,
la relation (5.36) du tenseur des contraintes s’écrit sous la forme

o(X,t)=R(t)Z(U(X,t—s)R"(t). (5.39)

Cette derniere relation est la forme générale de ’équation de comportement
d’un matériau simple. Elle fournit la solution générale de 1’équation fonction-
nelle (5.37). De plus, elle montre que la contrainte dans un matériau simple est
affectée par la rotation au temps présent, alors que les rotations passées n’ont
pas d’influence.

Si on rappelle le théoréme de décomposition polaire et (2.88), on peut
mettre (5.39) sous la forme

a(t) = F(C(t—5)), (5.40)
avec
G=F"oF F ((U(t - s))2> =UMS(U(t - ))U(1).
Le tenseur & est le tenseur des contraintes transporté (convecté). En posant
L(Ct-s)=C'H)F(Ct-s)C'(1),
alors Uéquation (5.40) devient

o(t)=FL(C(t—s))F". (5.41)

5.4 Equations thermomécaniques de comportement

Jusqu’a présent, nous avons considéré des matériaux en situation isotherme.
Deés qu’on veut tenir compte d’effets thermiques, il faut introduire une nouvelle
variable primaire analogue a celle du mouvement pour la déformation. A cette
fin, on utilise la température que nous prenons telle que

T=T(X,t). (5.42)

Ceci signifie que dans un probleme thermomécanique, les variables
constitutives indépendantes sont le mouvement x et la température T. La
vitesse sera simplement obtenue par la dérivée temporelle du mouvement et
le tenseur des gradients de vitesse a partir de v. La masse volumique est
reliée au mouvement par I’équation de continuité (3.37) écrite sous la forme
det F = Py/P = po/p en coordonnées spatiales.
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5.4.1 Principe de déterminisme

Outre ’histoire du mouvement du matériau, la contrainte est influencée par la
température. L’équation (5.9) se généralise en la relation

o@.t) = B (x(Z,7),T(Z,1)X,1). (5.43)
Zee

Puisqu’on tient compte des effets thermiques, nous devons aussi donner des
relations de comportement pour le vecteur flux de chaleur g, I’énergie interne u
et la densité d’entropie s. A Iéquation (5.43) viendront s’ajouter des équations
de comportement telles que le principe de déterminisme se généralise comme
suit : la valeur des fonctions de comportement thermomécanique (o, q, u, s) en
un point matériel X et au temps t est déterminée par 1’histoire du mouvement
et de la température pour tous les points du corps C. On aura donc

o(X,t) =2x.T;X,t) =%(x(Z,7),T(Z,7), X 1) (5.44)
a(X.1) = Q. T: X, 1) (5.45)
u(X,t) =U(x, T; X, t) (5.46)
s(X,t) =Sx, T; X,t). (5.47)

5.4.2 Principe d’équiprésence

A priori, toutes les fonctionnelles constitutives sont exprimées en fonction du
méme ensemble de variables indépendantes de constitution, jusqu’a preuve du
contraire.

5.4.3 Principe d’action locale

Le raisonnement que nous avons tenu a la section 5.3 s’applique aussi au champ
de température. On effectue un développement en série de Taylor de T'(Z, 7)
autour de T'(X, ) pour écrire

oT
T(Z,7)=T(X,7)+ (Z - X)a—X +0(|Z - X|1?). (5.48)
En se restreignant aux matériaux simples, la fonctionnelle 3 ne dépend que
des gradients d’ordre 1. Il vient donc

T(Z,7)~T(X,7)+(Z - X)g;
et
B ox(Z,) oT(Z, 1)
O'(X,t)— Tgt X(Z7T)787X7T(Z’T)767X7X7t . (549)

Z eV(X)
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5.4.4 Principe d’objectivité

On a vu au chapitre 2, qu'un champ scalaire est objectif si et seulement si
™ =T. (5.50)
Pour la translation rigide du référentiel (5.18), la fonctionnelle de o s’écrit

o(X,t) = §<J (x(Z,7)—x(X,7),T(Z,7), X,t). (5.51)
T<t
ZeV(X)
Les considérations liées au changement d’échelle de temps conduisent a la re-
lation

o(X,t)=%(x(Z,t—s) —x(X,t—35),T(Z,t—s),X). (5.52)
Enfin, la prise en compte de la rotation du référentiel impose la condition

QX (x(Z,t—s)—x(X,t—3),T(Z,t—35),X)Q"(t)
=3 (Q(t — 8)(x(Z,t —s) —x(X,t— s)),T(Z,t — s),X) ) (5.53)

En combinant les résultats du principe d’action locale réguliere (5.49) et de
lobjectivité, on aboutit a la relation
ox

oT
o X, ) =X =%:(t—9),T{t—5),=—=(t—5),Z—-X,X 5.54
(x) == (= 9. T~ 5). S —9) ) e
qui généralise (5.35).

Lorsque la théorie tient compte des effets thermiques, on doit s’attendre a
ce que la masse volumique varie. On peut montrer qu’en toute généralité, 1'uti-
lisation du théoreme de décomposition polaire pour imposer 'objectivité fait
apparaitre le tenseur de déformation de Cauchy-Green, mais aussi 'invariant
scalaire 1ié au tenseur du gradient de déformation F', & savoir

det F(t — s) = (det C(t — 3))1/2 - p(tpE e (5.55)

(Voir (2.68), (2.77) et (3.37).)
En conséquence, I'équation la plus générale des matériaux simples est de la

forme

oT

o(X,t)=FL (C(t —8),p t(t—s),T(t—s), 6—X(t —5),

X) FT  (5.56)

ce qui est une généralisation de (5.41).

5.5 Définition d’un solide et d’un fluide

On définit un fluide comme un milieu matériel simple dont on suppose que la
configuration de référence est, le plus souvent, celle de l'instant présent. Un
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fluide est aussi un matériau incapable de « résister » a un effort de cisaillement.
Soumis & cette contrainte, il se met a s’écouler. Les fluides classiques du type
newtonien ont une mémoire infiniment courte. Ceci signifie que dans la fonc-
tionnelle (5.56), la contrainte ne dépend que de C(t — s), par exemple, pour
0 < s < e avec € tendant vers zéro. Le tenseur des contraintes a une mémoire
quasi instantanée.

On définit un solide comme un milieu matériel simple qui possede des confi-
gurations préférées. L’une d’entre elles peut étre prise comme configuration de
référence et on 'appelera ’état de référence. Dans la plupart des cas, dans cet
état, le matériau est non contraint (o = 0). On dit que c’est I’état naturel du
milieu. Si au contraire, a cet état de référence, o # 0, on dira que le matériau
est précontraint.

5.6 Principe de mémoire réguliere

On suppose que les histoires thermo-mécaniques x (X, 7) et T(X,7) peuvent
étre développées en série de Taylor par rapport a 7 pour 7 =t et VX € C. On
a

X(X,7) =x(X,t) + (1 —t)x(X, 1)+ (5.57)
et
T(X,7)=T(X,t) + (1 = )T(X,t) + - -- (5.58)
avec la notation 5 e
L 9X o 94
== L T |, (5.59)

Pour rappel, la relation (5.59) est identique & (2.17). Pour obtenir un principe de
mémoire réguliere, on supposera que les fonctionnelles constitutives sont aussi
régulieres que possible afin d’adoucir des discontinuités dans ces fonctions et/ou
dans leurs dérivées temporelles. En conséquence, I'axiome de mémoire réguliere
conduit & remplacer la relation (5.56) par

o(X, 1) FE(C,C’,C’,...;
(5.60)

o oT oT
s T T, . —— —. ... X |FT
p ’p7p? b b b b ?axﬂaX7 b b

ol apparaissent des dérivées temporelles des diverses variables.

Le concept de mémoire évanescente fait appel & la fonction d’oubli qui est
introduite dans I’équation de comportement afin de donner plus de poids aux
événements du passé récent proches de t et moins de poids au passé lointain. Ty-
piquement, ces fonctions d’oubli ont une écriture du type e=?* avec 3 constant.
Elles sont particulierement utiles en viscoélasticité pour tenir compte des phé-
nomenes de fluage, c’est-a-dire de déformation sous contrainte constante, et
de relaxation des contraintes, c’est-a-dire de déformation maintenue constante
sous contrainte variable dans le temps. Quoique ce sujet soit important pour
bon nombre de matériaux, il sort du cadre introductif de cette monographie.
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5.7 Exercices

Soit u(x,t) un champ vectoriel objectif. Montrer que son gradient spatial
est également objectif, c’est-a-dire qu’il vérifie

(Vu)" =QVvuQ”, (5.61)
ou (Vu)* = du*/0x* désigne le gradient spatial du vecteur u*.

(5.2) Démontrer que le tenseur des taux de déformation d (resp. des taux de
rotation w) est (resp. n’est pas) objectif.

(5.3) Soit T un tenseur objectif quelconque d’ordre 2. La dérivée matérielle de
T est-elle objective ?

Soit T un tenseur objectif quelconque d’ordre 2. Démontrer que I'expres-
sion )
T+ Tw—wT (5.62)

est objective, ou T dénote la dérivée matérielle de T et w le tenseur des taux
de rotation.

(5.5) Démontrer que le tenseur T' d’ordre 2, défini par la relation
T = 2d +2dL +2L"d (5.63)

est objectif. Le tenseur d est le tenseur des taux de déformation et d est sa
dérivée matérielle. Le tenseur L est celui du gradient de vitesse. Pour la dé-
monstration, il faut utiliser '’équation (& démontrer également)

d* = QdQ” + QdQ" + QdQ" . (5.64)



CHAPITRE 6

Lois de comportement classiques

6.1 Introduction

Nous allons examiner dans ce chapitre les lois de comportement classiques des
fluides visqueux newtoniens, des solides hyperélastiques et élastiques et de la
conduction de la chaleur. Nous évaluerons ces lois constitutives par rapport
au second principe de la thermodynamique afin de constater que leur écriture
satisfait cette inégalité. La section relative a la thermodynamique du fluide
idéal effectue la liaison méthodologique entre la thermodynamique des milieux
continus et la thermodynamique classique afin de montrer que ces deux points
de vue sont complémentaires. Le chapitre se termine par des considérations
relatives a la thermoélasticité.

Pour le comportement des fluides, des compléments de lecture sont proposés
dans [2, 19, 22, 23, 35, 49, 53, 54, 67, 69, 70]. Pour celui des solides, le lecteur
consultera [5, 12, 13, 32, 43, 47, 52, 59, 66].

6.2 Fluides simples

Généralement, on peut dire qu'un fluide est un milieu continu tel que dans
n’importe quelle configuration déformée, qui laisse la masse volumique inchan-
gée, il ne garde pas mémoire de ses états passés. Des lors on peut proposer
la définition suivante : un fluide est un matériau tel que chaque configuration
du corps laissant la masse volumique & une valeur prescrite puisse étre choisie
comme configuration de référence [19].

Si on se restreint aux dérivées partielles d’ordre 1 (par rapport au temps
ou & l'espace) en (5.60), on a I’équation pour les matériaux thermomécaniques
simples

o(X,t) —FC(C, C,p L p T,T, %T(, (%T(, X) FT. (6.1)
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Puisque toute configuration peut étre une configuration de référence, on choisit
la configuration actuelle comme celle de référence et on peut écrire x = X = x
avec p prescrit. Par (2.179) et (2.181), il s’ensuit que

F=1I c=1 C=F F+F'F=2d (6.2)
or  oT or T
X ~ow " X 0w (©.3)
En utilisant I’équation de conservation de la masse (3.41) p = —pd;, on élimine
la dépendance par rapport a p. La relation (6.1) devient donc
. oT OT
— -1 7 2
o(z,t) =K <d, p T, T, 9% 92’ (B) . (6.4)

Dans la suite, on supposera que le comportement des fluides est indépendant
du gradient de température 9T /0x et de la variation temporelle de ce gradient
oT /O0x. Cette simplification est cohérente avec 'observation expérimentale du
comportement fluide. L’équation (6.4) devient

o(xz,t) = K(d7 p LT, T, w) ) (6.5)

Le passage de (6.1) & (6.5) a fait perdre le caractere objectif de la relation (6.1).
On le rétablit en appliquant le principe d’objectivité & (6.5) qui démontre que
la fonctionnelle K ne dépend pas explicitement de . Nous considérons que la
contrainte dépend de la valeur instantanée de la température, et que ’histoire
T est obtenue & partir du principe de conservation d’énergie. Par conséquent,
un fluide est donc un milieu dont la loi de comportement est de la forme

o(z,t)=K(d,p~',T) (6.6)
avec la condition imposée par ’objectivité
QKQ" = K(QdQ",p7'\T). (6.7)

La condition (6.7) impose que la fonctionnelle, maintenant réduite & la fonc-
tion K, soit une fonction isotrope du tenseur symétrique d. Par application
du théoreéme sur les fonctions isotropes de tenseurs symétriques (§ 1.3.11), la
relation (6.7) devient

o(x,t) = KoI + Kid + Kod” . (6.8)

Les fonctions scalaires K; (i = 0, 1,2) seront fonctions des invariants de d, de
-1
p - etT.

Lorsque le fluide est incompressible, sa masse volumique est invariante.
Donc, pg = p et det F = 1. De plus, le premier invariant de d est nul. L’équation
de comportement d’un fluide incompressible est de la forme

o(x,t) = —pI + K1 (I>(d),I3(d))d + K> (I2(d), I3(d))d”, (6.9)
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avec p, la pression scalaire indéterminée. On remarque que lorsque le fluide est
aurepos, d = 0 et 0 = —pI. Le comportement a ’équilibre du fluide sera obtenu
par I'hydrostatique (éq. (3.133)). Il faut remarquer que la contrainte en ce qui
concerne sa dépendance par rapport a la vitesse, est fonction uniquement du
tenseur symétrique des taux de déformation. Ceci est une conséquence directe
du principe d’objectivité qui exclut 'utilisation du tenseur des taux de rotation
qui n’est pas objectif et qui plus est, est antisymétrique.

Nous remarquons que ’équation (6.9) est non linéaire en d. Il s’agit d'un
fluide dit non newtonien par opposition aux fluides classiques newtoniens. On
le connait sous le nom de fluide de Rivlin-Ericksen de complexité un.

6.3 Fluides classiques ou fluides visqueux newtoniens

Un fluide classique est un milieu tel que les composantes du tenseur des
contraintes sont des fonctions linéaires du tenseur des taux de déformation.
Cette définition impose Ky = 0 dans 1’équation (6.9). On notera le cas parti-
culier des fluides parfaits ou fluides non visqueuz, pour lequel par définition,
le tenseur des contraintes est indépendant de d. Le tenseur des contraintes est
alors sphérique (composantes hors diagonale nulles). On écrit

o=—pl (6.10)
p=pp,T). (6.11)

Dans (6.11), on a utilisé le fait que 1/p = v avec v le volume spécifique et que
cette derniere variable apparait dans les lois de la physique des gaz. Si le fluide
est incompressible, la pression sera déterminée par la résolution des équations
du mouvement. Par contre, si le fluide est compressible, la pression sera donnée
par une équation d’état résultant des considérations thermodynamiques. Si le
fluide n’est pas parfait, il est dit visqueux. On pose

o=-pl+T, (6.12)

avec T, le tenseur des extra-contraintes, tel que T = K; (12 (d), I3(d))d.

Pour les fluides classiques, T est une fonction linéaire de d et on peut
montrer que T est nécessairement de la forme

T =XtrdI +2ud, (6.13)

ou A et u sont des coefficients scalaires. Le tenseur T' dépend du tenseur des
taux de déformation (et non de la déformation) de telle sorte qu’il s’annule
lorsque le fluide est en mouvement de corps rigide (c.-a-d. taux de déformation
nul). La pression est un champ scalaire qui ne dépend pas explicitement du taux
de déformation. Le coefficient A est la viscosité volumique, tandis que u est le
coefficient de wiscosité dynamique. On verra que A et p sont toujours positifs.
Ces coefficients ont pour dimensions ML™IT™! et les unités correspondantes
du Systeme International (S.I.) sont Ns/m? ou Pa.s.
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Tableau 6.1 Constantes matérielles de fluides visqueux.

p (Pa-s) p (kg/m?) v(m?s™)
air 1,776 107° 1,225 14,510°°
eau 0,0011 999,2 1,138107°

A titre d’exemple, on donne dans le tableau 6.1 les constantes matérielles, a
température ambiante, de deux fluides largement utilisés dans les applications
industrielles : air et 'eau. La viscosité cinématique v est définie par la relation
v = u/p. En notation indicielle, ’équation de constitution du fluide visqueux
newtonien compressible s’écrit

0ij = —POij + Ak 6ij + 21 dy (6.14)
avec
p=p(p,T)
A=Ap,T)
p=p(p,T)
1 /0v;, Ov,
dij =5 | 5 L), 1
J 2 <8$J + 8.’1%) (6 5)

L’équation de comportement du fluide visqueux incompressible se réduit a
oij = —p0ij + 2ndi; (6.16)

avec p un champ scalaire indéterminé et p, une constante dans la majorité des
cas. Remarquons qu’en prenant la trace de (6.16), on obtient p = —1/3tro et
donc que la pression est la moyenne des composantes diagonales du tenseur des
contraintes.

EXEMPLE 6.1 (écoulement de cisaillement simple)

Soit un écoulement de cisaillement simple établi entre deux parois paralleles.
La paroi inférieure est fixe et la paroi supérieure se meut dans son propre
plan a la vitesse U constante. Le champ de vitesse est tel que

U1=k$2
’1)2:0
’U3:0.

Seule la composante dio du tenseur d est différente de zéro. Par la suite,
en un point arbitraire M du fluide présenté a la figure 6.1, on a o995 = —p
et 012 = pk. Le fluide situé au-dessus du point M exerce sur le fluide situé
dans la zone inférieure des efforts de cisaillement proportionnels a u et au
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gradient de vitesse k dans la direction x5. Par la présence de viscosité, les
couches fluides les plus rapides tendent a entrainer les couches fluides plus
lentes avec lesquelles elles sont en contact ; réciproquement, les couches plus
lentes tendent a freiner celles qui s’écoulent plus rapidement.

Cette interprétation physique confirme qu’il est raisonnable de supposer
> 0. Ceci montre aussi que dans le fluide parfait, les différentes couches
fluides n’exercent aucun effet d’accélération ou de freinage les unes sur les
autres. Elles ne sont soumises qu’aux effets de pression.

U

- M 019 = pk

€

E
Fig. 6.1 Ecoulement de cisaillement.
On comprend qu’il s’agit d’une idéalisation drastique de la réalité. Tous

les fluides réels sont visqueux. Lorsqu’ils le sont faiblement, on peut les
approcher par le concept du fluide parfait.

6.4 Milieux élastiques isothermes isotropes

On a constaté précédemment qu’un solide a une mémoire privilégiée, a savoir
)
qu’il se souvient de la conﬁguration de référence.

Le milieu élastique isotherme est un matériau simple tel que par (5.36),
o(X,t) :Z(F(X,t—s),X). (6.17)

En tenant compte du fait que F' est le tenseur du gradient de déformation
qui permet de passer de I'état de référence a 1’état actuel, pour un matériau
élastique, on peut écrire que

o(X,t)=%(F(t)). (6.18)
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Pour simplifier, nous considérerons dans la suite que la dépendance de o par
rapport au temps ¢ se fait via F' et nous ne noterons plus t explicitement dans
o. Le principe d’objectivité requiert

o =3(F). (6.19)
En utilisant (2.205) et (3.147), on obtient
o' =S(F)=%(QF) o =QoQ" = QZ(F)Q” (6.20)
ou encore

$(QF) = Qx(F)Q". (6.21)

Par le théoréme de décomposition polaire et en posant Q = R”, cette derniere
équation devient
3(QRU) = R"S(F)R (6.22)

et
o=3(F)=RXZ(U)R" (6.23)

V F et R. La relation (6.23) exprime le résultat de 'imposition de I'objectivité
a (6.18).

L’équation constitutive (6.23) exprime le tenseur de Cauchy avec le tenseur
de déformation U ou C. D’autres formes d’équations constitutives peuvent

s’écrire au moyen des tenseurs de contraintes de Piola-Kirchhoff P ou S. En
effet, en combinant (6.18) et (3.141), on obtient

P=JoF T =JS(F)F ' =PF), (6.24)

ou P est une fonction tensorielle. Par un raisonnement analogue a celui qui a
conduit & (6.23) et en tenant compte de (3.149), il vient

P(F)= RP(U). (6.25)

Pour écrire ’équation de comportement en fonction du tenseur S, on introduit
(6.23) dans (3.152) et on procede de maniére similaire pour aboutir &

S=JF'oF T=JF'RE(U)R"FT. (6.26)
A T'aide du théoréeme de décomposition polaire, cette derniere relation s’écrit
S=Ju'sw)u" (6.27)

ou encore
S =8(U), (6.28)

oll S est une fonction tensorielle de U. Puisque U* = U et que §* = S,
les conditions imposées par I'objectivité sont remplies. L’équation (6.28) peut
s’exprimer en fonction du tenseur de Cauchy-Green C puisque C = U?.
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Nous allons construire dans la suite une théorie des milieux élastiques iso-
tropes. Si le matériau est isotrope par rapport a sa configuration de référence,
on doit avoir par le principe d’invariance matérielle (§ 5.2.4)

X(F)=3%(F), (6.29)
ol F est le tenseur du gradient de déformation calculé pour un systéme de
coordonnées matérielles
X=0X+B (5.30),

relation dans laquelle {O} et {B} tiennent compte des symétries et des trans-
lations des axes matériels, respectivement. Or le tenseur du gradient de défor-
mation F' s’exprime d’apres (5.30) comme

— Oz 0X T
F=_—_"==FO". :
ox 7%~ FO (6.30)
En combinant (6.29) et (6.30), il vient
S(F) =%(FO"). (6.31)

Le théoréeme de décomposition polaire donne la solution suivante F = VR
(= RU). Pour faire apparaitre V' dans la fonctionnelle X, il nous faut choisir
O tel que FOT =V, soit O = R. On voit par la décomposition polaire que ce
choix est judicieux et on obtient d’apres (6.18)

o =3(V). (6.32)

Par l'objectivité (5.28) et 'isotropie (6.31), pour toute matrice orthogonale O,
on a

Ox=(U)0" =x(0U) =2(0UO0") =2 (FO") =X(V). (6.33)

On conclut que la fonctionnelle 3 est une fonction isotrope de V. Pour un ma-
tériau isotrope, les équations constitutives (6.18) et (6.32) peuvent étre écrites
aussi sous d’autres formes.

Tenant compte de ce que V? = FF? (éq. (1.134)), la loi de comportement
d’un matériau élastique isotrope peut s’exprimer par 'une des égalités

o=3%(V) o=H(V?) o=Kle), (6.34)

ou e est le tenseur d’Euler-Almansi défini par (2.83). Comme les fonctions
tensorielles 3 et H sont isotropes et dépendent de tenseurs symétriques, on
peut écrire par exemple (voir (1.140))

o= k‘o(ll(e), 12(6), 13(6))1 + k1 (11(6), 12(6), 13(6))6

+ ko (I (e), Ia(e), Is(e))e? (6.35)

avec

]{/‘p = kp (11(6), 12(6), Ig(e)) p= O7 1, 2
qui sont des fonctions scalaires des invariants du tenseur e. On peut observer
que les tenseurs de contrainte o et de déformation e ont les mémes directions
principales. De plus, la relation (6.35) montre que pour un matériau isotrope
trois parametres sont nécessaires pour caractériser la réponse constitutive.



184 Lois de comportement classiques

6.5 Matériaux hyperélastiques

La relation (6.35) présentée dans la section précédente est la forme la plus
générale d’équation de constitution pour un matériau élastique isotrope. On a
obtenu cette équation de comportement sur base de considérations purement
théoriques et sans aucune référence a la thermodynamique. Dans la littérature,
la théorie de 1'élasticité relative & (6.35) est appelée élasticité de Cauchy et
le matériau correspondant est un matériau élastique de Cauchy. Dans
cette section, nous développons une théorie des équations constitutives en nous
fondant sur I’hypothese de 'existence d’une fonction énergétique. La théorie
est adaptée aux matériaux élastiques non linéaires ou les déformations peuvent
étre grandes, c’est-a-dire finies. Elle est normalement appelée hyperélasticité
finie ou simplement hyperélasticité. Les matériaux qu’elle décrit sont qualifiés
d’hyperélastiques ou de matériaux €élastiques de Green.

En supposant que les processus sont isothermes et en considérant unique-
ment des effets mécaniques, nous introduisons la fonction d’énergie libre par
unité de volume dans la configuration de référence. A cette fin, on définit la
fonction d’énergie W(X,t) telle que

W(X,t) = Py(X)U(X,1). (6.36)
Par (4.44), on obtient
% =W(X,t)=P(X)U(X,t)=P: F. (6.37)

Un matériau hyperélastique ou élastique de Green est celui dont I'énergie
élastique est donnée par une fonction d’énergie libre telle que

W(X,t) = Py(X)U(F(X,t),X) (6.38)
qui, pour un matériau homogene, devient
W(X,t) = W(F(X,t),X) =W(F). (6.39)

L’énergie libre s’annule pour la configuration de référence, c’est-a-dire W(I) = 0
et satisfait aussi la condition W(F') > 0.

Afin d’établir le rapport entre I’énergie et les contraintes, on procede comme
suit. D’abord, on exprime la dérivée temporelle de W(F') par (1.167)

_ DW(F) _ DW(F) DF _ dW(F)

WIE) Dt~ DF Dt oF T (6.40)
Ensuite, on combine (6.40) avec (6.37) pour obtenir
OW(F) .. . OW(F) b
o F=P:F o < g~ P) i F=0. (6.41)

La relation (6.41) est valable pour des valeurs arbitraires de F. Donc, pour un
matériau hyperélastique, ’équation de constitution s’écrit

OW(F)
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Strictement parlant, les matériauxr élastiques linéaires et non linéaires sont
hyperélastiques. Cependant, I'appellation hyperélasticité est utilisée pour le
comportement élastique non linéaire.
En exprimant o en fonction de P par (3.141), I’équation de comportement
devient IW(F)
-1 T
o=J oF F-. (6.43)
On suppose que la fonction d’énergie de déformation est indépendante du réfé-
rentiel. Ceci implique que pour deux observateurs en mouvement relatif décrit
par (5.13), on ait
W(F)=W(F*) = W(QF). (6.44)
En remplacant F' par sa décomposition polaire a droite F' = RU et en posant
Q = R, on obtient

W(F) =W(RTRU) = W(U) (6.45)

qui exprime les conditions nécessaires et suffisantes pour 'objectivité de la
fonction d’énergie W(F'). En se rappelant que U = C1/2, on peut écrire

W(F) =W(U) = W(C). (6.46)

En mécanique des solides, I'intérét se focalise sur la formulation des relations
constitutives en fonction du tenseur métrique C'. Il est donc nécessaire d’ex-
primer OW(F')/OF dans (6.42) ou (6.43) en fonction de C. En dérivant (6.46)
par rapport au temps, il vient

OW(F) .
OF F = oC

_IWO) (6.47)

Prenant en compte C = CT = FTF et en utilisant (1.95) on peut montrer que

Gy

FT. (6.48)

Par la symétrie de C, GW(C )/OC est aussi symétrique. En conséquence, on a

OW(F) __aW(C)
o = 2P (6.49)
et on écrit (6.42) sous la forme
L OW(C)
P =2F 9c (6.50)

En insérant (3.152) dans (6.42), ’équation constitutive en fonction du second
tenseur de Piola-Kirchhoff devient

o~

aW(C)
ac -

Les équations (6.50) et (6.51) représentent les formes générales des équations
de comportement pour un matériau hyperélastique satisfaisant ’objectivité.

S=2

(6.51)
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6.5.1 Matériaux hyperélastiques isotropes

Examinons les équations constitutives d’un milieu élastique isotrope. Puisque
la symétrie de la matiere du corps n’est pas prise en compte dans les équations
précédentes, il nous faut étudier les conséquences de son imposition. Suivant
(6.30), 'énergie de déformation devrait satisfaire la relation

W(F) = W(F) =W(FO"). (6.52)

Comme O peut étre identifié & Q (§ 5.2.4), on peut aussi bien avoir F = FQT
que

C=F F=QF'FQ" =QCQq". (6.53)
En tenant compte de (6.46), le matériau soumis & la transformation (5.30)
satisfait les égalités suivantes :

W(F) = W(C) = W(QCcQ") (6.54)
W(C) =w(QcQqT). (6.55)

La relation (6.55) donne la condition d’isotropie pour la fonction d’énergie de
déformation. Elle implique également que 17\/\(0 ) soit une fonction isotrope sca-
laire du tenseur symétrique C' et qu’elle soit un invariant de C'. Grace au théo-
reme de représentation des invariants, la fonction scalaire (6.55) peut s’écrire en
fonction des invariants principaux de son argument C'. On peut donc remplacer
(6.55) par la fonction

W(C) = ®(I,(C), I(C), I5(C)) . (6.56)

Puisque les valeurs principales de C sont A2, A3, A%, les invariants correspon-
dants sont donnés par

L(C) =M+ 23+ )A3
I(C) = M\A3 + A3A3 + A3\] (6.57)
I3(C) = N2A2)\2.

Pour simplifier, nous utiliserons le méme symbole pour la fonction d’énergie ®
et les invariants (6.57) seront spécifiés sans référence au tenseur C.

En inspectant la fonction (6.56) et les relations (6.50) et (6.51), la prochaine
étape de la formulation des équations constitutives des matériaux isotropes
consiste & dériver ®(C) par rapport aux invariants (6.57). En supposant que
®(C) possede des dérivées continues par rapport aux invariants, on a

oB(C)  0® oI, 0 O, 0D Ol

ik Sl Rt T D 6.58
9C oI, oC " oL, oC ' ol oC (6.58)
Les dérivées des I; (i = 1,2,3) par rapport a C sont données par
oI oI oI
Lo Z2=_pnr-c, Z2=51c. (6.59)

oc aC oC
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A titre d’exemple, pour démontrer la troisieme égalité, on procede de la ma-
niere suivante. Par les relations (1.144) et (2.110), on écrit successivement les
relations :

= AMA3(A; ® Ap) + A3 (A2 ® Ag) + A3NT (A3 ® A3)
= ADINAT2(A @ A)) + AN 2 (A ® Ag) + AIA2N2AS 2 (A3 @ Aj)

3
=1 ZA;Q (A; @ A;) = ,C71,
1

Par substitution de (6.59) dans (6.58), on a

oB(C) 0>, (0D 0D 0
ac =o€+ on oL ) T 3L © (6.60)

En portant (6.60) dans (6.51), la forme générale de I’équation constitutive d’un
matériau hyperélastique isotrope devient

o® 0P 0P 0P
S=2(L—C —+hLh—|I-—C|. 6.61
(3313 +(811+ 18[2> oL, > (6:61)
Il faut remarquer que lorsque la déformation est nulle, S = 0. Dans ce cas,
C =1, 0u )\ = Xy = A3 =1, ou encore, en utilisant les invariants du tenseur
C,I, =3,I, =3,I3 = 1. De plus, pour S = 0 et C = I, I’équation constitutive
(6.61) conduit a la condition suivante pour les dérivées partielles

9 1202, 0 (6.62)

En combinant (3.152) et (6.61), on obtient I’équation de comportement pour
la contrainte de Cauchy

o=2J"" <13(c)8q> I+ (aq) + Il(c)aq)> c— az(fc) 02) , (6.63)

813(6) 8[1(0) 8]2(0)
ou ¢ est le tenseur de déformation de Cauchy (2.89). On se rappellera que les
tenseurs C et ¢ ont les mémes élongations principales A? (i = 1,2,3). Donc les
invariants correspondants sont aussi égaux.

Conséquemment, lorsque la fonction d’énergie d’un certain matériau hyper-
élastique est connue, sa loi constitutive est établie soit par (6.61) soit par (6.63).
Pour un matériau isotrope, I’énergie de déformation (6.56) peut aussi s’écrire
comme une fonction symétrique des élongations principales \; (i = 1,2, 3)

W(C) = d)(Al? )‘27 >\3) . (664)
En dérivant (6.64), on obtient

IW(C) 99 9N} 1 D¢ 9N}
aC  ~ 09X 9C ~ 2X 90X, OC

(6.65)
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Par la relation de I’analyse tensorielle

A2
oC

—A,®A;, (6.66)

olt les A\? sont les wvaleurs principales de C et A; les directions principales
correspondantes, nous obtenons

oW(C) z?’: 1 99
aC 2\; O\

A;®A;. (6.67)
En combinant cette derniere relation avec (6.51), on a
5= 4
A

Par la décomposition spectrale d’un tenseur (1.125), nous avons pour les valeurs
principales du second tenseur des contraintes de Piola-Kirchhoff S; (i = 1,2, 3),

(6.68)

1 0¢
Si=——. 6.69
LN O\ ( )
En faisant appel a la relation liant S et P et les développements du paragraphe
2.7.3, la relation constitutive correspondante utilisant les valeurs principales du
premier tenseur de Piola-Kirchoff est obtenue comme suit

1
P=FS=F (i_1>\i g;i Ai®AZ—>
g ” (6.70)
:;X‘ N (FA); ® A; _;m b ®A,;.
Donc, il vient
P, = g—i (6.71)

Les valeurs principales o; du tenseur des contraintes de Cauchy sont obtenues
en utilisant (3.141), (2.113), la propriété (1.70) et FA; = \;b; (cf. exercice
2.11),

3
o=J'FP"=J'F ( 8¢ (b ® Az-)T>

— O\,
5 s - 5 o (6.72)
=J! FA, b, | =J! \i—b; @ b;
<i=1 O\ N ) (E ‘O ’ >
Des lors,
P (6.73)
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Les équations de comportement (6.61) et (6.63) sont valables pour un matériau
hyperélastique quelconque. Cependant, il existe des matériaux hyperélastiques
dont le comportement du point de vue de la déformation est quasiment incom-
pressible. Ceci revient a dire que leur volume reste presqu’inchangé lors d’une
déformation. De tels matériaux incluent des matériaux du type caoutchouc et
les tissus biologiques mous. Pour ces matériaux, on tire de (3.38) et (3.7)

dv
J = FIaa AAaA3 =1. (6.74)

La condition d’incompressibilité introduit également la relation suivante :
=A% =1, (6.75)

Dans ce cas, "équation de comportement (6.61) devient

0P aq))z 2% ¢ (6.76)

S=-pC 2 —+1I —
pe <81‘1+ 'O oL,

ou I3 09 /0I5 = 0P /013 est remplacé par —p/2 avec p un parametre du type
pression. Lorsque le tenseur de contrainte de Cauchy est utilisé pour un maté-
riau incompressible, la relation (6.63) devient

0P 6(1)) oo 677)

_ _pI+2 I
o=-pit (8[1+ 'L

De plus, lorsque la fonction d’énergie de déformation est exprimée en fonc-
tion des élongations principales, les relations constitutives (6.69), (6.71) et
(6.73) prennent la forme

p» Lo L, _ p 09
T nan DT o

9¢
N

S; = — et o, =-p+ N\ (6.78)

Le parametre p est une constante qui ne produit pas de travail pendant le
mouvement. Il est généralement identifié & une pression hydrostatique et il est
calculé a partir des équations d’équilibre et des conditions aux limites.

Il est souvent tres utile d’exprimer les contraintes principales en fonction
des élongations principales. Ceci est facile a réaliser puisque pour un matériau
isotrope, les directions des contraintes principales et des élongations coincident.
En conséquence, puisque les valeurs principales du tenseur de déformation de
Cauchy ¢ sont A2, A3, A2, les contraintes principales résultent de (6.77)

7 0% U A NI AV
o= p+2<81+(/\ + A3 +/\)al i 2812>\i i=1,2,3. (6.79)
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6.5.2 Formes de la fonction d’énergie de déformation

L’équation de comportement est spécifiée une fois que la fonction d’énergie est
elle-méme identifiée. Les conditions mathématiques imposées jusqu’a présent
sont fondées sur I'objectivité et 'isotropie. D’autres exigences peuvent prove-
nir du type de probleme aux limites, de la configuration expérimentale et de
I'unicité de la solution. Généralement, on se base sur des développements mé-
thodologiques, des données expérimentales et /ou la microstructure du matériau
pour écrire explicitement la fonction d’énergie.

On a démontré auparavant que 1’énergie de déformation d’'un matériau
isotrope peut s'exprimer en fonction des trois invariants I; (i = 1,2,3) ou
comme une fonction symétrique des élongations principales A? (i = 1,2,3) de
C'. En supposant que la fonction est de classe C°, (6.56) peut s’écrire comme
une série infinie de puissances de I1 — 3, I — 3, I3 — 1

(I, I, I3) = Z Cijn(l — 3) (I — 3)" (I3 — 1)*, (6.80)
i, 7, k=0

ou Cjji sont les parametres matériels, indépendants de la déformation. Dans
la configuration de référence, c’est-a-dire dans le cas d’un état sans contrainte
appliquée, Iy = Iy = 3, Is = 1 et ®(3,3,1) = Cygo = 0. De plus, du point de
vue physique, la fonction d’énergie devrait étre une fonction croissante de la
déformation telle que ®(I1, I, I3) > 0. Alternativement, (6.80) peut s’écrire

&Iy, I, I3) = Z Cijo(l = 3)' (I = 3) + > (Is — 1)* (6.81)
1,j=0 k=1

En pratique, seul un nombre limité de termes est nécessaire dans (6.80) ou (6.81)
pour décrire correctement la réponse en déformation d’une particule matérielle.
Pour les matériaux incompressibles, Is = 1 et (6.80) ou (6.81) deviennent une
fonction des deux premiers invariants

(I, L) = Z Cii(I1 — 3)' (I — 3)7 . (6.82)
4,7=0

Pour obtenir un état non contraint pour une déformation nulle, le premier
coefficient Cyo doit s’annuler. Remarquons que les parametres matériels sont
nécessairement évalués par une expérience détaillée et des procédures d’identi-
fication, un processus qui devient plus difficile lorsque le nombre de parametres
impliqués dans la fonction d’énergie de déformation s’accroit.

Dans le passé récent, un certain nombre de fonctions d’énergie ont été
proposées. Parmi celles-ci, nous en retenons quelques-unes pour les matériaux
incompressibles. La plus simple est celle du modéle néo-hookéen. 11 résulte de
(6.82) pour (4,5) = (1,0)

(1) = Cro(l1 = 3). (6.83)
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Ce modele tire son origine de la théorie statistique des molécules de polymeres
en élasticité du caoutchouc et donne des résultats satisfaisants pour des rap-
ports d’allongement inférieurs a 2. La constante est exprimée par Cg = nkgT
avec n le nombre de chaines par unité de volume, kg = 1,38110723 JK~!
la constante de Boltzmann et T la température absolue. Cette constante est
normalement reliée au module de cisaillement du matériau.

Un autre modele tres utilisé en élasticité du caoutchouc est connu comme la
fonction d’énergie de déformation de Mooney ou de Mooney-Rivlin. On 1’obtient
a partir de (6.82) pour (4,5) = (1,0) et (¢,5) = (0, 1),

O(I1,I3) = Cro(I1 —3) + Co1(I2 — 3). (6.84)

Ce modele a joué un role important dans le développement de 1’élasticité non
linéaire. On peut 'utiliser pour des rapports d’allongement allant jusque 4.
Pour des rapports plus élevés, ce modele devient incorrect.

Le modele proposé par Valanis et Lander suppose que la fonction d’énergie
de déformation peut s’écrire comme la somme de trois parties dont chacune
d’entre elles est une fonction d’une seule élongation

A(A1, A2, A3) = w(A1) +w(Ae) +w(A3) . (6.85)

Ici, w(\;) note une fonction de A; (i = 1,2,3). La décomposition (6.85) corres-
pond a I'hypothése de Valanis-Lander.

Une forme générale de la fonction d’énergie est due & Ogden [47]. On l'ex-
prime en fonction des élongations principales comme suit

N
SN2, As) = 3B (4 A A - 3) (6.86)

=1
ou «;, i; sont des parametres matériels. Ce modele a été testé pour des états de
tension simple, biaxiaux et de cisaillement simple du caoutchouc. D’excellents
résultats ont été obtenus pour une large plage du rapport d’extension pour le
choix N = 3. Notons que les modeles ci-dessus mentionnés ainsi que beaucoup
d’autres disponibles dans la littérature sont des cas particuliers de (6.86). Il
se réduit au modele néo-hookéen pour N = 1,7 = 2 et en posant Ciy =
11/2 et Vexpression pour le premier invariant (6.57). On obtient la forme de
Mooney-Rivlin (6.84) pour N = 2, a1 = 2, ag = —2 et en posant Cg = p1/2,
Co1 = —p2/2 et Pexpression pour les premier et second invariants (6.57). Nous
remarquons qu’avec I’hypothese de Valanis-Lander, I’énergie de déformation
(6.86) prend la forme

3 N
d(A1, A2, A3) = ZUJO\I@) et o] (A —1). (6.87)
k=1

(o7
i=1 ¢

Cette section se termine par la définition du modele de Saint-Venant-Kirchhoff.

Par le théoreme de représentation (1.140) et avec (6.55), nous pouvons
exprimer (6.61) comme

S = Bol 4 51C + B.C?, (6.88)
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ou les parametres (o, 1, B2 sont fonctions scalaires des invariants (6.57). En
supposant que S = 0 dans la configuration de référence pour laquelle C = I,
on peut montrer que pres de la configuration de référence

S=AMrEI+2uE+o(E), (6.89)

ou E est le tenseur de déformation (2.82) et o(E) sont les termes d’ordre su-
périeur. Nous constatons qu’il n’y a que deux parametres A\, u dans ’approxi-
mation a l'ordre 1; ce sont les coefficients de Lamé.

Gabriel Lamé (1795-1870) naquit & Tours. Il est envoyé
avec Clapeyron a Saint-Pétersbourg pour y enseigner les
mathématiques appliquées et la physique aux éleves de
I’Ecole des voies de communication. De retour a Paris, il
. est nommé professeur a I’Ecole Polytechnique et ensuite
a la Sorbonne. Ses principales contributions se situent en
. mathématiques appliquées et en élasticité. Il a rédigé no-
| tamment les Lecons sur la théorie mathématique de 1’élas-
ticité des corps solides.

Fig. 6.2 Gabriel Lamé.

Il faut éviter de confondre cette constante A avec le parametre d’allonge-
ment puisque dans (6.89), on utilise le tenseur de déformation E et non les
invariants (6.57). Lorsqu’on annule le terme o(E), on obtient

S=MrEI+2uE (6.90)

qui est 1’équation de constitution d'un matériau de Saint-Venant-
Kirchhoff . La relation (6.90) représente le modele classique non linéaire pour
les matériaux hyperélastiques compressibles. Elle est adéquate pour I’analyse de
déformations relativement petites de matériaux élastiques, isotropes et homo-
genes. On peut aussi ’appliquer a I'analyse non linéaire du point de vue géomé-
trique pour de grands déplacements avec les relations déplacement-déformation
données par (2.86). On peut montrer facilement qu'un tel matériau est hyper-
élastique avec la fonction d’énergie de déformation donnée par

o~

W(E) = % (tr B)® + ptr E?. (6.91)

On peut aussi exprimer (6.90) en fonction du premier tenseur de Piola-Kirchhoff
en utilisant (3.152)

P=FS=\tE)F+2.FE. (6.92)

6.5.3 Exemples d’états de contraintes simples

Dans cette section, nous exprimons le tenseur de Cauchy (6.79) pour quelques
cas simples de charges appliquées a un matériau isotrope incompressible. Le
lecteur est renvoyé a l'ouvrage [65] pour des exemples de matériaux compres-
sibles.
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Extension biaxiale

Ce type de mouvement se rencontre dans le cas des plaques minces avec une
charge plane dans deux directions orthogonales et il est défini de telle sorte
que nous ayons deux élongations principales indépendantes A1, Ay et par (6.74)
A3 = )\1_1)\2_1. Les contraintes correspondantes sont o1, 0o # 0 et g3 = 0.
Portant o3 = 0 dans (6.79), on obtient pour le parametre p

L 0% A+ 00

=2—— — —_—— . 6.93
N2 on T iaee on (6.93)

p

En introduisant (6.93) dans (6.79) et apreés quelques manipulations algébriques,
on écrit les expressions suivantes pour les contraintes

1 0P 0P
_ 2 _ 9® 292
e 2</\1 A%)%) (511 i )\2512>

1 0P o
— o(x2- ) (& ).
72 ( ? A@\%) (311 - 13[2)

Extension équibiaxiale

(6.94)

Ce type de mouvement est un cas particulier du cas précédent avec o1 = o9 et
o3 = 0. Par conséquent, Ay = Ay = X et 07 = 02 = 0. En utilisant (6.94), la

contrainte o devient
1 0P o
-9 2_ = il 27" . .
o </\ )\4> (8[1+)\ 8.72) (6.95)

Pareil chargement se rencontre dans une coque sphérique sous pression ou les
deux contraintes tangentes au plan milieu de la coque sont égales et la troisieme
contrainte, normale a la surface de la coque, est considérée comme nulle.

Extension uniaxiale

Lorsque le matériau est chargé dans une seule direction, on a A\; = A et par la
condition d’incompressibilité Ao = A3 = A~1/2 Les contraintes sont o; = o et
o2 = 03 = 0. Avec ces valeurs des parameétres et (6.94), nous obtenons

_ofy2_1) (92 1092
02()\ o 3o, ) (6.96)

Inflation d’un ballon

Comme exemple de I’hyperélasticité, nous allons traiter le cas de I'inflation d’un
ballon fait dans un matériau caoutchouteux. Quoiqu’on puisse utiliser I'un des
modeles introduits précédemment, nous utiliserons ici les modeéles néo-hookéen
et de Mooney-Rivlin pour décrire la pression dans un ballon sphérique comme
une fonction du rapport d’extension. On supposera que le matériau est isotrope
et incompressible. Le ballon sphérique a une épaisseur initiale e; et un rayon R
tel que R > e;. Dans la configuration déformée, 1’épaisseur et le rayon sont e
et r, respectivement ainsi qu’on peut le voir a la figure 6.3.
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Fig. 6.3 Inflation d’un ballon : (a) géométrie et (b) conditions aux limites.

Grace a la symétrie sphérique de la charge et de la géométrie, les deux
contraintes principales sont égales 09 = 09 = o et la troisieme est o3 = 0.
Donc, I'état de contrainte est équibiaxial. Pour relier la pression interne p; avec
la contrainte o, considérons ’équilibre d’une demi-sphere dans la configuration
déformée. La projection de la force due & la pression sur le plan passant par le
centre est en équilibre avec les contraintes dans I’épaisseur du ballon 7r2p; =
27reo, d’oul nous obtenons

e
pi=2-0. (6.97)
T
Pour décrire la déformation du ballon, nous définissons le rapport d’exten-
sion par A = r/R. La condition d’incompressibilité du matériau s’exprime en
posant I'égalité du volume matériel dans les configurations déformée et non
déformée, c’est-a-dire 4wr?e = 4w R%e;. Donc
e 1

Combinant les expressions ci-dessus on obtient pour le modele néo-hookéen

1Y) 09 1
2 2
et la pression
) =40l (6.100)
PRA) =210, 3 X6 ) '

En tenant compte de Cig = 09/0; et Cpy = 9P/0I, dans le modele de
Mooney-Rivlin, nous obtenons pour la contrainte

1
o= 2<A2 - )\4> (Cro + A*Coy) - (6.101)
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En utilisant (6.101) et (6.98) dans (6.97), on obtient

pi(\) = 40y 8 L (1 - ;6) (14722 (6.102)

avec 11 = Cp1/Cho. En posant e;/R = 0,01, la pression normalisée p;(A)/C1o
selon (6.102) est montrée a la figure 6.4 en fonction du rapport A pour des
valeurs différentes de 7. La courbe correspondant au cas n = 0 représente le
modele néo-hookéen (6.100).

0,16
0,14

0,12

pression normalisée

0,10 4
0,08 4
0,06

0,04 4

0,02

élongation principale

Fig. 6.4 Pression normalisée dans un ballon en fonction du rapport d’extension pour
différentes valeurs de 7.

6.6 Elasticité linéaire infinitésimale

Comme dans beaucoup de cas, les déplacements et les déformations des so-
lides élastiques sont petits, on utilise une théorie linéarisée dans le cadre des
petits déplacements et des déformations infinitésimales. Ces notions ont été
introduites a la section 2.9.

L’élasticité classique est donc une théorie linéarisée autour de I’état naturel
du matériau considéré comme homogene et isotrope. Dans ce cas, on a démon-
tré que la différence entre les tenseurs de déformation de Green-Lagrange et
d’Euler-Almansi est proportionnelle & des termes d’ordre 2, qui sont négligés
dans la linéarisation. On introduit des lors le tenseur de déformation infinité-
simale € défini par (2.150), tel que

- 1 aUl 8U] o 1 6Ui 8uj
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En vertu de cette approximation, les tenseurs de Piola-Kirchhoff se réduisent au
tenseur de Cauchy o (sect. 3.9). De plus, le principe d’objectivité est satisfait
(sect. 2.11). Au vu de ces linéarisations, les équations de Saint-Venant-Kirchhoff
deviennent

o= Mrel +2ue, (6.104)

ou les coefficients scalaires A et p sont les coefficients d’élasticité de Lamé,
dont les dimensions sont une force par unité de surface (Pa). Donc, 1’élasticité
linéaire relie la contrainte a la déformation par une relation linéaire connue sous
le nom de lot de Hooke.

Robert Hooke (1635-1703) naquit & Freshwater sur I'ile de
Wight. Le portrait ci-dessus est une représentation d’ar-
tiste. Il fut un scientifique d’abord expérimentateur. Il a
contribué aux domaines de I’architecture, de la mécanique,
de la chimie, de la physique, etc. Il est surtout célebre pour
la loi d’élasticité (ut tensio, sic vis).

Fig. 6.5 Robert Hooke.

Il est tres facile d’inverser la relation (6.104) afin d’obtenir € en fonction de o
La trace de o s’obtient par

Omm = (BN + 20)Emm - (6.105)

Avec (6.104) et (6.105), on obtient

— o
=——trol + —. 6.106
€ 2p(3A 4+ 2p) rol 2u ( )

Cette relation n’existe que si
3AN+2u#0 et uw#0. (6.107)

L’équation (6.106) peut également s’écrire

(1+v)

v
e=——=trol 6.108

~ oI+ (6.108)
avec F le module de Young (Pa) et v le coefficient de Poisson sans dimension.
Ces derniers coefficients sont liés & ceux de Lamé par les relations

(3N + 2p1) A
p=Ht2AT A 6.109
At p YT a0t ) (6.109)

Le tableau 6.2 donne les valeurs du module de Young, du coefficient de
Poisson et de la masse volumique de quelques matériaux élastiques utilisés
dans I'ingénierie.
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Tableau 6.2 Constantes matérielles de solides élastiques.

E (Pa) v p (kg/m?)
acier 20010° 0,27 7850
verre 6910° 0,19 2500
caoutchouc | 0,0510° | 0,50 850

Nous allons donner une interprétation des coefficients d’élasticité en consi-
dérant quelques cas simples. Le premier exemple est celui de la traction simple
(fig. 6.6). Soit une barre soumise & la traction dans la direction z;. On suppose
que les faces latérales de la barre sont libres et qu’aucune force de contact n’agit
sur elles.

&

a1 I11

ittt <

T

Fig. 6.6 Traction simple.

Le tenseur des contraintes n’a qu’une seule composante non nulle, a savoir
o11. Pour calculer les déformations, on utilise les équations (6.106). On obtient

€11 = 7)\ + i 011
(3N + 2p)
€92 = €33 = N S 011 = — A Aty 011 (6.110)
2u(3XN +2p) 20+ ) p(3A+2p)

€12 =€23 =€31 =0.
Avec (6.109), les relations (6.110) deviennent

1 v
€11 = =0 €99 = €33 = ——= 011 = —VEIL . 6.111
1= 7o 22 33 £ 1 11 ( )
Le coefficient de Poisson correspond donc au rétrécissement latéral de 1’échan-
tillon soumis & la traction. On peut exprimer les coefficients de Lamé en fonction
de E et v. Il vient en inversant (6.109)

Ev E

T+ o)1 —2) (6.112)

Le module E est positif car 'expérience montre que si o117 > 0, ceci entraine
b

que €17 est positif. La piece s’allonge sous l'effet d’une traction. L’expérience

montre aussi que v est positif.
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€ 012
i i — — — — — —  —  —-

|
012%0 = s 1 O12
|

= = = F = B o= B B = B W—
J12

Fig. 6.7 Cisaillement simple.

Le second exemple est celui du cisaillement d’un bloc (fig. 6.7) tel que le
tenseur des contraintes s’écrit

012 = 0921 (6113)
avec
0 =0 V(i j) # (1,2) et (2,1).
Le tenseur des déformations (6.106) avec (6.113) donne
o12
= = = 114
€12 = €21 2% (6 )

les autres composantes étant nulles. Comme la composante €12 donne la moitié
du complément de I’angle formé apres déformation par des fibres initialement
orientées suivant les directions z1 et z par (2.158), on a

012

ST (6.115)

On appelle le coefficient de Lamé p module de cisaillement ou encore mo-
dule de rigidité au glissement.

Le troisieme exemple est celui d’une contraction locale uniforme telle que
le tenseur des contraintes soit sphérique (diagonal) avec

oij = —pdij, (6.116)
ou la pression est notée p. Alors par (6.106), on calcule

p

i = — 7 0ij 6.117
Eij (3)\ T24) ij ( )
ou encore )
p= _5(3)\+2N)5kk = —Keyy . (6118)
Le coefficient défini par 1’égalité
3N+2 1 FE
= GA2) (6.119)

3 T 31-2w

est le module de compressibilité ou module de rigidité a la dilatation.
Pour une valeur de pression donnée, la variation volumique ex sera d’autant
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plus petite que K est grand. L’expérience montre que K est positif, ce qui
conduit & v < 0,5. Le cas particulier v = 1/2 est celui du matériau élastique
incompressible pour lequel K — oco. Un exemple de ce dernier type de matériau
est le caoutchouc qu’on traite comme incompressible.

6.7 Conduction de la chaleur

On a vu au paragraphe 5.4.1 que le flux de chaleur s’écrit
(X, 1) =Q(x, T, X,1). (6.120)

En appliquant tous les principes généraux des lois de comportement, on aboutit
a I’équation

Xt)Q(F T or X) (6.121)

q( 7 - ) ) 6X 7 N N

On constate que le flux de chaleur dépend du gradient de température. Lors-
qu’on étudie le transfert de chaleur par conduction dans les fluides et les so-
lides, on peut montrer que g dépend essentiellement du gradient de température
0T /0X et peu de F. Ceci est d’ailleurs corroboré par 1’expérience. On devrait
donc écrire en représentation eulérienne

aT
i = Kiyo—. 6.122
q l oz ( )
Cependant, on peut spécialiser I’équation (6.122) au cas ou le flux de chaleur
est donné par la loi de Fourier avec K;; = —k §;;
aT
qg=—-k(T)VT g =—k—. (6.123)
Bxi

Le coeflicient k est le coefficient de conductibilité thermique. Ses unités sont
exprimées en Wm~! K~!. La loi de Fourier est valable aussi bien pour un
fluide que pour un solide.

Joseph Fourier (1768-1830) naquit & Auxerre. Eleve
brillant de I’Ecole Polytechnique, il y est nommé pro-
fesseur a 1’age de 16 ans. Il participe a la campagne
d’Egypte avec Champollion. Revenu en France, Napoléon
le nomme préfet de I'Isere. Elu a 'académie des Sciences
en 1817, il en devient le secrétaire perpétuel en 1822.
Fourier a rédigé la Théorie analytique de la chaleur, ou il
introduit I’équation aux dérivées partielles de la diffusion
de la chaleur. Il la résout par les séries de fonctions
périodiques qui portent son nom.

Fig. 6.8 Joseph Fourier.
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6.8 Second principe de la thermodynamique
pour les fluides visqueux

L’application de (4.83) aux fluides visqueux newtoniens se fait en y introduisant
les formes (6.14) pour le champ de contraintes et (6.123) pour le flux de chaleur
par conduction. Nous y ajoutons celles de I’énergie interne massique u et de
I’entropie massique s, prises comme fonctions de la température T et de la
masse volumique p uniquement. Nous allons établir la relation d’état :

pldu—Tds) — % dp=0. (6.124)

On se propose également de montrer que les trois coefficients k, p et k doivent
toujours étre positifs, avec le coefficient x défini par

1
k=g (BA+2u). (6.125)
A cet effet, nous admettrons le postulat suivant.

PosTuLAT

L’inégalité de Clausius-Duhem (4.83) est satisfaite a tout instant, pour des
histoires arbitraires et indépendantes de la température, de la masse volumique,
du tauz de déformation déviatoire d* et du gradient thermique (3T/dzx).

Ces grandeurs sont appelées les variables thermodynamiques du modele.
Leur histoire, c¢’est-a-dire I’expression de leurs valeurs en fonction du temps,
pour un point matériel donné, est appelé le processus thermodynamique.
On remarquera que les équations de constitution expriment oy;, g;, v et s
en fonction du processus thermodynamique (I’histoire de p donnant celle de
trd, par la conservation de la masse). Considérons tout d’abord les relations
suivantes (sous forme indicielle)

1
dfj =djj — 3 Amm 045 (6.126)
ov; 1 Dp
=djy = —— — 6.127
ox; ' p Dt ( )

1
d d o
di; di; = di; <dij 3 drm (51-1-) = dy; dij

puisque tr d? = 0. L’équation de constitution (6.14) peut se réécrire par (6.125)
et (6.126)

035 = —pbij + K dyy 655+ 2pds; (6.128)
On peut alors tirer de (4.24), (6.128) et (6.123) le développement
o, Ov 4 0T
7 (%cj T 8:5,
k (0T or
_ 2 d d

_rDp 2 oy qd gt 4 F (9T (9T
—th‘f'Kf(dmm) +2Mdijdij+T(a£L'i o, )
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L’inégalité de Clausius-Duhem (4.83) s’écrit donc sous la forme suivante, valable
pour tous les fluides visqueux newtoniens,

Du Ds p Dp 9 4 a Kk [0T oT
T2\ _ 2 ZF <« (d 2ud® d% + = . (6.1
(Dt Dt) p Dt =) T2y dis 75 5 ) gy ) - (O130)

Cette inégalité doit étre satisfaite pour un processus thermodynamique quel-
conque (dans les limites d’application du modele). Dés lors, on peut aussi exiger
qu’elle soit vérifiée a tout instant quelconque, quelles que soient les variables
thermodynamlques (T p, di, 0T /0z;) et leurs dérivées matérielles (éq. (6.1)

et (6.6)). Soient T, p, d?

179
5 T,Z des valeurs fixées des variables thermodynamiques
et T, /p'\, ..., celles de leurs dérivées matérielles. On doit donc avoir, par déve-
loppement en série de Taylor par rapport au temps autour des valeurs fixées,

Iinégalité (6.130)

oT ~ ~ 9T )+ - ,3
:é\ 7d 7d k

<k|-%) +2udldl +TT T (6.131)
)

~

D’apres le postulat adopté, on peut, en ne changeant pas T P, T et p, annuler
les grandeurs arbitraires d et T,l dans (6.131) ce qui revient & considérer
un processus thermodynamlque identique, mais sans flux de chaleur ni taux
de déformation déviateur au point matériel suivi. On a donc aussi I'inégalité

suivante :
E< n(ﬁ) . (6.132)
P

o~

On peut ensuite, suivant le méme postulat, multiplier T et ; par une quantité
arbitraire € positive ou négative, sans changer T ni p (ce qui revient & ralentir le
processus & l'instant étudié ou & considérer un processus lent de sens opposé).
On obtient ainsi, pour tout € € R, 'inégalité

cE < &%k —Q ,
P
et donc obligatoirement 1’égalité
D D D
E= (p(“—TS> —pp) =0. (6.133)
bt Dt)p Dt q s

En mettant (6.133) sous forme différentielle, on trouve la relation (6.124) cher-
chée. Dés le moment on (6.124) est satisfaite, le membre de gauche de (6.131)
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devient identiquement nul. Pour que le membre de droite soit toujours positif,
il faut et il suffit que les coefficients k, p et k soient positifs. En effet, on est en
présence d’une combinaison linéaire de carrés d’expressions indépendantes, qui
doit étre une forme quadratique définie positive, et donc a coefficients positifs.

Le membre de droite de I'inégalité (6.130),

k (0T oT
2 d gd v

mesure ’irréversibilité locale du processus étudié.

6.9 Thermodynamique du gaz idéal

Dans cette section, nous établissons les liens entre la thermodynamique des
milieux continus et la thermodynamique classique. Pour cette derniere, nous
nous référons a l'ouvrage de L. Borel et D. Favrat [7].

Introduisons la définition de I’enthalpie massique

h=ut % (6.135)

pour un fluide visqueux newtonien.

L’équation de constitution (6.12), complétée par ’hypothése consistant &
admettre que I’énergie interne massique ne dépend pas de la masse volumique
et donc u = u(T), fournit le modele du gaz idéal. Ce gaz qui satisfait la loi de
Boyle-Mariotte, a savoir « a température constante, le produit de la pression p
par le volume V est constant », est parfois appelé gaz parfait dans les ouvrages
de thermodynamique classique. Cette dénomination préte a confusion avec le
fluide parfait (sans viscosité) et nous ne emploierons pas pour cette raison.
On déduit de (6.135) qu’il en va de méme pour l’enthalpie massique, de sorte
qu’on a les relations

p = pRT (6.136)
u = u(T) (6.137)
h = h(T). (6.138)

Si on introduit la notion de volume spécifique v = 1/p, ’équation d’état (6.136)
correspond a la relation pv = cste dans un processus isotherme. Par dérivation,
on définit les chaleurs massiques (ou chaleurs spécifiques) a volume et pression
constants

du = ¢,(T)dT dh = ¢,(T) dT . (6.139)

D’autre part, la dérivation de (6.135) en tenant compte de (6.136) et (6.137)
mene a la relation

dh = du+ RdT, (6.140)
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dont on tire
p(T)—c(T)=R. (6.141)

La constante R est celle du gaz idéal (parfait) exprimée en Jkg=* K~1. Diverses
expressions de ds se trouvent en combinant (6.124) et (6.137) :

¢y d(logT) — Rd(log p)
ds =< ¢, d(logT) — Rd(logp) (6.142)
¢y d(log p) — ¢, d(log p) .
Notons que l'observation physique révele que les coefficients de viscosité et

de conduction thermique ne dépendent généralement que de la température
absolue, pour un gaz idéal.

Des simplifications importantes peuvent étre faites si on suppose que, pour
un certain intervalle de températures, les chaleurs massiques sont invariables.
Dans ce cas, on peut écrire a des constantes d’intégration pres, dans cette
intervalle de températures les relations

u=c,T (6.143)
h=¢c,T (6.144)
s =cylogp—cylogp.

Un écoulement isentropique est alors tel que

P _ cste (6.145)
p’)’
avec la définition du rapport calorifique :

y=2. (6.146)

Cy

Le fluide en écoulement isentropique est un fluide barotrope pour lequel la masse
volumique est fonction uniquement de la pression telle que p = p(p). Dans ce
cas, on montre facilement la relation

l o _ _dp_
PO V/p(p) ' (6447

En effet, pour une fonction f(p) donnée, on a

Vfp) = %Vp (6.148)

Posant

_ [ 4
f(p)_/ p(p) (6.149)

alors il vient

4 _ , (6.150)
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Enfin, toujours a une constante pres, on peut écrire

~2P__ 7 P

= = =. 6.151
Rp ~v-1p ( )
La vitesse du son a est définie par la relation
dp
2
= = . 6.152
@=5 (6.152)

Dans le cas particulier du gaz idéal, (6.152) prend, & l'aide de (6.145), la forme

a’ =~%, (6.153)

(6.154)

Dans le cas de l'air considéré comme un gaz idéal, on a les constantes
suivantes : Rgir = 287 Jkg 'K, v4i = 1,401, cp = 1006 Jkg7 'K~ a 300
K. L’air conduit la chaleur comme le prédit la loi de Fourier (6.123) avec k =
0,0262 Wm~'K~!. La vitesse du son dans I’air vaut 340 ms~! & température
ambiante ; par comparaison, celle dans ’eau de mer est d’environ 1500 ms™—!.

6.10 Second principe de la thermodynamique pour
les milieux élastiques classiques

Nous nous plagons dans le cadre des solides élastiques décrits par la théorie
linéaire infinitésimale. Dans ce cas, le matériau conserve sa forme originale
apres déformation. Si on se restreint aux petites déplacements, 1’énergie interne
et I'énergie libre définies par la relation (4.84) sont de la forme

u=u(e,T) f=fT). (6.155)

L’élasticité classique fait I’hypothese de la réversibilité des phénomeénes thermo-
dynamiques, étant donné que le solide élastique ne subit pas de déformations
permanentes. Des lors, I'inégalité de Clausius-Duhem devient une égalité, a
savoir s s
u ] 1
— —-T—|=0:Vv——=q-VT. 6.156
P ( Dt Dt) T (6.156)
Faisons I'hypothése d’un processus adiabatique (¢ = 0). La relation (6.156)
devient, puisque pour des petits déplacements d = &

Du . .Ds Df DT
U ) cgie=p( 2L ). 1
p(Dt Dt) 7 p(Dt+sDt> (6.157)



Thermoélasticité 205
De la deuxieme égalité de (6.157), on tire
1
;Uds—sdT:df. (6.158)

Il s’ensuit que sous forme indicée, on a

1, _09f s 9
* Geij 6‘T

(6.159)

L’énergie libre est donc un potentiel pour le tenseur —o/p et pour l'entropie
5. Si on réduit la dépendance de f & €;; en ne considérant que des processus
isothermes, alors on peut développer f au voisinage de ’état naturel du milieu
élastique. On a

0

f:fo—l-if €ij + 00, (6.160)

8%- 0
ou l'indice zéro note I’état naturel non contraint. Par (6.159);, les coefficients
du terme linéaire sont nuls (04|, = 0) . Donc, (f — fo) est d’ordre 2 en €5, et
dans l'identité

0
861‘]'

_,of
o pa{:‘ij

dp
86”» ’

(p(f = fo)) + (f = fo)

(6.161)

le second terme du second membre qui serait au moins d’ordre 2 doit étre
négligé par la théorie linéaire. Donc on peut considérer p comme une constante.
La premiere relation de (6.159) peut s’écrire alors

ow
05 = Des; (6.162)
avec
W =p(f = fo), (6.163)

I’énergie de déformation par unité de volume avec o;; et €;; comme parametres
conjugués correspondants. Avec ’équation (6.104), le potentiel d’énergie W
peut se mettre sous la forme

A
W = 5 €ii€kk T UEi;Eij - (6164)

6.11 Thermoélasticité

On fera '’hypothese de petits déplacements ainsi que de petites déviations par
rapport a une température de référence Ty. Comme nous élaborons une théorie
approchée, nous allons développer f(e,T) en série de Taylor au voisinage de
e = 0et T = Tj et la tronquer apres les termes quadratiques. Comme la relation
(6.163) donne des contraintes nulles pour € = 0 et T' = Tp, le développement
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ne contient pas de terme linéaire en € seul. Il est approprié de travailler sur pf
plutét que sur f. On a

A
pf =pfo—pso(T —To) + 5 EiiCkk

C
+ peijeij + eici (T — To) — 2/)70(77 ~To)*,

(6.165)

expression dans laquelle les coeflicients fy, so, c;; et ¢ sont encore & déterminer
et les facteurs p et p/Tp ont été ajoutés pour simplifier les développements
ultérieurs. Si on applique (6.165) au cas € = 0 et T = Tp, on constate que fo
est I’énergie libre de ’état naturel.

Si on impose l'isotropie du matériau élastique, le tenseur c¢;; doit étre iso-
trope et de la forme a d;; avec a un scalaire. Prenant ce scalaire a = —(3A\+2u)«
avec o & déterminer, on obtient

CijEij (T — To) = —(3)\ + 2,u)askk(T — To) . (6166)

Calculons o;; par la relation (6.159) appliquée a (6.165), (6.166). Il vient

0
oij = pagj:j = Nk (5@' + 2pe;; — B\ + QM)Q(T —To) (5@‘ . (6.167)

C’est la généralisation de la loi de Hooke (6.104). On peut inverser la relation
pour obtenir € en fonction de o

1 A
= — 2ua(T —Ty) — ———— I]. 1
€ 2 <0'—|— < po( 0) Dt 2 tr a’) ) (6.168)

Cette relation est semblable & (6.106) & I’exception du terme additionnel o (T —
To) 0;; qui provient des effets thermiques. Il correspond a une extension uni-
forme o(T — Tp) dans toutes les directions, c’est-a-dire & une dilatation du
volume 3a(T — Tp). Le coefficient « est le coefficient d’expansion thermique. 11
a les dimensions de l'inverse d’une température.

Si maintenant on applique (6.159)2 & (6.165) et (6.166), on peut évaluer
I’entropie

3}
ps = —p—f = pso + (BA+ 2p) ey + pe (T -Tp). (6.169)
T To

La quantité sy est I’entropie de 1’état naturel.

Ayant évalué f et s respectivement par (6.165) et (6.169), on peut obtenir
I’énergie interne

pu=p(f+Ts)
A 6.170
:pu0+§(tr€)2+us:€+(3)\+2u)aT0trE+§(T2—TO2) ( )
0

avec ug ’énergie interne de ’état naturel. L’équation (6.170) montre que 1’éner-
gie interne ne peut pas étre obtenue simplement par la combinaison linéaire de
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Iénergie de déformation (trois premiers termes du membre de droite de (6.170))
et d’une énergie thermique (dernier terme dans (6.170)). Sa structure est plus
compliquée et implique un couplage entre les effets mécaniques et les effets ther-
miques. En calculant la dérivée partielle de u par rapport a la température, on

obtient

ou
—_— = A71
T |, c (6.171)

qui est la chaleur massique a la température T = Tj.

6.12 Exercices

Démontrer la relation C = 2d de I'équation (6.2) valable pour le fluide
simple.

Exprimer 1’équation d’énergie (4.23) pour le cas du fluide visqueux new-
tonien (6.14).

Simplifier cette expression pour le cas du fluide parfait. Si le fluide parfait
est un gaz idéal, que devient ’équation d’énergie ?

Exprimer 1’équation d’énergie (4.23) pour le cas du fluide visqueux new-
tonien incompressible (6.16).

Simplifier cette expression pour le cas du fluide parfait.

Démontrer que

1) les tenseurs U, C, S ont les mémes vecteurs propres;

2) les tenseurs V, ¢ et o ont les mémes vecteurs propres.

A partir de (6.61), (3.152) et les relations (2.88)-(2.90), démontrer la re-
lation (6.63).

Utiliser I’équation de Cayley-Hamilton (1.123) pour montrer que les rela-
tions des contraintes (6.61) et (6.63) peuvent s’écrire

({00 a;ﬁ od 99 99 b _,
soa((22 0022 B2 (122 000 ) amy

oP P oP oP
=2 I I+—c—I;—c ') . 1
o=2J" (( 312+ 3813> +8Ilc 38[2c ) (6.173)

En utilisant (6.80), démontrer que I’énergie s’annule dans la configuration
de référence lorsque Cyop = 0 et qu’elle est indépendante de la contrainte lorsque
les coefficients satisfont la condition C1og + 2Cg19 + Coo1 = 0.

En utilisant les expressions des invariants (6.57) et la relation (1.144),
démontrer les deux premieres égalités de (6.59).
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Pour le modele néo-hookéen, trouver le rapport d’extension pour lequel la
pression maximale est obtenue dans le cas d’un ballon soumis a une pression
interne (6.100).

Utiliser le modele de Ogden (6.86) pour exprimer les composantes des
contraintes pour les cas d’extension uniaxiale, biaxiale et équibiaxiale d’un ma-
tériau incompressible. Avec le choix N = 3 et les parameétres matériels a; = 1,3,
ay =5, a3 =—2, ug = 0,63 MPa, pus = 0,0012 MPa, us = —0,01 M Pa, dessi-
ner les composantes des contraintes en fonction des élongations correspondantes
pour les extensions uniaxiales et équibiaxiales.

Calculer I’énergie libre d’une barre faite d'un matériau élastique linéaire
soumise a un effort de traction simple oy;.

Calculer les déformations induites dans une barre rectiligne de longueur
L suivant I'axe 1 ol régne un champ de température T' = Ty + (11 — Tp)x1/ L.

Etant donné la loi de conduction de Fourier et I’équation d’état de gaz
idéal pour un fluide parfait compressible, on demande d’écrire I’équation de
conservation de I’énergie en faisant apparaitre la température comme inconnue
principale du probléme.

La loi de Hooke (6.104) sous forme indicée s’écrit
0ij = NEkk (51‘3‘ +2pg;;. (6.174)

1) Décomposons les tenseurs de contrainte et de déformation en leur parties
déviatoire et hydrostatique

1
= 045 — g akk&-j (6175)

1
=¢&ij — g €kk6ij . (6.176)

O’ij = J’idj +005ij op = gO’kk O'gj
1
62']' = 6%— +505ij Eo — g&?kk 6%—
Montrer que (6.174) est équivalente & 1'écriture
d __ d —
o5 = 2ueg; oo = 3Kep, (6.177)

ou le module de compressibilité K a été défini en (6.119).

2) Montrer que les axes principaux des tenseurs de contraintes et de déforma-
tion coincident.

3) Montrer que le potentiel d’énergie de déformation est

9
~K(e0)* + usfjsd (6.178)

1
W(e) = 5 Aewr)® + peijeij = 5 R

4) Montrer que la condition de stabilité W(e) > 0 Ve # 0 revient & imposer
les conditions K > 0 et p > 0.
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En I'absence des force d’inertie et de volume, un corps w soumis a une
déformation infinitésimale répond par le champ de contrainte o;;. Montrer que
pour tout champ de déformation infinitésimal compatible, c’est-a-dire tel que
léquation (6.103) est vérifiée, on a

On considére un solide de Hooke dont la relation contrainte-déformation
est donnée par (6.104) et son inverse par (6.106).

1) Si Iétat de contrainte est celui d’'une compression hydrostatique, c’est-a-

dire
oij = 0dij, (6.180)
montrer que 1’état de déformation correspondant est donné par
o
Eij = E(Sij €= 37K (6.181)

avec K défini en (6.119).

2) Si I’état de déformation est celui d’un cisaillement simple, c¢’est-a-dire

1
€ij = 5 W(minj + mjni) m;m; =n;n; =1 myn; =0, (6.182)

montrer que ’état de déformation correspondant est donné par
0ji = T(min; +min;) T = wy. (6.183)

Donc p est aussi appelé le module de rigidité au glissement.

3) Si I’état de contrainte est celui d’une traction simple, c¢’est-a-dire
045 = 0NN n;n; = 1, (6184)

montrer que 1’état de déformation correspondant est donné par

o
€ij = EnNNy + ET((Sij — ninj) En = E ET = —VEp, (6185)
ou on retrouve le module de Young et le coefficient de Poisson définis en

(6.109).






CHAPITRE 7

Introduction a la mécanique

des solides

7.1 Introduction

Dans un probleme typique de mécanique des solides, on s’intéresse au calcul
des déplacements, des déformations et des contraintes (qui sont, en général,
des fonctions du temps) en tout point du corps. Il arrive souvent que le com-
portement contrainte-déformation de nombreux matériaux soit non linéaire,
inélastique et anisotrope. La formulation mathématique correspondante appa-
rait donc difficile. Plusieurs théories ont été développées et sont actuellement
utilisées en ingénierie. Parmi ces approches, on citera 1’élasticité linéaire et
non linéaire, la viscoélasticité, la plasticité et la viscoplasticité. Leur dévelop-
pement a été stimulé par l'utilisation de matériaux nouveaux. Chacune de ces
approches vise & modéliser certains aspects spécifiques du comportement des
matériaux. En mécanique des solides, une des formes les plus simples des re-
lations contraintes-déformations est le cas de la dépendance linéaire entre les
contraintes et les déformations. De telles relations linéaires sont présentes dans
tous les matériaux pour les faibles niveaux de charge ou de déplacement et
fournissent souvent des solutions satisfaisantes. Il convient de souligner que la
théorie de 1’élasticité linéaire constitue la base de la mécanique des solides.
En effet, pour un grand nombre de matériaux, comme les métaux ou les cé-
ramiques, les déformations restent petites et satisfont la loi de Hooke lorsque
les forces appliquées ne sont pas trop grandes. En outre, I'étude de 1’élasticité
linéaire se justifie comme étant préliminaire a I’étude de 1’élasticité non linéaire
ou de phénomenes dissipatifs comme la viscoélasticité et 1’élastoplasticité. Dans
ce chapitre, on présentera des éléments de la théorie de [’élasticité linéaire d’'un
matériau homogene et isotrope et des exemples représentatifs.

On trouvera des compléments de lecture dans les ouvrages suivants : [12,
13, 31, 40, 42, 55, 59, 60, 65].
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7.2 Equations fondamentales de 1’élastostatique linéaire

Cette section décrit I’équilibre d’un solide soumis a des forces volumiques ainsi
qu’a des déplacements ou des tractions imposés sur sa frontiere. Pour sim-
plifier, on considérera dans la suite uniquement des problemes isothermes et
stationnaires (statiques).

7.2.1 Equations de champ de 1’élastostatique linéaire

Dans le cadre de 1’élastostatique linéaire, les champs de déformations et de
contraintes sont régis par le systeme d’équations composé ainsi :

1) six équations définissant la relation déformation-déplacement (2.150)

1
e=3 (Vu+ (Vu)'); (7.1)
2) les trois équations d’équilibre (3.96)
dive + f =0 (7.2)

avec f = pb la force volumique;

3) six équations définissant la loi de comportement isotrope homogene (6.104)

vE
= Mrel +2pue = ——————— trel .
o rel +2ue 0T 0-2) re —|—1+Ve (7.3)
ou son inverse (6.108)
—A o v (1+v)
- " eI+ L = Yol 4
€= Sunga Folty, s pelt g (1Y)

ou les coefficients d’élasticité A\, p et E, v sont indépendants de la position.

Un simple décompte montre qu'il y a 15 inconnues (trois composantes de
déplacement u;, six composantes de déformation e;; et six composantes de
contrainte 0;;) et quinze équations ; le probleme est donc bien posé. On a montré
a la section 6.10 que le solide élastique linéaire satisfait le second principe de la
thermodynamique et qu’il existe une fonction potentielle qui, dans ce cas, est
une forme quadratique des déformations (6.164) ou des contraintes.

Il y a deux fagons de combiner les 15 équations scalaires précédentes. En
prenant tout d’abord les trois composantes du déplacement u; comme inconnues
primaires et en introduisant (7.1) dans (7.3), on obtient

Oij = Ak Gij + pu(ui; + ) (7.5)
et par substitution dans (7.2)

(A + p)ug ki + puijj+ fi =0. (7.6)
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Les relations (7.6) sont les équations de Navier qu’on peut également écrire
sous forme intrinseque

A+ p)V(divu) + pAu+ f=0 (7.7)

ol le déplacement doit étre deux fois contintiment différentiable. Ces équations
peuvent étre résolues lorsqu’on impose les conditions aux limites soit en terme
de déplacement soit en terme de forces de contact exprimées en fonction du dé-
placement & l’aide de (7.5). Une fois les déplacements connus, les déformations
s’obtiennent par (7.1) et les contraintes par (7.3).

On peut également considérer les six composantes de contrainte o;; comme
inconnues. Ainsi, en substituant les relations (7.4) dans les six équations de
compatibilité (2.174)

€ijkl + Eklij — Ejl ik — Eikjl = 0, (7.8)
on obtient
(1 +v)0ijkk = VOmm.nn 0ij + Oppij — (1 +)(Gigqj + 0jrri) = 0. (7.9)
D’autre part, il résulte de I’équation d’équilibre (7.2) que
Tiguqj + Ojrri = —fij — fii- (7.10)
Ainsi, (7.9) devient
(14 v)0ijkk — VOmmonn 0ij + 0ppij + (1 +v)(fi; + f;:) =0. (7.11)
En prenant la trace de cette équation, il vient

(1 - V)Umm,nn = _(1 + V)fk-,k (7.12)
ce qui permet de simplifier la relation (7.11) sachant que v # 1

1 v
0ijkk + T3y Ommii + fij+ fia + 15 fanbi; =0. (7.13)
Ces expressions sont les équations de compatibilité de contrainte de
Beltrami-Michell. Si les forces volumiques sont constantes, (7.13) est réduit

N

a

Tij,kk + Tmm,ij = 0. (7.14)

1+v
En particulier, les équations (7.14) sont trivialement satisfaites lorsque les com-
posantes o;; sont des fonctions affines de «. Dés lors, le champ des contraintes
a lintérieur du corps doit satisfaire les trois équations d’équilibre, les équa-
tions de Beltrami-Michell et les conditions aux limites du probleme. Lorsque
les contraintes sont connues, on calcule les déformations par (7.4) et les dépla-
cements par (7.1).
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7.2.2 Conditions aux limites

Le systeme d’équations précédent ne peut étre résolu que si des conditions aux
limites appropriées sont imposées. Soit un solide occupant un domaine ) dans
R3 de frontiere 9. D’une maniere générale, on peut diviser la surface 052 en
deux parties : 00 = S, U S; avec S, NS, = 0, ot

o S, représente la partie de 92 sur laquelle les composantes de déplacement
u; sont imposées, c’est-a-dire

U; = U; sur S, , (7.15)

o S; représente la partie de 99 sur laquelle les composantes du vecteur de
contrainte t; sont prescrites, c¢’est-a-dire

ti = 045N5; = Ez sur St s (716)
ol n; sont les composantes de la normale unitaire extérieure a S;.

On peut classer les problemes d’élastostatique en trois types selons les
conditions aux limites imposées :

o de type I, ol on a uniquement des conditions aux limites du type déplace-
ment (7.15) et S, est non vide;

o de type II, ot1 on a uniquement des conditions aux limites du type contrainte
(7.16) et S; est non vide;

o de type III ou mixtes, ou les conditions aux limites font appel a la fois aux
déplacements et aux contraintes avec S, et S; non vides en méme temps.

On notera qu’il est interdit d’imposer a la fois la contrainte et le déplace-
ment au méme endroit.

Apres avoir formulé un probleme aux limites, les questions d’existence et
d’unicité de la solution d’un probleme d’élasticité linéaire sont posées. Une
discussion de ces sujets sort du cadre introductif de ce chapitre.

Principe de Saint-Venant

Alors qu'il est relativement aisé de définir les conditions aux limites et leur type,
il est souvent plus difficile de les spécifier de maniere précise, particulierement
lorsqu’on considere des forces de surface. La raison en est que l'information sur
la distribution exacte des forces de contact n’est pas connue facilement. Afin de
surmonter cette difficulté, le probleme aux limites de 1’élasticité est remplacé
par un autre dans lequel le corps est le méme et les conditions aux limites sont
substituées par d’autres qui sont statiquement équivalentes. Selon le principe de
Saint-Venant, les effets dus au remplacement des conditions aux limites réelles
par des conditions statiquement équivalentes sont locaux et suffisamment loin
de ces limites, la solution du probleme original est pratiquement identique a
celle du probleme équivalent. La distance pour laquelle les différences ne sont
pas significatives, dépend des échelles linéaires caractéristiques de la structure
considérée. Ce principe s’est révélé tres utile dans plusieurs problemes d’intérét
pratique.
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7.2.3 Principe de superposition

Il vaut la peine de noter qu’en théorie de 1’élasticité linéaire, les 15 équations
(7.1)-(7.4) ainsi que les conditions aux limites sont linéaires. Ceci conduit &
la formulation du principe de superposition qui s’énonce comme suit pour un
probleme de type II : Soit un corps occupant le domaine  de R3, soumis aux

tractions #;(1) sur 0 et aux forces de volume f;(1). Le champ de contrainte
(1)

engendré dans ce corps par ces forces est noté o; ;- Le méme corps soumis aux

tractions de surface %;(2) et aux forces de volume f;(2 donne lieu au champ
de contraintes résultant o;;(2). L’application simultanée des tractions de sur-
face (£;(1) +7;(2)) et des forces de volume (f;(V) + f;(2)) conduit au champ de
contrainte (0;;() + 0;;(2)). En conséquence, les déformations du corps s’ob-
tiennent & partir des équations (7.4) en y insérant les contraintes (o;; (1) +0;;(2)).

Le principe de superposition s’applique également aux problemes de type I
et I11.

7.3 Elasticité plane linéaire isotrope

De nombreuses applications d’importance pratique ne requierent pas la résolu-
tion du probleme tridimensionnel pour I’état de contrainte et de déformation.
A cause de la géométrie particuliere du solide et de la forme de la charge, les
équations de I’élasticité peuvent étre considérées comme des fonctions de deux
variables spatiales, uniquement. Le probleme se réduit des lors & un probleme
plan.

Dans cette section, deux cas importants de problemes plans de 1’élasticité
linéaire sont définis. Ce sont les cas de déformation plane et de contrainte plane.

7.3.1 Etats de déformation plane

Soit une longue barre prismatique soumise a des forces latérales
(fig. 7.1). On suppose que la composante de la force volumique selon x5 est
nulle alors que les composantes selon les directions x1 et xo sont des fonctions
de x1 et xo. En raison de la dimension importante de la barre le long de ’axe
T3, on peut supposer que le déplacement ugz & une certaine distance des extré-
mités est une fonction de la seule coordonnée x3 et que les déplacements u; et
ug dépendent uniquement de x; et x5

Uy = Ul(xl,l’g) U = UQ(SCl,l‘Q) uz = U3(I3) . (717)
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Fig. 7.1 Cas d’une longue structure chargée en déformation plane.

Pour une barre de longueur infinie ou lorsque les extrémités de celle-ci sont
fixées, on peut supposer de plus que uz = 0 en chaque section. Les composantes
de déformation sont alors données par

o Bul - 8U2 o 1 8u1 8’&2
f1n = 8331 22 = 81‘2 f12 = 2 <6£172 83?1) (718)
et

L

33 — 81‘3 -
o 1 6’&1 6U3 o

f13 =5 (8903 + 8&01) =0 (7.19)
o 1 8u2 8u;>, o

523—5(8_%4‘6—@) =0.

L’état de déformation ainsi défini est appelé déformation plane. En utilisant
la loi de Hooke (7.3), on remarque que les contraintes o1, 092,033 et 12 sont
seulement des fonctions de x1, xo alors que a3 et 031 sont nulles partout. Par
conséquent, les équations d’équilibre (7.2) deviennent

0011 0012 _ 0021 0022
3.%‘1 3.’,132 + fl =0 8:c1 8:@

+ f2=0. (7.20)

Connaissant la déformation (égs (7.18) et (7.19)), on peut employer les relations
contrainte-déformation (7.3) pour calculer les contraintes comme suit :

011 = m (811(1 — V) =+ 1/622) (721)
099 = m (822(1 - V) + V€11) (722)
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o12 = 1 fy) €12 (7.23)
o33 = WE’I—ZV) v(e1 + e22) . (7.24)
Inversement, les déformations sont données par
€11 = ! ;V ((1 —v)o1 — 1/0'22) (7.25)
£99 = ! ;V ((1 —V)ogg — 1/0'11) (7.26)
€12 = 121/012- (7.27)

On impose les mémes restrictions aux forces de surface (fig. 7.2). Les forces
surfaciques #; et £ doivent étre seulement des fonctions de 1 et o, avec 3 = 0,
afin que la déformation soit effectivement plane. Ainsi, pour des conditions de
type II , on écrit

t1 = o111 + 01202 ty = 01201 + 02202, (7.28)

ol ni1 et mo sont les composantes de la normale unitaire n extérieure a €.
Lorsque les contraintes sont choisies comme inconnues, les équations de com-
patibilité doivent étre utilisées. Sous I'hypothese de déformation plane, la seule
équation de compatibilité qui n’est pas identiquement satisfaite s’écrit

%11 O%ex d%e1s

81'22 8.’312 - 261‘1&%2 ’ (729)

Ty

O

1

Fig. 7.2 Conditions aux limites pour les contraintes en élasticité plane.
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Donc, dans le cas de déformation plane, huit quantités 11, €22, €12, 011, 022,
012, U1, Uz doivent étre déterminées pour satisfaire les équations (7.18), (7.20)
et (7.25)-(7.27) ainsi que les conditions aux limites (7.28). Les huit équations
scalaires précédentes peuvent étre réduites a trois de la maniere suivante :

1) En introduisant les équations (7.25)-(7.27) dans (7.29), il vient

L (v )+ (- ) =227 (70

— —Vv)o1; — vo — —V)oge —VO11) = 2——. .

0232 11 22 022 22 11 921025

2) En dérivant respectivement les premiere et deuxieme équations de (7.20)
par rapport a x1 et x5 et en additionnant les deux équations résultantes,
on obtient

(7.31)

9 820'12 (620'11 820'22> + (6f1 + 6]“2) -

B 8x18x2 - 8%12 8x22 81'1 8%2

3) En substituant (7.31) dans (7.30), on a

» o 1 (on . of
<8$% + 81‘%) (011 Jr0'22) =1 <8£L‘1 + 8.%‘2> (7.32)

qui est I’équation de compatibilité en fonction des composantes de contrainte.

D’apres I'analyse précédente, on a maintenant un ensemble de trois équa-
tions : deux équations d’équilibre (7.20) et une équation de compatibilité (7.32).
Ces trois équations ont 011, 022 et 012 pour inconnues. Ce systéme d’équations,
avec les conditions aux limites (7.28) peut étre utilisé dans la recherche d’une
solution pour un probleme de déformation plane. On notera que la solution
satisfaisant ce systeéme est unique. Apres avoir déterminé les composantes de
contrainte, les déformations se calculent a 'aide des équations (7.25)-(7.27) et
les déplacements a 'aide de (7.18).

Fonction de contrainte pour des problemes de déformation plane

Le probleme de déformation plane peut avantageusement se simplifier & une
équation contenant une seule variable. Si on suppose que les forces de volume
dérivent d’un potentiel V(z1,z2)

oV
8Ii ’

fi = i=1,2, (7.33)

il n’est pas difficile de montrer que les équations d’équilibre sont vérifiées si les
composantes de contrainte sont les dérivées d’une fonction ®(z1, z2), telles que

0% %P 0P
o + 8%22 722 + 8x12 712 ail'laxz ( )
En introduisant ces composantes dans 1’équation (7.32), on obtient
0'o 0o o' 1-2w (9*V  9*V
4 29,2 4 ! =0 (7.35)
O] 0xi0z3 Oz  1—v \Ox12  Oxo?
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ou

:szo. (7.36)

AA¢+1_2

Lorsque les forces de volumes sont négligées, les contraintes sont données par

9P 9*® 9*®
011 = W 022 = W 012 = *m (7.37)
et 'équation (7.36) devient
ANAD =0. (7.38)

qui est appelée une équation biharmonique. Le probleme de déformation
plane de ’élasticité linéaire est ainsi réduit a trouver une fonction ®, appelée
fonction des contraintes d’Airy, satisfaisant (7.38) pour des conditions
aux limites appropriées. La connaissance de cette fonction permet la déter-
mination des contraintes par (7.34), des déformations par (7.25)-(7.27) et des
déplacements par (7.18).

7.3.2 Etats de contrainte plane

On considére maintenant la figure 7.3 ou l'on a le cas opposé a celui du long
prisme de la figure 7.1. On suppose que le corps a une dimension selon x3 tres
petite par rapport aux dimensions dans le plan z;z5. On suppose aussi que
les forces surfaciques sont appliquées parallelement au plan xizs. Les forces
volumiques selon 3 sont nulles alors que selon les directions x; et s, elles sont
des fonctions de x; et zo seulement. Vu la géométrie du corps et les charges
appliquées, on peut supposer que les composantes de contrainte o33, 013 et
093 sont nulles partout et que les autres composantes 011, 02 et 015 restent
pratiquement constantes dans I’épaisseur. Un tel état de contrainte est appelé
contrainte plane et s’écrit

o11 = o11(21, x2) 092 = 022(21,%2) 012 = 012(21, 22) (7.39)

0'3320'13:0'23:0. (740)

Les équations d’équilibre sont & nouveau données par (7.20) de méme que
les conditions aux limites par (7.28). Pour obtenir les relations déformation-
contrainte, on utilise la relation (7.4) qui se réduit &

1 1
81115(011*1/022) €22 = E(Uzzfl/an)
(7.41)
1+
€12 = I 012

€13 = €923 =0 €33 = —% (0'11 + 0'22) . (742)
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L)

(0)

&l

Fig. 7.3 Plaque mince avec charges dans le plan.

En inversant ces relations, on trouve les contraintes

o111 = m (611 + l/522)
E
099 = 71 5 (622 + 1/811) (743)
-V
E
g1 = £12 .
12 1+v 12

En extrayant (011 + 022) des équations (7.41) et en insérant le résultat dans la
derniére équation de (7.42), on obtient

v
£33 = — —, (511 =+ 522) . (744)

1
Cette équation donne la déformation normale « qui sort de la plaque » en
fonction des déformations tangentes « qui se trouvent dans la plaque ». Notons
que €33 ne fait pas partie des quantités qui caractérisent la contrainte plane.
Cependant, on peut I'obtenir indépendamment en utilisant la derniere équation.
On peut naturellement obtenir uz en utilisant e33 = dug/0x3. Les déplacements
u1 et ug sont indépendants de x5 et les relations déformation-déplacement sont
données par (7.18).

En ce qui concerne les équations de compatibilité, on dispose de la relation
(7.29) et des équations suivantes qui sont dues a la composante non nulle £33

8633 - 8533 - 82833

8901 6:02 o 6$181‘2 =0 (745)

L’intégration de la derniere égalité impose la condition suivante pour £33

€33 = Ao + Ar1x1 + Asxo . (746)
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Dans la résolution de problemes de contraintes planes, cette condition est géné-
ralement trop restrictive et n’est pas vérifiée ; seule I’équation (7.29) est considé-
rée. Quoique les solutions résultantes soient approchées, elles sont satisfaisantes
aussi longtemps que I’épaisseur des plaques est tres petite.

Comme dans le cas de la déformation plane, les équations de
contraintes planes se réduisent a trois équations qui font intervenir les com-
posantes de contrainte o11, 095 et o13. Clest évident puisque les équations
(7.18) et (7.29) s’appliquent aussi & la contrainte plane. La substitution des
composantes de déformation (7.41) dans (7.29) et lutilisation des équations
d’équilibre (7.20) donnent

0?  9? ofi | Of2
—+ == ) (o11+o)=—1+v)| =—+=—]. 7.47
<8m% 0z3 (011 + 022) ( ) dzr1  Ozo (7.47)
Cette derniere équation et les équations d’équilibre forment un systeéme de
trois équations a trois inconnues. On notera que, pour un probleme donné, une
solution qui satisfait ce systeme est unique.

Fonction de contrainte pour des probléemes de contrainte plane

En substituant les équations (7.37) dans ’équation (7.47) et en négligeant les
forces volumiques, on trouve a nouveau une fonction de contrainte satisfaisant

AAD =0, (7.48)

En résumé, nous avons montré qu'une méme équation différentielle régit la
fonction de contrainte des deux états bidimensionnels de I’élasticité linéaire : la
déformation plane et la contrainte plane. La distinction entre ces deux cas ap-
parait apres le calcul des contraintes, lors de la détermination des déformations
qui s’effectue & partir des équations (7.25)-(7.27) et (7.41)-(7.42), respective-
ment, pour les états de déformation plane et de contrainte plane.

En utilisant les combinaisons appropriées des constantes élastiques, les
équations de déformations planes peuvent étre converties en celles de contraintes
planes. A savoir :

De déformation plane a contrainte plane :
les relations contraintes-déformations (7.21)-(7.24) dans le cas de défor-
mations planes peuvent étre converties en celles de contraintes planes
(7.43) si dans (7.43), on remplace le module de Young E par E(1 +
2v) /(1 4 v)? et le coefficient de Poisson v par v/(1 + v).

De contrainte plane a déformation plane :
de fagon similaire, les relations contraintes-déformations (7.43) dans le
cas de contraintes planes peuvent étre converties en celles de contraintes
planes (7.21)-(7.24) si dans (7.43), on remplace le module de Young E
par E/(1 — v?) et le coefficient de Poisson v par v/(1 — v).

Ainsi, la solution d’un probleme en contraintes planes peut étre déterminée
a partir de celle du probléme correspondant en déformations planes, et vice
versa.
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7.4 Meéthodes de solution en élasticité linéaire

On a montré dans la section 7.2 que la solution d’un probléme tridimension-
nel en élasticité linéaire et isotrope requiert le traitement de quinze équations
a quinze inconnues, ces dernieres satisfaisant les conditions aux limites pres-
crites. Ces quinze équations sont combinées de telle sorte que : (a) trois in-
connues soient les composantes du déplacement, solutions des équations (7.6),
(b) six inconnues soient les composantes de la contrainte, solutions des équa-
tions (7.13). Les problemes d’élasticité plane, tels que déformation plane ou
contrainte plane, peuvent étre réduits a huit équations a huit inconnues. Le
nombre d’équations et d’inconnues peut aussi étre réduit d’une maniere simi-
laire a celle du cas tridimensionnel.

L’écriture directe de solutions analytiques de problemes d’élasticité n’est
pas chose facile et souvent, elle s’avere impossible. En conséquence, des mé-
thodes basées sur 'application rigoureuse des mathématiques appliquées sont
proposées pour traiter les différentes classes de problémes, tandis que d’autres
techniques permettent ’obtention de solutions approchées en se basant sur
Iintuition et I’expérience. On donne ci-dessous une liste des méthodes les plus
utilisées en élasticité linéaire.

o Méthode inverse. Dans cette méthode, le champ de déplacements ou de
contraintes est assigné au corps et on détermine toutes les autres quantités,
forces externes comprises. Alors que les solutions de problémes inverses ne
posent pas de difficulté particuliere, il n’est pas toujours possible de trouver
une solution d’intérét pour l'ingénieur [12, 65].

Meéthode des potentiels. Pour simplifier la solution des équations de 1’élasti-
cité, on introduit des fonctions de potentiel. Les potentiels pour les dépla-
cements donnent la solution des équations de Navier et ceux relatifs aux
contraintes engendrent des systémes de contraintes & 1’équilibre [22, 59, 62,
74].

Méthode semi-inverse. Dans cette méthode, on spécifie une partie des champs
de déplacements et de contraintes. En recourant & ces données partielles et
en s’appuyant sur les équations de la théorie de 1’élasticité, on détermine
ensuite les équations qui doivent étre satisfaites par les autres déplacements
et contraintes. Ces équations sont normalement faciles & intégrer et, com-
binées avec les données admises pour la premiere partie des champs de
déplacements et de contraintes, elles fournissent une solution complete et
précise de nombreux problemes intéressant les ingénieurs. Saint-Venant ap-
pliqua cette méthode au probléme de la torsion et de la flexion des barres
prismatiques [12, 65, 71] .

Méthode des variables complexes. Cette méthode utilise des fonctions ana-
lytiques du plan complexe pour résoudre les équations d’élasticité. Elle ne
peut s’appliquer qu’a des problémes plans, p. ex. [59].

Les méthodes variationnelles. Ces méthodes se basent sur le fait que les
équations de ’élasticité peuvent s’obtenir en minimisant un principe d’éner-
gie, p. ex. [22, 59].
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o Autres. D’autres méthodes incluent les méthodes de transformation inté-
grale et les approches numériques telles que la méthode des éléments finis,
p. ex. [22, 25, 60].

Dans ce chapitre, nous allons présenter la méthode des potentiels et la méthode
semi-inverse pour la résolution de problemes représentatifs avec I’objectif princi-
pal de mettre en évidence les formulations classiques de la théorie de 1’élasticité.
L’application des autres méthodes pour la résolution de divers problemes est
abondamment traitée dans la littérature [22, 59, 60, 65, 71].

Dans les paragraphes précédents, nous avons indiqué que le probleme de
I’élasticité peut se formuler en termes de déplacements avec les équations de
Navier (7.6) comme équations de champ. Une autre formulation repose sur les
contraintes pour lesquelles les équations de compatibilité (7.8) et les équations
d’équilibre (7.2) constituent un systéme de neuf équations. Dans cette section,
nous allons mettre en ceuvre un cadre général ou les fonctions de déplacement
ou de contrainte sont introduites de maniere a satisfaire les équations de Navier
ou celles de compatibilité de Beltrami-Michell (7.13) et les équations d’équilibre
(7.2), respectivement. On montre que de telles fonctions fournissent la solution
de certains problemes d’élasticité. Pour des raisons de simplicité, on considérera
uniquement le cas de forces de volume nulles. Lorsque les forces de volume sont
prises en considération, la méthodologie devient plus difficile et sort du cadre
de cet ouvrage. Le lecteur trouvera a ce propos des compléments plus avancés
et pertinents dans les ouvrages suivants [22, 59].

7.4.1 Fonctions de déplacement

Pour résoudre les équations de Navier, des fonctions de déplacement ou de
potentiel sont introduites de telle sorte que le vecteur déplacement dans les
équations de Navier s’obtienne & partir des dérivées de ces fonctions. Ces fonc-
tions de potentiel sont régies par les équations de Laplace ou les équations
biharmoniques, bien connues en physique mathématique. Pour aller dans ce
sens, nous nous appuyons sur le théoreme de la décomposition de Helmholtz,
cf. [15].

Théoréme de Helmholtz

Un champ wvectoriel fini et continu a, qui s’annule a linfini, peut étre
représenté comme la somme d’un champ irrotationnel b et d’un champ
solénoidal ¢

a=b+c (7.49)

avec

Vxb=0 et dive=0. (7.50)
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Pour formuler la solution des équations de Navier en termes de fonctions
potentielles, on élabore les définitions suivantes :

e Pour un champ irrotationnel, il existe un potentiel scalaire ¢ tel que b =
V. Puisque 'opérateur gradient n’implique que des dérivées premieres, la
fonction ¢ n’est déterminée qu’a une constante additive arbitraire pres.

e Pour un champ solénoidal, il existe toujours un potentiel vecteur ¥ tel
que ¢ = V x ¥, Ce potentiel n’est déterminé qu’a une fonction vectorielle
additive pres.

Donc un champ de déplacement u continu, fini et qui s’annule & U'infini, suivant
le théoreme de Helmholtz, peut étre représenté par la somme

u=Vp+Vx¥ (7.51)

avec les conséquences V X Vo = 0 et div(V x ¥) = 0. Notons que u a trois
composantes scalaires tandis que ¢ et ¥ en ont quatre. On peut donc imposer
la condition suivante sans perte de généralité

div =0 . (7.52)

Il est intéressant d’examiner la divergence et le rotationnel du déplacement
exprimé dans (7.51). En utilisant (7.52), (1.179), (1.188) et (1.190), on obtient

divu = div Ve + div(V x ¥) = div Vi + 0 = Vo (7.53)
Vxu=VxVp+Vx(Vx¥)=0+V x(VxW)
= V(div¥) — V¥ = V¥ . (7.54)

Remarquons que par (2.163), divu = &;; et donc V2¢ = ¢;;. Le rotationnel du
vecteur déplacement, i.e. V X wu, est lié au vecteur de rotation du corps, dont
les composantes sont celles du tenseur antisymétrique de rotation infinitésimale
w, multipliées par le facteur 2, cf. éq. (2.168).

Comme nous l'avons justifié précédemment, nous supposons f = 0 dans
(7.7). En introduisant (7.51) dans (7.7) et & 1’aide de (7.53) ainsi que des iden-
tités vectorielles (1.180), (1.188) et les relations (1.236), (1.237), on obtient

(A +2u)V(V3p) +uV x (V2¥) =0 . (7.55)

Des lors, toute paire de fonctions ¢ et W satisfaisant (7.55) produit un champ
de déplacement, donné par (7.51), qui est une solution des équations de Navier.
Inversement, pour tout déplacement u satisfaisant les équations de Navier, il
existe au moins un ensemble de fonctions ¢ et ¥ satisfaisant (7.51), p. ex.
[12, 22, 74].

Potentiel de déformation de Lamé

Des solutions particulieres de (7.55) sont engendrées par les deux équations

Vip=cst et VW =cst. (7.56)
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Lorsque
Vip=cst et ¥=0, (7.57)

la fonction ¢ est appelée le potentiel de déformation de Lamé et le déplacement
s’obtient par
u=Vp (7.58)

qui satisfait ’équation de Navier. Tres souvent, pour des raisons de facilité dans
la résolutions d’applications, on écrit (7.58) sous la forme

1
u=—Vep. (7.59)

Donc toute fonction qui satisfait ’équation de Poisson (7.57) peut servir de
potentiel de déformation. Lorsque ¢ est connu, le vecteur déplacement s’obtient
par (7.59), la déformation par (7.1) et les contraintes par (7.3). Notons que
toutes ces quantités s’expriment en fonction des dérivées premiéres et secondes
de ¢. A titre d’exemple, on a

1
i = 5 P 7.60
" QM('D’ ( )
1 1
&ij =35 (wij +uji) = ﬂ@,ij (7.61)
1
Ekk = Ukk = 5P kk (7.62)
2p
A
Oij = Mijepk + 2pij = ﬂ@,kkézj + 05 - (7.63)

Dans plusieurs problémes pratiques de ’élasticité, I’'objectif n’est pas d’ob-
tenir une solution générale, mais plutét une solution particuliere. Alors pour
raison de simplicité, considérons

Vip=0. (7.64)

C’est une équation de Laplace et ¢ est une fonction harmonique. On donne ci-
dessous des fonctions harmoniques utiles dans la solution de certains problemes
pratiques

o(r,0) = Crcosnb, r? =23+ 3 (7.65)
¢(r) = Cln %, r? = af + a3, (7.66)
@(6) = C9, 0=rtan™" =2, (7.67)

1
¢ 2_ 2., .2 2
(R) = = B =aitaltal, (7.68)

Lors de T'utilisation des coordonnées sphériques de I'annexe B dans les
exemples suivants, nous remplagons r par le symbole R. Les deux fonctions du
type Poisson données ci-apres sont utiles pour la solution de la sphere creuse et
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du cylindre creux, soumis a des pressions internes et externes en combinaison
avec (7.66) et (7.68)
o(R) = CR?, R?®=a% 423+ a2, (7.69)
o(r) = Cr?, r?=a?4+a3. (7.70)
Spheére creuse sous pressions interne et externe

Soit une sphere creuse de rayon interne et externe r;, r. (fig. 7.4) qui est soumise
aux pressions interne et externe P;, P., respectivement. Les forces de volume
sont négligées.

T2

Y
ang

Fig. 7.4 Sphere creuse soumise a des pressions internes et externes.

Kl

A cause de la symétrie sphérique, on utilise des coordonnées sphériques
(R, ¢, 0). Dans ce systeéme, toutes les contraintes et déformations de cisaillement
s’annulent et des trois composantes du vecteur déplacement ug, u,, ug, seule
la composante ug n’est pas nulle. La solution de ce probleme peut s’obtenir en

combinant les deux potentiels (7.68) et (7.69)
C
o(R) = =+ DR? . (7.71)
Ce potentiel satisfait 1’équation de Poisson (7.56); et fournit les contraintes et
déformations qui remplissent toutes les caractéristiques géométriques du pro-
bleme. A laide de (7.60) et annexe B, les composantes du déplacement sont

1 C
Avec le déplacement (7.72), les déformations s’obtiennent en utilisant les rela-
tions (B.22)-(B.24) de ’Annexe B

1 /2C 1 C
€RR:2N(R3+2D), 8¢¢:€99:2/},<__R?’+2D)

€0p = EOR = €pR = 0. (7.73)
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En insérant ces composantes dans la loi de Hooke (7.3), on obtient les contraintes

26’+21+1/D C+21+V
ORR = —= —_— Opp = 09 = ——=
RR = 3 T g, Tee T 000 RS "1 -2

0gp = O'QRZO'WR:O. (7.74)

D

Les constantes C, D dans (7.74) sont déterminées par les conditions aux limites

orr = —FP; en R=rm
orp = —P, en R=r,. (7.75)
En appliquant ces conditions a l’expression de ogg, il vient
ITST?(PG—Pi)
A
11—2ur3P, — rg’Pe

D:* 2 . .
214v  r3—1r (7.76)

C:

En substituant ces expressions dans (7.74), on obtient les contraintes

B 17“37‘(P Pz)_i_TP—SPe
TRE = B3 rd—r3 r3—rd
P(w-1) R(-%
7 Rie?’ - RLS
_ (7.77)

r3 T3
(-9 (-5)

3 3
ry Py — 1P

Toe = 000 == 2R3 3 -3 * rd—r3
3 3
P-(Le+2) P(T—im)
1 i\ R3 e\ R3
=5 - — = (7.78)
E9 (-9
La composante non nulle du déplacement devient
R 1 r2r3(P.—P) 1—-2vrP —1riP,
Ur = 57\ 753 5.3 T 3_ .3
2u \ 2R TS — T} 1+1/ TS —7;
1 r3 1—2v 1T 1—2v
R st a5, 3 + ”
=5 | P 21w _p2 R = ) (7.79)
H 51 1— %

Il est intéressant de noter que si r. > r;, les contraintes et les déplacements
sont approchés par

r3 r3
orr = ~Pigs — Fe (1 - RS) (7.80)
Pord P
099 = Opp = ?ﬁ - 7 (Rg + ) (7'81)

R (P r} 1—-2v 143
_ (O p (LT 1)) 7.82
=g (5P (T +am)) (782)
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A la surface interne, R = r;, les contraintes et les déplacements deviennent

P, 3P
000| R=r; = Opy|R=r; = 5" 5 orRr|R=r, = —P; (7.83)
R P1 3Pe 1—v
o= (2 84
uR|Rr, 2u<2 2 1+u> (7.84)
Lorsque R — oo, 7;/R — 0 et les équations (7.80)-(7.82) se simplifient
RP,1—-2v
URR:UHHZUA,@Q@:*Pe et up = — 2 11v (785)

Cylindre creux sous pressions interne et externe et extrémités fixes

Un cylindre creux de rayons interne et externe r;, 7. (fig. 7.5) est soumis aux
pressions interne et externe P;, P,, respectivement. Les forces de volume sont
supposées nulles.

Ty

L™
eI

Fig. 7.5 Cylindre creux soumis a des pressions interne et externe.

A cause de la symétrie cylindrique, il est utile de recourir aux coordonnées
cylindriques (r,6,z) (annexe A). Dans ce systéme, toutes les contraintes et
déformations de cisaillement s’annulent et des trois composantes du vecteur
déplacement, seule la composante u, n’est pas nulle. On est dans le cas d’un
probléme de déformation plane, puisqu’aucune déformation n’est permise dans
la direction de I'axe du cylindre, soumis aux conditions aux limites

Orr = _Pia Org = 0 en 7= T (786)
Orp = —Pe, 0rg=0 en r=r.. (7.87)

La solution de ce probleme peut étre obtenue par la combinaison des deux
potentiels (7.66) et (7.70)

p(r) = CiIn 5 + Cor? (7.88)
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ou (1, K,C5 sont des constantes déterminées via les conditions aux limites.
En pratiquant la procédure de I'exemple précédent, les composantes de la
contrainte et du déplacement sont

1 2rl
O = —— (@Pi — 2P+ e (P, - Pi))
r2 — 1’ r
L (7.89)
L (R -e2p - Tlep P
0—6‘6‘*7“2_7”1_2 Tty —Tele — r2 (e* 2)
T?Pi — ’I“?Pe
Oyy = VW (790)
Org = 0py =09, =0 (7.91)
r 1 r2r2(P.— P)  r2P,—12P,

p=—[—-——=-L < 1—-2 7.92
o ( r2 2 —r? * r2 —r? ( v) (7.92)

Ce probleme est aussi résolu avec deux méthodes différentes a la section 7.5
pour le cas de I’état de contrainte plane.

Vecteur de Galerkin

Le vecteur déplacement (7.51) est représenté par une somme de dérivées pre-
mieres, via 'opérateur différentiel V(o) = 9(e)/0x;, d’une fonction scalaire ¢
et d’une fonction vectorielle ¥. Pour pouvoir construire des solutions d’applica-
tion générale, le recours a des opérateurs différentiels du second ordre est plus
indiqué. Des opérateurs de ce type sont 'opérateur laplacien V2 (§ 1.4.8) et

V(div(e)) = aii (%&?) Ces opérateurs peuvent s’exprimer dans un systeme

de coordonnées quelconque et s’appliquent & une fonction vectorielle.
Soit une fonction vectorielle V' reliée au vecteur déplacement u par l'ex-

pression
2uu = 2(1 —v)V?V = V(divV) . (7.93)

Le facteur 2 est introduit pour la facilité dans les applications. Le vecteur V'
est le vecteur de Galerkin qui fournit une solution générale des équations de
Navier. En introduisant (7.93) dans (7.7), en utilisant les identités vectorielles
(1.188), (1.191) et (1.236), et en se rappelant que 2(1 —v) = (A +2u) /(A + p),
on obtient

vV (V?V) =0. (7.94)

En conséquence, toute fonction vectorielle biharmonique peut servir de vecteur
de Galerkin et le déplacement u dans (7.93) satisfera (7.7). Donc les relations
(7.93) et (7.94) sont équivalentes aux équations de Navier. La comparaison de
(7.93) et (7.51) permet d’écrire

AS)
I
|
|

o
<
<

(7.95)

Vx® ="V, (7.96)
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Si on impose aussi la condition que V soit harmonique, i.e. V2V = 0, alors
(7.96) conduit & V x ¥ = 0. De plus, & cause de l'identité vectorielle (1.191),
il résulte de (7.95) que ¢ est une fonction harmonique, V2 = 0. Donc, ¢ est
un potentiel de déformation de Lamé, défini antérieurement.

La fonction de déformation de Love

Un cas particulier de vecteur de Galerkin apparait lorsque V' = Vzes. Alors,
on a la fonction de déformation de Love. La condition (7.94) devient

VZ(V?V3) =0 (7.97)

et (7.93) s’écrit
) Vs
2uu =2(1 —v)(V*V3)es — V(=—) . (7.98)
3x3
Les trois composantes du déplacement sont facilement exprimées en coordon-
nées cartésiennes

Vs Vs 0, V3
2 = - 2 = - 2 2= 2(1 — Va —
MUy 856131'3 ) Hu2 8I28I3 ’ Hu3 ( l/)v 3 81,:2))
(7.99)

vo i .. AN v . .
Love introduisit cette forme particuliere du vecteur dans I’étude de solides de
révolution sous charges symétriques. Dans pareils cas, les composantes du dé-
placement s’expriment en termes de cette fonction en coordonnées cylindriques

0%V, 1 0%V,
2 g = —=——=, 2puu. = 2(1—1)V2V, —
87’827 Hue r 89027 puy ( Z/>V VZ

9%V,
022

2uu, = — (7.100)

Probléme de Kelvin : Force concentrée a I’'intérieur d’un corps infini

Une application de ce potentiel de déformation consiste a établir la solution
du probleme d’une force unique concentrée a I'intérieur d’un corps infini. Cette
application est connue comme le probleme de Kelvin défini a la figure 7.6 (a)
[22].

Une force P est appliquée au point O parallelement a I’axe x3. Elle satisfait
les conditions aux limites suivantes :

o Toutes les contraintes s’annulent & ’infini.

o La singularité a l'origine est équivalente a la force appliquée P. Donc, la
force concentrée peut étre considérée comme la limite d’un systeme de forces
qui s’appliquent a la surface d’une petite cavité située a ’origine.

La solution de ce probleme est obtenue en coordonnées cylindriques. Donc,
en raison de la symétrie angulaire, le potentiel de déformation de Love est
indépendant de 6, i.e.

V. =V.(r,2) . (7.101)
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(b)

Fig. 7.6 Solide infini soumis & une force concentrée (a) et vue en coupe (b).

En utilisant les relations déformation-déplacement et contrainte-déformation
(voir Annexe A), les composantes de la contrainte s’expriment par les relations

Opp = aﬁ ( ) (7.102)
opp = aﬁ (y i%‘; %%) (7.103)
0. = aﬁ ( 2 - 1)V, — a;}f) (7.104)
e = _5‘7’8982 ( rz) (7.105)
0g. = ! 59 ((1 —V)V?2V, — 8;?) (7.106)
O = % ((1 —V)V?V, — a;:;) . (7.107)

La forme particuliere de la fonction (7.101) qui doit satisfaire (7.97) et ses
dérivées troisiemes, qui apparaissent dans les composantes de la contrainte (égs.
(7.102)-(7.107)), s’annulent a U'infini et possedent une singularité a l'origine.
Une fonction qui satisfait ces exigences est donnée par

V. =K(r?+ 222, (7.108)
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En utilisant (7.108) dans (7.100) et dans (7.102)-(7.107), on a

Krz
R (7.109)
9. — 2(1-2v) 1 N 22
pe = (r2 42172 " (12 4+ 22)12 7 (12 4 22)3/2
B (1-2v)z 3riz
o = K [(TQ PR (2t ) (7.110)
(1-2v)Kz
ggp — W (7111)
_ (1-2v)z 323
0z = —K [(TQ + 22)3/2 + (r2 + 22)5/2 (7.112)
(1-2v)r 3rz? }
or, = —K + 7.113
[(T2 +22)3/2 T (12 4 22)5/2 ( )
org = 09, =0 . (7.114)

Notons que les contraintes ne sont pas définies a l'origine puisqu’elles sont
singuliéres et qu’elles s’annulent & 'infini. Pour établir la constante K, il est
nécessaire de considérer 1’équilibre des forces, dans la direction verticale, d’une
bande horizontale symétrique de hauteur +h qui contient I’axe horizontal et la
force P (fig. 7.6(b)). L’équilibre des forces s’écrit

P:/ 27Trdrazz\z=_h—/ 2w rdro,,|,=1n (7.115)
0 0

En insérant (7.112) dans (7.115) et en intégrant, on trouve la valeur de la
constante

P

K= g (7.116)

Ce parameétre est substitué dans (7.109)-(7.113) pour obtenir le déplacement
et les composantes de la contrainte, respectivement.

Probléme de Cerruti : Force tangentielle a la limite d’un corps semi-infini

En utilisant la méthode des potentiels, on peut résoudre certains problemes en
combinant un potentiel de déformation de Lamé et un vecteur de Galerkin. Un
probléme bien connu qui utilise une telle approche est celui de Cerruti, ot une
force tangentielle P agit a la surface d’un corps solide semi-infini comme on
peut le voir & la figure 7.7, [22].

Ce probleme peut se résoudre en combinant le vecteur de Galerkin de com-
posantes

Vi=AR, V2=0, V3= Bz ln(R+z3) (7.117)
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Fig. 7.7 Solide semi-infini soumis & une force tangentielle & sa surface.

et le potentiel de déformation de Lamé

C.’El

= 7.118
R+ x3 ( )

¥

olt les coefficients A, B, C, sont des constantes et R? = 2% + 23 + x3. Dans ce
cas, le vecteur déplacement est donné par la superposition des équations (7.59)
et (7.93)

2uu = Vo +2(1 —v)VV - V(divV) . (7.119)
Les trois constantes A, B,C, sont déterminées par les conditions aux limites
qui sont (fig. 7.7)
1) en 23 =0, 033 = 093 =0,
2) la somme des forces le long de z1 et Vs > 0 est nulle :
P + fj-oooo fj_oo: 013 dil?l d.’172 =0.

Ces conditions donnent

B P _ P(1-2v) _ P(1-2v)
A=pimy P=macy O e (7.120)

Ces constantes sont insérées dans (7.117) et (7.118) pour calculer le déplace-
ment. Les déformations résultent de (7.1) et les contraintes de (7.3).

La présentation de Papkovich-Neuber

Remarquons que ’équation (7.55) est du troisieéme ordre, tandis que celle qui
régit le vecteur de Galerkin (7.94) est du quatrieme ordre. Dans la formulation
présente, on propose un systeme d’équations du second ordre qui est équivalent
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aux équations de Navier. Plus précisément, le vecteur déplacement est exprimé
par une combinaison de fonctions harmoniques [12, 20, 74]

a-x
2uu=a—V —_ 7.121
pu=a-v g+ 2 (7.121)
ou a, 3 sont des champs vectoriel et scalaire, respectivement et x est le vecteur
position. En introduisant w avec f = 0 dans (7.7) et en utilisant les identités
vectorielles (1.188), (1.236) et (1.240) ainsi que la relation entre les constantes
élastiques (6.109), on obtient I’équation suivante

uVia — (A +2u)V(V2B) — (W‘) V(z-Via)=0. (7.122)

Cette derniere équation est satisfaite lorsque
Via=0, V?B8=0. (7.123)

On remarquera que ces équations sont du second ordre, et non d’ordre plus élevé
comme ’étaient les équations (7.55) et (7.94). Ces quatre fonctions scalaires ne
sont pas indépendantes. Cependant, on peut montrer que, pour tout domaine
convexe, le nombre de fonctions indépendantes est réduit & 3 [20]. De plus, le
vecteur « et le scalaire 5 sont reliés au vecteur de Galerkin commme suit

a=2(1-v)\VV (7.124)
B=V.-V-— 74(‘1‘ '_wy) : (7.125)

Un cas spécial pour ces quatre fonctions en coordonnées cylindriques est
donné par les relations

ar=ap =0, a,=a,(rz), p=pL(rz2) (7.126)

que nous allons utiliser pour résoudre le probleme suivant, capital en élasticité.

Probleme de Boussinesq : Force verticale a la limite d’un corps semi-infini
Soit un solide semi-infini soumis a une force P agissant normalement a la surface
dans la direction de ’axe vertical ainsi que le montre la figure 7.8.

Les conditions aux limites de ce probleme sont

e 0., = 0 partout sur la surface,

o la force résultante verticale sur un plan horizontal due a o, a une profon-
deur z est égale a la force appliquée P. Notons que o,, n’est pas défini a
Porigine.

En se référant a la figure 7.8, on définit la distance R? = r? + 22. La solution
de ce probleme est obtenue si on considere les fonctions suivantes
ar = apg=0
K
a, =4(1l—v)—= (7.127)

R
B=Cln(R+2) .
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Fig. 7.8 Solide semi-infini soumis a une force verticale concentrée a sa surface.

La substitution de (7.127) dans (7.121) donne

41- V) K 1 Kz
TR, Cv(ol it 12
u o ke o (C n(R+z)+ 7 ) (7.128)

dont les composantes en coordonnées cylindriques sont

Cr Kzr B-4w)K-C Kz2?
— =0, u, = . (7129
SRR +2) ours M0 R o (1129

Uy =

En insérant (7.129) dans les relations déformation-déplacement (A.21)-(A.23)
et les déformations dans les relations correspondantes déformation-contrainte
(7.3), les contraintes nécessaires pour évaluer les conditions aux limites sont

T 3K 22
3Kz
O, = — o (7.131)

La premiere condition aux limites énoncée ci-dessus conduit &
C=K(1-2v). (7.132)

Afin de déterminer K, la force résultante & la profondeur z due & o, est égalée
a la force appliquée P

"= 3K 23
P:/ i 2 rdr . (7.133)
r=0
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L’intégration de (7.133) donne
K = P/2r (7.134)

et la relation (7.132) conduit a
C=P1-2)/2r. (7.135)

En insérant (7.134) et (7.135) dans (7.129), les composantes du déplacement
sont

P zr (1=2v)r P 22

r = o y =0, z = 2(1 - D2

T 4ruR (32 R+z ) o YT iR ( (1=v)+ 2
(7.136)
Avec les déplacements connus, nous pouvons calculer les déformations en utili-

sant (A21)-(A23). Ces déformations sont insérées dans (7.3) pour exprimer les
contraintes non nulles comme suit

P 3riz  R(1-2v)
_ _ 1
7 = 9nR? ( B "Ry (7.137)
(1-20)P [z R
- (= - 7.1
766 2rR? \R R+ (7.138)
3Pz3 3Prz3
7%= T Torrs 7T T onRs (7.139)

En terminant cette section, il faut mentionner que plusieurs problémes impor-
tants du point de vue pratique (p. ex. le contact entre corps solides) impliquent
I’analyse des contraintes et déformations dans des domaines semi-infinis soumis
a des efforts appliqués sur des surfaces libres droites. Les solutions de ce type de
probléme s’obtiennent par intégration des résultats des solutions de Boussinesq
et Cerruti présentées dans cette section. Le lecteur trouvera pareilles solutions
dans la littérature [34].

7.4.2 Fonctions de contrainte et solutions d’Airy pour
des problémes plans

A la section 7.2, on a montré que le champ de contrainte en un point d’un corps
a D’équilibre est régi par les équations (7.2), les équations de compatibilité de
Beltrami-Michell (7.14) et les conditions aux limites. De maniere semblable
a l’étude des fonctions de déplacement, on a proposé des fonctions qui en-
gendrent les champs de contrainte satisfaisant le systeme d’équations ci-dessus
mentionnées. Cependant, comme la contrainte est un tenseur du second ordre,
la fonction recherchée devrait refléter cette propriété [12]. Dans la suite, pour
la simplicité de ’exposé, on négligera les forces de volume.
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Introduisons une fonction tensorielle de contraintes ®(x) qui soit symé-
trique et qui exprime les six composantes de la contrainte comme

= —2 .14
o1 0z3 + 0x3 0x90x3 (7.140)
= —2 141
722 0?2 + 03 0x3011 (7.141)
82<I>11 82@22 82CD12
= —2 142
o33 0x3 * ox? 01101 (7.142)
2 2 2 2
o1y — 88 Dog 0 P3q B 0 P33 B 1o} <I>212 (7.143)
r30x1  O0x30ry  Ox10T9 Oxs
2 2 2 2
- aa D3y 0“Pqo B 0P B 1o} <I>223 (7.144)
10y  Ox10x3  Ox9013 0xy
2P 2P 2P 2P
- 0°®qy 0% ®y3 B 0@y B 0 5,1 (7.145)
0x90x3  Ox90x1  Ox30%1 O0xs

Il est aisé de vérifier que les équations d’équilibre (7.2) avec les forces de volume
nulle (f = 0) sont satisfaites avec les composantes de la contrainte (7.140)-
(7.145). Deux voies alternatives ont été proposées pour engendrer des solutions
completes & partir des fonctions de contrainte [12, 40]. Ces fonctions sont soit
celles de Maxwell soit celles de Morera. Plus précisément, si on ne retient que
les composantes diagonales ®;;, on définit le syteme de Maxwell ; dans le cas
ou les éléments non diagonaux sont gardés, on définit le systeme de Morera.
Chacun des ensembles de fonctions de contrainte est complet, dans la mesure
ol pour toute distribution de contrainte satisfaisant les équations d’équilibre,
il existe un ensemble de fonctions de Maxwell et de Morera. Dans cette section,
nous discuterons uniquement les fonctions de Maxwell.

On souligne dans la littérature que si la composante ®33 est la seule non
nulle dans la représentation de Maxwell, ceci produit la fonction d’Airy pour
les probléemes plans. Puisqu’on fait la distinction dans les problémes plans
entre contrainte plane et déformation plane (sect. 7.3), nous allons les exa-
miner en termes de fonctions de contrainte. En partant de la seule composante
®33 = D33(x1, 22), indépendante de z3, les équations (7.140)-(7.145) donnent

82(1)33 82‘1)33 82(1)33
- = = — 7.146
011 810% ) 022 &T% y 012 021075 ( )
Jg33 = 0 (7147)
023 = 031 =0 (7.148)

qui correspondent au cas du probleme de contrainte plane puisque o33 = 0. Afin
d’examiner plus avant la nature de ®33, il nous faut faire appel aux équations
de compatibilité de Beltrami-Michell. Les six équations (7.14) sont écrites in
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extenso
V2o, + Hlya;?%’“ =0 (7.149)
V204, + 141ru a;‘;g’“ =0 (7.150)
V2035 + Hlya;‘;g’“ =0 (7.151)
V2095 + 14% a‘i(g“; =0 (7.153)
Vo5, + 14% g;g“; =0. (7.154)

Notons qu’a laide de (7.146), les équations (7.151), (7.153) et (7.154) sont
satisfaites, tandis que (7.149), (7.150) et (7.152) ne le sont pas. Ceci est dii &
la nature approchée du probléme de contrainte plane (§ 7.3.2). Cependant, en
insérant (7.146) dans (7.149) et (7.150) et en les additionnant, il est aisé de
vérifier que P33 satisfait 1’équation biharmonique

04 Pqq Lo NPy 9 Dag

1 25,2 1
O] O0x{0x3; x5

AAD5; = =0. (7.155)

Pour les problemes de déformation plane, la composante de la contrainte
o33 est reliée aux composantes 011, 092 par la relation

o33 = v(011 + 022) - (7.156)

Pour satisfaire cette exigence dans la représentation de Maxwell, il est néces-
saire d’inclure les composantes ®11, P22 en supplément de P33 et d’imposer la
condition

‘1)11 = (I)QQ = Z/(I)33 avec @12 = ‘1)23 = (1)31 =0. (7157)

Dans ce cas, chaque équation de compatibilité (7.149)-(7.151) conduit & 1’équa-
tion biharmonique (7.155), tandis que les relations (7.152)-(7.154) sont satis-
faites.

En comparant les résultats de cette section avec ceux de la section 7.3, on
constate facilement que la fonction de contrainte ®(x1,z2) définie a la section
7.3 est un cas particulier de la représentation de Maxwell.

Donc, pour les problemes plans, lorsque ®33 est connu et satisfait I’équation
biharmonique (7.155), les composantes de la contrainte pour la contrainte plane
(7.146) et celles de (7.146) et (7.156) pour la déformation plane satisfont les
équations d’équilibre. On considere qu’un tel état de contrainte est solution du
probléme, s’il satisfait les conditions aux limites.

Avant de présenter quelques exemples, on remarquera qu’il est relativement
facile de trouver une fonction de contrainte qui satisfasse (7.155). Cependant,
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satisfaire les conditions aux limites n’est pas toujours chose aisée. En général,
on devrait étre guidé par 'intuition sur la nature de la fonction adéquate et par
Iexpérience. Une pratique courante consiste a utiliser des formes polynomiales
et a trouver la combinaison idoine qui satisfait les conditions aux limites. Rem-
placant ®33(x1,x2) par ®(x1,x2), une fonction polynomiale appropriée s’écrit

2 2 3 2 2 4
O(x1,22) = ar2] + a2x122 + azx; + bixy + boxixe + b3z125 + by

te1x] + coxdng + c3xixd + cami xS + ey + - (7.158)

Notons que tout terme d’un polynéme de degré inférieur ou égal a trois satis-
fait (7.155). Les termes d’ordre supérieur ne doivent pas étre considérés, mais
s’ils doivent étre inclus, leurs coefficients seront choisis avec soin pour satis-
faire I’équation biharmonique. L’efficacité de cette approche est effective dans
plusieurs probléemes comportant des domaines rectangulaires. Cependant, les
fonctions polynomiales ne peuvent pas décrire facilement des discontinuités de
géométrie et de charges. Alors le principe de Saint-Venant est souvent utilisé
pour remplacer les conditions aux limites actuelles par des conditions stati-
quement équivalentes. Notons que la méthode de résolution qui se base sur
une fonction de contrainte satisfaisant (7.155) est une méthode semi-inverse,
puisque la fonction polynomiale est donnée et on recherche le probleme qui
pourra étre résolu avec cette fonction.

Grace a la symétrie de révolution présente dans plusieurs problemes pra-
tiques, les fonctions d’Airy sont généralement présentées en coordonnées cy-
lindriques. La fonction proposée par Michell [60] offre une solution de (7.155)
pour des problemes plans

O(r,0) = Ag + Ay lnr + Agr? + Asr?Inr
+ (A + Asnr 4 Agr® + Azr?Inr)0

A
+ (Aur + Apprlnr + 413 Apgr® + Ai5r0 + AgrfIn r> cos
r
B
+ (Bllr + Biarlnr + 218 Byar® + Bysrf + Bigrf1n r) sin 6
r
+ Z (Anlr" 4 Apor®t 4 Apar "+ An4r2_") cosnb
n=2
o0
+ Z (Bnlrn + Bpor*™™ 4 Bpar ™" + nn4r2*”) sinnf . (7.159)
n=2

Ici, ®33(r, 0) est remplacé par ®(r, 0). Les coefficients Ay, ..., A7; A11,..., 4163
Bi1,...,B1g; Ap1y. .., Ana; Bui, ..., Bpg sont des constantes et n est un entier.
On choisira des termes variés dans (7.159) pour résoudre plusieurs problémes
en coordonnées polaires. On trouvera quelques exemples ci-dessous.

Charge linéique sur une limite droite d’une plaque semi-infinie

Considérons une plaque d’épaisseur unitaire soumise a une charge P par unité
d’épaisseur tel qu’on le montre a la figure 7.9.
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(b)

Fig. 7.9 Plaque semi-infinie soumise & une force verticale concentrée a sa surface
(a), cercle du diametre d o la contrainte est la méme en tout point du cercle (b).

Le probleme de contrainte plane a trois composantes de contraintes en co-
ordonnées cylindriques o,.., 0gg, 09. Les conditions aux limites de ce probleme
sont

o les composantes de la contrainte ogg = 0,9 =0 en 0 = £7/2;

o la force verticale équilibrée par la composante verticale de la force due a la
contrainte radiale a la distance r.

La solution du probleme s’obtient en posant la fonction d’Airy suivante
O(r,0) = Crosing . (7.160)

En connaissant ®, les composantes de la contrainte obtenue par les relations
(7.146) en coordonnées cylindriques (A.28)-(A.30) sont

2 0
Opp = 70 cos , ogg=0r9=0. (7.161)
r

En appliquant la seconde condition aux limites, la constante C' est déterminée
par la relation

+7/2 +77/2 P
P+/ opp cosO(rdd) = P+ 2C cos?0df =0 et C=——.

—7/2 —7/2 s
(7.162)
Donc, les composantes de la contrainte sont
2P cos?
Opp = = CB7 =9 =0 . (7.163)
T T

On remarque que pour le cercle de diametre d dont le centre se trouve sur ’axe
vertical et qui est tangent & l'origine, r = d cos 8. Donc la contrainte (fig. 7.9b)

2P 1
= 7.164
? ™ d ( )

est la méme en tout point du cercle.
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Une fois les contraintes connues, les déformations s’obtiennent par la loi de
Hooke (7.4) (voir (A.21)-(A.23))

- ou, 77%0089
" 9r  wE r
Ur laug 2Pv cosf

€00 (7.165)

T rd0  mE r

1 (10u,  Oug up\ _
€r9—2<rae+ar‘r)—°-

Ces équations sont intégrées pour calculer les déplacements. Les constantes
d’intégration sont évaluées par I’élimination du mouvement de corps rigide de
la plaque. Ceci est accompli en imposant ug (7, 8)]s=0 = 0 et u,(r,8)|g=0,r=p = 0,
ou b est une distance arbitraire le long de laxe z1 (fig. 7.9a)

2P 1—-v)P
Up = —cos@lné - ﬂ@sin@
TE r s
(4P . 2P b (1—-v)P
up = sin @ = sin @ In " fcosb . (7.166)

Cylindre creux sous pression interne et externe et extrémités libres

Etant donné la géométrie du cylindre et la configuration des contraintes ap-
pliquées, et en supposant que les extrémités du cylindre sont libres, on peut
montrer que o,, = 0. Donc il s’agit d’'un probléme de contrainte plane. Les
conditions aux limites sont indépendantes de 6 ; de plus, comme la distribution
de contrainte est symétrique par rapport a I’axe x3, ceci implique que g9 = 0.
Les conditions aux limites de ce probleme sont données par (7.86) et (7.87).

Ce probleme sera résolu par deux méthodes. Dans la premiére, on utilise
les équations de Navier (7.6). Dans la seconde méthode, on définit une fonction
de contrainte d’Airy, appropriée pour le probleme et on 1'utilise pour calculer
les composantes de la contrainte, de la déformation et du déplacement.

Dans la premiere méthode, on considere qu’un élément du cylindre ne peut
que se mouvoir radialement a cause de la symétrie de la charge et de la géomé-
trie. Donc la seule composante non nulle du déplacement est u, et les relations
déformation-déplacement en coordonnées cylindriques deviennent

du,
rr — 7.167
c dr ( )
€69 = uTT (7.168)
1 (dug ug
==|————1]=0 7.169
ero 2 ( dr r ) ( )
Ezz = V(590 + Err) . (7170)

Dans le cas de contraintes planes, les relations contrainte-déformation (7.41)

sont 1 1
Epp = B (orr — VOgy) g9 = B (009 — vOrr) . (7.171)
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En résolvant ces deux relations (7.171) pour les contraintes et en utilisant
(7.167)-(7.168), on a

F du, Uy
Opp — m (d?" + V?"> (7172)
FE Uy du,
- = (* . 1
099 =2 (’I“ +v dT> (7.173)

Avec ug = u, =0, et u, # 0, une seule équation de Navier n’est pas satisfaite.
En supposant nulle la force de volume, celle-ci s’écrit

Py, 1du,  u,
-—— = —==0 7.174
dr? r dr 72 ( )

dont la solution est donnée par

u, = Cir + % . (7.175)

En utilisant (7.175) dans (7.172) et (7.173), il vient

E 1-—
Opp = —— (01(1 +v)—C r2y> (7.176)

1—v2

Opy = L (Cl(l —I—U) —I—Czl — V> . (7.177)

1—0v2 r2

On détermine les constantes C; et Co par les conditions aux limites (7.86) et
(7.87), ce qui donne

_1—vr?P— %P, 1+vr#ri(P.— P)

C Cy = 7.178
! E r2 —r? 2 E r2 —r? ( )
Finalement, les contraintes et le déplacement prennent la forme
1 2,2
Opp = 5 2<T$P1T3P@+%(Pepz)>
r2 —r: r
€ ‘ 5 o (7.179)
1 2 2 TiTe
090 = 5o \Tibi —rePe — =55 (Pe = )
1—v r2P, — 2P, 1 P. — P;) r2r2
" — VT rele +v ( ) rire . (7.180)

E r2 —r? E r2—-r2 r
Vérifions maintenant ’hypothése o,, = 0. Si les extrémités du cylindre sont
libres, alors €,, = cste. Par conséquent, les relations contrainte-déformation
donnent

0.z = V(0w +009) + Fe,, = c. (7.181)

La constante ¢ est déterminée en imposant que la force normale totale a ’ex-
trémité du cylindre soit nulle

/ o2mrdr =me(r? —r})=0=c=0 et o0.,=0. (7.182)

7
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Dans la seconde méthode, on définit une fonction appropriée des contraintes.
En tenant compte des symétries de la charge et de la géométrie, la fonction de
contrainte ® est indépendante de 6 et n’est plus fonction que de r. En consé-
quence, la fonction de contrainte est prise sous la forme

®(r) = Alnr + Br? + Cr’lnr + D. (7.183)

Quoique cette fonction soit la solution générale de I’équation biharmonique
(7.38) ou (7.48) ou également (7.155), analyse du déplacement radial u, méne
a la conclusion C' = 0. La constante D n’affecte pas les composantes de la
contrainte. Donc on ne retiendra que les deux premiers termes de (7.183) dans
la suite. Avec cette fonction, I’équation de compatibilité (7.38) en coordonnées
cylindriques (A.27)

‘o 2d4°® 1 d*® 1 do

drt v dr3  r2 dr2 3 dr

est automatiquement satisfaite et les composantes de la contrainte sont

0 (7.184)

1d® A
rr— — ;. T 5 2B
7 rdr 12 +
d?® A (7.185)
90 = gr = 2 T2B
Org = 0.

A Taide des conditions aux limites (7.86) et (7.87), on obtient pour les constantes

r2r2 2P, — 2P,
A= =5 (P P) B=-G—5". (7.186)
Des lors, les contraintes s’expriment comme
1 2,2
Orr = 2 Q(T?Pi_rzpe'i‘rzze (Pe_Pi)>
re — T r
9 9 (7.187)
1 2 2 riTe
Ogg = o By —r P — 2 (P.— P)

qui sont des expressions identiques & (7.179 ) et (7.89). La raison pour laquelle
les contraintes sont les mémes dans les deux problemes provient du fait que la
fonction des contraintes d’Airy est identique pour les problemes de contrainte
plane et ceux de déformation plane. La différence n’apparait que dans les rela-
tions contrainte-déformation et les déplacements. Les contraintes connues, on
évalue les déformations par (7.171).

L’intégration de ces derniéres donne directement le déplacement u, (7.180).

Dans le cas d’une enceinte sous pression a paroi mince d’épaisseur e = r.—r;
et e < 1;, on peut faire les approximations suivantes :

12 — 12 = (re — 1) (re +75) = 2er;
r?P; —riP, ~r?(P, — P.) (7.188)
’I"g =~ Ti2 T2 ~ 7’i2 .
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En prenant en compte ces approximations, les contraintes (7.187) se réduisent
aux expressions

Opr 2 0 (7.189)
Ti(Pz' - Pe)

~ — 7 7.190
o090 - ( )

Dans les solutions données dans les traités d’introduction a la résistance des
matériaux [65], on suppose que o, s’annule, parce que e < r;, tandis que ogg
s’obtient par I’équilibre d’un élément de I’enceinte.

Il nous faut souligner que la solution donnée dans cet exemple n’est valable
que pour des sections placées suffisamment loin des extrémités du cylindre.

Poutre longue et mince sous charge uniforme ¢

Une poutre longue et mince de longueur [, de hauteur h et d’épaisseur d = 1
est soumise & une charge uniformément répartie ¢ (N/m?) (fig. 7.10). On se
propose de déterminer les contraintes, déformations et déplacements, lorsque
la poutre est en appui simple. L’épaisseur d de la poutre est supposée petite par
rapport a ses dimensions planes, (c.-a-d. h,l > d) et la charge ¢ est parallele
au plan (z1,z2). Dans ce probleme de contrainte plane, on néglige le poids de
la poutre.

TR T A TATARRTTITY, :
ql/21--————--—--————--—- =z |
12 Ty 12

Fig. 7.10 Poutre longue et mince sous pression uniforme.

Les conditions aux limites sont

Ty =—5 022 = —¢ o12=0
(7.191)

To = (722:0 0'12:0.

| >

En évaluant la force axiale N; (selon z1), le moment total Mz (par rapport
a laxe x3) et la force tangentielle Ny parallele & la section (selon z3) aux
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extrémités 1 = +1/2 de la poutre, on a

h/2
N1:/ (Tlld’JJg:O

—h/2
h/2
M3 = / 01122 dLUQ =0 (7192)
—h/2
h/2
NQZ/ Ugldxgz—gl.
—h)2 2

Une fonction de contrainte qui donne la solution du probléme s’écrit

2
(1, 10) = Az (l‘% - l;) + Bx?xo 4+ Cad + Da? | (7.193)

ou A, B,C, D sont des constantes déterminées plus loin par les conditions aux
limites (7.191) et (7.192). On vérifie tout d’abord que cette fonction satisfait
I’équation biharmonique (7.38). En utilisant les équations (7.37), les trois com-
posantes du champ de contraintes sont données par

011 = 6A:1729:§ — 4A:L'§’ + 6Cxo
099 = 2Ax3 4+ 2Bxy + 2D (7.194)

012 = —6Am%x1 —2Bx.

Avec les conditions aux limites (7.191), on obtient

Ah?
-2 _Bh+2D=—g

4
AR3
-+ Bh+2D =0 (7.195)

3AR?

+2B=0.
Ce systeme de trois équations a trois inconnues a pour solution

q BﬁSﬁq D=—

q

La constante C' s’obtient par la condition M3 = 0 (N; = 0 est identiquement

vérifiée)
q 1?2 n?
=— (=== 1

2414 (2 5 )’ (7.197)

olt I3 = h3/12 est le moment d’inertie de la section par rapport a z3. On peut
montrer facilement que les deux intégrales restantes de (7.192) sont vérifiées. En
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reportant ces constantes dans (7.194), les contraintes dans la poutre deviennent
2 2 2
q ! L1 q 2 5, h
011 = — a2 | — — = — 2o | x5 — —
DY 2(4 2)+213 2(3 220

3 h2 h3
Ogy = ——1 ("32 e, ) (7.198)

3 4 12

q h? 2
g = ——X — — X .
12 o; '\ 4 2

Le premier terme (donnant oq1) est prédit par la théorie élémentaire des poutres.
Le second est un terme additionnel engendré par la prise en considération de
092 qui ne dépend pas de x; et devient négligeable lorsque [ > h. Notons que
la solution n’est valable que pour des sections de poutre suffisamment éloignées
de ses supports.

Avec les contraintes (7.198), les déformations sont données par
(7.41). Les déplacements se calculent en intégrant les relations (7.18) avec les
conditions aux limites suivantes :

een xy et x5 =0,
ou
up =0 us = f .
8:51

een xp = +1/2 et 9 =0,
us =0, (7.199)

ou f est la déflexion maximale au centre de la poutre que 'on devra déter-
miner ultérieurement.

On a

223 h2z9
+<3_ 0 )"
+v ﬁ_h2x2+£3 x
3 4 T12)
4 2,.2 3 2 4 2,.2
_ g xy  hTaz | hUag la o\ @3  x3 hixg
v 2E13<12 T +”<(4 )9 e T 0

q 1222 2} h22? 1\ h22?
— L W 14> .
2ET, ( s 12 20 T\UUtey) )t

(7.200)
La déflection f au centre de la poutre s’obtient en reportant I’expression obte-
nue pour uy dans la deuxiéme condition (7.199)

5 ql* 12 h% (4 v
_ 1+ = (Z+2). 201
/ 384E13(+5l2 5+2 (7.201)

Notons que le premier terme de (7.201) est la déflection prédite par la théorie
élémentaire des poutres. Le second terme apparailt parce que nous avons pris
en considération oyo le long de la direction x5. Ce terme est particulierement
important pour les poutres courtes (c.-a-d. [ ~ h). Pour les poutres longues et
minces, on a l > h et cette contribution devient négligeable.
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7.5 Propagation d’ondes dans un milieu élastique linéaire

Jusqu’a présent, dans ce chapitre, nous avons abordé les probléemes statiques
d’élasticité. A savoir, le solide est considéré au repos sous 'action des charges
appliquées dont le chargement et le déchargement sont effectués suffisamment
lentement, de sorte que les effets dynamiques peuvent étre négligés. Une telle
approche est justifiée dans ’analyse de plusieurs problémes en élasticité et porte
le nom d’« élastostatique linéaire ». Il y a cependant plusieurs problémes dans
la mécanique des solides ou on prend en compte les effets dynamiques, c’est-
a-dire les forces d’inertie. Celles-ci proviennent lorsque les charges externes
sont appliquées a des vitesses élevées, comme les vibrations, I'impact et les
explosions. Des déplacements soudains créent également des effets dynamiques
comme dans le glissement d’une faille sismique. De telles charges dynamiques
engendrent des ondes de contrainte et de déformation transmises a travers le
corps et présentent des vitesses différentes en fonction du mode de déformation.

Pour comprendre et analyser la réponse dynamique d’un milieu élastique,
les équations statiques de 1’équilibre (7.7) doivent étre remplacées par les équa-
tions du mouvement. Dans cette section, nous présentons les équations tridi-
mensionnelles générales du mouvement pour un solide élastique linéaire ainsi
que les solutions de propagation d’ondes dans des éléments structuraux simples.

Le lecteur consultera [26, 65] pour des compléments d’information.

7.5.1 Ondes de distorsion et de dilatation

L’équation du mouvement en termes de déplacements peut étre obtenue a partir
de celles de Navier (7.6) en ajoutant la composante inertielle de la force et en
prenant les déplacements en fonction de z; et de ¢, u; = u;(x;,t). En supposant
comme dans le cas de I'analyse statique (section 7.4), qu’il n’y a pas de forces
de volume, les équations du mouvement (7.7) sont

(A 4 p) V(div u) + pV3u = pa (7.202)
qui donne sous forme indicée
(A + 1) U ki + pus j; = pa; . (7.203)

L’accélération peut s’exprimer en termes du vecteur déplacement comme a =
0?u/0t? ou a; = 9*u;/0t?. Notons que vu ’hypothese des petits déplacements
de la section 2.9, le terme non linéaire de l'accélération est d’ordre deux en &
(éq. (2.139)) et est donc négligeable. En conséquence, la relation (7.203) devient

8211,,'
(A 1) g i + pt 5 = P (7.204)

Comme les déformations sont petites, les mouvements examinés dans ce mo-
dele sont de petites oscillations élastiques ou des ondes élastiques. Selon le type
de déformation, on peut distinguer deux types d’ondes de la maniere suivante.
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Supposons que le chargement produit des ondes qui se traduisent par une ex-
pansion de volume nulle. Ainsi €;; = div u = 0 et (7.204) est remplacée par

82ui
i = P——m . 7.205
K, 55 = p 12 ( )

Les ondes décrites par cette derniere équation sont appelées ondes de distorsion.
On suppose ensuite que la déformation produite par la charge appliquée est
irrotationnelle. Autrement dit, le tenseur de rotation (2.166) est égal & zéro, ou

_ L (Ous Ouz _ _ (0w _Ous) _

wa2 = 2 5):52 8&63 o wis = 2 61‘3 &vl o ’
won = LfOu2 _Our) _

9\ dx)

ou encore

a’u,g 6u1 (9’U,3 8u2 6u1 6U3
_— = 0 _— = —_ — —— = . .2
8131 (9562 ’ 81‘2 6LE3 07 8583 8131 0 (7 06)

Ces relations impliquent que u dérive d’une fonction potentielle ¢(z;, t)
u=Vo¢. (7.207)

On vérifie aisément en utilisant (1.238) que la relation (7.207) conduit aux
expressions

o Bui . 82q5
- 8331' B 63318331

div u =V?p, et V(divu)=Viu=VV?. (7.208)

Par substitution de ces expressions dans (7.204), on obtient les équations des
ondes irrotationnelles ou de dilatation

32
(A + 2u) V2 = pa—t;” : (7.209)
ou bien
82117;

Il est intéressant d’exprimer les équations (7.205) et (7.209) sous une forme
similaire

%/
oz’

e P [ EOn
c=0 \/ ; \/p(1—2y)(1+y)’ (7.212)

pour les ondes de dilatation, et

e [P E
c=cy \/; TR (7.213)

AV = (7.211)

ou on a
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pour les ondes de distorsion. Notons que ¢y, co ont les dimensions de la vitesse,
puisque (MLT 2L72M~'L3)Y/? = (L?*T=?)'/2 et que ¢; > ¢y, démontrant
ainsi que les ondes élastiques de dilatation voyagent a une vitesse plus élevée que
les ondes élastiques de distorsion. Par ailleurs, le cas général de la propagation
des ondes dans un milieu élastique linéaire peut étre obtenu par superposition
d’ondes de dilatation et de distorsion.

Pour exprimer les équations du mouvement en termes des potentiels scalaire
et vecteur ¢, W, il est nécessaire d’insérer (7.51) dans (7.202). Pour ce faire, nous
exprimons la dérivée temporelle seconde de u et sa divergence comme suit

W=Vp+VxW¥ (7.214)
div u = div(Vy) 4 div(V x ¥) = V2p (7.215)

Viu = V3(Vp+ V x ¥) = V3(Vy) + VXV x ¥)
= V(V%p) + V x (V*¥) . (7.216)

On a utilisé les identités (1.188) et (1.180) pour déduire (7.215), et les rela-
tions (1.236) et (1.237) pour obtenir (7.216). Donc les équations du mouvement
(7.202) deviennent

A+ 1) V(V20) + 1 (V (V) + V x (VW)
=p(V$+V x ¥) (7.217)

que nous pouvons réécrire sous la forme
V (A +20) V20 — p@) + V x (,N?xp - p\'I':) —0. (7.218)
L’égalité (7.218) est satisfaite si

A +2u) V3 — pp = 0 (7.219)
uV2e — p¥ =0 . (7.220)

Finalement, nous pouvons écrire

82
(A +20) V2 = pan (7.221)
2w
uV3ie = p 5 (7.222)

Il est intéressant de noter que (7.221) et (7.222) ressemblent aux relations
(7.209) et (7.205), respectivement (voir aussi les exercices 7.6 et 7.7). En outre,
en utilisant la représentation (7.51) pour le champ de déplacement, le probleme
de D’élastodynamique se réduit a la résolution des équations d’onde (7.221) et
(7.222).
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7.5.2 Ondes de surface de Rayleigh

Dans la section précédente, nous avons examiné le cas d’ondes se propageant
dans un corps élastique isotrope linéaire infini. Souvent, cependant, se pré-
sentent des frontieres libres ou des interfaces entre deux corps. Dans ce cas,
la propagation des ondes devient plus complexe. Les ondes de surface ont été
traitées par Rayleigh (fig. 7.11) et impliquent & la fois les types longitudinal et
transversal des ondes. Les ondes de surface apparaissent aussi apres les tremble-
ments de terre, les explosions et les impacts. Dans cette section, nous résumons
les équations essentielles de ce type d’ondes. Pour une analyse détaillée, le lec-
teur est renvoyé a des traitements plus élaborés du sujet [26].

Lord Rayleigh (John William Strutt) né en 1842, fait des
études de mathématiques au Trinity College a Cambridge.
Il hérite du titre de Lord lors du déces de son pere en
1872 et consacre une partie de son temps a la gestion
du domaine tout en menant des activités scientifiques.
En 1879, il prend la direction du laboratoire Cavendish &
Cambridge, a la suite de Maxwell. Il décede en 1919. Ses
apports sont considérables et contribuent a I’étude du son,
des vibrations, a 1’électrodynamique, 1’électromagnétisme,
a la mécanique des fluides et des solides. Son ouvrage The
Theory of Sound paru en 1877 constitue une référence classique dans le do-
maine. Sa découverte la plus importante est celle de 'argon en 1894, ce qui lui
vaut le prix Nobel de physique en 1904.

Fig. 7.11 Lord Rayleigh.

Un schéma d’un demi-espace est représenté a la figure 7.12. L’onde se pro-
page dans la direction z; telle que le champ de déplacement est donné par
up (21, 3,t), uz(x1, x3,t), us = 0. Pour résoudre le probléme en utilisant la re-
présentation (7.51), on suppose que

o =p(r1,2z3,t) et W =—-Uy(xy,x3,t)es . (7.223)

Sur base de ces expressions et de (7.51), nous déduisons les composantes du
déplacement

0 ov
ui (21, 23,1) = 872’1 + 875 (7.224)
0 ov
uz(wy,23,t) = 87;903 - Wj
. o 8u1 8U3 2

ainsi que les composantes du tenseur infinitésimal de rotation
1 3U1 8’&3 1 2
=-|lgz——-5—]=-:VV¥
w1 2 (3303 oxy 2 2
W21 = W32 = 0. (7226)
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Fig. 7.12 Propagation d’une onde de Rayleigh dans la direction .

Pour ce probléme plan, les équations du mouvement (7.203) se réduisent &
0 [Ou; Ous 0%u, O%uy 0%uq
>\ — =
A+m5 (6:1:1 + 8x3> ks ( 0.2 " 022 ) T Pop

0 Bul 8U3 (92’11,3 62’[1,3 - 82’LL3

En utilisant (7.224)-(7.226) dans (7.227), il vient

91, 02 | D25 O
P 9 20 9 0%,

o
M2 L2 — LRy = p (L2 9 (7.22
A+ 2u)5 Vi =g (V) p<8x3 02~ 0x, 08 > (7.228)

) o
A +2p) 5=V + po—(V?W2) = p <

9 9% 9 00y
6.’131 83:3

Notons que ces derniéres équations sont satisfaites en y insérant (7.221) et
(7.222). Pour aller plus loin, nous considérons uniquement des formes harmo-
niques de p(x1,x3) et de ¥o(x1, x3), ou une onde se propageant dans la direction
T

(1, 23,t) = H(xz)e' "™ ="
\I/g(ilfl,lig,t) = G(iﬁg)ei(kxliwt) (7229)
ou H(x3),G(x3) sont des fonctions & identifier, k = w/cy avec ¢4 la vitesse

de l'onde a la surface et 2 = —1. Insérant (7.229) dans (7.221) et (7.222), on
obtient deux équations différentielles ordinaires de la forme

d’H w?
e <k2 - c%) H=0 (7.230)

d*G w?
- <k2 - 2) G=0. (7.231)

2
dzxs c;
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Définissant les symboles

2= (k:2 - ‘*’j) , G= (k2 — “’22) : (7.232)

€3
les solutions de (7.230) et (7.231) s’écrivent comme suit

H(xs) = Aje” 1" + Byet®s (7.233)
G(x3) = Age 2% 4 Byet2®s (7.234)

Sur la base de raisonnements physiques du phénomene, les termes avec 1’expo-
sant positif donnent une amplitude de ’onde illimitée, ce qui est physiquement
irréaliste. Donc, les constantes correspondantes sont égales a zéro, B = By = 0.
En utilisant (7.233) et (7.234) dans (7.229), la solution prend la forme

(1, z3,t) = Aje 173eilhri—wt)

y(z1,23,1) = Age~2@3eilhmi—wt) (7.235)

Pour ce probleme, la condition aux limites suivante doit étre satisfaite a la
surface libre

033 — 031 :0'32:0 en 1‘3:0. (7236)
Pour appliquer ces conditions, il nous faut exprimer les contraintes (7.3) en

termes des fonctions (7.51). En utilisant les déplacements (7.224), nous calcu-
lons les déformations et en les insérant dans (7.3), nous obtenons

R 90U, IV,

— 2 _ -

733 = AV ¢ + 2M (8x§ + 3:53 ( 81’1 axg )>
82(,0 62\112

= A\VZp +2u

e )
81'3 ual'gaxl

82@ 0 8\112 8\111 0 6‘1/3 8\112
o31 = (|2

8:638201 8%1 81'1 3%2 +875£3(85U2 8%3
- (2 62@ 62\112 82\1’2)

La composante o35 s’annule, puisque le champ de déplacement est indépendant
de o, ce qui annule toutes les dérivées par rapport & xo. Avec la solution (7.235)
connue, (7.237) en x3 = 0 produit deux équations homogenes

Ar [(A+20)E — AK?] + 2idouok = 0 (7.238)
—2iA1 Gk + Az [+ %] = 0. (7.239)

Une solution non triviale pour Ay, As, nécessite que le déterminant du systéeme
d’équation s’annule, ce qui conduit a ’équation caractéristique suivante

(2:)6 _3 (CS>4 + (24— 168572) (cb>2 +16(k2-1)=0 (7.240)

C2 C2
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avec k=2 =c3/c? = pu/(A+2p) = (1 — 2v)/(1 — v). Ainsi, la vitesse de I'onde
¢s dépend du matériau via le coefficient de Poisson. Le polynéme (7.240) est
traité comme une équation cubique réduite avec (cs/c2)? comme inconnue. Par
souci de simplicité, nous considérons un matériau avec v = 1/4. Dans ce cas
k=2 =1/3, et les racines de (7.240) sont

A2 =4,2+2/V2,2-2/V2. (7.241)

Parmi ces trois racines, deux d’entre elles ne sont pas réalistes, car elles con-
duisent a des valeurs imaginaires pour les parametres (1,(>. Ainsi, c’est la
troisiéme racine qui est retenue, ce qui donne ¢, /¢y = 0,9194 ou

s = 0,9194\/g . (7.242)

Pour le cas ou v = 0,5, correspondant a la plus grande valeur du coefficient de
Poisson, on obtient ¢s = 0,9553+/p/p. Donc la vitesse de 'onde de surface est
légerement inférieure & la vitesse des ondes de distorsion (7.213).

Les prochains parametres importants a calculer sont les composantes de
déplacement (7.224). Connaissant la solution (7.235), nous pouvons facilement
exprimer le déplacement comme suit
8&31 6.133
= (iArke™" — ApGokeC2s) eilkea=wt) (7.943)

uy(r1,23,t) =

En utilisant (7.239) pour éliminer A, et la formule d’Euler pour remplacer les
exponentielles, on a

2G1¢2
G+ K2

De méme, on obtient une fonction complexe pour us(z1,xs3,t) dont la partie
réelle est

uy (a1, x3,t) = —Ark <€_Clx3 — 6_42“”3) sin(kz, — wt). (7.244)

8@ 8‘1’2
uz(z1,23,t) = Frs  Omy
=—-A( (e‘clw?’ - 2k 6_42’”3> cos(kxy — wt) . (7.245)
G+ k2

Le mouvement calculé se réfere au déplacement d’une particule dans un plan
vertical Oz1x3. On voit a la figure 7.12 les schémas de ces mouvements pour des
particules le long de I'axe vertical. Notons que le mouvement d’une particule
décrit une ellipse de grand axe normal a x; et de petit axe normal a x3. Ceci
est évident du fait que les équations paramétriques d’une ellipse sont exprimées
comme u; = C7 sinf et ug = C3 cos, ot C7 et C3 sont les demi-axes de I'ellipse.
Cela est dii au fait que les ondes de dilatation et de distorsion opérent ensemble
dans la propagation des ondes de surface. De plus, la solution exprimée par
(7.244) et (7.245) démontre que 'amplitude d’onde de Rayleigh diminue treés
vite le long de 'axe z3. Le taux de cette diminution dépend des valeurs de (4
et (o définies par (7.232).
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7.5.3  Ondes élastiques planes

Quand une perturbation dynamique se produit (charge d’impact, tremblement
de terre, explosion, etc), les ondes se propagent dans toutes les directions. A des
distances relativement grandes a partir de la perturbation, on peut considérer
que les ondes engendrées se propagent dans un plan. Ainsi, une particule maté-
rielle se déplace dans la direction de la propagation ou perpendiculairement a
celle-ci. Ces ondes sont appelées ondes longitudinales et transversales, respec-
tivement, et correspondent aux ondes de dilatation ou aux ondes de distorsion
définies précédemment.

Prenons une onde longitudinale se déplagant dans la direction z;. Dans ce
cas, uz = ug = 0 et u; est fonction uniquement de x; et du temps t, et (7.209)
se réduit a ) )

(3' uy 6 (VA1
2
> = . 7.246
Yor} T o2 (7.246)

Cette derniere équation peut étre résolue par la méthode bien connue de sé-
paration des variables qui sera présentée dans la section suivante. Pour cette
équation particuliere, cependant, il existe une méthode spéciale appelée solution
de d’Alembert qui est décrite ci-dessous.

Nous supposons qu’il existe une fonction f de dérivées premiere et seconde
continues. Ensuite, en utilisant la régle de dérivation en chaine, on obtient pour
les dérivées premiere et seconde

8f(.%‘1 — Clt) o c 8f(.1‘1 — Clt)

5 =~ , (7.247)
an(.’)Sl — Clt) o Qan(Qil — Clt)
o = o : (7.248)

Il est évident a partir de la deuxieme égalité que f satisfait ’équation d’onde
(7.246). D’une manieére similaire, on peut montrer que pour une fonction g,
avec des dérivées premiere et seconde continues, g(z1 + ¢1t) est une solution de
(7.246). Etant donné que (7.246) est une équation linéaire, il en résulte que la
somme de f et g

ui(x1,t) = f(r1 — aat) + glxr + ait) (7.249)

est également une solution de (7.246). La solution (7.249) représente la pro-
pagation de perturbations, les unes vers la droite (fonction f(z1 — cit)) et
les autres vers la gauche (fonction g(z1 + ¢1t)). Considérons par exemple une
corde étendue de —oo & 4o0. La fonction f(x; — cit) est constante lorsque
x1 — cit = constante. Ainsi une augmentation en temps est nécessaire pour
compenser I’augmentation en x; et maintenir la fonction constante comme le
montre la figure 7.13. Ce comportement représente la propagation d’une per-
turbation non déformée vers la droite de la corde lorsque le temps croit. De la
méme maniere, g(x; + ¢1t) représente une perturbation se propageant vers la
gauche. Pour aller plus loin dans cette analyse, il est nécessaire de définir les
fonctions f et g.
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Uy
!

Ty

Fig. 7.13 Propagation d’une perturbation donnée par f(z1 — ci1t) dans (7.249).

Les formes spécifiques de f et g sont déterminées par le déplacement initial
décrit par la fonction ¢(x1) et la vitesse initiale de la corde 6(x1) en chaque
point x1. Avec ces deux fonctions et (7.249), on obtient

up(21,0) = ¢(x1) = f(w1 — Clt)‘t:o + g1+ clt)’t:O

= f(x1) +g(x1) , (7.250)
Ouy(xy,t) Of(z1 — c1t) 0g(x1 + c1t)
ot |11,t:0 =0(x1) = —a1 Ers o T 1 Ers =0
of (x1) 9g(z1)
= — . 7.251
C1 911 +a 11 ( )
En intégrant (7.251) par rapport & 1, il vient
1 [
~f) +glen) = o [ (st (7.252)
o
En combinant (7.252) avec (7.250), on trouve
1 1 [ , ,
f(x1) = 5 |d(z1) — — 0(x7)dzy (7.253)
2 C1 z0
1 1 [ , ,
g(x1) = = |o(x1) + — O(x})dzy | . (7.254)
2 C1 z0
Avec les formes de f et g connues, la solution complete s’écrit
ui(z1,t) = f(r1 —aat) + gz + eat)
_ ¢($1 — Clt) 1 /Ilqt / ’
= [ 5 2 )., 0(x})dx]
QS(Il + Clt) 1 muret / /
+ |+ 0(x})dx (7.255)
2 201 zo
t — et 1 [mtat
_ Ao tai) ;LW“ al) | 2—/ 0(x)da
C]_ :Elfclt
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EXEMPLE 7.1

Une corde infinie est soumise aux conditions initiales

0,02

$lx1) = 1+ 922

0(z1) =0 . (7.256)

Trouver 'expression du mouvement subséquent de la corde. On suppose que
la vitesse d’onde est de 220 ms~!

En utilisant (7.256) dans (7.255), on obtient

1
up(21,t) = 3 [Pp(x1 + c1t) + d(z1 — ert)]
1 0,02 1 0,02
214 9(z; — )2 214 9(zy + c1t)?

(7.257)

Le mouvement est montré schématiquement a la figure 7.14. La configura-
tion au temps ¢ty = 0 montre la perturbation initiale (7.256). Ensuite, celle-ci
se scinde en deux ondes qui se propagent, I’une vers la gauche, 'autre vers
la droite comme 'indique la solution (7.257) et comme le montre la figure
7.14 pour les temps t > 0, (t1, to,t3).

Uy Uy

1>t t > to

K5

Uy

1

Fig. 7.14 Propagation d’une perturbation le long d’une corde de longueur infinie
dans les configurations initiale (top = 0) et ultérieures (t1,t2,t3).
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7.5.4 Propagation d’une onde dans une corde élastique

La vibration d’une corde est un probleme physique qui illustre plusieurs aspects
de la propagation des ondes. En plus de nous permettre d’examiner la solution
de d’Alembert (7.249), la vibration d’une corde tendue a plusieurs applications
dans I’étude des instruments de musique. En outre, ’analyse mathématique de
la corde étirée a des applications dans I’étude des lignes de transport d’énergie
étirées.

T

a'fl;l +Axy

)

Fig. 7.15 Profil déformé d’une corde étirée (a), un segment de longueur Az (b).

Considérons une corde élastique soumise a une tension 7 entre deux points
sur l’axe comme le montre la figure 7.15 (a). Dans la formulation du probleme
suivant, nous supposons plusieurs hypotheses :

1) Le mouvement a lieu dans un plan, et chaque particule de la corde se déplace
a angle droit par rapport a la position de la corde en équilibre. Dans ce cas
u1 = ug = 0 et us est une fonction uniquement de x; et du temps t. Pour
la simplicité de 1’écriture des équations, nous posons us(z1,t) = v(x1,t).

2) La corde ne peut transmettre des efforts que dans le sens de la longueur.

3) Les pentes de la corde déformée sont petites.

4) Les déflexions de la corde sont censées étre petites de sorte qu’elles n’af-
fectent pas de maniere significative la tension 7 et qu’il n’y ait pas de
dissipation d’énergie.

La masse de la corde par unité de longueur est une fonction connue m’(z1).
En plus des forces élastiques et d’inertie inhérentes au systeme, la corde peut
étre soumise a une charge répartie w(xzq,v,0,t). Considérons maintenant un
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segment Az (fig. 7.15b). Par application de la loi de Newton au segment de
la figure 7.15b, on peut écrire

2

v
/ _ . .
m Azlw = ’7's1noz|$1_i_Aml — T sin a{xl +wAx; . (7.258)
La troiseme hypothése implique que sina|z1 ~ tana|w1 et sin a’xﬁmjl ~
tana‘zl Az, En insérant ces approximations dans (7.258) et en divisant par
1 on a
O%v tana| — tana‘
’ r1+Axy T
m— =T +w . 7.259
8t2 Al‘l ( )
Ensuite en prenant la limite Az; — 0 et en observant que tan a|xl = a‘z"l et
_ Ov 92w . Yl N 192 . .
que tanar| L\ =g+ andxl’ la relation (7.259) se réduit & 1’équation dif-

férentielle suivante e T
v voow
5 = 55+t — - (7.260)
o2 m/dxy  m/
Dans la plupart des problemes d’ordre pratique, les forces externes sont né-
gligeables et m/(x1) est constant le long de la corde. Donc w(x1,v,0,t) est
considéré comme nul et m/(x1) est remplacé par une constante my. Dans ces
conditions, (7.260) se réduit a
0% 0 T
— =ad_—, a=—, (7.261)
ot? Oz my
otl @ a les dimensions d’une vitesse, puisque (MLT—2M~'L)'/? = (L?T—2)'/2,
Donc (7.261) est ’équation de propagation d’onde (7.246) dont la solution

v(zy,t) = f(r1 — at) + g(z1 + at) (7.262)

représente deux ondes se propageant le long de la corde a la vitesse a, l'une
vers la droite et 'autre vers la gauche comme on le voit a la figure 7.14.

Il vaut la peine de remarquer qu’outre de décrire 'onde sur une corde,
léquation (7.261), ou (7.246), est applicable aux différents types de propagation
d’ondes. En effet, une onde sonore v(z;, t) représente le déplacement d’un gaz ot
londe se propage. Dans le cas d’ondes électromagnétiques, v(x1,t) représente
la composante de champs électriques ou magnétiques.

Considérons maintenant la solution de I’équation aux dérivées partielles
par la méthode de séparation des variables. La solution par cette méthode nous
permet de traiter directement le probleme aux limites rencontré dans plusieurs
applications en ingénierie et en physique. Selon cette méthode, la solution de
(7.261) s’exprime sous la forme

v(xy,t) = X(x1)T'(t) . (7.263)
Par substitution de (7.263) dans (7.261), nous obtenons

2 X/dn} _ PT/d?
X T

(7.264)
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Des lors par (7.264) on obtient deux équations différentielles ordinaires

d*X

v
_Lx = 2
L7 X =0 (7.265)
d*T

La solution de ces équations dépend de la valeur positive, négative ou nulle du
parametre . Si vy > 0 ou v = 0, la solution de (7.261) n’est pas périodique et
ne peut pas décrire la vibration d’une corde non amortie. La seule valeur qui
produit une solution périodique de la corde vibrante est celle correspondant a
v < 0.

Puisque ~ est négatif, il est usuel de définir v = —w?. Alors (7.265) et
(7.266) prennent la forme

NED'S w2 d?T
-4+ (=) X=0, =5+ T=0 7.267
da? (a> e Y ’ (7.267)
dont les solutions s’écrivent
X = Acos gxl + Bsin Exl (7.268)
a a
T = Ccoswt + Dsinwt , (7.269)
de sorte que
w L w .
v(zy,t) = (A cos —z1 + Bsin —:Ul) (C coswt + D sin wt) (7.270)
a a

ou A,B,C,D sont des constantes arbitraires et w peut s’interpréter comme
une fréquence circulaire qui dépend des conditions aux limites et qui doit étre
évaluée. Notons que la solution (7.270) est périodique puisque lors d’une aug-
mentation dans le temps d’un facteur 27 /w, elle se répéte. La premiére partie de
Iexpression définit la forme de la corde et la seconde spécifie son mouvement.

L’équation (7.270) peut étre réécrite sous la forme suivante
w w .
v(xy,t) = AC cos —xq coswt + AD cos —x1 sin wt
a a
w w
+ BC'sin —z; coswt + BD sin —x1 sinwt . (7.271)
a a

En utilisant des identités trigonométriques élémentaires, on exprime (7.271)
comme

v(z1,t) = Bisin (%ml + wt) + By sin (%l’l — wt)
4+ Bscos (gxl + wt) + By cos (Exl — wt) (7.272)
a a

ou les B;(i = 1,2,3,4) sont des constantes arbitraires. Fait intéressant, cette
derniere équation ressemble a la solution de d’Alembert (7.249) et exprime la
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propagation d’ondes harmoniques dans la corde tendue. Par exemple, un terme
typique de cette solution

v(z1,t) = By cos (gxl - wt) (7.273)

représente une onde se propageant dans la direction x; a la vitesse a comme
on le présente & la figure 7.16. Il est évident que les termes restants de (7.272)
peuvent étre interprétés de la méme maniere.

\ I,

Fig. 7.16 Déviations transversales a des intervalles de temps successifs comme ré-
sultat de ’onde de propagation (7.273).

Examinons maintenant les composantes de 1’énergie au cours de la pro-
pagation des ondes. Supposant qu’il n’y a pas de dissipation de 1’énergie, la
corde contient de ’énergie cinétique et potentielle de déformation. A partir de
(7.273), la vitesse et la déformation sont exprimées comme

v LW

%= —Bywsin (Exl - wt) (7.274)
1 ov lw | /w

€12 = 5673;1 = —3455 S (Exl - (Ut) . (7275)

Soit S la section transversale de la corde. En utilisant (7.273), les énergies
cinétiques et potentielles d’un élément dx; sont

2
dE = }dexl (81}) = %p(B;;w)z sin? (%xl - wt) Sdxy  (7.276)

2

1 w w
_ 2 — = hatt n2 (2 _
dU = 2uSeiydry = u2 (B4a) sin (axl wt) Sdx . (7.277)

En éliminant le parametre de la vitesse d’onde a via (7.213), il est évident que
dE = dU.
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Vibration d’une corde élastique

Considérons maintenant une corde élastique tendue (ou cordon) fermement
supportée entre deux points situés & une distance ¢ (fig. 7.17). La solution
générale & ce probléme est fournie par (7.270) ou par l'une des deux formes
équivalentes. Pour obtenir la solution pour la corde de la figure 7.17, il nous

v

v \

| xy
/ |

Fig. 7.17 Corde élastique déformée entre deux points situés & une distance £.

faut évaluer les quatre constantes A, B, C, D et le parametre w par les conditions
aux limites v(0,t) = v(¢,t) = 0 et la condition initiale. Afin d’établir celles-ci,
il est utile de choisir la vitesse de la corde nulle en ¢ = 0 et de supposer que sa
forme initiale en ¢ = 0 soit dans une configuration de mode normal ou principal.
On définira pareil mode ci-apres dans cette section.

Les deux conditions aux limites spécifiées plus haut conduisent a

0 = A(Dsinwt + Ccoswt) ,
LW w .
0= (B sin —¢ + A cos —E) (Dsinwt + C coswt) . (7.278)
a a

Celles-ci doivent étre satisfaites en tout temps et donc,
A=0, Bsinl=0. (7.279)
a

Pour une solution non triviale, B ne peut pas s’annuler, on obtient sin ¥/ = 0
d’ol on tire

Yo =nr (7.280)
a
avecn =1,2,3,.... Donc w est donné par
w= ”%a , (7.281)

et la fréquence et la période de 'onde sont

w n 1 12/
! o 2" f an (7.282)

Nous allons étudier deux conditions initiales dans la suite. En dérivant
(7.270) par rapport au temps, on trouve pour la vitesse

ov

L w .
5= (B sin Exl) (D coswt — C'sinwt)w . (7.283)
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En imposant la vitesse initiale nulle en ¢ = 0, on obtient D = 0 puisque B # 0.
En conséquence la solution se réduit a

v(z1,t) = BC'sin Exl coswt . (7.284)
a
Pour t = 0, cette derniere relation donne
L w
v(x1,0) = BC'sin —x (7.285)
a
qui définit une configuration de mode principal pour la condition initiale. Fi-

nalement, la solution de la corde vibrante est exprimée par

w n nra
v(z1,t) = Asin —x; coswt = Asin O 1 cos 2% ) (7.286)
a

4 14

ot A représente la valeur maximale (ou 'amplitude) de la déviation v(z1,t) et
n = 1,2,3,.... Notons que le premier terme du produit (7.286) représente la
configuration et le second le mouvement de la corde. La longueur d’onde z est
définie par la longueur d’une onde sinusoidale pour sin £z, ou pour

20
gml =27 ou T)= — . (7.287)
a n

La figure 7.18 montre les formes défléchies des trois principaux modes de vi-
bration selon (7.286). Ce sont

(a) nzl,m\:%,wzza;

14

2
(b) n=2,x>\=£,w:77ra;
(c) n:3,x)\:§€,w:37ﬂa.

Les résultats de l'analyse montrent que la corde se déplace vers le haut
et vers le bas en passant par la position d’équilibre. Un tel mouvement est
appelé une onde stationnaire. Il convient de noter que (7.286) est le résultat de
Iinterférence de deux ondes, I'une progressive, I'autre régressive, se déplagant
dans des directions opposées. Pour démontrer cela, nous pouvons utiliser des
identités trigonométriques pour réécrire (7.286) comme suit

Ar/s . w w
v(z,t) = 0 [ (sm Exl coswt -+ cos gxl sin wt)

LW w .
+ (sm —x1 coswt — cos —x sin wt) ]
a a

LW LW
=A [Sln E(xl + at) + sin g(ml - at)} . (7.288)
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Fig. 7.18 Les trois premiers modes principaux (a), (b) et (c¢) (cf. page précédente)
de vibration d’une corde étirée.

En outre, puisque la solution d’onde stationnaire (7.286) représente un
terme typique de (7.271), nous pouvons dire que la solution générale d’une onde
de propagation (7.272) peut étre dérivée de la solution d’une onde stationnaire
(7.271).

La méthode décrite dans cette section mene a la solution pour les modes
principaux de vibration d’'une corde tendue élastique. La solution est la méme
pour les modes principaux de vibration des types courants de corps élastiques.
Bien que ces modes puissent exister seuls, ils peuvent également se produire
simultanément. Dans ce cas, la solution consiste en la somme des solutions du
mode principal.
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Donc la solution d’une corde élastique (7.270) peut s’exprimer comme une
somme sur n de la solution

v(wy,t Zuln x1,1 (7.289)
i (A cos ml + B,, sin %ml) (C’n cos ?t + D,, sin ?t) ,

U (7.270) est utilisé avec w donné par (7.281). Du point de vue mathéma-
tique, ceci exprime le fait que puisque 1’équation d’onde (7.261) est linéaire
avec plusieurs solutions, en fonction de la valeur de n (c-a-d. n =1,2,3,...), la
somme des solutions est aussi une solution. Les constantes A,,, By, Cp, Dy, (n =
1,2,3,...) sont également liées aux conditions aux limites et initiale. Cette ap-
proche est expliquée dans I’étude de la vibration de torsion d’un arbre circulaire
élastique dans la section suivante.

Vibration de torsion d’un arbre circulaire.

Comme deuxiéme probleme conduisant a une équation aux dérivées partielles
similaire & (7.261), nous considérons un arbre de longueur ¢ (fig. 7.19(a)) soumis
a des vibrations de torsion. Le matériau de ’arbre est supposé homogene avec
une densité de masse uniforme p et l'aire de la section est prismatique.

K31
\/ dwl l<\1:1+ dIl

(a)
Fig. 7.19 Un arbre circulaire soumis & torsion (a), une tranche infinitésimale dz;

(b).

En plus des forces élastiques et d’inertie inhérentes au systeme, la corde
peut étre soumise & un couple réparti par unité de longueur w(z1, 8, 6,t). Dans
la formulation suivante du probléme, nous supposons que

1) les sections transversales de 1’arbre restent planes lors de la déformation,
2) une section transversale typique tourne autour de son centre de gravité,
3) la rotation de 'arbre est censée étre petite,
)

4) il n’existe pas de dissipation d’énergie.
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Par la mécanique des solides élémentaire, on sait que, pour des conditions
statiques, la variation de l’angle de torsion 6(z;) le long de I’axe de larbre
df/dz est exprimée comme suit

a9 = My , (7.290)
d:L'l ,U,IP

ou le couple appliqué est My(z1), 4 est le module de cisaillement et I, est le
moment d’inertie polaire de la section transversale circulaire. Pour le probleme
traité ici, 'angle de torsion est une fonction des variables de temps et d’espace.
Ainsi (7.290) est réécrite comme

80(1‘1,0 - Mt(ﬂfl, t)

7.291
0x1 wlp ( )
La dérivée partielle de (7.291) par rapport a x; donne
My (z1,t 20(xq,t
a t(x17 ) o I a (x17 ) . (7292)

or, P 0x?

Afin d’établir I’équation différentielle du mouvement, on considere un segment
infinitésimal de I’arbre, délimité par deux sections transversales a une distance
dzy (fig. 7.19(b)). Le moment d’inertie massique de cette tranche est

dJ = /erm = /perdel = pdxy /7‘2dS = plpdxq (7.293)

ol dm est la masse d’un élément & une distance r du centre de la section. En
appliquant la loi de Newton sous forme torsionnelle au segment infinitésimal
dz; (fig. 7.19b), on a

%0 OMy(xq,t
(Ip pdzy) 5z = <Mt + 75(%1 )d:vl) - M; +wdx,
= OM, dry +wdxy .
81‘1

En divisant par dz; et en utilisant (7.292), il vient

020 0 0%0(z1,t)

— =a"—FF . 7.294

oz~ " o TV (7.294)
Dans beaucoup de cas d’intérét pratique, la force extérieure w peut étre né-
gligée, c.-a-d. w(zq,6,0,t) = 0. Des lors, la relation (7.294) a la méme forme
que l’équation d’onde (7.246) ou (7.261) pour la corde élastique. Notons que
a = +/p/p a les dimensions d’'une vitesse.

Par séparation des variables, la solution s’exprime comme

0(z1,t) = X (21)T(t) . (7.295)
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En suivant les mémes procédures que dans le cas du probleme de la corde, traité
dans la section précédente, la solution est exprimée en tant que

0(z1,t) = (A cos gxl + Bsin %xl) (C coswt + Dsinwt) . (7.296)

Toute extrémité de l'arbre peut étre libre ou fixe par rapport a la rotation.
Dans cette section, le cas de ’arbre libre aux deux extrémités est étudié. Pour
déterminer les constantes dans (7.296), les conditions aux limites et initiale
doivent étre spécifiées. Etant donné que les extrémités de I'arbre sont libres, le
couple au niveau de ces extrémités s’annule. En tenant compte de (7.291), ces
conditions donnent

20(0,t) _ 00(L,1)

=0. 7.297
8.%1 8.%1 ( )
Reprenant (7.296), on trouve
00 w . w w w .
— = (—A— sin —x7 + B— cos —x1> (Ccoswt + Dsinwt) . (7.298)
0x1 a a a a
La premiere condition (7.297) conduit &
BS(C coswt + Dsinwt) = 0,V¢ . (7.299)
a

Donc B = 0. De méme, en imposant la seconde condition (7.297), on trouve
w . w .
—A—sin —{¢(C coswt + Dsinwt) = 0,Vt . (7.300)
a a
Pour une solution non triviale, A ne peut pas s’annuler, on doit avoir
sin 20 = 0, ou Yo=nr. (7.301)
a a

Donc comme dans le cas de la corde élastique, w devrait prendre les valeurs

suivantes
nwa

Il est clair que nous avons un nombre infini de solutions. La n-iéme solution du
probleme est

w
O (11,t) = cos —x1 (Cy, coswyt + Dy, sinwpt) . (7.303)
a
Notons que la constante A,, est absorbée dans les constantes C), et D,,. Puisque
I’équation d’onde est linéaire, la somme sur n de toutes les solutions est aussi
une solution

0 00
0(21,1) = Z On(21,1) = Z cos -t (On cos =24 4 D, sin @1‘) .
n=1 n=1

14 14 14
(7.304)
La relation (7.304) doit satisfaire les conditions initiales suivantes
00(x1,0
0(z1,0) = f(z1) et 96(z1,0) _ g(z1) . (7.305)

ot
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Les deux fonctions f(x1) et g(x1) sont connues. Pour satisfaire ces conditions,
on doit avoir

nmwry

14

0(z1,0) = f(z1) = »_ Cpcos (7.306)

Ce dernier résultat implique que les coefficients C,, soient les coefficients du
développement en cosinus de f(z1) sur la moitié de I’étendue de l'intervalle

(0,€)

9 1t
C, = —/ f(z1) cos e dxy . (7.307)
¢ Jy L
La seconde condition initiale impose
00(x1,1) = nma nwry
- — = = Dni 9 .
5 | g(x1) ng:l 78— (7.308)

telle que D, "7 soient les coefficients du développement en cosinus de g(z1)

sur la moitié de I’étendue de Iintervalle (0, £)

2 [ 2 [t
Dn$ = Z/o g(x1) cos m;xldxl ou D, = o ; g(x1) cos m;xldzl.

(7.309)
Notons que la méme analyse peut étre effectuée pour différentes conditions aux
limites, c.-a-d. lorsque les deux extrémités sont fixées ou lorsque 1'une est fixe
et 'autre libre d’entrer en rotation.

Vibration longitudinale d’une poutre prismatique

En utilisant la théorie élémentaire des poutres et en suivant la méme procé-
dure que dans le cas de la torsion d’une barre circulaire traité précédemment,
Péquation pour les ondes longitudinales dans la poutre (fig. 7.20) est

0?uy(w1,t) B 5 0%uy (z1,1)
BTE =a P (7.310)

(7.311)

|

est la vitesse d’onde longitudinale.
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(b)
N N+ dN

Fig. 7.20 Une poutre mince soumise a des vibrations longitudinales (a), une tranche
de longueur dz1 (b).

L’obtention de (7.310) est laissée au lecteur a titre d’exercice.

On termine cette section avec des valeurs de la vitesse d’onde dans les corps
élastiques typiques. En utilisant les propriétés de la table 6.2, nous obtenons
les valeurs indiquées a la table suivante.

Tableau 7.1 Vitesse d’onde dans des solides élastiques.

Vitesse d’onde (m/s) Acier Verre Caoutchouc
Dilatation 5240 5505 — 00
Longitudinale 5047 5253 242
Distorsion ou transversale 3169 3405 140

La premiere ligne de la vitesse longitudinale correspond a la relation (7.212),
la seconde & la relation (7.311). La vitesse transversale est celle de (7.213).
Notons que la vitesse de dilatation pour le caoutchouc n’est pas définie, puisque
nous supposons 'incompressibilité et » = 0,5. En utilisant ’expression pour
une poutre mince (7.311), la vitesse longitudinale de ce matériau a une valeur
finie. Dans les autres cas (deuxiéme ligne), elle est plus petite d’environ 4%,

car les effets latéraux induits par le coefficient de Poisson sont négligés dans la
théorie élémentaire.
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7.6 Exercices

Montrer que dans le cas de déformation plane, les équations d’équilibre
peuvent s’exprimer en terme de déplacements sous la forme

0wy Py 0 [Ou; Oug
m ((%2 + (%2) A+ )5 (am + 5 2) +H=0 (7.312)
82u2 82U2 0 Ouq Ouz
(8x12 + 3x22) A+ )5 92, (3x1 812) +fe=0, (7.313)

ou p = E/2(1+ v) est le module de cisaillement et A est relié & E et v par la
relation (6.112).

Montrer que dans le cas de contrainte plane, les équations d’équilibre
peuvent s’exprimer en terme de déplacements sous la forme

0%u, n 0%u, E 9 (0w N Ay
0x12  Oxq? 2(1 —v) Oxq &El Oy
5’2m aZUQ E o Ouq s

H( ) 2(1_V)3m2<ax1+5 2)+f2—0. (7.315)

) + f1 =0 (7314)

Montrer que si un champ vectoriel g(x) est tel que

alors le champ de déplacement défini par

A+ 2p0 1
U = Gi,mm — — 9n,ni 7.317
P(A + 1) I ( )

satisfait les équations de Navier sans force de volume.

Démontrer que les équations de Navier (7.7) avec f = 0 sont équivalentes
aux équations suivantes

A +20)V2u+ A+ pu)VxVxu=0

2)(1-2v)V2u+V-Vu=0

3) A +2u)VV - u—puV XV xu=0

Considérons un cylindre creux soumis a des pressions internes et externes
(fig. 7.5) ayant ses extrémités libres sans contraintes. En utilisant la fonction
potentielle donnée par (7.66), dériver les expressions pour les contraintes et les
déplacements. Comparer la solution avec (7.187).
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(7.6] Exprimer 1’équation d’onde (7.209) en termes de div w comme suit

0?(div u)

(A +2)V2(div u) = p pre

(7.318)

(7.7) Exprimer I’équation d’onde (7.205) en termes des composantes de rotation
du champ de déplacement V X w comme suit

0%(V X u)

2
pVAV xu) = p——pp

(7.319)

Pour le coin d’épaisseur unitaire d’angle 2«, chargé par le moment M ainsi
qu’il est indiqué a la figure 7.21, déterminer si la fonction de contrainte de la
forme

®(r,0) = A0 + Bsin 20 (7.320)
est une solution du probleme. Montrer ensuite que o, est donné par

2C
Opp = 7 sin 20 (7.321)

avec C' = M/(sin 2«0 — 2 cos 2av).

Fig. 7.21 Coin soumis a un moment M.
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Pour le coin d’épaisseur unitaire et d’angle 2«, chargé par la force P comme
il est indiqué a la figure 7.22 :

21

Fig. 7.22 Coin soumis a une force linéaire P.

(a) Démontrer que la fonction de contrainte
O(r,0) = Crfsind (7.322)

fournit une solution des contraintes du probléme. Ensuite exprimer les com-
posantes des contraintes et déterminer la constante C'.

(b) Comment peut-on trouver les contraintes d’une plaque d’épaisseur unitaire
semi-infinie et chargée par une force linéique comme dans le cas précédent 7






CHAPITRE &

Introduction a la mécanique des

fluides newtoniens

8.1 Introduction

Les fluides sont omniprésents dans la nature, la technologie et les gestes de la vie
quotidienne, comme par exemple, I’eau pour se laver les mains, I’eau du café ou
du thé, ’air que nous respirons, le sang circulant dans notre systéme vasculaire,
etc. Les deux fluides les plus communs, & savoir l'air et I’eau, constituent les
exemples types des deux grandes catégories qui leur sont associées : les fluides
compressibles et incompressibles.

Nous avons tous été confrontés au pneu plat de notre vélo et a devoir
pomper l'air dans la chambre. C’est 1a que 'on découvre expérimentalement
que ’air peut étre comprimé et qu’ainsi, la pression est augmentée, ce qui est
tres utile dans ce cas précis. En ce qui concerne ’eau, on considere généralement
que c’est un fluide incompressible. C’est une idéalisation de la réalité, puisque
la vitesse du son dans 'eau est de 1500 ms~*!, c.-a-d. environ cing fois celle du
son dans air.

Les effets de compressibilité donnent lieu & des phénomenes physiques
caractéristiques, comme la propagation d’ondes acoustiques ou la présence
d’ondes de choc en écoulement supersonique. Cependant, on peut traiter 1’air
comme un fluide incompressible lorsque le nombre de Mach est faible. C’est une
pratique courante dans 'aérodynamique automobile. On peut aussi traiter 'eau
comme compressible, si on s’intéresse a la propagation des ondes acoustiques,
par exemple, dans ’eau de mer.

Une autre classification des fluides se fait sur la base de leur caractere
newtonien ou non newtonien. L’air et I’eau sont des fluides newtoniens. Les
polymeres fondus, le sang, les boues, les fluides agro-alimentaires, les peintures,
la pate dentifrice, etc. sont non newtoniens.

L’écoulement de Couette entre deux cylindres circulaires est un dispositif
adéquat pour discriminer ces deux catégories de fluides. Soient deux cylindres
verticaux coaxiaux. On maintient, par exemple, le cylindre extérieur fixe, tandis
que le cylindre intérieur est soumis & une vitesse de rotation constante de ’ordre
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d’une dizaine de révolutions par minute. L’espace annulaire est rempli de fluide
(liquide), jusqu’a une certaine hauteur. A la surface libre, le fluide est en contact
avec l'air. Dans le cas du fluide newtonien (comme l’eau), on observe que la
surface libre prend la forme d’un paraboloide de révolution sous l'action de
la force centrifuge. Pour le fluide non newtonien, celui-ci s’enroule autour du
cylindre tournant. C’est 'effet Weissenberg.

Les équations de Navier-Stokes décrivent la dynamique des écoulements
des fluides visqueux. Elles s’obtiennent a partir des équations de conservation
et de I’équation de constitution. Dans ce chapitre, on choisira celle des fluides
visqueux newtoniens, ou le tenseur o est une fonction linéaire du tenseur d.

Dans certains procédés industriels, on rencontre des matériaux dont le com-
portement a 1’état fluide s’écarte du caractere newtonien. Dans ce dernier cas,
on recourt aux concepts de la rhéologie pour étudier I’équation de constitution
qui représente au mieux la phénoménologie associée a ’écoulement du fluide.
Le lecteur consultera la monographie [16] pour un complément d’information.

Néanmoins, les équations de Navier-Stokes constituent un modele suffisam-
ment riche pour étre appliqué dans un tres grand nombre de cas. On choisira
la représentation eulérienne des équations de conservation, car d’une part les
fluides subissent en général de tres grandes déformations et d’autre part, les
problemes usuels se définissent dans des reperes fixes.

La physique des fluides newtoniens est caractérisée par le nombre sans
dimension de Reynolds défini par la relation

L
Re = UT , (8.1)

ou U et L sont, respectivement, une vitesse et une longueur de référence de
I’écoulement considéré et v la viscosité cinématique du fluide. Ce nombre peut
prendre des valeurs comprises entre zéro et plusieurs millions. Pour Re proche
de zéro, les écoulements sont laminaires. Leur configuration géométrique et
leur dynamique sont relativement simples. Leur interprétation par des solutions
analytiques permet une compréhension en profondeur de la physique associée.
Lorsque Re croit, les écoulements laminaires sont soumis & des instabilités qui
les conduisent peu & peu a la turbulence développée. C’est cette derniere que
nous connaissons lors d’un vol ou 'aéronef subit de violentes secousses et em-
bardées provoquées par la turbulence atmosphérique. La compréhension de la
turbulence demeure 'un des grands défis posés a la physique, encore aujour-
d’hui.

Le lecteur trouvera des compléments dans les ouvrages suivants : [2, 4, 6,
10, 29, 36, 37, 38, 51].

8.2 Considérations physiques sur les écoulements laminaires et
turbulents de fluide incompressible

Dans cette section, on considere uniquement des écoulements de fluide incom-
pressible en fonction du nombre de Reynolds (éq. 8.1). Ainsi que nous 'avons
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déja évoqué, la physique des écoulements change drastiquement lorsqu’on passe
des écoulements lents a tres bas nombres de Reynolds a ceux pour lesquels
Re ~ 105 — 107.

Les écoulements lents sont laminaires (du latin laminae : couches minces) ;
ils sont trés souvent stationnaires et les lignes de courant épousent les contours
des obstacles placés en leur sein. Ces écoulements présentent des effets aisés a
prédire et a interpréter, car ils correspondent aux équations linéaires de Stokes.
On les trouve dans les laves, le magma terrestre, le verre fondu, les polymeres
tres visqueux.

Lorsque Re augmente, le terme non linéaire des équations de Navier-Stokes
devient prépondérant et pour des valeurs de quelques dizaines, les écoulements
laminaires deviennent instables et des écoulements secondaires sont engendrés.
On parle d’écoulements transitionnels.

Fig. 8.1 Ecoulement sur un cylindre & Re = 0.

Un excellent exemple est donné par ’écoulement amont uniforme et paral-
lele incident sur un cylindre circulaire horizontal. Le nombre de Reynolds est
défini par U la vitesse amont uniforme, L = D le diametre du cylindre et v la
viscosité cinématique du fluide. La figure 8.1 montre I’écoulement & Re = 0
qui présente des lignes de courant symétriques par rapport aux directions ho-
rizontale et verticale et aux diagonales.

Lorsque Re croit, pour des valeurs de 13,1 et 26 montrées a la figure 8.2,
on constate que I’écoulement est stationnaire et symétrique par rapport a I’axe
horizontal. Deux zones de recirculation contra-rotative sont présentes a l’arriere
du cylindre. La longueur de recirculation augmente liéairement avec Re tandis
que la distance séparant les centres des tourbillons croit comme v/Re.

(D Les figures 8.1 & 8.4 et 8.7 et 8.11 sont extraites de ’ouvrage [73]. Les recherches opérées
a ce jour visant & identifier les ayant-droits n’ont pas abouties, et ’éditeur invite celui
ou celle qui se reconnaitrait & se faire connaitre aupres de lui.
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Fig. 8.2 Ecoulement sur un cylindre pour Re = 13,1 (gauche) et 26 (droite).

Pour Re = 47,5, on franchit le premier nombre de Reynolds critique pour
lequel la physique devient instationnaire. On engendre l'allée de von Karman
dont les tourbillons sont lachés alternativement de la partie supérieure et in-
férieure a l'aval du cylindre. Pareille allée est montrée a la figure 8.3 pour
Re = 140, extraite de [72]. Les bouffées tourbillonnaires présentent une fré-
quence d’alimentation correspondant a un cycle limite dans le plan de phase. Il
s’agit d’une bifurcation de Hopf. La fréquence d’alimentation, notée f, conduit
a l'utilisation du nombre de Strouhal, St ,

_fD

St
U

(8.2)

Pour les valeurs de Re autour de la centaine, St est de 'ordre de 0, 13.

Fig. 8.3 Allée de von Karman pour Re = 140.

Des analyses de la stabilité font appel a ’équation de Ginzburg-Landau,
([17]) qui détermine le développement non linéaire de perturbations superpo-
sées & un écoulement de base. Cette théorie couvre un domaine tres vaste que
cette monographie ne peut pas couvrir. Nous renvoyons le lecteur aux ouvrages
spécialisés, comme par exemple [8, 9, 18, 56]. Si on augmente le nombre de
Reynolds, on passe par des régimes transitionnels pour atteindre finalement
I’état turbulent. Une excellente synthese de la dynamique des sillages derriere
un cylindre est due & Williamson [75].
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Fig. 8.4 Allée de von Karman pour Re = 2000.

La figure 8.4 montre la configuration de 1’écoulement en turbulence faible.
La couche limite qui est le siege des effets visqueux, est laminaire & ’avant du
cylindre, se développe sur celui-ci, subit une séparation et produit un sillage
turbulent. On y distingue encore deux vortex résultant de la dynamique non
linéaire.

Fig. 8.5 Allée de von Karman pour Re = 10*.

Pour Re = 10* & la figure 8.5, ’écoulement a grosso modo la méme forme,
avec des vortex identifiables.

Lorsque le nombre de Reynolds atteint plusieurs dizaines de milliers, voire
plusieurs millions, la physique des fluides offre une multitude d’échelles spa-
tiales et temporelles ; I’écoulement est en turbulence développée. La turbulence
est présente dans la majorité des écoulements dans la nature. Chacun a certai-
nement pu éprouver au cours d’un vol que les effets turbulents sont chaotiques
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et aléatoires et correspondent & une dynamique a variation tres rapide. La com-
préhension de la turbulence est I'un des rares défis que la physique moderne
n’a pas encore totalement relevé.

Les équations non linéaires ont la réputation d’étre tres difficiles a résoudre
par des moyens analytiques et celles de Navier-Stokes n’y échappent pas. C’est
une des raisons pour lesquelles le recours a la simulation numérique s’est imposé
au cours du temps comme la seule voie pour analyser en profondeur ces phéno-
menes complexes. La méthode des éléments finis constitue un choix pertinent
pour effectuer ce type de calcul [3].

8.3 Considérations physiques sur les écoulements
de fluide compressible

Les fluides compressibles, comme ’air ou plus généralement les gaz, offrent au
physicien et a I'ingénieur des phénomenes complexes et tres intéressants.

Les écoulements ou les effets de compressibilité sont & prendre en consi-
dération, impliquent le plus souvent des vitesses élevées. On parle alors de
dynamique des gaz. Dans ce cas, les valeurs du nombre de Reynolds sont tres
grandes. Comme, par exemple, la viscosité cinématique de l'air a température
ambiante est v = 1,45107° m?s™! et que les vitesses sont de I'ordre de plu-
sieurs centaines de metres par seconde, les nombres de Reynolds valent plusieurs
millions. Les écoulements sont évidemment turbulents. Cependant, en aérody-
namique, les effets visqueux se font sentir dans des zones proches des obstacles
ou des corps présents dans ’écoulement. C’est une des raisons pour lesquelles
on peut négliger la turbulence et les effets visqueux pour ne tenir compte que
de la pression comme grandeur importante. C’est cette derniere qui produira
la portance nécessaire pour le vol d’'un objet comme une aile ou un aéronef. La
modélisation traite alors les équations d’Euler pour le fluide parfait.

Les écoulements compressibles sont caractérisés par le nombre de Mach

global

=Y, (8.3)

a

ou U est une vitesse de référence comme celle de ’écoulement amont uniforme
sur un corps et a la célérité du son définie par (6.152). Le nombre de Mach
prend typiquement des valeurs comprises entre 0 et 8. Le cas M = 0 est celui
du fluide incompressible correspondant a une vitesse du son infinie puisque
p = cste.

8.3.1 Ecoulements subsonique, supersonique et hypersonique

Considérons un gaz en écoulement uniforme stationnaire de vitesse v = Ue;.
La présence d’'un objet volant dans cet écoulement au point P engendre une
perturbation ou onde sonore, qui sera propagée dans ’espace a la vitesse du son
(relative & celle du gaz ou de I'air). Cette perturbation produit des fluctuations
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de pression et de masse volumique. La vitesse de propagation de la perturbation
par rapport a un systeme de coordonnées fixes est donc la somme de la vitesse
du gaz et de la célérité a dans n’importe quelle direction caractérisée par le
vecteur unitaire n. La vitesse résultante v + an a laquelle la perturbation se
déplace a partir de P s’oriente pour les diverses directions de n dans I'espace.
On les obtient en tragant horizontalement le vecteur v a partir de P. A son
extrémité, on construit la sphere de rayon a. Tous les vecteurs issus de P et
se terminant sur la sphere sont des solutions possibles pour la grandeur et la
direction de la vitesse de propagation.

(a) (b)

Fig. 8.6 Propagation de perturbations dans un gaz : (a) cas subsonique; (b) cas
supersonique.

Pour 0 < M < 1, on est en écoulement subsonique avec U < a. En se rap-
portant & la figure 8.6 (a), on constate que la vitesse résultante se propage dans
tout l’espace, puisque la sphére englobe le point P. On peut aussi interpréter
I’écoulement de la maniere suivante. Comme la source de la perturbation se dé-
place de gauche & droite avec la vitesse ||v|| < a, 'onde émise au temps initial
t = to est située au temps t = t; > tg dans la sphere de rayon a(t; —tp). Pendant
ce temps, la source s’est déplacée sur la distance v(t; — tg). Comme ||v|| < a,
I’objet volant se trouve toujours a l'intérieur des spheres créées précédemment.

Si M > 1, écoulement est supersonique. La figure 8.6 (b) montre que la
vitesse résultante appartient a un cone de sommet P qui est tangent & la sphere
centrée a l'extrémité de v. Ce cone possede un demi-angle au sommet « tel que

a 1
ol M~
dont le sinus est inversement proportionnel au nombre de Mach. Notons que le
nombre de Mach dans (8.4) est basé sur la vitesse v ; c’est donc un nombre de
Mach local qui varie avec la position. Dans un écoulement supersonique, toute
perturbation est propagée en aval dans un cone, dont I’angle au sommet décroit
losque M augmente. L’angle « défini par (8.4) est 'angle de Mach.

(8.4)

sina =

En résumé, ’écoulement subsonique sur un corps affecte la totalité de ’es-
pace en amont et en aval. L’amplitude de la perturbation s’atténue avec la dis-
tance. Pour ’écoulement supersonique, la perturbation est engendrée lorsque



280 Introduction & la mécanique des fluides newtoniens

I’écoulement incident atteint ’obstacle et est propagée uniquement vers ’aval.
Elle ne peut pas « remonter » en amont. Cette différence phénoménologique
s’explique par le modéle mathématique sous-jacent & la propagation des ondes
acoustiques. Pour cas subsonique, ’équation est de type elliptique, tandis que
dans le cas supersonique, elle est de nature hyperbolique.

Le cas particulier M = 1 est celui de ’écoulement sonique. L’angle de
Mach vaut 90°. Toutes les perturbations sphériques sont tangentes a un plan
perpendiculaire & v. Les petites perturbations (infinitésimales) interagissent
pour créer une perturbation d’amplitude finie : ¢’est le mur du son.

L’écoulement pour lequel M > 5 est appelé hypersonique. Dans ce cas, air
entre en dissociation moléculaire et le gaz s’ionise. Il faut tenir compte de la
réaction chimique entre les composants de Iair et les aspects thermodynamiques
sont prépondérants. Ces écoulements se présentent autour des missiles ou des
navettes spatiales.

8.3.2 Onde de choc

Lorsque 1'objet volant n’est pas de petite taille, les perturbations engendrées
ne sont plus infinitésimales et la surface qui sépare la zone de silence de celle
ou la propagation s’effectue, devient une surface courbe a travers laquelle la
pression, la masse volumique et la vitesse subissent des changements soudains
d’amplitude finie. Ce changement abrupt des quantités physiques s’appelle un
choc et la surface associée est 'onde de choc. Notons que 'onde de choc
est une onde de compression. Dans la réalité, 'onde de choc a une certaine
épaisseur de l'ordre de quelques millimetres. Cependant, lorsque I'objet est un
avion complet, on assimile ’'onde de choc a une surface de discontinuité, ce qui
simplifie son traitement mathématique.

Les figures suivantes ont été réalisées par une méthode optique, 'ombro-
scopie, basée sur les variations d’indice de réfraction dues aux variations de
masse volumique. En plagant un écran en opposition a la source lumineuse, on
obtient sur celui-ci des ombres chinoises révélant la configuration géométrique
de I’écoulement. Ces figures ont été publiées par von Karmdn [73].

En passant de M = 0,84 a M = 0,971, on remarque aux figures 8.7 et 8.8
la configuration des ondes de choc qui sont produites sur un obus en vol libre
dans l'air avec un angle d’incidence inférieur a 1,5°. On reconnait également
la présence d’un sillage turbulent a l'arriere du culot. Notons que le nez du
projectile a un demi-angle d’ouverture égal a 20°.

Lorsque l'on approche de la vitesse du son, la configuration des ondes de
choc s’étend latéralement sur des distances plus importantes. Les figures 8.9 et
8.10 montrent toute la complexité de ces ondes et leur interaction compliquée.



Considérations physiques sur les écoulements de fluide compressible 281

M =0,840

M =0,.885

M= 0,900

Fig. 8.7 Ecoulement subsonique d’un projectile pour M = 0,84, 0,885 et 0,9.

M =0,946

M=0,971

Fig. 8.8 Ecoulement subsonique d’un projectile pour M = 0,946 et 0,971.
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M=10,978
Fig. 8.9 Ecoulement proche de la vitesse du son, M = 0,978.

M =0,990

Fig. 8.10 Ecoulement proche de la vitesse du son, M = 0,99.
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Enfin, la figure 8.11 est celle de I’écoulement supersonique autour d’une
sphere de diametre égal a 1,27 cm en vol libre dans I'air. Le nombre de Mach
vaut M = 1,53. L’onde de choc produite est courbe et se détache du corps
pour se placer en amont. Derriere le choc, I’écoulement redevient subsonique et
couvre la surface sphérique jusqu’a environ 45°, le zéro degré correspondant au
pole de la sphere situé a 'amont sur ’horizontale. Pour un angle d’environ 90°,
la couche limite laminaire se sépare via une onde de choc oblique et devient
turbulente. Le sillage & ’aval de la sphére engendre un systeme de perturbations
faibles qui donne naissance a une seconde onde de choc.

Fig. 8.11 Ecoulement supersonique autour d’une sphere a M = 1,53.
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8.4 Equations de Navier-Stokes

Nous allons établir les équations de Navier-Stokes successivement pour le fluide
newtonien compressible, ensuite pour le fluide newtonien incompressible.

8.4.1 Equations de Navier-Stokes pour un gaz idéal
a chaleurs massiques constantes

Ecrivons les équations de Navier-Stokes pour le cas particulier du gaz idéal
compressible & chaleurs massiques constantes.

A T'aide de la relation (6.143), I’équation de I’énergie (4.23) peut se mettre
sous la forme

T
pey—— =0 : Vo —divg+r. (8.5)

Dt

L’expression o : Vv peut s’écrire successivement

6112»
Tij g, = i dij = —p iy dij + N dr, dij 655 + 2(dij)?
J
= —pdii + Mdi)* + 2u(dy;)?
ou encore
oc:L=0:d=—ptrd+ \trd)*> +2u(d: d). (8.6)

Par 1’équation de conservation de la masse (3.41), on a I'égalité

trd = _1Dp .
p Dt
Des lors, I’équation (8.5) devient
DT p Dp ) .
TS —fﬁ—&-)\(trd) +2pud:d—divg+r. (8.7)

En utilisant 1’équation d’état (6.136), on transforme (8.7) qui devient

DT _Dp _ .
" Dr = Di Rﬁ—i-)\(tr d)?+2ud:d—divg+r. (8.8)

Afin d’obtenir ’ensemble des équations, nous utiliserons I’équation de conser-
vation de la masse (3.41). On insere ’équation de comportement (6.14) dans
l’équation de conservation de la quantité de mouvement (3.96). Enfin, on mo-
difie ’équation de I’énergie (8.8) en tenant compte de la loi de Fourier (6.123)
et de la relation (6.141). Le systéeme d’équations de Navier-Stokes s’écrit sous
forme indicée
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dp  Opv;

ot " om0 (8.9)
Dv;  0Op 0 0

P Dt o + oz, ()\dkk) + al‘j (2/1, d”) + pb; (8.10)

DT ~-1TD B) or ov; \?
pCp <_ ”yp) = (kam> —|—/\<8;> +2udijdi; +r
7 7
(8.11)

p = pRT. (8.12)

Les équations (8.10) et (8.11) se simplifient lorsque A, p et k sont des
constantes. En outre, faisons 1'hypothése de Stokes

3A+2u=0. (8.13)

Cette relation a été établie sur base d’un raisonnement tiré de la théorie ci-
nétique des gaz. Quoique cette hypothese soit vérifiée pour les gaz monoato-
miques, elle n’est plus valable dans le cas des gaz polyatomiques.

Les équations (8.10) et (8.11) deviennent alors

Dv;  0Op 9%v; 2
3

0
- _ diere b; 14
p Dt 8.%‘,‘ + Haxjﬁxj ( kk) + p (8 )

axi
DT ~—-1T Dp o*r

2
- )=k — = d 2 2 dldz . 1
pcp( ) 833]89;] 3#( kk) + I J ) +r (8 5)

8.4.2 Equations de Navier-Stokes pour un fluide incompressible
en écoulement isotherme

Comme 1’écoulement est isotherme, T = cste, le principe de conservation de
I’énergie est trivialement respecté. Tenant compte de l'incompressibilité du
fluide (p = cste), les équations précédentes se simplifient

dive =0 (8.16)
v

—=-v A b. 8.17

P Dy p+pulv+p (8.17)

L’équation (8.17) est une équation aux dérivées partielles non linéaire d’ordre 2.
Elle exprime que l'accélération est produite par ’action du gradient de pression,
des forces visqueuses et des forces a distance.

8.5 Forme adimensionnelle des équations de Navier-Stokes

8.5.1 Cas du fluide compressible

Désignons par L, U, pgy, po, Ty les grandeurs de référence : longueur, vitesse,
pression, masse volumique et température, caractéristiques de I’écoulement a



286 Introduction & la mécanique des fluides newtoniens

étudier. L’échelle des temps est L/U, celle des forces massiques U?/L. Intro-
duisons ensuite des variables et des fonctions sans dimensions (notées par des
primes) par les relations

L
z; = Lz} tzﬁt’ v; = Uv; p = pop’
b;

p=pop  T=TT bi:sz,

On fera 'hypothese que r = 0.

On réécrit les équations (8.9), (8.12), (8.14) et (8.15) avec ces grandeurs sans
dimensions, y compris les grandeurs constantes caractéristiques pg, ko estimées
a la température Ty, ainsi que ¢, 7, R

ap'  ,9p O

% + Uj or + P Oz =0 (818)
J J
ov, o}
ar ko,
po 10p po 1[0 19 ,
S - - iy 2 b, 8.19
poU? p' Ox + ULpo p' Bx;? * 3 ax;( ki) | i (8.19)

2
2 2 ! ov’;
ko po O°T" o U (2 )2_;<a“z ”J) (8.20)

 pocy poUL ox'?  poUL Ty 5( kk ox, t o

/
3

p=pT, (8.21)

on pose pg = pg RTp.

=

S

Dans les relations (8.18)-(8.20) apparaissent trois nombres sans dimensions

o le nombre de Reynolds

UL UL
Re = po-— = ——;
Ho L)
e le nombre de Prandtl
CpHo 1)
Pr=-2 —
YTk T A
e le nombre de Mach
U
M=—,
ag
qui apparait dans le groupement
Po RT() ag 1

poU? U2 qU2  AMZ’
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Le dénominateur du nombre de Mach ag est la vitesse du son caractéristique
(éq. (6.153)). Le coefficient A défini par la relation

ko

PoCp

A:

apparait dans le nombre de Prandtl et s’appelle la diffusivité thermaique.

Le nombre de Reynolds exprime I'importance relative des forces d’inertie
par rapport aux forces de viscosité. Il prend ses valeurs depuis zéro jusqu’a
plusieurs millions. Pour Re = 0, les équations de Navier-Stokes se réduisent
aux équations de Stokes. Elles régissent la dynamique des écoulements lents
ou rampants, et laminaires. Pour Re ~ 10°, I’écoulement est turbulent. Le
nombre de Prandtl permet de comparer les phénomenes de diffusion visqueuse
et thermique (Pr = 0,71 pour 'air ambiant). Le nombre de Mach caractérise
les effets de compressibilité. Sa valeur est M = 0 pour le fluide incompressible.
Il est compris entre 0 < M < 1 pour les écoulements subsoniques et M > 1
pour les écoulements supersoniques.

Les équations de Navier-Stokes prennent la forme réduite

D /

D@ + 0 dive’ =0 (8.22)
Dv’ 1 1 1

0 D:t)’ = A vy + Re <V21;’ +3 V (div v’)> + 't (8.23)

) (DT’ y—1T Dp’)

M2 (2 2 1 /ov O 2
= T —(y—1)=—| = (dive)" = = i J 24
PrRe v 9 )Re 3 (div ') 2 \ Oz, * ox; (8:24)

p=pT. (8.25)

Si on fixe les coordonnées x;, le temps ¢ et tous les parametres M, Pr, v, et
si on fait tendre Re — oo, alors le systéme (8.22)-(8.25) conduit au systéme
des équations d’Euler des fluides parfaits. Le passage a la limite du nombre de
Mach vers zéro, tous les autres parametres maintenus fixés, devrait conduire
aux équations de Navier-Stokes pour un fluide incompressible.

Cependant, ’examen du systéme (8.22)-(8.25) montre qu’il n’en est rien
et que le terme —(1/yM?)Vp devient dominant. Ce comportement est dii au
choix de la pression adimensionnelle p’ = p/pg, qui a été fait en considérant
la pression comme variable thermodynamique. L’équation du mouvement ré-
vele que la pression est aussi une variable dynamique. Le choix d’une pression
adimensionnelle par la relation

* b —DPo

- poU?

est plus naturel.
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Dans ce cas, I’équation (8.23) devient

Do’ .1 9 1 )
o B = —-Vp* + e (V v+ 3 V (div 'u’)) +p'b. (8.26)

Le passage a la limite du nombre de Mach vers zéro fournit les relations

D /
D—'Z 1o dive’ =0 (8.27)
Do’ 1 1
! * 2,/ : / 1/
_ 1 1 2
T Vp +Re (V’U +3V(dlvv))+pb (8.28)
pr 1 _,
v Dt~ PrRe v (8:29)
JT =1 (8.30)

qui sont relatives a un fluide incompressible, mais susceptible de dilatation
thermique.

Pour obtenir (8.29), on calcule

Dy’ 1 Dp _poU® Dp* _ U? Dp* _ »,Dp*
DU po DU po D¢ RI, Dt " D¢ -

L’équation (8.30) s’obtient par ’évaluation suivante :

2
/ 1t p * U 2 %
p=pT" =—=1+p = =1+7Mp".
Po RTy
Si on suppose de plus qu’a la paroi du domaine, T = 1, alors les équations
(8.29) et (8.30) ainsi que la condition aux limites sur T sont satisfaites par

p=1 (8.31)
T =1. (8.32)

Les équations (8.27) et (8.28) se réduisent par conséquent dans ce cas aux
équations d’un écoulement incompressible isotherme.

8.5.2 Cas du fluide incompressible en écoulement isotherme

Dans un premier cas, nous allons examiner le point de vue de I’aérodynamique.
On fait 'hypothese que la force de volume est celle de gravité, b = g. On
prendra les mémes échelles de temps, de longueur et de vitesse qu’au paragraphe
précédent. Pour la pression, on pose

r_ P —DPo
pU?

et pour la force de gravité, on introduit

r_ g
g =
g
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ou g = ||g|| est accélération de la pesanteur. L’équation (8.17) sous forme
réduite devient Do’ ) )
v
=-Vp +—V>'+—g. 8.33
DY’ P Re V" TRY (8.33)
Il apparait une quantité sans dimensions, le nombre de Froude
U2
Fr=—.
Lg

Ce nombre permet de comparer les forces d’inertie aux forces de gravité.

Dans un second cas, on va mettre en ceuvre le point de vue des rhéologistes
pour lesquels les écoulements présentent une physique dominée par les effets
visqueux. Si on reprend 1’équation (8.17) mais en normalisant la forme réduite
du temps et de la pression par la viscosité
_ vt ot o = P —Do

L2 ulU
L

la forme réduite des équations de Navier-Stokes pour le fluide incompressible
s’écrit

tl

o} o} op Re

4 Re(vport ) =—25 +V+—g. 8.34
ot’ Re <vk oy, oz TVt Fr 9 (8:34)
Les équations (8.33) et (8.34) sont différentes parce que la normalisation du
temps se fait d’une part par le temps lié & 'advection (terme d’inertie) L/U et

d’autre part, par le temps caractéristique de la diffusion moléculaire L?/v.

Par conséquent, la forme limite des équations de Navier-Stokes s’obtient
par (8.33) lorsque Re — oo

Dv’ 1
S = Vi =g (8.35)

Ce sont les équations (adimensionnelles) d’Euler. La version dimensionnelle
o
s’écrit

Dv
— = . 8.36
P = —VPtrg (8.36)
Par contre, lorsque Re — 0, 1’équation (8.34) se simplifie pour donner
8 !/
8—;’, = -Vp + V. (8.37)

Ce sont les équations (adimensionnelles) de Stokes. Ces équations sont linéaires,
a la différence des équations de Navier-Stokes qui sont non linéaires. Sous forme
dimensionnelle, on les écrit

2l — p+ V. (8.38)
ot
Rappelons que la viscosité cinématique de I'eau est veq, = 107%m2s~ 1.
Donc si U et L sont chacun de l'ordre de 'unité, le nombre de Reynolds sera
0(10%). Cette valeur est typique de la turbulence, un sujet qui mériterait &
lui seul une monographie complete. Nous renvoyons le lecteur a la littérature
spécialisée [11, 16, 50, 64].
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8.6 Conditions initiales et aux limites

8.6.1 Fluide visqueux
Le fluide visqueux en contact avec une paroi rigide adhere a cette paroi suite
aux effets de la viscosité. Il y a donc lieu d’écrire la condition d’adhérence :

U fluide = Uparoi - (839)

D’autre part, lorsque le fluide est en contact avec un milieu gazeux, on
suppose que les forces de contact s’équilibrent de part et d’autre de la surface
de contact et on écrit la relation

fluide __ gaz
niaij = niaij
Si le gaz n’est pas visqueu, il vient
fluide __ az
nio;; = —n;p?** . (8.40)

En projetant (8.40) sur la normale & I'interface, on obtient
nmjaf-lmde = —pI®* . (8.41)

Pour la composante tangentielle, il vient :

niTjalijUide _ fanjpgaZ -0 , (842)

puisque n-7 = 0, T désignant le vecteur unitaire tangent a la surface de contact.

Les relations (8.41) et (8.42) expriment les conditions dites de « surface
libre ». Elles impliquent qu’on connaisse la forme de cette surface pour pouvoir
étre appliquées. Or la forme de la surface est elle-méme une partie de la solution
du probleme a résoudre. On congoit donc que les problemes a surface libre
constituent une des grandes difficultés de la mécanique des fluides, parce qu’ils
sont intrinsequement non linéaires.

Pour certains fluides, la condition (8.41) doit étre complétée pour tenir
compte de la tension superficielle. Il vient alors

; 1 1
o fluide _  gaz - -
nin;o;; =-—-p"+o0 (Rl + R2> , (8.43)
expression dans laquelle R; et Ry sont les rayons de courbure principaux de la
surface et o le coefficient de tension superficielle liquide-gaz exprimé en N/m.

Dans la pratique, on limite généralement ’étude a une partie de la zone
occupée par le fluide. Dans ce cas, il faut ajouter des conditions sur les sections
d’entrée, dans lesquelles on impose usuellement le vecteur vitesse, et sur les
sections de sortie, pour lesquelles on impose usuellement les forces de contact
qu’on suppose nulles dans la plupart des cas. Ceci correspond a une situation
ou on laisse sortir le fluide & sa vitesse propre.

Dans le cas d’un probleme transitoire, les conditions initiales sont les vi-
tesses qu’on prend souvent nulles au démarrage.
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8.6.2 Fluides parfaits

Comme la viscosité ne joue pas de role ici, le fluide peut glisser a sa vitesse
propre le long d’une paroi. La condition d’adhérence ne s’applique plus. On
impose que la composante normale de la vitesse relative du fluide par rapport
a la paroi avec laquelle il est en contact, est nulle. Des lors, la condition de
glissement s’écrit :

U fluide * TV = Uparoi * T - (8.44)

Similairement, on imposera la valeur de la composante normale de la vitesse
du fluide sur toute section d’entrée ainsi que la pression sur toute section de
sortie.

Pour les écoulements transitoires, on procédera comme dans le cas des
fluides visqueux.

Enfin, en aérodynamique (externe, par exemple, pour ’écoulement autour
d’un profil), on trouve trés souvent des conditions & imposer sur une frontiere
non matérielle (située a distance finie ou non). C’est le cas par exemple d’un
obstacle fini placé dans un écoulement non confiné. On impose alors les condi-
tions d’un écoulement uniforme donné a l’infini.

8.7 Solution exactes des équations de Navier-Stokes

8.7.1 Ecoulements plans stationnaires

Dans cette section, nous allons examiner des solutions exactes des équations de
Navier-Stokes pour des écoulements plans stationnaires.

Ecoulement plan de Couette d’un fluide incompressible

On considere ’écoulement plan, stationnaire d’un fluide visqueux incompres-
sible entre deux parois paralleles.

U

——
—
—
——

e

-

T1

Fig. 8.12 Ecoulement plan de Couette
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La figure 8.12 montre la configuration géométrique du domaine. On observe
que la paroi inférieure est fixe tandis que la paroi supérieure se déplace dans
son propre plan a la vitesse constante donnée U dans la direction z7.

Puisque 'écoulement est plan, le vecteur v se réduit a deux composantes
telles que v = (v1,v2,0). Nous supposerons que 1’écoulement est développé,
c’est-a-dire que les effets transitoires ou d’entrée dans la canalisation sont né-
gligeables. Deés lors, on peut estimer que vy sera une fonction uniquement de
x2. La condition d’incompressibilité (8.16) devient

8@2

ovz _ 4
5o =0 (8.45)

indiquant que v n’est pas une fonction de x5. Ce sera donc une fonction de x;.
Cependant comme sur les deux parois, vo s’annule pour tous les z1, on conclut
que vo = 0 partout. Nous écrivons 1’équation bidimensionnelle de Navier-Stokes
(8.17) pour la composante de vitesse vy

p(%+vl%+v2%) :—%—i—u&vl—kpbl. (8.46)
Comme la force de gravité est orientée suivant la direction négative de ’axe
x9, by = 0. De plus le probléme est stationnaire, donc dv;/0t = 0. Le terme
v10v1 /021 est nul vu que v1 = vi(z2). Enfin v30v;/dzs est nul également
puisque v = 0. On peut supposer que la composante horizontale du gradient
de pression est nul puisque ’écoulement est forcé de maniere cinématique par
le mouvement de la paroi supérieure. Il reste donc

d2U1
=0. 8.47
g2 (8.47)
Intégrant une fois (8.47), on obtient
dUl
1 _ 8.48
M s (8.48)

Cette relation montre que la contrainte de cisaillement est constante sur la
hauteur du canal. Intégrant encore une fois, il vient

vy = Azg + B. (8.49)

Les conditions aux limites d’adhérence
vi(x2=0)=0, vi(xze =h)=U (8.50)
permettent de déterminer les constantes d’intégration ; on obtient le profil de

vitesse linéaire

o Cfxg

vy A (8.51)

La contrainte de cisaillement (6.16) obtenue par (8.51) est une valeur constante
d U

L (8.52)

7= g,
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Si on examine la seconde équation de Navier-Stokes dans la direction xo,

on a 8
__9
0= 9y P9 (8.53)

avec g 'accélération de la gravité. Par intégration de cette relation et en tenant
compte de 'indépendance de p par rapport a x1, on a

p=—pgxs+ C. (8.54)

Comme la pression dans un fluide incompressible est connue a une constante
pres, nous fixons celle-ci en imposant p(xe = 0) = pg = C. La pression est en
équilibre hydrostatique

P =po — pgTa. (8.55)

Ecoulement plan de Poiseuille d’un fluide incompressible

On considére ’écoulement plan, stationnaire, d’'un fluide visqueux incompres-
sible dans un canal composé de deux parois paralleles fixes. La figure 8.13
montre la configuration géométrique du domaine. Dans ce cas, un gradient de
pression longitudinal, c-a-d. dans la direction x1, est établi. On suppose que
I’écoulement est développé et que les particules de fluide se meuvent sur des
trajectoires paralleles aux parois. Des raisonnements identiques a ceux tenus
pour Iécoulement de Couette permettent d’écrire v1 = vy (22), vo = 0.

T

Kl

Fig. 8.13 Ecoulement plan de Poiseuille

L’équation dynamique pour la vitesse vy est la relation (8.17) qui pour
I’écoulement de Poiseuille se réduit a

Bp 82’01

0=——— .
81‘1 + u@xf

(8.56)

De maniére similaire a I’écoulement de Couette, la pression dans la direction
verticale est en équilibre hydrostatique
Ip
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En intégrant cette relation, on obtient
p = —pgr2 + P(x1) . (8.58)

Le facteur d’intégration P(z) est la pression sur la paroi inférieure pour x5 = 0.
Le gradient de pression dans la direction x; peut s’écrire

dp dpP
—_— = 8.59
(91’1 d.’El ( )
comme une fonction de z; uniquement. I’équation (8.56) donne
d?v; 1dP
=-— =C. 8.60
dre?  pdr ( )

En effet, le premier terme est fonction de x5 tandis que le second terme est
fonction de x;. Il s’ensuit que ces deux termes sont égaux a la méme constante
C'. L’intégration de (8.60) donne

v = ——— + Azs + B. (8.61)

L’imposition des conditions aux limites
U1 (1’2 = 0) =1 (ZL’Q = h) = 0, (862)
donne le profil de vitesse parabolique de Poiseuille

h2 dP i) i)
=—— —=(1-=2). .
U= o (1==") (8.63)

Comme dans la canalisation la pression chute linéairement avec la distance 1,
dP/dxy < 0 et ’écoulement se fait dans la direction positive de 1'axe des .

La contrainte de cisaillement obtenue & partir de (8.63) est

dvy h dP 2&

— g RAm g . 64
N2 =R del( B (8.64)

On remarque que le cisaillement (6.16) est nul sur Paxe de symétrie du canal
9 = h/2 et est maximal en valeur absolue sur les deux parois.

On peut calculer le débit-volume a travers la section S de la canalisation.
En toute généralité, le débit-volume est défini par la relation

Q:/Sv~ndS. (8.65)
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En prenant une surface unitaire selon la direction x3, le débit dans le canal

plan s’écrit
h 3 3
h?® dP h® Ap
— doo = - —— — = — "= 8.66
@ /0 UL = T de, 120 L (8.66)

avec AP la différence de pression observée en deux points de méme ordonnée

xo distants de la longueur L dans la direction x;. On définit la vitesse moyenne
par ) = Umoy h, d’ott il vient

h? AP

=—— 8.67

Umev = Tou L (8.67)

Comme la vitesse maximale v,,q, est atteinte sur 'axe de symétrie de la cana-
lisation en xo/h = 1/2, il résulte que

h? AP
mar — 5 8.68
v S5 L (8.68)
et par conséquent
2
Umoy = gvmar- (869)

Dans le cas ou le canal plan est remplacé par une conduite de section circulaire
(voir § 8.7.2), on obtient que la vitesse moyenne est égale a la moitié de la
vitesse maximale. Ceci montre qu’une fraction plus petite de la section contient
la zone de vitesse élevée.

Ecoulement d’un fluide incompressible sur un plan incliné

Soit I’écoulement plan, stationnaire, d’un fluide visqueux newtonien sur un plan
incliné qui fait un angle v avec la direction verticale (fig. 8.14).

T

Fig. 8.14 Ecoulement sur un plan incliné.
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L’épaisseur de la couche de fluide est uniforme et égale & h. Le fluide est en
contact a la surface libre avec I'air ambiant que nous considérerons comme un
fluide parfait a la pression atmosphérique p,. On suppose que ’écoulement dans
I’air ambiant n’affecte pas ce qui se passe dans le fluide visqueux. L’écoulement
est parallele puisque les trajectoires des particules fluides sont paralleles au
plan incliné. Des lors, v = (v1,0,0). Par I'incompressibilité, on obtient

81)1 o
0 =0 (8.70)

dont on déduit que v; = v1(z2). La seule composante du tenseur des contraintes
est 012 ou o91. Comme la pression est uniforme a la surface libre, la pression

dans le fluide visqueux ne dépend pas de la direction x;, mais dépend de x5.
Par I’équation du mouvement (3.96) écrite dans la direction z1, il vient

0012 0012
by = — =0. 71
o + pby o + pgcosa =0 (8.71)

Intégrant cette relation, on a
012 = —pg xacosa+ C' . (8.72)
A la surface libre x5 = h, la contrainte de cisaillement doit s’annuler. On obtient
012 = pgcosa(h — xq) . (8.73)
Comme 012 = pdvy/dza, on peut évaluer la composante v; par intégration par

rapport & xo, en tenant compte de la condition aux limites vi(z2 = 0) = 0. Le
profil de vitesse est donné par la relation

pPgcosa
V1 =
2

$2(2h — .132) . (874)

L’équation de Navier-Stokes relative a la direction x5 produit la relation

Op Op )
_ by = — £ _ -0. .
o + pbs o pgsina =0 (8.75)

Intégrant par rapport a xo et en tenant compte de la condition a la surface
libre p(z2 = h) = pg, on écrit

P = Dpa — pgsina(xs —h) . (8.76)

Le débit-volume par unité de longueur dans la direction x3 est obtenu par

h 3
h
Q :/0 vy des = %. (8.77)
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Ecoulement plan de Couette d’un fluide compressible

On considére ’écoulement plan, développé et stationnaire d’un fluide visqueux
compressible entre deux parois paralleles. On négligera la gravité dans ce pro-
bleme. La figure 8.15 montre la configuration géométrique du domaine. La paroi
inférieure est fixe et la paroi supérieure se déplace dans son propre plan a la vi-
tesse constante donnée U dans la direction 1. Comme le fluide compressible a
ses propriétés matérielles qui dépendent de la masse volumique et de la tempé-
rature (voir éq. (6.15)), 'équation d’énergie est incorporée dans la modélisation
et il nous faut prescrire des conditions aux limites pour la température. A cette
fin, la température de la paroi supérieure est fixée a la valeur constante Ty,
tandis que la paroi inférieure est adiabatique, c’est-a-dire g = —k 9T /Ox2 = 0.
Pour simplifier le probleme, nous faisons I’hypothése qu’aucune propriété ma-
térielle ne dépend de 1, x3 et t. Les inconnues du probleme sont telles que

v = (vi(22), va2(22), 0) p = p(x2) T =T(x3). (8.78)

L’équation de conservation de la masse (8.9) devient

d(pv2)

i =0 (8.79)

Ty

v T,=0

Ty

Fig. 8.15 Ecoulement plan de Couette pour un fluide compressible.

Par intégration, pvy est une constante. Comme la composante verticale de vi-
tesse vy s’annule sur les deux parois, il en résulte que v = 0 partout. Les
équations de Navier-Stokes (8.10) deviennent

d dUl
dp
= —— . 1
0= (8.81)

La relation (8.81) montre que la pression est constante dans tout 1’écoulement.
Par conséquent, on peut supposer que les propriétés matérielles seront fonction



298 Introduction & la mécanique des fluides newtoniens

de la température seule, puisque p = pRT = cste. L’intégration de (8.80) donne

dvy

- 8.82
Mgy = 70 (8.82)

avec la convention que oy représente une contrainte de cisaillement
constante.

Le flux de chaleur a la seule composante ¢ non nulle, étant donné I’hy-
potheése sur la champ de température. Dans ce cas, 'équation d’énergie (8.11)

est
d ( dT dvi > dgo dv,
0— 4 (pdr R 8.83
diy < dacg) T (dx2> doy * Odry (8.83)
L’intégration de (8.83) fournit
—q2 +oov1 = C'. (8.84)

Comme la paroi inférieure fixe (v1(z2 = 0) = 0) est adiabatique, 'imposition
des conditions aux limites & (8.84) donne C' = 0 et on obtient

dT dT dvl
k— =k—o — =0. 8.85
d(£2 +oovt d(£2 + el dxg ( )
Ecrivant (8.85) sous la forme
d (1 , k dT
— | 3 =———-— 8.86
dzso (2 Ul) W dxs (8.86)

et en tenant compte des relations k = k(T'), u = u(T), 'intégration depuis un
point d’ordonnée x5 jusqu’a la paroi supérieure donne

1 2 ,02 _ o k(T/) !
(W} = /T S (8.87)

Cette équation nous fournit v; en fonction de T'; cependant, comme k et p sont
des fonctions positives de T' (sect. 6.8), I'intégrale dans (8.87) est une fonction
monotone de T' et on peut donc trouver la fonction inverse T'(v1). A T'aide de
cette fonction inverse, 'équation (8.82) devient

w(T(v1)) dvy = o¢ dwa (8.88)

et par intégration depuis la paroi inférieure ot v; = 0 jusqu’en un point arbi-
trairement choisi d’ordonnée x5, on obtient

1 ™
Tg = — (T (vh)) duy’ . (8.89)
o0 Jo

Cette équation est le profil de vitesse donné sous forme inverse xo = 22 (v1).

Nous allons illustrer cette théorie par les résultats calculés lorsque la visco-
sité et la conductibilité thermique sont modélisées par des lois de puissance

= 1o (;;)n k= ko (;;)n (8.90)
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L’exposant n de la loi est obtenu par une approximation polynomiale (au sens
des moindres carrés) des données expérimentales dans la gamme des tempéra-
tures impliquées dans le probleme considéré. Les quantités de référence py, ko
sont les valeurs correspondant & la température de référence Ty de la paroi
supérieure. En combinant (8.87) et (8.90), il vient

L (U? —v?) ko [1 ar’ (8.91)
= —v]) =—— .
2 ! Ko JT
et donc
T =T+ L0 (U2 —2), (8.92)

2ko

La forme inverse du profil de vitesse est évaluée en insérant (8.90) dans (8.89)

Mo v (T >n ’
Ty = — — | dv
2 O'()/(; TO 1
po [ Ho TN S
= — 1 U~ — dvy . 8.93
oo /0 < + 2kOTO ( Uy )> U1 ( )

Envisageons deux cas : n = 0 est celui des propriétés constantes; n = 1 est
proche du comportement du gaz idéal.

Lorsque n = 0, la relation (8.93) produit

To = @ V1. (894)
o0

En évaluant oy a la paroi supérieure, on retrouve le profil de Couette du fluide
incompressible (8.51). Le profil de température (8.92) devient

polU? T2)?2
T=T 1—(22) ). .
Ot ok ( (h)) (8.95)

Le cas n = 1 conduit a la forme inverse du profil de vitesse

po U? 1/v1\2
1 1-=(—
ﬂivl +2]€0T0( S(U)
_ﬁ 3 .
|4 ¥
3koTo

(8.96)

La relation (8.96) n’est pas inversible pour obtenir la solution explicite de ;.
On ne peut donc pas écrire la forme explicite de la température qui satisfait
toujours I’équation (8.92).

8.7.2 Ecoulements axiysmétriques stationnaires

Nous considérons dans cette section des solutions exactes des équations de
Navier-Stokes pour des écoulements stationnaires dans des géométries a symé-
trie de révolution. Nous intégrerons les équations de Navier-Stokes exprimées
dans un systeme de coordonnées cylindriques. Le vecteur vitesse a pour com-
posantes v, vy, v, que nous nommerons vitesse radiale, azimutale et axiale,
respectivement.
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Ecoulement de Couette circulaire

On considere I’écoulement stationnaire d’'un fluide visqueux newtonien incom-
pressible entre deux cylindres concentriques de longueur axiale supposée infinie.
On note R; et Ry les rayons des cylindres intérieur et extérieur, respective-
ment, et wy,ws leur vitesse angulaire de rotation respective, figure 8.16. On
demande de calculer la vitesse azimutale vg. Cet écoulement est connu sous le
nom d’écoulement de Couette circulaire. On négligera les effets des forces de
volume.

Fig. 8.16 Ecoulement de Couette circulaire.

L’écoulement n’a pas de vitesse axiale puisqu’il n’y a pas de gradient de
pression dans cette direction. De plus, comme le probleme posséde une symétrie
de révolution, il ne dépend pas de la coordonnée azimutale et donc 9(e)/90 = 0.
Les deux composantes de vitesse v,,vg, stationnaires et donc indépendantes
du temps, sont fonction uniquement de la coordonnée radiale r, soit v, =
vp(r),vg = vg(r). Comme le fluide adhere a la paroi, les conditions aux limites
sont

’UT(Rl) = UT(RQ) = 0, UO(Rl) = (JJ1R1, ’Ug(RQ) = UJQRQ . (897)

Avec les hypotheses et les déductions sur le profil de vitesse, 1’équation de
continuité (A.31) devient

;%(r v)=0. (8.98)

En tenant compte des conditions aux limites (8.97) nulles pour v,., la solution
donne

v, =0 . (8.99)
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Les équations de Navier-Stokes (A.32)-(A.33) dans ce cas se réduisent a

10p v}

Y% 1

por r’ (8.100)
1 8 8’09 Vo -

La solution pour la composante vy est de la forme vy = Zfzz a,r™. On trouve
facilement que n = 4+1. Par 'imposition des conditions aux limites, il vient

B R2 _ 2 _ 2R2 1
vg=Ar+ — = 2 3 w12R1 r— G2 2w1)R21 i
T R5 — Ry R5 — Rf r

(8.102)

avec des définitions évidentes pour les constantes A et B. Le premier terme du
membre de droite correspond a une rotation d’ensemble du fluide autour de
I’axe central. Si w; = we = w, les deux cylindres tournent a la méme vitesse de
rotation w; la vitesse devient vy = wr, ce qui montre que le fluide effectue une
rotation de corps solide autour de ’axe. Le second terme du second membre
correspond & une déformation des particules au cours du temps. Si Ry — oo
et wo = 0, alors on est dans le cas d'un cylindre dans un fluide s’étendant a
linfini. La vitesse vy = wy R?/r donne des lignes de courant circulaires autour
du cylindre et la distribution de vitesse est irrotationnelle, c-a-d. rot v = 0.

Sur une facette de normale radiale s’exerce une contrainte tangentielle de
cisaillement oy, qui s’exprime par (A.5)

B Ovg vy 10wv, B %_@ B g Vg
JGT_M(&T r+r89)_u<8r r>_ﬂrar<r)’ (8.103)

En combinant (8.102) et (8.103), on obtient

2Bu
5 -

(8.104)

Ofr = —

r

Nous allons calculer le couple de frottement visqueux C' exercé sur le cylindre

intérieur par unité de longueur axiale. Ce couple est égal au produit de la

composante oy, évaluée en r = Ry et de la surface 2w Ry sur laquelle agit cette

contrainte, multiplié par le bras de levier R; de la distance entre ’axe et le
point d’application de la force. On a

22Bp s (w2 —w1)RIR3

C =-27R
TR R

(8.105)

Cette derniere relation indique que nous pouvons mesurer la viscosité p d’un
fluide dans un viscosimetre de Couette ou le moteur d’entrainement impose le
couple sur I'un des cylindres et on mesure la vitesse de rotation résultante sur
lautre.
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Ecoulement de Poiseuille circulaire dans une conduite cylindrique

L’écoulement de Poiseuille dans une conduite cylindrique de rayon R est sou-
mis a l'action d’un gradient de pression imposé dans la direction z (fig. 8.17).
L’écoulement est stationnaire. A partir des équations de Navier-Stokes en co-
ordonnées cylindriques, montrons d’abord que la seule composante de vitesse
non nulle est v, .

Fig. 8.17 Ecoulement de Poiseuille dans une conduite cylindrique de section circu-
laire.

Etant donné les hypotheses d’écoulement stationnaire et de symétrie de
révolution, les deux seules composantes de vitesse v,.,v, sont fonction de r
uniquement. L’équation de continuité (A.31) donne

10

;E(T vp)=0. (8.106)
Son intégration fournit
ru,. = f(2) .
Mais comme v, = 0 a la paroi r = R, on conclut que f(z) = 0 et donc

que v, s’annule dans tout I’écoulement. L’équation de Navier-Stokes pour la
composante radiale de vitesse (A.32) se réduit & dp/0r = 0. La pression ne
dépend pas de 7 ; elle ne dépend que de z. L’équation relative a la composante
de vitesse v, (A.34) donne

_d£+ 82112_’_1% =0
dz H Oor? ror)
d_pd [ do
dz ~ rdr rdr

Dans le membre de gauche, le terme ne dépend que de z ; a droite, la dépendance
est en r. Donc ces deux termes sont égaux a une constante. Par intégration, on

ou encore
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dp\ 1 [r?
=—)—|—+Al B .
" (d2> H (4 A )

La vitesse doit étre finie sur I’axe r = 0. Ceci induit A = 0. En tenant compte
de la condition v,(R) =0, on a

(@) u0-E)

Dans ’écoulement de Poiseuille, le profil de vitesse est parabolique. La vitesse

maximale au centre vaut
dp\ R?
mar = — | — | — . 8.107
° (d2> Ap (8.107)

obtient

Le débit-volume est obtenu par intégration sur la section de la conduite. On a

R 4 2
dp\ ™R TR*v,,
Q= 271'/0 v (r)rdr =— <dlzj) S 5 = . (8.108)
La vitesse débitante obtenue comme le rapport du débit a laire S de la section
est 0
vmaa}
moy = — = —22 8.109

La vitesse maximale est donc égale a deux fois la vitesse débitante. La contrainte
de cisaillement a la paroi que nous noterons 7,, est donnée par la composante
0.y évaluée en r = R

__%| _ (dp\ R _ 2pUmaz _ 41Umoy
T = TH g =R dz)2 R =~ R

(8.110)

Le changement de signe entre 7, et ., est la conséquence du fait que 7, re-
présente 'effort de cisaillement exercé par le fluide sur la paroi. Le coefficient
de frottement est défini par le rapport de la contrainte de paroi & la pression
dynamique moyenne

Tp 8 8v 16

— - = , 8.111
pvzwy PRUpmoy  RUpmoy  Rep ( )

Cr =

avec Rep le nombre de Reynolds basé sur la vitesse débitante et le diametre
de la section. Il est d’usage de définir le coefficient des pertes de charges A par
la relation

dp\  PUpey A
S hac ) A 112
(dz) 2 D (8:.112)
Il vient 64
A=4C = . (8.113)

RCD



304 Introduction & la mécanique des fluides newtoniens

8.7.3 Ecoulements plans instationnaires

Nous nous intéressons dans ce paragraphe aux écoulements plans dépendants
du temps. Cette situation conduit a des équations aux dérivées partielles qui
ont pour variables indépendantes ’espace et le temps. Afin d’établir une so-
lution analytique du probleme, on effectuera dans certains cas un changement
de variable pour obtenir une équation différentielle ordinaire plus simple a ré-
soudre.

Ecoulement transitoire dans un espace semi-infini

Soit un demi-espace (x2 > 0) occupé par un fluide visqueux newtonien incom-
pressible, au repos pour ¢ < 0. Au temps ¢t = 0, le plan rigide qui limite le
demi-espace est mis instantanément en mouvement a la vitesse constante U
dans la direction positive de I'axe x1. Le mouvement est plan tel que vg = 0.
Les conditions initiales et aux limites sont données par

t < O7 V1 = Vg = 0, V1‘1, o (8114)
t>0, v1 = U,vo =0, pourzs =0, (8.115)
v1 = vy = 0, pour xo = 00. (8.116)

On suppose que vy et vo sont fonctions de zo et de ¢
v = Ul(.TQ,t), Vg = ’UQ(JJQ,t) 5 (8.117)

et que la pression p est fonction de x5 seulement (il n’y a pas de gradient de
pression dans la direction horizontale ; ’écoulement est engendré par le défile-
ment de la paroi mobile). La conservation de la masse devient

8’1}2 (3?2, t)

=0 (8.118)

La composante vy dépend uniquement du temps, et par les conditions (8.115),
elle est identiquement nulle pour tout t. Les équations de Navier-Stokes de-
viennent

801 821)1
_,gn 11
Por T e (8.119)
Jp
£ —0. 12
3eg 0 (8.120)

La pression p est une constante.

On peut, si on le désire, incorporer leffet de la gravité dans le calcul de la
pression, en écrivant

dp
—_— = — . 121
D pPgIT2 (8 )

L’intégration de cette relation conduit au calcul de la pression hydrostatique
ou la pression en un point est celle du poids de la colonne de fluide située au-
dessus de cette position. La pression hydrostatique comme son nom l'indique,
ne participe pas a la dynamique de 1’écoulement.
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L’équation du mouvement (8.119) est une équation de diffusion du type
« équation de la chaleur ». On peut transformer cette équation aux dérivées
partielles en une équation différentielle ordinaire par un changement de va-
riables qu’on peut obtenir par analyse dimensionnelle. Comme le probleme ne
possede pas d’autre échelle spatiale que la variable x5 ni d’autre échelle de temps
que t lui-méme, on les combine pour former le groupement adimensionnel

T2

o

Ceci permet d’obtenir une équation différentielle ordinaire dont la solution est
fonction de 7. Elle est appelée solution autosimilaire parce que le profil de
vitesse par rapport a la variable x5 est semblable en tout temps .

(8.122)

Posant
v =Uf(n), (8.123)
la relation (8.119) devient
froamf =0, (8.124)
avec les conditions
n=0f=1, n=o0,f=0. (8.125)
Intégrant (8.124), on obtient
n 2
f= A/ e dn + B . (8.126)
0

En tenant compte des conditions (8.125), on a pour n = 0, B = 1 et pour
n =00, A= —2/\/m ol on a utilisé la fonction d’erreur erf(z) définie par

2 r 2
erf () = —/ e " dr, 8.127
et telle que erf(co) = 1. On a donc
f=1—erfn. (8.128)

La vitesse du fluide pour ¢ > 0 est
T
2y/vt

Le profil de vitesse v1/U en fonction de 7 est donné a la figure 8.18. Pour ¢
fixé, la variable 1 est proportionnelle a x5. Deés lors, on peut déduire le profil
de vitesse a tout instant en fonction de la distance a la paroi. Une question
intéressante consiste a savoir quelle est la profondeur de pénétration du mou-
vement du plan dans le milieu semi-infini. Plus précisément, pour ¢ fixé, quelle
est la distance au plan a laquelle la vitesse atteint par exemple un pour cent
de la valeur de U ? Par examen des valeurs de erf, la fonction 1 — erf prend la
valeur 0,01 pour n ~ 2. La profondeur de pénétration § ainsi définie est donnée
par

vy = U[1 — erf( )] (8.129)

)

~2 §~4Vut. (8.130)

77622

g
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1 T T T T T T

To=0.1
0.9+ Ty = 0.2 1
0.8 |
Ty =06 |

)

\'_ m
Ty =12 1

/ I2 =20

0 0.2 0.4 0.6 0.8 1 1.2 1.4

vt

Fig. 8.18 Ecoulement transitoire dans un demi-espace infini.

Elle est proportionnelle a la racine carrée de la viscosité cinématique et du
temps. Ainsi, si la viscosité est trés petite, le fluide « colle » moins a la paroi
et son effet est moindre. Si ¢ tend vers l'infini, la vitesse en chaque point du
demi-espace tend vers U.

Ecoulement sur un plan oscillant

On considere ’écoulement produit par l'oscillation périodique d’une plaque
plane dans son propre plan. L’équation & résoudre (8.119) est toujours appli-
cable et la condition a la paroi s’écrit

vy =U coswt pour x9=0. (8.131)

Apres des phénomenes transitoires initiaux, la vitesse du fluide devient graduel-
lement une fonction périodique du temps a la méme fréquence que celle de la
paroi plane. On inspecte cet état de régime périodique. Posons que la solution
vy est de la forme A

v =R (e f(22)) . (8.132)

La combinaison de (8.119) et (8.132) donne

. df

wf=v—=5

/ dx3

dont la seule solution qui reste finie lorsque xo — oo est
f=Aexp (—(1 + i)(w/2y)1/2x2> .

L’imposition de la condition aux limites (8.131) établit A = U et la solution
devient

vy = Uexp (—(w/Qu)l/ng) cos (wt — (w/21/)1/2x2) . (8.133)
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Le profil de vitesse représente une oscillation harmonique amortie d’amplitude

Ue™*2V%/2” dans un fluide ot une couche & la distance x5 posséde un retard de
phase 294/w/2v par rapport au mouvement de la paroi. Deux couches de fluide
séparées par la distance 2m(2v/w)'/? oscillent en phase. Cette distance constitue
une estimation de la longueur du mouvement et on la nomme profondeur de
pénétration de I'onde visqueuse.

8.8 Ecoulements lents

Dans cette section, considérons tout d’abord les équations de Stokes, valables
pour des écoulements tres lents que 'on qualifie aussi d’écoulements rampants.
Ces écoulements sont dominés par les forces visqueuses qui I'emportent de loin
sur l'inertie. Des exemples provenant de la technologie couvrent des domaines
aussi divers que les courants de convection dans les fours de fusion du verre, les
lubrifiants dans les paliers, ’écoulement des huiles et des boues (quoique ces
derniéres peuvent présenter un comportement non newtonien prononcé). Dans
la nature (qui n’est pas de reste), on trouve la convection thermique dans le
magma terrestre, ’écoulement des laves, etc.

Nous supposons que le nombre de Reynolds Re < 1 et donc que les équa-
tions de Navier-Stokes se réduisent aux équations de Stokes. Comme celles-ci
sont linéaires, elles permettent un traitement analytique complet.

En prenant la divergence de 1’équation de Stokes (8.38) et en tenant compte
du caractere solénoidal du champ de vitesse, on trouve que

Ap=0. (8.134)

La pression est donc une fonction harmonique pour un écoulement plan.

En prenant le rotationnel de I’équation de Stokes, on obtient

5 = vAw , (8.135)

ol on a introduit la vorticité w = rot v, éq. (2.188). Dans le cas stationnaire,
chaque composante de la vorticité est aussi une fonction harmonique.

8.8.1 Ecoulements rampants plans

Soit un écoulement plan pour lequel on a
v = (vi(w1,72,1), v2(21,72,1), 0);  p=p(x1,22,1) . (8.136)

Dans un probléme bidimensionnel, la contrainte d’incompressibilité (8.16) est
automatiquement satisfaite par I'introduction de la fonction de courant v telle

que
o o

- 8372’ 783?1 '

v (8.137)
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Comme la vorticité se réduit & une seule composante w = (0,0, w), il vient

61)2 81}1

== _ - = _A 8.138
w 6561 (3'1'2 w ’ ( )
et la relation (8.135) devient
A
887;” — VA (8.139)

Pour un probléeme stationnaire, on aura
AAY =0, (8.140)

indiquant que la fonction de courant est une fonction biharmonique.

En coordonnées polaires (r, ), la conservation de la masse devient

10 1 Ovg
- -——=0. 141
r Oor (ror) r 00 0 (8 )
Il existe aussi une fonction de courant v telle que
10y oY
- -2 = - 142
e T o (8.142)

Ecoulement dans un coin

Soit ’écoulement dans un coin présenté a la figure 8.19. La paroi inférieure est
fixe tandis que la paroi inclinée d’un angle 6y est en mouvement de translation
uniforme a la vitesse constante U dans la direction x;. Prés de l'origine, les
gradients de vitesse sont élevés; cependant, on s’attend a ce que les forces
visqueuses soient prépondérantes au voisinage de 'origine. Afin de rendre la
formulation du probleme stationnaire, nous choisissons le systéeme d’axes avec
son origine a l'intersection des deux parois et en mouvement avec la paroi
supérieure. Dans ce cas, les conditions aux limites s’écrivent

10y oY _ _
~ 78 =-U, o = 0 en =0 (8.143)
10vy oY _ _

La forme des conditions aux limites suggere qu’on puisse écrire v sous la forme
suivante

v=rf0). (8.145)
En substituant (8.145) dans ’équation bifarmonique (8.140), on trouve la rela-
tion oy 2/
1
— | =7 +2-—5 = .14
3 <d94+ d92+f) 0 (8.146)

dont la solution est

f(0) = Asind + Bcosf + COsinf + Dl cosO . (8.147)
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T2

Ty

Fig. 8.19 Ecoulement dans un coin d’angle d’ouverture 6g

(Pour mémoire, si H est une fonction harmonique, 6 H est une fonction bi-
harmonique.) L’imposition des conditions aux limites (8.143)-(8.144) permet
d’évaluer les constantes et on trouve

U
A,B,C,D = (—93,0,90 - Sin90 COS Go,sinQ 90) m . (8148)
Pour le cas particulier du coin rectangulaire, on a
Y= v (—(Z)Qsin9—|—z€sin9+9(}os€> (8.149)
BRI 2 |
dont on peut tirer facilement les composantes de vitesse
v U (1—ﬁ)cosﬁ—i—z(sine—i—ﬁcosﬁ)—GCOSH (8.150)
(R -1 4 2 '
U
v = Ero1 (—(g)QsiHG—kgesinH—i—HcosH) . (8.151)

On peut examiner a posteriori le bien-fondé de 'hypothese d’écoulement ram-
pant. En effet, les composantes de I'accélération évaluées avec la solution pré-
cédente sont proportionnelles & U? /r avec un facteur qui dépend de 6 et qui est
de l'ordre de 1'unité. Les effets visqueux sont quant & eux, de 'ordre de uU/r2.
Donc 'hypotheése d’écoulement rampant est satisfaite si prU/u < 1 est réali-
sée. Ceci est vrai dans une région proche de l'origine telle que r < vU. Plus
loin, la solution ne sera plus correcte puisque les forces d’inertie deviennent
rapidement du méme ordre de grandeur que les forces visqueuses.

8.8.2 [Ecoulement paralléle autour d’une sphére

Soit une spheére de rayon R dans un écoulement visqueux dont la vitesse a
I'infini amont est U. On supposera 1’écoulement tres lent de sorte que nous
résolvons les équations de Stokes (8.38). Plagouns le systéme d’axes cartésien de
telle sorte que 'axe x3 soit orienté dans la direction de ’écoulement incident
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sur la sphere (fig. 8.20). Les conditions aux limites exprimées en coordonnées
sphériques (voir fig. 1.6) sont

v=0 en r=R, (8.152)
v=Ues en r=0c0. (8.153)

T3

Fig. 8.20 Ecoulement autour d’une sphere.

Le probléme ainsi posé possede une symétrie par rapport a ’axe Ox3 et donc
par rapport & la longitude. Par conséquent, d(e)/0¢ = 0. De méme, v, = 0.
La contrainte d’incompressibilité (B.30) se réduit a

10, , 1

ﬁa(r Uy 0 vgsinf) =0 . (8.154)

+
) rsinf 00 (
On déduit qu’il existe une fonction de courant 1 telle que

L w1
U= 2sme o0 0T

— —. 1
rsiné Or (8.155)

Etant donné le caractere plan de ’écoulement, la vorticité aura une seule com-
posante dans la direction du vecteur e, et on la notera w. On écrit (cf. éq.

(B.5)) o ) o0
1 1 1 1
w(r,0)=—7 Linearz*rzae (meaeﬂ : (8.156)

Dans le cas des équations de Stokes, la vorticité est une fonction harmonique.
On a (pour rappel, le laplacien d’un vecteur n’est pas égal au laplacien de ses
composantes)

Ao @ L (0 50wy 1 0 [, 0w\ w
“ r2sin?9  r2 \ Or " or sin 6 00 St 00 sinZ 6
1 02 10 1 0 .

La combinaison des relations (8.156)-(8.157) donne I’équation biharmonique

suivante )
9? sinf 9 1 0
(W+ r2 90 (sin@(‘?@)) v=0. (8.158)
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Les conditions aux limites (8.152)-(8.153), exprimées en termes de la fonction
de courant, deviennent

oy oY B
00  or =0, en r=45
B o, B
v, = Ucos®, 50 Ur®sinfcosf, en r=o0 (8.159)

0
vg = —Usind, —w = Ursin?#.
or
La condition a l'infini peut s’intégrer facilement. Il vient
Lo o
Yoo = §U7" sin“ 6 . (8.160)

Cette derniere forme de v suggere que la fonction de courant peut s’écrire sous
la forme générale

Y =sin®6 f(r) . (8.161)

En introduisant (8.161) dans (8.158), on trouve

d*f 4 d*f 8df 8
24U Sy, 162
drt  r? dr? + r3dr rd 0 (8.162)

Cherchant la solution comme une série de puissance 7™, on obtient le polynéme
caractéristique

(n—2)(n—1)(n*—3n—4) =0,

dont les racines sont n = —1,1,2,4. La fonction f(r) est donc
O 2 4
f:T'i-ClT-f—CQT +Cyr® . (8.163)

L’imposition des conditions aux limites (8.160) & infini requiert Cy = 0,
Cy = %U, tandis que sur la sphere, avec v, = vg = 0, on détermine C_; =
(1/4)U R3,Cy = —(3/4)U R. La fonction de courant est

b= Ufz sin? <R _3ry (r)2> . (8.164)

On peut en déduire aisément les vitesses. Le champ de vorticité s’écrit

g sinf (8.165)

r2

Le calcul du champ de pression peut s’effectuer facilement en tenant compte
de 'identité vectorielle (1.238) qui donne lieu a ’équation de Stokes

Vp=—protw. (8.166)



312 Introduction & la mécanique des fluides newtoniens

A Daide de (B.5), ceci conduit au systeme d’équations

Op w0 cos9
- _ 6) = 1
B 050 (w sinf) = 3uUR (8.167)
1op  pd(rw) _ 3p sin 0
= == . 1
rdd  r or 2 UR r3 (8.168)
L’intégration de (8.167) donne
3u cos 6
2 r2 ©)
En insérant ce résultat dans (8.168), on a
3,u URSln9 q(0) _ SiURsirgﬁ '
r 2 r
Le champ de pression est finalement donné par
cos 6‘
p= —fUR +po , (8.169)

avec po une pression constante de référence.

L’écoulement a vitesse uniforme autour de la sphére va engendrer des efforts
de pression et de cisaillement. Pour le calcul des effets de pression dans la
direction Ozg3, on effectue l'intégrale par rapport a la colatitude des efforts
élémentaires

dFy, - 7(37u U cos

5 7 + po) cos 0 (2m R? sin 0) d6) (8.170)

le facteur 27 provenant de la symétrie du probleme qui permet l'intégration
dans la direction de la longitude. En intégrant de # = 0 & § = 7, on obtient

Fyp,=—2ruUR. (8.171)

La trainée de frottement s’obtient par intégration sur la sphere de la contrainte
de cisaillement qui s’exerce sur elle, & savoir 0,9 qui vaut —3pU sin §/(2R) pour
r = R. Il vient

O=m
Fs5,= —/ (01 |r=p sinf) (2rR?*sinf) d) = —4rpU R. (8.172)
=0

La trainée totale F3 = F3, + F3 ,, connue sous le nom de formule de Stokes,
est la somme de celle de pression et celle de frottement

F3=—-6muUR . (8.173)
Si on définit le coefficient de trainée par

F3

Cz =1 779 1o
$pU? mR?

(8.174)
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on obtient

o, =2 (8.175)

* Re’ '

ou Re = 2UR/v. Remarquons que la trainée de pression représente le tiers
de la trainée totale. La relation (8.175) est confirmée par I'expérience lorsque
Re < 1. Ceci est valable au voisinage de la sphere. Lorsqu’on s’en éloigne,
Iimportance des termes d’inertie croit et la solution de Stokes s’écarte de la
solution exacte. La solution que nous venons d’établir ne s’applique pas au cas
d’un ensemble de particules sphériques, car la présence d’un obstacle sphérique
dans ’écoulement fait sentir son effet assez loin dans la mesure ou les profils
de vitesse décroissent en 1/r.

La solution pour ’écoulement uniforme sur une sphere fixe peut étre trans-
posée au cas de la translation a vitesse uniforme U d’une sphére de rayon R
dans un fluide au repos a l'infini. Dans ce cas, le systeme d’axes est toujours
attaché a la sphere et est en conséquence en translation a vitesse uniforme. Ceci
modifie le signe de U en —U pour la pression et la vorticité. Pour la vitesse dans
le fluide, celle-ci est relative au systeme d’axes, ce qui entraine les modifications
suivantes : pour la vitesse et la fonction de courant, U devient —U et il faut
soustraire également le champ de vitesse uniforme de leur expression.

Amélioration d’Oseen

La solution de Stokes a été améliorée par Oseen [48] qui a proposé d’écrire la
solution des équations de Navier-Stokes (8.17) en une somme d’une répartition
de vitesse constante dans ’espace et une solution de perturbation telle que

v=Uesz+v . (8.176)

Dans le cas de I’écoulement autour de la sphere fixe, la vitesse v’ tiendra compte
de la perturbation engendrée par la sphére dans un écoulement uniforme &
I'infini. Avec (8.176), le terme d’inertie stationnaire prend la forme

Dv , OVl o}
_ : 7 i ) 1
Ppe =7 (UJ Ox; * U@x;;) (8.177)

L’hypotheése d’Oseen revient a négliger le premier terme du second membre
de (8.177) par rapport au second. On obtient une équation de Navier-Stokes
linéarisée

8 !
pUl:—Vp—i—MAU’—i—pb. (8.178)
(91’3
Le coefficient de trainée obtenu pour la solution d’Oseen s’écrit
24 3
r = — ]_ —_— . .].
C Re( + 16Re) (8.179)

Les résultats expérimentaux montrent que (8.179) est valable pour Re < 5,
approximativement. Par des méthodes de développements asymptotiques rac-
cordés, ce coefficient corrigé devient

24 3 19
1+ —Re— ——Re* + O(Re?)) . (8.180)

Co = (14 35 1280
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8.9 Vorticité et cinématique du tourbillon

Les équations de Navier-Stokes ont été établies a la section 8.4, pour le fluide
visqueux newtonien, en termes des variables primitives : la vitesse et la pression.
Les interactions observées dans un écoulement de fluide ont été interprétées
par un équilibre entre les forces d’inertie, le gradient de pression, les forces
de volume comme, par exemple, la gravité, et les forces visqueuses. Dans cette
section, nous adoptons un point de vue différent basé sur le concept de vorticité
ou tourbillon.

La présence de vorticité dans 1’écoulement est une indication de 1’ impor-
tance des effets visqueux, étant donné que le tourbillon est engendré par les
contraintes visqueuses. En effet, sous certaines hypotheses, le tourbillon pos-
sede les propriétés suivantes :

i) en absence de viscosité, il est transporté par ’écoulement comme un vec-
teur matériel élémentaire ;

ii) en présence de viscosité, il diffuse dans le fluide environnant et est conti-
nuellement produit aux parois solides qui délimitent 1’écoulement.

C’est ainsi que le tourbillon produit sur une paroi solide fait apparaitre la
notion de couche limite qui conduit a modifier certaines conclusions tirées de
la théorie des fluides parfaits irrotationnels. En turbulence, la dynamique de
I’écoulement est largement tributaire de 1’allongement ou du raccourcissement
des lignes tourbillons, ainsi que de leur déformation.

Considérations cinématiques

Le tenseur L des gradients de vitesse peut se décomposer en la somme du
tenseur symétrique des taux de déformation d et du tenseur antisymétrique
des taux de rotation w suivant I’équation (2.184). Le tenseur d est donné par
(2.181) et w par (2.183). Rappelons que le vecteur dual Q correspondant au
tenseur des taux de rotation est le vecteur tourbillon introduit par (2.187).

En mécanique des fluides, il est classique d’introduire le vecteur vorticité
ou tourbillon w en le définissant comme le rotationnel de la vitesse (2.188).
Pour nous familiariser avec le concept de vorticité, étudions 1’écoulement pres
d’un point d’arrét placé a l'origine. Les composantes de vitesse sont telles que
lon a, avec la constante C,

v1 = Cx1,v9 = —Cxg, v3=0. (8.181)

On calcule aisément que pour cet écoulement, w = 0. L’écoulement a vorticité
nulle est appelé irrotationnel. Notons que la fonction de courant équivalente
est ¢ = Crixo qui est représentée par des hyperboles.

Soit ’écoulement de Poiseuille plan dans un canal de hauteur h . Si le
systéme d’axes a son origine sur la paroi inférieure, le profil de vitesse (8.63)
avec la définition (8.68) est donné par la relation

T2

o1 = 40ae (1 - %2) , (8.182)
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avec Umqz la vitesse maximale sur Paxe du canal en 9 = h/2. La seule compo-
sante du tourbillon est ws. Elle est perpendiculaire au plan de I’écoulement et
vaut

. 8rUl o 4'Umaz 23:2
w3 = 5321671*2 = — A (1 — T) . (8183)

Dans ce cas, le tourbillon est maximal en valeur absolue sur les deux parois et
s’annule sur 'axe de symétrie de la canalisation.

De ces exemples, on peut conclure que le concept de vorticité n’a pas de
lien avec la courbure des lignes de courant. Dans le premier exemple, les lignes
de courant sont courbes, mais la vorticité est nulle, tandis que dans le second
exemple, les lignes de courant sont des lignes droites et la vorticité est finie.

A partir de la définition du tourbillon (2.188) et du théoréme de Stokes
(1.229), on obtient l'identité :

I(S) ::/w~ndS:/rotvondS:j§v'le:F. (8.184)
s s

L’intégrale curviligne dans (8.184) définit la circulation de la vitesse, T', le long
de la courbe fermée C, de vecteur tangent unitaire 7, qui est donc égale au
flux du vecteur tourbillon a travers une surface quelconque s’appuyant sur le
contour. Cette propriété permettra, par la suite, de donner systématiquement
au concept de circulation une interprétation en termes de tourbillon. Rappe-
lons qu’une ligne tourbillon (fig. 8.21) est une ligne tangente en chacun de ses
points au vecteur tourbillon, et qu’un tube tourbillon est une famille de lignes
tourbillons s’appuyant sur une courbe fermée. L’intensité d’un tube tourbillon
est, pour une surface S délimitée par une ligne fermée sur laquelle s’appuie le
tube tourbillon, le flux I(.S) du tourbillon & travers cette surface.



316 Introduction & la mécanique des fluides newtoniens

Fig. 8.21 Tube tourbillon.

Les théoremes de Helmholtz que nous ne démontrons pas, s’énoncent comme
suit :
1. le flux du tourbillon a travers une surface fermée est toujours nul ;
2. l'intensité d’'un tube tourbillon ne dépend pas de la section considérée ;

3. un tube tourbillon ne peut se fermer que sur lui-méme, ou encore s’étendre
a l'infini, & moins qu’il ne coupe une paroi.

La démonstration de ces théoremes peut étre consultée dans I'ouvrage de Pan-
ton [49].

8.10 Equation dynamique du tourbillon

8.10.1 Equation générale

L’équation qui régit la dynamique du tourbillon requiert I’établissement de
relations préliminaires.

Premierement, le terme d’accélération a peut s’écrire comme suit :

ov

(IZE

+w xv+grad (%) . (8.185)
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En effet, on peut induire & partir de (8.185) les relations successives

87}1» 0 VU

ot
_ovi (OO O
= ot ijkEglm a.’L'l

ov; ov,, 0v;
= ot + (5kl61m - 5km5zl> ( aiL’l Uk) + Uj (’9% 5
soit
= 8’01' e 8111'
v 8t kaxk

Cette derniére expression n’est autre que la définition de 'accélération (2.33).

Ensuite, la relation

1 D (w 1
-rota=— | — | — —(w-grad)v 8.186
P Dt(ﬂ) p( ) ( )

est une identité. En effet, en appliquant 'opérateur rot & la relation (8.185), il
vient
0 v-v
rota = Erot v 4 rot(w X v) + rot grad (T) )

ou encore 5
rota = 6—6: +rot(w x v) . (8.187)

Le terme rot(w x v) se développe comme suit :
rot(wxv)=v-gradw — (Vv) w+wdive —vdivw . (8.188)

Le dernier terme de (8.188) s’annule par (1.180). Par (8.187) et (8.188), il vient
des lors

D
rota:?(;—(Vv)w—i—wdivv.

Par I’équation de conservation de la masse (3.41), on obtient la relation
1 1 Dw w 1D
-rota=-——(Vov) | — | — —2—pw ,
p p Dt p? Dt
qui est bien équivalente & I’equation (8.186), que nous écrivons sous la forme
D 1
— <w> = (w ~grad) v+ -rota . (8.189)
Dt \ p P p
Cette relation constitue une premiere description de ’évolution temporelle de
la vorticité. Elle est connue comme 1’équation de diffusion de Beltrami [58].

Par la conservation de la quantité de mouvement (3.96), on écrit

D [(w w 1 1
— | — ] =(—-grad)v+ —rot (b+ —divo) . 8.190
Dt (p) (p ) P ( p ) ( :
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Afin de séparer les effets de la pression et de la viscosité, on utilise I’équation
de comportement (6.12) dans (8.190). On a

D 1 1 1 1 1
— (w) = <w -grad) v+-rot b+—-rot(——Vp)+-rot(—divT), (8.191)
Dt \ p p p p p PP

avec le tenseur des extra-contraintes T. En faisant appel & la relation (1.234),
on écrit

D ([w w 1 \Y% 1 1 1

— () = ( ‘grad) v+ —rotb+ —L x V(=)+-rot(—=divT) . (8.192)

Dt \ p p p p peop P
Le membre de gauche de la relation (8.192) contient la dérivée matérielle du
tourbillon rapporté a la masse volumique locale. Dans le membre de droite,
on trouve successivement deux termes qui décrivent la déformation (étirement-
rétrécissement) et la courbure (flexion-basculement) des lignes tourbillon, le
terme de baroclinicité et enfin la diffusion visqueuse de la vorticité.

Si la force de volume est conservative, elle dérive d’un potentiel y, comme
c’est le cas pour la gravité. Alors on écrit

b=-Vy. (8.193)

En conséquence, rotb = 0. Ce terme s’annule dans (8.192). Nous adoptons
cette hypothese pour la suite.

8.10.2 Interprétation physique de la dynamique de la vorticité
Cas du fluide parfait incompressible

Pour un fluide incompressible (Vp = 0), non visqueux (T' = 0), 1’équation
(8.192) se simplifie
D

0w = (V) w=(w-V)v. (8.194)

Le terme
(w-V)v

n’a pas de contrepartie dans les équations de Navier-Stokes écrites en variables
primitives vitesse-pression. Examinons quelle est sa signification du point de
vue de la physique de ’écoulement.

Dans la figure 8.22, considérons deux points voisins P et ) sur une ligne
tourbillon. Les points P et ) définissent aussi une ligne matérielle de longueur
dx =|| dx ||, et on peut montrer ’égalité :

D(dz;)
Dt

%dxj ou encore, (dz)

- dvi - a$j Dt

=dx-gradv . (8.195)

Cette derniere équation exprime a la fois les changements en longueur et en di-
rection d’un élément de ligne matérielle. La comparaison de (8.194) et (8.195)
fait apparaitre que le vecteur tourbillon w joue un réle analogue a celui du
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Fig. 8.22 Portion d’une ligne tourbillon.

vecteur matériel de. Des lors, tout ce passe comme si le tourbillon w se com-
portait comme un élément de ligne matérielle coincidant instantanément avec
une portion de ligne tourbillon. Soit dv la vitesse relative du fluide en @ par
rapport a celle en P. Dans la relation (8.194), on peut faire la substitution :

. ov
(Vo)w =l Jim 55

Une partie du changement de w mesuré par (8.194) provient donc de la rotation
rigide de 1’élément de ligne matérielle (par la composante de jv normale &
w), et 'autre partie est engendrée par la contraction ou 'extension de la ligne
élémentaire (par la composante dv parallele & w). Finalement, ’équation (8.194)
s’'interpréte comme suit : le tourbillon est transporté par les particules fluides,
tout en s’orientant et se déformant comme les vecteurs matériels élémentaires.

Cas du fluide parfait compressible

Le terme Vp # 0 est présent dans (8.192). La production de vorticité par ba-
roclinicité intervient dans des écoulements ou les surfaces isobares et isopycnes
(lignes d’égale masse volumique) se coupent. Ceci se produit dans des domaines
d’application, comme la météorologie, I’'océanographie et ’astrophysique. Dans
le cas barocline, le centre de masse du fluide ne coincide pas avec le centre
de pression, qui est le lieu d’application de la résultante des forces de pres-
sion. Il s’ensuit qu'un couple tend a faire tourner le fluide localement et donne
naissance a la circulation.
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Dans le cas d’un fluide barotrope pour lequel la masse volumique est seule-
ment fonction de la pression (voir sect. 6.9), on a

p=p(p) ou p=p(p), (8.196)

alors le terme barocline s’annule puisque les isobares et les isopycnes sont des
surfaces paralleles.

8.11 Equation du tourbillon pour le fluide visqueux newtonien

Nous supposons désormais que les viscosités A et p sont invariables. Avec (6.13),
on écrit

1 A
—divT = —grad (divv) + 2v grad (divv) — vrot rot v | (8.197)
p P

ou encore

1 A+2 A+2
—divT = grad ( t 2 div v) —grad ( + M) divev — vrot rotwv .
p P P

(8.198)
En prenant le rotationnel de (8.198) et en tenant compte de (1.234), il vient

A+ 2p
2

rot(1 divT) = Vp x V(divv) — rot(vrotw) . (8.199)
p

L’équation de la dynamique du tourbillon s’obtient en combinant (8.192) et

(8.199)
D (w w 1

A+2 1
_;3 MVp x V(divv) — ;rot(y rotw) . (8.200)

+

Cette équation se simplifie si le fluide est compressible barotrope (8.196) (Vp
est parallele & Vp) ou incompressible (Vp = 0). On a alors

D (w w 1
i == -gradv) — —rot (vrotw) . 8.201
Dt <p> (p p ( : (5200

Cas particulier de ’écoulement plan

Pour un écoulement plan incompressible, ’équation (8.201) devient, avec la

notation wg = w :

D
?‘: —vAw , (8.202)
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puisque dans ce cas particulier, le terme (w - gradv) s’annule vu que w est
orthogonal au plan de I’écoulement ou se trouve gradv. On remarquera que
Iéquation (8.202) est analogue & celle de la conduction de chaleur, la visco-
sité cinématique remplacant la diffusivité thermique. On voit que 1’équation
(8.202) est satisfaite pour w = 0, c’est-a-dire pour un écoulement irrotation-
nel. Cependant, cette solution n’est pas adéquate. Pour le voir, raisonnons par
analogie avec I’équation de la chaleur, qui admet également la solution identi-
quement nulle. On sait, par la théorie de la chaleur, que toute distribution non
uniforme de température a la paroi ou tout flux de chaleur non nul aura pour
effet d’engendrer un champ de température variable dans le matériau. Des lors,
I’analogie permet de conclure que, dans le cas d’un fluide visqueux, le tour-
billon qui est engendré aux parois, diffusera par cisaillement et sera emporté
ensuite par I’écoulement. La création de tourbillon a la paroi est le résultat de
la contrainte de cisaillement sur celle-ci. Pour obtenir la valeur du tourbillon
de paroi, on recourt classiquement a la méthode de la fonction d’influence de
Green.

8.12 Equation de la circulation

Sous le couvert des hypotheses de la section précédente, on va démontrer que,
pour une courbe matérielle C(t) le long de laquelle la circulation du vecteur
vitesse vaut T'(¢), on peut écrire la relation

ar
— = 7% v(rot rotwv) - dl . (8.203)
dt c(t)

Cette relation exprime le fait que la variation de la circulation le long d’une
courbe matérielle est due a la viscosité qui amortit le mouvement.

Pour établir la relation (8.203), il faut d’abord démontrer que, pour une
courbe matérielle C(t), le long de laquelle la circulation du vecteur vitesse vaut
I'(t), on a l'identité suivante

dr
— = 7{ a-dx. (8.204)
En effet, on peut écrire ’équation
— = — dr; = — Vi=——dX;
it~ dt Joy T dt f{co Yax,

dans laquelle Cy désigne la courbe matérielle C'(t) & Vinstant ¢t = to et les
coordonnées X; sont les coordonnées lagrangiennes associées. En désignant par
A; et V; les représentations lagrangiennes de 'accélération (2.32) et de la vitesse
(2.17), on a les relations :

S vt~ A, - 9%\ ax,
ai b Viox, i f{C ( ox, TV axj) i

) o, 0X; \ 2
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Le dernier terme du membre de droite de cette égalité est nul sur une courbe
fermée.

A Taide de la relation (6.14) qu’on porte dans I’équation du mouvement
(3.96), et compte tenu de I'identité vectorielle (1.238) et de I’équation (8.10),
on peut écrire la relation

1
a=—gradyx — —gradp + (A + 21/) grad (divv) — vrot rot v .
p p

Tenant compte de la conservation de la masse, il vient

——grad p—vrotrotv . (8.205)

A+2 A+2u D
a = —grad (p—l—x— i udivv)— +3 et
p p> Dt

Dans le cas d’un fluide peu visqueux ou peu compressible, nous considére-
rons le terme A;f" %grad p du second ordre par rapport au terme du gradient

de pression. Nous le négligerons dans la suite de ’exposé.
En insérant (8.205) dans (8.204), on obtient (8.203).

8.13 Equation du tourbillon pour le fluide parfait

Pour un fluide parfait incompressible, ou barotrope (et particulierement en
écoulement isentropique ds = 0), le théoréme de la dynamique du tourbillon

devient

D (w w

— =)= dv. 8.206

Dt(ﬂ) (p) grace (8.200)

Dans le cas bidimensionnel, cette relation se réduit a

D (w
—(=1]=0. 8.207
Dt (p> (8:207)

De I’équation (8.206), on déduit que, pour un fluide parfait barotrope ou in-
compressible, si un écoulement est irrotationnel a un instant, il le reste constam-
ment. En particulier, un écoulement initialement uniforme sera irrotationnel par
la suite. Cette proposition, appliquée aux écoulements isentropiques de fluide
parfait compressible, porte le nom de théoréme de Crocco.

Dans le cas d’un fluide parfait, I'équation (8.203) fournit le théoréme de
Kelvin :
dr
dt
La circulation de la vitesse le long d’une ligne matérielle fermée ne change
pas, pour un fluide parfait incompressible ou barotrope (et particulierement,
en écoulement isentropique).

0. (8.208)
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8.14 Equation de Bernoulli

L’équation de Bernoulli s’obtient & partir des équations d’Euler (8.36), pour
les fluides parfaits. Supposant que les forces de volume dérivent d’un potentiel

(8.193), il vient
Dv 1

— =——-Vp—-Vyx. 8.209
Dr = VP VX (8.209)
On utilise 'identité vectorielle
U~V'v:w><v+V<¥), (8.210)
dans la dérivée matérielle de la vitesse pour obtenir
v 1 v?
ov _ _Z _ . . 211
Y w X v pr V<2+X) (8.211)

On adopte ’hypothese supplémentaire que 1’écoulement est irrotationnel w = 0.
Cette hypothese est une hypothese drastique car les fluides réels produisent des
écoulements rotationnels. Ceux-ci sont engendrés par exemple par les effets de
viscosité pres des parois. L’équation (8.211) s’écrit désormais

ov 1 v?
—=——-Vp-V|— . 8.212
o= VP ( 5+ x) (8.212)
Puisque ’écoulement est irrotationnel, le champ de vitesse dérive d’un potentiel
tel que

v=Vo. (8.213)

L’équation d’Euler donne

2
v (%‘f + % + x) = —%V p. (8.214)
Puisque le membre de gauche de (8.214) correspond au gradient d’une fonction
scalaire, il faut qu’il en soit de méme pour le membre de droite. Ceci n’est
réalisable que si la masse volumique p est une fonction de p. Ceci revient a
exiger que 1’écoulement considéré soit celui d’un fluide barotrope au sens de la
relation (6.147). Conséquemment, 1’équation (8.214) devient

0e  v? dp
V|——+—+ +/):0 8.215
< ot 2 X p(p) (8:215)
On integre cette équation pour obtenir
0P / dp 2
— 4+ | —=+=+x=C() . 8.216
Gt [+ g x=co (5.216)

Si I’écoulement est stationnaire, alors (8.216) donne 1’équation de Bernoulli

dp v2
—— 4+ — + x = cste, 8.217
/ p(p) 2 (8:217)
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qui au vu de la nature du deuxieéme terme, est une intégrale d’énergie. L’équa-
tion de Bernoulli est une intégrale premiere de I’équation d’Euler dans le cas
de I’écoulement irrotationnel et stationnaire du fluide parfait.

Si I’écoulement est isentropique, la relation d’état (6.145) permet d’évaluer
le terme de pression présent dans (8.217). On obtient

2
/dp - r_a (8.218)
pp) v—1p ~-1

ol on a utilisé (6.153) pour déduire la derniere égalité. Avec (8.218) et la
définition ¢ = v;v;, 'équation de Bernoulli s’écrit
0P a? q>
—— — = cste . 8.219
at+7_1+2+x cste ( )

En supposant que ’écoulement adiabatique du fluide idéal est stationnaire
et sans forces de volume, on a

2 2

< 5 % = cste, (8.220)

v—1

Comme 7 > 1, on trouve facilement que a® = ypo/pg p?~! = vC p?~1. Donc,
on constate que a = 0 lorsque p = 0. La relation de Bernoulli (8.220) devient

a2 +£: 7+1 a2:q3nax
y—1 2 2(v—-1)F 2
Les deux constantes a, et gmnqs désignent la vitesse du son critique et la vi-
tesse maximale sur la ligne de courant, respectivement. On trouvera aisément
que si ¢ = a, alors ¢ = a = a,. Si a = 0, la vitesse ¢ du fluide est égale a
la vitesse maximale ¢pq.. L'équation (8.220) est particulierement utilisée en
aérodynamique.

(8.221)

Si I’écoulement est incompressible, alors p = cste et I’équation de Bernoulli
(8.216) donne
od p  ?
— + =+ = =C(t) . 8.222
o T, Tx=00 (8-222)
Pour I’écoulement stationnaire du fluide parfait incompressible, I’équation de
Bernoulli prend la forme bien connue en physique
2
v
p+%+px=07 (8.223)

ou C est une constante.

8.15 Ondes acoustiques

Les ondes acoustiques sont engendrées par des perturbations de faible ampli-
tude de la pression ou de la masse volumique qui se propagent a une certaine
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vitesse dans un écoulement de fluide. Lorsque les amplitudes sont finies, on
engendre une onde de choc.

Soit un fluide parfait, compressible, en écoulement uniforme, isotherme,
caractérisé par les variables pg, pg,vg. L’onde sonore crée une perturbation
P, p’, v telle que I’écoulement résultant est donné par

p=po+p, p=po+p, v=vo+v . (8.224)

Comme on suppose que cette perturbation est infinitésimale, on a les estima-
tions d’ordre de grandeur
'l

2l S VA |

p opo e
Po

Les équations de conservation de la masse et de la quantité de mouvement sont

Op ap ov;
5t tigm, TP = 0 (8.226)
ov; ov; 1 0p

E +Uj (%cj ;8%

<1. (8.225)

=0. (8.227)

En insérant les relations (8.224) dans (8.226) et (8.227), on linéarise les équa-
tions en ne retenant que les termes du premier ordre et en supposant que
I’écoulement de base satisfait les équations de conservation. Il vient

a9p' op’ ov;
o + voj 75— o, -+ po D 0, (8.228)
Ovg; av’- 1 9p/

_1_7

=0. 22
o T0s, T peom 0 (8.229)

En introduisant I’hypothese supplémentaire que I’écoulement est globalement
isentropique (ds = 0), par (6.142), il vient pour un gaz idéal

dp" dp
po+p  potp ]
ou encore
vy = ’y]piOVp/ . (8.230)
0

Afin de faciliter I’écriture, on définit la dérivée matérielle de I’écoulement non
perturbé

Do(e) _ 0(e) (o)

= 8.231
Dt ot "%, (8.231)
Les équations de la dynamique des pertubations deviennent
D /
lgtp +podive’ =0, (8.232)
Dgv' 1
00 L Sy =0. (8.233)

Dt po
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En insérant (8.230) dans (8.232), on obtient
D()’U/
Dt

L’application de l'opérateur divergence & (8.234) et l'utilisation de (1.189)
conduisent a la relation

Jr’y%Vp/ ~0. (8.234)
0

. Dov"  po
d —Ap =0. 8.235
po v+ A (8.235)
La dérivée matérielle de (8.232) donne
D(Q)p/ . DQ’U’
Di2 + po div Di 0 (8.236)

En combinant (8.235) et (8.236), on produit ’équation des ondes

Dip _ po

=~y=Ap . 8.237
Diz = VR (8.237)
La perturbation se propage par rapport a 1’écoulement uniforme a une vitesse
donnée par

Po

422

Po

appelée la vitesse du son. Dans le cas général d'un écoulement non uniforme,
on obtient la célérité du son

, (8.238)

a= /7L, (8.239)
P
qui n’est autre que 'expression (6.153). Notons qu’a I'aide de (8.230), on peut

mettre (8.237) sous la forme

Dip’ — po

D0t2 = ’yp—OAp' : (8.240)
De méme, on a

D2v!

DO;;Z = ’y]p)—ZAvg . (8.241)

Donc toutes les variables du probléeme satisfont I’équation d’ondes.

Comme I’équation d’ondes est linéaire a coefficient constant, on peut consi-
dérer qu'une harmonique de Fourier en est solution, soit

Pkt) =) pretoet (8.242)
k

ol apparaissent le vecteur d’onde k, la pulsation w et I'amplitude complexe
du mode pg. La relation de dispersion s’obtient en introduisant (8.242) dans
(8.240)

w® = a’k? . (8.243)
La vitesse de phase de I’onde est obtenue par |w|/|k| = a qui montre que la célé-
rité du son ne dépend pas du nombre d’onde. Les ondes acoustiques ne sont donc
pas dispersives. Dans le cas de lair, avec Ty = 288K, a = /YRIp = 340ms~ 1.
Pour une onde acoustique de fréquence w/(27) = 1000 Hz, la longueur d’onde
A =2r/(w/a) vaut 0,34 m.
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8.16 Ecoulement stationnaire irrotationnel et isentropique
d’un fluide parfait compressible

Soit ’écoulement permanent d’un fluide parfait compressible dans lequel on
néglige les forces de volume. On suppose que l’écoulement est adiabatique et
thermodynamiquement réversible. Ceci revient a exclure la présence d’ondes de
choc. L’écoulement est donc isentropique ; le fluide est barotrope et son modele
correspond a I’équation (6.147). Des lors, on suppose 1’écoulement irrotation-
nel puisque cette propriété se conserve dans le temps pour les fluides parfaits
barotropes. Avec ces hypotheses, les équations de conservation se simplifient

0
oz, (pvi) =0, (8.244)
Uiges = 57 (8.245)

Pour ’écoulement isentropique, & 1'aide de (6.152), il vient

dp Opdp 5 0p

(8.246)

L’équation (8.245) devient

8%— (12 5‘p
Vs —_— =
I Oz;  p Ox;

0. (8.247)

Multiplions (8.247) par v; et (8.244) par a?/p. En combinant les deux relations
ainsi obtenues, il vient
V; V5 Bvi . a’l)i
a? dx; Ox;

(8.248)

Remarquons que la vitesse du son a dans (8.248) est une fonction de la position.
Elle se calcule a partir de la vitesse du fluide par I’équation d’énergie du gaz
idéal (8.221).

L’irrotationalité de 1’écoulement permet d’introduire un potentiel des vi-
tesses (8.213). En l'insérant dans (8.248), on a

1 00 00 0%
S = AD . 24
a? 0z; Oz, Ox;0x; (8.249)
L’équation de Bernoulli (8.221) donne
1/09\° a2
5 = cste . 2
2<8xi) +7_1 cste (8.250)

Comme les relations (8.249) et (8.250) sont non linéaires, il nous faut procéder
a des simplifications afin d’en trouver une solution.
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8.16.1 Théorie des petites pertubations

On suppose un écoulement uniforme et parallele de vitesse U dans la direction
x1, perturbé par un obstacle mince ou par des parois peu inclinées par rap-
port a la direction horizontale. Ces dispositions géométriques engendrent des
perturbations telles que

v; =Ue;y + v (8.251)

1)

avec les inégalités
!/
Vi

U

Le champ de vitesses dépend du potentiel ®(z;) qu’on écrit sous la forme

<1, i=1,2,3. (8.252)

O(x;) =Uxy + o(x;) (8.253)

ol  désigne le potentiel de perturbation.

Nous linéarisons les équations (8.248) et (8.221) en négligeant tous les
termes d’ordre égal ou supérieur a deux exprimés en fonction de la pertur-
bation par rapport & ceux du premier ordre. Il vient pour (8.248)

o _Uton _ Ut on
dr; a2 dxy a2 Ory

(8.254)

Remarquons que (8.254) n’est pas linéaire, car la vitesse locale du son a dépend
des perturbations v;.

L’équation de Bernoulli (8.221) peut s’écrire comme

2 2 2 2
q a U az,
= — 8.255
2 -1 2 +’y—17 ( )

oll ax est la vitesse du son a l'infini amont. La linéarisation permet d’écrire
successivement

-1
a2:a§0+7’y2 (U2—q2)
_ 2 Y—1 0 1\2 2 2
—aooJFT[U — (U +v1)* — vy’ —vf]
= a3 — (v = 1)Uv; + ... (8.256)

En tenant compte de I'inégalité (8.252), la relation (8.256) est approchée telle
que
a’ ~ a2, . (8.257)

En combinant les relations (8.254)-(8.257), on obtient

U2\ 0% 0% 0%
1 _ —_ —_— = . .2
(o) 35 g g =0 (8:259)

Avec la définition du nombre de Mach (8.3), la relation (8.258) devient

20 2o H?
—M2)—— L L =
(1 MZ) 22 22 22 0. (8.259)
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Lorsque le nombre de Mach approche l'unité, I’équation (8.259) dégénere et
n’est plus valable. On ne 'utilise donc pas dans le cas sonique (ou transsonique).
Du point de vue mathématique, I’équation (8.259) est elliptique dans le cas
subsonique, My, < 1, et hyperbolique dans le cas supersonique, My, > 1.
Cette différence de nature mathématique induit également des comportements
physiques différents.

L’équation du potentiel (8.259) est soumise & des conditions aux limites
qui vont imposer que le vecteur vitesse v soit parallele aux parois dans leur
voisinage. Il faudra aussi s’assurer que la méthode des perturbations est bien
vérifiée via (8.252).

Si ’écoulement est délimité par des parois F(x1,x2,z3) = 0, on a & proxi-
mité de celles-ci

v} vh dxgy (OF/0x1)
LS =2z _ /9% 2
USUto]  dui|,  (OF/0m) (8.260)
v v (0F /0x1)
3~ = — . .261
USTx0, ~  (0F)ows) (8.261)
Il faudra donc que les conditions
|OF/0z1| < |0F/0z2| et |0F/0x1| < |OF/0xs] (8.262)

soient respectées.

8.16.2 Ecoulement bidimensionnel d’un fluide compressible au voisinage
d’une paroi ondulée sinusoidale

On considére ’écoulement bidimensionnel stationnaire d’un fluide parfait com-
pressible au voisinage d’une paroi ondulée de forme zo = f(z1) = esin(azx1),
dont I’amplitude ¢ est faible comparée a la longueur d’onde A = %“, ie. ea K 21w
a la figure 8.23.

Ty

7/

Fig. 8.23 Paroi ondulée

On résoudra ) )
0%p 0%y
1-M2) 5+ % = 2
( %) 022 T a7 =0 (8.263)
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avec la condition & la paroi F(zq1,z2) = z2 — f(x1) = 0 (éq. (8.260),
of _ vy v

= ~ . 8.264
Oor; U+v;, U o= f(z1) ( )
On peut exprimer le dernier terme de (8.264) comme
!/ a !/
U—UQ(wl,ssinaxl) =7 vh(z1,0) + (622) x2=06 sinazy + ... (8.265)
La condition a la paroi devient avec le méme degré d’approximation
: 0 0
(10 _ 9F =cacosar . (8.266)

U (91'1
Ceci revient a imposer la condition sur le plan moyen xo = 0; d’ou la nécessité

de I’hypothese eaw < 1. En 23 — oo, pour le cas subsonique, on imposera
! !/
vy = vy = 0.

Ecoulement subsonique

On procede par séparation de variables en posant dans I’équation (8.263)

p(z1,22) = @1(1)p2(2) (8.267)
ce qui donne, avec n? =1 — M2

1 1
n2fl %2 g (8.268)
¥1 P2

La condition aux limites (8.266) devient

v5(21,0) 1 Oy

U = 587(331, 0) = excos axy (8.269)
2
d’ott on a
©1(21)p5(0) = Ueacos axy . (8.270)
On déduit que
v1(z1) = Acosaxy . (8.271)
Portant (8.271) dans (8.268), il vient
s0//
2 —p2a? . (8.272)
P2
Par intégration (8.272), on obtient
2 (ze) = Be "2 4 Cem 2 | (8.273)

La condition de vitesse nulle en x5 — oo impose C' = 0, si on suppose n > 0.
Avec (8.270), on a deés lors

U
e1(z1) = —;7 cos ary (8.274)
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et finalement,

o(x1,20) = —% cosaxie ", (8.275)

On vérifie aisément que la condition |v]/U| < 1 implique

ex
— <K 1. (8.276)
n
Ce sera le cas lorsque n # 0, c’est-a-dire que 1'on ne soit pas trop proche du
domaine transsonique.

Ecoulement supersonique

Posons M2 — 1 =m?. L’équation (8.263) devient

o 1 9%
- T _0. 2
0r3  m?2 0?2 0 (8.277)

D’apres d’Alembert, cette équation d’ondes a pour solution générale la relation

¢ = f(x1 —mz2) + g(z1 +mz2) . (8.278)

Le second terme g doit étre négligé dans le cas ou I’écoulement se situe dans le
plan supérieur a la paroi dans la direction positive de I'axe des ;. La condition
aux limites (8.269) donne

Oy

(z1,0) = Usacosaxy = —mf'(z1) . (8.279)
(91'2

Par intégration, il vient

v = f(z1 —may) = —% sin a(z) — mas) (8.280)
La condition de petites perturbations implique que eat/m < 1. Remarquons que
le potentiel de perturbations garde les mémes valeurs sur des droites inclinées
de coefficient angulaire dxs/dx; = 1/m = tan« vers Paval, avec a Pangle de
Mach (8.4). La perturbation se propage donc a l'infini aval, alors que dans le
cas subsonique, son amplitude décroissait rapidement lorsqu’on s’éloignait de
la paroi.

8.17 Exercices

A partir de I’équation de conservation de la quantité de mouvement (3.96),
établir les équations de Navier-Stokes pour un fluide visqueux newtonien. Que
deviennent ces équations lorsque les coefficients A et p sont constants ? Etudier
le cas particulier d’un fluide incompressible (mouvement isochore).
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On considere I'écoulement plan de Couette-Poiseuille obtenu par la su-
perposition de I’écoulement de Couette induit par le mouvement de la paroi
supérieure a vitesse constante U et celui de Poiseuille engendré par le gradient
de pression dans la direction ;. On demande de calculer le profil de vitesse, la
contrainte de cisaillement et le débit-volume.

On considere ’écoulement hélicoidal d’un fluide visqueux incompressible
entre deux cylindres circulaires en rotation relative comme dans 1’écoulement
de Couette circulaire. Les cylindres intérieur de rayon R, et extérieur de rayon
Ry ont une vitesse angulaire de rotation w; et wsy, respectivement. Le fluide
entre les cylindres est soumis également a un gradient de pression axial. On
demande de calculer les composantes de vitesse non nulles vg, v,. On calculera
également le champ de pression p = p(r, 2).

Soit une sphere solide plongée dans un fluide visqueux newtonien incom-
pressible qui remplit tout ’espace, et qui est au repos a l'infini. La sphére tourne
autour d’'un de ses diametres a une vitesse angulaire constante 2. On suppose
le nombre de Reynolds inférieur a 'unité. On néglige les forces de volume. Les
lignes de courant sont des circonférences centrées sur l’axe de rotation et si-
tuées dans des plans perpendiculaires a celui-ci. En travaillant en coordonnées
sphériques, calculer le profil des vitesses.

Avec les mémes hypothéses que dans I’exercice précédent, on étudie I’écou-
lement d’un fluide compris entre deux spheres de rayon R; et Ry telles que
Ry < Ry, et qui tournent a des vitesses angulaires €y et 5 aoutour d’un
diametre commun fixe.

Calculer le profil des vitesses.

Par application du théoreme de Bernoulli pour les fluides parfaits, montrer
que la vitesse de sortie d’un jet par un orifice pratiqué dans une enceinte a la
distance h de la surface libre du fluide est

v =1/2gh . (8.281)

On considere ’écoulement d’un fluide visqueux dans une conduite de sec-
tion arbitraire. Faisant I’hypothese que le champ de vitesse est de la forme

vy = v (22, 23), v2=v3=0,
montrer que le champ de vitesse satisfait 1’équation

—821}1 —621}1 _Lldp C = cste
or3 = 0z  pudxy

Si la section est de forme elliptique de demi-axes a et b telle que

()5
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le champ de vitesse s’écrit

Trouver les constantes A et B.

Un cylindre de rayon R, se déplace parallelement a son axe avec une vitesse
constante U a l'intérieur d’un cylindre co-axial fixe de rayon Rs.

Calculer le champ de vitesse du fluide visqueux qui remplit ’espace entre
les deux cylindres. Trouver la force de frottement par unité de longueur qui
s’exerce sur le cylindre mobile.






ANNEXE A

Coordonnées cylindriques

Nous donnons ci-dessous certains opérateurs différentiels ainsi que les princi-
pales équations dans un systeme de coordonnées cylindriques. On représente
a la figure A.1 les composantes du tenseur des contraintes dans le systéeme de
coordonnées cylindriques (1, 0, z).

T3

Ty

Fig. A.1 Composantes du tenseur des contraintes dans un systéme de coordonnées
cylindriques.

Divergence d’un champ vectoriel v(r,0, z) :

. 1 Ov, 1 0vg Ov,
dive = "ot 504 050 5 (A1)
o 1 1o | 0
. _ 1o 1 0vg Uz
dive = B (rv,) - 0 + 5 (A.2)
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Divergence d’un champ tensoriel o(r,0,z) :

or r 00 0z r

60’T9 1 80‘99 aaez 20}9
+<3r T89+82+T)60

aarz 1 ao@z aazz Orz
+ + - + ez .

dive — (807“7" 1 Oorg + 00, + Orr — UGO) e,

or r80+8z T

Gradient d’un champ scalaire f(r,0,z) :

0 10 0
sz—fer—l—;a—geg—i—a—zez.

Gradient d’un chamyp vectoriel v(r,0,z) :

ov, 10v, wvg Ov,
oar r 90  r 0z
31)9 1 6’1)9 Uy 8”9
or r 00 r 0z
ov, 1 Ov, ov,
or r 00 0z

Vv =

Rotationnel d’un champ vectoriel v(r,0,z) :

to— lavz_% . 31},»_8112
o= e ) e ar )

+ 1 _ ( ) _ Ot
— | g, (rve 7 ) e
Laplacien d’un champ scalaire f(r,0,z) :

vof 10 0

Af =V3f =

r@r—’—ar?—i_ﬁw_'_az?

V2f=1§;<rgf)+182f+82f.

ou

r r2 002 = 022

Laplacien d’un champ vectoriel v(r,0,z) :

’I"2 80 7"2
2 Ov Vg
2 r
+<V ’l}9+ﬁ 90 - 2) 0

(A.3)

(A4)

(A.5)



Dérivée matérielle d’un

Accélération :

Duv,
Dt
D’U@
Dt
Du,
Dt

Coordonnées cylindriques

champ scalaire f(r,0,z) :

Df _of of wpof  of
Dt ot Tor T a0 T

_ Ov, N ov,
Y Ur or
o 81}9 avg
o o
_ Ov, n ov,
Y vr or

vy ov, B ﬁ L ov,
r 00 r * 0z
vg Ovg U,y Ovg
T s Yo
vo Ovz , Ov=
r 00 2oz

Equation de conservation de la masse :

dp  O(pvy)

T

por 1 9(pve) | O(pv-:)

or r r 00 0z =0

FEquations du mouvement :

Bvr+v%+@8vr+v avr_vj
p " or r 06 © 0z r

ot

0oy

1 (90}9 aarz Orr — 000

or r 00 0z T

%+v
P\t T

_ Ooyg

+ pbr

Ovg vy Ovg Ovg  vyvp
m+rm+%w+r)
1 Oogy

004 20,,9

o T o0 o
31}Z+
P\7or T

0oy

+ pbg

v, L e vy Ov, Yo 31)2
or r 00 * 0z
1 0oy, 0O0,, Oy

FEquations d’équilibre :

00y

or ' r 00 0z

+ + + pb, .

1 aa'r@ 8Urz Orr — 000

or
aUre

o0 o: +pbr =0

1 0oy Oocp, 20,0

or

0o,

- by —
r 00 8z+r+p00

1 6002 agzz Orz

or

P R P

+pb, =0.
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(A.10)

(A.11)
(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
(A.19)

(A.20)
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Equations de Navier :

+ (A )aar (71,8(;:") + %% + a;;) +fr=0 (A.21)
+(A )%% (ia(g:fr) + %% + a;;) +fo=0 (A.22)
pVu + (/\Jru)% (ia(g:fr) + %% + %tz> +f=0 (A23)

Composantes de déformation en fonction du déplacement :

ou, Uy 1 Oug . ou,
S e (A.24)
1 (Ou,  Ou, 171 Ou,  Oug ug
E”_Q(@z—i_é)r) Ere_Q(r 39+5‘r r) (A.25)
1/10u, Ouy
=075 (7" 90 02 > | (420

Noter que les équations constitutives sont obtenues en replacant les
composantes cartésiennes dans (7.3) et (7.4) par les composantes ci-
dessus.

FEquation biharmonique :

Vie = 1g+872+i872 137@+32£+i(f927@ =0
T \ror or2  r2 962 ror  or2  r2902)
(A.27)

Composantes de la contrainte :
Via la fonction de contrainte d’Airy pour un état de contrainte plane

1 00 1 0%®
e T (4.28)
9%
ggy — W (A29)
2
Ura—iaj_l oe (A?)O)
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Equations de Navier-Stokes incompressibles :
Equation de conservation de la masse

8vr (U% 1 % 61}2

T R
Equations du mouvement
((“)UT Yo Ovy +Ui8vr o dvp vé) B
ot "o Trae T e T T
Op vy 2 Ouvg
_g"_u(Avr_j_*Q%)‘i‘ br
Qe O Voo Ovo  vrvg,
ot " or 00 ) r
18]9 6 2 avr
—;%‘f‘ﬂ(ﬁve—ﬁ‘*‘jae)"ﬂobe
(avz o ov, %avz (%Z) B
ot "o 00 )
0
_£+Msz+pbz
0z

avec l'opérateur laplacien défini par (A.7) ou (A.8).
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(A.31)

(A.32)

(A.33)

(A.34)
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Coordonnées sphériques

Nous donnons ci-dessous certains opérateurs différentiels ainsi que les princi-
pales équations dans un systeme de coordonnées sphériques.

On représente a la figure B.1 les composantes du tenseur des contraintes
dans le systeme de coordonnées sphériques r, 6, ¢.

3

oy

Fig. B.1 Composantes du tenseur des contraintes dans un systéme de coordonnées
sphériques.
Divergence d’un champ vectoriel v(r,0,p) :

.10, 1 0 . 1 v,
dive = . 8r(r vp) + rsin@@&<v9$ln9)+

rsinf do (B-1)
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Divergence d’un champ tensoriel o(r,0,p) :

0oy 1 9o, 1 Jo, 1
dive = r =+~ 200 — 000 — 0 cot f
Ve ( aor r 00 rsinf Jdy + r 20 099 — Opyp + Org CO ]) e

dagr 1 doge 1 0o,
+( or r 00 +7"sm9 dp T [3UT9+(099_U¢¢)C0t9]

N (&TW N 1 040 1 Jogy 41

2 .
Or r 06  rsinf dy [30“" + 209, cotb] | e,
(B.2)
Gradient d’un champ scalaire f(r,0,¢) :
8f Lof 1 of
= €r - B.
v/ T 96 T remo Do e (B-3)
Gradient d’un champ vectoriel 'u(r, 0,¢) :
dv, 1 Jv e 1 v v,
or r 09 r rsinf Oy r
Vo — Ovg 1 Jvg 1 vy v,
or r 90 rsinf dp  rtanf
v, 1 50@ 1 Ovy
or r 00 rsin 6 [8(‘0+UrSIH9+U9COSQ:|
(B.4)

Rotationnel d’un champ vectoriel v(r, 0, ¢) :

1 I(vpsind) vy 1 9dv,  10(rvy)
rotv = rsind ( 04 a &p) et (rsin@ dp r or e

1 (0(rvg) Ov,
+ ; ( or - 90 ) €y (B5)

Laplacien d’un champ scalaire f(r,0,¢) :

e _ig 2% 1 of #ﬁ
Af_vf_ﬂ@r " or +7‘25in080 1080 +r25in293§02

(B.6)

Laplacien d’un champ vectoriel v(r,0,p) :

2v,. 2 Ovg  2vgcotf 2 Ov
Vv = (Av, - L - 222 — —2 e,
v ( Ur T2 r2 00 72 r2sinf Oy > €

vy 2 Ov, 2cosf Ov
Avg— —20 4 200 2CO87 TV B.7
* ( Y 2 * r2 90  r2sin%60 Op €0 (B.7)

(e e, 2 Ou . 2cost ouw)
Y r2gin%20  r2sinf Op  r2sin?6 Oy
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Dérivée matérielle d’un champ scalaire f(r,0,p) :

Df of of v 0f v, Of
Dt ot Tar T a0 T rsmaog (B.8)

Accélération :

2 2
Do, Ve + vg

= B.
“ Dt r (B.9)
Dvg  vyvg — 02 cot 6
= B.1
a0 Dt + r (B-10)
Dv,  vv, + vy,vg cOt O
= . B.11
Ay Dt r ( )

FEquation de conservation de la masse :

dp 19 puv,) 1 O(pvesind) 1 0d(pvy)
ot + r2  or + rsiné 06 + rsinf  dp 0. (B.12)

Equations du mouvement :

Dv, v+ v2 9oy 100, 1 o,
p< " 9> 0. Jr,Ue Oryp

Dt r or r 00 +7“sint9 dp

1
+— (20, — 069 — Opp + orgcot) + pb, (B.13)
,

2
) Duy N VrUg — U cot 0 00, N 18099 n 1 009y
Dt r or r 00 rsing Op

1
—&—;[(099 — Opp) cotf + 30,9] + pby (B.14)

Du, L VU + VpvgcOt O\ Doy, n 10og, 1 Oogye
P\ Dt r - Or r 00 rsinf Jdp

1
+—(30yp + 204, cot0) + pb, (B.15)
r
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Equations d’équilibre :

00y n laarg n 1 Oorye
or r 00 rsinf Oy
1
+ ;(20,,.7. — 099 — Opp +0rgcotf) +pb. =0 (B.16)
00,9 1 dogy 1 80’947
or + r 00 + rsinf O¢
1
+ ;[(0'99 —O’WP)COtQ—F?)O'Tg} +pbg =0 (B.17)
0oy n laa(w 1 Ooye
or r 00 rsinf Op
1
+ ;(3‘7?“30 + 209, cot ) + pb, =0. (B.18)

Fquations de Navier :

r2  r2 00 r2 r2sinf Oy

,u (vgu 2u, 2 Oug  2ugcot®  2cotd 8u@>

9 (1 0(ru,) 1 9(upsin) 1 Ou,
+()\+'M)§ (1"2 or rsin 6 00 rsing dp
2 Ou Ug 2cotf Ou
Viug + 5 2 - ‘)
. ( Y299 T 2sin0 rZsin®d Op
10 [10(r?u,) 1 O(upsind) 1 Oug
+()\+M);% (7“2 or +rsin9 00 +rsin9%

+fo=0 (B.20)
,u <V2u U 2 Ou, 2cot 6 8u9>
o

r2sin0  r2sin?@ 0p | r2sin?f Op

1 0 (10(r%u,) 1 O(upsinb) 1 Ou
by —_ = e 2
+ +'u)rsin93<p (7"2 or +rsin9 00 rsinf dyp
+f,=0. (B.21)

Composantes de déformation en fonction du déplacement :

ou, u,. 1 Oug 1 Oug  ur  ug

STy T8 5T b oy

cp= L(LOu  Ou w11 Ou, Oup up
Ty "2 \rsinf dyp or r

1 1
( Ouy + uy _ uy cot 9) . (B.24)
T
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Noter que les équations constitutives sont obtenues en replacant les
composantes cartésiennes dans (7.3) et (7.4) par les composantes ci-
dessus.

Composantes du tenseur des tauz de déformation :

ov, _10vy v,

=L = B.2
drr or’ d99 r 00 r ( 5)
1 Ov, v  wgcot
— Ty T B.2
Ao rsinf Oy + r + ro (B-26)
1 1 Ovy 10w vy, cot 0
dpp = = — B.27
#0 2(rsin0 8<p+r 00 r >’ (B:27)
1 [ 0v 1 Ov v
dpr = = [ =2 L £ B.2
? 2(3r+rsin98<p r)’ (B-28)
1 /10v, Ovg g
drg = = | - ———. B.29
) (r 00 * or 7“) ( )
Equations de Navier-Stokes incompressibles :
Equation de conservation de la masse
1 9 1 Ov
-2 ») + —— —(vpsin @ —£ =0. B.30
r28r(r U)+rsin989(vebm )+rsin9 Op ( )
Equations du mouvement
Dv. vi+vi\ _ dp
P\ Dt r - or
20, 2 Ovg  2vgcot 2  Ov
Av, — - = — — —£ b, (B.31
—|—,u< Y r2 2 00 72 r?siné 890)+p ( )
Dvy  vrvg — vfa cot 0 _ 1lop
Dt * r T Tro0
Vg 2 Ov, 2cosf 67@)
+pulAvg— ———+——— — —-5——> | + pb B.32
a ( ve r2sin?6 12 00  r2sin?6 Op P ( )
Du, n VU + Vg cOL O _ 1 @
P Dt r ~ rsinf dy
v 2 Ov 2cosf Ovg
Av, — £ — b, . (B.33
+H< Ve rzsin29+7‘281n9590 r251n293g0)+p¢ ( )

avec 'opérateur laplacien définit par (B.6).






ANNEXE C

Glossaire

francais-anglais

Accélération, Acceleration
Barocline, Baroclinic
Acoustique (adj.), Acoustic
— (nom), Acoustics
Adiabatique, Adiabatic
Aire, Area

Allé de von Karman,von Kdrmdn
street

Anisotrope, Anisotropic
Appui, Support

Axe principal, Principal azis

Base, Base

Bord, Boundary
Barocline, Baroclinic
Barotrope, Barotropic

Cartésien, Cartesian
Chaleur, Heat

Champ, Field

— de contrainte, Stress field
— de déformation, Strain field
— de vitesse, Velocity field
Charge, Load

Cinématique, Kinematics
Cinétique, Kinetic
Cisaillement, Shear
Coefficient de Poisson,
Poisson’s ratio
Compatibilité, Compatibility
Comportement (loi de),
Constitutive law (equations)
Composante, Component
Condition aux limites,

Boundary conditions

Conduite, Pipe

Configuration, Configuration

Contrainte(s), Stress(es)

— de compression, Compressive
stress

— de traction, Tensile stress

— normale, Normal stress

— plane, Plane stress

— principales, Principal stresses

— tangentielle, Tangential stress

— de cisaillement, Shear stress

Convexe, Convex

Coordonnée, Coordinate

Corps, Body

Courbure, Curvature

Critere, Criterion

Cylindrique, Cylindrical

Débit, Flow rate

Décharge, Unloading
Décomposition polaire, Polar
decomposition

Déformation, Strain, Deformation
— plane, Plane strain

Densité, Density
Déplacement, Displacement
Dérivée particulaire, Material
derivative

Déterminant, Determinant
Déviateur, Deviatoric

Différé, Delayed

Dissipation, Dissipation
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Divergence, Divergence
Dynamique (adj.),Dynamic
— (nom), Dynamics

Echelle, Scale

Ecoulement, Flow

— stationnaire, Steady flow

Ecrouissage, Hardening

Effort, Force

— extérieur, Fxternal force

— intérieur, Internal force

— normal, Normal force

— tranchant, Shearing force

Elastique, Flastic

Elastoplastique, Elastoplastic

Encastrement, Fized support

Energie, Energy

Enthalpie, Enthalpy,

Entropie, Entropy

Equation, Fquation

— de continuité, Continuity
equation

— du mouvement, Fquation of
motion

Equilibre, Equilibrium

Espace, Space

Essai, Test

— de compression, Compression
test

— de traction, Traction test

Etat, State

— de contrainte, Stress state

— plan de contrainte, Plane
stress state

Eulérien, Eulerian

Fibre, Fiber

Flexion, Bending

Fluage, Creep

Fonction, Function

— de charge, Loading function

— de fluage, Creep function

— de relaxation, Relazation
function

— seuil, Yield Function

Force, Force

— de masse, Body force per unit
mass

— de volume, Body force per unit
volume

— résultante, Resultant force

— volumique, Body force

Galiléen, Galilean

Gauchissement, Warping

Gaz, Gas

Glissement, Angular distortion

Gradient, Gradient

Grand, Large

— déplacement, Large
displacement

— déformation, Large strain

Homogeéne, Homogeneous
Hydrostatique, Hydrostatic
Hypersonique, Hypersonic

Incompressibilité, Incompressibility

Incrément, Increment
Incrémental, Incremental
Infinitésimal, Infinitesimal
Instantané, Instantaneous
Invariant, Invariant
Isentropique, Isentropic
Isobare, Isobaric
Isopycne, Isopycnal
Isotrope, Isotropic

Jacobien, Jacobian

Lagrangien, Lagrangian

Laminaire, Laminar

Laplacien, Laplacian

Libre, Free

Liquide, Liquid

Ligne, Line

— d’émission, Streakline

— de courant, Streamline

Linéaire, Linear

Loi, Law

— constitutive, Constitutive law

— de comportement,
Constitutive law

— de bilan, Balance law

Masse volumique, Density
Matériel, Material
Matrice des contraintes,
Stress matriz

Mécanique, Mechanics
Mémoire évanescente,
Fading memory
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Méthode des éléments finis,

Finite element method

Milieu continu, Continuous

medium

Module, Modulus

— de cisaillement, Shear modulus

— de déformation volumique,
Bulk modulus

— de Young, Young’s modulus

Moment, Moment

— cinétique, Angular momentum

— de flexion, Bending moment

— fléchissant, Bending moment

Mouvement, Motion

- rigidifiant, Rigid body motion

Newtonien, Newtonian
Normalité, Normality

Objectivité, Objectivity

— Material frame indifference
Observateur, Observer
Ombroscopie, Shadowgraph
Origine, Origin
Orthotrope, Orthotropic
Orthogonal, Orthogonal

Parametre de chargement,

Loading parameter

Particule, Particle

Permanent, Steady

Pertes de charges, Pressure drop

Petit(e), Small

— déplacement, Small
displacement

— déformation, Small
deformation

Plan principal, Principal plane

Plastique, Plastic

Plasticité, Plasticity

Polaire, Polar

Portance, Lift

Postulat de Cauchy, Cauchy’s

postulate

Poutre, Beam

Pression, Pressure

Principal, Principal

Principe, Principle

— du minimum, Minimum
principle

Produit, Product

— Produit contracté, Contracted
product

— scalaire, Scalar product

— tensoriel, Tensor product

— vectoriel, Vector product

Puissance, Power, rate of work

Quantité de mouvement,
Linear momentum

Rampant, Creeping
Réciprocité, Reciprocity

Regle d’écoulement, Flow rule
Repeéere, Frame

Résistance des matériaux,
Strength of materials
Résultante, Resultant
Rigidifiant (mouvement),
Rigid-body (motion)
Rotationnel, Curl

Section droite, Cross section
Stabilité, Stability
Stationnaire, Steady
Statique (adj.), Static

— (nom), Statics

Subsonique, Subsonic
Superposition, Superposition
Supersonic, Supersonic
Surface libre, Free surface
Symétrique, Symmetric
Systéme, System

Taux, Rate

— de contrainte, Stress rate

— de déformation, Rate of
deformation

Température, Temperature

Tenseur, Tensor

— d’élongation, Stretch tensor

— des contraintes, Stress tensor

— de taux de déformation,
Rate-of-deformation tensor

— des taux de rotation,
Spin tensor

Tension superficielle, Surface tension

Tétraedre, Tetrahedron
Théoréme, Theorem
Thermique, Thermal



350 Mécanique des milieux continus : une introduction

Torsion, Torsion, Twisting
Tourbillon, Vortex, Vorticity,
Trace, Trace

Trainée, Drag

Trajectoire, Trajectory,
Particle path, Pathline
Transformation (nom),
Transform

Transposé, Transpose
Turbulent, Turbulent

Uniforme, Uniform

Vecteur, Vector

— de position, Position vector
— de tourbillon, Vorticity vector
Viscoélastique, Viscoelastic
Viscoélasticité, Viscoelasticity
Viscosité, Viscosity
Visqueux, Viscous

Vitesse, Velocity

— de déformation, Strain rate
Voisinage, Neighborhood
Volume, Volume

Vorticité, Vorticity



Liste des symboles

Cette liste des symboles reprend les principales notations utilisées dans la mono-
graphie. Celles qui ne sont pas reprises ici, sont définies la ou elles apparaissent
et le contexte donne toutes les informations nécessaires pour leur compréhen-
sion et leur emploi.

Symbole Description Unité

Lettres romaines

a vitesse du son ms~!
a; aire de la face s; m?
a vecteur accélération (spatial) ms~?
A tenseur d’ordre n -
Aiy i, composantes du tenseur d’ordre n —
A aire m?
A vecteur accélération (matériel) ms™ 2
A; vecteurs propres unitaires matériels -
b densité massique de force volumique Nkg~?
B densité massique de force volumique Nkg™!
b; vecteurs propres unitaires spatials -
c tenseur de déformation —
de Cauchy-Green gauche
C tenseur de déformation -
de Cauchy-Green droit
C coefficient de trainée -
Cijk parametres matériels —
hal ique 2 i kg 'K™!
Cp chaleur massique & pression constante Jkg
Cv chaleur massique a volume constant Jkg K1
C corps -
d tenseur des taux de déformation g1
d; composantes du vecteur dual -
e épaisseur m
e tenseur de déformation -
d’Euler-Almansi
e; vecteur de base —
E module de Young Pa
FE. énergie cinétique J
Fint énergie interne J
E tenseur de déformation -

de Green-Lagrange
E® espace vectoriel -
F tenseur du gradient de déformation —



352

Meécanique des milieux continus : une introduction

Symbole Description Unité

i force de volume N

fe force de contact N

f énergie libre de Helmholtz Jkg™!

f déflexion m

f fréquence g1

(T fonction tensorielle du tenseur T -

F? force de volume N

Fr nombre de Froude -

g; vecteurs de base en coordonnées -
curvilignes

g accélération de la pesanteur ms 2

h hauteur m

h densité d’enthalpie massique Jkg™!

H tenseur du gradient de déplacement -

I; invariants scalaires -

I3 moment d’inertie par rapport a xs m*

I tenseur identité -

J jacobien -

kB constante de Boltzmann JK!
(= 1,381 1072%)

k coefficient de conductibilité thermique WmK™!

K module de rigidité Pa

K second vecteur de contrainte Pa
de Piola-Kirchhoff

l longueur m

L longueur m

L tenseur du gradient de vitesse st

m masse kg

m quantité de mouvement kgms™?

m moment cinétique kgm?s™!

M nombre de Mach -

M tenseur de déformation -

N vecteur unitaire -

n vecteur unitaire sortant d’un domaine -

n; vecteurs propres unitaires -

o tenseur orthogonal -

P pression Pa

P premier tenseur de contrainte de Pa
Piola-Kirchhoff

Py densité initiale de masse kgm 3

P densité de masse actuelle kgm~3
en description matérielle

P; pression interne Pa

P. pression externe Pa

Do pression de référence Pa

Di pression Pa

Di probabilité —

Pr nombre de Prandtl -

Q débit-volume m3s?
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Symbole Description Unité
Q tenseur orthogonal -
q vecteur flux de chaleur Wm 2
q charge uniformément répartie Nm™2
R configuration —
R tenseur orthogonal -
R3 espace euclidien -
R rayon m
R constante du gaz idéal Jkg 'K™!
Re nombre de Reynolds -
R =(0,,t) référentiel de 1'observation -
r chaleur produite au sein du volume Wm™3
T rayon interne d’un cylindre m
Te rayon externe d’un cylindre m
S second tenseur de contrainte Pa
de Piola-Kirchhoff
Su surface m?
S; surface m?
s densité d’entropie Jkg ' K™!
s temps S
ds élément de surface m?
ds élément de surface m?
Si face m?
t temps S
T température K
T tenseur des extra-contraintes Pa
T premier vecteur de contrainte Pa
de Piola-Kirchhoff
t vecteur de contrainte Pa
te, vecteur de contrainte Pa
dans la direction e;
tN composante normale du vecteur ¢ Pa
tr composante tangentielle du vecteur ¢ Pa
u vecteur déplacement (spatial) m
U densité d’énergie interne (spatial) Jkg™!
U vecteur déplacement (matériel) m
U densité d’énergie interne (matériel) Jkg™!
U vitesse ms
% voisinage -
v vecteur vitesse (spatial) ms™!
14 vecteur vitesse (matériel) ms™!
|4 fonction de potentiel Pa
\% volume en coordonnées matérielles m?
v volume en coordonnées spatiales m?
Vmoy vitesse moyenne ms*
Vmax vitesse maximale ms~?t
w vecteur déplacement m
w fonction d’énergie de déformation Jm™3
w fonction scalaire d’un tenseur T -
W, w fonction d’énergie de déformation Jm™3



354

Meécanique des milieux continus : une introduction

Symbole Description Unité

T vecteur position (spatial) m

X vecteur position (matériel) m

X systeme physique -

Lettres grecques

« constante -

«@ angle -

« coefficient d’expansion thermique K-!

a; parametre matériel -

153 angle -

Bi fonction scalaire -

r,r-,rt,r, surface m?

5y rapport calorifique -

¥ déformation -

Y12 angle —

Yo diffusivité thermique m2s!

o symbole de Kronecker, composantes d;; -

1) accroissement -

A incrément

€ tenseur de déformation infinitésimale, -
composantes €;;

Eijk symbole de permutation —

€ nombre réel -

0 angle -

© angle -

0; coordonnées curvilignes -

A valeur propre -

A pertes de charges -

A valeur propre —

AN dilatation —

Ai élongations principales du tenseur U -

\Z élongations principales du tenseur C —

A coefficient de Lamé Pa

A viscosité volumique Pas

A diffusivité thermique m? s !

m coefficient de Lamé Pa

m viscosité dynamique Pas

n module de cisaillement Pa
ou de rigidité au glissement

Wi parametre —

v coefficient de Poisson -

v viscosité cinématique (= u/p) m?s™?

I, I parties du corps C -

p densité actuelle de masse kgm 3
ou masse volumique

b fonctionnelle de contrainte Pa

3 fonctionnelle tensorielle -
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Symbole Description Unité

o tenseur de contrainte de Cauchy, Pa
composantes o;;

o contraintes principales de o Pa

o contrainte Pa

o coefficient de tension superficielle Nm™!

00 contrainte hydrostatique Pa

T temps S

T contrainte de cisaillement Pa

© fonction -

1) fonction d’énergie de déformation Jm™3

P fonction d’Airy Pam?

P fonction d’énergie de déformation Jm™3

P fonction

X fonction vectorielle du mouvement m

9 vecteur tourbillon g1

Q domaine dans la représentation -
matérielle

o0 surface du domaine {2 m?

w domaine dans la représentation spatiale -

w1, w2 vitesse de rotation angulaire g7t

ow surface du domaine w m?

w tenseur des taux de rotation gt

w tenseur de rotation infinitésimale -

Indices et exposants

4,5,k

x,Y,2
r,0,z

0,0

Notations

[]
[-]"
[
v,0
LS
LA
LS
Ld
0(-)

indices des vecteurs et tenseurs valant 1, 2 ou
3
indice de face, de grandeur physique
initial ou de référence ou & ’état

naturel
par rapport au référentiel R*

ou adimensionnel
valeur imposée
composantes cartésiennes
composantes en coordonnées cylindriques
composantes en coordonnées sphériques

matrice

matrice transposée
matrice inverse

vecteur ou tenseur
tenseur symétrique
tenseur antisymétrique
tenseur sphérique
tenseur déviateur

reste d’un développement
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Symbole

Description Unité

o(-)
Opérateurs

®
X

Coo

det
diag(a, b, c)

\%

div

div

rot = Vx
-1l

tr

A

AN
D
Dt
0
ot
9
Oxi

2im

reste d’un développement tendant
vers 0 lorsque son argument tend
vers 0

produit scalaire

produit tensoriel de deux vecteurs

produit vectoriel

produit scalaire de deux tenseurs

classe des fonctions infiniment
différentielles

déterminant d’une matrice

matrice diagonale de composantes
a,b,c

gradient

divergence d’un champ vectoriel

divergence d’un champ tensoriel

rotationnel d’un champ vectoriel

norme d’un vecteur ou d’un tenseur

trace d’un tenseur

laplacien

opérateur biharmonique

dérivée matérielle
dérivée partielle par rapport au temps

dérivée partielle par rapport a la
coordonnée x;
somme pour ¢ allant de 1 a n



Suggestions pour la résolution des

exercices

Chapitre 1

Suivre la démarche de 'exemple 2 (§ 1.3.6).

Suivre la démarche de I'exemple 2 (§ 1.2.5).

Suivre la démarche des exemples des paragraphes 1.4.6-8.
Suivre la démarche des exemples des paragrapes 1.4.6-8.
Suivre la démarche des exemples des paragrapes 1.4.6-8.

Suivre la démarche de ’exemple du paragraphe 1.3.8 pour un tenseur
antisymétrique.

Multiplier la relation (1.123) exprimée pour le tenseur T' par I'inverse du
tenseur T' et remplacer T dans la relation (1.140).

Chapitre 2

Eliminer le parametre ¢ des équations du mouvement.
Utiliser (2.77), (2.91), (2.166) et (2.181).

Utiliser (2.108), (2.111), (2.112) et (2.109).

Exprimer des vecteurs da et dy en fonction des ¢;; et utiliser 'approxi-
mation (1+ a)™ &~ 1+ na, lorsque o < 1.

Utiliser (2.81) lorsque e;; est remplacé par €;; et faire apparaitre les
définitions suivantes cos = %, sinf = ‘%2.
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Chapitre 3
Appliquer 'équation de conservation de la masse au champ de vitesse
donné; en déduire une relation sur la masse volumique p. Calculer les trajec-

toires et obtenir I’égalité de I'exercice.

(2) Trouver le vecteur normal sur le plan et la sphére en utilisant le gradient
et utiliser (3.76).

Considérer les composantes des forces et des moments comme composantes
de vecteurs. Exprimer 1’équilibre de la force et du moment sur la surface et
utiliser le théoreme de la divergence.

(3.9) Par le théoreme de la divergence, convertir 'intégrale de surface en inté-

grale de volume. Ensuite utiliser le principe de conservation de la quantité de
mouvement.

Utiliser (3.141) et (3.152) ; (3.149), (2.205) et (3.152).

Chapitre 4

(1) Pour le fluide parfait, le terme o : d devient —ptrd = —pV - v.

(2) La relation & établir s'écrit p28 = 2p gg +r.

Chapitre 5

Utiliser les relations (2.213), (2.181), (2.183) et (2.56)
(5.3) Noter que D/Dt* = D/Dt.

Utiliser les rsultats des exercices 5.2 et 5.3.

La relation (5.64) est celle résultant de I'exercice 5.3 pour T = d.

Chapitre 6
Utiliser (2.77) et (2.179).
Insérer (6.14) dans (4.23).

Utiliser (2.88), (2.108) et (2.110) ; utiliser (6.61).
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Exprimer C~" en utilisant (1.123) pour modifier (6.172); exprimer ¢ en
utilisant (1.123) pour modifier (6.173).

Utiliser (6.78) dans (6.86) pour 1'état de contrainte plane et suivre la
démarche du paragraphe 6.5.3.

Simplifier (6.159); pour la traction simple et utiliser (6.110);.

(1) Introduire (6.175) et (6.176) dans (6.174) et prendre la trace de I’équa-
tion résultante.

6.14) (2) Utiliser (1.109), (6.175)-(6.177) pour montrer que les axes principaux
de oy, aflj, €ij, Efj coincident.

(3) Introduire (6.176) dans la premiere partie de (6.178).

Modifier la partie gauche selon (4.23), et utiliser la relation (3.76) et le
théoreme de la divergence.

6.16) (2) Introduire (6.182) dans (6.104).

6.16) (3) Introduire (6.184) dans (6.106).

Chapitre 7

Insérer (7.18) dans (7.21)-(7.23) et utiliser (7.20).
Insérer (7.18) dans (7.43) et utiliser (7.20).
Insérer (7.317) dans (7.7).

(1) Utiliser (1.190) pour modifier (7.7).

(2) Utiliser (6.109)2 pour modifier (7.7).

(3) Utiliser (1.190) pour modifier (7.7).

Suivre la démarche du probléme du cylindre creux avec des extrémités
fixes (p. 228).

Prendre la divergence de (7.209) et utiliser (1.191).
Prendre le rotationnel de (7.205) et utiliser (1.237).

(7.8) Démontrer (7.38) et suivre la démarche du probleme de charge lindique
(p. 239).
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Démontrer (7.38) et suivre la démarche du probleme de charge linéique
(p. 239).

Chapitre 8

La solution s’obtient par combinaison de 1’écoulement plan de Couette et
celui de Poiseuille plan.

Montrer d’abord que v, est nulle. Pour le calcul de la pression, on se
rappellera que 'intégration de
10p v
por r
donne

T'Ug ,
p= [ st

R,

avec ' une variable de travail.

Montrer qu’en tenant compte des symétries du probleme, la seule com-
posante de vitesse non nulle est v, = v,(r,§). La condition imposée & cette
composante sur la sphere dépend de I'angle de colatitude. On integre la rela-
tion (B.33) par séparation des variables telle que v, = f(r)g(6). Il faut aussi
tenir compte de la condition aux limites & ’infini.

Meéme démarche qu’au probléme 8.4. Dans ce cas, on impose une condition
aux limites sur la sphere extérieure.

On impose la condition sur le bord & la vitesse v; et on tient compte de
la relation qui lie le champ de vitesse au gradient de pression.

On exprime le probleme en coordonnées cylindriques. On montre que la
seule composante de vitesse est v, = v,(r) ou l'axe de la géométrie est repéré par
la coordonnée z. Pour calculer la force de frottement, on utilise la composante
de la contrainte o,.,.
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d’objectivité, 167, 174, 179, 182,
196

de conservation de 1’énergie
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de déformation de Cauchy-Green
gauche, 75

de déformation de Cauchy-Green
gauche et son inverse, 76

de déformation de Euler-Almansi,
75, 76, 98

de déformation de Green-
Lagrange, 75, 76, 98

de déformation infinitésimale, 87,
195

défini positif, 30

de rotation, 71

de rotation infinitésimale, 90

des contraintes, 122

des contraintes de Cauchy, 137, 153

des taux de déformation, 93

des taux de déformation de Green-
Lagrange, 153

des taux de rotation, 93

déviateur, 23

déviateur des contraintes, 130

(divergence d’un —), 39

du gradient de déformation, 73, 171

(fonction scalaire d’un —), 34

(invariant scalaire d’un —), 28

inverse, 22

(matrice du -), 15

nul, 14, 18

objectif, 97

orthogonal, 24, 97

(premier — de contrainte de Piola-
Kirchoff, 153, 188

(produit de —), 18

(second — de contrainte de Piola-
Kirchhoff), 137, 153

(second — de Piola-Kirchhoff), 185

singulier, 15

symétrique, 22

(trace d’un —), 23

transposé, 21

unité, 14, 26
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(valeur propre d’'un —), 26
(vecteur dual d'un —), 25
tenseurs

égaux, 18
(produit intérieur de deux —), 20
(somme de —), 20
tension superficielle, 290
tétraedre de Cauchy, 123
théoreme
de I’énergie cinétique, 150
de Cauchy, 122, 135, 148
de Cayley-Hamilton, 30
de Crocco, 322
de décomposition polaire, 32, 74,
172, 182
de Gauss, 49
de Helmholtz, 223
de Kelvin, 322
de la divergence, 49, 109, 125, 147
de la racine carrée, 30
de Leibnitz, 108
de localisation, 111
de représentation de Rivlin-
Ericksen, 33
de Stokes, 51
du transport de Reynolds, 107,
108, 112, 118, 149
H, 159
théorie
cinétique des gaz, 285
de Boltzmann pour 'hydrodynami-
que, 157
de D’élasticité, 184
de D’élasticité linéaire, 211
thermoélasticité, 205
thermodynamique du gaz idéal, 202
tourbillon, 93, 275, 313, 316, 319, 321
traction, 125, 133
simple, 197
uniforme, 133
trajectoire, 67
transformation affine, 82
translation, 83
de corps rigide, 70
uniforme, 154
tube tourbillon, 315

Valanis-Lander
(hypothese de —), 191
(modele de —), 191
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valeur
principale, 188
propre, 79
propre d’un tenseur, 26
variable
matérielle, 60
spatiale, 60
vecteur, 3, 10
(second — de contrainte de Piola-
Kirchhoff, 137
contrainte, 128
contrainte spatiale, 116
de traction surfacique, 116
dual, 72, 155
objectif, 97
propre, 31
propre unitaire, 26, 79

tourbillon, 93
vecteur de Galerkin, 229, 232
vibration d’une corde élastique, 261
viscosité

cinématique, 180

dynamique, 179

volumique, 179
vitesse, 64

d’onde dans des solides élastiques,

268

débitante, 303

de 'onde de surface, 251, 253

du son, 326
von Helmholtz, Hermann, 161
vorticité, 93

Young (module de —), 196
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