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Préface de la seconde édition

Les responsables de la collection « Traité de la Physique » nous ont proposé
d’incorporer notre ouvrage Mécanique des milieux continus. Nous avons accepté
cette initiative qui aboutit à cette deuxième édition de la monographie.

Toutes les erreurs de la première édition ont été corrigées. Faisant suite
à notre expérience pédagogique de cet enseignement, un certain nombre de
concepts ont été développés plus explicitement et de nombreux exemples ont
été ajoutés. L’ancien chapitre 7 a été abandonné au profit de deux nouveaux
chapitres. Le chapitre 7 de la seconde édition traite de l’introduction à la mé-
canique des solides. Nous nous sommes restraints volontairement à l’élasticité
linéaire. Le chapitre 8 est une introduction à la mécanique des fluides newto-
niens. Une annexe supplémentaire décrit les divers opérateurs et équations en
coordonnées sphériques. A la différence de la première édition, les ouvrages de
la bibliographie sont cités dans le cours du texte.

Comme les nouveaux chapitres abordent des matières appartenant à des
disciplines bien établies, nous nous sommes ralliés à utiliser les notations clas-
siques que l’on rencontre dans les ouvrages couvrant ces sujets. Ceci entrâıne
parfois des conflits de notation, qui sont résolus par le contexte où ils appa-
raissent.

Tous nos remerciements vont à Laurent Humbert et Georgios Pappas qui
nous ont aidés pour la production des figures.

John Botsis
Michel Deville

Lausanne
Septembre 2015





Avant-propos

La mécanique est le paradis des sciences mathématiques
parce que par son entremise, on aboutit
aux fruits des mathématiques.

Carnets, vol. 1, chap. 20
Leonardo da Vinci

Ce livre est le résultat de notre enseignement de la mécanique des milieux
continus aux étudiants de seconde année dans la section de génie mécanique
de l’EPFL. Cette discipline a connu un développement considérable dans la
seconde moitié du xx

e
siècle et aujourd’hui, dans le nouveau millénaire, elle

est promise à des développements tout aussi spectaculaires. Les raisons en in-
combent à la modélisation de matériaux nouveaux qui ont des comportements
mécaniques inhabituels que ce soit sous forme solide ou fluide. Si on s’en tient
aux milieux continus classiques que sont l’air ou l’eau, les phénomènes des écou-
lements turbulents sont loin d’être compris dans leur totalité et ce domaine est
encore un lieu de recherches très intenses.

L’ingénierie moderne fait appel à des outils sophistiqués pour la conception
de machines telles les avions, les trains à grande vitesse, les moteurs ou encore
pour la prédiction de la phénomènologie des matériaux comme les polymères,
les céramiques, les composites, mais aussi pour la construction de ponts, de bar-
rages, etc. Ces outils sont réalisés dans des logiciels de simulation qui procèdent
à l’intégration numérique des équations aux dérivées partielles composant les
modèles continus. Les techniques expérimentales ouvrent également des hori-
zons nouveaux. Afin de pouvoir analyser les résultats obtenus, qu’ils soient
numériques ou expérimentaux, l’ingénieur doit avoir une base théorique solide.
Ce livre y contribue modestement.

Le premier chapitre consacré aux tenseurs cartésiens met en place l’ou-
til mathématique nécessaire pour la mécanique des milieux continus. En effet,
les lois de conservation et de comportement s’expriment facilement dans ce
contexte. Le chapitre 2 présente la cinématique du milieu continu et définit
les concepts associés tels que la déformation, la vitesse, l’accélération, le gra-
dient de vitesse et les tenseurs associés. Au chapitre 3, intitulé Dynamique des
milieux continus, on trouve les lois de conservation : la masse, la quantité de
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mouvement, le moment cinétique. On introduit le concept clé de tenseur des
contraintes. Le chapitre 4 est consacré à la thermodynamique des milieux conti-
nus. Après le premier principe qui traite de la conservation de l’énergie totale,
on trouve l’inégalité de Clausius-Duhem qui prend en compte l’irréversibilité
des phénomènes auxquels le milieu continu est soumis. Les principes généraux
à la base des lois de comportement sont décrits au chapitre 5. Parmi ceux-ci,
l’objectivité ou encore l’invariance par rapport au référentiel est fondamentale.
On aboutit à l’écriture des équations constitutives pour les fluides et les solides
en toute généralité. Le chapitre 6 introduit les lois des fluides classiques newto-
niens et des milieux solides élastiques linéaires et non linéaires (hyperélasticité).
Après avoir énoncé la loi de Fourier pour la conduction de la chaleur, on montre
que l’écriture de l’équation du fluide visqueux newtonien est compatible avec
le second principe de la thermodynamique. Ceci démontre que l’écriture cor-
recte d’équation de comportement est soumise aux diverses lois qui régissent
la physique des milieux continus. Le chapitre se termine sur des considérations
de thermoélasticité. Enfin, le dernier chapitre déduit les équations de Navier-
Stokes pour les fluides et les équations de Navier pour les solides. Pour chaque
cas, des exemples d’applications simples permettent d’obtenir des solutions
analytiques qui illustrent la puissance de la modélisation ainsi proposée. Des
annexes contiennent les données complémentaires : liste des symboles, glossaire,
équations en coordonnées cylindriques.

Ce livre s’adresse aux étudiants ingénieurs, aux physiciens et aux scienti-
fiques qui désirent connâıtre les principes de base de la mécanique des milieux
continus. Puissent-ils trouver dans cet ouvrage une introduction complète qui
leur ouvre la porte de ce vaste territoire du savoir. Comme il ne s’agit que d’une
introduction, le lecteur curieux pourra parcourir ce domaine en se référant aux
nombreux textes qui sont cités dans la bibliographie. Nous souhaitons à chacun
autant de plaisir dans la lecture et l’étude de cette matière que nous en avons
eu nous-mêmes en rédigeant cet ouvrage.

Remerciements

M. Deville remercie Marcel Crochet qui fut son directeur de thèse à l’Université
catholique de Louvain (UCL) pour lui avoir ouvert les portes de cet immense
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ont apportée par leurs remarques, leur intérêt pour le sujet et pour la confection
des figures. Il s’agit de Roland Bouffanais, Matteo Galli, David LoJacono et
Aı̈ssa Mellal.
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chapitres 2 et 3.
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Nous adressons un merci tout spécial à Laurent Humbert. Sa lecture soi-
gnée et profonde du manuscrit nous a permis d’éclaircir beaucoup de points
de l’exposé. Rien n’a échappé à sa minutie. Ses commentaires pertinents et ses
propositions ont amélioré la totalité de la rédaction.

Règles générales pour les notations

Dans cet ouvrage, les quantités scalaires sont en caractères italiques comme
p, T . Les vecteurs et les tenseurs sont en caractères italiques gras v, σ, L.
Les matrices sont en italique entre crochets comme [C]. Lorsque les tenseurs
sont écrits en notation indicielle, les indices sont choisis dans la majorité des
cas parmi les lettres i, j, k, l, m, n. C’est ainsi que le vecteur v aura pour
composantes vi et le tenseur du second ordre σ aura les composantes σij .

Dans la bibliographie, nous mentionnons plus précisément les chapitres où
la référence est utile pour un approfondissement des concepts et la démarche
scientifique et/ou pédagogique.
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1.3.1 Définition des tenseurs d’ordre 2 . . . . . . . . . . . . . . . . 14
1.3.2 Produit tensoriel ou dyadique de deux vecteurs . . 16
1.3.3 Loi de transformation des composantes

cartésiennes des tenseurs . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 Tenseurs d’ordre quelconque . . . . . . . . . . . . . . . . . . . . 17
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1.4.8 Opérateur laplacien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.9 Coordonnées curvilignes . . . . . . . . . . . . . . . . . . . . . . . . .42
1.4.10 Scalaires, vecteurs et tenseurs en coordonnées

curvilignes orthogonales . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.4.11 Gradient d’un champ scalaire et d’un vecteur

en coordonnées curvilignes orthogonales . . . . . . . . . 46
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5.5 Définition d’un solide et d’un fluide . . . . . . . . . . . . . . . . . . . 174
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6.6 Elasticité linéaire infinitésimale . . . . . . . . . . . . . . . . . . . . . . . 195

6.7 Conduction de la chaleur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

6.8 Second principe de la thermodynamique pour
les fluides visqueux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
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de la vorticité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
8.11 Equation du tourbillon pour le fluide visqueux

newtonien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

8.12 Equation de la circulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

8.13 Equation du tourbillon pour le fluide parfait . . . . . . . . . . 321

8.14 Equation de Bernoulli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

8.15 Ondes acoustiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

8.16 Ecoulement stationnaire irrotationnel et isentropique
d’un fluide parfait compressible . . . . . . . . . . . . . . . . . . . . . . . 327
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Chapitre 1

Tenseurs cartésiens

1.1 Introduction

La mécanique des milieux continus (MMC) est la partie de la mécanique qui mo-
délise le comportement des matériaux fluides ou solides. On sait grâce aux consi-
dérations physiques que la matière est composée de particules élémentaires. A
l’échelle atomique (de l’ordre du nanomètre ou aux échelles inférieures), on fait
usuellement appel à la mécanique statistique pour décrire les phénomènes phy-
siques. En effet, chaque « particule » constituante peut être décrite par une loi
de Newton, mais la valeur du nombre d’Avogadro NA = 6 1023 par mole rend
impossible toute résolution du système résultant d’équations par voie analy-
tique ou numérique.

Pour le cas des fluides compressibles, la théorie cinétique des gaz est un
bel exemple de l’approche statistique où on recourt à une fonction de densité
de probabilité déterminant la particule via une description basée sur l’espace
de phase qui implique position et vitesse. Ces particules sont soumises à un
mouvement brownien aléatoire caractérisé par le libre parcours moyen λ. Ceci
conduit à la définition du nombre de Knudsen Kn = λ/L qui est le rapport du
libre parcours moyen à une longueur L de référence pour le problème examiné.
Si Kn < 1 alors le milieu est suffisamment dense pour éviter de considérer
chaque particule individuellement et l’hypothèse de milieu continu dont l’échelle
spatiale pertinente est L, est valable. Si, au contraire, Kn ∼ 1 ou Kn > 1, alors
le modèle de milieu continu n’est plus approprié. On constate donc que la notion
de milieu continu dépend directement de l’échelle d’observation.

Une autre façon de définir la notion de milieu continu consiste en l’étude
de l’évolution de la densité de masse d’un cube en fonction de sa taille. Par
souci de simplicité, nous considérons l’eau comme système physique et un cube
centré autour d’un point P avec une longueur de côté h. Dans le cube se trouve
un certain nombre de molécules ayant une masse volumique moyenne ρh définie
comme ρh = Mh/h

3, où Mh est la masse d’eau dans le cube.

On va maintenant considérer la variation de ρh en fonction de h à un
moment donné. Lorsque h est très petit, le cube contient quelques molécules et
un petit changement de h entrâıne une forte fluctuation de ρh, puisque plusieurs
molécules peuvent être exclues en réduisant h. Notez que 1 cm3 contient environ
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3 × 1022 molécules d’eau et quand h est d’environ 10−7 cm il y a environ 30
molécules d’eau dans le cube. Par conséquent, de grandes fluctuations de ρh
sont attendues pour des valeurs inférieures à h∗ ∼ 10−7 cm (fig. 1.1).

ρh

ρ*

10–7 h (cm)

Fig. 1.1 Variation qualitative de la densité de la masse moyenne à l’intérieur d’un
cube de taille h pour l’eau.

Au-dessus de cette valeur de h, la densité est constante, en supposant une
température uniforme dans le milieu, et elle est considérée comme la masse
volumique de l’eau au point P lorsque l’approximation continue est considérée.
Les vitesse, accélération, etc., continues peuvent être définies en utilisant des
considérations similaires. Un autre exemple où l’hypothèse du milieu continu
peut être facilement violée et où la taille du cube doit être précisément définie,
est celui d’un système physique avec structure poreuse. Lorsque h est très faible,
de faibles variations de sa dimension peuvent provoquer de grandes variations
de la densité de masse (fig. 1.2).

ρh

h* h

ρ*

Fig. 1.2 Variation qualitative de la densité de la masse moyenne à l’intérieur d’un
cube de taille h pour un matériau poreux.
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La densité devient indépendante de h (et donc de la taille du cube) après une
certaine valeur limite h∗, aussi longtemps que la microstructure du solide est
similaire. En général, de grandes variations de la densité ou d’autres grandeurs
physiques sont observées, lorsque h est de l’ordre de la dimension de longueur
dans la microstructure (c’est-à-dire la distance entre les molécules, ou bien les
paramètres de longueur caractéristiques dans des matériaux ayant des micro-
structures complexes comme des matériaux poreux ou composites).

Donc, pour des considérations d’ingénierie et de conception, il n’est pas
nécessaire de raisonner à l’échelle atomique ou microstructurelle. A cette fin,
on considère que les matériaux sont des milieux continus qui seront traités à
l’échelle macroscopique. Cette abstraction de la réalité ignore l’aspect discret
de la matière et considère que les propriétés comme la viscosité, la masse volu-
mique, le module d’élasticité, etc., attribuées à un point du milieu continu, sont
des fonctions continues des variables d’espace. Ces quantités sont des moyennes
obtenues sur un grand nombre de particules à l’intérieur d’un petit volume de
la matière contenant le point. La dimension h spécifique de l’élément de volume
dépend de la structure du milieu et nécessite des techniques mathématiques et
des arguments physiques à définir.

La théorie que nous développerons est une théorie phénoménologique, c’est-
à-dire qu’elle représente la généralisation des lois de la mécanique rationnelle
(mécanique du point) aux milieux continus. Par rapport à la mécanique sta-
tistique, les modèles que nous établirons sont aussi satisfaisants du point de
vue mathématique. On considérera que la transformation entre deux régions
de l’espace, que le matériau peut occuper à des instants différents, est une
transformation continue. Grâce à cette abstraction, on pourra parler de la vi-
tesse en un point d’une manière plus adéquate que la même notion basée sur
un modèle moléculaire. En effet, pour ce dernier modèle, il faut prendre la vi-
tesse moyenne des molécules au voisinage du point considéré. La question de
la définition du voisinage devient cruciale. Si celui-ci est trop grand, alors son
lien avec le point s’estompe ; s’il est trop petit, alors la notion de moyenne
est en question. Pour établir un lien valable entre les modèles moléculaires et
continus, il faut faire appel à des notions de moyennes plus sophistiquées qui
sont en dehors des considérations de cette monographie.

Le débutant en MMC peut se poser la question de savoir pourquoi les
premiers concepts introduits sont consacrés aux vecteurs et aux tenseurs. La
raison est que le calcul tensoriel et l’algèbre qui lui est associée constituent les
outils naturels de la théorie des champs ou du continu. Plus particulièrement,
on désire que les quantités physiques qui décrivent un milieu continu soient
indépendantes du système de coordonnées dans lequel on travaille. Cet objectif
n’est réalisé qu’en faisant appel aux tenseurs.

De nombreuses publications dédiées à la MMC traitent des outils vectoriels
et tensoriels de la MMC. Sans vouloir être exhaustifs, nous renvoyons le lecteur
aux ouvrages suivants pour un complément de lecture : [2, 15, 32, 35, 47, 57].
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1.2 Algèbre vectorielle

1.2.1 Généralités sur les scalaires, vecteurs et tenseurs

En mécanique des milieux continus, la description du mouvement et des gran-
deurs physiques associées se fait dans l’espace ponctuel euclidien R3 (espace
physique ambiant) auquel est associé un espace vectoriel E3 de dimension 3.
Les éléments de R3 et E3 sont appelés respectivement des points et des vec-
teurs. Les scalaires, vecteurs et tenseurs qui décriront les grandeurs mécaniques
introduites plus loin sont également attachés (pour la plupart) aux points d’un
espace ponctuel (typiquement R3) formant alors ce qu’on appelle des champs
scalaires, vectoriels ou tensoriels.

On rappelle tout d’abord qu’un espace vectoriel est défini uniquement à
partir des propriétés opératoires de ses éléments et suppose au préalable l’exis-
tence d’un corps arbitraire (typiquement le corps des nombres réels R) dont les
éléments sont appelés scalaires. L’espace vectoriel E3 est alors l’ensemble des
éléments notés u, v, w, . . . tels que

u+ v ∈ E3 au ∈ E3

(u+ v) +w = u+ (v +w) 1u = u
∃0 ∈ E3 | u+ 0 = u a(bu) = (ab)u
∃ − u ∈ E3 | u+ (−u) = 0 (a+ b)u = au+ bu
u+ v = v + u a(u+ v) = au+ av

(1.1)

pour tout u,v,w ∈ E3 et a, b ∈ R. On remarque que les axiomes (1.1) se
scindent en deux parties. La première concerne la structure additive de l’es-
pace vectoriel et montre que E3 est un groupe commutatif par rapport à l’ad-
dition. Les axiomes restants traduisent l’action du corps R sur l’espace vectoriel
(distributivité par rapport à l’addition vectorielle et l’addition des scalaires).

En munissant E3 d’un produit scalaire afin de calculer ultérieurement des
longueurs et des angles, il prend le nom d’espace euclidien. Le produit scalaire
associe à tout couple de vecteurs u,v ∈ E3 un scalaire noté u · v avec les
propriétés suivantes :

u · v = v · u
u · (αv + βw) = α(u · v) + β(u ·w)

u · u ≥ 0

(1.2)

pour tout u,v,w ∈ E3 et α, β ∈ R. Le produit scalaire est par conséquent
une application de E3 × E3 dans R qui est linéaire par rapport à chacun de
ses arguments. On l’appelle également une forme bilinéaire définie positive. La
positivité vient de la dernière relation dans (1.2). Le produit scalaire permet
de définir la norme d’un vecteur u, notée ‖u‖ par la relation

‖u‖ =
√
u · u . (1.3)

Le vecteur u est dit unitaire lorsque ‖u‖ = 1 et deux vecteurs u et v sont or-
thogonaux si et seulement si u · v = 0. Tout vecteur de E3 peut se décomposer
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de manière unique selon une base formée de trois vecteurs linéairement indé-
pendants de E3. Le choix de la base est arbitraire mais on utilise généralement
la base canonique (e1, e2, e3) définie par

ei · ej =

{
1 si i = j
0 si i 6= j , i, j = 1, 2, 3.

(1.4)

Comme le montre (1.4), les vecteurs de la base canonique sont unitaires et
deux à deux orthogonaux (c.-à-d. orthonormés). La base est dite orthogonale
lorsque les vecteurs ne sont plus unitaires tout en restant bien sûr orthogonaux.

En choisissant un point 0 fixe (mais arbitraire) de l’espace ponctuel R3,
on fait correspondre à tout vecteur x de E3 un point P de R3 et un seul
(différent de 0) tel que OP = x . Le repère cartésien (0, e1, e2, e3) de l’espace
R3 est par définition l’ensemble formé du point 0 pris comme origine et des trois
vecteurs de base orthonormés (e1, e2, e3) issus de cette origine. Les coordonnées
cartésiennes du point P dans le repère ainsi que les composantes du vecteur x
dans la base (e1, e2, e3) associée sont alors représentées par un unique triplet

de nombres (x1, x2, x3) tels que OP = x =
∑3
i=1 xiei (dans ce contexte, x

est le vecteur position du point P). En utilisant les propriétés (1.2) et (1.4), le

produit scalaire de deux vecteurs x =
∑3
i=1 xiei et y =

∑3
j=1 yjej est donné

par

x · y =

3∑
i=1

xiyi . (1.5)

La simplicité du résultat (1.5) montre clairement l’intérêt d’utiliser ultérieure-
ment la base canonique (ou tout autre base orthonormée) pour effectuer des
opérations sur les vecteurs.

Il existe beaucoup de quantités physiques auxquelles seule une valeur peut
être associée. Par exemple, l’une d’entre elles est la masse volumique d’un
matériau. On la notera ρ et elle a pour unités des kg/m3 et pour dimensions
ML−3 avec M la masse et L une longueur. Pour l’eau, à température ambiante,
ρ vaut 1 000 kg/m3. On remarquera que ρ est abusivement appelée densité
par de nombreux auteurs (notamment dans la littérature anglo-saxonne). La
densité est en toute rigueur le rapport de la masse volumique d’un matériau
donné sur celle de l’eau. En conséquence, la densité de l’eau est égale à l’unité.

Dans le voisinage d’un point, cette masse volumique est pratiquement
constante et de plus, il n’y a pas de direction associée à cette grandeur. On
parle alors d’une quantité scalaire.

D’autres quantités ont non seulement une grandeur, mais aussi une direc-
tion. Une force d’un Newton est celle qui, appliquée en un point, lui donne une
accélération d’1 m s−2. Puisque cette force a une direction, c’est un vecteur. On
sait que les vecteurs sont exprimés en fonction du repère dans lequel ils sont
décrits. Dans un repère particulier, ce vecteur est spécifié par ses composantes.
En passant d’un système d’axes à un autre, seules les composantes du vecteur
changeront par une loi de transformation.

Enfin, le concept de tenseur peut être introduit de manière rudimentaire
comme suit. Par exemple, une contrainte est une force par unité de surface. Or
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une force est un vecteur. Il en est de même d’un élément de surface puisqu’on
doit spécifier à la fois sa taille et son orientation, c’est-à-dire la direction du
vecteur normal. Si f décrit le vecteur force et s le vecteur de norme égale à
la surface S dans la direction de sa normale, alors on pourrait penser que la
contrainte T s’exprime par f/s. Cependant, comme la division de deux vecteurs
est une opération indéfinie, on contourne la difficulté en disant qu’étant donné
s, on peut trouver f par la multiplication de s par une nouvelle entité T telle
que

f(s) = Ts .

Ce nouvel être mathématique est un tenseur qui donne la contrainte en un point.
Dans ce cas, il s’agit d’un tenseur d’ordre 2. On sent intuitivement que cette
quantité est associée à deux directions spatiales, et non à une seule comme pour
les vecteurs ou zéro pour les scalaires. En fait, ce tenseur peut être représenté
par une matrice à deux indices, chaque indice correspondant à une direction
de l’espace euclidien. C’est donc une entité à 9 composantes. A nouveau, on
désire que la quantité physique (le tenseur) reste invariante lorsqu’on change
de systèmes d’axes. Dès lors, les composantes d’un tenseur suivront une loi de
transformation lors d’un changement de système de coordonnées.

1.2.2 Changement de coordonnées

Dans l’espace physique euclidien (R3), soit le système orthonormé de coor-
données cartésiennes rectangulaires (0, e1, e2, e3), que nous noterons aussi en
raccourci 0xi (i = 1, 2, 3), d’origine 0 et portant des vecteurs unitaires ei (i =
1, 2, 3) dirigés suivant les axes 0xi (fig. 1.3). Le système d’axes 0x′i (i = 1, 2, 3)
ayant les vecteurs unitaires e′i définit un autre système de coordonnées carté-
siennes de même origine 0. Les cosinus (directeurs) du système x′p par rapport
aux axes xi, notés par cpi, sont donnés par les produits scalaires des vecteurs
de base

cpi = cos (x′p, xi) = e′p · ei i, p = 1, 2, 3 . (1.6)

De même, les cosinus directeurs du premier système par rapport au second sont
donnés par

c′pi = ep · e′i = cip , (1.7)

la dernière égalité étant obtenue par (1.6).

Soit un point P de coordonnées xi dans le premier système et x′i dans le
second. Par la relation (1.6), les coordonnées x′i sont liées à celles xi par les
équations

x′1 = c11x1 + c12x2 + c13x3

x′2 = c21x1 + c22x2 + c23x3

x′3 = c31x1 + c32x2 + c33x3 .

(1.8)

On peut écrire (1.8) sous la forme

x′i =

3∑
j=1

cijxj i = 1, 2, 3 . (1.9)
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P

x3

x2

x1

e3

e1

e2

eꞌ3

eꞌ1

eꞌ2

xꞌ3

xꞌ2

xꞌ1

O

Fig. 1.3 Système de coordonnées cartésiennes rectangulaires.

On peut voir facilement que les inverses de (1.8) sont données par

x1 = c11x
′
1 + c21x

′
2 + c31x

′
3

x2 = c12x
′
1 + c22x

′
2 + c32x

′
3 (1.10)

x3 = c13x
′
1 + c23x

′
2 + c33x

′
3

ou encore

xi =

3∑
j=1

cjix
′
j =

3∑
j=1

c′ijx
′
j . (1.11)

On peut éviter d’utiliser le symbole de sommation
∑

en adoptant par la suite
la convention de sommation d’Einstein sur les indices répétés, c’est-à-dire
que lorsqu’un indice apparâıt deux fois dans un produit, on effectue la somme
par rapport à cet indice en lui faisant prendre successivement toutes les valeurs
possibles (ici, i = 1, 2, 3). Dès lors, les équations (1.9) et (1.11) s’écrivent sous
forme compacte

x′i = cijxj xi = cjix
′
j j = 1, 2, 3 . (1.12)

On pourra écrire par exemple,

σijnj =

3∑
j=1

σijnj = σi1n1 + σi2n2 + σi3n3

σijnjni =

3∑
j=1

3∑
i=1

σijnjni = σ11n
2
1 + σ22n

2
2 + σ33n

2
3 + (σ12 + σ21)n1n2

+ (σ23 + σ32)n2n3 + (σ31 + σ13)n3n1 .
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Dans l’expression σijnj , l’indice i est fixé. Il a une valeur dans 1, 2, 3. On l’ap-
pelle l’indice franc.

Le symbole ui désignera l’ensemble des 31 quantités u1, u2, u3 (3 pour l’es-
pace et 1 pour l’indice franc). De même, le symbole Lij signifie l’ensemble des
32 quantités L11, L12, L13, L21, L22, L23, L31, L32, L33 (3 pour l’espace et 2 pour
les indices francs). Pour un scalaire, on a 30 = 1 quantité. On peut écrire

Lii =

3∑
i=1

Lii = L11 + L22 + L33

AiBkCi =

3∑
i=1

AiBkCi = Bk

3∑
i=1

AiCi = Bk(A1C1 +A2C2 +A3C3)

ds2 = dx2
1 + dx2

2 + dx2
3 =

3∑
i=1

dxi dxi = dxi dxi

Mijkuivjwk = Mjikujviwk = Mikjuivkwj = . . .

On remarquera que l’indice sur lequel la sommation porte, est un indice muet ;
on peut changer de notation pour cet indice sans changer la signification de la
somme. C’est ainsi que

σijnj = σiknk = σilnl .

Un indice muet ne peut pas apparâıtre plus de deux fois dans une expression.
Par conséquent pour insérer la deuxième équation (1.12) dans la première, on
doit la réécrire par exemple sous la forme

xj = cqjx
′
q .

D’où il vient,

x′i = cijcqjx
′
q et de même xi = cjicjqxq . (1.13)

Il est évident que le coefficient de x′q dans la première équation (1.13) doit être
égal à l’unité pour i = q et 0 pour i 6= q. Ceci est vrai également pour la
deuxième équation (1.13). Si on introduit le symbole de Kronecker

δij =

{
1 si i = j
0 si i 6= j ,

(1.14)

alors on obtient
cijcqj = δiq . (1.15)

Les composantes cij forment une matrice orthogonale [C] telle que sa transposée
soit égale à son inverse, ce qui donne

cikc
−1
kj = cikcjk = δij ou [C][C]−1 = [C][C]T = [I] , (1.16)

avec [I] dénotant la matrice unité. La matrice des cij est telle que

det [C] = e1 · (e2 × e3) , (1.17)
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c’est-à-dire det [C] = ±1. Le signe + ou − caractérise un système direct ou
rétrograde. Le symbole × représente le produit vectoriel.

Notons qu’en utilisant le symbole de Kronecker, l’indice d’une composante
peut être changé comme suit

Lik = δijLjk,

AiBkCi = δijAiBkCj ,

∂uj
∂xi

= uj,i = δkj
∂uk
∂xi

= δkjuk,i

∂2ui
∂xj∂xk

= ui,jk = δjl
∂2ui
∂xl∂xk

= δjlui,lk .

1.2.3 Scalaires

Soit un point P d’un milieu continu, et F (P) la valeur réelle d’une fonction
continue de P. Si la valeur F (P) ne dépend pas du système de coordonnées,
alors la fonction F est appelée fonction scalaire, ou scalaire, ou encore tenseur
d’ordre 0. C’est par exemple le cas de la température, de la pression, de l’énergie
cinétique, etc. Ce n’est pas le cas des composantes (du vecteur) de la vitesse
qui dépendent du système de coordonnées. Bien sûr, ceci ne veut pas dire que
la fonction qui fournit la valeur F (P) soit indépendante du système choisi.
Si le point P a pour coordonnées xi et si F (P) a pour valeur f(xi), alors le
changement de coordonnées de la deuxième équation (1.12) entrâıne pour le
scalaire F (P)

F (P) = f(xi) = f(cjix
′
j) = f ′(x′j) . (1.18)

Prenons, par exemple, un champ de température T (P) linéaire donné dans
un système de coordonnées xi par

T (xi) = T0 +
T1 − T0

L
x1 ,

tel que T (0) = T0 et T (L) = T1. Par rotation de 45◦ autour de l’axe x3, on
passe au système de coordonnées x′i par la transformation

[C] =



√
2

2

√
2

2
0

−
√

2

2

√
2

2
0

0 0 1

 .

En toute généralité, la matrice qui exprime un changement de système de co-
ordonnées par rotation autour de l’axe e3 d’un angle θ est donnée par

[C] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
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La température dans le nouveau système de coordonnées devient

T ′(x′i) = T0 +
T1 − T0

L

√
2

2
(x′1 − x′2)

puisque par (1.11)

x1 = c11x
′
1 + c21x

′
2 + c31x

′
3

=

√
2

2
x′1 −

√
2

2
x′2 .

1.2.4 Vecteurs

Soit un vecteur v = PQ ayant son origine au point P et son extrémité au point
Q. Ce vecteur a une direction et trois composantes vi. Le vecteur lui-même est
indépendant du système de coordonnées.

Etudions les représentations de v dans les deux systèmes de coordonnées
liés par les relations

x′i = cijxj et xi = cjix
′
j . (1.19)

Soient xi, yi les coordonnées des points P et Q dans le premier système d’axes
et x′i, y

′
i celles dans le second. Les composantes de v dans le premier système

s’écrivent
vi = yi − xi

et
v′i = y′i − x′i

dans le second. On relie les composantes v′i à celles vi par la loi de transforma-
tion

v′i = y′i − x′i = cij(yj − xj) = cijvj . (1.20)

Comme dans un système d’axes cartésiens, les cosinus directeurs cij sont indé-
pendants des coordonnées de P, on peut écrire

∂x′i
∂xj

= cij
∂xi
∂x′j

= cji (1.21)

et donc
∂xi
∂x′j

=
∂x′j
∂xi

.

En combinant (1.20) et (1.21), on obtient

v′i =
∂x′i
∂xj

vj ou v′i =
∂xj
∂x′i

vj . (1.22)

On dira par définition qu’un objet mathématique v caractérisé par les trois
composantes vi dans un système de coordonnées cartésiennes est un vecteur ou
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un tenseur d’ordre 1 si lors d’un changement de système de coordonnées, ses
composantes se transforment suivant la loi (1.22). En conséquence, un triplet
de nombres dans un système de coordonnées ne donne pas nécessairement un
vecteur. C’est la loi de transformation (1.22) associée au caractère invariant
du vecteur qui en assure la nature. La notation indicée permet de mettre en
œuvre l’algèbre standard des vecteurs et de leurs composantes scalaires. Par
exemple, si a est un scalaire, la iième composante de av est avi. Par (1.22), on
peut montrer que la multiplication av′ est un vecteur puisque

(av′i) = cij(avj) =
∂x′i
∂xj

(avj) .

L’addition de deux vecteurs s’obtient par l’addition de leurs composantes res-
pectives, c’est-à-dire

wi = ui + vi . (1.23)

En notation vectorielle, on a

w = u+ v .

On traite maintenant le cas du produit scalaire de deux vecteurs. On note
le produit b comme la somme uivi. Sous forme symbolique, b = u · v = v · u
tandis que

b = uivi = u1v1 + u2v2 + u3v3 . (1.24)

Examinons si le produit b est affecté par un changement d’axes. La relation
(1.20) peut se mettre sous la forme

vi = yi − xi = cji(y
′
j − x′j) = cjiv

′
j .

En conséquence, il vient

b = uivi = cjiu
′
jckiv

′
k

= cjickiu
′
jv
′
k

= δjku
′
jv
′
k

= u′jv
′
j .

Donc le produit uivi est un scalaire (1.18) puisque sa valeur ne change pas lors
d’un changement de repère. Par la géométrie vectorielle, on peut montrer que

b = ‖u‖ ‖v‖ cos θ , (1.25)

où ‖u‖ et ‖v‖ sont les normes des vecteurs u et v respectivement, tandis que
θ est l’angle entre les deux vecteurs.

On rappelle qu’une conséquence importante de (1.25) est que deux vecteurs
(non nuls) orthogonaux ont un produit scalaire nul. Un autre résultat intéres-
sant provient de ce que le produit scalaire du vecteur par lui-même fournit le
carré de sa norme :

vivi = ‖v‖2 . (1.26)
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Si le vecteur considéré est issu de l’origine et repère un point P de l’espace
euclidien, ce vecteur est le vecteur position x tel que x = x(x1, x2, x3) = OP .
Le vecteur position est un concept fondamental de la cinématique des milieux
continus que nous décrirons plus complètement au chapitre 2. Ce vecteur dé-
pend des coordonnées spatiales. Dès lors, on peut écrire

∂xi
∂xj

= δij . (1.27)

1.2.5 Symbole de permutation et produit vectoriel

Le symbole de permutation est défini de la manière suivante :

εijk =

 1 si ijk est une permutation paire de 123
−1 si ijk est une permutation impaire de 123
0 dans tous les autres cas

(1.28)

ou encore

εijk =
1

2
(i− j)(j − k)(k − i) . (1.29)

Suite à la définition (1.28), on peut déplacer un indice de l’avant vers l’arrière
et inversement

εijk = εjki = εkij .

La permutation de deux indices adjacents induit un changement de signe

εijk = −εjik
εijk = −εikj .

Par (1.28) et la définition du symbole de Kronecker (1.14), on peut prouver
l’identité très utile

εijkεilm = δjlδkm − δjmδkl . (1.30)

Dans une base orthonormée de R3, le produit vectoriel de deux vecteurs w =
u× v, noté parfois u ∧ v, se définit par l’égalité

wi = εijkujvk . (1.31)

Par exemple, on peut évaluer que

w1 = ε123u2v3 + ε132u3v2 = u2v3 − u3v2 .

On peut faire de même pour w2 et w3.

Un point important de la notation (1.31) est que le premier indice de εijk
doit être celui de la composante du vecteur w, le deuxième doit être le même
que celui du premier vecteur du produit u×v et le dernier doit être associé au
dernier vecteur du produit.
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La norme d’un produit vectoriel est égale au produit des normes des vec-
teurs multiplié par le sinus de l’angle θ que forment ces vecteurs :

‖w‖ = ‖u‖ ‖v‖ sin θ . (1.32)

Un certain nombre de formules en notation symbolique présente des combinai-
sons diverses de produits scalaires et vectoriels. Par exemple

u× v = −v × u (1.33)

u× (v +w) = u× v + u×w (1.34)

(u× v) ·w = (v ×w) · u = (w × u) · v (1.35)

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) . (1.36)

Exemple 1.1

Le produit vectoriel engendre un vecteur perpendiculaire au plan des deux
vecteurs et les trois vecteurs u, v, w forment un système direct. On peut
démontrer que w est orthogonal à v en montrant que le produit scalaire
v ·w est nul. En utilisant (1.28), il vient

viwi = viεijkujvk = εijkvivkuj

=
1

2
(εijkvivkuj + εijkvivkuj) =

1

2
(εijkvivkuj + εkjivkviuj)

=
1

2
(εijkvivkuj − εijkvivkuj) = 0 .

Exemple 1.2

On utilisera l’algèbre de la notation indicée pour vérifier l’identité (1.36).
Le membre de gauche G s’écrit

G = (a× b) · (c× d) = εijkajbkεilmcldm .

Avec (1.30), on obtient

G = (δjlδkm − δjmδkl) ajbkcldm
= δjlajclδkmbkdm − δjmajdmδklbkcl .

Par les propriétés du symbole de Kronecker δij , on pose l = j et m = k
dans le premier terme et m = j et l = k dans le second. On a

G = ajcjbkdk − ajdjbkck .

Le membre de droite de cette dernière relation n’est rien d’autre que la
notation indicée du membre correspondant de droite de (1.36).
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Exemple 1.3

Si Pi = εijkuk,j où ui sont des fonctions continues de xi avec des dérivées
partielles continues, démontrer que Pi,i = 0.

On utilise des propriétés du symbole de permutation pour modifier l’expres-
sion de manière suivante

Pi = εijkuk,j ⇒ Pi,i = εijkuk,ji = εjikuk,ij

εjik = −εijk, uk,ij = uk,ji

⇒ Pi,i = εijkuk,ji = −εijkuk,ji
2Pi,i = εijkuk,ji − εijkuk,ji = 0 ⇒ Pi,i = 0 .

1.3 Algèbre tensorielle

1.3.1 Définition des tenseurs d’ordre 2

La notion de tenseur d’ordre 2 est introduite par l’examen de la représentation
d’un objet invariant. Soit E3 l’espace vectoriel euclidien des vecteurs associé à
R3 et L une transformation linéaire sur E3 qui transforme un vecteur en un
autre, c’est-à-dire

L : E3 → E3 tel que u 7→ Lu . (1.37)

Si L transforme u1 en v1 et u2 en v2 par les relations

Lu1 = v1

Lu2 = v2

et si L a les propriétés suivantes

L(u1 + u2) = Lu1 +Lu2

L(αu1) = αLu1

(1.38)

avec u1 et u2 deux vecteurs arbitraires de E3 et α ∈ R, alors on dit que L est
une transformation linéaire. C’est aussi un tenseur d’ordre 2 ou simplement un
tenseur. Les tenseurs unité I et nul O sont définis par les relations u = Iu
et 0 = Ou, respectivement.

Pour tout vecteur u, le vecteur v est tel que l’on a

v = Lu = Luiei = uiLei . (1.39)

Les composantes de v sont obtenues en prenant le produit scalaire

vi = ei · v . (1.40)
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Par combinaison de (1.39) et (1.40), il vient

vi = ei · (ujLej) = ujei ·Lej . (1.41)

Les termes tels que, par exemple, e1·Le1 et e2·Le1 sont les composantes suivant
e1 et e2 de Le1. On convient d’écrire ces composantes comme L11 = e1 ·Le1,
L21 = e2 ·Le1, etc. En général, on aura

Lij = ei ·Lej . (1.42)

Les éléments Lij sont les composantes du tenseur L. Par (1.41) et (1.42), on
obtient

vi = Lijuj . (1.43)

Cette dernière relation peut s’écrire sous forme matricielle v1

v2

v3

 =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 u1

u2

u3

 . (1.44)

La matrice  L11 L12 L13

L21 L22 L23

L31 L32 L33


est la matrice du tenseur L par rapport aux vecteurs de base {ei}. On remar-
quera que les composantes de la première colonne sont celles du vecteur Le1,
celle de la seconde colonne sont les composantes du vecteur Le2 et ainsi de
suite. Donc, on a

Le1 = L11e1 + L21e2 + L31e3 = Lj1ej ,

c’est-à-dire
Lei = Ljiej . (1.45)

On constate donc que les composantes d’un tenseur dépendent du système de
coordonnées défini par la base {ei} de la même manière que les composantes
d’un vecteur en dépendent également.

Cependant, un tenseur qui est un opérateur linéaire invariant, est une gran-
deur intrinsèque, comme par exemple, une force par unité de surface. Seules ses
composantes seront affectées par un changement de base. On notera la matrice
associée au tenseur L

[L] =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 (1.46)

et son déterminant par

detL = det[L] = det

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 . (1.47)

Un tenseur est dit singulier si et seulement si det L = 0.
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1.3.2 Produit tensoriel ou dyadique de deux vecteurs

Le produit tensoriel ou produit dyadique a ⊗ b de deux vecteurs a et b est
défini comme le tenseur qui assigne à chaque vecteur v le vecteur (b · v)a

(a⊗ b)v = (b · v)a = a(b · v) (1.48)

Pour tout vecteur v et w et α, β ∈ R, on a

(a⊗ b)(αv + βw) =
(
b · (αv + βw)

)
a

=
(
α(b · v) + β(b ·w)

)
a

= α(b · v)a+ β(b ·w)a

= α(a⊗ b)v + β(a⊗ b)w .

Ceci démontrera que (a⊗ b) est un tenseur. Ses composantes par rapport à la
base {ei} (i = 1, 2, 3) sont

(a⊗ b)ij = ei · (a⊗ b)ej = ei ·
(
(b · ej)a

)
= ei · (abj) = (ei · a)bj = aibj .

Donc, on a

(a⊗ b)ij = aibj . (1.49)

La matrice correspondante sera donnée par

[a⊗ b] =

 a1

a2

a3

( b1 b2 b3
)

=

 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 .

En général, (u⊗ v) 6= (v ⊗ u). Evaluons le produit tensoriel ei ⊗ ej . On a

(ei ⊗ ej)u = (ej · u)ei = ujei . (1.50)

Par (1.50) et (1.43), on peut écrire

v = viei = Lu = Lijujei = Lij(ei ⊗ ej)u .

Par conséquent, on obtient

L = Lij(ei ⊗ ej) . (1.51)

Exemple 1.4

Les tenseurs identité I et le produit dyadique peuvent s’exprimer comme

I = δij(ei ⊗ ej)
a⊗ b = aibj(ei ⊗ ej) .
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1.3.3 Loi de transformation des composantes cartésiennes des tenseurs

La représentation dans le système de coordonnées cartésiennes xi de l’opérateur
linéaire L, qui est invariant, est donnée par ses composantes Lij (1.42). Dans
le système de coordonnées x′i, les composantes de L s’expriment comme

L′ij = e′i ·Le′j .

On peut évaluer facilement la relation entre les composantes Lij et L′ij . En
effet, par (1.20), la relation précédente donne

L′ij = (cikek) ·L(cjlel) = cikcjlek ·Lel = cikcjlLkl . (1.52)

En invoquant (1.21), on a

L′ij =
∂x′i
∂xk

∂x′j
∂xl

Lkl ou L′ij =
∂xk
∂x′i

∂xl
∂x′j

Lkl . (1.53)

En notation matricielle, l’équation (1.52) s’écrit

[L′] = [C][L][C]T . (1.54)

Par définition, une matrice [L] à 9 composantes correspond à un tenseur d’ordre
2 si lors d’un changement de coordonnées, ses composantes se transforment sui-
vant (1.53). Par extension, on parlera aussi du tenseur Lij . Les lois de transfor-
mation (1.53) garantissent l’invariance de L vis-à-vis du choix de coordonnées.

A titre d’exemple, vérifions que le produit tensoriel T = a⊗b est un tenseur
d’ordre 2. Il vient

T ′ij = a′ib
′
j =

∂x′i
∂xk

∂x′j
∂xl

akbl =
∂x′i
∂xk

∂x′j
∂xl

Tkl .

1.3.4 Tenseurs d’ordre quelconque

Rappelons les lois de transformation des vecteurs (tenseurs d’ordre 1) et des
tenseurs d’ordre 2 pour un changement de coordonnées

v′i =
∂x′i
∂xj

vj L′ij =
∂x′i
∂xk

∂x′j
∂xl

Lkl .

En généralisant ces lois, on peut définir un tenseur d’ordre n. Soit T un objet
dont la valeur dans un système de coordonnées xi est donnée par 3n compo-
santes Ti1i2···in , où les indices ij prennent la valeur 1, 2 ou 3. Par définition, T
est un tenseur d’ordre n si lors d’un changement de coordonnées, ses compo-
santes se transforment selon la loi

T ′i1i2···in =
∂x′i1
∂xj1

∂x′i2
∂xj2

· · · ∂x
′
in

∂xjn
Tj1j2···jn . (1.55)

On notera que pour n = 1 et 2, on retrouve les lois de transformation des
vecteurs et des tenseurs d’ordre 2.
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On peut aussi vérifier que le symbole de permutation introduit à l’équation
(1.28) est un tenseur d’ordre 3. Pour le montrer, on applique à εijk la trans-
formation tensorielle (1.55) et on vérifie que les composantes ε′ijk satisfont les
relations (1.28). Par (1.21), on écrit

ε′ijk = cimcjnckpεmnp .

On peut développer le second membre en tenant compte de (1.28). On obtient

ε′ijk = ci1cj2ck3 + ci2cj3ck1 + ci3cj1ck2 − ci2cj1ck3 − ci1cj3ck2 − ci3cj2ck1 .

Le membre de droite de cette équation n’est autre que le déterminant de la
matrice  ci1 ci2 ci3

cj1 cj2 cj3
ck1 ck2 ck3


qui est la matrice orthogonale des cosinus directeurs. Lorsque (i, j, k) est une
permutation paire de (1, 2, 3), ε′ijk vaut 1 si le système d’axes est direct ; lorsque
(i, j, k) est une permutation impaire de (1, 2, 3), les lignes sont permutées un
nombre impair de fois, et le déterminant vaut −1. Enfin, dans tous les autres
cas, deux lignes au moins sont égales et le déterminant est nul.

Les tenseurs d’ordre n satisfont les règles suivantes.

Multiplication par un scalaire :
la multiplication d’un tenseur d’ordre n par un scalaire s’effectue en
multipliant chaque composante du tenseur par le scalaire. Le résultat
est un tenseur d’ordre n.

Combinaison linéaire :
la combinaison linéaire de deux tenseurs d’ordre n s’effectue par la
combinaison linéaire des composantes correspondantes. On obtient un
tenseur de même ordre.

Tenseur nul :
c’est le tenseur dont toutes les composantes sont égales à zéro.

Tenseurs égaux :
lorsque les composantes de deux tenseurs du même ordre sont égales
terme à terme dans un système de coordonnées, elles le sont dans tout
autre système ; les tenseurs sont égaux. Par conséquent, si une relation
tensorielle est vérifiée dans un système de coordonnées, elle est vraie
dans tout système de coordonnées.

Produit extérieur de tenseurs :
soientAi1···in et Bj1···jm les composantes respectives d’un tenseur d’ordre
n et d’un tenseur d’ordre m dans un système de coordonnées. Les 3n+m

quantités obtenues par

Ci1···inj1···jm = Ai1···inBj1···jm
forment un tenseur C d’ordre n + m. A titre d’exemple, on a montré
précédemment que le produit tensoriel (dyadique) de deux vecteurs
donne un tenseur d’ordre 2.
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Contraction d’un tenseur :
soit A un tenseur d’ordre n dont les composantes dans un système de
coordonnées sont Ai1···in .
L’opération de contraction consiste à égaler deux indices du tenseur,
par exemple le jième et le kième avec j et k ≤ n, et en sommant sur ces
indices (j = k = 1, 2, 3) pour former un tenseur d’ordre n− 2 compre-
nant donc 3n−2 composantes. Ce tenseur sera obtenu par contraction
des indices j et k.
Par exemple, Lii est la seule contraction possible de Lij . Ce n’est plus
un tenseur d’ordre 2, mais un scalaire (tenseur d’ordre 0).

Considérons deux tenseurs S et T d’ordre 2. Leur produit extérieur en-
gendre un tenseur d’ordre 4 dont les composantes sont

Rijkl = SijTkl .

Les composantes obtenues par contraction sur les deuxième et troisième indices
de R sont

Rimml = SimTml .

Montrons qu’il s’agit bien d’un tenseur d’ordre 2. Par la loi de transformation
(1.55), on a

R′ijkl = cipcjqckrclsRpqrs .

De même, on a

R′imml = cipcmqcmrclsRpqrs .

Par (1.15), on obtient

R′imml = cipcls δqrRpqrs = cipclsRprrs

=
∂x′i
∂xp

∂x′l
∂xs
Rprrs .

Cette dernière égalité prouve le caractère tensoriel d’ordre 2 de Rimml.
A posteriori, on peut s’apercevoir que le membre de gauche de l’équation

(1.30) εijkεilm est un tenseur d’ordre 4 obtenu par contraction. De la même
manière, la contraction

εijkεijl = 2 δkl (1.56)

fournit un tenseur d’ordre 2 et la relation

εijkεijk = 6

donne un scalaire.
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1.3.5 Algèbre des tenseurs d’ordre 2

Somme de tenseurs

Soient L et T deux tenseurs d’ordre 2. Leur somme notée (T +L) est telle que
pour tout vecteur a, on ait

(T +L)a = Ta+La . (1.57)

Les composantes de (T +L) sont telles que

(T +L)ij = ei · (T +L)ej = ei · Tej + ei ·Lej

ou encore
(T +L)ij = Tij + Lij . (1.58)

Produit intérieur de deux tenseurs

Si L et T sont deux tenseurs d’ordre 2, alors LT et TL sont définis par les
équations

(LT )a = L(Ta) (1.59)

et
(TL)a = T (La) (1.60)

Les composantes de LT s’obtiennent comme suit, en tenant compte de (1.45),

(LT )ij = ei · (LT )ej = ei ·L(Tej)

= ei ·LTmjem = Tmjei ·Lem .

Il vient
(LT )ij = LimTmj . (1.61)

De même, on a
(TL)ij = TimLmj . (1.62)

On remarquera que le produit intérieur des tenseurs L et T est une multipli-
cation contractée des tenseurs d’ordre 2, dans laquelle la contraction porte sur
le dernier indice du premier tenseur et sur le premier indice du second ten-
seur. Sous forme matricielle, on peut écrire que la matrice relative au produit
intérieur est égale au produit des matrices des deux tenseurs tel que[

(LT )
]

= [L][T ] et
[
(TL)

]
= [T ][L] .

On remarquera que le produit intérieur de tenseurs n’est pas commutatif en
général, c’est-à-dire LT 6= TL.

Si L, T et S sont trois tenseurs, alors on peut évaluer(
L(ST )

)
a =

(
L(ST )a

)
= L

(
S(Ta)

)
et

(LS)(Ta) = L
(
S(Ta)

)
.



Algèbre tensorielle 21

Donc, on obtient

L(ST ) = (LS)T . (1.63)

Le produit intérieur des tenseurs est associatif. Lorsque L = T , on peut intro-
duire les notations suivantes TT = T 2, TT 2 = T 3, etc.

On a la propriété

det (ST ) = detS detT (1.64)

Notons aussi les relations

L(a⊗ b) = (La)⊗ b (1.65)

(u⊗ v)(a⊗ b) = (v · a)u⊗ b = u⊗ b(v · a) . (1.66)

Exemple 1.5

On utilise l’algèbre de la notation indicée pour vérifier l’identité (1.65)

(L(a⊗ b))ij = Lim(a⊗ b)mj = Limambj

= (La)ibj = ((La)⊗ b)ij .

1.3.6 Propriétés des tenseurs

Tenseur transposé

Le tenseur transposé d’un tenseur est celui obtenu en échangeant deux indices :
le transposé de Lij est Lji. On le notera LT , et donc, on a la relation(

LT
)

= Lji . (1.67)

En conséquence, on peut établir aisément que

(LS)T = STLT (1.68)

et

u ·LTv = Lu · v = v ·Lu . (1.69)

Pour la dyade, on a

(a⊗ b)T = b⊗ a , (1.70)

(a⊗ b)L = a⊗LT b . (1.71)

On notera également la propriété

detLT = detL . (1.72)
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Inverse d’un tenseur

Pour un tenseur régulier L, c’est-à-dire det L 6= 0, il existe un tenseur unique
appelé le tenseur inverse L−1 de L qui satisfait la relation

LL−1 = L−1L = I . (1.73)

Par définition de l’inverse, on peut montrer que(
L−1

)−1
= L (1.74)

(αL)−1 =
1

α
L−1 (1.75)

det (L−1) =
(
detL

)−1
. (1.76)

Pour deux tenseurs inversibles S et T , on a

(ST )−1 = T−1S−1 . (1.77)

Tenseurs symétriques

On dit qu’un tenseur est symétrique lorsqu’il est égal à son transposé. Le tenseur
L est symétrique si

L = LT , (1.78)

c’est-à-dire si

Lij = Lji . (1.79)

Par conséquent, un tenseur symétrique a six composantes indépendantes.

Tenseurs antisymétriques

Un tenseur L est dit antisymétrique s’il est égal à l’opposé de son transposé,
ou encore

L = −LT , (1.80)

c’est-à-dire

Lij = −Lji . (1.81)

Dans ce dernier cas, les composantes diagonales de L sont nulles et seules trois
composantes sont indépendantes.

Dès lors, on peut prouver que tout tenseur L d’ordre 2 peut être décomposé
de manière unique en la somme d’un tenseur symétrique LS et d’un tenseur
antisymétrique LA. Pour montrer que cette décomposition est possible, on écrit

Lij = LSij + LAij

LSij =
1

2
(Lij + Lji)

LAij =
1

2
(Lij − Lji) .

(1.82)
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Pour démontrer l’unicité, supposons qu’il existe deux décompositions, c’est-à-
dire

Lij = LSij + LAij = L′Sij + L′Aij .

La dernière égalité donne

LSij − L′Sij = L′Aij − LAij . (1.83)

Le membre de gauche de (1.83) est symétrique, le membre de droite est anti-
symétrique. Seul le tenseur nul (toutes ses composantes sont nulles) satisfait la
condition (1.83). On a donc

LSij = L′Sij LAij = L′Aij .

Trace d’un tenseur

La trace d’un tenseur L d’ordre 2, notée tr, est la somme de ses composantes
diagonales

tr (L) = tr (Lij (ei ⊗ ej)) = Lij tr (ei ⊗ ej) = Lij δij = Lii . (1.84)

La trace du produit tensoriel de deux vecteurs se réduit au produit scalaire des
vecteurs

tr (a⊗ b) = a · b . (1.85)

Les propriétés de la trace sont

trL = trLT (1.86)

tr (S + T ) = trS + trT (1.87)

tr (αL) = α trL (1.88)

tr (AL) = tr (LA) , (1.89)

où α ∈ R.

Tenseurs déviateurs

Un tenseur L peut être décomposé en la somme d’un tenseur sphérique Ls et
d’un tenseur à trace nulle Ld, dit déviateur tel qu’on ait

L = Ls +Ld . (1.90)

La composante sphérique Ls est le tiers de sa trace, soit Lsij = 1
3Lkkδij . Les

composantes déviatoires Ld seront définies par

Ldij = Lij −
1

3
tr (L) δij . (1.91)

Ces composantes Ldij ne sont pas indépendantes car la trace de Ld est nulle.
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Tenseur orthogonal

Un tenseur Q est orthogonal s’il satisfait la condition

Qu ·Qv = u · v (1.92)

pour tout vecteur u et v. En utilisant (1.69), la condition (1.92) s’écrit

u ·QTQv = u · v. (1.93)

Donc un tenseur orthogonal satisfait l’égalité QTQ = I. Puisque u · v est
préservé dans cette transformation, l’angle entre les vecteurs et leur norme ‖u‖,
‖v‖ sont aussi préservés. Le tenseur Q possède la propriété que detQ = ±1.
Si detQ = +1, le tenseur est appelé orthogonal propre ; il correspond à une
rotation. Lorsque detQ = −1, il est appelé impropre et correspond à une
réflexion. Il est important de remarquer le lien entre le tenseur orthogonal Q
et le changement de coordonnées résultant de la rotation des axes effectuée
dans le paragraphe 1.2.2. On y a défini une nouvelle base vectorielle e′i (i =
1, 2, 3) par rotation de la base vectorielle ei (i = 1, 2, 3), les deux systèmes
d’axes étant cartésiens orthogonaux. Puisque par (1.92), l’angle entre vecteurs
est conservé, le changement de coordonnées peut être considéré comme une
transformation orthogonale qui effectue la rotation des vecteurs de base ei en
e′i. Par conséquent, la matrice du tenseur Q est égale à la matrice [C].

Produit scalaire de deux tenseurs

Le produit scalaire de deux tenseurs d’ordre 2 est le scalaire défini par la double
somme

a = SijTij . (1.94)

Symboliquement, on le note a = S : T . On remarquera qu’il s’agit d’une
multiplication avec double contraction. En effet, on peut écrire successivement

S : T = tr (STT ) = tr (T TS) = tr (ST T ) = tr (TST ) = T : S . (1.95)

La norme d’un tenseur ‖L‖ est définie par la relation

‖L‖ = (L : L)1/2 = (LijLij)
1/2 ≥ 0 . (1.96)

Le produit scalaire satisfait aussi les propriétés suivantes :

L : (ST ) =
(
STL

)
: T =

(
LT T

)
: S (1.97)

(u⊗ v) : (a⊗ b) = (u · a)(v · b) (1.98)

L : (a⊗ b) = a ·Lb = (a⊗ b) : L . (1.99)



Algèbre tensorielle 25

Exemple 1.6

On utilisera l’algèbre de la notation indicée pour vérifier l’identité (1.99).
Avec la définition (1.94), il vient

L : (a⊗b) = Lij(a⊗b)ij = Lijaibj = aiLijbj = a ·Lb . ¶ (1.100)

Exemple 1.7

On considère les tenseursA etB tels que Aij = Aji est symétrique et Bij =
−Bji antisymétrique. Le produit de ces deux tenseurs s’annule. (Notons que
AjiBij = AijBij puisque le résultat est un scalaire.) D‘après les définitions
(1.78), (1.80) et (1.94), on a

(A : B) = AijBij =
1

2
(AijBij +AijBij) =

1

2
(AijBij −AijBji)

=
1

2
(AijBij −AjiBij) =

1

2
(AijBij −AijBij) = 0 . (1.101)

Produit à droite d’un tenseur et d’un vecteur

Le produit à droite d’un tenseur L et d’un vecteur u est défini comme

vj = uiLij = Lijui . (1.102)

On le note uL. Ici, l’ordre des symboles est important, ce qui n’est pas le cas
pour la notation indicée. La forme symbolique Lu représente un autre vecteur
qui en notation indicée, s’écrit

wi = Lijuj = ujLij . (1.103)

On remarquera que cette dernière relation n’est autre que (1.43).

1.3.7 Vecteur dual d’un tenseur d’ordre 2

Les composantes di du vecteur dual (ou axial) d’un tenseur L sont définies par
le produit

di =
1

2
εikjLjk = −1

2
εijkLjk . (1.104)

soit explicitement

d1 = −1

2
(ε123L23 + ε132L32) = −1

2
(L23 − L32)

d2 = −1

2
(ε231L31 + ε213L13) = −1

2
(L31 − L13)

d3 = −1

2
(ε312L12 + ε321L21) = −1

2
(L12 − L21) .
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On remarque au passage que si le tenseur L est symétrique, le vecteur dual d
est nul. Décomposant L en ses parties symétrique et antisymétrique, il vient
par (1.82)

di = −1

2

(
εijkL

S
jk + εijkL

A
jk

)
. (1.105)

Comme εijk est par définition antisymétrique par rapport à n’importe quel
couple de ses indices, le premier terme du membre de droite s’annule puisque
c’est le produit intérieur d’un tenseur symétrique par un tenseur antisymétrique
(1.101). Donc le vecteur dual dépend uniquement de la partie antisymétrique
d’un tenseur

di = −1

2
εijkL

A
jk . (1.106)

L’inverse de la relation (1.104) s’obtient en multipliant les deux membres par
εilm, c’est-à-dire

εilmdi = εlmidi = −1

2
εilmεijkLjk .

Grâce à (1.30), on obtient successivement

εilmdi = −1

2
(δlj δmk − δlk δmj)Ljk

= −1

2
(Llm − Lml) = −LAlm

ou encore
−LAlm = εlmidi . (1.107)

Les trois composantes indépendantes d’un tenseur antisymétrique (les com-
posantes diagonales sont nulles) sont équivalentes aux trois composantes du
vecteur dual pour ce qui concerne l’information qu’elles fournissent, puisque
d1 = −LA23, d2 = −LA31, d3 = −LA12.

1.3.8 Valeurs propres et vecteurs propres d’un tenseur

Soit un tenseur L. Si u est un vecteur qui sous l’application de L se transforme
en un vecteur parallèle à lui-même, c’est-à-dire

Lu = λu , (1.108)

alors le vecteur u est un vecteur propre de L et λ est la valeur propre corres-
pondante. On sait que les vecteurs propres sont de longueur arbitraire, en toute
généralité. Cependant, pour la facilité, nous allons les normaliser à l’unité. Soit
n un vecteur propre unitaire. Alors, si on introduit I le tenseur unité, on peut
écrire

Ln = λn = λIn , (1.109)

ce qui donne
(L− λI)n = 0 avec n · n = 1 . (1.110)

Sous forme indicée, avec n = niei, on a

(Lij − λ δij)nj = 0 njnj = 1 . (1.111)
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Comme l’équation (1.111) est valable pour tout n 6= 0, on doit résoudre
l’équation

det
(
[L]− λ[I]

)
= 0 (1.112)

pour obtenir une solution.

Si le tenseur L est symétrique, alors l’équation caractéristique (1.112) per-
met d’invoquer un théorème de l’algèbre linéaire qui s’énonce ainsi.

Théorème

Les valeurs propres d’une matrice réelle symétrique sont toutes réelles.

Il en sera de même pour les valeurs propres correspondantes du tenseur L,
qu’on appellera valeurs principales. Les vecteurs propres associés définissent les
directions principales.

Montrons que pour un tenseur symétrique, il y a toujours trois directions
principales orthogonales entre elles. Soient n1 et n2 deux vecteurs propres
correspondant aux valeurs propres respectives λ1 et λ2 du tenseur L. Alors,

Ln1 = λ1n1 (1.113)

et
Ln2 = λ2n2 . (1.114)

Effectuons le produit scalaire de (1.113) par n2 et de (1.114) par n1. On obtient
en passant à la forme indicée

Lij(n1)j(n2)i = λ1(n1)i(n2)i (1.115)

et
Lij(n2)j(n1)i = λ2(n2)i(n1)i . (1.116)

Le premier membre de (1.116) peut se transformer grâce à la propriété de
symétrie de L. On écrit

Lji(n1)j(n2)i = λ2(n2)i(n1)i . (1.117)

Soustrayant (1.115) et (1.117), il en résulte

(λ1 − λ2)(n1 · n2) = 0 . (1.118)

Puisque λ1 6= λ2, alors n1 · n2 = 0 et n1, n2 sont orthogonaux. Donc, on
peut conclure que si les valeurs propres sont toutes distinctes, alors les trois
directions principales sont mutuellement orthogonales.

Si λ1 = λ2 6= λ3, on a n1 · n3 = n2 · n3 = 0. Les directions n1 et n2 sont
choisies mutuellement orthogonales et normales à n3.

Si λ1 = λ2 = λ3, les directions n1, n2 et n3 sont choisies mutuellement
orthogonales sans aucune restriction.
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Examinons quelle est la forme de la matrice d’un tenseur par rapport à ses
directions principales. Notons n1, n2, n3 les vecteurs unitaires dans ces direc-
tions. Si on utilise ces vecteurs comme vecteurs de base, alors les composantes
du tenseur deviennent

L11 = n1 ·Ln1 = n1 · (λ1n1) = λ1

L22 = λ2

L33 = λ3

L12 = n1 ·Ln2 = (n1 · λ2n2) = 0 = L21

L13 = L31 = 0

L23 = L32 = 0 .

(1.119)

Donc la matrice est diagonale et ses éléments diagonaux sont les valeurs propres.

Invariants scalaires d’un tenseur et théorème de Cayley-Hamilton

L’équation caractéristique d’un tenseur (1.112) est cubique en λ. On peut
l’écrire

λ3 − I1(L)λ2 + I2(L)λ− I3(L) = 0 , (1.120)

où I1(L), I2(L), I3(L) sont les invariants scalaires du tenseur L. Ceux-ci sont
tels que

I1(L) = Lii = trL

I2(L) =

∣∣∣∣ L11 L12

L21 L22

∣∣∣∣+

∣∣∣∣ L22 L23

L32 L33

∣∣∣∣+

∣∣∣∣ L11 L13

L31 L33

∣∣∣∣
=

1

2
(LiiLjj − LijLji)

=
1

2

(
(tr L)2 − tr (LL)

)
=

1

2

(
(tr L)2 − tr (L2)

)
I3(L) = εijkLi1Lj2Lk3 = detL .

(1.121)

Comme par définition les valeurs propres de L sont indépendantes des vec-
teurs de base {ei}, alors les coefficients de la cubique doivent être les mêmes
pour tout {ei}. C’est la raison de leur nom « invariants scalaires ».

Exemple 1.8

Trouver les valeurs principales (valeurs propres) et les vecteurs unitaires
correspondants (vecteurs propres) du tenseur symétrique

[L] =

 2 1 –2
1 4 –3
–2 –3 –2

 (1.122)
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En utilisant les expressions (1.121), les invariants correspondants sont

I1(L) = 4, I2(L) = −18, I3(L) = −36,

et l’équation caractéristique correspondante (1.112) est donnée par

λ3 − 4λ2 − 18λ+ 36 = 0.

Cette équation a trois racines distinctes qui sont les valeurs principales de
L

λ1 = 6, λ2 = 1, 65, λ3 = −3, 65.

Supposons que le vecteur propre n1 correspondant à λ1 a comme compo-
santes (n1)1, (n1)2, (n1)3. Pour cette valeur propre particulière, l’équation
(1.111) donne le système d’équations suivant

(2− 6)(n1)1 + (n1)2 − 2(n1)3 = 0

(n1)1 + (4− 6)(n1)2 − 3(n1)3 = 0

−2(n1)1 − 3(n1)2 − (2 + 6)(n1)3 = 0

Les deux premières équations donnent (n1)2 = −2(n1)3. En insérant ce
résultat dans la troisième équation, on obtient (n1)1 = −(n1)3. La relation
d’orthogonalité est

(n1)2
1 + (n1)2

2 + (n1)2
3 = 1 .

Avec cette condition et les résultats pour (n1)1, (n1)2, on obtient (n1)3 =
0, 4082. Avec cette valeur, les autres composantes sont (n1)1 = −0, 4082,
(n1)2 = −0, 8165. Par une démarche similaire on calcule les vecteurs uni-
taires pour les deux autres valeurs principales. Finalement, il vient

λ1 = 6 : (n1)1 = −0, 4082, (n1)2 = −0, 8165, (n1)3 = +0, 4082

λ2 = 1.65 : (n2)1 = +0, 8736, (n2)2 = −0, 4792, (n2)3 = −0, 0849

λ3 = −3, 65 : (n3)1 = +0, 2650, (n3)2 = +0, 3220, (n3)3 = +0, 9089 .

Exemple 1.9

Démontrer que l’expression a = 1
2εijkεistLjsLkt est un invariant du tenseur

symétrique L.

On utilise l’identité (1.30) pour modifier l’expression de la manière suivante

2a = εijkεistLjsLkt = (δjsδkt − δjtδks)LjsLkt
= δjsLjsδktLkt − δjtLjsδksLkt
= LjjLkk − LtsLst = LjjLkk − LtsLts .



30 Tenseurs cartésiens

Théorème de Cayley-Hamilton

Tout tenseur L satisfait sa propre équation caractéristique (cf. exercice
1.17)

L3 − I1(L)L2 + I2(L)L− I3(L)I = 0 (1.123)

Tenseur défini positif

Introduisons la notion de tenseur défini positif. Un tenseur L sera dit défini
positif si pour tout vecteur v différent de zéro, il satisfait l’inégalité

∀v ∈ E3, v ·Lv > 0 . (1.124)

On montre de manière simple que les valeurs propres d’un tenseur défini positif
sont strictement positives. En effet, soit λ une valeur propre d’un tenseur défini
positif L et soit n le vecteur propre unitaire correspondant. Puisque Ln = λn
et que ‖n‖ = 1, alors

n ·Ln = λ > 0 .

Décomposition spectrale d’un tenseur

Soit le tenseur L symétrique qui possède trois valeurs propres réelles λi et trois
vecteurs propres réels orthogonaux ni. Ces vecteurs propres forment la base
de décomposition spectrale qui s’écrit comme la somme de trois auto-dyades
principales ni ⊗ ni

L =

3∑
i=1

λi ni ⊗ ni . (1.125)

Cette expression est connue comme la décomposition spectrale ou représenta-
tion spectrale d’un tenseur L. Elle est facilement établie en exprimant L = LI,
L = ni ⊗ ni et en utilisant (1.65) et (1.109).

1.3.9 Racine carrée d’un tenseur

Théorème

Soit C un tenseur symétrique, défini positif dont les valeurs propres sont λ2
i

et les vecteurs propres correspondants ni. Alors, il existe un tenseur unique,
symétrique, défini positif U tel que

U2 = C . (1.126)

On écrira
√
C = U .
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Démonstration.
1) Existence. Soit par (1.125)

C =

3∑
i=1

λ2
i ni ⊗ ni . (1.127)

Définissons U par la relation

U =

3∑
i=1

λi ni ⊗ ni . (1.128)

Alors, l’équation (1.126) est la conséquence directe de

U2 = UU =

3∑
i=1

λ2
i (ni ⊗ ni)(ni ⊗ ni) =

3∑
i=1

λ2
i (ni ⊗ ni) = C

car, en toute généralité,

(ni ⊗ ni)(nj ⊗ nj) =

{
0 si i 6= j
(ni ⊗ ni) si i = j .

2) Unicité. Supposons qu’il y a deux tenseurs U et V tels que

U2 = V 2 = C .

Soit n le vecteur propre de C correspondant à la valeur propre λ > 0. Alors,

0 =
(
U2 − λ2I

)
n = (U + λI)(U − λI)n . (1.129)

Posons

v = (U − λI)n . (1.130)

Alors il vient par (1.129)

Uv = −λv .

Mais le vecteur v doit s’annuler, sinon −λ serait une valeur propre de U , ce
qui est impossible puisque U est défini positif et λ > 0. Donc, par (1.130), on
obtient

Un = λn . (1.131)

De manière semblable, on a V n = λn et donc Un = V n pour tout vecteur
propre n de C. Puisqu’on peut former une base de vecteurs propres de C, alors
U et V doivent cöıncider. �
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1.3.10 Théorème de décomposition polaire

Théorème

Soit F un tenseur appartenant à l’ensemble des tenseurs F de déterminant
detF > 0. Alors, il existe des tenseurs symétriques, définis positifs U , V
et une rotation, c’est-à-dire un tenseur orthogonal de déterminant positif
(et égal à 1), R tels que

F = RU = V R . (1.132)

Chacune de ces décompositions est unique. En fait, on a

U =
√
F TF , V =

√
FF T . (1.133)

La représentation F = RU (respectivement F = V R) est la décomposition
polaire à droite (respectivement à gauche) de F .

Démonstration.
1) Montrons que F TF et FF T appartiennent à l’ensemble de tous les tenseurs
symétriques, définis positifs. Les deux tenseurs sont à l’évidence symétriques.
De plus,

v · F T Fv = vjFmiFmjvi = Fmivi Fmjvj = (Fv) · (Fv) ≥ 0 .

Ce dernier produit scalaire ne peut être égal à zéro que si Fv = 0. Dès lors,
il ne s’annulera que si v = 0. Donc, F TF appartient à l’ensemble des tenseurs
symétriques, définis positifs. Un raisonnement analogue tient pour FF T .

2) Unicité. Soit F = RU la décomposition polaire à droite de F . Puisque R
est une rotation, il vient

F TF = URTRU = U2 .

Mais par le théorème de la racine carrée, il ne peut y avoir qu’un seul tenseur
U appartenant à l’ensemble des tenseurs symétriques définis positifs, dont le
carré est F TF . Donc, la première relation de (1.133) est valable et U est
unique. Puisque R = FU−1, R est aussi unique. D’autre part, si F = V R est
la décomposition polaire à gauche, alors

FF T = V 2 (1.134)

et V est déterminé par (1.133) avec R = V −1F .

3) Existence. Soit un tenseur U appartenant à l’ensemble des tenseurs symé-
triques, définis positifs donné par (1.133) et soit

R = FU−1 . (1.135)
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Pour vérifier que F = RU est bien une décomposition polaire, on doit montrer
que R appartient à l’ensemble de toutes les rotations.

Comme detF > 0 et detU > 0, alors detR > 0 (detU > 0 parce que
toutes les valeurs propres de U sont strictement positives). On doit alors seule-
ment montrer que R appartient à l’ensemble des tenseurs orthogonaux.

On procède comme suit :

RTR = U−1F TFU−1 = U−1U2U−1 = I . (1.136)

Montrons que detR = 1. On sait que detF = J > 0. Donc, detU2 = J2 et
detU−1 = 1/J > 0. Par (1.136), on a detR = ±1. La relation (1.135) permet
de déduire detR = +1, ce qui correspond à une rotation. Si on définit

V = RURT , (1.137)

alors V appartient à l’ensemble des tenseurs symétriques définis positifs et

V R = RURTR = RU = F .

�

1.3.11 Fonction tensorielle isotrope d’un tenseur symétrique

Une fonction tensorielle isotrope, dont la variable T est un tenseur symétrique
d’ordre 2, satisfait par définition l’identité

Qf (T )QT = f
(
QTQT

)
(1.138)

quel que soit le tenseur orthogonal Q. Alors l’application de l’espace vectoriel
des tenseurs symétriques dans lui-même engendre un tenseur symétrique tel
que

L = f (T ) . (1.139)

Nous présentons ci-après sans démonstration le théorème de représentation.

Théorème de Rivlin-Ericksen

L’expression (1.139) peut s’écrire sous la forme

L = ϕ0

(
I1(T ), I2(T ), I3(T )

)
I + ϕ1

(
I1(T ), I2(T ), I3(T )

)
T

+ ϕ2

(
I1(T ), I2(T ), I3(T )

)
T 2 ,

(1.140)

où les ϕi (i = 0, 1, 2) sont des fonctions scalaires des invariants de T .

Pour une fonction isotrope (1.140), les directions principales de T et de
f(T ) cöıncident ; T et f(T ) sont appelés tenseurs co-axiaux.
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1.3.12 Fonction scalaire d’un tenseur

Une fonctionW(T ) est appelée fonction à valeur scalaire du tenseur T . Lorsque
T est symétrique et que la condition

W(T ) =W
(
QTQT

)
(1.141)

est satisfaite, la fonctionW(T ) est appelée fonction tensorielle isotrope à valeur
scalaire du tenseur T . Elle peut être représentée par la relation

W(T ) = Φ
(
I1(T ), I2(T ), I3(T )

)
. (1.142)

Cette fonction est aussi un invariant scalaire du tenseur T . La représentation
précédente est équivalente à

W(T ) = φ(λ1, λ2, λ3) , (1.143)

où les λi (i = 1, 2, 3) sont les valeurs propres de T .

On peut montrer que pour une fonction isotrope W(T ), sa dérivée par
rapport à T s’exprime sous la forme

∂W
∂T

=

3∑
i=1

∂W
∂λi

ni ⊗ ni , (1.144)

avec ni (i = 1, 2, 3) les directions principales correspondant aux λi. Il s’ensuit
que

T
∂W
∂T

=
∂W
∂T

T . (1.145)

Cette dernière relation indique que les deux tenseurs T et ∂W/∂T sont co-
axiaux ou ont les mêmes vecteurs propres ou directions principales.

1.4 Analyse tensorielle

Dans cette section, nous allons introduire des concepts liés à la dérivation et la
différentiation des tenseurs. On notera par exemple F un scalaire, vi une compo-
sante vectorielle et Lij la composante d’un tenseur qui sont toutes des fonctions
de la position xi dans l’espace. La notation F (x) signifie F (x1, x2, x3), tandis
que la notation vi(xm) couvre les trois fonctions v1(x1, x2, x3), v2(x1, x2, x3) et
v3(x1, x2, x3).

Donc lorsque xi est compris entre parenthèses pour indiquer une fonction,
les règles de sommation ne s’appliquent pas à la variable indépendante : F (xi)
n’est pas un vecteur mais c’est un champ scalaire, tandis que vi(xm) est un
champ vectoriel.
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1.4.1 Dérivée d’une fonction vectorielle ou tensorielle d’un scalaire

Soit L = L(t) une fonction tensorielle d’un scalaire t (par exemple le temps).
La dérivée de L par rapport à t est le tenseur d’ordre 2 donné par

L̇ =
dL

dt
= lim

∆t→ 0

L(t+ ∆t)−L(t)

∆t
. (1.146)

En fonction de ses composantes, on a

L̇ =
dLij(t)

dt
ei ⊗ ej = L̇ijei ⊗ ej . (1.147)

La dérivée première d’une fonction vectorielle v(t) par rapport à t est définie
de manière semblable v̇ = dv/dt. En terme de composantes, on a

dv

dt
= v̇ = v̇i(t)ei . (1.148)

et la dérivée seconde s’écrit

d2v

dt2
= v̈ = v̈i(t)ei . (1.149)

On peut établir facilement les identités suivantes :

d

dt
(u± v) =

du

dt
± dv

dt
(1.150)

d

dt
(u⊗ v) =

du

dt
⊗ v + u⊗ dv

dt
(1.151)

d

dt
(L± T ) =

dL

dt
± dT

dt
(1.152)

d

dt

(
α(t)L

)
=
dα(t)

dt
L+ α(t)

dL

dt
(1.153)

d

dt
(LT ) =

dL

dt
T +L

dT

dt
(1.154)

d

dt
(La) =

dL

dt
a+L

da

dt
(1.155)

d

dt
(LT ) =

(
dL

dt

)T
(1.156)
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Démontrons par exemple (1.155). Par la définition (1.146), on obtient

d

dt
(La) = lim

∆t→ 0

L(t+ ∆t)a(t+ ∆t)−L(t)a(t)

∆t

= lim
∆t→ 0

1

∆t

(
L(t+ ∆t)a(t+ ∆t)−L(t)a(t)

+L(t)a(t+ ∆t)−L(t)a(t+ ∆t)
)

= lim
∆t→ 0

(
L(t+ ∆t)−L(t)

)
a(t+ ∆t)

∆t

+ lim
∆t→ 0

L(t)
(
a(t+ ∆t)− a(t)

)
∆t

=
dL

dt
a+L

da

dt
.

1.4.2 Gradient d’un champ scalaire

A un champ scalaire F (x), on associe un champ vectoriel appelé le gradient
de F . Ce gradient est noté ∇F ou encore gradF . Il est tel que son produit
scalaire avec dx donne la différence entre les valeurs de F évaluées en x + dx
et x. On obtient

dF = F (x+ dx)− F (x) =∇F · dx . (1.157)

Si on désigne par dx la norme de dx et par e le vecteur unitaire dans la direction
de dx (e = dx/dx), alors l’équation (1.157) donne(

dF

dx

)
dans la direction e

=∇F · e . (1.158)

Cette dernière relation montre que la composante de ∇F dans la direction e
donne la variation de F dans cette direction (dérivée directionnelle). Puisqu’on
a (

dF

dx

)
dans la direction e1

=
∂F

∂x1
=∇F · e1 = (∇F )1

et des relations analogues dans les directions 2 et 3, les composantes carté-
siennes de ∇F sont ∂F/∂xi. Il vient

∇F =
∂F

∂x1
e1 +

∂F

∂x2
e2 +

∂F

∂x3
e3 =

∂F

∂xi
ei . (1.159)

On peut définir l’opérateur gradient comme

∇(•) =
∂(•)
∂x1

e1 +
∂(•)
∂x2

e2 +
∂(•)
∂x3

e3 =
∂(•)
∂xi

ei , (1.160)

où (•) indique une fonction quelconque.
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Il est facile de montrer que le gradient d’un champ scalaire est un vecteur.
En effet, par la relation (1.18), on a

∂F (x)

∂x′i
=

∂

∂x′i
f ′(x′j) =

∂

∂x′i
f
(
xm(x′j)

)
=

∂

∂xk
f(xm)

∂xk
∂x′i

=
∂xk
∂x′i

∂

∂xk
F (x) .

Cette équation est une transformation de la forme (1.22).

1.4.3 Gradient d’un champ vectoriel

Au champ vectoriel v(x), on associe un champ tensoriel, appelé le gradient de
v et noté∇v. C’est un tenseur d’ordre 2 qui, appliqué à dx, donne la différence
de v en x+ dx et x. On a

dv = v(x+ dx)− v(x) = (∇v) dx . (1.161)

Soit à nouveau dx = ‖dx‖ et e = dx/dx. On obtient(
dv

dx

)
dans la direction e

= (∇v) e . (1.162)

Le tenseur (∇v) d’ordre 2 (on laisse au lecteur le soin de démontrer qu’il s’agit
bien d’un tenseur d’ordre 2) transforme un vecteur unitaire e en un vecteur
décrivant la variation de v dans cette direction. Puisque(

dv

dx

)
dans la direction e1

=
∂v

∂x1
= (∇v) e1 ,

alors dans un système d’axes cartésiens, on a

(∇v)11 = e1 · (∇v) e1 = e1 ·
∂v

∂x1
=

∂

∂x1
(e1 · v) =

∂v1

∂x1
.

En toute généralité, un raisonnement analogue conduit à écrire

(∇v)ij =
∂vi
∂xj

. (1.163)

Le tenseur ∇v s’exprime comme (voir (1.49) et (1.51))

∇v =∇⊗ v =
∂vi
∂xj

(ei ⊗ ej) . (1.164)
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1.4.4 Gradient d’une fonction tensorielle à valeur scalaire

Pour une fonction tensorielle non linéaireW(T ) à valeur scalaire régulière d’un
tenseur T d’ordre 2, les deux premiers termes d’un développement en série de
Taylor autour de T sont

W(T + dT ) =W(T ) + dW(T ) + o(dT ) , (1.165)

où o(dT ) est le reste du développement qui tend vers zéro lorsque dT
→ 0, selon la relation

lim
dT → 0

o(dT )

‖dT ‖ = 0 . (1.166)

La différentielle totale s’exprime comme suit

dW(T ) =
∂W(T )

∂T
: dT = tr

((
∂W(T )

∂T

)T
dT

)
. (1.167)

En notation indicée,

dW(T ) =
∂W(T )

∂Tij
dTij =

∂W(T )

∂Tji
dTij (1.168)

Le tenseur ∂W(T )/∂T d’ordre 2 est appelé le gradient de W(T ) en T .

1.4.5 Gradient d’une fonction tensorielle à valeur tensorielle

Pour une fonction tensorielle non linéaire à valeur tensorielle, régulière, S(T )
d’un tenseur T d’ordre 2, les deux premiers termes d’un développement en série
de Taylor autour de T sont

S(T + dT ) = S(T ) + dS(T ) + o(dT ) . (1.169)

Lorsque dT → 0, on a

dS(T ) =
∂S(T )

∂T
: dT . (1.170)

En notation indicée,

dSij =
∂Sij
∂Tkl

dTkl (1.171)

Le tenseur ∂S(T )/∂T d’ordre 4 est le gradient de S(T ) en T .

1.4.6 Divergence d’un vecteur et d’un tenseur

Soit v(x) un champ vectoriel. La divergence de v(x) est le résultat scalaire
obtenu par un processus de contraction. Ainsi

div v =
∂vi
∂xi

= tr (∇v) . (1.172)

Notons que lorsque la divergence d’un champ vectoriel v est nulle, c-à-d. div v =
0, le champ v est dit champ solénöıdal.
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On peut aussi exprimer la divergence du champ v comme le produit scalaire
suivant

∇ · v =
∂vi
∂xi

. (1.173)

Pour un tenseur, la divergence de L est le champ vectoriel noté divL, par
contraction

(divL)i =
∂Lij
∂xj

= Lij,j (1.174)

ou encore

divL =
∂Lik
∂xj

(ei ⊗ ek) ej =
∂Lik
∂xj

(ek · ej) ei

=
∂Lik
∂xj

δkjei =
∂Lij
∂xj

ei .

(1.175)

1.4.7 Rotationnel d’un champ vectoriel

Soit v(x) un champ vectoriel. Le rotationnel de v est le champ vectoriel défini
par l’équation

rot v =∇× v . (1.176)

Sous forme indicée, on a

(rot v)i = εijk
∂vk
∂xj

. (1.177)

Par les propriétés du symbole de permutation, on peut vérifier facilement que

(rot v)1 =
∂v3

∂x2
− ∂v2

∂x3

(rot v)2 =
∂v1

∂x3
− ∂v3

∂x1

(rot v)3 =
∂v2

∂x1
− ∂v1

∂x2
. (1.178)

Si le rotationnel du champ v s’annule, c-à-d. ∇ × v = 0, ce champ est irrota-
tionnel.

Exemple 1.10

Démontrer que

rot (∇Φ) =∇×∇Φ =∇× (∇Φ) = 0 . (1.179)

Il vient successivement

(∇×∇Φ)i = εijk
∂

∂xj
(
∂Φ

∂xk
) = εijk

∂2Φ

∂xj∂xk
= εikj

∂2Φ

∂xk∂xj
= −εijk

∂2Φ

∂xj∂xk
.

Donc, 2εijk
∂2Φ

∂xj∂xk
= 0
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Exemple 1.11

Démontrer que
div(∇× a) = div rot a = 0 . (1.180)

En tenant compte de (1.177), on obtient

div(∇× a) =
∂

∂xi

(
εijk

∂ak
∂xj

)
= εijk

∂2ak
∂xi∂xj

En suivant la même démarche que dans l’exemple précédent, on montre que
(1.180) est satisfaite.

Exemple 1.12

Démontrer que
div(Φa) = Φ diva+ a · (∇Φ) . (1.181)

En tenant compte de (1.172), on a

div(Φa) =
∂(Φai)

∂xi
=
∂Φ

∂xi
ai + Φ

∂ai
∂xi

= (∇Φ) · a+ Φ diva .

1.4.8 Opérateur laplacien

Laplacien d’un champ scalaire

On rencontre aussi des dérivées secondes dans des expressions physiques. Par
exemple, la divergence d’un gradient d’une fonction scalaire est

∂2F

∂xi∂xi
ou encore ∇ · (∇F ) ou div (gradF ) (1.182)

qui est aussi le laplacien de F , noté symboliquement ∇2F ou encore 4F ,

∂2F

∂xi∂xi
=
∂2F

∂x1
2

+
∂2F

∂x2
2

+
∂2F

∂x3
2
. (1.183)

Une fonction F qui satisfait l’équation

∇2F = 0 (1.184)

est dite harmonique. L’équation (1.184) est connue comme celle de Laplace.

Si

∇2F = f , (1.185)

où f est une fonction scalaire, l’équation est celle de Poisson.
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Laplacien d’un champ vectoriel

On peut aussi traiter une fonction vectorielle de la même manière. La divergence
du gradient d’un vecteur s’écrit

∂2vj
∂xi∂xi

ou encore ∇ · (∇v) ou div (∇v) . (1.186)

Le résultat de ces opérations est un vecteur. On note cette opération de dérivée
∇2, c’est-à-dire

∇ · (∇v) = ∇2v . (1.187)

Le symbole∇2v ne pose pas de problème en coordonnées rectangulaires puisque
∇2v possède trois composantes telles que

(
∇2v

)
i

= ∇2vi .

La difficulté survient dans des systèmes de coordonnées curvilignes où on a

(
∇2v

)
i
6= ∇2(vi) .

Exemple 1.13

Démontrer que
div(∇Φ) = ∇2Φ. (1.188)

En effet, on a successivement

div(∇Φ) =
∂

∂xi

(
∂Φ

∂xi

)
=

∂2Φ

∂xi∂xi
= ∇2Φ . (1.189)

Exemple 1.14

Démontrer que
∇× (∇× a) = ∇(diva)−∇2a . (1.190)

Sous forme indicée, on a

(∇× (∇× a))l = εlmi
∂

∂xm

(
εijk

∂ak
∂xj

)
= εlmiεijk

∂2ak
∂xm∂xj

.
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A l’aide de (1.30) et des propriétés du symbole de permtation, il vient

εlmiεijk
∂2ak

∂xm∂xj
= (δljδmk − δlkδmj)

∂2ak
∂xm∂xj

= δljδmk
∂2ak

∂xm∂xj
− δlkδmj

∂2ak
∂xm∂xj

=
∂2am
∂xm∂xl

− ∂2al
∂xj∂xj

=
∂

∂xl

(
∂am
∂xm

)
− ∂2al
∂xj∂xj

=
∂

∂xl
(diva)−∇2al =

(
∇(diva)−∇2a

)
l
,

et donc
(∇× (∇× a))l =

(
∇(diva)−∇2a

)
l
,

expression valable pour les trois composantes du vecteur a.

Exemple 1.15

Démontrer que
div
(
∇2a

)
= ∇2 (diva) . (1.191)

Sous forme indicée, on a

(
∇2a

)
i

=
∂2ai
∂xj∂xj

.

Donc(
div
(
∇2a

)
i

)
=

∂

∂xi

(
∂2ai
∂xj∂xj

)
=

∂2

∂xj∂xj

(
∂ai
∂xi

)
= ∇2 (diva) .

1.4.9 Coordonnées curvilignes

Soient xi les coordonnées cartésiennes d’un point P. Dans un système de coor-
données curvilignes θi (par exemple, cylindriques ou sphériques), la position du
point P est donnée par les trois nombres θi qui représentent les courbes de coor-
données passant par P (fig. 1.4), c’est-à-dire par les courbes sur lesquelles deux
des trois coordonnées θi sont constantes. Les coordonnées curvilignes peuvent
être considérées comme des fonctions des coordonnées cartésiennes

θi = θi(xj) , (1.192)

et si la condition que le jacobien J défini par J = det(∂θi/∂xj) ne s’annule pas
est satisfaite, alors la transformation (1.192) est inversible.
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e3

e1

e2

g2
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g1

Fig. 1.4 Système de coordonnées curvilignes.

Le lieu des points pour lesquels la coordonnée curviligne θi est une constante
est une surface d’équation

θi(xj) = cste . (1.193)

Considérons successivement les systèmes de coordonnées cylindriques et sphé-
riques. En se référant à la figure 1.5, ou à la figure 1.6, on passe respectivement
des coordonnées cylindriques ou sphériques aux coordonnées cartésiennes par
les relations

θ1 = r =
√
x2

1 + x2
2

θ2 = θ = tan−1 x2

x1

θ3 = z = x3 .

(1.194)

Par la figure 1.6, en coordonnées sphériques, on a

θ1 = r =
√
x2

1 + x2
2 + x2

3

θ2 = θ = tan−1

√
x2

1 + x2
2

x3

θ3 = ϕ = tan−1 x2

x1
.

(1.195)

L’angle ϕ est la longitude et θ la colatitude.
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Fig. 1.5 Système de coordonnées cylindriques.
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Fig. 1.6 Système de coordonnées sphériques.
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Les relations inverses s’obtiennent aisément :

Coordonnées cylindriques :

x1 = r cos θ

x2 = r sin θ

x3 = z .

Coordonnées sphériques :

x1 = r sin θ cosϕ

x2 = r sin θ sinϕ

x3 = r cos θ .

Pour le calcul d’intégrales de volume, l’élément dV s’écrit dans les divers
systèmes de coordonnées :

• cartésiennes dV = dx dy dz,

• cylindriques dV = r dr dθ dz,

• sphériques dV = r2 sin θ dr dθ dϕ.

Le vecteur position d’un point P en coordonnées cartésiennes s’écrit

OP = r = xiei . (1.196)

En coordonnées curvilignes, les vecteurs de base au point P sont les trois vec-
teurs de longueur unitaire tangents aux lignes de coordonnées passant par P.
On les définit par les relations

gi =

∂r

∂θi∥∥∥∥ ∂r∂θi
∥∥∥∥ . (1.197)

Les vecteurs gi sont représentés aux figures 1.4 à 1.6 dans leur contexte respec-
tif.

En coordonnées cylindriques, on écrit

r = r cos θe1 + r sin θe2 + ze3

∂r

∂r
= cos θe1 + sin θe2

∥∥∥∥∂r∂r
∥∥∥∥ = 1 gr =

∂r

∂r

∂r

∂θ
= −r sin θe1 + r cos θe2

∥∥∥∥∂r∂θ
∥∥∥∥ = r gθ =

1

r

∂r

∂θ

∂r

∂z
= e3 gz = e3 .

(1.198)

Par le même raisonnement, on obtient en coordonnées sphériques

gr =
∂r

∂r
gθ =

1

r

∂r

∂θ
gϕ =

1

r sin θ

∂r

∂ϕ
. (1.199)
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On remarque que les vecteurs de base en coordonnées cylindriques et sphériques
sont orthogonaux. Les coordonnées curvilignes correspondantes sont orthogo-
nales.

Les cosinus directeurs des vecteurs de base gi par rapport à la base ej
s’obtiennent suivant (1.6)

cij = gi · ej . (1.200)

En coordonnées cylindriques, par (1.198) et (1.200), il vient

[C] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (1.201)

Cette dernière matrice est orthogonale.

1.4.10 Scalaires, vecteurs et tenseurs en coordonnées

curvilignes orthogonales

La valeur d’un champ scalaire est donné soit en coordonnées cartésiennes soit
curvilignes par la transformation

F (P) = f(xi) = f(xi
(
θj)
)

= f ′(θj) . (1.202)

Soit v un vecteur en un point P de coordonnées xi, θi. Les composantes phy-
siques v′i du vecteur v en coordonnées curvilignes au point P sont ses compo-
santes suivant les vecteurs de base gi, c’est-à-dire

v = viei = v′igi . (1.203)

On obtient

v′i = gi · ejvj = cijvj . (1.204)

Si un tenseur L appliqué à un vecteur u produit le vecteur v suivant v =
Lu, les composantes physiques de L en coordonnées curvilignes au point P
sont telles que

v′i = L′iju
′
j . (1.205)

On vérifie aisément que

L′ij = cikcjlLkl . (1.206)

1.4.11 Gradient d’un champ scalaire et d’un vecteur en coordonnées

curvilignes orthogonales

Le gradient de la propriété F donnée par (1.159) est un vecteur h de compo-
santes ∂f/∂xj dans les coordonnées cartésiennes. En coordonnées curvilignes,
on aura pour les composantes physiques de ce vecteur

h′i = cijhj = cij
∂f ′

∂θk

∂θk
∂xj

. (1.207)
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En coordonnées cylindriques, on a avec l’aide des relations (1.194)

∂r

∂x1
=
x1

r
= cos θ

∂r

∂x2
=
x2

r
= sin θ

∂θ

∂x1
= −x2

r2
= − sin θ

r

∂θ

∂x2
=
x1

r2
=

cos θ

r
.

(1.208)

Par combinaison des équations (1.207) et (1.208), on obtient facilement

h′r =
∂f ′

∂r
h′θ =

1

r

∂f ′

∂θ
h′z =

∂f ′

∂z
. (1.209)

Si on considère une fonction scalaire f définie dans les deux systèmes de coor-
données, cartésiennes et cylindriques, puisque xi et θi sont liés par la relation
(1.192), on a

∂

∂xi
=
∂θj
∂xi

∂

∂θj

∂

∂xm

(
∂

∂xi

)
=

∂2

∂xm∂xi
=

∂

∂xm

(
∂θj
∂xi

∂

∂θj

)
.

La dernière relation donne

∂2

∂xm∂xi
=

∂2θj
∂xm∂xi

∂

∂θj
+

∂θk
∂xm

∂θj
∂xi

∂2

∂θk∂θj
. (1.210)

On peut alors calculer pour les dérivées premières

∂

∂x1
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
(1.211)

∂

∂x2
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
(1.212)

∂

∂x3
=

∂

∂z
, (1.213)

et pour les dérivées secondes

∂2

∂x2
1

= cos2 θ
∂2

∂r2
− sin 2θ

r

∂2

∂r∂θ
+

sin 2θ

r2

∂

∂θ

+
sin2 θ

r

∂

∂r
+

sin2 θ

r2

∂2

∂θ2
(1.214)

∂2

∂x2
2

= sin2 θ
∂2

∂r2
+

sin 2θ

r

∂2

∂r∂θ
− sin 2θ

r2

∂

∂θ

+
cos2 θ

r

∂

∂r
+

cos2 θ

r2

∂2

∂θ2
(1.215)

∂2

∂x2
3

=
∂2

∂z2
. (1.216)
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En combinant les relations (1.214)-(1.216), on obtient pour l’opérateur laplacien

∇2f =
1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
. (1.217)

Pour exprimer le gradient d ?un vecteur en coordonnées cylindriques et sphé-
riques, il nous faut définir les tenseurs métriques des ces systèmes de coordon-
neées et faire appel à une analyse plus avancée que celle que nous présentons
dans ce livre. Le lecteur peut trouver un complément de lecture dans [2, 15, 59].
A titre d’exemple, pour le gradient d’un vecteur, on aura

L = ∇v

L =



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

∂vr
∂z

∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z

 . (1.218)

Les autres opérations, telles que la divergence d’un vecteur, les composantes
du rotationnel et les composantes du laplacien d’un vecteur, sont données in
extenso dans l’annexe A pour les coordonnées cylindriques.

L’annexe B rassemble toutes les expressions nécessaires pour le cas des
coordonnées sphériques.

1.4.12 Définition de la notion de flux

Considérons à la figure 1.7 un corps dans un espace tridimensionnel ainsi qu’une
surface d’aire ds sur ce corps. Le volume de matière traversant ds durant l’in-
tervalle de temps dt est donné par

vini dt ds ou v · n dt ds , (1.219)

où vini dt correspond à la hauteur du cylindre de matière ayant traversé la
surface pendant l’intervalle de temps dt. Alors, on a les définitions suivantes en
adoptant la notation ∂ω pour la surface qui enveloppe le volume ω :

• le flux d’un vecteur∫
∂ω

vini ds ou

∫
∂ω

v · n ds ; (1.220)

• le flux d’une quantité scalaire quelconque ρ au travers de la surface d’un
corps (quantité scalaire)∫

∂ω

ρvini ds ou

∫
∂ω

ρv · n ds ; (1.221)

• le flux d’énergie cinétique (quantité scalaire)∫
∂ω

1

2
ρvivivjnj ds ou

∫
∂ω

1

2
ρ(v · v)(v · n) ds ; (1.222)
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• le flux d’une propriété Q par∫
∂ω

Qvini ds ou

∫
∂ω

Q(v · n) ds . (1.223)

Dans ce dernier cas, Q peut être un scalaire, un vecteur ou un tenseur.

O

n

v

ds

∂ωωe2

e3

e1
x1

x3

x2

Fig. 1.7 La notion de flux.

1.4.13 Formules intégrales de Gauss et Stokes

Théorème de Gauss ou de la divergence

Le théorème de base de l’analyse établit la relation entre l’intégrale et la dérivée
de l’intégrand. Si pour l’intégrand on a f = dF/dx, alors∫ b

a

f dx =

∫ b

a

dF

dx
dx = F (b)− F (a) .

Le théorème équivalent pour une intégrale de volume est appelé le théorème
de Gauss. Ecrivons-le pour une fonction tensorielle arbitraire Tjk···(xi)∫

ω

∂Tjk···
∂xi

dv =

∫
∂ω

niTjk··· ds . (1.224)

Le théorème de Gauss est le plus souvent utilisé sous la forme du théorème
de la divergence. Ce théorème transforme l’intégrale volumique de la divergence
d’une propriété d’un milieu continu en une intégrale de surface.
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Carl Friedrich Gauss (1777-1855) fut un mathématicien
doué au point tel qu’il s’est vu couronné comme le « prince
des mathématiques » à l’âge de 24 ans par des savants
de toute l’Europe. Nommé professeur de mathématiques
à l’Université de Göttingen, il apporta des contributions
majeures à la théorie des nombres, la géodésie, la géomé-
trie, les statistiques (méthode des moindres carrés) et la
physique. Il avait pris pour devise « Pauca sed matura ».
Il renonça à publier d’importants manuscrits parce qu’ils
ne satisfaisaient pas ce critère.

Fig. 1.8 Carl Friedrich Gauss.

Dans (1.224), Tjk··· peut être un scalaire, un vecteur ou un tenseur de rang
arbitraire et le symbole n représente le vecteur unitaire normal à ds (fig. 6.8).

dv

ds

n

Tij...

O

e2

e3

e1 x1

x3

x2

Fig. 1.9 Surface et volume élémentaire utilisés dans le théorème de Gauss.

Prenons le cas où Tjk··· = F (fonction scalaire). Alors le théorème devient∫
ω

∂F

∂xi
dv =

∫
ω

(
∇F

)
i
dv =

∫
∂ω

niF ds . (1.225)

Si Tjk··· est la composante d’une fonction vectorielle vi, on a∫
ω

∂vi
∂xi

dv =

∫
ω

div v dv =

∫
∂ω

nivi ds

=

∫
∂ω

n · v ds.
(1.226)
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L’intégrale de surface du membre de droite exprime le flux du vecteur v à travers
la surface ∂ω. Pour une quantité tensorielle telle que T = L, le théorème s’écrit∫

ω

∂Lji
∂xi

dv =

∫
∂ω

Lji ni ds ou

∫
ω

div L dv =

∫
∂ω

Ln ds . (1.227)

Pour une propriété Q quelconque, le théorème s’écrit∫
ω

∂Qvi
∂xi

dv =

∫
∂ω

Qvi ni ds ou

∫
ω

div(vQ) dv =

∫
∂ω

Qv · n ds . (1.228)

Théorème de Stokes

Dans ce cas, on relie l’intégrale de surface à une intégrale de contour le long de
la courbe C qui borde la surface. Plus précisément, le théorème s’écrit∫

∂ω

rotv · n ds =

∮
C

v · dl , (1.229)

où le vecteur dl est tangent à C.

George Gabriel Stokes (1819-1903) est un mathématicien
irlandais (né à Skreen dans le comté de Sligo). Nommé
professeur de mathématiques à l’Université de Cambridge
à l’âge de 30 ans, il a beaucoup œuvré en hydrodynamique,
en élasticité et en optique. On lui doit la loi de « Stokes »
pour le mouvement des particules dans un fluide visqueux.
Il a écrit, de manière très précise, les équations de la dy-
namique des fluides visqueux connues sous le nom d’équa-
tions de Navier-Stokes.

Fig. 1.10 George Gabriel Stokes.

1.5 Exercices

1.1 Démontrer que le symbole de Kronecker est un tenseur d’ordre 2.

1.2 Démontrer que δijδikδjk = 3.

1.3 Démontrer que εijkuiuj = 0 et que δijεijk = 0.

1.4 Démontrer que t× (u× v) = (t · v)u− (t · u)v .

1.5 Calculer l’expression équivalente à

(a× b)× (c× d)

où les vecteurs a, b, c,d sont non nuls. Ecrire le résultat en notation vectorielle.
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1.6 Soient a et b deux vecteurs quelconques. Dans la suite, nous utiliserons la
notation suivante :

[(a ·∇)b]i = aj
∂bi
∂xj

.

Démontrer les identités suivantes :

∇ · (a× b) = (∇× a) · b− a · (∇× b) (1.230)

∇(a · b) = (a ·∇)b+ (b ·∇)a

+ a× (∇× b) + b× (∇× a) (1.231)

rot(a× b) = (b ·∇)a− (a ·∇)b+ adiv b− bdiva. (1.232)

div(a⊗ b) = (∇a)b+ a div b (1.233)

1.7 Soient a une fonction vectorielle quelconque et Φ une fonction scalaire,
continûment différentiable.

Démontrer les identités suivantes :

rot(Φa) = Φ rota− a×∇Φ (1.234)

∇(Φa) = Φ∇a+ a⊗∇Φ (1.235)

∇2 (∇Φ) = ∇
(
∇2Φ

)
(1.236)

∇×
(
∇2a

)
= ∇2 (∇× a) . (1.237)

∆a = ∇ ·∇a =∇(∇ · a)− rot rot a . (1.238)

1.8 Soient a une fonction vectorielle quelconque, Φ une fonction scalaire, conti-
nûment différentiable et x le vecteur position. Démontrer

∇ (a · x) = a+ (∇a)
T
x (1.239)

∇2 (a · x) = 2 div a+ x ·
(
∇2a

)
(1.240)

∇2 (Φx) = 2∇Φ + x∇2Φ . (1.241)

1.9 Vérifier que tr (L) est un invariant.

1.10 Démontrer (1.69) et (1.71).

1.11 Etablir les relations (1.121)

1.12 Soit [A] une matrice à coefficients constants. Vérifier la relation suivante :

∇(Ajk xjxk) = (Aij +Aji)xjei . (1.242)

1.13 Montrer que la forme quadratique Dij xixj reste inchangée si on remplace
Dij par sa partie symétrique.

1.14 Montrer que pour un tenseur orthogonal Q, les conditions suivantes sont
satisfaites :

QTQ = QQT = I, ou QT = Q−1 (1.243)

det
(
QTQ

)
= (detQ)2 . (1.244)
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1.15 Trouver les invariants d’un tenseur antisymétrique et ses valeurs propres.

1.16 En utilisant le théorème de Cayley-Hamilton (1.123), démontrer que le
théorème de représentation (1.140) peut s’écrire sous la forme

L = α0

(
I1(T ), I2(T ), I3(T )

)
I + α1

(
I1(T ), I2(T ), I3(T )

)
T

+ α2

(
I1(T ), I2(T ), I3(T )

)
T−1 .

(1.245)

où les αi (i = 1, 2, 3) sont des fonctions scalaires des invariants de T .

1.17 En utilisant l’équation caractéristique d’un tenseur (1.120), la relation
(1.109) et la propriété (1.59), démontrer (1.123).

1.18 Pour une matrice [A] d’ordre 3, démontrer les relations suivantes :

det[A] =
1

6
εijkεlmnailajmakn (1.246)(

[A]−1
)
ij

=
1

2 det[A]
εiklεjmnakmaln . (1.247)

1.19 Démontrer que pour les fonctions scalaires f et g, on a

∇2(fg) = f∇2g + g∇2f + 2∇f ·∇g . (1.248)





Chapitre 2

Cinématique des milieux

continus

2.1 Introduction

La cinématique est l’étude du mouvement d’un corps qu’il soit solide ou fluide.
Ce mouvement est décrit par les positions consécutives de chaque point du
corps en fonction du temps. Nous ne nous intéresserons pas aux causes de ce
mouvement. Cependant, nous imposerons la condition que le corps reste un
milieu continu au sens où sa masse volumique et tous les autres paramètres
décrivant le mouvement sont des fonctions continues des variables spatiales et
du temps. Dans ce chapitre, on définira les divers paramètres qui caractérisent
le mouvement du corps et on présentera de manière détaillée des mesures de
sa déformation. Leurs propriétés et leur signification seront mises en valeur.
De plus, l’invariance de ces divers paramètres par rapport à un référentiel, en
relation avec un observateur, sera discutée. La description sera générale et ne
sera pas limitée à une forme particulière des mouvements ou de la constitution
du corps.

La cinématique des milieux continus est couverte dans les monographies
suivantes : [14, 22, 23, 24, 32, 35, 39, 41, 44, 45, 47, 61, 69].

2.2 Corps, configurations et mouvement

Un corps C est un ensemble de particules ou de points matériels. Ces particules
correspondent dans la réalité à un volume matériel infinitésimal. A tout instant
t, chaque particule occupe un point d’un espace euclidien tridimensionnel. Le
volume V occupé par toutes les particules de C au temps t est appelé la confi-
guration Rt ou R. En particulier, la configuration de C au temps t = 0 est
définie comme la configuration initiale et sera notée R0 (fig. 2.1). De plus,
la frontière du corps est indiquée par ∂R′ ou ∂R.
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x
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u
dx
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p

R0

R

O

e2

e3

e1

X3, x3

X1, x1

X2, x2

u+du

∂R

Fig. 2.1 Configurations initiale en t = 0 et actuelle au temps présent t de C.

Un mouvement de C est une séquence continue de configurations de C vue
par un observateur . La notion de mouvement est évidemment liée à celle de
référentiel. En mécanique rationnelle [1, 27], un référentiel est un ensemble de
N points (N ≥ 4), non coplanaires, immobiles les uns par rapport aux autres,
et par rapport auxquels on étudie le mouvement. Le choix du référentiel étant
arbitraire, en mécanique classique, on utilise souvent un référentiel d’inertie ou
galiléen. Il ne faut pas confondre les notions de référentiel et de repère : pour
un référentiel donné, il existe une infinité de repères. Comme en mécanique
classique, nous définirons le concept d’observateur par

un observateur = un chronomètre + un repère .

Dans le repère cartésien orthogonal fixe (de l’observateur), ayant pour ori-
gine 0, la position P0 d’une particule de C à t = 0 est représentée par le vecteur
position initiale X et sa position p au temps présent t ≥ 0 par le vecteur
position actuelle x. Donc, le mouvement de C est décrit par une fonction
vectorielle χ définie à tout instant t et qui dépend de X :

x = χ(X, t) . (2.1)

La fonction vectorielle χ est appelée mouvement ou déformation du
corps. Par ailleurs, si la forme originelle de référence (t = 0) cöıncide avec la
forme actuelle, la fonction χ doit satisfaire la condition

X = χ(X, 0) . (2.2)

Le mouvement χ est une bijection entre les configurations initiale R0 et
actuelle R, assurant une correspondance biunivoque entre les positions initiales
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et actuelles des particules de C. L’existence de la fonction χ : R0 → R et de
son inverse χ−1 : R → R0

X = χ−1(x, t) (2.3)

avec

X = χ−1(X, 0) (2.4)

garantit l’intégralité et l’unité du corps. La continuité de la fonction du mou-
vement et son inverse interdisent respectivement toute séparation (fissuration)
et fusion locale (soudure, superposition) de la matière. La continuité implique
qu’un domaine connexe le reste durant le mouvement, que deux points infini-
ment voisins dans la configuration initiale restent comme tels dans les confi-
gurations déformées (t > 0). On supposera que les fonctions χ et χ−1 sont
deux fois continûment différentiables par rapport aux variables d’espace et de
temps. Ces hypothèses permettront par la suite de préserver la régularité du
corps, de définir et calculer les vitesses et accélérations, ainsi que les équations
d’équilibre et de compatibilité, sans encombre.

Ceci signifie que X est la position initiale d’une particule située maintenant
en x. Naturellement les équations (2.3) et (2.4) sont obtenues à partir de (2.1)
en calculant X en fonction de x. Par définition, ceci implique que

χ
(
χ−1(x, t), t

)
= x

χ−1
(
χ(X, t), t

)
= X .

Par définition en se référant à la figure 2.1, le vecteur déplacement u est
la différence vectorielle

u = x−X = χ(X, t)−X = x− χ−1(x, t) , (2.5)

où (2.1) et (2.3) sont utilisées dans les deuxième et troisième égalités.

Joseph-Louis de Lagrange (1736-1813) est un mathémati-
cien français (né à Turin). Après avoir enseigné à l’école
d’artillerie de Turin, il succède à Euler à l’académie de
Berlin comme directeur de la classe mathématique. Il fut
plus tard enseignant à l’Ecole Normale et à l’Ecole Po-
lytechnique de Paris. Son livre de Mécanique Analytique
publié en 1788 constitue une présentation mathématique
de la mécanique, dont la parution fut approuvée par un
comité qui comprenait Laplace et Legendre.

Fig. 2.2 Joseph-Louis de Lagrange.
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2.3 Descriptions matérielle et spatiale

La description matérielle , appelée aussi description lagrangienne , de
la mécanique des milieux continus signifie que l’on étudie le phénomène phy-
sique ou mécanique concerné en regardant ce qui se passe pour une particule
P du corps. Par contre, la description spatiale ou encore description eu-
lérienne , consiste à observer les événements se produisant en un point fixe
de l’espace. Donc lorsque les événements en tout point fixe de l’espace sont
enregistrés, on obtient la description spatiale. La figure 2.3 montre les deux
représentations dans le cas d’un fluide s’écoulant dans une conduite de section
variable.

P

χ(X, t0)

χ(X, t1)

χ(X, t2)

P P
x

Fig. 2.3 Schéma de la descrition matérielle et spatiale dans le cas d’un fluide repré-
senté par les flèches.

D’un point de vue pratique, les problèmes de mécanique des solides sont
souvent plus faciles à formuler et à résoudre en description matérielle, et ceux
de mécanique des fluides le sont en description spatiale.

Afin de définir exactement les descriptions matérielle et spatiale, nous in-
troduisons d’abord la notion de configuration de référence . Par définition,
il s’agit d’une configuration particulière Rr utilisée pour identifier chaque par-
ticule de C. Par la suite, la configuration R0 de C à t = 0 sera choisie comme
la configuration de référence. Ainsi, nous avons les définitions suivantes.

Description matérielle :
c’est celle où les composantes du vecteur position initiale X sont les
variables indépendantes spatiales.

Description spatiale :
c’est celle où les composantes du vecteur position actuelle x sont les
variables indépendantes spatiales.

Quand nous calculons des dérivées partielles de diverses quantités (fonc-
tions) relevant du modèle de la mécanique des milieux continus, nous pouvons
utiliser les coordonnées matérielles ou les coordonnées spatiales comme va-
riables indépendantes, c’est-à-dire X ou x. Puisque X et x sont liés, nous
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avons aussi besoin de relier les dérivées de fonctions relativement à ces va-
riables. Ceci est réalisé par l’application de la règle des dérivées d’une fonction
composée.

Fig. 2.4 Leonhard Euler (15/04/1707-18/09/1783) est un célèbre mathématicien
suisse né à Bâle. Il succède à Daniel Bernoulli à l’Académie des Sciences de Saint-
Pétersbourg. Il fut plus tard enseignant à l’Académie des Sciences de Berlin. Outre
qu’il fut un des meilleurs mathématiciens de tous les temps, Euler comme mécanicien
a conçu les « équations d’Euler » qui décrivent la dynamique des fluides non visqueux.
Il a eu l’honneur de figurer pendant de longues années sur les billets de dix francs
suisses avec son projet de turbine hydraulique. Euler a été l’auteur prolifique de
nombreux livres et de près de 900 mémoires (on dirait aujourd’hui articles). Avec les
fondements du calcul des variations, il a ouvert la porte aux méthodes modernes du
calcul scientifique. Dans ses Lettres à une princesse d’Allemagne [21], il expose en
français et sans équations, la physique de son temps. De nombreuses considérations
religieuses y sont également présentes, car Euler était un croyant fervent.
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Pour faciliter la dérivation, nous introduisons la convention suivante :

• les fonctions indiquées en lettres minuscules font référence aux fonctions de
variables spatiales, par exemple, f(x, t) ;

• les fonctions indiquées en lettres majuscules font référence aux fonctions de
variables matérielles, par exemple, F (X, t).

Par conséquent, nous pouvons écrire

f(x, t) −→ f
(
χ(X, t), t

)
= F (X, t) (2.6)

F (X, t) −→ F
(
χ−1(x, t), t

)
= f(x, t) . (2.7)

Dans (2.6) nous avons substitué x en fonction de X, alors que dans (2.7) nous
avons substitué X en fonction de x. Nous notons que les fonctions f et F
sont des fonctions différentes. Elles représentent le même phénomène physique.
Leurs valeurs aux points correspondants X et x sont par contre égales comme
l’indiquent les équations (2.6) et (2.7).

Considérons l’exemple suivant : soit θ(x, t) la température au temps t, à
la position x. Soit Θ(X, t) la température au temps t d’une particule qui était
initialement localisée en X. Nous avons, d’après (2.6) et (2.7),

θ(x, t) −→ θ
(
χ(X, t), t

)
= Θ(X, t)

Θ(X, t) −→ Θ
(
χ−1(x, t), t

)
= θ(x, t) .

Les équations (2.6) et (2.7) illustrent la transformation entre la description
spatiale (ou eulérienne) et la description matérielle (ou lagrangienne).

Ces termes sont définis plus précisément de la manière suivante.

Description spatiale :
x, t sont les variables indépendantes.

Description matérielle :
X, t sont les variables indépendantes.

Un observateur peut mesurer la vitesse, la masse volumique, etc., en un
certain point de l’espace. Si ces mesures sont faites pour chaque point dans la
région qui nous intéresse, nous avons la description spatiale. Pour obtenir la
description matérielle, l’observateur effectuerait de telles mesures en voyageant
avec la particule, à sa vitesse propre.

Dans la plupart des cas, nous supposons que la configuration de référence
est la configuration occupée au temps t = 0 (c.-à-d. la configuration lagran-
gienne). Les coordonnées matérielles et spatiales sont généralement mesurées
par rapport aux mêmes axes de coordonnées. Notons qu’aussi bien pour les
fluides que pour les solides, la configuration de référence peut être arbitraire-
ment choisie.
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Considérons maintenant une particule initialement (t = 0) située en X et
qui, après un certain temps t, se trouve à la position x. Sur la figure 2.1, nous
voyons que

x = χ(X, t) = X +U(X, t) , (2.8)

où U(X, t) est le déplacement en coordonnées matérielles. En coordonnées
spatiales le déplacement est donné par

u(x, t) = U
(
χ−1(x, t), t

)
= U(X, t) . (2.9)

On notera que les deux fonctions vectorielles u et U ont la même valeur, puis-
qu’elles représentent la même réalité physique. Cette dernière équation, en te-
nant compte de (2.3), nous permet d’écrire (2.8) sous la forme

x = χ−1(x, t) + u(x, t) . (2.10)

Cette dernière équation se lit : la position initiale d’une particule située à
l’instant présent en x plus le déplacement de cette particule évalué en x est
égale à sa position actuelle.

Exemple 2.1

La transformation d’un corps est décrite par

x1 = X1 + aX2

x2 = X2 + aX1 (2.11)

x3 = X3 ,

où a est une constante.

1) Exprimer le mouvement et les déplacements du corps en coordonnées
matérielles et spatiales.

2) Pour un corps cubique défini par

Ω =
{
X ∈ E3 | 0 ≤ X1 ≤ 1, 0 ≤ X2 ≤ 1, 0 ≤ X3 ≤ 1

}
, (2.12)

esquisser la déformée de Ω après la transformation (2.11) pour a = 1/3.

3) Quelle est la forme après déformation de la surface définie par

Ω =
{
X ∈ E3 | X2

1 +X2
2 ≤ 1/(1− a2), X3 = 0

}
? (2.13)
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A

B

C

D

E

F

G

H

X3, x3

X1, x1

X2, x2

Fig. 2.5 Cube solide unitaire : configuration initiale.

1) Le mouvement en description spatiale s’obtient en inversant les relations
(2.11)

X1 = (x1 − ax2)/(1− a2)

X2 = (x2 − ax1)/(1− a2) (2.14)

X3 = x3 .

En utilisant (2.8), les composantes du vecteur déplacement en coordonnées
matérielles sont

U1 = x1 −X1 = X1 + aX2 −X1 = aX2

U2 = x2 −X2 = X2 + aX1 −X2 = aX1 (2.15)

U3 = x3 −X3 = 0 .

En utilisant (2.10), les composantes du vecteur déplacement en coordonnées
spatiales sont

u1 = x1 −X1 = a(x2 − ax1)/(1− a2)

u2 = x2 −X2 = a(x1 − ax2)/(1− a2) (2.16)

u3 = x3 −X3 = 0 .

On notera que u(x, t) = U
(
χ−1(x, t), t

)
.

2) En donnant des valeurs aux variables Xi dans l’équation (2.15), on peut
construire la déformée du corps. A titre d’exemple, considérons les cas sui-
vants :
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Pour l’arête X1 = X1, X2 = X3 = 0, on a U1 = U3 = 0, U2 = aX1.

Pour l’arête X1 = 0, X2 = X2, X3 = 0, on a U1 = aX2, U2 = U3 = 0.

Pour l’arête X1 = X2 = 0, X3 = X3, il résulte U1 = U2 = U3 = 0.

A

B

C

D

E

F

G

H

X3, x3

X1, x1

X2, x2

Fig. 2.6 Cube solide unitaire : configuration déformée.

3) La surface donnée est un cylindre décrit par la relation

X2
1 +X2

2 ≤ 1/(1− a2) .

En insérant (2.14) dans cette dernière expression, on obtient(
x1 − ax2

1− a2

)2

+

(
x2 − ax1

1− a2

)2

≤ 1/(1− a2) ,

qu’on peut aussi écrire comme

x2
1(1 + a2) + x2

2(1 + a2)− 4ax1x2 ≤ (1− a2) ,

qui est une surface elliptique.
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2.4 Vitesse, dérivée matérielle et accélération

2.4.1 Vitesse

La vitesse d’une particule matérielle au temps t est la dérivée de la fonction du
mouvement par rapport au temps. Par définition, on a en description matérielle

V (X, t) =
∂χ(X, t)

∂t
(2.17)

Vi(X, t) =
∂χi(X, t)

∂t
. (2.18)

Le vecteur V (X, t) exprime la vitesse à l’instant t de la particule qui, à l’instant
initial, se trouvait en X. Notons que (2.17) est obtenue en utilisant (2.1),
compte tenu que X est une des variables indépendantes. Par (2.8) nous avons
aussi

V (X, t) =
∂U(X, t)

∂t
. (2.19)

La description spatiale de la vitesse, notée v selon la convention, est obtenue
par

v(x, t) = V
(
χ−1(x, t), t

)
= V (X, t) . (2.20)

Le vecteur v(x, t) exprime la vitesse à l’instant t de la particule qui, à cet
instant, passe par la position x.

2.4.2 Dérivée matérielle

Introduisons la notion de dérivée matérielle pour un champ spatial. Soit ϕ un
champ scalaire de C. Lors d’un mouvement χ de C, la dérivée matérielle de ϕ,
notée ϕ̇ ou Dϕ/Dt, est le taux de changement de ϕ avec le temps (la dérivée par
rapport au temps) en une particule fixe de C. Pour établir la dérivée matérielle
du champ ϕ(x, t), nous utilisons les opérations sur les fonctions composées. En
description matérielle, c’est-à-dire ϕ

(
χ(X, t), t

)
= Φ(X, t) (pour rappel, cf. éq.

(2.6) et (2.7)), nous avons simplement

Dϕ

Dt
= ϕ̇ =

∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

. (2.21)

La dernière égalité montre que la dérivée matérielle s’applique pour la même
particule. Certains auteurs l’appellent pour cette raison la dérivée particulaire.
Puisqu’on peut écrire Φ(X, t) = Φ

(
χ−1(x, t), t

)
= ϕ(x, t), il vient

∂Φ(X, t)

∂t
=

∂ϕ

∂x1

∂χ1

∂t
+

∂ϕ

∂x2

∂χ2

∂t
+

∂ϕ

∂x3

∂χ3

∂t
+
∂ϕ

∂t

∣∣∣∣
x=χ(X,t)

. (2.22)

Utilisant la définition de la vitesse (2.17), la relation précédente prend la forme
suivante :

∂Φ(X, t)

∂t
=
∂ϕ

∂t

∣∣∣∣
x=χ(X,t)

+ Vi(X, t)
∂ϕ

∂xi

∣∣∣∣
x=χ(X,t)

. (2.23)
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Puisque le but est d’exprimer le membre de droite de (2.23) en termes des
coordonnées spatiales, nous devons faire la substitution X = χ−1(x, t) dans la
dernière équation qui donne

∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

=
∂ϕ

∂t
+ vi(x, t)

∂ϕ

∂xi
, (2.24)

où l’on a utilisé

Vi(X, t)
∣∣∣
X=χ−1(x,t)

= vi(x, t) . (2.25)

Maintenant, on peut définir la dérivée suivante :

ϕ̇(x, t) =
Dϕ(x, t)

Dt
≡ ∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

, (2.26)

où, d’après (2.24),

Dϕ(x, t)

Dt
=
∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) , (2.27)

=
∂ϕ(x, t)

∂t
+ vj

∂ϕ(x, t)

∂xj
. (2.28)

La dérivée Dϕ(x, t)/Dt est appelée dérivée matérielle (ou dérivée substan-
tielle, ou dérivée particulaire) et représente le taux de changement de la fonction
ϕ en conservant la même particule dont la vitesse est v(x, t). Alternativement,
cette dérivée peut être considérée comme donnant le changement de ϕ avec le
temps, vu par un observateur accompagnant la particule qui est actuellement
située en x.

A titre d’exemple, considérons que la fonction ϕ représente la température
d’une particule fluide dans une rivière ; nous la noterons θ. On désire connâıtre
la variation Dθ/Dt et à cette fin, nous disposons d’un thermomètre. Dans
une première phase de l’expérience, nous montons à bord d’un canot et nous
plongeons le thermomètre dans l’eau. Larguant les amarres, nous mesurons la
variation de θ pour la particule fluide que nous accompagnons, c.-à-d. nous
mesurons ∂Θ(X, t)/∂t correspondant au dernier terme de l’équation (2.26).
D’où le nom de dérivée particulaire pour cette quantité. Dans la seconde phase,
nous accrochons le thermomètre au pilier d’un pont. Le thermomètre se situe
au point x. On y mesure Dθ/Dt qui se compose de ∂θ/∂t, c.-à-d. la variation
temporelle de la température en ce point, ainsi que la variation due à l’advection
locale v ·∇θ induite par le champ de vitesse changeant (éq. (2.27)).
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Pour un champ vectorielw, nous avons la formule similaire pour ses dérivées
matérielles :

Dw

Dt
= ẇ =

∂W (X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

(2.29)

Dwi
Dt

= ẇi =
∂Wi(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

ẇ =
∂w(x, t)

∂t
+
(
∇w(x, t)

)∂χ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

(2.30)

ẇi =
∂wi(x, t)

∂t
+
∂wi(x, t)

∂xj
vj .

Notons que la dérivée matérielle d’un champ matériel Φ(X, t) est la dérivée
partielle standard :

Φ̇(X, t) =
DΦ(X, t)

Dt
=
∂Φ(X, t)

∂t
. (2.31)

2.4.3 Accélération

L’accélération A d’une particule matérielle au temps t est la dérivée de sa
vitesse V par rapport au temps, c’est-à-dire la dérivée matérielle de V . En
description matérielle, on a

A(X, t) =
∂ V (X, t)

∂t
=
∂2χ(X, t)

∂t2
(2.32)

Ai = V̇i =
∂2χi(X, t)

∂t2
,

et en description spatiale, on a

a = v̇ =
∂v(x, t)

∂t
+
(
∇v(x, t)

)
v(x, t) (2.33)

ai = v̇i =
∂vi(x, t)

∂t
+
∂vi(x, t)

∂xj
vj(x, t) .

Le premier terme du membre de droite de (2.33) peut être considéré comme
l’accélération due à la dépendance temporelle de la vitesse, en un endroit fixe
de l’espace. Le deuxième terme peut être interprété comme la contribution à
l’accélération de la particule matérielle due à l’hétérogénéité du champ de vi-
tesse. Ces termes sont parfois appelés parties locale et (convective) advective de
l’accélération, respectivement. L’advection correspond au transport du champ
de vitesse par lui-même.

Notons que l’équation (2.33) peut également s’écrire

a =
∂v(x, t)

∂t
+
(
v(x, t) ·∇

)
v(x, t)
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avec la définition

((v ·∇)v)i = vj
∂vi
∂xj

,

expression qu’il ne faut pas confondre avec ∇ · v = ∂vj/∂xj .

2.5 Trajectoires, lignes de courant et lignes d’émission

L’équation (2.1) donne les positions successives x d’une particule X avec le
temps t comme paramètre et décrit donc une courbe dans l’espace. Cette courbe
est appelée trajectoire de la particule X. Sous forme différentielle, elle est
définie par une des équations suivantes :

dx = V (X, t) dt ou dxi = Vi(X, t) dt (2.34)

dx = v(x, t) dt ou dxi = vi(x, t) dt , (2.35)

avec la condition initiale x(0) = X.

Une ligne de courant à un instant t donné est une courbe dans l’espace
qui est en tout point tangente au vecteur vitesse. Elle est donc déterminée en
terme d’un paramètre s par l’équation différentielle

dx(s) = v
(
x(s), t

)
ds (2.36)

dxi(s) = vi
(
x(s), t

)
ds . (2.37)

Un mouvement est dit stationnaire si la vitesse en tout point x est indé-
pendante du temps c’est-à-dire v = v(x, t) = v(x, 0) = v0(x). Dans ce cas,
l’équation (2.36) est identique à (2.35). Ainsi, dans un mouvement stationnaire,
les lignes de courant cöıncident avec les trajectoires.

La ligne d’émission à travers un point donné de l’espace x à un instant
donné t est la courbe constituée de toutes les particules qui ont occupé x
précédemment, autrement dit de toutes les particules qui sont passées par la
position x pour une valeur du temps comprise entre 0 et t. Cette courbe peut
être paramétrée, en terme de t, comme suit :

x = x
(
χ−1(x, t), t

)
0 ≤ t ≤ t . (2.38)

Exemple 2.2

Considérons l’exemple suivant où un écoulement plan est donné par le
champ de vitesse

v1 =
x1

1 + t
v2 = x2 v3 = 0 . (2.39)

Calculons d’abord les lignes de courant. L’équation (2.37) appliquée à (2.39)
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donne
dx1 =

x1

1 + t
ds dx2 = x2 ds dx3 = 0 . (2.40)

Posant t = t, il vient en intégrant

x1 = c1 e
s

1+t x2 = c2 e
s x3 = c3 . (2.41)

C’est l’équation de la ligne de courant qui passe par le point c.
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Fig. 2.7 Lignes de courant : (a) pour t = 0, (b) pour t = 1. Les points sur les
lignes sont ceux correspondant à c répartis de manière uniforme sur le cercle de rayon
R = 2.5.

La figure 2.7 montre ces lignes de courant qui sont des courbes du plan
x3 = c3 telles que

x2

c2
=

(
x1

c1

)(1+t)

. (2.42)

Le calcul des trajectoires s’effectue par la combinaison de (2.35) et (2.39).
Il vient∫ x1

X1

dx′1
x′1

=

∫ t

0

dt′

1 + t′

∫ x2

X2

dx′2
x′2

=

∫ t

0

dt′
∫ x3

X3

dx′3
x′3

= 0 . (2.43)

La première intégrale donne lnx′1
∣∣x1

X1
= ln(1 + t′)

∣∣t
0

et donc lnx1 − lnX1 =

ln(1 + t) puisque x1 = X1 au temps t = 0. Finalement, on obtient

x1 = X1(1 + t) x2 = X2 e
t x3 = X3 . (2.44)

Les trajectoires sont des courbes du plan x3 = c3 données par

x2 = X2 e
(x1−X1)/X1 . (2.45)

Elles sont dessinées à la figure 2.8.
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Fig. 2.8 Trajectoires ; les points correspondant à X sont les mêmes que ceux de la
figure 2.7.

Pour le calcul des lignes d’émission, on inverse tout d’abord les relations
des trajectoires

X1 =
x1

1 + t
X2 = x2 e

−t X3 = x3 . (2.46)

Comme la particule passe par x aux temps t ≤ t, on a

X1 =
x1

1 + t
X2 = x2 e

−t X3 = x3 . (2.47)

En substituant (2.47) dans (2.44) évaluée au temps t, on obtient les équa-
tions paramétriques de la ligne d’émission

x1 = x1
1 + t

1 + t
x2 = x2 e

t−t x3 = x3 . (2.48)

2.6 Equations de la cinématique du mouvement

du corps rigide

Lorsque nous ferons appel à l’objectivité dans le cadre des principes généraux
régissant les lois de comportement des milieux continus, nous examinerons es-
sentiellement la rotation dite de corps rigide (ou mouvement rigidifiant). Afin
de nous y préparer, nous allons étudier quelques relations de la cinématique du
corps rigide. Un mouvement de corps rigide est celui dans lequel les longueurs
et les angles sont conservés.
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2.6.1 Translation de corps rigide

Dans ce cas illustré à la figure 2.9, l’équation du mouvement est donnée par la
relation

x = χ(X, t) = X + c(t) (2.49)

avec c(0) = 0.

R
P

p

c(t)

O

e2

e3

e1

x
X

R0

Fig. 2.9 Translation de corps rigide.

Nous pouvons constater que le vecteur déplacement U est indépendant de
X, puisqu’on a

U = x−X = c(t) . (2.50)

Chaque point matériel se trouve déplacé de manière identique avec la même
grandeur et la même direction au temps t.

2.6.2 Rotation de corps rigide autour d’un point fixe

Le mouvement illustré à la figure 2.10 est décrit par l’équation

χ(X, t) = x = b+Q(t)(X − b) , (2.51)

où Q est un tenseur de rotation orthogonal tel que Q(0) = I et b est un vecteur
constant.
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Fig. 2.10 Rotation de corps rigide autour d’un point fixe.

On constate que lorsque le point matériel X = b cöıncide avec le point
spatial x = b, la rotation a toujours lieu autour du point fixe x = b. Si le
centre de rotation est placé à l’origine, alors b = 0 et le mouvement de rotation
est donné par x = Q(t)X.

2.6.3 Mouvement général du corps rigide

Le mouvement illustré à la figure 2.11 s’écrit

x = χ(X, t) = Q(t)X + d(t) , (2.52)

où Q est un tenseur de rotation comme précédemment et d(t) = −Q(t)b+c(t).
Le vecteur c(t) est tel que c(0) = b. L’équation (2.52) indique que le mouvement
est composé d’une rotation Q(t) et de la translation c(t) d’un point matériel
X = b.

La vitesse est obtenue en dérivant par rapport au temps la relation (2.52)

V = Q̇(X − b) + ċ . (2.53)

Or par (2.52), on a
X − b = QT (x− c) . (2.54)

En tenant compte de (2.20), on peut écrire

v = Q̇Q
T

(x− c) + ċ . (2.55)

Le tenseur Q étant orthogonal, on a QQT = I (éq. (1.243)). En dérivant cette
dernière égalité par rapport au temps, on obtient

Q̇QT +QQ̇
T

= 0 . (2.56)
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Fig. 2.11 Mouvement général de corps rigide.

qui démontre que Q̇Q
T

est antisymétrique. Posons

Q̇Q
T

= Ω , (2.57)

où Ω est le tenseur antisymétrique de rotation. Alors, en utilisant le vecteur
dual de ce tenseur (cf. éq. (1.104))

ωk = −1

2
εkijΩij , (2.58)

on obtient successivement à l’aide de (1.107)

Ωij = −εijkωk = εikjωk (2.59)

Ωx = Ωij xjei = εikjωkxjei = ω × x . (2.60)

A l’aide de (2.60), on peut réécrire l’équation (2.55) sous la forme

v = ω × (x− c) + ċ . (2.61)

Posons r = x − c, où r est le vecteur position du point matériel général à la
translation c près. Finalement, on a

v = ω × r + ċ . (2.62)

Cette relation montre que la vitesse spatiale v d’un point matériel quelconque
d’un corps rigide est la somme de la vitesse de rotation angulaire du corps ω
et d’une vitesse de translation ċ d’un point matériel choisi arbitrairement.
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2.7 Gradient et tenseurs de déformation

2.7.1 Définition

Considérons une particule donnée dont la position dans la configuration R0 est
X0, et son voisinage V. Sa position dans la configuration R est donnée par
(2.1). Si V est suffisamment petit, la relation (2.1) pour les autres particules
de V peut être approchée en utilisant la formule de Taylor. Soient X et x les
positions initiale et actuelle d’une particule dans V ; alors, si la fonction χ est
suffisamment régulière, nous avons

xi = χi(Xk, t)

= χi
(
X0
k , t
)

+
∂χi
∂Xj

∣∣∣∣
X0

k

(
Xj −X0

j

)
+ 0
(
‖X −X0‖2

)
,

(2.63)

où le dernier terme signifie

0
(∥∥X −X0

∥∥2
)
∼ C

∥∥X −X0
∥∥2

+ · · · (2.64)

avec C une constante bornée. Le tenseur F dont les composantes sont données
par

Fij =
∂χi
∂Xj

(2.65)

est appelé tenseur du gradient de déformation . Dans la suite de ce cha-
pitre, on omettra les arguments des fonctions (vectorielles ou tensorielles) afin
d’alléger les notations.

Si la distance ‖X −X0‖ entre X et X0 est de loin inférieure à l’unité, la
relation (2.63) peut être approchée par

xi ∼= x0
i + Fij

(
Xj −X0

j

)
avec x0

i = χi
(
X0
k , t
)
. (2.66)

Dans ce cas, le tenseur F est représenté (abusivement) par

Fij =
∂xi
∂Xj

. (2.67)

Soit J le jacobien de F :

J = det

(
∂χi
∂Xj

)
= detF . (2.68)

L’hypothèse de continuité du matériau et donc de dérivabilité continue pour la
déformation du milieu continu implique que

0 < J <∞ . (2.69)

Ceci assure l’existence de l’inverse F−1 de F avec detF−1 = 1/J . En utilisant
(2.8), (2.10) et (2.67), nous pouvons calculer F et F−1 en terme du déplacement

Fij = δij +
∂Ui
∂Xj

F−1
ij =

∂Xi

∂xj
= δij −

∂ui
∂xj

(2.70)
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ou

F = gradχ(X, t) = I +∇U F−1 = gradχ−1(x, t) = I −∇u . (2.71)

Une autre façon d’écrire (2.66) est

dx = F dX , (2.72)

où nous voyons que F transforme un vecteur dX lié à X0 en un vecteur dx lié
à x (fig. 2.1).

D’après le théorème de décomposition polaire (1.132), il existe un tenseur
unique de rotation R et deux tenseurs uniques, symétriques, définis positifs U
et V , tels que

F = RU = V R . (2.73)

Habituellement, pour F = RU , la décomposition polaire droite de F , et pour
F = V R, la décomposition polaire gauche de F , les tenseurs U et V sont
appelés tenseurs d’élongation droit et gauche. Lorsque R = I, (2.73) se réduit
à F = U = V et la déformation est appelée déformation pure .

En insérant (2.73) dans (2.72), on obtient

dx = RU dX . (2.74)

Nous verrons plus loin que cette relation permet de conclure que le change-
ment de configuration au voisinage de la particule matérielle s’obtient par la
transformation du vecteur dX en un vecteur U dX par une déformation pure
U suivie d’une rotation locale R.

2.7.2 Tenseurs de déformation

Ecrivons (2.72) sous la forme indicielle

dxi = Fij dXj . (2.75)

Alors, le carré de la norme ds du vecteur dx est donné par

ds2 = ‖dx‖2 = dxm dxm = FmiFmj dXi dXj . (2.76)

Le tenseur C défini par

C = F TF =
(
F TF

)T
Cij = FmiFmj (2.77)

est le tenseur symétrique de déformation de Cauchy-Green droit .

Ce tenseur symétrique est un tenseur métrique. Comme l’indique la relation
(2.76), il permet de calculer la longueur de dx en fonction des composantes
de dX. A l’inverse, la longueur dS de dX peut être calculée en termes des
composantes de dx :

‖dX‖2 = dXm dXm = F−1
mi F

−1
mj dxi dxj . (2.78)
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Augustin Louis Cauchy (1789-1857) est un mathématicien
français né à Paris. Il fut professeur à l’Ecole Polytech-
nique de Paris. Son œuvre abondante a traité de tous les
grands problèmes mathématiques de son époque. On lui
doit notamment les fonctions holomorphes et des critères
de convergence pour les suites. Son nom figure sur la liste
des 72 savants inscrits sur la tour Eiffel.

Fig. 2.12 Augustin Louis Cauchy.

Avec la notation F−T =
(
F−1

)T
, le tenseur c−1, défini par

c−1 = F−TF−1 =
(
F−TF−1

)T
c−1
ij = F−1

mi F
−1
mj , (2.79)

est l’inverse du tenseur symétrique de déformation de Cauchy-Green
gauche . La différence entre ‖dx‖2 et ‖dX‖2 peut être exprimée sous l’une des
deux formes suivantes :

‖dx‖2 − ‖dX‖2 = Cij dXi dXj − dXm dXm = 2Eij dXi dXj (2.80)

‖dx‖2 − ‖dX‖2 = dxm dxm − c−1
ij dxi dxj = 2eij dxi dxj . (2.81)

Le tenseur E introduit dans (2.80), dont les composantes sont

Eij =
1

2
(Cij − δij) , (2.82)

est appelé le tenseur de déformation de Green-Lagrange .

George Green (1793-1841) est un mathématicien anglais
né à Sneiton, près de Nottingham. Pratiquement autodi-
dacte, il obtint un titre de bachelor à l’âge de 44 ans. Il
contribua à la théorie du potentiel en introduisant les fonc-
tions qui portent son nom. Il a traité d’optique, d’acous-
tique et d’hydrodynamique. Ses travaux peu connus de son
vivant furent remis en évidence en 1846 par Lord Kelvin.

Fig. 2.13 George Green.

Le tenseur e introduit dans (2.81), dont les composantes sont

eij =
1

2

(
δij − c−1

ij

)
, (2.83)

est le tenseur de déformation de Euler-Almansi .
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En termes de déplacements matériel et spatial U et u, les tenseurs de
déformation ci-dessus s’écrivent

Cij = FmiFmj =

(
δmi +

∂Um
∂Xi

)(
δmj +

∂Um
∂Xj

)
= δij +

∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Um
∂Xi

∂Um
∂Xj

(2.84)

c−1
ij = F−1

mi F
−1
mj =

(
δmi −

∂um
∂xi

)(
δmj −

∂um
∂xj

)
= δij −

∂ui
∂xj
− ∂uj
∂xi

+
∂um
∂xi

∂um
∂xj

(2.85)

Eij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Um
∂Xi

∂Um
∂Xj

)
(2.86)

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi
− ∂um

∂xi

∂um
∂xj

)
. (2.87)

Les tenseurs de déformation peuvent aussi s’écrire en fonction de U et V . Par
application directe de la décomposition polaire (2.73), ils ont pour expressions :

• le tenseur de déformation de Cauchy-Green droit

C = F TF = URTRU = U2 ; (2.88)

• le tenseur de déformation de Cauchy-Green gauche et son inverse

c = FF T = V RRTV T = V 2 (2.89)

c−1 = F−TF−1 = V−2 ; (2.90)

• le tenseur de déformation de Green-Lagrange

E =
1

2
(C − I) =

1

2

(
U2 − I

)
; (2.91)

• le tenseur de déformation d’Euler-Almansi

e =
1

2
(I − c−1) =

1

2

(
I − V −2

)
. (2.92)

Une observation importante est que le tenseur de rotationR n’affecte aucun
des tenseurs de déformation considérés. En fait, c’est un besoin élémentaire
pour donner un sens à une mesure de déformation, autrement un corps rigide
serait pris comme déformable. De plus, on peut vérifier facilement que pour le
mouvement du corps rigide (2.51), F = Q et C = c = I et donc E = e = 0.

Sur la base du tenseur du gradient de déformation F et des tenseurs de
déformation associés, on peut exprimer le changement de longueur d’un élé-
ment linéaire, d’un élément de surface et d’un élément de volume au cours du
mouvement du corps (fig. 2.14). Un élément linéaire dX dans la configuration
de référence est de norme ‖dX‖ = (dX · dX)1/2. A cause du mouvement du
corps (2.1), il devient l’élément dx de norme ‖dx‖ = (dx · dx)1/2. En tenant
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compte de (2.72), le rapport du carré des normes dans ces deux configurations
est donné par

‖dx‖2
‖dX‖2 =

F dX · F dX

‖dX‖2 =
dX · F TF dX

‖dX‖2 =
dX ·C dX

‖dX‖2 . (2.93)

n

N

R

ds

dS

dx

dy

dz

dZ
dX

dX

dx

dY

O

e2

e3

e1

R0

X3, x3

X1, x1

X2, x2

Fig. 2.14 Eléments linéaire et de surface dans les configurations R0 et Rt du corps
C.

Comme dX = N‖dX‖ où N est le vecteur unitaire dans la direction dX,
(2.93) s’écrit

‖dx‖2
‖dX‖2 =

dX ·C dX

‖dX‖ ‖dX‖ = N ·CN = λ2
N . (2.94)

Le paramètre λN est appelé la dilatation . Par la relation (2.88) entre C et U ,
il peut s’exprimer par les égalités

‖dx‖
‖dX‖ =

(
N ·U2N

)1/2
= (UN ·UN)1/2 = ‖UN‖ = λN . (2.95)

On peut exprimer l’angle entre deux éléments linéaires par les procédures simi-
laires qui suivent. Supposons que deux éléments linéaires dX et dY se coupent
avec un angle Θ dans la configuration de référence. Alors,

cos Θ =
dX · dY
‖dX‖ ‖dY ‖ . (2.96)
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Après le mouvement, ces deux éléments deviennent dx et dy et leur angle θ est
donné par une expression semblable

cos θ =
dx · dy
‖dx‖ ‖dy‖ . (2.97)

En utilisant successivement (2.72) et (2.88), cette dernière relation devient

cos θ =
F dX · F dY

‖F dX‖ ‖F dY ‖ =
dX · F TF dY

‖F dX‖ ‖F dY ‖

=
dX ·C dY

‖F dX‖ ‖F dY ‖ .
(2.98)

Puisque dX = Nx‖dX‖ et dY = Ny‖dY ‖ où Nx et Ny sont les vecteurs uni-
taires suivant les éléments linéaires, et comme ‖F dX‖ = (F dX ·F dX)1/2 =
(dX ·C dX)1/2, (2.98) donne

cos θ =
Nx ·CNy

(Nx ·CNx)1/2(Ny ·CNy)1/2
. (2.99)

La différence angulaire Θ− θ est attribuée au cisaillement.

Afin d’exprimer la relation entre les éléments volumiques dans les deux
configurations, nous considérons trois éléments linéaires infinitésimaux et non
coplanaires dX, dY , dZ (fig. 2.14) dans la configuration de référence en sorte
que

dV = dX · (dY × dZ) > 0 . (2.100)

Dans la nouvelle configuration, les trois éléments linéaires deviennent dx, dy,
dz et le volume correspondant est donné par

dv = dx · (dy × dz) . (2.101)

Comme le volume s’exprime comme un déterminant, par (2.75), on a

dv = det

 dx1 dy1 dz1

dx2 dy2 dz2

dx3 dy3 dz3

 = det

 F1j dXj F1j dYj F1j dZj
F2j dXj F2j dYj F2j dZj
F3j dXj F3j dYj F3j dZj

 .

(2.102)
On voit facilement par ce déterminant et (2.68) que le volume élémentaire est
transformé suivant la relation

dv = detF dV = J dV (2.103)

Pour évaluer les changements d’un élément de surface (fig. 2.14), nous com-
mençons par l’expression de l’élément de volume dans les configurations de
référence et actuelle

dV = dX ·N dS dv = dx · n ds (2.104)
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où les éléments de surface sont indiqués par N dS et n ds avec N et n les
vecteurs unitaires sur les éléments de surface correspondants. En tenant compte
de (2.72) et (2.104), (2.103) devient

dv = F dX · n ds = J dX ·N dS (2.105)

ou (
F Tn ds− JN dS

)
· dX = 0 . (2.106)

Puisque cette relation est valable pour un choix arbitraire de dX, on conclut
que

n ds = JF−TN dS ou ds = JF−TN dS . (2.107)

Cette expression, appelée formule de Nanson , relie les éléments de surface
correspondants entre les configurations de référence et actuelle.

2.7.3 Interprétation géométrique

Donnons une interprétation géométrique de (2.73). A cette fin, nous devons
d’abord examiner quelques propriétés des valeurs propres de U et V . Soit
λi (i = 1, 2, 3) les valeurs propres de U correspondant aux vecteurs propres
unitaires Ai, alors

UAi = λiAi (sans sommation sur i) . (2.108)

Comme U est symétrique défini positif, les λi sont réelles et λi > 0 ; de plus,
par la décomposition spectrale (1.125), on a

U = λ1A1 ⊗A1 + λ2A2 ⊗A2 + λ3A3 ⊗A3 avec Ai ·Aj = δij . (2.109)

En utilisant (2.88) et (2.108), on peut écrire

CAi = λ2
i Ai (sans sommation sur i) . (2.110)

Dès lors, le tenseur C a λ2
i comme valeurs propres et Ai (i = 1, 2, 3) comme

vecteurs propres. Concernant les valeurs propres et les vecteurs propres de V ,
l’utilisation de (2.73) et (2.108) conduit à

V (RAi) = RUAi = λi(RAi) (sans sommation sur i) . (2.111)

Ceci montre que les λi sont aussi les valeurs propres de V , correspondant aux
vecteurs propres unitaires

bi = RAi . (2.112)

Donc la déformation transforme, par une rotation, les vecteurs propres de U
en ceux de V . De manière similaire à (2.109), on peut écrire

V = λ1b1 ⊗ b1 + λ2b2 ⊗ b2 + λ3b3 ⊗ b3 avec bi · bj = δij . (2.113)
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Pour obtenir les valeurs propres et vecteurs propres de c, nous utilisons
(2.89) et (2.110) pour obtenir

V 2(RAi) = c(RAi) = λ2
i (RAi) (sans sommation sur i) (2.114)

ce qui démontre que les tenseurs V et c ont λi et λ2
i comme valeurs propres,

respectivement, et les mêmes vecteurs propres bi, (i = 1, 2, 3). Dans la littéra-
ture, les λi sont aussi appelées les élongations principales du tenseur U , Ai les
directions d’élongation principales matérielles, et bi les directions d’élongation
principales spatiales. Dans le cas d’une déformation pure, la différence entre Ai

et bi disparâıt.

Il est maintenant possible de donner une interprétation géométrique à
(2.73). Considérons un corps dont la configuration initiale ou de référence est
une sphère unitaire centrée à l’origine (fig. 2.15), et qui subit la transformation
homogène (cf. sect. 2.8) suivante :

x = FA avec ‖A‖ ≤ 1 . (2.115)

A2

A2

A1

b1

b1

b2

b2

A1

U

R

R

V

1

λ1

λ1

λ2

λ2

Fig. 2.15 Interprétation géométrique de F = RU = V R.

En substituant (2.73) dans (2.115), on obtient

x = RUA = V RA avec ‖A‖ ≤ 1 . (2.116)

A partir de cette expression et à la lumière de la discussion précédente sur les
propriétés des valeurs propres de U et V , les décompositions polaires droite et
gauche peuvent s’interpréter géométriquement de la façon suivante (fig. 2.15)
où on montre seulement le plan (0, x1, x2) :
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Décomposition polaire droite :

• Premièrement, en appliquant le tenseur d’élongation droit U à la
sphère unitaire, les rayons dirigés le long des directions d’élongation
principales matériellesAi sont allongés (ou raccourcis) jusqu’à leurs
longueurs finales λi tout en restant dirigés le long des directions
d’élongation principales matériellesAi. De ce fait, la sphère devient
un ellipsöıde.

• Ensuite, en appliquant le tenseur de rotation R à l’ellipsöıde, les
lignes dirigées le long des directions d’élongation principales maté-
rielles subissent une rotation et prennent leurs orientations finales
bi.

Décomposition polaire gauche :

• Premièrement, en appliquant le tenseur de rotation R à la sphère
unitaire, les lignes dirigées le long des directions d’élongation princi-
pales matérielles Ai subissent une rotation et prennent leurs orien-
tations finales bi. La sphère unitaire, quant à elle, tourne sur elle-
même.

• Ensuite, en appliquant le tenseur d’élongation gauche V à la sphère
unité (ayant subi la rotation), les rayons dirigés le long des direc-
tions d’élongation principales spatiales bi sont allongés (ou rac-
courcis) jusqu’à leurs longueurs finales λi et la sphère devient un
ellipsöıde.

Comme nous avons pu le voir, les éléments de lignes mutuellement ortho-
gonaux dirigés le long des directions d’élongation matérielles principales Ai

avant transformation restent mutuellement orthogonaux après transformation
et sont dirigés le long des directions d’élongation principales spatiales bi. Donc
le tenseur de rotation R peut être exprimé en fonction de Ai et bi :

R = b1 ⊗A1 + b2 ⊗A2 + b3 ⊗A3 . (2.117)

Cette dernière relation s’établit facilement comme suit. Le tenseur de rotation
est exprimé comme R = RI et le tenseur identité comme I = Ai ⊗ Ai. En
tenant compte de (2.112) et de la propriété (1.65), nous obtenons

R = RI = R(Ai ⊗Ai) = (RAi)⊗Ai =

3∑
i=1

bi ⊗Ai . (2.118)

Le tenseur du gradient de déformation F peut s’exprimer en fonction des vec-
teurs Ai, bi et des élongations principales λi comme

F =

3∑
i=1

λibi ⊗Ai . (2.119)

Nous allons présenter une méthode pour déterminer les divers tenseurs
cinématiques C, U , c, V et R. Nous pouvons effectuer le calcul concret de U ,
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V et R pour un gradient de déformation F donné. Les tenseurs U , V et R
sont déterminés à partir des relations

U =
√
F TF V =

√
FF T R = FU−1 = V −1F . (2.120)

La principale difficulté réside dans le calcul de U ou de la racine carrée de
C = F TF . Soit [P ] la matrice orthogonale diagonalisant la matrice [C] du
tenseur C, telle que

[Λ2] = [P ][C][P ]T ou Λ2
ij = PimCmnPjn (2.121)

avec [Λ2] = diag (λ2
1, λ

2
2, λ

2
3) où la notation diag désigne la matrice diagonale

diag (a, b, c) =

 a
b

c

 . (2.122)

Alors la matrice [U ] du tenseur U est donnée par

[U ] = [P ]T [Λ][P ] ou Uij = PmiΛmnPnj (2.123)

avec [Λ] = diag (λ1, λ2, λ3). Après avoir trouvé U , nous pouvons calculer R par
(1.135) et V par (1.137) ou par V = FRT .

2.8 Déformations homogènes

La déformation ou transformation x d’un corps C est dite homogène si le
gradient de déformation correspondant F est indépendant de la particule X.
Géométriquement, une déformation homogène transforme une ligne droite de
R0 en une ligne droite deR (fig. 2.16). Une telle déformation x est une transfor-
mation affine ; elle a la forme générale suivante, avec la notation x0

i = χi(X
0
j , t),

xi = x0
i (t) +Mij(t)

(
Xj −X0

j

)
. (2.124)

Sous forme vectorielle, on a

x = x0(t) +M(t)
(
X −X0

)
. (2.125)

avec 0 < detM <∞. La relation inverse s’écrit

X = X0 +M−1(t)
(
x− x0

)
. (2.126)
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Fig. 2.16 Transformation d’un vecteur dans une déformation homogène.

Nous donnons ci-dessous plusieurs exemples importants de déformations
homogènes obtenus à partir des relations (2.125) et (2.126).

Translation :
M est le tenseur unité I et sans perte de généralité, on pose X0 = 0.
On obtient

x = x0(t) +X . (2.127)

Rotation autour de l’origine :
X0 = x0 = 0, et M est le tenseur de rotation R avec la propriété

RTR = RRT = I et det(R) = 1 . (2.128)

Dans ce cas, (2.124) et (2.126) deviennent

x = RX X = RTx . (2.129)

Le mouvement d’un corps rigide peut être décomposé en une ro-
tation suivie d’une translation.

Expansion ou compression uniforme :
M = mI et (2.124) prend la forme (fig. 2.17)

xi = x0
i +m

(
Xi −X0

i

)
. (2.130)
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pP0
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X2, x2

Fig. 2.17 Expansion uniforme.

Cisaillement simple :
dans un système de coordonnées cartésiennes (fig. 2.18), la matrice [M ]
est donnée par

[M ] =

 1 k 0
0 1 0
0 0 1

 (2.131)

ou en notation vectorielle, on a

x = MX = (I + k e1 ⊗ e2)X (2.132)

en prenant l’origine comme point fixe X0 = x0 = 0. Explicitement,
(2.124) et (2.131) donnent

x1 = X1 + kX2 x2 = X2 x3 = X3 . (2.133)

A titre d’exemple, nous allons calculer F ,C, U , V etR pour le cisaillement
simple.

Les matrices de F et C peuvent être directement calculées, alors que l’ob-
tention de celles de U , V et R requiert la solution d’un problème aux valeurs
propres. L’application des définitions de F et C donne

[F ] =

 1 k 0
0 1 0
0 0 1


[C] =

 1 k 0
k 1 + k2 0
0 0 1

 .
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R
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e2
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Fig. 2.18 Cisaillement simple.

Pour calculer U =
√
C, nous cherchons la matrice diagonale [Λ2] de C. A

cet effet, on résout le problème aux valeurs propres (2.110). L’équation carac-
téristique correspondante est

det
(
[C]− λ2

i [I]
)

=
(
λ4
i −

(
2 + k2

)
λ2
i + 1

) (
1− λ2

i

)
= 0 . (2.134)

Les trois solutions de cette équation sont

λ2
1 = 1 +

1

2
k2 + k

√
1 +

1

4
k2

λ2
2 = 1 +

1

2
k2 − k

√
1 +

1

4
k2

λ2
3 = 1 .

(2.135)

D’où, on calcule la matrice [Λ] définie par (2.123) telle que

[Λ] = diag (λ1, λ2, λ3) . (2.136)

Il reste à trouver la matrice [P ] dans (2.123) pour obtenir la matrice de U
par rapport à la base {e1, e2, e3} dont les lignes sont constituées des vecteurs
propres Ai normés de C. Les vecteurs propres peuvent être déterminés à partir
de l’équation (2.110). Après calculs, nous avons les matrices lignes

(A1) =

(
2 +

1

2
k2 + k

√
1 +

1

4
k2

)−1/2(
1 ,

√
1 +

1

4
k2 +

1

2
k , 0

)

(A2) =

(
2 +

1

2
k2 − k

√
1 +

1

4
k2

)−1/2(
−1 ,

√
1 +

1

4
k2 − 1

2
k , 0

)
(A3) = (0, 0, 1) ,

et la matrice [P ] s’écrit

[P ] =

 (A1)
(A2)
(A3)

 . (2.137)
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Nous calculons ensuite

[U ] = [P ]T [Λ][P ] =
1√

1 +
k2

4

 1 k/2 0
k/2 1 + k2/2 0

0 0
√

1 + k2/4



[R] = [FU−1] =
1√

1 +
k2

4

 1 k/2 0
−k/2 1 0

0 0
√

1 + k2/4



[V ] = [FRT ] =
1√

1 +
k2

4

 1 + k2/2 k/2 0
k/2 1 0

0 0
√

1 + k2/4

 .

(2.138)

2.9 Petits déplacements et tenseur de déformation

infinitésimale

2.9.1 Petits déplacements

Considérons un champ de déplacement dépendant d’un petit nombre réel ε
(ε� 1) tel que

U(X) = εW (X) , (2.139)

où W (X) est un champ de déplacement matériel donné, auquel correspond
le champ spatial w(x). Par (2.86) et (2.87), les tenseurs de déformation de
Green-Lagrange et Euler-Almansi sont donnés par

Eij = ε
1

2

(
∂Wi

∂Xj
+
∂Wj

∂Xi

)
+ ε2 1

2

∂Wm

∂Xi

∂Wm

∂Xj
(2.140)

eij = ε
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
− ε2 1

2

∂wm
∂xi

∂wm
∂xj

. (2.141)

Quand ε tend vers zéro, les termes d’ordre 2 sont négligeables devant ceux
d’ordre 1. On a

Eij ' ε
1

2

(
∂Wi

∂Xj
+
∂Wj

∂Xi

)
=

1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
(2.142)

eij ' ε
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.143)

De plus, en partant de xi = Xi + Ui = Xi + εWi et Wi(Xk) = wi(xk), nous
pouvons écrire

∂Ui
∂Xj

= ε
∂Wi

∂Xj
= ε

∂wi
∂xk

∂xk
∂Xj

= ε
∂wi
∂xk

(
δkj + ε

∂Wk

∂Xj

)
=
∂ui
∂xj

+ ε2 ∂wi
∂xk

∂Wk

∂Xj

(2.144)
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et, par conséquent, il vient

∂Ui
∂Xj

=
∂ui
∂xj

+ 0(ε2) . (2.145)

Comme le déplacement Ui(Xk) est nul dans la configuration de référence, un
petit déplacement implique un petit gradient tel que∥∥∥∥ ∂Ui∂Xj

∥∥∥∥� 1 . (2.146)

En effet, pour la fonction Ui(X
0
j ), on peut écrire

U(X0
j + dXj) ≈ Ui(X0

j ) +
∂Ui(Xj)

∂Xj

∣∣∣
X0

j

dXj .

Si Ui(X
0
j ) = 0 dans la configuration de référence, un petit déplacement ‖Ui(Xj)‖ �

1 a pour conséquence (2.146).

Sous ces conditions, (2.70) et (2.68) peuvent s’écrire∥∥∥∥ ∂Ui∂Xj

∥∥∥∥ = ‖Fij − δij‖ � 1 J = 1 + 0(ε2) . (2.147)

Pour un tenseur L d’ordre 2, nous pouvons écrire

∂L

∂Xj
=

∂xi
∂Xj

∂L

∂xi
= Fij

∂L

∂xi

=

(
δij +

∂Ui
∂Xj

)
∂L

∂xi
=
∂L

∂xj
+
∂Ui
∂Xj

∂L

∂xi
.

(2.148)

Puisque ∂Ui/∂Xj est très petit, le dernier terme dans (2.148) est négligeable.
Donc les gradients matériels et spatiaux du tenseur L sont approximativement
égaux

∂L

∂Xj
≈ ∂L

∂xj
. (2.149)

Cette dernière relation est le résultat de la linéarisation cinématique.

2.9.2 Tenseur de déformation infinitésimale

Nous pouvons maintenant déduire un résultat important à partir de la linéa-
risation cinématique précédente. La relation (2.145) montre que, si les termes
d’ordre ε2 sont négligés, il n’y a pas de différence entre les tenseurs de défor-
mation de Green-Lagrange et d’Euler-Almansi. Il est donc naturel d’introduire
le tenseur de déformation infinitésimale ε :

εij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.150)

ε =
1

2

(
∇U + (∇U)T

)
=

1

2

(
∇u+ (∇u)T

)
.
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Notons que ε est un tenseur puisque le gradient du vecteur déplacement est
un tenseur (voir § 1.4.3). Donc la loi de transformation de ses composantes est
donnée par (1.52) et les valeurs propres, qui correspondent aux déformations
infinitésimales principales, par les solutions de l’équation (1.120).

Donnons une interprétation géométrique des composantes εij . Pour ceci,
considérons de petits déplacements entreR0 etR (fig. 2.19). Soit dX un vecteur
infinitésimal attaché au point X avec les composantes (dX1, 0, 0). La longueur
‖dx‖ du vecteur correspondant dx dans R est donnée par (2.80) :

‖dx‖2 = ‖dX‖2 + 2Eij dXi dXj = (1 + 2E11) dX2
1 . (2.151)

R

X

x

O

e2

e3

e1

R0

X3, x3

X1, x1

X2, x2

dx

dX

Fig. 2.19 Déformation d’un vecteur infinitésimal dirigé le long de e1.

Par l’hypothèse des petits déplacements, on peut écrire

‖dx‖2 ∼= (1 + 2ε11)‖dX‖2

‖dx‖ ∼= (1 + 2ε11)1/2 dX1 = (1 + ε11)‖dX‖
(2.152)

d’où

ε11
∼= ‖dx‖ − ‖dX‖‖dX‖ . (2.153)

Ainsi, ε11 mesure l’extension relative d’un élément de ligne matérielle dirigé
dans la direction 1. Les autres composantes diagonales ε22 et ε33 de ε ont des
interprétations similaires.

Concernant la signification géométrique de ε12, considérons deux vecteurs
orthogonaux dans R0 (fig. 2.20) :

dX = (dX1, 0, 0) et dY = (0, dY2, 0) . (2.154)
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Dans R, ils se déforment et deviennent les vecteurs dx et dy de composantes

dxi = Fi1 dX1 dyi = Fi2 dY2 . (2.155)

Les longueurs de dx et dy sont

‖dx‖ ∼= (1 + ε11) dX1 ‖dy‖ ∼= (1 + ε22) dY2 . (2.156)

En notant γ12 l’angle entre dx et dy, nous avons

cos γ12 =
dx · dy
‖dx‖ ‖dy‖

∼= 2ε12

(1 + ε11)(1 + ε22)
∼= 2ε12 . (2.157)

R

X

dX

dY

x

dx

dy

O

e2

e3

e1

R0

X3, x3

X1, x1

X2, x2 γ12

Fig. 2.20 Modification des angles entre deux vecteurs.

En introduisant l’angle φ12 de glissement entre deux directions orthogonales
dX et dY (fig. 2.20), défini par

φ12 =
π

2
− γ12 , (2.158)

la relation (2.157) peut s’écrire de la façon suivante :

cos γ12 = sinφ12
∼= φ12

∼= 2ε12 . (2.159)

En d’autres termes, ε12 est la moitié du cosinus de l’angle entre les directions
des déformées des vecteurs infinitésimaux dirigés dans les directions 1 et 2 dans
R0. Des interprétations similaires peuvent être données à ε23 et ε31.
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La variation relative du volume est exprimée en termes des extensions rela-
tives. Considérons trois vecteurs orthogonaux dX = dX e1, dY = dY e2, dZ =
dZ e3 dans la configuration de référence. Le volume de ce cube est dV =
dXdY dZ. Après déformation, chaque élément se déforme comme suit

dx = (1 + dX)ε11, dy = (1 + dY )ε22, dz = (1 + dZ)ε33 , (2.160)

et le volume après déformation s’exprime

dv = dxdydz = (1 + ε11)(1 + ε22)(1 + ε33)dXdY dZ

= (1 + ε11)(1 + ε22)(1 + ε33)dV . (2.161)

En négligeant les puissances de degré supérieur en la déformation, on obtient
la variation relative de volume

dv − dV
dV

= ε11 + ε22 + ε33 = εii . (2.162)

Notons que dans le cas des déformations infinitésimales, l’expression (2.162) est
la trace du gradient du vecteur déplacement et d’après (2.150)

εii = divu = tr (∇u) . (2.163)

Comme nous l’avons vu par (2.150), le tenseur de déformation infinitésimale
εij correspond à la partie symétrique du gradient de déplacement ∂ui/∂Xj . En
effet, on a

dui =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
dXj +

1

2

(
∂ui
∂Xj

− ∂uj
∂Xi

)
dXj (2.164)

du =
1

2

(
∇u+ (∇u)T

)
dX +

1

2

(
∇u− (∇u)T

)
dX . (2.165)

Nous pouvons ainsi définir la partie antisymétrique

ωij =
1

2

(
∂ui
∂Xj

− ∂uj
∂Xi

)
(2.166)

ω =
1

2

(
∇u− (∇u)T

)
(2.167)

comme le tenseur de rotation infinitésimale ω et écrire

dui = εij dXj + ωij dXj .

Notons que le rotationnel du vecteur déplacement u est lié à un vecteur de
rotation du corps, dont les composantes sont celles du tenseur ω multipliées
par le facteur 2, c.-à-d.

1

2
∇× u = ω32e1 + ω13e2 + ω21e3 . (2.168)

Par conséquent, le déplacement infinitésimal peut être décomposé en un
tenseur de déformation pure et un tenseur de rotation pure. Cependant, une dé-
composition additive du gradient de déplacement n’est pas possible en grandes
déformations (E 6= ε). Dans de tels cas nous pouvons utiliser le théorème de
la décomposition polaire.
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2.9.3 Equations de compatibilité pour le tenseur de déformation

infinitésimale

Pour un champ de déplacement u donné, les composantes du tenseur de défor-
mation infinitésimale se calculent facilement :

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2
(ui,j + uj,i) . (2.169)

Cependant, pour εij donné, il n’existe pas forcément un champ de déplacement
correspondant. Nous allons maintenant déterminer les conditions que les com-
posantes εij doivent satisfaire pour assurer l’existence d’un déplacement u sa-
tisfaisant (2.169). En dérivant (2.169), nous obtenons

εij,kl =
1

2
(ui,jkl + uj,ikl) , (2.170)

où les indices k et l qui suivent une virgule indiquent, par exemple, les dérivées
partielles par rapport à xk et xl, respectivement. En interchangeant les indices,
nous avons

εkl,ij =
1

2
(uk,lij + ul,kij) (2.171)

εjl,ik =
1

2
(uj,lik + ul,jik) (2.172)

εik,jl =
1

2
(ui,kjl + uk,ijl) . (2.173)

En utilisant les symétries indicielles des dérivées de u, il n’est pas difficile de
vérifier que

εij,kl + εkl,ij − εjl,ik − εik,jl = 0 . (2.174)

Ce sont les équations de compatibilité de Saint-Venant. Parmi les 81 équa-
tions représentées par (2.174), seules six d’entre elles sont indépendantes en
raison de la symétrie des εij et de leurs dérivées. Explicitement, ces six équa-
tions de compatibilité sont

∂2ε11

∂x2∂x3
=

∂

∂x1

(
−∂ε23

∂x1
+
∂ε31

∂x2
+
∂ε12

∂x3

)
∂2ε22

∂x3∂x1
=

∂

∂x2

(
−∂ε31

∂x2
+
∂ε12

∂x3
+
∂ε23

∂x1

)
∂2ε33

∂x1∂x2
=

∂

∂x3

(
−∂ε12

∂x3
+
∂ε23

∂x1
+
∂ε31

∂x2

)
∂2ε12

∂x1∂x2
=

1

2

(
∂2ε11

∂x2
2

+
∂2ε22

∂x1
2

)
∂2ε23

∂x2∂x3
=

1

2

(
∂2ε22

∂x3
2

+
∂2ε33

∂x2
2

)
∂2ε31

∂x3∂x1
=

1

2

(
∂2ε33

∂x1
2

+
∂2ε11

∂x3
2

)
.

(2.175)
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Il est clair à partir de la procédure que nous avons suivie pour obtenir (2.175)
que lorsque le champ de déplacement est connu, les relations (2.175) sont au-
tomatiquement satisfaites. Lorsque εij est donné, ces six équations sont néces-
saires et suffisantes pour assurer l’existence d’un champ unique de déplacement
u satisfaisant (2.169) à un mouvement rigide près seulement si le corps C est
simplement connexe. Pour un solide élastique multiplement connexe, elles sont
suffisantes et des conditions additionnelles sont nécessaires.

Une interprétation des conditions de compatibilité (2.175) est donnée par
l’expérience virtuelle suivante. Considérons un corps bidimensionnel, par
exemple, une plaque d’épaisseur uniforme, coupée en petits morceaux carrés.
Quand il n’y a pas de déformation sur la plaque, les morceaux s’ajustent parfai-
tement pour former celle-ci. Ensuite, nous imposons, sur chaque petit morceau
carré, des champs de déformations arbitraires et nous essayons de les assembler
à nouveau pour reformer la plaque. Dans le processus de reconstruction, nous
remarquons qu’en général, ils ne produisent pas la plaque d’origine, mais qu’ils
sont séparés par des espaces entre tous ou certains d’entre eux. Cependant, un
raccord parfait n’est obtenu que lorsque la déformation prescrite imposée sur
chaque carré satisfait (2.175).

2.10 Gradient de vitesse et tenseurs associés

Dans de nombreux problèmes de mécanique des milieux continus, la grandeur
cinématique la plus intéressante n’est pas le changement de forme d’un corps,
mais le taux auquel ce changement se produit. Ceci est spécialement le cas pour
la mécanique des fluides.

Soient V un voisinage du point P de coordonnées xi et Q un point quel-
conque appartenant à V de coordonnées xi + dxi. La vitesse spatiale de Q est
donnée par

vi(xj + dxj , t) = vi(xj , t) +
∂vi(xj , t)

∂xj
dxj + · · · (2.176)

Le tenseur L dont les composantes sont

Lij =
∂vi
∂xj

=
(
∇v
)
ij

(2.177)

est appelé le gradient de vitesse . On établit une relation entre L et F de la
manière suivante :

Ḟij =
D

Dt

(
∂xi
∂Xj

)
=

∂ẋi
∂Xj

=
∂ẋi
∂xm

∂xm
∂Xj

=
∂vi
∂xm

∂xm
∂Xj

= LimFmj .

(2.178)

On a donc
Ḟ = LF . (2.179)
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La partie symétrique de L, c’est-à-dire

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.180)

d =
1

2

(
∇v + (∇v)T

)
(2.181)

est appelée le tenseur des taux de déformation , et sa partie antisymétrique
de L, c’est-à-dire

ω̇ij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
(2.182)

ω̇ =
1

2

(
∇v − (∇v)T

)
(2.183)

le tenseur des taux de rotation . Donc, on peut écrire

L = d+ ω̇ . (2.184)

Avec les définitions (2.180) et (2.182), il s’ensuit de (2.176) que

vi(xj + dxj , t)− vi(xj , t) ∼= dij dxj + ω̇ij dxj . (2.185)

La comparaison de (2.180) avec la définition de εij donne

dij =
dεij
dt

. (2.186)

C’est pour cette raison que dij est appelé le tenseur des taux de déformation.
Cependant, il faut noter que la linéarité de dij par rapport à vi dans (2.180) est
exacte, aucune hypothèse de petits déplacements n’étant faite lors de son calcul.
Le vecteur dual Ω̇i (1.104) associé au tenseur des taux de rotation, c’est-à-dire

Ω̇i = −1

2
εijkω̇jk =

1

2

(
rotv

)
i
, (2.187)

est appelé le vecteur tourbillon ou vecteur des taux de rotation. Notons
qu’en mécanique des fluides, il est classique d’introduire le vecteur vorticité ou
tourbillon ω en le définissant comme le rotationnel de la vitesse. Il vient

ω = rotv =∇× v , (2.188)

ou encore

ωi = εijk
∂vk
∂xj

. (2.189)

On déduit facilement que
ω = 2Ω̇. (2.190)

Afin de donner une interprétation au vecteur tourbillon, considérons la décom-
position d’un mouvement local du fluide en ses parties élémentaires. Soit un
point P de position x et un point voisin P ′ à la figure 2.21.
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P

Pꞌ

v

v

v+ dv

x

dx

O

e2

e3

e1

x3

x1

x2

dv

Fig. 2.21 Mouvement relatif de deux particules fluides.

Le vecteur position de P ′ relatif à P est dx. Après un temps infinitésimal, P
et P ′ occupent de nouvelles positions. P se déplace avec la vitesse locale v et
P ′ avec la vitesse v + dv. On considère que P est la particule fluide principale
et après soustraction de sa vitesse de translation, on décrit le mouvement de
P ′ comme si on l’observait à partir de la particule principale. Le raisonnement
tenu ci-dessous n’est donc valable que localement lorsque la distance dx devient
petite. On peut décomposer le mouvement de P et P ′ en trois parties distinctes :
une translation, une rotation de corps rigide et une déformation. Le mouvement
de translation est donné par la vitesse v de P . Tous les autres mouvements pris
ensemble sont donnés par dv, la vitesse de P ′ par rapport à P . On a donc
l’expression

dv =
∂v

∂x
dx = L dx . (2.191)

Par (2.184), les mouvements de déformation (allongement, raccourcissement,...)
de P ′ par rapport à P sont décrits par d. En conséquence, le mouvement de
rotation de P ′ par rapport à P est pris en compte par ω̇. On peut écrire

dv(r) = ω̇ dx , (2.192)

où l’indice supérieur r fait référence à la rotation.

Le mouvement de rotation de corps rigide de P ′ par rapport à P doit avoir
la forme de l’équation v = Ω × x, où Ω est la vitesse de rotation angulaire.
Par (2.187) et (2.190), on a −ω̇ij = 1

2εijkωk = ω̇ji. Donc la composante du
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mouvement de rotation est donnée par

dv
(r)
j = ω̇ji dxi =

1

2
εijkωk dxi

=
1

2
εjki (ωk) dxi . (2.193)

Cette dernière équation est de la forme dv = Ω × dx. Le vecteur vorticité
ω correspond à une vitesse angulaire telle que la vorticité ω est égale à 2Ω,
c’est-à-dire deux fois la vitesse angulaire de rotation de corps rigide de P ′ par
rapport à P .

On remarquera que dans le cas du corps rigide en rotation, le tenseur L
s’obtient par l’équation (2.55). On a

L = Q̇Q
T

= Ω (2.194)

qui est un tenseur antisymétrique. Ceci montre que dans ce cas d = 0 et que le
tenseur L = ω̇. Le tenseur des taux de rotation est donc entièrement déterminé
par la rotation instantanée du solide.

2.11 Objectivité des quantités cinématiques

La description d’une quantité physique ou mécanique associée au mouvement
d’un corps dépend en général du choix de l’observateur ou de référentiel.

En physique, on utilise très fréquemment un référentiel inertiel pour lequel
l’espace est homogène et isotrope et le temps uniforme. Dans ce référentiel,
les lois de la mécanique newtonienne sont valables. Un corps en mouvement
rectiligne uniforme pendant un intervalle de temps fini subit une force nulle.
Une autre interprétation de cette situation physique dans ce référentiel consiste
dans l’observation que le centre de masse du corps C se déplace le long d’une
droite à vitesse uniforme si le corps n’est soumis à aucune force.

Au chapitre 1, on a traité les conséquences induites par les changements du
choix du système de coordonnées ou de repère dans le cas d’un seul observateur.
Ce traitement est la base de l’analyse tensorielle et trouve son origine dans
l’exigence que toutes les lois de la physique d’un milieu continu ne doivent pas
dépendre du choix du système de coordonnées par un observateur. Cependant,
lorsque le même événement dans l’espace est vu par deux observateurs situés
dans deux référentiels différents, les relations entre les coordonnées et les divers
paramètres cinématiques dans les deux référentiels sont différentes.

Dans la suite, l’observateur ou le référentiel sera désigné par R = (O,x, t).
Notre but ici est de distinguer les quantités cinématiques scalaires, vectorielles
ou tensorielles qui dépendent intrinsèquement de l’observateur de celles qui en
sont essentiellement indépendantes. Ceci constitue une préparation à la future
discussion sur l’objectivité des lois physiques générales ou constitutives. Rap-
pelons qu’en mécanique des milieux continus, un événement, c’est-à-dire un
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processus physique, est défini par ses coordonnées dans l’espace x et le temps
d’observation t.

Considérons un événement vu par deux observateurs R et R∗, et notés res-
pectivement par (x, t) et (x∗, t∗). Le mouvement entre deux observateurs est
une fonction de l’espace et du temps. Si les effets dus à la relativité sont né-
gligés et si on suppose que les observateurs mesurent la même distance entre
deux événements simultanés et les mêmes intervalles de temps entre deux évé-
nements séquentiels, on montre que la transformation la plus générale entre les
observations (x, t) et (x∗, t∗) du même événement est donnée par

x∗ = Q(t)x+ c(t) t∗ = t− α , (2.195)

oùQ(t) est un tenseur de rotation orthogonal avec le temps t comme paramètre,
c(t) un vecteur et α une constante scalaire. L’interprétation de (2.195) est mon-
trée à la figure 2.22, où on voit deux observateurs R et R∗ au temps t. Supposons
qu’un événement (i.e. une expérience) ait lieu en P. Le vecteur position de P
par rapport à l’observateur R est x. Le même événement vu par l’observateur
R∗ n’est simplement pas donné par l’addition vectorielle x∗ = c(t) + x, mais
par l’expression générale (2.195). En effet, on doit prendre en compte la rota-
tion de corps rigide de l’observateur R par rapport à l’observateur R∗, pour
que l’observateur R∗ voie le même événement. Cette rotation est accomplie par
le tenseur de rotation Q(t), dont les composantes sont des fonctions des deux
angles β, γ et du temps. On constate que le changement de référentiel représente
plus qu’une simple transformation de coordonnées induite par un changement
de repère.

x

xꞌ

P

P*c(t)

γ

β

β

γ

O*
t*

Ot

Ot=0

x2

x

x*

x*
1

x1

x*
2

Fig. 2.22 Interprétation de (2.195). Les deux observateurs initialement positionnés
en Ot=0 se déplacent dans deux référentiels.
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Donc le mouvement d’un corps C décrit par χ(X, t) selon le premier obser-
vateur est décrit par le second observateur par χ∗(X, t∗), et ces deux descrip-
tions sont reliées de la manière suivante :

χ∗(X, t∗) = Q(t)χ(X, t) + c(t) t∗ = t− α . (2.196)

Afin d’examiner les ramifications de la transformation (2.196), considérons deux
événements simultanés enregistrés par R comme (x1, t) et (x2, t), et (x∗1, t) et
(x∗2, t) par R∗. Pour ces deux événements, les positions relatives vues par les
deux observateurs sont u = x2 − x1 et u∗ = x∗2 − x∗1, respectivement. De la
relation (2.196), on obtient

u∗ = Qu . (2.197)

Puisque le tenseur Q est orthogonal , on peut écrire

u∗ · u∗ = (Qu) · (Qu) = u · (QTQ)u = u · u . (2.198)

Cette dernière égalité montre que les normes de u et u∗ sont les mêmes, c’est-
à-dire ‖u∗‖ = ‖u‖ et que la transformation est celle d’une rotation de corps
rigide (§ 2.6.2). Les champs vectoriels qui se transforment suivant (2.197) sont
appelés objectifs ou indifférents par rapport au référentiel.

Au moyen de la définition d’un vecteur spatialement objectif , nous définis-
sons un tenseur d’ordre 2 spatialement objectif . Soient deux vecteurs v et w
vus par l’observateur R, liés par le tenseur L d’ordre 2

w = Lv . (2.199)

Puisque v et w sont objectifs, l’observateur R∗ les voit comme w∗ = Qw et
v∗ = Qv. Cet observateur considère le tenseur d’ordre 2 comme L∗ tel que
w∗ = L∗v∗. Pour relier L et L∗, on remarque que

w∗ = Qw = QLv = QLQTv∗ . (2.200)

De cette dernière relation, on déduit l’égalité

L∗ = QLQT . (2.201)

Les champs tensoriels qui se transforment suivant (2.201) lors d’un changement
d’observateur sont appelés champs tensoriels d’ordre 2 spatialement objectifs
ou indépendants du référentiel. En ce qui concerne un champ scalaire, celui-ci
sera dit objectif ou indépendant du référentiel lorsque

f∗(x∗, t) = f(x, t) . (2.202)

Dans ce qui suit, nous dirons que :

• une quantité scalaire φ est objective si et seulement si (ssi) φ∗ = φ ;

• une quantité vectorielle f est matériellement objective ssi f∗ = f ;

• une quantité vectorielle f est spatialement objective ssi f∗ = Qf ;
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• une quantité tensorielle T est matériellement objective ssi T ∗ = T ;

• une quantité tensorielle T est spatialement objective ssi T ∗ = QTQT .

Afin d’examiner l’objectivité de la vitesse et de l’accélération d’un mouve-
ment, nous remarquons qu’en dérivant (2.196) par rapport au temps, la vitesse
V (X, t) = χ̇(X, t) et l’accélération A(X, t) = χ̈(X, t) d’une particule X se
transforment de la façon suivante :

V ∗(X, t∗) = Q(t)V (X, t) + ċ(t) + Q̇(t)χ(X, t) (2.203)

A∗(X, t∗) = χ̈∗(X, t∗)

= Q(t)χ̈(X, t) + c̈(t) + Q̈(t)χ(X, t)

+ 2Q̇(t)V (X, t) . (2.204)

Par conséquent, les définitions de la vitesse et de l’accélération sont relatives et
inextricablement liées à un observateur. En appliquant la définition du gradient
de déformation à (2.196), nous obtenons la loi de transformation

F ∗(X, t∗) =
∂χ∗(X, t)

∂X
=
∂χ∗(X, t)

∂χ(X, t)

∂χ(X, t)

∂X

= Q(t)F (X, t) .

(2.205)

Cette relation jouera un rôle important dans les discussions ultérieures. Notons
que

J∗ = detF ∗(X, t∗) = detF (X, t) = J . (2.206)

Donc la quantité scalaire J n’est pas affectée par un changement d’observateur.
En partant des définitions (2.77), (2.79), (2.82) et (2.83) et en utilisant (2.205),
nous avons les lois de transformation des tenseurs de déformation suivantes

C∗ = C E∗ = E (2.207)

c∗ = QcQT e∗ = QeQT . (2.208)

Ainsi, d’après ces définitions, le jacobien J est objectif ; le tenseur de défor-
mation de Cauchy-Green droit C et le tenseur de déformation de Green-
Lagrange E sont matériellement objectifs ; le tenseur de déformation de Cauchy
c et le tenseur de déformation de Euler-Almansi e sont spatialement objectifs.
D’autre part, la vitesse, l’accélération et le gradient de déformation ne sont pas
objectifs. De plus, il est important de remarquer que la dérivée matérielle d’une
quantité matériellement objective reste matériellement objective, alors que la
dérivée matérielle d’une quantité spatialement objective n’est généralement pas
spatialement objective. Par exemple,

Ė
∗

= Ė (2.209)

ċ∗ = QċQT + Q̇cQT +QcQ̇
T 6= QċQT . (2.210)
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Dans le cadre du changement de référentiel (2.195), examinons comment le
tenseur des gradients de vitesse se transforme. Réécrivons (2.203) et (2.204) en
représentation spatiale

v∗ = ċ+ Q̇x+Qv (2.211)

a∗ = c̈+Qa+ 2Q̇v + Q̈x . (2.212)

A partir de l’équation (2.211), on évalue le tenseur des gradients de vitesse
L∗. On obtient

L∗ij =
∂v∗i
∂x∗j

=
∂v∗i
∂xk

∂xk
∂x∗j

.

Par (2.195), il vient
∂x∗j
∂xk

= Qjk .

Son inverse ∂xk/∂x
∗
j est Q−1

kj = QTkj . L’évaluation de ∂v∗i /∂xk s’effectue via
l’équation (2.211). On a

∂v∗i
∂xk

= Q̇ik +Qil
∂vl
∂xk

.

En assemblant ces diverses relations, on écrit

L∗ = (QL+ Q̇)QT = QLQT + Ω , (2.213)

où on a fait appel à la définition (2.57).

Etablissons le lien entre la notion d’objectivité et le mouvement rigidifiant.
A cette fin, comparons l’équation qui décrit le mouvement de corps rigide (2.52)
et la transformation (2.195). En posant b = 0 pour simplifier, le mouvement
décrit par (2.195) est rigide lorsque

x = Q(t)X + c(t) . (2.214)

Cette dernière équation peut se généraliser pour deux mouvements différents
x et y d’un milieu continu. Ces deux mouvements diffèrent par un mouvement
de corps rigide si

y = Q(t)x+ c(t) . (2.215)

La forme (2.215) est semblable à (2.195) avec la différence suivante : x et
y sont deux événements distincts, tandis que x et x∗ sont les lieux d’un seul
événement enregistré par deux observateurs différents. Donc, on peut considérer
le changement d’observateur défini par (2.195) comme un mouvement de corps
rigide superposé sur la configuration actuelle d’un milieu continu.

L’importance de l’objectivité ou de la non-objectivité d’une quantité appa-
râıtra lors de la discussion des lois de comportement des matériaux soumis à
de grandes transformations ou de grands déplacements, même accompagnés de
petites déformations.
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Pour clore cette section, écrivons les relations (2.211) et (2.212) sous une
autre forme. En effet, l’équation (2.195) donne

QT (x∗ − c) = x. (2.216)

Insérant (2.216) dans (2.211), il vient

v∗ = Qv + ċ+ Q̇QT (x∗ − c). (2.217)

En combinant (2.216), (2.217) et (2.212), l’accélération devient

a∗ = Qa+c̈+2Q̇QT (v∗ − ċ)−2
(
Q̇QT

)2

(x∗ − c)+Q̈QT (x∗ − c) . (2.218)

En utilisant le tenseur de rotation (2.57), la vitesse s’écrit

v∗ −Qv = ċ+ Ω (x∗ − c) , (2.219)

où les deux termes du membre de droite correspondent aux vitesses de transla-
tion et de rotation des deux référentiels, tandis que l’accélération se met sous
la forme

a∗ −Qa = c̈+ 2Ω (v∗ − ċ) +
(
Ω̇−Ω2

)
(x∗ − c) . (2.220)

Dans le membre de droite de (2.220), le premier terme est l’accélération de
translation, le second l’accélération de Coriolis et les termes suivants l’accé-
lération de rotation et centripète du référentiel, respectivement. Pour obtenir
(2.220), on a utilisé la relation

Ω̇ = Q̈QT + Q̇Q̇
T

= Q̈QT + Q̇QTQQ̇
T

= Q̈QT −Ω2 . (2.221)

Si le référentiel est galiléen, un cas spécial de référentiel inertiel tel que
Q̇ = Q̈ = 0 et c̈ = 0, alors l’accélération est objective. Dans le référentiel
galiléen, Q = Q0 = cst et c = c0 + c1t où c1 est une vitesse constante. Dans
ce cas la relation (2.195) se simplifie

x∗ = Q0x+ c0 + c1t , (2.222)

qui est la transformation galiléenne.

2.12 Exercices

2.1 Un milieu continu dans sa configuration déformée est donné par les rela-
tions

x1 =
1

2
X1 x2 = X2 x3 = X3 . (2.223)

Calculer le champ de déplacement en coordonnées matérielles et spatiales.
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2.2 Soit la déformation de cisaillement simple donnée par la matrice M de
l’équation (2.132). On demande de calculer M−1 et les tenseurs de déformation
C, c, E, e.

2.3 Répéter le même exercice dans le cas de la dilatation pure donnée par
M = mI, où I est le tenseur unité.

2.4 Un cube vibre autour de sa position de repos. La description lagrangienne
du mouvement est donnée par les équations

x1 = X1 + a cos 2π(
t

T
− X1

L
)

x2 = X2 + b sin 2π(
t

T
− X1

L
)

x3 = X3 .

Les symboles a, b, L sont des constantes qui ont pour dimension une longueur
et T est une constante qui a pour dimension le temps.

1) Déterminer les trajectoires des points matériels.

2) Calculer les composantes de la vitesse et de l’accélération.

3) Calculer le tenseur du gradient de déformation F et sa dérivée matérielle
DF /Dt.

4) En représentation lagrangienne, calculer le tenseur du gradient de vitesse
L.

5) Calculer le tenseur des taux de déformation d et des taux de rotation ω̇.
Calculer le vecteur tourbillon Ω̇.

2.5 Pour la transformation donnée à l’exemple 2.1 :

1) Calculer la matrice du gradient de la déformation F . La déformation est-
elle homogène ? La déformation est-elle isochore (déformation à volume
constant) ? Pour quelles valeurs de a la transformation est-elle inversible ?

2) Calculer les matrices de C,E et celle de ε. Comparer E et ε dans le cas
0 < a� 1.

3) Vérifier que les vecteurs dirigés selon l’axe x3 et les diagonales AH et DE
sont les vecteurs propres de C. En utilisant ces résultats, calculer U =

√
C.

4) Calculer la matrice du tenseur de rotation R dans la décomposition polaire
F = RU .

2.6 Au moyen de l’équation (2.205), démontrer les relations (2.207) et (2.208).

2.7 A l’aide de (2.205) et la troisième relation de (2.120), montrer que R∗ =
QR, U∗ = U et V ∗ = QV QT .
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2.8 Montrer que Ċ = 2Ė = 2F TdF où d est le tenseur des taux de déforma-
tion (2.180).

2.9 Pour le mouvement suivant x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, détermi-
ner les matrices des tenseurs C, R, U et E, les valeurs principales de C et U
et leurs invariants.

2.10 Démontrer que e = F−TEF−1 et c = RCRT .

2.11 Démontrer que FAi = λibi avec λi les valeurs principales du tenseur U
et Ai (i = 1, 2, 3), ses vecteurs propres associés, et ensuite la relation (2.119).

2.12 Déduire la relation (2.157).

2.13 Le déplacement d’un corps est décrit par les équations

u1 = u1(x1, x2)

u2 = u2(x1, x2)

u3 = 0 .

Soit un élément infinitésimal ABCD de côtés dx1 dx2 donné à la figure
2.23. A partir de la configuration déformée A′B′C′D′, déduire les relations
déformations-déplacements pour le cas des déformations infinitésimales.

A

AꞌC

B

D

Bꞌ

Cꞌ

Dꞌ

X1, x1

X2, x2

x2

x1 dx1

dx2

u1

u1

Fig. 2.23 Déformation d’un élément infinitésimal.
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2.14 Une plaque d’épaisseur unitaire située dans le plan x1 x2 est soumise à
un champ de déformation uniforme donné par

εij = 10−3

 2 1 0
1 2 0
0 0 −1

 . (2.224)

Trouver le changement de longueur d’un élément linéaire de longueur initiale
égale à 1 :

1) parallèle à l’axe x1 ;

2) parallèle à l’axe x2 ;

3) faisant un angle de 45 degrés avec l’axe x1.

2.15 Démontrer que la déformation εN pour un élément linéaire dS du plan
Ox1x2 , dans la directionN , qui fait un angle θ avec l’axe horizontal est donnée
par

εN = ε11 cos2 θ + ε22 sin2 θ + 2ε12 cos θ sin θ (2.225)

où ε11, ε22, ε12 sont les composantes du tenseur de déformation infinitésimale.





Chapitre 3

Dynamique des milieux continus

3.1 Introduction

Après l’étude du mouvement du corps et l’introduction des divers paramètres
qui le décrivent, l’étape suivante consiste dans l’examen de la conservation de
certaines quantités pendant ce mouvement, comme la masse, la quantité de
mouvement et le moment cinétique. Dans ce contexte, on introduira le concept
important de contrainte et de sa mesure ; ses propriétés seront étudiées en
détail. En mécanique des milieux continus, la contrainte est le paramètre qui
caractérise l’interaction mécanique d’un corps avec son environnement. Cette
contrainte est la cause du mouvement. Dès lors, il est essentiel de développer la
mécanique du milieu continu qui est la généralisation de la mécanique du point
et des lois de Newton [1, 27]. De manière similaire au cas de la cinématique du
chapitre 2, le type de matériau et la spécification du mouvement n’interviennent
pas dans les développements de ce chapitre.

La dynamique des milieux continus est également développée dans les ré-
férences [14, 22, 23, 32, 44, 45].

3.2 Théorème du transport de Reynolds

3.2.1 Définitions

La dérivée temporelle d’une intégrale de volume joue un rôle très important
dans la formulation des lois de bilan en mécanique des milieux continus. Consi-
dérons, par exemple, la fonction I(t) donnée par

I(t) =

∫
Ω

Φ(X, t) dV , (3.1)

où Φ est une grandeur scalaire, vectorielle ou tensorielle et Ω ⊆ R0 représente
le volume du corps dans la configuration initiale au temps t = 0 ou d’une par-
tie Π de celui-ci. Nous définissons la dérivée matérielle temporelle d’une
intégrale de volume par l’expression

DI

Dt
=

d

dt

∫
Ω

Φ(X, t) dV . (3.2)
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Dans le cas où la frontière ne change pas avec le temps, alors on peut permuter
la dérivée temporelle et l’intégrale. L’équation (3.2) devient

DI

Dt
=

d

dt

∫
Ω

Φ(X, t) dV =

∫
Ω

∂Φ(X, t)

∂t
dV . (3.3)

Quand la frontière d’un corps change avec le temps, la dérivation directe
ci-dessus ne s’applique plus et nous avons besoin d’une autre méthode. Celle-ci
est présentée dans la suite.

Supposons que la grandeur scalaire, vectorielle ou tensorielle ϕ exprime une
caractéristique du corps considéré et que ce dernier, ou une partie Π ⊆ C de
ce dernier, occupe un volume ω(t) ⊆ R de frontière ∂ω(t) ⊆ ∂R au temps
t. L’équation de bilan peut être formulée de la manière suivante : le taux de
variation de l’intégrale de ϕ(x, t) dans le volume ω(t) dépendant du temps est
égal au taux de variation de ϕ(x, t) dans ω(t) plus le flux total de ϕ(x, t) à
travers la surface ∂ω(t). Mathématiquement, l’équation de bilan s’écrit

d

dt

∫
ω(t)

ϕ(x, t) dv =

∫
ω(t)

∂ϕ(x, t)

∂t
dv +

∫
∂ω(t)

ϕ(x, t)v · n ds . (3.4)

Cette expression est appelée le théorème du transport de Reynolds. En utilisant
le théorème de divergence (§ 1.4.13), on peut aussi l’écrire sous la forme

d

dt

∫
ω(t)

ϕ(x, t) dv =

∫
ω(t)

(
∂ϕ(x, t)

∂t
+

∂

∂xi

(
ϕ(x, t)vi

))
dv (3.5)

ou encore à l’aide de (2.27),

d

dt

∫
ω(t)

ϕ(x, t) dv =

∫
ω(t)

(
Dϕ(x, t)

Dt
+ ϕ(x, t) div v

)
dv . (3.6)

Dans les équations suivantes, nous noterons ω(t) par ω et ∂ω(t) par ∂ω.

3.2.2 Transformation d’un élément de volume

Dans les lois de conservation que nous allons établir dans la suite apparaissent
des éléments de volume. Il est utile d’exprimer le changement de volume au
temps t de la représentation eulérienne par rapport au volume initial dans la
représentation lagrangienne. On sait par (2.103) que

dv = J dV , (3.7)

où le jacobien J peut s’exprimer comme

J = det F = εijk Fi1Fj2Fk3 = εijk F1iF2jF3k , (3.8)

puisqu’en écrivant εijkFi1Fj2Fk3 et en utilisant les propriétés de εijk, on obtient

εijkFi1Fj2Fk3 = F11F22F33 + F21F32F13 + F31F12F23

− F11F32F23 − F31F22F13 − F21F12F33 .
(3.9)
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Le calcul de la dérivée matérielle de J se fait aisément. On a

J̇ = εijk
∂χ̇1

∂Xi

∂χ2

∂Xj

∂χ3

∂Xk
+ εijk

∂χ1

∂Xi

∂χ̇2

∂Xj

∂χ3

∂Xk
+ εijk

∂χ1

∂Xi

∂χ2

∂Xj

∂χ̇3

∂Xk
. (3.10)

En introduisant la vitesse (2.20), on obtient en utilisant le théorème des fonc-
tions implicites

J̇ = εijk

(
∂v1

∂xp

∂xp
∂Xi

∂χ2

∂Xj

∂χ3

∂Xk
+
∂χ1

∂Xi

∂v2

∂xp

∂xp
∂Xj

∂χ3

∂Xk

+
∂χ1

∂Xi

∂χ2

∂Xj

∂v3

∂xp

∂xp
∂Xk

)
=
∂v1

∂xp
δ1pJ +

∂v2

∂xp
δ2pJ +

∂v3

∂xp
δ3pJ . (3.11)

Finalement, il vient

J̇ =
∂vi
∂xi

J = ∇ · v
∣∣∣
x=χ(X,t)

J(X, t) . (3.12)

Cette expression s’interprète parfois en exprimant que J̇/J = div v est le taux
de dilatation volumique. Comme résultat final des développements précédents,
on peut obtenir la dérivée matérielle d’un élément de volume en combinant
(3.7) avec (3.12). On a successivement

Ddv

Dt
= J̇ dV =

J̇

J
dv = div v dv . (3.13)

3.2.3 Théorème du transport de Reynolds

Nous pouvons établir le théorème du transport de Reynolds défini par (3.5) ou
(3.6). Soit l’intégrale I(t) définie par la relation

I(t) =

∫
ω

ϕ(x, t) dx1 dx2 dx3 . (3.14)

On désire évaluer l’intégrale

DI(t)

Dt
=

d

dt

∫
ω

ϕ(x, t) dx1 dx2 dx3 . (3.15)

Pour évaluer cette expression, on ne peut pas permuter la dérivée par rapport
au temps et l’intégrale, puisque cette dernière porte sur un volume dépendant
du temps. On passe alors à la représentation matérielle

DI

Dt
=

d

dt

∫
Ω

ϕ
(
χ(X, t), t

)
J(X, t) dX1 dX2 dX3 . (3.16)

A l’aide de (2.103), on a

dx1 dx2 dx3 = J(X, t) dX1 dX2 dX3 ou dv = J(X, t) dV . (3.17)
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Osborne Reynolds (1842-1912) est un mathématicien an-
glais né à Belfast. Il fut nommé professeur d’ingénierie à
l’Owens College de l’Université de Manchester en 1868.
Ses contributions portent sur l’hydrodynamique et la mé-
canique des fluides. On lui doit l’introduction du nombre
de Reynolds, ainsi que la décomposition de Reynolds pour
la modélisation de la turbulence.

Fig. 3.1 Osborne Reynolds.

Alors, (3.16) peut s’exprimer par

DI

Dt
=

d

dt

∫
Ω

Φ(X, t)J(X, t) dX1 dX2 dX3 , (3.18)

où
Φ(X, t) = ϕ

(
χ(X, t), t

)
. (3.19)

A partir de la relation (3.18), il est plus aisé d’effectuer la dérivation de l’inté-
grale

DI

Dt
=

∫
Ω

(
∂Φ(X, t)

∂t

∣∣∣∣
X

J(X, t)

+ Φ(X, t)
∂J(X, t)

∂t

∣∣∣∣
X

)
dX1 dX2dX3 .

(3.20)

En utilisant la relation (3.12), l’intégrale (3.20) peut s’écrire de la façon suivante

DI

Dt
=

∫
Ω

(
∂Φ(X, t)

∂t

∣∣∣∣
X

+ Φ(X, t)(∇ · v)
∣∣∣
x=χ(X,t)

)
J(X, t) dX1 dX2 dX3 .

(3.21)

En faisant les changements appropriés dans la dernière intégrale et en utilisant
(2.3), (3.17) et (3.19) et

∂Φ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

=
Dϕ(x, t)

Dt
, (3.22)

nous avons le résultat final

DI

Dt
=

∫
ω

(
Dϕ(x, t)

Dt
+ ϕ(x, t)∇ · v(x, t)

)
dx1 dx2 dx3 . (3.23)

L’expression (3.23) est le théorème du transport de Reynolds appliqué à
une fonction scalaire ϕ(x, t). On peut considérer que le théorème de Reynolds
est une généralisation du théorème de Leibnitz

d

dt

∫ b(t)

a(t)

ϕ(x, t) dx =

∫ b

a

∂ϕ

∂t
dx+

db

dt
ϕ(x = b, t)− da

dt
ϕ(x = a, t) . (3.24)
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Comme
Dϕ(x, t)

Dt
=
∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) , (3.25)

l’intégrale (3.23) peut s’écrire

DI

Dt
=

∫
ω

(
∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) +∇ · v(x, t)ϕ(x, t)

)
dv

=

∫
ω

(
∂ϕ(x, t)

∂t
+
(
v(x, t) · ∇ϕ(x, t) +∇ · v(x, t)ϕ(x, t)

))
dv

=

∫
ω

∂ϕ(x, t)

∂t
dv +

∫
ω

div
(
v(x, t)ϕ(x, t)

)
dv . (3.26)

En utilisant le théorème de divergence (1.228) pour la deuxième intégrale, on
obtient

DI

Dt
=

∫
ω

∂ϕ(x, t)

∂t
dv +

∫
∂ω

ϕ(x, t)v · n ds (3.27)

qui n’est rien d’autre que (3.4)

3.3 Conservation de la masse

En mécanique des milieux continus, la masse est traitée comme un concept
primitif et considérée comme inhérente au corps. La masse du corps C signifie
tout d’abord la quantité de matière que C contient. L’expérience montre que
cette quantité ne dépend ni du temps, ni de la transformation matérielle (par
exemple, un changement de phase) ni de la déformation de C. De plus, la
quantité de matière de deux parties quelconques de C est la quantité de matière
de la première partie plus celle de la seconde partie. Ces aspects peuvent être
formulés et donc rendus plus précis de deux manières différentes, selon que l’on
adopte la description matérielle ou spatiale pour décrire le mouvement de C.

3.3.1 Forme matérielle

Soient R0 et R les configurations initiale (ou de référence) et actuelle de C
(fig. 3.2). La densité initiale de masse du corps C en description matérielle est
une fonction scalaire positive et intégrable P0(X) définie sur R0, telle que la
masse m(Ω) d’une partie quelconque Π de C au temps t = 0 soit donnée par

m(Ω) =

∫
Ω

P0(X) dV =

∫
Ω

P0(X) dX1 dX2 dX3 , (3.28)

où Ω ⊆ R0 est la configuration initiale de Π ⊆ C. D’une façon similaire, la
densité actuelle de masse de C en description spatiale est une fonction scalaire,
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Fig. 3.2 Mouvement d’une partie arbitraire Π de C.

positive et intégrable ρ(x, t) définie surR, telle que la masse mt(ω) de n’importe
quelle partie Π de C à l’instant présent t ≥ 0 soit donnée par

mt(ω) =

∫
ω

ρ(x, t) dv =

∫
ω

ρ(x, t) dx1 dx2 dx3 , (3.29)

où ω ⊆ R est la configuration actuelle de Π.

Principe de conservation de la masse

La masse contenue dans une partie quelconque Π du corps C reste inchangée
avec le temps, c’est-à-dire

mt(ω) = m(Ω) . (3.30)

En introduisant (3.28) et (3.29) dans (3.30), on obtient∫
ω

ρ(x, t) dv =

∫
Ω

P0(X) dV . (3.31)

Dans cette expression, le vecteur position actuel x d’une particule de Π est
relié au vecteur position initial X par l’équation du mouvement de C donnée
par (2.1). La prise en compte de (2.1) dans (3.31) revient mathématiquement à
faire un changement de variables. Or, lors d’un changement de variables de x à
X, les éléments de volume correspondants dv et dV sont reliés par la relation
(2.103). En utilisant ensuite (2.1) dans (3.31), on obtient∫

Ω

(
J(X, t)ρ

(
χ(X, t), t)

)
− P0(X)

)
dV = 0. (3.32)
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Si la densité de masse actuelle P (X, t) en description matérielle est définie
par

P (X, t) = ρ
(
χ(X, t), t)

)
, (3.33)

l’intégrale (3.32) peut être écrite∫
Ω

(
J(X, t)P (X, t)− P0(X)

)
dV = 0 . (3.34)

L’expression (3.34) est la forme matérielle globale du principe de conservation
de la masse. Afin d’obtenir la forme locale du principe de conservation de la
masse, nous exploitons le fait que (3.34) est valable pour une partie initiale Ω
arbitraire de R0, pour autant que l’intégrand de (3.34) soit continu par rapport
à X et on invoque le théorème de localisation.

Théorème de localisation

Soit f une fonction scalaire, vectorielle ou tensorielle continue définie sur
un domaine ouvert D d’un espace euclidien tridimensionnel. Si∫

Ω

f dV = 0 (3.35)

quel que soit le sous-domaine fermé Ω de D, alors

f = 0 (3.36)

en tout point de D.

Par conséquent, l’intégrand de (3.34) doit être nul. On obtient

J(X, t)P (X, t) = P0(X) . (3.37)

Cette égalité représente la forme matérielle locale du principe de conservation
de la masse.

Le corps C ou le matériau constituant C est dit incompressible si sa masse
volumique est invariable, c’est-à-dire qu’elle ne dépend ni de l’espace ni du
temps. Dès lors, P (X, t) = P0(X) et par conséquent

J(X, t) = 1 (3.38)

pour chaque point X de R0 et à chaque instant t. Cette condition se présente
fréquemment en mécanique des fluides et dans l’étude des matériaux solides
caoutchouteux. Il découle de (3.37) et de (3.33) que la condition d’incompres-
sibilité (3.38) est équivalente à

P (X, t) = ρ
(
χ(X, t), t

)
= P0(X) . (3.39)

Le mouvement pour lequel la relation (3.38) est vérifiée est isochore. C’est
donc un mouvement pour lequel le volume du corps reste constant (cf. (3.7)).
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3.3.2 Forme spatiale

Reprenons l’équation (3.31). La dérivée par rapport au temps donne, en utili-
sant le théorème du transport de Reynolds,

d

dt

∫
ω

ρ(x, t) dv =

∫
ω

(
Dρ(x, t)

Dt
+ ρ(x, t) div v(x, t)

)
dv = 0 . (3.40)

Ceci est la forme spatiale globale du principe de conservation de la masse. En
faisant l’hypothèse que l’intégrand de (3.40) est continu par rapport à x, et
en appliquant ensuite le théorème de localisation à (3.40), on obtient la forme
spatiale locale du principe de conservation de la masse

Dρ(x, t)

Dt
+ ρ(x, t) div v(x, t) = 0 . (3.41)

Cette équation est aussi appelée équation de continuité . Comme

Dρ(x, t)

Dt
=
∂ρ(x, t)

∂t
+∇ρ(x, t) · v(x, t) (3.42)

div
(
ρ(x, t)v(x, t)

)
= ρ(x, t) div v(x, t) +∇ρ(x, t) · v(x, t) , (3.43)

l’expression (3.41) peut être écrite sous la forme équivalente

∂ρ(x, t)

∂t
+ div

(
ρ(x, t)v(x, t)

)
= 0 . (3.44)

L’équation (3.41) ou (3.44) est une équation de base de la mécanique des fluides
alors que son homologue matérielle (3.37) est utilisée en mécanique des solides.
Si le matériau est incompressible, d’après (3.39), la masse volumique ρ(x, t) est
constante et Dρ(x, t)/Dt = 0. Il découle ainsi de (3.41) que la condition d’in-
compressibilité peut être exprimée par une des formes équivalentes suivantes :

div v =
∂vi
∂xi

= dii = trd = I1(d) = 0 , (3.45)

où l’on a utilisé la définition (2.180) du tenseur des taux de déformation d.
Notons que le champ de vitesse qui satisfait (3.45) est solénöıdal. Comme
div v = 0, il en résulte par (3.12) que J̇ = 0 et J reste constant au cours
du temps. Puisque J(X, 0) = 1, le mouvement du matériau incompressible est
isochore.

Une autre manière de déduire l’équation de continuité consiste dans la
démarche suivante : considérons à la figure 3.3 un fluide qui s’écoule à travers
un élément de volume ∆x1∆x2∆x3 à la vitesse vi(x1, x2, x3).
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Fig. 3.3 Bilan de masse dans un volume élémentaire.

Si on suppose que l’écoulement est orienté principalement dans la direction
positive de l’axe x1, la quantité de masse entrant dans le volume par la surface
en x1 est donnée par

ρv1

∣∣
x1

∆x2 ∆x3 . (3.46)

La quantité de masse sortant du volume par la surface en x1 + ∆x1 est donnée
par

ρv1

∣∣
x1+∆x1

∆x2 ∆x3 . (3.47)

De manière analogue, les quantités de masse entrante et sortante dans les di-
rections x2 et x3 sont données par

selon x2 ρv2

∣∣
x2

∆x3 ∆x1 ρv2

∣∣
x2+∆x2

∆x3 ∆x1

selon x3 ρv3

∣∣
x3

∆x1 ∆x2 ρv3

∣∣
x3+∆x3

∆x1 ∆x2 .
(3.48)

Le taux de changement de la masse dans l’élément de volume
∆x1 ∆x2 ∆x3 est

(∆x1 ∆x2 ∆x3)
∂ρ

∂t
. (3.49)

Le bilan pour l’écoulement dans le volume considéré est donné par[
taux de changement

de la masse

]
=

[
taux de

masse entrant

]
−
[

taux de
masse sortant

]
.
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L’équation de bilan s’écrit en utilisant les relations (3.46)-(3.49)

(∆x1∆x2∆x3)
∂ρ

∂t
=
(
ρv1

∣∣
x1
− ρv1

∣∣
x1+∆x1

)
∆x2 ∆x3

+
(
ρv2

∣∣
x2
− ρv2

∣∣
x2+∆x2

)
∆x3 ∆x1

+
(
ρv3

∣∣
x3
− ρv3

∣∣
x3+∆x3

)
∆x1 ∆x2 .

(3.50)

En divisant (3.50) par le volume ∆x1∆x2∆x3 et en passant à la limite ∆x1 → 0,
∆x2 → 0, ∆x3 → 0 , il vient

∂ρ

∂t
= lim

∆x1→0

ρv1

∣∣
x1
− ρv1

∣∣
x1+∆x1

∆x1
+ lim

∆x2→0

ρv2

∣∣
x2
− ρv2

∣∣
x2+∆x2

∆x2

+ lim
∆x3→0

ρv3

∣∣
x3
− ρv3

∣∣
x3+∆x3

∆x3

= −
(
∂(ρv1)

∂x1
+
∂(ρv2)

∂x2
+
∂(ρv3)

∂x3

)
. (3.51)

L’équation (3.51) peut également se mettre sous la forme

∂ρ

∂t
+ v1

∂ρ

∂x1
+ v2

∂ρ

∂x2
+ v3

∂ρ

∂x3
= −ρ

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
. (3.52)

Le membre de gauche de l’équation représente la dérivée matérielle de la masse
volumique et le membre de droite la divergence du champ de vitesse

Dρ

Dt
= −ρ div v . (3.53)

On retrouve l’équation de continuité établie pour un volume de contrôle élé-
mentaire.

3.4 Forces volumiques, forces de contact

et postulat de Cauchy

Comme la masse, la force est un concept primitif en mécanique des milieux
continus. Fondamentalement, les forces désignent les interactions entre les dif-
férentes parties intérieures d’un corps ou entre le corps et son environnement
extérieur. Une force ne peut être perçue qu’au travers de ses effets ; en d’autres
termes, elle ne peut pas être directement mesurée. Pour cette raison, la force
est un des concepts les plus abstraits de la mécanique.

Pour nous en convaincre, nous citons un extrait de la lettre LXXIV d’Euler
à une princesse d’Allemagne [21] : « Puisqu’un corps, en vertu de sa nature,
conserve le même état tant de mouvement que de repos, et qu’il n’en sauroit être
détourné que par des causes externes, il s’ensuit que pour qu’un corps change
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d’état, il faut qu’il y soit forcé par quelque cause étrangere, et que sans cela il
demeureroit toujours dans le même état. De là vient qu’on donne à cette cause
externe le nom de Force : c’est un terme dont on se sert communément, quoique
beaucoup de ceux qui l’emploient n’en aient qu’une idée fort imparfaite. »

Nous allons traiter deux types de forces : les forces volumiques (à dis-
tance) comme la pesanteur ou des forces électro-magnétiques comme la force
de Lorenz et les forces de contact . Soit C un corps de configuration initiale
R0 et de configuration actuelle R. La force volumique exercée sur C au temps
t représente l’action de son environnement extérieur sur les point intérieurs
de C à cet instant. Plus précisément, si Π est une partie arbitraire de C dont
les configurations initiale et actuelle sont Ω et ω (fig. 3.1), la force de volume
agissant sur Π au temps t est donnée par

f b(ω, t) =

∫
ω

ρ(x, t)b(x, t) dv , (3.54)

où b(x, t) est une fonction vectorielle définie sur R appelée densité massique
spatiale de force volumique (par unité de masse) au temps t. La version
matérielle de (3.54) prend la forme

F b(Ω, t) =

∫
Ω

P0(X)B(X, t) dV, (3.55)

où B(X, t) est la densité matérielle de force volumique au temps t. Comme
f b(ω, t) et F b(Ω, t) représentent la même quantité, nous devons avoir f b(ω, t) =
F b(Ω, t), c’est-à-dire∫

ω

ρ(x, t)b(x, t) dv −
∫

Ω

P0(X)B(X, t) dV = 0 . (3.56)

En changeant d’abord les variables de x à X, en utilisant ensuite (3.33) et
(3.37), et en appliquant finalement le théorème de localisation, on obtient la
relation

B(X, t) = b
(
χ(X, t), t

)
. (3.57)

Les forces de contact permettent de décrire l’interaction entre deux parties
intérieures d’un corps C séparées par une surface (c.-à-d. les forces internes
de cohésion) ou l’action des corps extérieurs qui agissent directement (à très
courte distance) sur la frontière de C. Soient Π− et Π+ deux parties quelconques
d’un corps C telles que leurs configurations initiales Ω− ⊂ R0 et Ω+ ⊂ R0

soient séparées par une surface Γ0 et leurs configurations actuelles ω− ⊂ R et
ω+ ⊂ R par une surface Γ (fig. 3.4). En description spatiale, l’action de Π+

sur Π− à l’instant t au travers d’un élément de surface δs(x) de Γ autour de
x est représentée par un élément de force de contact δf c(x, t,Γ). En écrivant
ceci, nous faisons l’hypothèse tacite que l’action de Π+ sur Π− n’est influencée
par la forme de ω+ qu’au travers de la forme de sa frontière Γ avec ω−. Nous
faisons de plus l’hypothèse que la limite

t(x, t,Γ) = lim
δs→0

δf c(x, t,Γ)

δs(x)
(3.58)
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Fig. 3.4 Force de contact et vecteur contrainte de contact.

existe. Le vecteur t(x, t,Γ) est la force, par unité de surface (spatiale), exercée
par Π+ au travers de Γ sur Π−. Cette densité des forces de contact est appe-
lée le vecteur contrainte spatiale (de contact) ou vecteur de traction
surfacique .

D’après (3.58), le vecteur contrainte t en x dépend de l’ensemble de la
surface Γ sur laquelle x se trouve. Cependant la mécanique des milieux continus
classique admet l’hypothèse fondamentale suivante.

Postulat de Cauchy

Le vecteur contrainte t en x ne dépend de la surface Γ que par la normale
unitaire sortante n à Γ en x, c’est-à-dire

t(x, t,Γ) = t(x, t,n) . (3.59)

Ce postulat stipule que, si trois surfaces différentes Γ1, Γ2 et Γ3 ont un
même plan tangent en x, les vecteurs contraintes agissant sur ces surfaces en
x sont identiques (fig. 3.5).

Finalement, l’action de Π+ sur Π− au travers de la surface Γ est décrite
par le vecteur de force de contact

f c(Γ, t) =

∫
Γ

t(x, t,n) ds . (3.60)
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Fig. 3.5 Interprétation du postulat de Cauchy.

Par analogie, l’action de l’environnement extérieur sur un corps C au travers
de sa frontière ∂R est donnée par

f c(∂R, t) =

∫
∂R
t(x, t,n) ds . (3.61)

Par la suite, la force de contact est exprimée par rapport à la configuration
actuelle (ou déformée) R. Cependant, dans un grand nombre de problèmes
de grand intérêt, en particulier en mécanique des solides, la configuration ac-
tuelle n’est pas connue à l’avance. Ainsi convient-il mieux d’exprimer la force de
contact par rapport à la configuration initiale (ou de référence) R0. Les notions
de vecteur contrainte de contact nominale et vecteur contrainte de contact ma-
térielle peuvent alors être introduites. Toutefois, comme l’interprétation phy-
sique et géométrique de ces vecteurs est peu intuitive, nous présenterons ces
notions plus en détail à la section 3.9.

3.5 Conservation de la quantité de mouvement et

du moment cinétique

En physique, la quantité de mouvement d’une particule de masse m et de
vitesse v est définie par

m = mv mi = mvi , (3.62)
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et son moment cinétique par rapport à l’origine 0 par

m̂ = mx× v m̂i = mεijkxjvk . (3.63)

Pour une partie Π d’un corps C dans les configurations initiale Ω et actuelle
ω (fig. 3.2), on a les définitions suivantes de la quantité de mouvement et du
moment cinétique par rapport à l’origine 0 :

m(ω, t) =

∫
ω

ρ(x, t)v(x, t) dv

mi(ω, t) =

∫
ω

ρ(x, t)vi(x, t) dv (3.64)

m̂(ω, t) =

∫
ω

ρ(x, t)x× v(x, t) dv

m̂i(ω, t) =

∫
ω

ρ(x, t)εijkxjvk(x, t) dv. (3.65)

Les dérivées matérielles des grandeurs précédentes ont pour expression

Dm(ω, t)

Dt
=

∫
ω

ρ(x, t)
Dv(x, t)

Dt
dv =

∫
ω

ρ(x, t)a(x, t) dv (3.66)

Dm̂(ω, t)

Dt
=

∫
ω

ρ(x, t)x× Dv(x, t)

Dt
dv

=

∫
ω

ρ(x, t)x× a(x, t) dv . (3.67)

où a est l’accélération spatiale définie par (2.33). En effet, le théorème du
transport de Reynolds et l’équation de continuité (3.41) permettent d’écrire
l’équation (3.64) sous la forme

Dmi(ω, t)

Dt
=

d

dt

∫
ω

ρvi dv =

∫
ω

(
D(ρvi)

Dt
+ ρvi

∂vm
∂xm

)
dv

=

∫
ω

(
Dρ

Dt
vi + ρ

Dvi
Dt

+ ρvi
∂vm
∂xm

)
dv

=

∫
ω

(
ρ
Dvi
Dt

+ vi

(
Dρ

Dt
+ ρ

∂vm
∂xm

))
dv

=

∫
ω

ρai dv .
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L’égalité (3.66) est ainsi démontrée. D’une façon similaire, la relation (3.67) est
prouvée en écrivant

Dm̂i(ω, t)

Dt

=
d

dt

∫
ω

ρεijkxjvk dv

=

∫
ω

(
D(ρεijkxjvk)

Dt
+ ρεijkxjvk

∂vm
∂xm

)
dv

=

∫
ω

(
Dρ

Dt
εijkxjvk + ρεijk

(
Dxj
Dt

vk + xj
Dvk
Dt

+ xjvk
∂vm
∂xm

))
dv

=

∫
ω

(
ρεijkxj

Dvk
Dt

+ ρεijkvjvk + εijkxjvk

(
Dρ

Dt
+ ρ

∂vm
∂xm

))
dv

=

∫
ω

ρεijkxjak dv ,

où l’on a utilisé le fait que εijkvjvk = 0. Nous allons maintenant établir et
formuler les deux principes fondamentaux de la mécanique des milieux continus,
connus sous le nom de lois du mouvement d’Euler.

Principe de conservation de la quantité de mouvement

Le taux de changement de la quantité de mouvement d’une partie quelconque
Π d’un corps C au temps t est égal à la force résultante appliquée à Π à cet
instant.

La force résultante est constituée de la résultante des forces volumiques
agissant sur les particules de Π, et de la résultante des forces de contact agis-
sant sur la frontière de Π. En description spatiale, cela équivaut à la somme
f b(ω, t) + f c(∂ω, t). Par (3.54), (3.60) et (3.64), le principe de la conservation
de la quantité de mouvement pour Π a la formulation spatiale suivante :

d

dt

∫
ω

ρ(x, t)v(x, t) dv =

∫
ω

ρ(x, t)b(x, t) dv +

∫
∂ω

t(x, t,n) ds . (3.68)

A l’aide de (3.66), nous pouvons écrire (3.68) comme∫
ω

ρ(x, t)a(x, t) dv =

∫
ω

ρ(x, t)b(x, t) dv +

∫
∂ω

t(x, t,n) ds . (3.69)

Principe de conservation du moment cinétique

Le taux de changement du moment cinétique (par rapport à l’origine) d’une
partie quelconque de Π d’un corps C au temps t est égal au moment (par rapport
à l’origine) des forces appliquées à Π à cet instant.
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En description spatiale, cela équivaut à écrire

d

dt

∫
ω

ρ(x, t)x× v(x, t) dv

=

∫
ω

ρ(x, t)x× b(x, t) dv +

∫
∂ω

x× t(x, t,n) ds .

(3.70)

En appliquant (3.67), (3.70) devient∫
ω

ρ(x, t)x× a(x, t) dv

=

∫
ω

ρ(x, t)x× b(x, t) dv +

∫
∂ω

x× t(x, t,n) ds .

(3.71)

Il faut relever que l’existence d’un observateur est implicitement supposée dans
les énoncés des lois du mouvement d’Euler ou dans les expressions (3.68) et
(3.70). Ceci implique que le principe de conservation de la quantité de mouve-
ment et le principe de conservation du moment cinétique ne sont pas objectifs,
c’est-à-dire qu’ils ne sont pas invariants lors du passage d’un observateur à
un autre. Ceci est dû au fait que la vitesse ou l’accélération ne sont pas des
quantités objectives, comme cela a été montré au chapitre 2. Souvent, les ob-
servateurs pour lesquels (3.68) et (3.70) sont invariants sont qualifiés d’inertiels
ou galiléens. Dans ce cas, le référentiel est en translation pure avec une vitesse
uniforme c1 telle que Q(t) = cste, et c(t) = c1 t + c0, où c1 et c0 sont des
constantes.

3.6 Théorème de Cauchy.

Equation du mouvement pour un milieu continu

Nous allons maintenant déduire des conséquences de première importance des
principes de conservation de la quantité de mouvement et du moment cinétique.
La première est un équivalent de la loi de Newton en mécanique du point.

Lemme de Cauchy

Si le vecteur contrainte t(x, t,n) est continu par rapport à x, alors le principe
de la conservation de la quantité de mouvement (3.69) implique que

t(x, t,−n) = −t(x, t,n) . (3.72)

Ceci n’est rien d’autre que le principe de l’action et de la réaction.

Démonstration.
Coupons la configuration actuelle ω d’une partie quelconque Π d’un corps C en
deux parties ω− et ω+ par une surface Γ dont la normale unitaire à Γ sortant
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de ω− est n (fig. 3.6). La frontière de ω− est composée de deux surfaces Γ et
Γ−, c’est-à-dire ∂ω− = Γ∪Γ−. De même, la frontière de ω+ est ∂ω+ = Γ∪Γ+.

Le principe de la conservation de la quantité de mouvement est valable
pour ω− et pour ω+∫

ω−
ρ(x, t)a(x, t) dv

=

∫
ω−

ρ(x, t)b(x, t) dv +

∫
∂ω−

t(x, t,n) ds

=

∫
ω−

ρ(x, t)b(x, t) dv +

∫
Γ−
t(x, t,n)ds+

∫
Γ

t(x, t,n) ds (3.73)

∫
ω+

ρ(x, t)a(x, t) dv

=

∫
ω+

ρ(x, t)b(x, t) dv +

∫
∂ω+

t(x, t,n) ds

=

∫
ω+

ρ(x, t)b(x, t) dv +

∫
Γ+

t(x, t,n) ds+

∫
Γ

t(x, t,−n) ds . (3.74)
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Fig. 3.6 Partition de ω en ω+ et ω− par une surface Γ.

Or l’équation (3.69) est valable avec ω = ω− ∪ ω+ et ∂ω = Γ− ∪ Γ+. En
combinant (3.73) et (3.74) avec (3.69), nous obtenons∫

Γ

(
t(x, t,−n) + t(x, t,n)

)
ds = 0 . (3.75)

Comme t(x, t,n) est continu en x et que le choix de Γ est arbitraire, l’applica-
tion du théorème de localisation à (3.75) donne (3.72). �
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Avec le lemme de Cauchy, nous sommes en mesure d’établir et de prouver
un des résultats principaux de la mécanique des milieux continus.

Théorème de Cauchy (existence du tenseur des contraintes)

Si le vecteur des contraintes t(x, t,n) est continu par rapport à x, et si
ρ(x, t)b(x, t) et ρ(x, t)a(x, t) sont bornés, alors le principe de la conser-
vation de la quantité de mouvement implique qu’il existe un tenseur des
contraintes σ(x, t) tel que

t(x, t,n) = σ(x, t)n ou ti(x, t,n) = σij(x, t)nj . (3.76)

Démonstration.
Considérons un tétraèdre ω0 dont les trois faces Si sont perpendiculaires aux
vecteurs unitaires ei (i = 1, 2, 3) et sont concourantes à la position actuelle x
d’une particule d’un corps C (fig. 3.7). Soit la quatrième face S4, d’aire A et
de normale unitaire arbitraire n = (cosα1, cosα2, cosα3)T . Alors, un simple
calcul montre que l’aire Ai de la face Si de normale unitaire (extérieure) ei est
donnée par

Ai = A cosαi cosαi = n · ei . (3.77)

En notant h la distance de x à S4, le volume du tétraèdre est

V =
1

3
hA . (3.78)

Considérons un autre tétraèdre ω similaire au premier ω0 (fig. 3.7). Le rapport
de similitude pour chaque dimension linéaire dans ω et ω0 est égal à λ > 0.
Alors le volume de ω est

v =
1

3
λ3hA . (3.79)

�

L’aire a de la face s4 de ω avec n comme normale unitaire externe est

a = λ2A , (3.80)

et l’aire ai de la face si de ω de normale unitaire externe ei a l’expression
suivante :

ai = λ2An · ei = λ2A cosαi . (3.81)

Le principe de conservation de la quantité de mouvement (3.69), pour le tétra-
èdre ω donne ∫

ω

(
ρ(y, t)a(y, t)− ρ(y, t)b(y, t)

)
dv

=

∫
s4

t(y, t,n) ds+

3∑
i=1

∫
si

t(y, t,−ei) ds .
(3.82)
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Fig. 3.7 Tétraèdre de Cauchy.

Puisque le vecteur contrainte t est, par hypothèse, continu en y, alors le théo-
rème de la valeur moyenne du calcul intégral implique qu’il existe yi ∈ si tel
que ∫

s4

t(y, t,n) ds = at(y4, t,n) = λ2A t(y4, t,n) (3.83)∫
si

t(y, t,−ei) ds = ait(yi, t,−ei) = λ2A cosαit(yi, t,−ei) . (3.84)

Dans cette dernière relation, il n’y a pas sommation sur i.

De plus, comme ρ(y, t)b(y, t) et ρ(y, t)a(y, t) sont supposés continus et
bornés, alors il existe une constante finie M > 0 telle que∥∥∥∥∫

ω

(
ρ(y, t)a(y, t)− ρ(y, t)b(y, t)

)
dv

∥∥∥∥ ≤Mv =
1

3
Mλ3hA . (3.85)

En tenant compte de (3.83), (3.84) et (3.85) dans (3.82), nous pouvons
écrire

0 ≤
∥∥∥∥∥λ2At(y4, t,n) +

3∑
i=1

λ2A cosαit(yi, t,−ei)
∥∥∥∥∥ ≤ 1

3
Mλ3hA , (3.86)

c’est-à-dire

0 ≤
∥∥∥∥∥t(y4, t,n) +

3∑
i=1

cosαit(yi, t,−ei)
∥∥∥∥∥ ≤ 1

3
Mλh . (3.87)
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Lorsque λ→ 0, alors yi → x pour tout i = 1, 2, 3, 4 et (3.87) devient∥∥∥∥∥t(x, t,n) +

3∑
i=1

cosαit(x, t,−ei)
∥∥∥∥∥ = 0 . (3.88)

En utilisant le lemme de Cauchy (3.72) et la seconde relation de (3.77), il
découle de (3.88) que

t(x, t,n)−
3∑
i=1

(n · ei)t(x, t, ei) = 0 , (3.89)

c’est-à-dire

t(x, t,n) = (n · e1)t(x, t, e1) + (n · e2)t(x, t, e2) + (n · e3)t(x, t, e3) . (3.90)

La définition du produit tensoriel de deux vecteurs (1.48) nous permet
d’écrire (3.90) sous la forme

t(x, t,n) =
(
t(x, t, e1)⊗ e1 + t(x, t, e2)⊗ e2 + t(x, t, e3)⊗ e3

)
n . (3.91)

Par conséquent, l’existence du tenseur de contrainte de Cauchy

σ(x, t) = t(x, t, e1)⊗ e1 + t(x, t, e2)⊗ e2 + t(x, t, e3)⊗ e3 , (3.92)

tel que (3.76) est valable, est ainsi démontrée. Une contrainte étant une force par
unité de surface, elle s’exprimera en Pascal (Pa) dans le système international
des unités.

Le théorème de Cauchy exprime la dépendance linéaire de t(x, t,n) par
rapport à la normale unitaire. Ainsi, lorsque le tenseur des contraintes σ(x, t)
est connu, le vecteur contrainte agissant en x sur toute surface de normale
unitaire extérieure n est complètement déterminé. Par conséquent, l’état de
contrainte en x (à l’instant t) est caractérisé par le tenseur des contraintes
σ(x, t). Même si les propriétés principales du tenseur des contraintes seront
étudiées plus loin, il est utile de donner une interprétation géométrique de ses
composantes σij afin de mieux cerner σ.

Les composantes σij de la matrice σ relative à la base {e1, e2, e3} sont
obtenues par

σij = ei · σej = ei · tej tej = σej . (3.93)

Cette relation montre que σij est la composante du vecteur contrainte tej dans
la direction i agissant sur un élément de surface spatiale dont la normale unitaire
est dirigée dans la direction ej (fig. 3.8).
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Fig. 3.8 Composantes matricielles du tenseur des contraintes de Cauchy σ.

Par exemple, σ11 est la composante dans la direction 1 du vecteur contrainte
agissant sur un élément de surface de normale unitaire e1, et σ12 est la com-
posante dans la direction 1 du vecteur contrainte agissant sur un élément de
surface de normale unitaire e2. La composante normale de tej , c’est-à-dire

σjj = ej · tej = ej · σej (sans sommation sur j) , (3.94)

est appelée contrainte normale . Elle correspond à une traction si elle est
positive ou à une compression si elle est négative. Les composantes tangentielles
de tej , c’est-à-dire

σij = ei · tej = ei · σej avec ei · ej = 0 , (3.95)

sont appelées contraintes de cisaillement . Par exemple, σ11 est une contrainte
normale et σ12 est une contrainte de cisaillement.

Nous allons maintenant utiliser le théorème de Cauchy et le théorème de
la divergence pour établir les équations du mouvement pour un milieu continu
à partir du principe de la conservation de la quantité de mouvement.

Principe de la conservation de la quantité de mouvement

Théorème

Supposons que le tenseur des contraintes σ(x, t) est continûment différen-
tiable par rapport à x, et que ρ(x, t)b(x, t) et ρ(x, t)a(x, t) sont continus
en x. Alors, le principe de la conservation de la quantité de mouvement,
c’est-à-dire (3.69), est satisfait si et seulement si, pour un point quelconque
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x de R,

divσ(x, t) + ρ(x, t)b(x, t) = ρ(x, t)a(x, t) ou σij,j + ρbi = ρai . (3.96)

Démonstration.
Nécessité. En introduisant (3.76) dans (3.69), on obtient∫

ω

ρ(x, t)ai(x, t) dv =

∫
ω

ρ(x, t)bi(x, t) dv +

∫
∂ω

σij(x, t)nj ds . (3.97)

En appliquant le théorème de la divergence au dernier terme, on peut écrire
cette expression∫

ω

(
ρ(x, t)ai(x, t)− ρ(x, t)bi(x, t)− σij,j(x, t)

)
dv = 0 . (3.98)

Comme l’intégrand est continu en x, (3.96) découle du théorème de localisation.

Suffisance. Supposons que (3.96) est valable pour tout point intérieur de R.
Alors, pour un domaine arbitraire ω de R,∫

ω

(
ρ(x, t)ai(x, t)− ρ(x, t)bi(x, t)− σij,j(x, t)

)
dv = 0 . (3.99)

En appliquant le théorème de Cauchy et le théorème de divergence à cette
dernière équation, nous concluons que (3.68) est vérifié. �

L’équation (3.96), due à Cauchy, est appelée équation du mouvement
de Cauchy . Lorsqu’il n’y a pas d’accélération, elle est aussi appelée équa-
tion d’équilibre . Comme nous le constaterons, l’équation (3.96) est l’une des
équations les plus utilisées en mécanique des milieux continus.

Principe de la conservation du moment cinétique

Théorème (Symétrie du tenseur des contraintes de Cauchy)

Supposons que le tenseur des contraintes σ(x, t) est continûment différen-
tiable par rapport à x, et que ρ(x, t)b(x, t) et ρ(x, t)a(x, t) sont continus en
x. Alors le principe de la conservation du moment cinétique (3.71) implique
la symétrie du tenseur des contraintes de Cauchy,

σT = σ ou σij = σji . (3.100)
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Démonstration.
Compte tenu de (3.76) dans (3.71), il vient∫

ω

ρ(x, t)εijkxjak(x, t) dv

=

∫
ω

ρ(x, t)εijkxjbk(x, t) dv +

∫
∂ω

εijkxjσkm(x, t)nm ds .

(3.101)

En appliquant le théorème de la divergence au dernier terme et par le fait que
xj,m = δjm (éq. (1.27)), on obtient∫

∂ω

εijkxjσkm(x, t)nm ds

=

∫
ω

εijk
(
xj,mσkm(x, t) + xjσkm,m(x, t)

)
dv

=

∫
ω

εijk
(
σkj(x, t) + xjσkm,m(x, t)

)
dv . (3.102)

La substitution de (3.102) dans (3.101) donne∫
ω

εijkxj
(
ρ(x, t)ak(x, t)− ρ(x, t)bk(x, t)− σkm,m(x, t)

)
dv

=

∫
ω

εijkσkj(x, t) dv .

(3.103)

Par (3.96), le membre gauche de cette expression est égal à zéro. Ainsi (3.103)
est réduit à ∫

ω

εijkσkj(x, t) dv = 0 . (3.104)

Le théorème de localisation conduit à

εijkσkj = −1

2
εijk(σjk − σkj) = 0 . (3.105)

Ceci implique que σjk = σkj , c’est-à-dire (3.100). L’équation (3.100) signifie
que

σ12 = σ21 σ23 = σ32 σ31 = σ13 . (3.106)

Par conséquent, parmi les 9 composantes du tenseur des contraintes de Cau-
chy σ (fig. 3.8), 6 sont indépendantes. De plus, dû à sa symétrie, σ possède
un grand nombre de propriétés qui peuvent être obtenues en appliquant di-
rectement les résultats de l’algèbre linéaire relatifs aux tenseurs symétriques.
En particulier, le théorème de décomposition spectrale pour un tenseur symé-
trique permet une plus grande connaissance de σ. Finalement, on peut relever
que la symétrie du tenseur σ garantit à elle seule le respect du principe de la
conservation du moment cinétique. La démonstration de cette affirmation est
faite simplement en inversant la démarche du théorème précédent. Ainsi, les
deux lois du mouvement d’Euler sont vérifiées si le tenseur des contraintes σ
est symétrique et qu’il satisfait l’équation (3.96). �
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3.7 Propriétés du tenseur de contrainte de Cauchy

Nous allons maintenant étudier les principales propriétés de σ(x, t), à partir
de (3.76) et de (3.100). Afin de simplifier les notations durant cette étude,
la dépendance de σ par rapport à x et à t ne sera pas considérée, car les
propriétés de σ restent valables indépendamment des valeurs de x et de t. Le
vecteur contrainte est donné par le théorème de Cauchy exprimé par la relation
(3.76)

t = σn ou ti = σijnj . (3.107)

De manière générale, t n’agit pas dans la direction de la normale unitaire n à
laquelle il est associé. Donc, t a non seulement une composante normale

tN = n · t = n · σn ou tN = niti = σijninj (3.108)

mais aussi une composante tangentielle (de cisaillement)

tT =
∥∥t− (n · t)n

∥∥ =
∥∥(I − n⊗ n)t

∥∥ = (titi − t2N )1/2 . (3.109)

Cependant, il peut arriver que t agisse uniquement dans la direction de n. Cette
possibilité conduit à étudier le problème aux valeurs propres suivant :

σn = λn ou σijnj = λni . (3.110)

L’algèbre linéaire (§ 1.3.8) permet d’affirmer que l’équation caractéristique
associée à (3.110)

det(σ − λI) = 0 ou det(σij − λδij) = 0 (3.111)

possède trois racines réelles σi (i = 1, 2, 3) car le tenseur σ est symétrique.
Ces racines sont les valeurs principales de σ qui, en mécanique, sont appelées
contraintes principales. Dans le cas général, σ possède trois contraintes
principales distinctes σ1, σ2 et σ3, qui sont habituellement ordonnées de façon
à ce que σ1 ≥ σ2 ≥ σ3. Les axes dirigés le long des vecteurs propres ni associés
aux σi sont appelés axes principaux de contrainte et les plans normaux à
ces axes sont appelés plans principaux . En résumé, une contrainte principale
est la contrainte normale qui agit sur un plan principal où aucune contrainte
de cisaillement n’existe.

Par ailleurs, en algèbre linéaire, il est démontré que les vecteurs principaux
correspondant aux valeurs principales distinctes d’un tenseur symétrique σ sont
mutuellement orthogonaux. Ceci signifie que deux axes ou plans principaux
associés à deux contraintes distinctes sont perpendiculaires. Cette propriété est
utilisée pour la décomposition spectrale de σ

σ = σ1n1 ⊗ n1 + σ2n2 ⊗ n2 + σ3n3 ⊗ n3 , (3.112)

où ni · nj = δij pour i, j = 1, 2, 3. En d’autres termes, relativement à la base
{n1,n2,n3} constituée des vecteurs propres orthonormaux ni, la matrice σij
du tenseur de contrainte de Cauchy est diagonale :
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[σ] =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (3.113)

L’état de contrainte d’une particule d’un corps C est dit tridimensionnel si
σ1, σ2 et σ3 sont toutes les trois non nulles, bidimensionnel ou plan si deux
des contraintes σ1, σ2 ou σ3 sont non nulles, et unidimensionnel si seulement
l’une des contraintes σ1, σ2 et σ3 est non nulle.

Si l’équation (3.111) est développée, elle devient (éq. (1.120))

λ3 − I1(σ)λ2 + I2(σ)λ− I3(σ) = 0 , (3.114)

où

I1(σ) = tr σ = σii (3.115)

I2(σ) =
1

2

(
(trσ)2 − trσ2

)
=

1

2

(
(σii)

2 − σmnσnm
)

(3.116)

I3(σ) = detσ = εijkσi1σj2σk3 , (3.117)

sont les invariants principaux de σ. Comme nous le verrons, ces invariants
jouent un rôle prépondérant dans la formulation des équations constitutives des
matériaux isotropes. A l’aide de (3.113), ils peuvent être exprimés en fonction
des contraintes principales

I1(σ) = σ1 + σ2 + σ3

I2(σ) = σ1σ2 + σ2σ3 + σ3σ1

I3(σ) = σ1σ2σ3 .

(3.118)

Notons que la permutation des indices 1, 2, et 3 ne change pas I1(σ), I2(σ) et
I3(σ).

Rappel de la définition des invariants

Dans la formule (3.93), les composantes σij de la matrice de σ sont définies
relativement à la base orthonormée {e1, e2, e3} par

σij = ei · σej . (3.119)

Considérons une autre base orthonormée {e′1, e′2, e′3} obtenue par rotation de
{e1, e2, e3}

e′i = cijej (i = 1, 2, 3) , (3.120)

où cij est donné par la relation (1.6). Alors les composantes de σ′, relatives à
la base orthonormée {e′1, e′2, e′3} sont reliées à σij par

σ′ij = e′i · σe′j = cimcjnem · σen = cimcjnσmn . (3.121)
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L’expression (3.121) est la règle de transformation pour les matrices de
contraintes de Cauchy. En fait, les scalaires donnés par (3.118) sont dits in-
variants au sens où

σii = σ′ii

(σii)
2 − σmnσmn = (σ′ii)

2 − σ′mnσ′mn
εijkσi1σj2σk3 = εijkσ

′
i1σ
′
j2σ
′
k3 .

Il est souvent utile de décomposer σ de la manière suivante (éq. (1.90) et (1.91))

σ = s+ σ0I ou σij = sij + σ0δij , (3.122)

où

s = σ − σ0I , σ0 =
1

3
I1(σ) =

1

3
σkk . (3.123)

Le tenseur s défini ainsi est appelé tenseur déviateur des contraintes as-
socié à σ. Par construction, tr s = sii = 0. En d’autres termes, si la partie
déviatrice de σ est nulle, alors σ est de la forme σ = −pI avec σ0 = −p.
Dans ce cas, il s’agit d’un état de contrainte hydrostatique pure , et p est
une pression hydrostatique. Le signe négatif vient du fait qu’en mécanique des
fluides, par convention, la pression est positive.

Exemple 3.1

Soit le tenseur σ dont les éléments sont donnés par (1.122), donnant l’état
de contrainte d’un milieu continu (en unités arbitraires). Ainsi, le problème
aux valeurs propres résolu dans cet exemple n’est autre que celui de trouver
les contraintes principales et les directions principales. En utilisant ce même
état de contrainte, trouver le vecteur de contrainte sur le plan défini par le
vecteur normal unitaire n = 2/3e1 + 2/3e2 − 1/3e3.

[σ] =

 2 1 −2
1 4 −3
−2 −3 −2

 (3.124)

Pour trouver les composantes du vecteur contrainte sur le plan prescrit, on
utilise le théorème de Cauchy (3.76) t1

t2
t3

 =

 2 1 −2
1 4 −3
−2 −3 −2

 2/3
2/3
−1/3

 =
1

3

 8
13
−8


Les composantes de contrainte normale et de cisaillement sur ce plan sont
données par (3.108) et (3.109), respectivement. Leurs valeurs sont

tN = niti = 5,55 et tT =
(
titi − t2N

)1/2
= 4,56.
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Considérons maintenant un système de coordonnées défini par les directions
principales. Par rapport à ce système, nous définissons un plan avec un
vecteur normal donné par m = 1/

√
3n1 + 1/

√
3n2 + 1/

√
3n3. En utilisant

(3.76) le vecteur de contrainte sur ce plan est t1
t2
t3

 =

 6 0 0
0 1,65 0
0 0 −3,65

 1/
√

3

1/
√

3

1/
√

3

 =
1√
3

 6
1,65
−3,65


Les composantes normale et de cisaillement sont

tN = niti = 1,33 et tT =
(
titi − t2N

)1/2
= 3,94.

Le plan défini par le vecteur unitaire ci-dessus est appelé plan octaédrique
et les contraintes associées les contraintes octaédriques normales et de ci-
saillement ou contraintes de comparaison. Sur ce plan particulier, on peut
montrer que

tN = I1(σ)/3

tT =
1

3

√
2I2

1 (σ)− 6I2(σ) .

La démonstration de ces expressions est laissée en exercice au lecteur. La
composante de cisaillement peut en outre s’exprimer en termes de contraintes
principales ou du deuxième invariant I2(s) du tenseur déviateur
des contraintes s (3.123)

tT =
1

3

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]1/2
=

√
2

3
I2(s) .

Notons qu’une contrainte équivalente σe ou contrainte de von Mises, pro-
portionnelle à tT ,

σe =

[
1

2

(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)]1/2

=

√
1

3
I2(s)

est utilisée fréquemment en mécanique des matériaux comme déformation
plastique ou rupture des matériaux.
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3.8 Etats de contrainte simplifiés

Comme cela a été mentionné, les équations d’équilibre pour un milieu continu
correspondent à l’équation (3.96) sans accélération

∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
+ ρb1 = 0

∂σ21

∂x1
+
∂σ22

∂x2
+
∂σ23

∂x3
+ ρb2 = 0

∂σ31

∂x1
+
∂σ32

∂x2
+
∂σ33

∂x3
+ ρb3 = 0

(3.125)

ou
∂σij
∂xj

+ ρbi = 0 . (3.126)

Souvent, la force de volume est notée comme fi = ρbi.

Exemple 3.2

Soit l’état de contrainte d’un corps donné par les expressions suivantes

σ11 = 10x3
1 + x2

2, σ12 = 2x3

σ22 = 20x3
1 + 100, σ13 = x3

2

σ33 = 30x2
2 + 10x2

3, σ23 = 52x3
1 .

On demande de trouver les forces de volume telles que l’équilibre statique
soit vérifié.

Les équations de l’équilibre statique sont données par (3.125). Avec les
composantes de la contrainte données, ces équations donnent

30x3
1 + ρb1 = 0

0 + ρb2 = 0

20x3 + ρb3 = 0 .

Donc les forces de volume qui assurent l’équilibre sont données par le vec-
teur (−30x3

1, 0,−20x3). Les équations (3.125) peuvent être simplifiées si l’on
suppose les forces volumiques négligeables. Ces trois équations ne sont pas
suffisantes pour déterminer les 6 composantes σij de σ, mais elles doivent
être vérifiées pour tout corps en l’absence d’accélération. Une simple ins-
pection révèle que, si chaque composante de σ est indépendante de x, les
trois équations de (3.125) sans forces volumiques sont identiquement vé-
rifiées. Un état de contrainte est dit homogène si σ est indépendant de
x. De tels états de contrainte sont importants, non seulement parce qu’un
grand nombre d’essais d’identification statiques ou quasi statiques en mé-
canique des milieux continus sont basés sur eux, mais aussi parce qu’une
bonne compréhension de ces états est nécessaire pour traiter des états de
contrainte plus compliqués.
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Traction ou compression uniforme

On supposera que cette traction ou compression s’exerce dans la direction 1.
Le tenseur σ est donné par

σ = σn1 ⊗ n1 ou [σ] =

 σ 0 0
0 0 0
0 0 0

 , (3.127)

où σ est constant. Ce tenseur caractérise l’état de contrainte dans une barre
cylindrique droite parallèle à e1, sans force sur sa surface latérale et avec des
contraintes normales, uniformément appliquées sur les deux bases. La barre est
dite en traction si σ > 0 et en compression si σ < 0. Les axes principaux
de contrainte sont ceux qui sont parallèles à e1 et tous ceux qui sont normaux
à e1. De façon plus générale que (3.127), la traction ou compression uniforme
dans la direction définie par un vecteur unitaire m a pour expression

σ = σ(m⊗m) ou σij = σmimj (3.128)

avec σ constant.

Contrainte uniforme de cisaillement

Celle-ci s’effectue dans la direction 1 sur des plans perpendiculaires à e2. Le
tenseur σ est donné par

σ = τ(e1 ⊗ e2 + e2 ⊗ e1) ou [σ] =

 0 τ 0
τ 0 0
0 0 0

 , (3.129)

où τ ≥ 0 est constant. Cet état de contrainte peut se présenter dans un écou-
lement laminaire d’un fluide visqueux dont la direction est parallèle à e1 mais
sur une surface perpendiculaire à e2. L’équation caractéristique (3.114) pour
cet état de contrainte prend la forme

λ(λ2 − τ2) = 0 . (3.130)

Par conséquent, les contraintes principales sont σ1 = τ , σ2 = 0 et σ3 = −τ et
les directions principales correspondantes sont n1 = (e1 + e2)/

√
2, n2 = e3 et

n3 = (e1 − e2)/
√

2 . En résumé, la décomposition spectrale (3.112) pour une
contrainte de cisaillement est

σ = τ(e1 + e2)⊗ e1 + e2

2
− τ(e1 − e2)⊗ e1 − e2

2
. (3.131)

Pression hydrostatique

Nous avons vu que le tenseur des contraintes correspondant a la forme

σ = −p(x)I ou σij = −p(x) δij , (3.132)

et l’équation d’équilibre (3.125) est réduite à

−∇p+ ρb = 0 ou − p,i + ρbi = 0 . (3.133)
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Flexion pure

On suppose qu’il n’y a pas de forces volumiques et que σ est donné par

σ = α(x2 − h0)e1 ⊗ e1 ou [σ] =

 α(x2 − h0) 0 0
0 0 0
0 0 0

 , (3.134)

où α et h0 sont constants. Les trois équations de (3.125) sont immédiatement
satisfaites par (3.134). Le tenseur σ donne une approximation du champ de
contraintes telles qu’elles apparaissent dans une poutre prismatique parallèle à
e1, soumise à deux couples appliqués à ses extrémités et agissant sur des axes
le long de e3.

Contrainte plane

Dans ce cas,

σ = σ11e1 ⊗ e1 + σ22e2 ⊗ e2 + σ12(e1 ⊗ e2 + e2 ⊗ e1) (3.135)

ou

[σ] =

 σ11 σ12 0
σ12 σ22 0
0 0 0

 , (3.136)

où σ11, σ22 et σ12 sont uniquement fonction de x1 et de x2. Alors, en l’absence
de forces de volume les équations (3.125) se simplifient en

∂σ11

∂x1
+
∂σ12

∂x2
= 0

∂σ21

∂x1
+
∂σ22

∂x2
= 0 . (3.137)

Le champ de contrainte (3.136) peut être utilisé pour approcher les contraintes
présentes dans une plaque mince, parallèle au plan normal à e3, et soumise à des
forces parallèles au plan. Ceci inclut la flexion pure comme un cas particulier.

3.9 Tenseurs des contraintes de Piola-Kirchhoff

3.9.1 Considérations générales

Jusqu’à présent, la force de contact a été exprimée par unité d’aire ou de surface
de la configuration actuelle (ou déformée) R. Donc, le tenseur des contraintes
de Cauchy est exprimé en fonction de sa valeur actuelle agissant sur la sur-
face courante. C’est la raison pour laquelle on l’appelle la contrainte vraie. Par
conséquent, le principe de la conservation de la quantité de mouvement et celui
de la conservation du moment cinétique ont été formulés seulement par rapport
à la configuration actuelle. Comme mentionné à la fin de la section 3.4, la ré-
solution de problèmes en relation avec des solides requiert une formulation par
rapport à la configuration initiale ou de référence R0. Ce n’est pas seulement
parce qu’il est difficile de connâıtre a priori la configuration déformée du solide,
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mais aussi parce qu’il est plus commode d’analyser sa réponse expérimentale-
ment par rapport à la configuration non déformée. Par conséquent, des mesures
de contraintes définies par rapport à la configuration non déformée ont été pro-
posées. Deux pareilles mesures bien connues dans l’étude des solides sont les
tenseurs des contraintes de Piola-Kirchhoff. Le point de départ pour définir ces
tenseurs est d’exprimer la force de contact agissant effectivement sur une sur-
face dans la configuration actuelle par un vecteur de contrainte artificiellement
appliqué à la surface correspondante dans la configuration initiale. Une telle
définition du vecteur de contrainte nous permet de reformuler les principes de
la section 3.5 et d’en tirer des conclusions similaires à celles de la section 3.6.

Gustav Kirchhoff (1824-1887) est né à Königsberg. Il en-
seigna successivement à l’Université de Breslau, d’Heidel-
berg et enfin, à l’Université Humboldt à Berlin. Ses contri-
butions sont importantes en spectroscopie, en théorie du
corps noir et en élasticité. Il a repris la description la-
grangienne du tenseur des contraintes que Gabrio Piola
(1794-1850) avait introduite auparavant.

Fig. 3.9 Gustav Kirchhoff.

3.9.2 Premier et second tenseurs de Piola-Kirchhoff

Soit t(x, t,n) le vecteur contrainte de Cauchy en x agissant sur un élément
de surface déformée n ds (fig. 3.10). Le premier vecteur contrainte de Piola-
Kirchhoff T (X, t,N) appliqué en X et agissant sur l’élément de surface de
référence NdS associé à n ds est défini par

T
(
X, t,N(X)

)
dS = t

(
x, t,n(x, t)

)
ds . (3.138)

Comme dS et ds sont tous deux des scalaires positifs, (3.138) implique que T
et t ont la même direction. Cependant, le vecteur de contrainte T ne représente
pas l’intensité actuelle ; il est souvent appelé le vecteur de pseudo-contrainte.
Il agit sur la configuration présente et est une fonction de X et de la normale
N en dS dans la configuration initiale. La relation (3.138) fournit la force
élémentaire appliquée à la configuration présente.

De plus, dS et ds étant généralement différents, ‖T ‖ et ‖t‖ le sont généralement
aussi.

En introduisant le théorème de Cauchy (3.76) dans (3.138) et en utilisant
ensuite la formule de Nanson (2.107), on obtient

T (X, t,N) dS = t
(
x, t,n

)
ds = σ

(
x, t
)
n ds

= J(X, t)σ
(
χ(X, t), t

)
F−TN dS . (3.139)
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x

X

n

N

T
K

t

O

R

R0

X2, x2

X3, x3

X1, x1

ds

ds

e2

e3

e1

Fig. 3.10 Relations entre le vecteur de contrainte de Cauchy t et les premier et
second vecteurs de contrainte de Piola-Kirchhoff T et K.

Comme dS > 0, on en déduit que

T (X, t,N) = P (X, t)N , (3.140)

où
P (X, t) = J(X, t)σ

(
χ(X, t), t

)
F−T (3.141)

est le premier tenseur de contrainte de Piola-Kirchhoff . L’équation
(3.140) n’est rien d’autre qu’un équivalent du théorème de Cauchy (3.76). Ce
résultat peut être déduit directement du principe de la conservation de la quan-
tité de mouvement et est écrit sous la forme suivante :∫

Ω

P0(X)a
(
χ(X, t), t

)
dV

=

∫
Ω

P0(X)B(X, t) dV +

∫
∂Ω

T (X, t,N) dS ,

(3.142)

où P0(X) est la densité de masse initiale définie par (3.28) etB(X, t) la densité
de force volumique définie par (3.55).

En substituant (3.140) dans (3.142) et en faisant appel aux mêmes argu-
ments utilisés pour la démonstration de (3.96), on peut déduire l’équation du
mouvement pour un milieu continu

divP (X, t) + P0(X)B(X, t) = P0(X)a
(
χ(X, t), t

)
. (3.143)
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Notons que la dérivation est effectuée ici par rapport à la variable matérielle
X. Examinons les propriétés du tenseur P . En utilisant (3.100) et (3.141), on
montre facilement que

PF T = FP T . (3.144)

Donc, par manque de symétrie, P ne possède pas les propriétés du tenseur
de contrainte de Cauchy σ présentées dans la section 3.7 et le principe de la
conservation du moment cinétique est satisfait si et seulement si P vérifie la
condition (3.144).

Considérons maintenant la relation de Cauchy (3.76) vue par deux ob-
servateurs R et R∗. En supposant que les vecteurs t et n sont objectifs, en
l’occurrence qu’ils se transforment suivant (2.195), on peut raisonner comme
suit. A partir de t∗ = σ∗n∗ et l’objectivité de t∗ et n∗, on peut écrire

Qt = σ∗Qn . (3.145)

D’autre part, à partir de (3.76), on a

Qt = Qσn . (3.146)

En comparant les deux dernières équations, on obtient

σ∗ = QσQT . (3.147)

Donc, le tenseur des contraintes de Cauchy est objectif. Examinons mainte-
nant le premier tenseur des contraintes de Piola-Kirchhoff P . A cette fin, nous
écrivons (3.141) pour l’observateur R∗ comme

P ∗F ∗T = J∗σ∗ . (3.148)

En utilisant (2.205), (2.206), (3.141) et (3.147) dans (3.148), on peut écrire
successivement

P ∗(QF )T = JQσQT

P ∗F TQT = QJσQT = QPF TQT

P ∗ = QP . (3.149)

Donc, le tenseur P n’est pas objectif lors d’un changement d’observateur.

Bien que le premier tenseur de contraintes de Piola-Kirchhoff P convienne
pour des problèmes en mécanique des solides, il n’est pas symétrique et il n’est
pas objectif lors d’un changement d’observateur. Pour éviter cet inconvénient
dans la formulation des lois constitutives de matériaux solides soumis à de
grandes déformations, on utilise souvent le second tenseur de contrainte
de Piola-Kirchhoff S qui est objectif. Ce tenseur peut être introduit de la
façon suivante.

Premièrement, le second vecteur de contrainte de Piola-Kirchhoff K ap-
pliqué en X et agissant sur l’élément de surface de référence NdS est défini
par

K(X, t,N) dS = F−1(X, t) t
(
χ(X, t), t, n(X, t)

)
ds . (3.150)
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Ainsi, d’après la définition, K exprime la force de contact par unité d’aire
de référence « transformée » par F−1. (Physiquement parlant, un tel vecteur
de contrainte n’est pas naturel.) Alors, par les mêmes arguments utilisés pour
déduire (3.140) et (3.141), ce vecteur s’écrit

K(X, t,N) = S(X, t)N (3.151)

avec

S(X, t) = J(X, t)F−1(X, t)σ
(
χ(X, t), t

)
F−T (X, t)

= F−1(X, t)P (X, t) .
(3.152)

Comme σ est symétrique, il est facile de montrer que S l’est aussi. Cependant,
au contraire de σ, S n’a pas d’interprétation physique significative. L’équation
du mouvement pour un milieu continu peut aussi être exprimée en fonction de
S ; on remarque que P (X, t) = F (X, t)S(X, t) et il suffit alors de substituer
cette expression dans (3.143). D’un autre côté, lorsque S est employé, le prin-
cipe de la conservation du moment cinétique est automatiquement vérifié grâce
à la symétrie de S.

3.9.3 Linéarisation des tenseurs de contraintes

Examinons les effets de la linéarisation cinématique introduite à la section 2.9
sur les tenseurs de contraintes. Le tenseur de Piola-Kirchhoff calculé par (3.144)
s’écrit en notation indicielle

Pmk = Fmi(Pij)
T (Fjk)−T = FmiPjiF

−1
kj . (3.153)

En utilisant (2.70) et (2.145) dans (3.153), on obtient

Pmk = Pkm − Pjm
∂Uk
∂Xj

+ Pki
∂Um
∂Xi

− Pji
∂Um
∂Xi

∂Uk
∂Xj

. (3.154)

De même, avec (3.152), (2.145) et la deuxième égalité de (2.70), le second
tenseur de Piola-Kirchhoff s’exprime comme

Sij = F−1
ik Pkj =

(
δik −

∂Ui
∂Xk

)
Pkj = Pij − Pkj

∂Ui
∂Xk

. (3.155)

Finalement, pour le tenseur de contrainte de Cauchy, nous écrivons (3.141)
comme

σij = J−1Pik(Fkj)
T = J−1PikFjk . (3.156)
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Par (2.70) et (2.147), nous avons

σij = J−1Pik

(
δjk +

∂Uj
∂Xk

)
= J−1(Pij + Pik

∂Uj
∂Xk

) ≈ Pij + Pik
∂Uj
∂Xk

.

(3.157)

En négligeant les termes contenant le gradient du déplacement dans (3.154),
(3.155) et (3.157), il vient

Pmk ≈ Pkm Sij ≈ Pij σij ≈ Pij . (3.158)

Donc, le résultat de la linéarisation cinématique, pour des petits déplacements
et des gradients infinitésimaux, s’exprime par la symétrie du premier tenseur de
Piola-Kirchhoff et par l’égalité approximative des trois tenseurs des contraintes.

Exemple 3.3

Pour apprécier les différences entre les trois tenseurs de contraintes, considé-
rons le cas uni-axial d’un barreau prismatique de section circulaire, encastré
à l’extrémité A et soumis à une force Pt comme le montre la figure 3.11.

O

L

l

rO

A

R

B

X2, x2

X1, x1

Pt

e2

e1

Fig. 3.11 Barreau cylindrique soumis à une contrainte uni-axiale.

Le mouvement est donné par les expressions suivantes :

x1 = aX1

x2 = bX2 (3.159)

x3 = bX3 .

La longueur et le rayon avant déformation sont `0 et R0, respectivement. Au
temps t, ces paramètres deviennent `t et Rt. Pour l’extrémité B du barreau
et selon (3.159), on peut écrire

`t = a`0 ⇒ a = `t/`o

Rt = bR0 ⇒ b = Rt/R0 . (3.160)
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Selon (3.160), les relations (3.159) s’expriment comme

x1 =
`t
`0
X1

x2 =
Rt
R0

X2 (3.161)

x3 =
Rt
R0

X3 .

Donc, la matrice du tenseur du gradient de déformation (2.65) est

[F ] =

 `t/`0 0 0
0 Rt/R0 0
0 0 Rt/R0

 (3.162)

et son jacobien J

J = det[F ] =
`t
`0

(
Rt
R0

)2

=
`t
`0

At
A0

. (3.163)

où A0 et At sont les aires de la section au temps t = 0 et t, respectivement.

Une force Pt, parallèle à l’axe 1 agit au centre de gravité de la section à
l’extrémité B. Donc la matrice des contraintes de Cauchy est définie par la
force au temps t, Pt, et l’aire de la section au temps t

[σ] =
Pt
At

 1 0 0
0 0 0
0 0 0

 ou σ11 =
Pt
At

. (3.164)

Avec (3.141) et (3.152), la matrice des contraintes des premier et deuxième
tenseurs de Piola-Kirchhoff sont

[P ] = J [σ][F ]−T =
`t
`0

At
A0

 Pt

At
0 0

0 0 0
0 0 0


 `0

`t
0 0

0 R0

Rt
0

0 0 R0

Rt


=

Pt
A0

 1 0 0
0 0 0
0 0 0

 ou P11 =
Pt
A0

.

[S] = J [F ]−1[σ][F ]−T

=
`t
`0

At
A0

 `0
`t

0 0

0 R0

Rt
0

0 0 R0

Rt


 Pt

At
0 0

0 0 0
0 0 0


 `0

`t
0 0

0 R0

Rt
0

0 0 R0

Rt


=

Pt
A0

`0
`t

 1 0 0
0 0 0
0 0 0

 ou S11 =
Pt
A0

`0
`t
.
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Les expressions précédentes montrent que la composante du premier tenseur
de Piola-Kirchhoff est donnée par la force au temps t et l’aire de la section
au temps t = 0 (ou la section initiale). La composante du second tenseur
n’a pas d’interprétation directe, comme les deux autres tenseurs. Il sera
cependant utile à la modélisation des solides en grandes déformations. Ce
sujet sera traité au chapitre 6.

Puisque la déformation est homogène, les composantes de déformation in-
finitésimales sont exprimées comme

`t
`0

=
`0 + ∆`

`0
= 1 + ε11

Rt
R0

=
R0 + ∆R

R0
= 1 + ε22 .

Donc,

[F ] =

 1 + ε11 0 0
0 1 + ε22 0
0 0 1 + ε22

 .

On montre facilement que si ε11, ε22 � 1, les trois mesures de contraintes
sont approximativement les mêmes. Ce résultat est une conséquence de la
linéarisation cinématique.

3.10 Exercices

3.1 Montrer que le champ de vitesse vi = Axi/r
3 où xixi = r2 et A est une

constante arbitraire, satisfait l’équation de conservation de la masse pour un
fluide incompressible.

3.2 Pour le champ de vitesse vi = xi/(1 + t) montrer que

ρ x1x2x3 = ρ0X1X2X3 .

3.3 Montrer que l’écoulement donné par le champ de vitesse

vr =
(1− r2) cos θ

r2

vθ =
(1 + r2) sin θ

r2

vz = 0

satisfait l’équation d’incompressibilité lorsque la masse volumique ρ est constante.
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3.4 L’état des contraintes dans un corps est donné par la matrice des contraintes
suivant :

[σ] =

 0 Cx1 0
Cx1 0 −Cx2

0 −Cx2 0

 , (3.165)

où C est une constante arbitraire.

1) Déterminer la force volumique pour que l’équilibre statique soit satisfait.

2) Calculer au point P de coordonnées (4,−4, 7) le vecteur de contraintes
sur le plan d’équation 2x1 + 2x2 − x3 = −7, et sur la sphère d’équation
x2

1 + x2
2 + x2

3 = 81.

3) Déterminer les contraintes principales, le maximum des contraintes de ci-
saillement et des contraintes déviatrices principales en P.

3.5 En l’absence de forces de volume, déterminer si le champ de contrainte
suivant satisfait l’équilibre

σ11 = 4x2
1 + 8x1x2 − 5x2

2 σ22 = 5x2
1 +

1

2
x1x2 + 4x2

2

σ12 = −1

4
x2

1 − 8x1x2 − 4x2
2 σ33 = σ32 = σ31 = 0

(3.166)

3.6 Soit C un corps tridimensionnel non pesant, soumis à une pression uniforme
(normale) sur toute sa surface extérieure. Montrer que C est en équilibre.

3.7 Pour chaque état de contrainte en un point donné par les matrices sui-
vantes :

[σ] =

 p p p
p p p
p p p

 (3.167)

[σ] =

 p p p
p p p
p p −2p

 (3.168)

[σ] =

 0 p p
p 0 p
p p 0

 (3.169)

avec p une constante, déterminer les contraintes principales. A quel état de
contrainte correspond chacun de ces cas ?

3.8 Montrer que les invariants du tenseur déviateur des contraintes s sont
reliés à ceux du tenseur des contraintes σ par les expressions suivantes

I1(s) = 0 (3.170)

I2(s) =
1

3
I2
1 (σ)− I2(σ) (3.171)

I3(s) =
2

27
I3
1 (σ)− 1

3
I1(σ)I2(σ) + I3(σ) . (3.172)
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3.9 Si Pij...(x, t) est une fonction arbitraire scalaire, vectorielle ou tensorielle,
démontrer qu’on a∫

∂ω

Pij...σpqnq ds =

∫
ω

(
σpqPij...,q + ρPij...(v̇p − bp)

)
dv . (3.173)

3.10 En utilisant (3.141), démontrer l’égalité (3.144).

3.11 Montrer que le second tenseur des contraintes de Piola-Kirchhoff S sa-
tisfait les relations

S = ST et S∗ = S . (3.174)





Chapitre 4

Energétique

4.1 Introduction

Après avoir décrit les principes de conservation de la masse, de la quantité
de mouvement et du moment cinétique, nous allons introduire maintenant les
principes reliés à la thermodynamique d’un milieu continu en mouvement, ainsi
qu’à la conservation de l’énergie.

Nous rappelons que toute déformation dans un matériau produit un effet
thermique de la même manière qu’un effet thermique produit une déformation.
Il suffit pour s’en convaincre de chauffer une barre de métal, qui sous l’action
de la chaleur, s’allonge.

Dans ce chapitre, nous travaillerons généralement en représentation spatiale
ou eulérienne. Le principe de conservation de l’énergie totale est d’abord établi.
Il conduit à l’écriture du principe de conservation de l’énergie interne. Ensuite,
nous considérons la conservation de l’énergie mécanique en représentation la-
grangienne. Ultérieurement, on montrera que, du principe de conservation de
l’énergie totale auquel l’objectivité est imposée, on peut inférer les autres lois de
conservation. Enfin, le chapitre se termine par l’introduction de l’entropie et le
second principe de la thermodynamique qui repose sur l’inégalité de Clausius–
Duhem, une mesure de l’irréversibilité des phénomènes associés à la physique
des milieux continus.

La thermodynamique des milieux continus a retenu particulièrement l’at-
tention des auteurs suivants : [22, 28, 33, 68, 76].

4.2 Conservation de l’énergie

Soit ω le volume matériel d’un milieu continu à l’instant t, tel que ω ⊆ R, la
configuration actuelle du corps C. On généralise le concept d’énergie cinétique
en définissant celle-ci comme l’intégrale sur le volume actuel ω(t) de la moitié
de la masse volumique ρ(x, t) multipliée par le carré de la norme de la vitesse
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spatiale locale v(x, t). L’énergie cinétique de ω(t), que nous noterons Ec(t), est
un scalaire donné par la relation

Ec(t) =

∫
ω(t)

ρ(x, t)
v(x, t) · v(x, t)

2
dv . (4.1)

Pour simplifier, la dépendance de ω par rapport au temps ne sera plus indiquée
dans la suite. Outre l’énergie cinétique, l’énergie d’une région matérielle contient
des contributions provenant de mouvements à l’échelle microscopique tels que
des mouvements de translation aléatoires, des vibrations moléculaires, des ro-
tations de molécules et d’autres modes énergétiques microscopiques. Toutes ces
énergies contribuent à l’énergie interne Eint(t). Par exemple, on sait que pour
deux corps C1 et C2 au repos (énergie cinétique nulle), si la température du
premier est plus élevée que celle du second, alors C1 contient plus d’énergie que
C2. L’énergie interne Eint(t) de C s’exprime comme l’intégrale de volume de la
densité d’énergie interne u(x, t) par unité de masse. On a

Eint(t) =

∫
ω

ρ(x, t)u(x, t) dv . (4.2)

La somme de l’énergie cinétique et de l’énergie interne (qui est l’analogue pour
un matériau de l’énergie potentielle en mécanique du point) est l’énergie totale
de C. L’énergie totale peut varier au cours du temps sous l’action du travail
exercé par les forces qui agissent sur C et par les apports extérieurs d’énergie
calorifique. Avant de préciser le concept de travail pour un milieu continu,
remémorons-nous sa formulation en mécanique classique du point. La loi de
Newton pour une particule de masse m se déplaçant à la vitesse v s’écrit

m
dv

dt
= F . (4.3)

En effectuant le produit scalaire des deux membres de cette relation par v, on
obtient

mv · dv
dt

= m
d

dt

(
1

2
‖v‖2

)
= m

d

dt

(
1

2
v2

)
= F · v ,

qui est une forme du théorème de l’énergie cinétique.

La puissance, c’est-à-dire la variation du travail au cours du temps, résulte
du produit scalaire de la force par la vitesse. Seule la composante de la force
dans la direction de la vitesse accrôıt l’énergie cinétique 1

2mv
2 de la particule.

La composante de la force orthogonale à la vitesse induit une courbure de la
trajectoire, mais elle n’augmente pas l’énergie cinétique.

La puissance dans un milieu continu est donc donnée par la composante de
la force dans la direction du mouvement multipliée scalairement par la vitesse
du matériau.

Considérons à nouveau le corps C. Pour les forces de volume, cette puissance
s’écrit ∫

ω

ρ(x, t) b(x, t) · v(x, t) dv . (4.4)



Conservation de l’énergie 147

La puissance fournie par les forces de surface est donnée par la relation :∫
∂ω

t · v ds =

∫
∂ω

σn · v ds , (4.5)

où on a fait appel à la relation de Cauchy (3.107). La dernière intégrale dans
(4.5) peut se transformer par le théorème de la divergence. En utilisant (1.228)
et en tenant compte de (1.69) et de la symétrie de σ, on a∫

∂ω

σn · v ds =

∫
∂ω

n · σTv ds =

∫
ω

div(σTv) dv =

∫
ω

div (σv) dv . (4.6)

Sous forme indicielle, on a∫
∂ω

σij vj ni ds =

∫
ω

∂

∂xi
(σijvj) dv =

∫
ω

(
∂σij
∂xi

vj + σij
∂vj
∂xi

)
dv , (4.7)

et en faisant appel à la notion de produit scalaire de deux tenseurs d’ordre 2
(1.94), la dernière intégrale de (4.7) devient∫

ω

(
∂σij
∂xi

vj + σij
∂vj
∂xi

)
dv =

∫
ω

(
(divσ) · v + σ :∇v

)
dv . (4.8)

Dès lors, sous forme vectorielle, on écrit∫
∂ω

σn · v ds =

∫
ω

div(σv) dv =

∫
ω

((divσ) · v + σ :∇v) dv . (4.9)

Le transfert de chaleur constitue la seconde voie par laquelle de l’énergie
est fournie au volume matériel. Nous allons tenir compte d’abord d’un terme
de production/consommation de chaleur en son sein, de la forme∫

ω

r(x, t) dv , (4.10)

où r(x, t) représente la chaleur produite ou reçue par unité de temps et de
volume. Ce pourrait être la chaleur dégagée ou consommée par une réaction
chimique dans le milieu ou un chauffage par effet Joule (électrode de carbone
dans un milieu en fusion). Il peut également prendre en compte la chaleur reçue
par rayonnement de la part d’éventuelles sources extérieures. Sa dimension est
M L−1T−3 avec les symboles M, L, T désignant la masse, la longueur et le
temps, respectivement, et l’unité SI correspondante est le W/m3. L’apport
extérieur de chaleur se fait le plus souvent par conduction à travers la surface
∂ω. On peut bien entendu trouver d’autres modes de transfert de chaleur, par
exemple par radiation. Nous les ignorerons dans la suite.

Désignons par q la quantité scalaire qui représente la chaleur qui entre dans
C par unité de temps et par unité de surface ds. Soit n la normale à ds. Par
analogie avec le postulat de Cauchy, nous supposerons que q au point x dépend
uniquement de la normale unitaire pointant vers l’extérieur au point x, c’est-
à-dire

q = q(x, t,n) . (4.11)
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Notons par q1, q2, q3 les flux de chaleur obtenus en un point matériel P lorsque
la normale n est dirigée respectivement suivant les vecteurs de base e1, e2, e3.
Dès lors,

qi = q(x, t, ei) . (4.12)

Par un raisonnement basé sur la conservation de l’énergie dans un élément
matériel tétraédrique, on montre d’une manière analogue à celle du théorème
de Cauchy pour le tenseur des contraintes (sect. 3.6) que le flux de chaleur q
est une combinaison linéaire des flux qi multipliés par les composantes ni

q = qini = q · n . (4.13)

Par définition, q(x, t) est le vecteur flux de chaleur. Le taux de chaleur reçu
par conduction par le corps entier est égal à

−
∫
∂ω

q · n ds . (4.14)

Le signe négatif introduit dans (4.14) signifie qu’un taux de chaleur positif est
obtenu lorsque q pointe vers l’intérieur du volume matériel. La quantité −q ·n
est donc la densité surfacique du taux de chaleur reçue par conduction à travers
∂ω.

Si pour toute évolution du matériau, on a q = 0 et r = 0, on dit que
l’évolution du milieu est adiabatique. Il n’y a pas d’échange calorifique avec
l’extérieur. Si on applique le théorème de la divergence à l’intégrale (4.14), il
vient

−
∫
∂ω

q · n ds = −
∫
ω

div q dv . (4.15)

Nous sommes maintenant en mesure d’énoncer la loi de conservation de l’éner-
gie, qui constitue le premier principe de la thermodynamique.

Premier principe de la thermodynamique

La dérivée temporelle de l’énergie totale dans C est égale à la somme de la
puissance des forces de volume et de contact et du taux de chaleur reçue par le
matériau.

En vertu des équations (4.1), (4.2), (4.4)-(4.6), (4.10) et (4.15), on écrit

d

dt

∫
ω

ρ
(v · v

2
+ u
)
dv =

∫
ω

(
ρb · v + div(σv)− div q + r

)
dv (4.16)

soit avec les définitions (4.1) et (4.2), et la relation (4.8),

D

Dt

(
Ec(t) + Eint(t)

)
=

∫
ω

(ρ b · v + (divσ) · v + σ :∇v − div q + r) dv .
(4.17)
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A l’aide du théorème du transport de Reynolds, de la conservation de la masse
(3.41), le premier membre de (4.16) devient

D

Dt

(
Ec(t) + Eint(t)

)
=

∫
ω

(
v · a+

Du

Dt

)
ρ dv

=

∫
ω

ρ
D

Dt

(v · v
2

+ u
)
dv .

(4.18)

Les forces à distance b peuvent toujours dériver d’un potentiel W (x) indépen-
dant du temps. Par définition, on a

b = −∇W , bi = −∂W
∂xi

. (4.19)

Il vient alors pour ρ b · v

ρbivi = −ρvi
∂W

∂xi
= −ρDW

Dt
. (4.20)

En combinant les relations (4.16), (4.18), (4.19) et en faisant appel au théorème
de localisation, on obtient la forme locale de la conservation de l’énergie totale :

ρ
D

Dt

(
u+

v · v
2

+W
)

= div(σv)− div q + r . (4.21)

Avec les relations (4.16)-(4.18), on peut encore obtenir, si on ne fait pas appel
au potentiel W ,∫
ω

(ρa− ρb− divσ) · v dv +

∫
ω

(
ρ
Du

Dt
− σ :∇v + div q − r

)
dv = 0 . (4.22)

La première intégrale de (4.22) s’annule par le principe de conservation de la
quantité de mouvement (3.96). En invoquant le théorème de localisation pour
la seconde intégrale de volume de (4.22), la loi de conservation de l’énergie
interne devient

ρ
Du

Dt
= σ :∇v − div q + r . (4.23)

Le premier terme du membre de droite D de (4.23) peut être réécrit en tenant
compte de la symétrie de σij et de la relation (2.180)

D = σij
∂vi
∂xj

= σji
∂vi
∂xj

= σij
∂vj
∂xi

=
1

2
σij

(
∂vi
∂xj

+
∂vj
∂xi

)
= σijdij (4.24)

ou encore
D = σ :∇v = σ : d . (4.25)

On interprète ce terme comme la puissance des forces de contact au sein du
matériau. On peut aussi écrire D comme étant tr(σL) via (1.95) ou encore
σ : L, où la notation L désigne le tenseur des gradients de vitesse ∂v/∂x défini
par (2.177). L’équation (4.23) montre que l’accroissement d’énergie interne est
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égal à la somme de la puissance développée par les forces de contact, le transfert
de chaleur par conduction et la production volumique de chaleur au sein de C.

On peut faire apparâıtre le théorème de l’énergie cinétique en soustrayant
la relation (4.23) de (4.21) et en tenant compte de (4.20)

ρ
D

Dt

(v · v
2

)
= ρb · v + (divσ) · v . (4.26)

Ce théorème exprime que la variation dans le temps de l’énergie cinétique
est égale à la puissance des efforts engendrés par les forces de volume (pre-
mier terme du second membre) et par les forces de contact (second terme
du second membre). On remarquera que cette relation n’est rien d’autre que
la conservation de la quantité de mouvement (3.96) multipliée scalairement
par v.

Exemple 4.1

Pour un corps élastique linéaire en équilibre, soumis à des forces de volume
b et de surface t, démontrer l’égalité suivante :∫

ω

σ : ε dv =

∫
ω

ρ b · u dv +

∫
∂ω

t · u ds , (4.27)

où σ, ε sont les tenseurs de contrainte et de déformation.

Sous forme indicielle, on a∫
ω

σijεij dv =

∫
ω

ρ biuidv +

∫
∂ω

tiuids .

En utilisant (3.76), l’intégrale de surface se modifie en une intégrale de
volume comme suit∫

∂ω

tiuids =

∫
∂ω

σijnjuids =

∫
∂ω

σijuinjds =

∫
ω

∂(σijui)

∂xj
dv

ou encore∫
ω

∂(σijui)

∂xj
dv =

∫
ω

(
∂(σij)

∂xj
ui + σij

∂ui
∂xj

)
dv =

∫
ω

(σij,jui + σijui,j) dv .

En tenant compte des équations d’équilibre (3.126), le membre de droite de
(4.27) s’écrit comme∫

ω

(ρ biui + σij,jui + σijui,j) dv =

∫
ω

(ui(ρ bi + σij,j) + σijui,j) dv

=

∫
ω

σijui,jdv
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L’intégrand à droite s’écrit grâce à la symétrie du tenseur des contraintes

σijui,j =
1

2
(σij,jui + σijui,j) =

1

2
(σij,jui + σjiuj,i) =

1

2
(σij,jui + σijuj,i)

=
1

2
σij(ui,j + uj,i) = σijεij .

Finalement on a ∫
ω

σijui,jdv =

∫
ω

σijεijdv .

4.3 Conservation de l’énergie mécanique

en représentation matérielle

L’analyse de la conservation de l’énergie qui a été faite ci-dessus a été menée
en représentation eulérienne. Un développement semblable peut s’effectuer en
représentation matérielle pour décrire les diverses composantes de l’énergie.
C’est l’objet de cette section. Pour simplifier, nous supposerons que le flux de
chaleur q et le terme de volume r sont nuls.

En utilisant (4.5) et (4.6), l’équation de conservation de l’énergie (4.16)
devient

D

Dt

(
Ec(t) + Eint(t)

)
=

∫
ω

ρ
D

Dt

(v · v
2

)
dv +

∫
ω

ρ
Du

Dt
dv

=

∫
ω

ρ b · v dv +

∫
∂ω

t · v ds .
(4.28)

En prenant en compte (4.23) avec q = r = 0 et (4.25), on a∫
ω

ρ
Du

Dt
dv =

∫
ω

σ :∇v dv =

∫
ω

σ : d dv . (4.29)

Cette dernière équation montre qu’en ignorant tous les effets thermiques, le taux
de changement de l’énergie interne est égal à la puissance des forces internes.
Puisque le volume est arbitraire, on déduit la forme locale qui s’écrit

ρu̇ = σ : d . (4.30)

Finalement, la conservation de l’énergie mécanique devient∫
ω

ρ
D

Dt

(v · v
2

)
dv +

∫
ω

σ : d dv =

∫
ω

ρ b · v dv +

∫
∂ω

t · v ds . (4.31)

Afin d’écrire cette dernière relation en coordonnées matérielles, considérons
tout d’abord l’énergie cinétique. A partir de (2.103), (3.33) et de l’équation
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de conservation de la masse (3.37), on déduit que ρ dv = P0 dV . De plus, en
considérant l’équation (2.20), on a∫

ω

ρ
v · v

2
dv =

∫
Ω

P0
V · V

2
dV . (4.32)

Pour le second terme du membre de gauche de (4.31), on a d’après (2.179)
L = Ḟ F−1. Puisque σ : d = σ :

(
Ḟ F−1

)
, on obtient∫

ω

σ : d dv =

∫
ω

σ :
(
Ḟ F−1

)
dv . (4.33)

En utilisant l’identité tensorielle (1.97), le second membre de (4.33) se modifie
comme suit ∫

ω

σ :
(
Ḟ F−1

)
dv =

∫
ω

(
σF−T

)
: Ḟ dv . (4.34)

A l’aide de (3.141) et (2.103), on peut écrire (4.34) dans la configuration ma-
térielle avec le tenseur de Piola-Kirchhoff P∫

ω

σ :
(
Ḟ F−1

)
dv =

∫
ω

(
σF−T

)
: Ḟ dv

=

∫
Ω

(
J σF−T

)
: Ḟ dV =

∫
Ω

P : Ḟ dV .

(4.35)

La contribution des forces de volume s’exprime facilement en coordonnées ma-
térielles au moyen des relations (2.20), (3.37), (3.57) et (2.103)∫

ω

ρ b · v dv =

∫
Ω

P0B · V dV . (4.36)

Pour les forces de contact, on fait appel à (2.20) et (3.138) de sorte que∫
∂ω

t · v ds =

∫
∂Ω

T · V dS . (4.37)

Finalement, le principe de conservation de l’énergie mécanique s’écrit dans la
configuration de référence∫

Ω

P0
D

Dt

(
V · V

2

)
dV +

∫
Ω

P : Ḟ dV

=

∫
Ω

P0B · V dV +

∫
∂Ω

T · V dS .

(4.38)

D’après (4.28), la dérivée matérielle de l’énergie interne s’exprime successive-
ment comme

D

Dt
Eint(t) =

∫
ω

ρ
Du

Dt
dv

=

∫
Ω

D

Dt
u
(
χ(X, t), t

)
J(X, t)P (X, t) dV .

(4.39)
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En posant u
(
χ(X, t), t

)
= U(X, t), on a∫

Ω

D

Dt
u
(
χ(X, t), t

)
)J(X, t)P (X, t) dV

=

∫
Ω

D

Dt
U(X, t)P0(X) dV .

(4.40)

Par conséquent, le second terme du premier membre de (4.38) peut s’exprimer
comme suit ∫

Ω

P : Ḟ dV =

∫
Ω

P0
DU

Dt
dV (4.41)

et localement
P0U̇ = P : Ḟ . (4.42)

L’expression de l’énergie interne peut être modifiée en utilisant d = F−T ĖF−1

(cf. problème 2.8) et les équations (3.152) et (1.97). Il vient∫
ω

σ : d dv =

∫
Ω

J σ :
(
F−T ĖF−1

)
dV

=

∫
Ω

J
(
σF−T

)
:
(
F−T Ė

)
dV

=

∫
Ω

(
FS) : (F−T Ė

)
dV =

∫
Ω

S : Ė dV . (4.43)

Il est intéressant de noter que la puissance mécanique peut s’exprimer indiffé-
remment comme le produit doublement contracté du tenseur des contraintes
de Cauchy et du tenseur des taux de déformation (σ : d), du premier ten-
seur des contraintes de Piola-Kirchhoff et du tenseur des taux du gradient de
déformation

(
P : Ḟ

)
, ou encore du second tenseur des contraintes de Piola-

Kirchhoff et du tenseur des taux de déformation de Green-Lagrange
(
S : Ė

)
.

En conséquence, nous pouvons écrire l’égalité suivante pour la puissance des
efforts intérieurs (puissance effectuée par les contraintes internes et la déforma-
tion) par unité de volume

Jρu̇ = P0U̇ = Jσ : d = P : Ḟ = S : Ė . (4.44)

De telles paires de paramètres sont appelées paramètres conjugués parce
que leur produit interne (scalaire) fournit une énergie. C’est un résultat très
important de la mécanique des milieux continus qui permettra de déduire les
équations de comportement à partir d’une fonction potentielle. Ce sujet sera
abordé au chapitre 6.

4.4 Interprétation des lois de conservation

par le premier principe

Dans cette section, nous allons retrouver les lois de conservation de la masse,
de la quantité de mouvement et du moment cinétique à partir du seul principe
de conservation de l’énergie, ainsi que du principe d’objectivité.
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Le premier principe de la thermodynamique peut s’écrire en vertu des re-
lations (4.16) et (4.17)

D

Dt

(
Ec(t) + Eint(t)

)
=

∫
ω

(ρb · v + div(σv)− div q + r) dv . (4.45)

Avec le théorème du transport sous la forme (3.5), le premier membre de (4.45)
devient

D

Dt

(
Ec(t) + Eint(t)

)
=

∫
ω

(
∂

∂t
ρ

(
1

2
v · v + u

)
+ div

(
ρ

(
1

2
v · v + u

)
v

))
dv .

(4.46)

En appliquant de plus le théorème de localisation, la relation (4.45) s’écrit

∂

∂t
ρ

(
u+

1

2
v · v

)
+ div

(
ρ

(
1

2
v · v + u

)
v

)
= ρb · v + r − div q + div(σv) .

(4.47)

Cette dernière équation peut se mettre aisément sous la forme

ρu̇− σ :∇v + div q − r + v · (ρa− divσ − ρb)

+

(
1

2
v · v + u

)(
ρ̇+ ρ div v

)
= 0 ,

(4.48)

où la notation ρ̇ désigne la dérivée particulaire.

Considérons deux reférentiels R = (0,x, t) et R∗ = (0∗,x∗, t∗) se déplaçant
l’un par rapport à l’autre et dont le mouvement relatif est décrit par (2.195).

Si, en plus de (2.195), (2.211), (2.205) et (2.213), les règles de transforma-
tion suivantes sont valables :

ρ∗ = ρ (4.49)

u∗ = u (4.50)

q∗ = Qq (4.51)

σ∗ = QσQT (4.52)

r∗ = r (4.53)

les quantités ρ, u, q, σ et r sont objectives.

On montre que l’objectivité de la conservation de l’énergie (4.48), c’est-à-
dire qu’elle reste valable si on l’écrit avec les quantités *, implique les lois de
conservation de la masse, de la quantité de mouvement et du moment cinétique.

4.4.1 Premier cas : translation uniforme

Choisissons le référentiel R∗ en translation par rapport à R avec une vitesse de
vitesse translation ċ(t) constante. Soit,

ċ(t) = u (4.54)

Q = I . (4.55)
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Alors la relation (2.211) devient

v∗ = u+ v . (4.56)

On réécrit (4.48) avec des quantités étoilées. On y remplace v∗ par sa valeur
(4.56) et de l’équation résultante, on retranche (4.48). On a en utilisant les
relations (4.49)-(4.53)

u · u
2

(ρ̇+ ρdiv v) + u · v(ρ̇+ ρdiv v) + u · (ρa− divσ − ρb) = 0 . (4.57)

Si on fait un changement d’échelle sur u en passant à αu, on demande que
(4.57) soit vérifié quelle que soit α. On obtient

ρ̇+ ρdiv v = 0 (4.58)

ρ
Dv

Dt
− divσ − ρb+ v(ρ̇+ ρ div v) = 0 . (4.59)

Cette dernière relation peut se mettre sous la forme

∂

∂t
(ρv) + div(ρv ⊗ v) = divσ + ρb . (4.60)

L’équation (4.60) est l’équation de la conservation de la quantité de mouvement
où le terme d’accélération est modifié par la conservation de la masse (4.58).

4.4.2 Deuxième cas : rotation de corps rigide

Si maintenant on considère le référentiel R∗ dans un mouvement de rotation
par rapport à R tel qu’à l’ancien champ de vitesses, on superpose une rotation
de corps rigide

c(t) = 0 (4.61)

Q(t) = I (4.62)

Q̇(t) = Ω , (4.63)

le champ de vitesse v∗ s’écrit en tenant compte de (2.57) et de (2.60)

v∗ = v + ω × x . (4.64)

Le vecteur ω est le vecteur dual de Ω (§ 2.6.3). On applique un raisonnement
analogue au cas précédent. Le principe de conservation de l’énergie fournit la
conservation du moment de la quantité de mouvement telle que

σ = σT . (4.65)

Il faut remarquer qu’en toute généralité, le terme de force de volume où b a les
dimensions d’une accélération, s’exprime par (2.212) sous la forme

b∗ = Qb+ c̈+ 2Q̇v + Q̈x . (4.66)

Dans le cas où le référentiel R∗ tourne à vitesse angulaire constante, cette
dernière relation devient en tenant compte de (2.60)

b∗ = b+ 2Q̇v = b+ 2Ωv = b+ 2ω × v , (4.67)

où apparâıt le terme de force de Coriolis ω × v.
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4.5 Notion d’entropie

L’entropie d’un système peut être considérée comme une mesure de son désordre.
En raison de l’agitation continuelle et incohérente des molécules d’un milieu
continu, deux niveaux d’observation doivent être distingués. Au niveau micro-
scopique (moléculaire), le système physique (X ) passe (ou peut passer) par un
très grand nombre d’états différents Xi, alors qu’au niveau macroscopique, qui
est celui de l’observation habituelle, ces états sont indiscernables. D’une cer-
taine manière, on peut dire que le désordre du système vient du nombre des
états Xi équivalents du point de vue macroscopique et que son entropie est liée
à ce nombre. Notons que les grandeurs cinématiques et dynamiques usuelles
(par ex. la masse volumique, les vitesses, les forces de contact) sont mesurées
au niveau macroscopique sur la particule de matériau, mais correspondent en
fait à des moyennes sur des mesures faites au niveau microscopique.

Plus précisément, en associant à chaque état Xi une probabilité pi, une
mesure exacte du désordre de X est donnée par son entropie, que nous noterons
s, définie à une constante multiplicative près par la relation

s(X ) = −
N∑
i=1

pi log pi . (4.68)

Remarquons que cette définition est proche de celle utilisée en théorie de la com-
munication pour mesurer l’entropie de l’information. On constate sans peine
que dans le cas de N états Xi différents, l’entropie maximale est atteinte si ces
résultats sont équiprobables. Comme pi = 1/N , elle vaut alors

s(X ) = logN . (4.69)

Par contre, l’entropie est minimale (et nulle) si un état est certain et les
(N − 1) autres impossibles. Une autre constatation tirée de (4.68) est que
dans le cas de deux systèmes indépendants X et X ′, la probabilité de l’état
microscopique (Xi et X ′j) est pip

′
j , de sorte que l’entropie de la réunion de X

et X ′ est donnée par l’expression

s
(
X ∪ X ′

)
= −

N∑
i,j=1

pip
′
j log

(
pip
′
j

)
= s(X ) + s(X ′) (4.70)

car on a toujours les relations

N∑
i

pi =

N∑
j

p′j = 1 . (4.71)

On voit ainsi que l’entropie est une grandeur extensive.
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D’autre part, si une certaine grandeur physique prend les valeurs Ai dans
les états Xi, sa valeur macroscopique est donnée par la formule :

A =

N∑
i

piAi (4.72)

ce qui montre le lien mathématique entre les deux niveaux d’observation.

Le concept de température relève d’abord de l’observation courante, mais
son lien avec la mécanique statistique peut être approché comme suit : l’énergie
interne d’un système est la quantité totale d’énergie désordonnée qu’il contient,
c’est-à-dire d’énergie répartie différemment, d’un état Xi à l’autre, sur ses mo-
lécules.

Il est important de noter que dans cette définition certaines composantes de
l’énergie interne, présentes dans le cas de réactions chimiques (et entre autres
en dynamique des gaz), sont exclues. L’analyse statistique montre que cette
énergie cinétique se répartit en moyenne de manière égale sur chaque molécule,
et suivant chaque degré de liberté de mouvement désordonné.

La température absolue T est alors, à une constante multiplicative près,
l’énergie désordonnée par molécule et par degré de liberté. On peut interpré-
ter le fait physique que deux corps différents mis en contact ont tendance à
uniformiser leurs températures, par le principe statistique que leurs énergies
désordonnées par molécule et par degré de liberté doivent devenir égales, de
même qu’elles sont égales pour chaque degré de liberté.

Un lien existe de toute évidence entre température absolue et entropie et
pourrait être développé à l’aide de la mécanique statistique. Il s’exprime par la
relation

δu(X ) = T δs(X ) (4.73)

qui lie les accroissements δu(X ) et δs(X ) de l’énergie interne et de l’entropie
du système lorsque toutes ses caractéristiques cinématiques (masse volumique,
déformation, etc.) sont maintenues constantes.

Nous ne cherchons pas à interpréter cette relation, qui doit être regardée
comme fondamentale lorsqu’on se place au niveau macroscopique.

Parallèlement, l’irréversibilité des phénomènes physiques s’exprime par le
fait que l’accroissement d’entropie d’un système est toujours supérieur à une
borne minimale égale à la chaleur fournie au système δq(X ) divisée par la
température absolue T , c’est-à-dire qu’on a toujours l’inégalité

δs(X ) ≥ δq(X )

T
, (4.74)

l’égalité n’ayant lieu que pour une transformation réversible. Cette dernière in-
égalité est la base de la formulation du second principe de la thermodynamique
en mécanique des milieux continus.

Un point de vue intéressant sur l’irréversibilité des phénomènes physiques
est apporté par la théorie de Boltzmann pour l’hydrodynamique. Partant d’une
description à l’échelle atomique des systèmes macroscopiques par la mécanique



158 Energétique

newtonienne, on est amené à résoudre un ensemble de N équations différen-
tielles ordinaires non linéaires

mi
d2xi
dt2

= F i i = 1, . . . , N , (4.75)

où N est de l’ordre du nombre d’Avogadro NA ∼ 6 1023. Les symboles mi

notent les masses moléculaires, vi = dxi/dt sont les vitesses moléculaires et
F i des forces agissant sur la iième molécule dues aux interactions moléculaires.
Ce problème est évidemment insoluble vu sa taille énorme (d’ordre NA) et on
passe du niveau atomique au niveau de la théorie cinétique à N corps, qui est
établie à partir des équations de Newton-Hamilton. Cette théorie fait appel à
des fonctions de distribution fN (x1,v1, . . . ,xN ,vN ) qui donnent la probabilité
jointe de trouver la molécule 1 à la position x1 avec la vitesse v1 et la molé-
cule 2 à la position x2 avec la vitesse v2 et ainsi de suite jusqu’à la molécule
N . Les trajectoires de l’approche newtonienne sont remplacées par la notion
d’espace des phases où l’équation de la dynamique est décrite par une équation
aux dérivées partielles connue sous le nom d’équation de Liouville qui est de
dimension 6N . On constate que la masse d’information n’a pas été réduite par
rapport à l’approche newtonienne. Cependant, l’équation de Liouvillle permet
de mettre en œuvre une procédure puissante et élégante qui élimine l’infor-
mation redondante. Ceci conduit à la définition de fonctions de distribution
réduites fM ≡ f12...M ,M < N . Du point de vue des équations dynamiques,
celles-ci deviennent une châıne d’équations connue sous le nom de hiérarchie
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon). Pour les quantités macro-
scopiques intéressantes comme la masse volumique, la pression, la température,
etc., des distributions à un ou deux corps suffisent et on choisit donc M = 1, 2
dans la hiérarchie BBGKY.

L’équation à un corps la plus importante est celle de Boltzmann

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= C[f, f ] . (4.76)

Ici, a est l’accélération moléculaire. La fonction f(x,v, t) est la densité de pro-
babilité de trouver une particule ponctuelle classique à la position x au temps
t avec la vitesse v. Le membre de gauche de (4.76) représente le mouvement
libre des particules dans le plan de phase, tandis que C[f, f ] est un opérateur de
collision binaire sous la forme d’une intégrale qui tient compte des interactions
moléculaires, dont la définition précise sort du cadre de l’exposé. L’équation de
Boltzmann repose sur l’hypothèse du chaos moléculaire

f12(x1,v1,x2,v2, t) = f(x1,v1, t)f(x2,v2, t) (4.77)

qui brise la symétrie de la réversibilité du temps qui s’applique à la mécanique
newtonienne du niveau atomique. Cette brisure de symétrie ouvre la porte au
comportement irréversible. Cette irréversibilité est mesurée par une quantité
appelée H, (cf. [63]), qui est reliée à l’entropie par la relation s = −kBH avec
kB la constante de Boltzmann et qui est définie par

H =

∫
f(x,v, t) ln f(x,v, t) dv dx . (4.78)
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Le théorème H montre que dH/dt ≤ 0. Notons que la définition de l’entro-
pie que nous avons donnée par (4.68) est une approximation numérique de la
quantité −H.

On obtient des variables macroscopiques comme la masse volumique et la
vitesse par intégration sur l’espace des vitesses

ρ(x, t) = m

∫
f(x,v, t) dv (4.79)

ρ(x, t)u(x, t) = m

∫
f(x,v, t)v dv , (4.80)

où u est la notation de la vitesse dans l’espace physique et m est la masse
atomique ou moléculaire. A partir de (4.76) et des relations ci-dessus, on peut
arriver aux équations de l’hydrodynamique, en l’occurrence, les équations de
Navier-Stokes.

4.6 Second principe de la thermodynamique

Le second principe de la thermodynamique des milieux continus est aussi connu
sous le nom d’inégalité de Clausius-Duhem.

Rudolf Clausius (1822-1888) naquit à Koslin (Prusse), au-
jourd’hui Koszalin (Pologne). Il fut successivement profes-
seur à l’Ecole d’artillerie de Berlin, puis à l’ETH Zürich, et
aux universités de Würzburg et Bonn. Ses contributions
sont très importantes en thermodynamique, où il intro-
duisit la notion d’entropie, et en théorie cinétique des gaz.

Fig. 4.1 Rudolf Clausius.

Second principe de la thermodynamique

Pour un volume matériel, la dérivée particulaire de l’entropie est à tout ins-
tant supérieure ou égale à la somme de la distribution volumique de sources
d’entropie dans le corps et du flux d’entropie à travers la surface.

Dès lors, on généralise (4.74) à un milieu non homogène qui prend, sur un
volume matériel ω, la forme :

d

dt

∫
ω

ρs dv ≥
∫
ω

r

T
dv −

∫
∂ω

q · n
T

ds , (4.81)
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s étant l’entropie massique. Il faut en effet tenir compte des différences de tem-
pérature auxquelles les chaleurs élémentaires (r dv) et (−qini ds) sont fournies
à ω.

La forme locale du second principe s’obtient par application du théorème
de transport à la dérivée particulaire en tenant compte de la conservation de
la masse, par application du théorème de la divergence à l’intégrale de sur-
face (dernier terme de l’inéquation) et enfin, par application du principe de
localisation

ρ
Ds

Dt
≥ r

T
− div

( q
T

)
. (4.82)

Cette inégalité doit être vérifiée, en tout point et à tout instant, par tout pro-
cessus.

Pour mesurer les conséquences de (4.82), il faut y éliminer le terme r de
chaleur massique produite par unité de temps, à l’aide de la forme locale (4.23)
de l’équation de conservation de l’énergie interne. Cette élimination est néces-
saire parce que r est arbitraire, puisqu’il s’agit d’une action à distance. On
trouve donc l’inégalité de Clausius-Duhem :

ρ
Ds

Dt
≥ 1

T

(
ρ
Du

Dt
− σ : d

)
+

1

T 2
q ·∇T (4.83)

qui doit elle-même être satisfaite par tout processus thermodynamique.

Pierre Duhem (1861-1916) naquit à Paris. Il fut nommé
professeur à l’Université de Bordeaux. Ses travaux en hy-
drodynamique et en thermodynamique montrent qu’il fut
un pionnier de l’étude de la thermodynamique des phéno-
mènes irréversibles. Son ouvrage principal est le Traité de
l’énergétique publié en 1911.

Fig. 4.2 Pierre Duhem.

Si on introduit l’énergie libre spécifique de Helmholtz ,

f = u− Ts , (4.84)

l’inégalité de Clausius-Duhem (4.83) prend la forme

ρ
Df

Dt
≤ tr(σL)− ρsDT

Dt
− q ·∇T

T
. (4.85)
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Hermann von Helmholtz (1821-1894) naquit à Postdam. Il
fut nommé professeur à l’Université de Berlin. Ses travaux
en électrophysiologie le conduisent à rédiger un ouvrage
intitulé Théorie physiologique de la musique. Ses contri-
butions dans le domaine de la physique et de la chimie
sont majeures. Citons l’énergie potentielle, la loi sur les
tourbillons, la décomposition de Helmholtz (Théorème de
Helmholtz-Hodge) pour un champ vectoriel.

Fig. 4.3 Hermann von Helmholtz.

4.7 Exercices

4.1 Soit Q un champ scalaire sous forme spatiale dans la configuration pré-
sente ω d’un corps en mouvement. En appliquant le théorème du transport de
Reynolds et l’équation de continuité, montrer que

d

dt

∫
ω

ρ(x, t)Q(x, t) dv =

∫
ω

ρ(x, t)
DQ(x, t)

Dt
dv . (4.86)

Utiliser ce résultat pour trouver l’expression DEc/Dt, sachant que l’énergie
cinétique du corps est définie par (4.1).

4.2 En utilisant le théorème de Reynolds et le principe de conservation de la
masse, établir que la dérivée temporelle de l’énergie totale s’écrit

D

Dt
(Ec + Eint) =

∫
ω

ρ

(
v · a+

Du

Dt

)
dv . (4.87)

Exprimer le terme v ·a en fonction de v uniquement et commenter le résultat.

4.3 Le second principe de le thermodynamique appliqué à un milieu homogène
occupant un volume ω(t) est exprimé par l’équation (4.81).

1) Etablir la forme locale du second principe de le thermodynamique.

2) Eliminer ensuite le terme r de chaleur massique, en utilisant la forme locale
de la loi de conservation de l’énergie, pour établir l’inégalité de Clausius-
Duhem (4.83).

3) Que devient cette inégalité si on introduit l’énergie libre spécifique de Helm-
holtz (4.84) ?

4.4 Pour un fluide parfait :

1) exprimer le principe de conservation de l’énergie interne pour un fluide
parfait dont le tenseur des contraintes est donné par σ = −pI ;

2) réécrire l’équation obtenue en faisant apparâıtre l’enthalpie massique définie
par h = u+ p/ρ ;
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3) montrer que pour un écoulement adiabatique la conservation de
l’énergie prend la forme

ρ
Dh

Dt
=
Dp

Dt
. (4.88)

4.5 Démontrer la symétrie du tenseur des contraintes en effectuant le détail de
la dérivation lorsqu’on considère le cas de rotation de corps rigide du paragraphe
4.4.2.

Suggestion : A cette fin, il faut d’abord calculer v∗, ensuite écrire l’équation de
conservation d’énergie dans le repère étoilé et y substituer l’expression de v∗.
Enfin, on retranche l’équation de départ de l’expression obtenue précédemment
et on analyse le résultat obtenu.



Chapitre 5

Lois de comportement :

principes de base

5.1 Introduction

Nous avons fait appel au formalisme tensoriel afin de présenter la description
des propriétés d’un milieu continu. Ceci nous permet de raisonner en termes
généraux applicables quel que soit le système d’axes auquel on se réfère.

Au chapitre 2, on s’est intéressé à la description locale du mouvement du
milieu, qui peut être caractérisé par divers tenseurs. Ceux qui font apparâıtre
les déplacements comme variables seront plus appropriés pour la description
des solides tandis que les tenseurs où les variables sont les vitesses, seront plus
adéquatement appliqués aux matériaux fluides.

La mécanique des milieux continus constitue une démarche axiomatique
qui débouche sur un modèle phénoménologique. Grâce à cet outil, le but est de
prédire, en tenant compte des conditions initiales et des conditions aux limites,
le mouvement d’un matériau, auquel on associe une variable thermodynamique.
Le plus souvent, cette dernière sera la température.

Dès lors, quel que soit le modèle choisi pour la description du milieu (fluide
parfait, fluide visqueux, solide élastique, solide viscoélastique, etc.), les lois de
la dynamique et le premier principe de la thermodynamique doivent toujours
être respectés. Ces lois de conservation de la masse, de la quantité de mouve-
ment, du moment cinétique et de l’énergie conduisent sous forme locale à écrire
un système d’équations aux dérivées partielles. Ces équations rapportées au
système d’axes cartésiens rectangulaires sont les suivantes.

Conservation de la masse :

Dρ

Dt
+ ρdiv v = 0 (5.1)

ou
∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vi
∂xi

= 0 . (5.2)
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Conservation de la quantité de mouvement :

ρ
Dv

Dt
= divσ + ρb (5.3)

ou

ρ

(
∂vi
∂t

+ vj
∂vi
∂xj

)
=
∂σji
∂xj

+ ρbi . (5.4)

Conservation du moment cinétique :

σT = σ (5.5)

ou

σij = σji . (5.6)

Conservation de l’énergie :

ρ
Du

Dt
= tr (σL)− div q + r . (5.7)

ou

ρ

(
∂u

∂t
+ vj

∂u

∂xj

)
= σij

∂vj
∂xi
− ∂qi
∂xi

+ r . (5.8)

Ce système contient 8 équations indépendantes (1 + 3 + 3 + 1), avec les
forces à distance b et la production volumique de chaleur r données pour le
problème.

Les fonctions inconnues sont le vecteur χ du mouvement (2.1) et la tempé-
rature. Dans les équations de champ, on trouve les variables inconnues ρ, σij ,
u, qi. Notons au passage que v est calculé à partir de χ. Au total, nous avons
18 inconnues, à savoir χ(3), T (1), ρ(1), σ(9), u(1), q(3).

Si on admet comme hypothèse que la conservation du moment cinétique est
satisfaite, alors σ ne compte plus que 6 inconnues. Nous avons donc 5 équations
aux dérivées partielles pour 15 variables.

Cependant, on peut remarquer que notre problème est posé de manière in-
complète. En effet, jusqu’ici, nous avons établi les principes de conservation en
toute généralité sans nous poser la question du modèle de milieu continu. Afin
de caractériser le comportement d’un matériau, il nous faut tenir compte des
équations de comportement ou équations de constitution. L’écriture de telles
équations se base sur les résultats expérimentaux obtenus en laboratoire. Les
figures 5.1 et 5.2 montrent des courbes typiques de contrainte-déformation ou
de contrainte-taux de déformation. Les équations constitutives sont aussi pro-
posées de manière axiomatique en se basant sur des arguments mathématiques
et physiques. Ces équations donnent la dépendance des variables σij , u et qi
par rapport à l’histoire de la déformation du matériau et de la température.
Pour un modèle donné, on choisit un certain nombre de variables cinématiques
et thermiques et on exprime comment σij , u et qi dépendent de ces variables.
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Fig. 5.1 Relation contrainte-taux de déformation (a) linéaire et (b) non linéaire.
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Fig. 5.2 Relation contrainte-déformation pour un solide élastique (a) ; un solide
élastoplastique (b) ; un élastomère (c) et un tissu biologique mou (d).

L’ensemble des relations formé par les équations de conservation et les équa-
tions de comportement établit le modèle mathématique du milieu continu. Ce
modèle constitue une idéalisation du comportement du matériau. C’est ainsi
que le comportement d’un même matériau peut être décrit par divers modèles
selon les circonstances des situations physiques où ces modèles sont appliqués.
Par exemple, à température ambiante, le verre est un matériau élastique ; dans
la zone dite de transformation, vers 600 ◦C, il est viscoélastique. Dans le four de
fusion, on peut le considérer comme un fluide visqueux newtonien incompres-
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sible. Un autre exemple est fourni par les polymères qui dans un mouvement
lent se comportent comme un fluide visqueux, tandis que sollicités dans un
mouvement rapide, ils réagissent comme un solide élastique.

Les équations de comportement doivent au minimum satisfaire les trois
principes fondamentaux suivants :

1) objectivité et indépendance de l’observateur par rapport au référentiel ;

2) prise en compte des propriétés de symétrie matérielle du milieu continu
considéré ;

3) respect du second principe de la thermodynamique.

Les principes fondateurs pour l’écriture des équations de comportement
sont également largement développés dans les ouvrages suivants : [19, 28, 30,
33, 61, 67]. Le texte de Truesdell et Toupin [70] constitue un apport important
et très élaboré de la théorie des milieux continus.

5.2 Principes généraux

Nous allons à présent introduire plusieurs principes généraux (incluant les pré-
cédents) que l’on doit généralement voir absolument vérifiés lorsque l’on établit
une loi de comportement. On rappelle que χ représente le mouvement d’un
corps C donné par (2.1).

5.2.1 Hypothèse de causalité ou de déterminisme

La contrainte actuelle à l’instant présent t dans un matériau est déterminée
par l’histoire du mouvement de ce matériau. Donc, le tenseur des contraintes
de Cauchy σ(x, t) est donné par

σ(x, t) = σ
(
χ(X, t), t

)
= Σ

τ≤t
Z ∈C

(
χ(Z, τ);X, t

)
, (5.9)

où la fonctionnelle Σ caractérise de façon générale les propriétés mécaniques
du corps C. Une dépendance explicite du temps est permise. De plus, la fonc-
tionnelle peut varier d’une particule à une autre (dépendance en X) traduisant
une distribution inhomogène des propriétés du matériau. On peut interpréter,
de manière simplifiée, une fonctionnelle comme une fonction d’une autre fonc-
tion (ici, de la fonction du mouvement χ). En mécanique des milieux continus,
elle est représentée très souvent par une intégrale sur les configurations passées
χ(Z, τ) (Z ∈ C, τ < t) permettant ainsi d’écrire les lois de comportement pour
les différentes classes de matériaux. Notons que l’écriture de (5.9) exprime une
non-localité puisqu’on trouve une dépendance par rapport à chaque point Z
appartenant au corps C. Pour simplifier, nous noterons parfois la fonctionnelle
relative à σ(x, t) par Σ(χ;X, t).
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5.2.2 Principe d’action locale

Pour une particule donnée X du matériau, la fonctionnelle Σ(χ;X, t) ne dé-
pend que du voisinage de X. Pour deux mouvements quelconques χ et χ cöın-
cidant dans un voisinage V(X) ⊂ C quel que soit le temps τ ≤ t, la valeur de
Σ est inchangée. Formellement, on écrit

Σ(χ;X, t) = Σ(χ;X, t) (5.10)

pourvu qu’il existe un voisinage V(X) tel que

χ(Z, τ) = χ(Z, τ) ∀Z ∈ V(X) ∀τ ≤ t . (5.11)

On observe que Σ(χ;X, t) est une fonctionnelle de la fonction χ à deux va-
riables, à savoir le temps τ et la particule Z au voisinage de la particule fixée
X. Dans ce cas, le tenseur σ(x, t) est donné par une relation analogue à (5.9)
telle que

σ(x, t) = σ(x, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ);X, t

)
. (5.12)

5.2.3 Principe d’objectivité

Toutes les équations de comportement qui satisfont le principe d’action locale
ne sont pas admissibles. Elles doivent en outre satisfaire le principe d’objecti-
vité ou d’indifférence matérielle qui exprime que la fonctionnelle Σ est inva-
riante dans tout changement continu de référentiel. On désire écrire des lois
de comportement qui sont indépendantes de l’observateur, et notamment, in-
dépendantes des mouvements rigides superposés. Plus précisément, on a (sect.
2.11)

x∗ = χ∗(X, t∗) = c(t) +Q(t)χ(X, t) (5.13)

σ∗(X, t∗) = Q(t)σ(X, t)QT (t) (5.14)

t∗ = t− α . (5.15)

En utilisant (5.13)-(5.15), le principe d’objectivité se traduit par

σ∗(X, t∗) = Σ
τ∗≤t∗

Z ∈V(X)

(
χ∗(Z, τ∗);X, t∗

)
(5.16)

tel que

Σ
τ∗≤t∗

Z ∈V(X)

(
χ∗(Z, τ∗);X, t∗

)
= Q(t) Σ

τ≤t
Z ∈V(X)

(
χ(Z, τ);X, t

)
QT (t) . (5.17)

Afin de mettre en lumière l’incidence de ce principe sur l’écriture de la fonction-
nelle Σ, on étudie successivement trois changements particuliers de référentiel.

Dans la suite nous prendrons τ comme variable temporelle et t indiquera
l’instant présent (ou actuel), auquel la contrainte est évaluée. Dès lors,
Q(τ)QT (τ) = QT (τ)Q(τ) = I, detQ(τ) = 1, ∀τ .
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Translation rigide du repère spatial sans décalage de l’échelle de temps :
Posons Q(τ) = I, α = 0 et

c(τ) = −χ(X, τ) . (5.18)

Cela signifie que le repère spatial est en translation rigide de sorte
qu’après changement de référentiel, le point matériel X au temps τ
reste à l’origine. De plus, t∗ = t. Par (5.13), on a pour Z ∈ V(X)

χ∗(Z, τ) = χ(Z, τ)− χ(X, τ)

et par (5.12), (5.14) et (5.16), il vient

σ∗(X, t∗) = σ(X, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ)− χ(X, τ);X, t

)
. (5.19)

Changement d’échelle de temps et repère fixe :
Cette situation correspond au choix suivant :

Q(τ) = I c(τ) = 0 t = α . (5.20)

Le temps présent t est le temps de référence après le changement de
repère. On a donc respectivement par (5.15) et (5.20)

τ∗ = τ − α = τ − t . (5.21)

A l’instant t∗, on a en utilisant (5.21) et (5.14)

t∗ = t− t = 0 σ∗(X, t∗) = σ∗(X, 0) = σ(X, t) . (5.22)

Par (5.13), (5.20) et (5.21) on obtient

χ∗(Z, τ∗) = χ(Z, τ) = χ(Z, t+ τ∗) . (5.23)

A partir de (5.22), (5.16) et (5.23), on obtient

σ(X, t) = σ∗(X, 0) = Σ
τ∗≤t∗

Z ∈V(X)

(
χ(Z, τ∗ + t);X, 0

)
= Σ

τ−t≤0
Z ∈V(X)

(
χ(Z, τ);X, 0

)
.

(5.24)

Par conséquent, la fonctionnelle Σ ne dépend pas explicitement de t.
On introduit

τ = t− s 0 ≤ s ≤ ∞ . (5.25)

Combinant (5.19) et (5.24), on obtient

σ(X, t) = Σ
s≥0

Z ∈V(X)

(
χ(Z, t− s)− χ(X, t− s);X

)
. (5.26)

On constate donc que la fonctionnelle Σ dépend uniquement des mou-
vements relatifs à partir du temps présent de toutes les particules Z
dans C, c’est-à-dire Z ∈ V(X).
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Rotation rigide du repère :
On choisit c(τ) = 0, α = 0 et Q(τ) arbitraire. Ceci correspond à une
rotation instationnaire du référentiel. Dans cette rotation, le tenseur
des contraintes se transforme suivant la relation

σ∗(X, t) = Q(t)σ(X, t)QT (t) . (5.27)

Par combinaison de (5.13), (5.14), (5.16), (5.26) et (5.27), on écrit

Q(t)Σ
(
χ(Z, t− s)− χ(X, t− s),X

)
QT (t)

= Σ
(
χ∗(Z, t− s)− χ∗(X, t− s),X

)
= Σ

(
Q(t− s)

(
χ(Z, t− s)− χ(X, t− s)

)
,X
)
. (5.28)

Cette dernière équation est la restriction qu’on doit imposer à la fonc-
tionnelle Σ pour qu’elle soit objective. On peut voir aisément qu’in-
versement, toute équation de constitution de la forme (5.26) obéissant
à la condition (5.28) satisfait le principe d’indifférence matérielle. Ceci
est dû au fait que tout changement général de référentiel peut être ob-
tenu par une succession des trois changements particuliers envisagés
ci-dessus. Dès lors, l’équation (5.26) avec la condition (5.28) satisfaite
est l’équation de comportement la plus générale pour la théorie mé-
canique des milieux matériels continus. Plus précisément, on constate
que la contrainte est représentée par une fonction tensorielle isotrope,
à valeur tensorielle.

5.2.4 Principe d’invariance matérielle

Les matériaux solides ont des propriétés de symétrie dues à leurs caractéris-
tiques cristallographiques : solide à réseau cristallin cubique, rhomboédrique,
etc. Certains fluides possèdent également ce type de propriétés ; par exemple,
les fluides à cristaux liquides. Dans ce cas, les fonctionnelles de comportement
ne vont pas changer de forme lorsque les coordonnées matérielles (X1, X2, X3)
deviennent (X1, X2,−X3). Ceci représente une opération de réflexion du repère
par rapport au plan X3 = 0. Cette condition cependant impose des restrictions
sur les équations de constitution.

La réflexion à travers un plan de symétrie passant par l’origine 0 et ortho-
gonal au vecteur unitaire n est définie par le tenseur R de composantes

Rij = δij − 2ninj avec det [R] = −1 . (5.29)

Notons {O} un sous-groupe du groupe complet des transformations ortho-
gonales pour les axes matériels et {B} le groupe de translations de ces axes.
Alors le principe d’invariance matérielle s’énonce comme suit.
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Principe d’invariance matérielle

Les équations de comportement doivent être invariantes formellement par rap-
port à un groupe de transformations orthogonales {O} et d’un groupe de transla-
tions {B} des coordonnées matérielles. Ces restrictions proviennent des condi-
tions de symétrie induites par {O} et {B} dans le système de coordonnées X.

On aura donc une transformation de la forme

X = OX +B , (5.30)

avec

OOT = OTO = I et detO = ±1 . (5.31)

Ces conditions expriment des symétries géométriques représentées par {O}
et des inhomogénéités représentées par {B}, au point X, des propriétés phy-
siques du corps matériel. Lorsque {O} est le groupe orthogonal propre caracté-
risé par la matrice [O] telle que det [O] = +1, le matériau est hémitrope . On
ne peut pas opérer de réflexion de l’axe xi par rapport au plan xi = 0. Lorsque
{O} est le groupe complet (det [O] = ±1), le matériau est dit isotrope . Un
matériau qui n’est pas hémitrope est appelé anisotrope .

Lorsque les fonctions ne dépendent pas des translations {B} de l’origine des
coordonnées matérielles, on dit que le matériau est homogène . Si ces fonctions
changent avec certaines translations {B} des axes matériels, alors le matériau
est inhomogène .

Si on couple le principe d’invariance matérielle et le principe d’objectivité
avec une transformation relative aux coordonnées matérielles Xi, on a la condi-
tion

Σ
(
χ(Z, t− s)− χ(X, t− s

)
,X)

= Σ
(
χ(OZ +B, t− s)− χ(OX +B, t− s),OX +B

)
.

(5.32)

5.2.5 Principe de mémoire

Les valeurs des variables de comportement dans un passé lointain n’affectent pas
de manière appréciable les valeurs actuelles de ces variables au temps présent.

Nous reviendrons sur ce principe dans la suite en le précisant et en intro-
duisant le concept de mémoire évanescente.

5.2.6 Principe d’admissibilité

Toutes les équations de comportement doivent être cohérentes avec les principes
fondamentaux de la mécanique des milieux continus, c’est-à-dire qu’elles sont
soumises aux lois de conservation : masse, quantité de mouvement, énergie ainsi
qu’à l’inégalité de Clausius-Duhem.
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5.3 Conséquence du principe d’action locale

Supposons pour simplifier que la fonction vectorielle χ(Z, t) puisse être déve-
loppée en série de Taylor autour de Z = X pour tout τ ≤ t et pout tout
Z ∈ V(X) :

χ(Z, τ) = χ(X, τ) + (Z −X)
∂χ

∂X
(X, τ) + 0

(
‖Z −X‖2

)
. (5.33)

On voit apparâıtre dans cette expression le tenseur du gradient de déformation
F introduit par la relation (2.65). Nous nous restreindrons au cas de maté-
riaux qui ne dépendent que des gradients du premier ordre en nous limitant au
premier terme du développement (5.33). On aboutit à une écriture de σ(X, t)
telle que

σ(X, t) = Σ

(
∂χ

∂X
;X, t

)
. (5.34)

Ces matériaux sont dits simples.

En combinant l’écriture résultant du principe d’action locale régulière (5.34),
ainsi que l’équation (5.26), il vient

σ(X, t) = Σ
s≥0

(
∂χ

∂X
(t− s),Z −X,X

)
. (5.35)

On a écrit dans (5.35) la dépendance explicite par rapport aux vecteurs direc-
tionnels Z −X qui ont pour origine X à trois dimensions spatiales. On peut
écrire plus simplement que cette dépendance s’exprime en fonction de la base
vectorielle ek des coordonnées matérielles de X. Cette écriture rappelle que
la forme de la fonctionnelle Σ dépend du choix des bases. L’introduction de
Z −X dans (5.35) traduit la dépendance directionnelle des propriétés maté-
rielles au point X. Lorsqu’aucune ambigüıté n’est permise, on peut négliger
Z −X dans les arguments de la fonctionnelle constitutive. De plus, l’équation
(5.35) exprime que la contrainte au temps t dépend de l’histoire du gradient de
déformation. On a

σ(X, t) = Σ
s≥0

(
F (X, t− s),X

)
. (5.36)

Si on impose la condition d’objectivité (5.28) à la relation (5.36), on obtient

Q(t)Σ
(
F (X, t− s),X

)
QT (t) = Σ

(
Q(t− s)F (X, t− s),X

)
. (5.37)

Par le théorème de décomposition polaire (2.73), on a

F (X, t− s) = R(t− s)U(X, t− s) ,

où R(t−s) et U(X, t−s) sont les histoires du tenseur de rotation et du tenseur
symétrique d’élongation à droite, respectivement. Si on fait le choix particulier
Q(t− s) = RT (t− s), l’équation (5.37) devient

RTΣ
(
F (X, t− s),X

)
R = Σ

(
U(X, t− s),X

)
. (5.38)
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On peut omettre d’incorporer la dépendance explicite de Σ par rapport à X
car celle-ci est déjà prise en compte par F . Cela facilite l’écriture et cependant,
ceci n’affecte pas la généralité des considérations qui suivent. En conséquence,
la relation (5.36) du tenseur des contraintes s’écrit sous la forme

σ(X, t) = R(t)Σ
(
U(X, t− s)

)
RT (t) . (5.39)

Cette dernière relation est la forme générale de l’équation de comportement
d’un matériau simple. Elle fournit la solution générale de l’équation fonction-
nelle (5.37). De plus, elle montre que la contrainte dans un matériau simple est
affectée par la rotation au temps présent, alors que les rotations passées n’ont
pas d’influence.

Si on rappelle le théorème de décomposition polaire et (2.88), on peut
mettre (5.39) sous la forme

σ(t) = F
(
C(t− s)

)
, (5.40)

avec

σ ≡ F TσF F
((
U(t− s)

)2) ≡ U(t)Σ
(
U(t− s)

)
U(t) .

Le tenseur σ est le tenseur des contraintes transporté (convecté). En posant

L
(
C(t− s)

)
≡ C−1(t)F

(
C(t− s)

)
C−1(t) ,

alors l’équation (5.40) devient

σ(t) = FL
(
C(t− s)

)
F T . (5.41)

5.4 Equations thermomécaniques de comportement

Jusqu’à présent, nous avons considéré des matériaux en situation isotherme.
Dès qu’on veut tenir compte d’effets thermiques, il faut introduire une nouvelle
variable primaire analogue à celle du mouvement pour la déformation. A cette
fin, on utilise la température que nous prenons telle que

T = T (X, t) . (5.42)

Ceci signifie que dans un problème thermomécanique, les variables
constitutives indépendantes sont le mouvement χ et la température T . La
vitesse sera simplement obtenue par la dérivée temporelle du mouvement et
le tenseur des gradients de vitesse à partir de v. La masse volumique est
reliée au mouvement par l’équation de continuité (3.37) écrite sous la forme
detF = P0/P = ρ0/ρ en coordonnées spatiales.
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5.4.1 Principe de déterminisme

Outre l’histoire du mouvement du matériau, la contrainte est influencée par la
température. L’équation (5.9) se généralise en la relation

σ(x, t) = Σ
τ≤t
Z ∈C

(
χ(Z, τ), T (Z, t);X, t

)
. (5.43)

Puisqu’on tient compte des effets thermiques, nous devons aussi donner des
relations de comportement pour le vecteur flux de chaleur q, l’énergie interne u
et la densité d’entropie s. A l’équation (5.43) viendront s’ajouter des équations
de comportement telles que le principe de déterminisme se généralise comme
suit : la valeur des fonctions de comportement thermomécanique (σ, q, u, s) en
un point matériel X et au temps t est déterminée par l’histoire du mouvement
et de la température pour tous les points du corps C. On aura donc

σ(X, t) = Σ(χ, T ;X, t) = Σ
(
x(Z, τ), T (Z, τ),X, t

)
(5.44)

q(X, t) = Q(χ, T ;X, t) (5.45)

u(X, t) = U(χ, T ;X, t) (5.46)

s(X, t) = S(χ, T ;X, t) . (5.47)

5.4.2 Principe d’équiprésence

A priori, toutes les fonctionnelles constitutives sont exprimées en fonction du
même ensemble de variables indépendantes de constitution, jusqu’à preuve du
contraire.

5.4.3 Principe d’action locale

Le raisonnement que nous avons tenu à la section 5.3 s’applique aussi au champ
de température. On effectue un développement en série de Taylor de T (Z, τ)
autour de T (X, τ) pour écrire

T (Z, τ) = T (X, τ) + (Z −X)
∂T

∂X
+O

(
‖Z −X‖2

)
. (5.48)

En se restreignant aux matériaux simples, la fonctionnelle Σ ne dépend que
des gradients d’ordre 1. Il vient donc

T (Z, τ) ' T (X, τ) + (Z −X)
∂T

∂X

et

σ(X, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ),

∂χ(Z, τ)

∂X
, T (Z, τ),

∂T (Z, τ)

∂X
;X, t

)
. (5.49)
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5.4.4 Principe d’objectivité

On a vu au chapitre 2, qu’un champ scalaire est objectif si et seulement si

T ∗ = T . (5.50)

Pour la translation rigide du référentiel (5.18), la fonctionnelle de σ s’écrit

σ(X, t) = Σ
τ≤t

Z ∈V(X)

(
χ(Z, τ)− χ(X, τ), T (Z, τ),X, t

)
. (5.51)

Les considérations liées au changement d’échelle de temps conduisent à la re-
lation

σ(X, t) = Σ
(
χ(Z, t− s)− χ(X, t− s), T (Z, t− s),X

)
. (5.52)

Enfin, la prise en compte de la rotation du référentiel impose la condition

Q(t)Σ
(
χ(Z, t− s)− χ(X, t− s), T (Z, t− s),X

)
QT (t)

= Σ
(
Q(t− s)

(
χ(Z, t− s)− χ(X, t− s)

)
, T (Z, t− s),X

)
. (5.53)

En combinant les résultats du principe d’action locale régulière (5.49) et de
l’objectivité, on aboutit à la relation

σ(X, t) = Σ

(
∂χ

∂X
(t− s), T (t− s), ∂T

∂X
(t− s),Z −X,X

)
(5.54)

qui généralise (5.35).

Lorsque la théorie tient compte des effets thermiques, on doit s’attendre à
ce que la masse volumique varie. On peut montrer qu’en toute généralité, l’uti-
lisation du théorème de décomposition polaire pour imposer l’objectivité fait
apparâıtre le tenseur de déformation de Cauchy-Green, mais aussi l’invariant
scalaire lié au tenseur du gradient de déformation F , à savoir

detF (t− s) =
(
detC(t− s)

)1/2
=

ρ0

ρ(t− s) . (5.55)

(Voir (2.68), (2.77) et (3.37).)

En conséquence, l’équation la plus générale des matériaux simples est de la
forme

σ(X, t) = FL
(
C(t− s), ρ−1(t− s), T (t− s), ∂T

∂X
(t− s),X

)
F T , (5.56)

ce qui est une généralisation de (5.41).

5.5 Définition d’un solide et d’un fluide

On définit un fluide comme un milieu matériel simple dont on suppose que la
configuration de référence est, le plus souvent, celle de l’instant présent. Un



Principe de mémoire régulière 175

fluide est aussi un matériau incapable de « résister » à un effort de cisaillement.
Soumis à cette contrainte, il se met à s’écouler. Les fluides classiques du type
newtonien ont une mémoire infiniment courte. Ceci signifie que dans la fonc-
tionnelle (5.56), la contrainte ne dépend que de C(t − s), par exemple, pour
0 ≤ s ≤ ε avec ε tendant vers zéro. Le tenseur des contraintes a une mémoire
quasi instantanée.

On définit un solide comme un milieu matériel simple qui possède des confi-
gurations préférées. L’une d’entre elles peut être prise comme configuration de
référence et on l’appelera l’état de référence. Dans la plupart des cas, dans cet
état, le matériau est non contraint (σ = 0). On dit que c’est l’état naturel du
milieu. Si au contraire, à cet état de référence, σ 6= 0, on dira que le matériau
est précontraint.

5.6 Principe de mémoire régulière

On suppose que les histoires thermo-mécaniques χ(X, τ) et T (X, τ) peuvent
être développées en série de Taylor par rapport à τ pour τ = t et ∀X ∈ C. On
a

χ(X, τ) = χ(X, t) + (τ − t)χ̇(X, t) + · · · (5.57)

et
T (X, τ) = T (X, t) + (τ − t)Ṫ (X, t) + · · · (5.58)

avec la notation

χ̇ =
∂χ

∂t

∣∣∣∣
X

, Ṫ =
∂T

∂t

∣∣∣∣
X

. (5.59)

Pour rappel, la relation (5.59) est identique à (2.17). Pour obtenir un principe de
mémoire régulière, on supposera que les fonctionnelles constitutives sont aussi
régulières que possible afin d’adoucir des discontinuités dans ces fonctions et/ou
dans leurs dérivées temporelles. En conséquence, l’axiome de mémoire régulière
conduit à remplacer la relation (5.56) par

σ(X, t) = FL
(
C, Ċ, C̈, . . . ;

ρ−1, ρ̇, ρ̈, . . . ;T, Ṫ , T̈ , . . . ;
∂T

∂X
,
∂Ṫ

∂X
, . . . ,X

)
F T ,

(5.60)

où apparaissent des dérivées temporelles des diverses variables.

Le concept de mémoire évanescente fait appel à la fonction d’oubli qui est
introduite dans l’équation de comportement afin de donner plus de poids aux
événements du passé récent proches de t et moins de poids au passé lointain. Ty-
piquement, ces fonctions d’oubli ont une écriture du type e−β s avec β constant.
Elles sont particulièrement utiles en viscoélasticité pour tenir compte des phé-
nomènes de fluage, c’est-à-dire de déformation sous contrainte constante, et
de relaxation des contraintes, c’est-à-dire de déformation maintenue constante
sous contrainte variable dans le temps. Quoique ce sujet soit important pour
bon nombre de matériaux, il sort du cadre introductif de cette monographie.
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5.7 Exercices

5.1 Soit u(x, t) un champ vectoriel objectif. Montrer que son gradient spatial
est également objectif, c’est-à-dire qu’il vérifie(

∇u
)∗

= Q∇uQT , (5.61)

où (∇u)∗ = ∂u∗/∂x∗ désigne le gradient spatial du vecteur u∗.

5.2 Démontrer que le tenseur des taux de déformation d (resp. des taux de
rotation ω̇) est (resp. n’est pas) objectif.

5.3 Soit T un tenseur objectif quelconque d’ordre 2. La dérivée matérielle de
T est-elle objective ?

5.4 Soit T un tenseur objectif quelconque d’ordre 2. Démontrer que l’expres-
sion

Ṫ + T ω̇ − ω̇T (5.62)

est objective, où Ṫ dénote la dérivée matérielle de T et ω̇ le tenseur des taux
de rotation.

5.5 Démontrer que le tenseur T d’ordre 2, défini par la relation

T = 2ḋ+ 2dL+ 2LTd (5.63)

est objectif. Le tenseur d est le tenseur des taux de déformation et ḋ est sa
dérivée matérielle. Le tenseur L est celui du gradient de vitesse. Pour la dé-
monstration, il faut utiliser l’équation (à démontrer également)

ḋ∗ = Q̇dQT +QdQ̇
T

+QḋQT . (5.64)



Chapitre 6

Lois de comportement classiques

6.1 Introduction

Nous allons examiner dans ce chapitre les lois de comportement classiques des
fluides visqueux newtoniens, des solides hyperélastiques et élastiques et de la
conduction de la chaleur. Nous évaluerons ces lois constitutives par rapport
au second principe de la thermodynamique afin de constater que leur écriture
satisfait cette inégalité. La section relative à la thermodynamique du fluide
idéal effectue la liaison méthodologique entre la thermodynamique des milieux
continus et la thermodynamique classique afin de montrer que ces deux points
de vue sont complémentaires. Le chapitre se termine par des considérations
relatives à la thermoélasticité.

Pour le comportement des fluides, des compléments de lecture sont proposés
dans [2, 19, 22, 23, 35, 49, 53, 54, 67, 69, 70]. Pour celui des solides, le lecteur
consultera [5, 12, 13, 32, 43, 47, 52, 59, 66].

6.2 Fluides simples

Généralement, on peut dire qu’un fluide est un milieu continu tel que dans
n’importe quelle configuration déformée, qui laisse la masse volumique inchan-
gée, il ne garde pas mémoire de ses états passés. Dès lors on peut proposer
la définition suivante : un fluide est un matériau tel que chaque configuration
du corps laissant la masse volumique à une valeur prescrite puisse être choisie
comme configuration de référence [19].

Si on se restreint aux dérivées partielles d’ordre 1 (par rapport au temps
ou à l’espace) en (5.60), on a l’équation pour les matériaux thermomécaniques
simples

σ(X, t) = FL
(
C, Ċ, ρ−1, ρ̇, T, Ṫ ,

∂T

∂X
,
∂Ṫ

∂X
, X

)
F T . (6.1)
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Puisque toute configuration peut être une configuration de référence, on choisit
la configuration actuelle comme celle de référence et on peut écrire x = X = χ
avec ρ prescrit. Par (2.179) et (2.181), il s’ensuit que

F = I C = I Ċ = Ḟ
T
F + F T Ḟ = 2d (6.2)

∂T

∂X
=
∂T

∂x
et

∂Ṫ

∂X
=
∂Ṫ

∂x
. (6.3)

En utilisant l’équation de conservation de la masse (3.41) ρ̇ = −ρ dii, on élimine
la dépendance par rapport à ρ̇. La relation (6.1) devient donc

σ(x, t) = K

(
d, ρ−1, T, Ṫ ,

∂T

∂x
,
∂Ṫ

∂x
, x

)
. (6.4)

Dans la suite, on supposera que le comportement des fluides est indépendant
du gradient de température ∂T/∂x et de la variation temporelle de ce gradient
∂Ṫ /∂x. Cette simplification est cohérente avec l’observation expérimentale du
comportement fluide. L’équation (6.4) devient

σ(x, t) = K
(
d, ρ−1, T, Ṫ , x

)
. (6.5)

Le passage de (6.1) à (6.5) a fait perdre le caractère objectif de la relation (6.1).
On le rétablit en appliquant le principe d’objectivité à (6.5) qui démontre que
la fonctionnelle K ne dépend pas explicitement de x. Nous considérons que la
contrainte dépend de la valeur instantanée de la température, et que l’histoire
Ṫ est obtenue à partir du principe de conservation d’énergie. Par conséquent,
un fluide est donc un milieu dont la loi de comportement est de la forme

σ(x, t) = K
(
d, ρ−1, T

)
(6.6)

avec la condition imposée par l’objectivité

QKQT = K
(
QdQT , ρ−1, T

)
. (6.7)

La condition (6.7) impose que la fonctionnelle, maintenant réduite à la fonc-
tion K, soit une fonction isotrope du tenseur symétrique d. Par application
du théorème sur les fonctions isotropes de tenseurs symétriques (§ 1.3.11), la
relation (6.7) devient

σ(x, t) = K0I +K1d+K2d
2 . (6.8)

Les fonctions scalaires Ki (i = 0, 1, 2) seront fonctions des invariants de d, de
ρ−1 et T .

Lorsque le fluide est incompressible, sa masse volumique est invariante.
Donc, ρ0 = ρ et detF = 1. De plus, le premier invariant de d est nul. L’équation
de comportement d’un fluide incompressible est de la forme

σ(x, t) = −pI +K1

(
I2(d), I3(d)

)
d+K2

(
I2(d), I3(d)

)
d2 , (6.9)
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avec p, la pression scalaire indéterminée. On remarque que lorsque le fluide est
au repos, d = 0 et σ = −pI. Le comportement à l’équilibre du fluide sera obtenu
par l’hydrostatique (éq. (3.133)). Il faut remarquer que la contrainte en ce qui
concerne sa dépendance par rapport à la vitesse, est fonction uniquement du
tenseur symétrique des taux de déformation. Ceci est une conséquence directe
du principe d’objectivité qui exclut l’utilisation du tenseur des taux de rotation
qui n’est pas objectif et qui plus est, est antisymétrique.

Nous remarquons que l’équation (6.9) est non linéaire en d. Il s’agit d’un
fluide dit non newtonien par opposition aux fluides classiques newtoniens. On
le connâıt sous le nom de fluide de Rivlin-Ericksen de complexité un.

6.3 Fluides classiques ou fluides visqueux newtoniens

Un fluide classique est un milieu tel que les composantes du tenseur des
contraintes sont des fonctions linéaires du tenseur des taux de déformation.
Cette définition impose K2 = 0 dans l’équation (6.9). On notera le cas parti-
culier des fluides parfaits ou fluides non visqueux , pour lequel par définition,
le tenseur des contraintes est indépendant de d. Le tenseur des contraintes est
alors sphérique (composantes hors diagonale nulles). On écrit

σ = −pI (6.10)

p = p(ρ, T ) . (6.11)

Dans (6.11), on a utilisé le fait que 1/ρ = v avec v le volume spécifique et que
cette dernière variable apparâıt dans les lois de la physique des gaz. Si le fluide
est incompressible, la pression sera déterminée par la résolution des équations
du mouvement. Par contre, si le fluide est compressible, la pression sera donnée
par une équation d’état résultant des considérations thermodynamiques. Si le
fluide n’est pas parfait, il est dit visqueux. On pose

σ = −pI + T , (6.12)

avec T , le tenseur des extra-contraintes, tel que T = K1

(
I2(d), I3(d)

)
d.

Pour les fluides classiques, T est une fonction linéaire de d et on peut
montrer que T est nécessairement de la forme

T = λ trdI + 2µd , (6.13)

où λ et µ sont des coefficients scalaires. Le tenseur T dépend du tenseur des
taux de déformation (et non de la déformation) de telle sorte qu’il s’annule
lorsque le fluide est en mouvement de corps rigide (c.-à-d. taux de déformation
nul). La pression est un champ scalaire qui ne dépend pas explicitement du taux
de déformation. Le coefficient λ est la viscosité volumique, tandis que µ est le
coefficient de viscosité dynamique. On verra que λ et µ sont toujours positifs.
Ces coefficients ont pour dimensions M L−1T−1 et les unités correspondantes
du Système International (S.I.) sont N s/m2 ou Pa.s.
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Tableau 6.1 Constantes matérielles de fluides visqueux.

µ (Pa · s) ρ (kg/m3) ν(m2 s−1)

air 1,776 10−5 1,225 14,5 10−6

eau 0,0011 999,2 1,138 10−6

A titre d’exemple, on donne dans le tableau 6.1 les constantes matérielles, à
température ambiante, de deux fluides largement utilisés dans les applications
industrielles : l’air et l’eau. La viscosité cinématique ν est définie par la relation
ν = µ/ρ. En notation indicielle, l’équation de constitution du fluide visqueux
newtonien compressible s’écrit

σij = −p δij + λ dkk δij + 2µdij (6.14)

avec

p = p(ρ, T )

λ = λ(ρ, T )

µ = µ(ρ, T )

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (6.15)

L’équation de comportement du fluide visqueux incompressible se réduit à

σij = −p δij + 2µdij (6.16)

avec p un champ scalaire indéterminé et µ, une constante dans la majorité des
cas. Remarquons qu’en prenant la trace de (6.16), on obtient p = −1/3 trσ et
donc que la pression est la moyenne des composantes diagonales du tenseur des
contraintes.

Exemple 6.1 (écoulement de cisaillement simple)

Soit un écoulement de cisaillement simple établi entre deux parois parallèles.
La paroi inférieure est fixe et la paroi supérieure se meut dans son propre
plan à la vitesse U constante. Le champ de vitesse est tel que

v1 = kx2

v2 = 0

v3 = 0 .

Seule la composante d12 du tenseur d est différente de zéro. Par la suite,
en un point arbitraire M du fluide présenté à la figure 6.1, on a σ22 = −p
et σ12 = µk. Le fluide situé au-dessus du point M exerce sur le fluide situé
dans la zone inférieure des efforts de cisaillement proportionnels à µ et au
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gradient de vitesse k dans la direction x2. Par la présence de viscosité, les
couches fluides les plus rapides tendent à entrâıner les couches fluides plus
lentes avec lesquelles elles sont en contact ; réciproquement, les couches plus
lentes tendent à freiner celles qui s’écoulent plus rapidement.

Cette interprétation physique confirme qu’il est raisonnable de supposer
µ > 0. Ceci montre aussi que dans le fluide parfait, les différentes couches
fluides n’exercent aucun effet d’accélération ou de freinage les unes sur les
autres. Elles ne sont soumises qu’aux effets de pression.

U

p
e2

e1 x1

x2

M σ12 = µk

Fig. 6.1 Ecoulement de cisaillement.

On comprend qu’il s’agit d’une idéalisation drastique de la réalité. Tous
les fluides réels sont visqueux. Lorsqu’ils le sont faiblement, on peut les
approcher par le concept du fluide parfait.

6.4 Milieux élastiques isothermes isotropes

On a constaté précédemment qu’un solide a une mémoire privilégiée, à savoir
qu’il se souvient de la configuration de référence.

Le milieu élastique isotherme est un matériau simple tel que par (5.36),

σ(X, t) = Σ
(
F (X, t− s),X

)
. (6.17)

En tenant compte du fait que F est le tenseur du gradient de déformation
qui permet de passer de l’état de référence à l’état actuel, pour un matériau
élastique, on peut écrire que

σ(X, t) = Σ
(
F (t)

)
. (6.18)
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Pour simplifier, nous considérerons dans la suite que la dépendance de σ par
rapport au temps t se fait via F et nous ne noterons plus t explicitement dans
σ. Le principe d’objectivité requiert

σ∗ = Σ
(
F ∗
)
. (6.19)

En utilisant (2.205) et (3.147), on obtient

σ∗ = Σ
(
F ∗
)

= Σ(QF ) σ∗ = QσQT = QΣ(F )QT (6.20)

ou encore

Σ(QF ) = QΣ(F )QT . (6.21)

Par le théorème de décomposition polaire et en posant Q = RT , cette dernière
équation devient

Σ(QRU) = RTΣ(F )R (6.22)

et

σ = Σ(F ) = RΣ(U)RT (6.23)

∀F et R. La relation (6.23) exprime le résultat de l’imposition de l’objectivité
à (6.18).

L’équation constitutive (6.23) exprime le tenseur de Cauchy avec le tenseur
de déformation U ou C. D’autres formes d’équations constitutives peuvent
s’écrire au moyen des tenseurs de contraintes de Piola-Kirchhoff P ou S. En
effet, en combinant (6.18) et (3.141), on obtient

P = JσF−T = JΣ(F )F−T = P(F ) , (6.24)

où P est une fonction tensorielle. Par un raisonnement analogue à celui qui a
conduit à (6.23) et en tenant compte de (3.149), il vient

P(F ) = RP(U) . (6.25)

Pour écrire l’équation de comportement en fonction du tenseur S, on introduit
(6.23) dans (3.152) et on procède de manière similaire pour aboutir à

S = JF−1σF−T = JF−1RΣ(U)RTF−T . (6.26)

A l’aide du théorème de décomposition polaire, cette dernière relation s’écrit

S = JU−1Σ(U)U−T (6.27)

ou encore

S = S(U) , (6.28)

où S est une fonction tensorielle de U . Puisque U∗ = U et que S∗ = S,
les conditions imposées par l’objectivité sont remplies. L’équation (6.28) peut
s’exprimer en fonction du tenseur de Cauchy-Green C puisque C = U2.
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Nous allons construire dans la suite une théorie des milieux élastiques iso-
tropes. Si le matériau est isotrope par rapport à sa configuration de référence,
on doit avoir par le principe d’invariance matérielle (§ 5.2.4)

Σ(F ) = Σ
(
F
)
, (6.29)

où F est le tenseur du gradient de déformation calculé pour un système de
coordonnées matérielles

X = OX +B (5.30),

relation dans laquelle {O} et {B} tiennent compte des symétries et des trans-
lations des axes matériels, respectivement. Or le tenseur du gradient de défor-
mation F s’exprime d’après (5.30) comme

F =
∂x

∂X

∂X

∂X
= FOT . (6.30)

En combinant (6.29) et (6.30), il vient

Σ(F ) = Σ
(
FOT

)
. (6.31)

Le théorème de décomposition polaire donne la solution suivante F = V R
(= RU). Pour faire apparâıtre V dans la fonctionnelle Σ, il nous faut choisir
O tel que FOT = V , soit O = R. On voit par la décomposition polaire que ce
choix est judicieux et on obtient d’après (6.18)

σ = Σ(V ) . (6.32)

Par l’objectivité (5.28) et l’isotropie (6.31), pour toute matrice orthogonale O,
on a

OΣ(U)OT = Σ(OU) = Σ
(
OUOT

)
= Σ

(
FOT

)
= Σ(V ) . (6.33)

On conclut que la fonctionnelle Σ est une fonction isotrope de V . Pour un ma-
tériau isotrope, les équations constitutives (6.18) et (6.32) peuvent être écrites
aussi sous d’autres formes.

Tenant compte de ce que V 2 = FF T (éq. (1.134)), la loi de comportement
d’un matériau élastique isotrope peut s’exprimer par l’une des égalités

σ = Σ
(
V ) σ =H(V 2) σ = K(e) , (6.34)

où e est le tenseur d’Euler-Almansi défini par (2.83). Comme les fonctions
tensorielles Σ et H sont isotropes et dépendent de tenseurs symétriques, on
peut écrire par exemple (voir (1.140))

σ = k0

(
I1(e), I2(e), I3(e)

)
I + k1

(
I1(e), I2(e), I3(e)

)
e

+ k2

(
I1(e), I2(e), I3(e)

)
e2

(6.35)

avec
kp = kp

(
I1(e), I2(e), I3(e)

)
p = 0, 1, 2

qui sont des fonctions scalaires des invariants du tenseur e. On peut observer
que les tenseurs de contrainte σ et de déformation e ont les mêmes directions
principales. De plus, la relation (6.35) montre que pour un matériau isotrope
trois paramètres sont nécessaires pour caractériser la réponse constitutive.
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6.5 Matériaux hyperélastiques

La relation (6.35) présentée dans la section précédente est la forme la plus
générale d’équation de constitution pour un matériau élastique isotrope. On a
obtenu cette équation de comportement sur base de considérations purement
théoriques et sans aucune référence à la thermodynamique. Dans la littérature,
la théorie de l’élasticité relative à (6.35) est appelée l’élasticité de Cauchy et
le matériau correspondant est un matériau élastique de Cauchy . Dans
cette section, nous développons une théorie des équations constitutives en nous
fondant sur l’hypothèse de l’existence d’une fonction énergétique. La théorie
est adaptée aux matériaux élastiques non linéaires où les déformations peuvent
être grandes, c’est-à-dire finies. Elle est normalement appelée hyperélasticité
finie ou simplement hyperélasticité . Les matériaux qu’elle décrit sont qualifiés
d’hyperélastiques ou de matériaux élastiques de Green.

En supposant que les processus sont isothermes et en considérant unique-
ment des effets mécaniques, nous introduisons la fonction d’énergie libre par
unité de volume dans la configuration de référence. A cette fin, on définit la
fonction d’énergie W(X, t) telle que

W(X, t) = P0(X)U(X, t) . (6.36)

Par (4.44), on obtient

DW(X, t)

Dt
= Ẇ(X, t) = P0(X)U̇(X, t) = P : Ḟ . (6.37)

Un matériau hyperélastique ou élastique de Green est celui dont l’énergie
élastique est donnée par une fonction d’énergie libre telle que

W(X, t) = P0(X)U
(
F (X, t),X

)
(6.38)

qui, pour un matériau homogène, devient

W(X, t) =W
(
F (X, t),X

)
=W(F ) . (6.39)

L’énergie libre s’annule pour la configuration de référence, c’est-à-direW(I) = 0
et satisfait aussi la condition W(F ) ≥ 0.

Afin d’établir le rapport entre l’énergie et les contraintes, on procède comme
suit. D’abord, on exprime la dérivée temporelle de W(F ) par (1.167)

Ẇ(F ) =
DW(F )

Dt
=
DW(F )

DF
:
DF

Dt
=
∂W(F )

∂F
: Ḟ . (6.40)

Ensuite, on combine (6.40) avec (6.37) pour obtenir

∂W(F )

∂F
: Ḟ = P : Ḟ ou

(
∂W(F )

∂F
− P

)
: Ḟ = 0 . (6.41)

La relation (6.41) est valable pour des valeurs arbitraires de Ḟ . Donc, pour un
matériau hyperélastique, l’équation de constitution s’écrit

P =
∂W(F )

∂F
. (6.42)
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Strictement parlant, les matériaux élastiques linéaires et non linéaires sont
hyperélastiques. Cependant, l’appellation hyperélasticité est utilisée pour le
comportement élastique non linéaire.

En exprimant σ en fonction de P par (3.141), l’équation de comportement
devient

σ = J−1 ∂W(F )

∂F
F T . (6.43)

On suppose que la fonction d’énergie de déformation est indépendante du réfé-
rentiel. Ceci implique que pour deux observateurs en mouvement relatif décrit
par (5.13), on ait

W(F ) =W
(
F ?
)

=W(QF ) . (6.44)

En remplaçant F par sa décomposition polaire à droite F = RU et en posant
Q = RT , on obtient

W(F ) =W(RTRU) =W(U) (6.45)

qui exprime les conditions nécessaires et suffisantes pour l’objectivité de la
fonction d’énergie W(F ). En se rappelant que U = C1/2, on peut écrire

W(F ) =W(U) = Ŵ(C) . (6.46)

En mécanique des solides, l’intérêt se focalise sur la formulation des relations
constitutives en fonction du tenseur métrique C. Il est donc nécessaire d’ex-
primer ∂W(F )/∂F dans (6.42) ou (6.43) en fonction de C. En dérivant (6.46)
par rapport au temps, il vient

∂W(F )

∂F
: Ḟ =

∂Ŵ(C)

∂C
: Ċ . (6.47)

Prenant en compte C = CT = F TF et en utilisant (1.95) on peut montrer que(
∂W(F )

∂F

)T
= 2

∂Ŵ(C)

∂C
F T . (6.48)

Par la symétrie de C, ∂Ŵ(C)/∂C est aussi symétrique. En conséquence, on a

∂W(F )

∂F
= 2F

∂Ŵ(C)

∂C
(6.49)

et on écrit (6.42) sous la forme

P = 2F
∂Ŵ(C)

∂C
. (6.50)

En insérant (3.152) dans (6.42), l’équation constitutive en fonction du second
tenseur de Piola-Kirchhoff devient

S = 2
∂Ŵ(C)

∂C
. (6.51)

Les équations (6.50) et (6.51) représentent les formes générales des équations
de comportement pour un matériau hyperélastique satisfaisant l’objectivité.
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6.5.1 Matériaux hyperélastiques isotropes

Examinons les équations constitutives d’un milieu élastique isotrope. Puisque
la symétrie de la matière du corps n’est pas prise en compte dans les équations
précédentes, il nous faut étudier les conséquences de son imposition. Suivant
(6.30), l’énergie de déformation devrait satisfaire la relation

W(F ) =W(F ) =W
(
FOT

)
. (6.52)

Comme O peut être identifié à Q (§ 5.2.4), on peut aussi bien avoir F = FQT

que

C = F
T
F = QF TFQT = QCQT . (6.53)

En tenant compte de (6.46), le matériau soumis à la transformation (5.30)
satisfait les égalités suivantes :

W(F ) = Ŵ(C) = Ŵ
(
QCQT

)
(6.54)

Ŵ(C) = Ŵ
(
QCQT

)
. (6.55)

La relation (6.55) donne la condition d’isotropie pour la fonction d’énergie de

déformation. Elle implique également que Ŵ(C) soit une fonction isotrope sca-
laire du tenseur symétrique C et qu’elle soit un invariant de C. Grâce au théo-
rème de représentation des invariants, la fonction scalaire (6.55) peut s’écrire en
fonction des invariants principaux de son argument C. On peut donc remplacer
(6.55) par la fonction

Ŵ(C) = Φ
(
I1(C), I2(C), I3(C)

)
. (6.56)

Puisque les valeurs principales de C sont λ2
1, λ2

2, λ2
3, les invariants correspon-

dants sont donnés par

I1(C) = λ2
1 + λ2

2 + λ2
3

I2(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

I3(C) = λ2
1λ

2
2λ

2
3 .

(6.57)

Pour simplifier, nous utiliserons le même symbole pour la fonction d’énergie Φ
et les invariants (6.57) seront spécifiés sans référence au tenseur C.

En inspectant la fonction (6.56) et les relations (6.50) et (6.51), la prochaine
étape de la formulation des équations constitutives des matériaux isotropes
consiste à dériver Φ(C) par rapport aux invariants (6.57). En supposant que
Φ(C) possède des dérivées continues par rapport aux invariants, on a

∂Φ(C)

∂C
=
∂Φ

∂I1

∂I1
∂C

+
∂Φ

∂I2

∂I2
∂C

+
∂Φ

∂I3

∂I3
∂C

. (6.58)

Les dérivées des Ii (i = 1, 2, 3) par rapport à C sont données par

∂I1
∂C

= I ,
∂I2
∂C

= I1I −C ,
∂I3
∂C

= I3C
−1 . (6.59)
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A titre d’exemple, pour démontrer la troisième égalité, on procède de la ma-
nière suivante. Par les relations (1.144) et (2.110), on écrit successivement les
relations :

∂I3
∂C

=

3∑
1

∂
(
λ2

1λ
2
2λ

2
3

)
∂λ2

i

(Ai ⊗Ai)

= λ2
2λ

2
3(A1 ⊗A1) + λ2

1λ
2
3(A2 ⊗A2) + λ2

2λ
2
1(A3 ⊗A3)

= λ2
1λ

2
2λ

2
3λ
−2
1 (A1 ⊗A1) + λ2

1λ
2
2λ

2
3λ
−2
2 (A2 ⊗A2) + λ2

1λ
2
2λ

2
3λ
−2
3 (A3 ⊗A3)

= I3

3∑
1

λ−2
i (Ai ⊗Ai) = I3C

−1 .

Par substitution de (6.59) dans (6.58), on a

∂Φ(C)

∂C
= I3

∂Φ

∂I3
C−1 +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − ∂Φ

∂I2
C . (6.60)

En portant (6.60) dans (6.51), la forme générale de l’équation constitutive d’un
matériau hyperélastique isotrope devient

S = 2

(
I3
∂Φ

∂I3
C−1 +

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − ∂Φ

∂I2
C

)
. (6.61)

Il faut remarquer que lorsque la déformation est nulle, S = 0. Dans ce cas,
C = I, ou λ1 = λ2 = λ3 = 1, ou encore, en utilisant les invariants du tenseur
C, I1 = 3, I2 = 3, I3 = 1. De plus, pour S = 0 etC = I, l’équation constitutive
(6.61) conduit à la condition suivante pour les dérivées partielles

∂Φ

∂I1
+ 2

∂Φ

∂I2
+
∂Φ

∂I3
= 0 . (6.62)

En combinant (3.152) et (6.61), on obtient l’équation de comportement pour
la contrainte de Cauchy

σ = 2J−1

(
I3(c)

∂Φ

∂I3(c)
I +

(
∂Φ

∂I1(c)
+ I1(c)

∂Φ

∂I2(c)

)
c− ∂Φ

∂I2(c)
c2

)
, (6.63)

où c est le tenseur de déformation de Cauchy (2.89). On se rappellera que les
tenseurs C et c ont les mêmes élongations principales λ2

i (i = 1, 2, 3). Donc les
invariants correspondants sont aussi égaux.

Conséquemment, lorsque la fonction d’énergie d’un certain matériau hyper-
élastique est connue, sa loi constitutive est établie soit par (6.61) soit par (6.63).
Pour un matériau isotrope, l’énergie de déformation (6.56) peut aussi s’écrire
comme une fonction symétrique des élongations principales λi (i = 1, 2, 3)

Ŵ(C) = φ(λ1, λ2, λ3) . (6.64)

En dérivant (6.64), on obtient

∂Ŵ(C)

∂C
=

∂φ

∂λ2
i

∂λ2
i

∂C
=

1

2λi

∂φ

∂λi

∂λ2
i

∂C
. (6.65)
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Par la relation de l’analyse tensorielle

∂λ2
i

∂C
= Ai ⊗Ai , (6.66)

où les λ2
i sont les valeurs principales de C et Ai les directions principales

correspondantes, nous obtenons

∂Ŵ(C)

∂C
=

3∑
i=1

1

2λi

∂φ

∂λi
Ai ⊗Ai . (6.67)

En combinant cette dernière relation avec (6.51), on a

S =

3∑
i=1

1

λi

∂φ

∂λi
Ai ⊗Ai . (6.68)

Par la décomposition spectrale d’un tenseur (1.125), nous avons pour les valeurs
principales du second tenseur des contraintes de Piola-Kirchhoff Si (i = 1, 2, 3),

Si =
1

λi

∂φ

∂λi
. (6.69)

En faisant appel à la relation liant S et P et les développements du paragraphe
2.7.3, la relation constitutive correspondante utilisant les valeurs principales du
premier tenseur de Piola-Kirchoff est obtenue comme suit

P = FS = F

(
3∑
i=1

1

λi

∂φ

∂λi
Ai ⊗Ai

)

=

3∑
i=1

1

λi

∂φ

∂λi
(FA)i ⊗Ai =

3∑
i=1

∂φ

∂λi
bi ⊗Ai .

(6.70)

Donc, il vient

Pi =
∂φ

∂λi
. (6.71)

Les valeurs principales σi du tenseur des contraintes de Cauchy sont obtenues
en utilisant (3.141), (2.113), la propriété (1.70) et FAi = λibi (cf. exercice
2.11),

σ = J−1FP T = J−1F

(
3∑
i=1

∂φ

∂λi
(bi ⊗Ai)

T

)

= J−1

(
3∑
i=1

∂φ

∂λi
FAi ⊗ bi

)
= J−1

(
3∑
i=1

λi
∂φ

∂λi
bi ⊗ bi

) (6.72)

Dès lors,

σi = J−1λi
∂φ

∂λi
. (6.73)



Matériaux hyperélastiques 189

Les équations de comportement (6.61) et (6.63) sont valables pour un matériau
hyperélastique quelconque. Cependant, il existe des matériaux hyperélastiques
dont le comportement du point de vue de la déformation est quasiment incom-
pressible. Ceci revient à dire que leur volume reste presqu’inchangé lors d’une
déformation. De tels matériaux incluent des matériaux du type caoutchouc et
les tissus biologiques mous. Pour ces matériaux, on tire de (3.38) et (3.7)

J =
dv

dV
= λ1λ2λ3 = 1 . (6.74)

La condition d’incompressibilité introduit également la relation suivante :

I3 = λ1
2λ2

2λ3
2 = 1 . (6.75)

Dans ce cas, l’équation de comportement (6.61) devient

S = −pC−1 + 2

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
I − 2

∂Φ

∂I2
C , (6.76)

où I3 ∂Φ/∂I3 = ∂Φ/∂I3 est remplacé par −p/2 avec p un paramètre du type
pression. Lorsque le tenseur de contrainte de Cauchy est utilisé pour un maté-
riau incompressible, la relation (6.63) devient

σ = −pI + 2

(
∂Φ

∂I1
+ I1

∂Φ

∂I2

)
c− 2

∂Φ

∂I2
c2 . (6.77)

De plus, lorsque la fonction d’énergie de déformation est exprimée en fonc-
tion des élongations principales, les relations constitutives (6.69), (6.71) et
(6.73) prennent la forme

Si = − p

λi
2 +

1

λi

∂φ

∂λi
Pi = − p

λi
+
∂φ

∂λi
et σi = −p+ λi

∂φ

∂λi
. (6.78)

Le paramètre p est une constante qui ne produit pas de travail pendant le
mouvement. Il est généralement identifié à une pression hydrostatique et il est
calculé à partir des équations d’équilibre et des conditions aux limites.

Il est souvent très utile d’exprimer les contraintes principales en fonction
des élongations principales. Ceci est facile à réaliser puisque pour un matériau
isotrope, les directions des contraintes principales et des élongations cöıncident.
En conséquence, puisque les valeurs principales du tenseur de déformation de
Cauchy c sont λ2

1, λ
2
2, λ

2
3, les contraintes principales résultent de (6.77)

σi = −p+ 2

(
∂Φ

∂I1
+
(
λ2

1 + λ2
2 + λ2

3

) ∂Φ

∂I2

)
λi

2 − 2
∂Φ

∂I2
λ4
i i = 1, 2, 3 . (6.79)
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6.5.2 Formes de la fonction d’énergie de déformation

L’équation de comportement est spécifiée une fois que la fonction d’énergie est
elle-même identifiée. Les conditions mathématiques imposées jusqu’à présent
sont fondées sur l’objectivité et l’isotropie. D’autres exigences peuvent prove-
nir du type de problème aux limites, de la configuration expérimentale et de
l’unicité de la solution. Généralement, on se base sur des développements mé-
thodologiques, des données expérimentales et/ou la microstructure du matériau
pour écrire explicitement la fonction d’énergie.

On a démontré auparavant que l’énergie de déformation d’un matériau
isotrope peut s’exprimer en fonction des trois invariants Ii (i = 1, 2, 3) ou
comme une fonction symétrique des élongations principales λ2

i (i = 1, 2, 3) de
C. En supposant que la fonction est de classe C∞, (6.56) peut s’écrire comme
une série infinie de puissances de I1 − 3, I2 − 3, I3 − 1

Φ(I1, I2, I3) =

∞∑
i, j, k=0

Cijk(I1 − 3)i(I2 − 3)j(I3 − 1)k , (6.80)

où Cijk sont les paramètres matériels, indépendants de la déformation. Dans
la configuration de référence, c’est-à-dire dans le cas d’un état sans contrainte
appliquée, I1 = I2 = 3, I3 = 1 et Φ(3, 3, 1) = C000 = 0. De plus, du point de
vue physique, la fonction d’énergie devrait être une fonction croissante de la
déformation telle que Φ(I1, I2, I3) ≥ 0. Alternativement, (6.80) peut s’écrire

Φ(I1, I2, I3) =

∞∑
i,j=0

Cij0(I1 − 3)i(I2 − 3)j +

∞∑
k=1

(I3 − 1)k . (6.81)

En pratique, seul un nombre limité de termes est nécessaire dans (6.80) ou (6.81)
pour décrire correctement la réponse en déformation d’une particule matérielle.
Pour les matériaux incompressibles, I3 = 1 et (6.80) ou (6.81) deviennent une
fonction des deux premiers invariants

Φ(I1, I2) =

∞∑
i,j=0

Cij(I1 − 3)i(I2 − 3)j . (6.82)

Pour obtenir un état non contraint pour une déformation nulle, le premier
coefficient C00 doit s’annuler. Remarquons que les paramètres matériels sont
nécessairement évalués par une expérience détaillée et des procédures d’identi-
fication, un processus qui devient plus difficile lorsque le nombre de paramètres
impliqués dans la fonction d’énergie de déformation s’accrôıt.

Dans le passé récent, un certain nombre de fonctions d’énergie ont été
proposées. Parmi celles-ci, nous en retenons quelques-unes pour les matériaux
incompressibles. La plus simple est celle du modèle néo-hookéen. Il résulte de
(6.82) pour (i, j) = (1, 0)

Φ(I1) = C10(I1 − 3) . (6.83)
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Ce modèle tire son origine de la théorie statistique des molécules de polymères
en élasticité du caoutchouc et donne des résultats satisfaisants pour des rap-
ports d’allongement inférieurs à 2. La constante est exprimée par C10 = nkBT
avec n le nombre de châınes par unité de volume, kB = 1,381 10−23 J K−1

la constante de Boltzmann et T la température absolue. Cette constante est
normalement reliée au module de cisaillement du matériau.

Un autre modèle très utilisé en élasticité du caoutchouc est connu comme la
fonction d’énergie de déformation de Mooney ou de Mooney-Rivlin. On l’obtient
à partir de (6.82) pour (i, j) = (1, 0) et (i, j) = (0, 1),

Φ(I1, I2) = C10(I1 − 3) + C01(I2 − 3) . (6.84)

Ce modèle a joué un rôle important dans le développement de l’élasticité non
linéaire. On peut l’utiliser pour des rapports d’allongement allant jusque 4.
Pour des rapports plus élevés, ce modèle devient incorrect.

Le modèle proposé par Valanis et Lander suppose que la fonction d’énergie
de déformation peut s’écrire comme la somme de trois parties dont chacune
d’entre elles est une fonction d’une seule élongation

φ(λ1, λ2, λ3) = ω(λ1) + ω(λ2) + ω(λ3) . (6.85)

Ici, ω(λi) note une fonction de λi (i = 1, 2, 3). La décomposition (6.85) corres-
pond à l’hypothèse de Valanis-Lander .

Une forme générale de la fonction d’énergie est due à Ogden [47]. On l’ex-
prime en fonction des élongations principales comme suit

φ(λ1, λ2, λ3) =

N∑
i=1

µi
αi

(
λαi

1 + λαi
2 + λαi

3 − 3
)
, (6.86)

où αi, µi sont des paramètres matériels. Ce modèle a été testé pour des états de
tension simple, biaxiaux et de cisaillement simple du caoutchouc. D’excellents
résultats ont été obtenus pour une large plage du rapport d’extension pour le
choix N = 3. Notons que les modèles ci-dessus mentionnés ainsi que beaucoup
d’autres disponibles dans la littérature sont des cas particuliers de (6.86). Il
se réduit au modèle néo-hookéen pour N = 1, α1 = 2 et en posant C10 =
µ1/2 et l’expression pour le premier invariant (6.57). On obtient la forme de
Mooney-Rivlin (6.84) pour N = 2, α1 = 2, α2 = −2 et en posant C10 = µ1/2,
C01 = −µ2/2 et l’expression pour les premier et second invariants (6.57). Nous
remarquons qu’avec l’hypothèse de Valanis-Lander, l’énergie de déformation
(6.86) prend la forme

φ(λ1, λ2, λ3) =

3∑
k=1

ω(λk) et ω(λk) =

N∑
i=1

µi
αi

(
λαi

k − 1
)
. (6.87)

Cette section se termine par la définition du modèle de Saint-Venant-Kirchhoff.

Par le théorème de représentation (1.140) et avec (6.55), nous pouvons
exprimer (6.61) comme

S = β0I + β1C + β2C
2 , (6.88)



192 Lois de comportement classiques

où les paramètres β0, β1, β2 sont fonctions scalaires des invariants (6.57). En
supposant que S = 0 dans la configuration de référence pour laquelle C = I,
on peut montrer que près de la configuration de référence

S = λ trE I + 2µE + o(E) , (6.89)

où E est le tenseur de déformation (2.82) et o(E) sont les termes d’ordre su-
périeur. Nous constatons qu’il n’y a que deux paramètres λ, µ dans l’approxi-
mation à l’ordre 1 ; ce sont les coefficients de Lamé .

Gabriel Lamé (1795-1870) naquit à Tours. Il est envoyé
avec Clapeyron à Saint-Pétersbourg pour y enseigner les
mathématiques appliquées et la physique aux élèves de
l’Ecole des voies de communication. De retour à Paris, il
est nommé professeur à l’Ecole Polytechnique et ensuite
à la Sorbonne. Ses principales contributions se situent en
mathématiques appliquées et en élasticité. Il a rédigé no-
tamment les Leçons sur la théorie mathématique de l’élas-

ticité des corps solides.

Fig. 6.2 Gabriel Lamé.

Il faut éviter de confondre cette constante λ avec le paramètre d’allonge-
ment puisque dans (6.89), on utilise le tenseur de déformation E et non les
invariants (6.57). Lorsqu’on annule le terme o(E), on obtient

S = λ trE I + 2µE (6.90)

qui est l’équation de constitution d’un matériau de Saint-Venant-
Kirchhoff . La relation (6.90) représente le modèle classique non linéaire pour
les matériaux hyperélastiques compressibles. Elle est adéquate pour l’analyse de
déformations relativement petites de matériaux élastiques, isotropes et homo-
gènes. On peut aussi l’appliquer à l’analyse non linéaire du point de vue géomé-
trique pour de grands déplacements avec les relations déplacement-déformation
données par (2.86). On peut montrer facilement qu’un tel matériau est hyper-
élastique avec la fonction d’énergie de déformation donnée par

Ŵ(E) =
λ

2

(
trE

)2
+ µ trE2 . (6.91)

On peut aussi exprimer (6.90) en fonction du premier tenseur de Piola-Kirchhoff
en utilisant (3.152)

P = FS = λ(trE)F + 2µFE . (6.92)

6.5.3 Exemples d’états de contraintes simples

Dans cette section, nous exprimons le tenseur de Cauchy (6.79) pour quelques
cas simples de charges appliquées à un matériau isotrope incompressible. Le
lecteur est renvoyé à l’ouvrage [65] pour des exemples de matériaux compres-
sibles.
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Extension biaxiale

Ce type de mouvement se rencontre dans le cas des plaques minces avec une
charge plane dans deux directions orthogonales et il est défini de telle sorte
que nous ayons deux élongations principales indépendantes λ1, λ2 et par (6.74)
λ3 = λ−1

1 λ−1
2 . Les contraintes correspondantes sont σ1, σ2 6= 0 et σ3 = 0.

Portant σ3 = 0 dans (6.79), on obtient pour le paramètre p

p = 2
1

λ2
1λ

2
2

∂Φ

∂I1
+ 2

λ2
1 + λ2

2

λ2
1λ

2
2

∂Φ

∂I2
. (6.93)

En introduisant (6.93) dans (6.79) et après quelques manipulations algébriques,
on écrit les expressions suivantes pour les contraintes

σ1 = 2

(
λ2

1 −
1

λ2
1λ

2
2

)(
∂Φ

∂I1
+ λ2

2

∂Φ

∂I2

)
σ2 = 2

(
λ2

2 −
1

λ2
1λ

2
2

)(
∂Φ

∂I1
+ λ2

1

∂Φ

∂I2

)
.

(6.94)

Extension équibiaxiale

Ce type de mouvement est un cas particulier du cas précédent avec σ1 = σ2 et
σ3 = 0. Par conséquent, λ1 = λ2 = λ et σ1 = σ2 = σ. En utilisant (6.94), la
contrainte σ devient

σ = 2

(
λ2 − 1

λ4

)(
∂Φ

∂I1
+ λ2 ∂Φ

∂I2

)
. (6.95)

Pareil chargement se rencontre dans une coque sphérique sous pression où les
deux contraintes tangentes au plan milieu de la coque sont égales et la troisième
contrainte, normale à la surface de la coque, est considérée comme nulle.

Extension uniaxiale

Lorsque le matériau est chargé dans une seule direction, on a λ1 = λ et par la
condition d’incompressibilité λ2 = λ3 = λ−1/2. Les contraintes sont σ1 = σ et
σ2 = σ3 = 0. Avec ces valeurs des paramètres et (6.94), nous obtenons

σ = 2

(
λ2 − 1

λ

)(
∂Φ

∂I1
+

1

λ

∂Φ

∂I2

)
. (6.96)

Inflation d’un ballon

Comme exemple de l’hyperélasticité, nous allons traiter le cas de l’inflation d’un
ballon fait dans un matériau caoutchouteux. Quoiqu’on puisse utiliser l’un des
modèles introduits précédemment, nous utiliserons ici les modèles néo-hookéen
et de Mooney-Rivlin pour décrire la pression dans un ballon sphérique comme
une fonction du rapport d’extension. On supposera que le matériau est isotrope
et incompressible. Le ballon sphérique a une épaisseur initiale ei et un rayon R
tel que R � ei. Dans la configuration déformée, l’épaisseur et le rayon sont e
et r, respectivement ainsi qu’on peut le voir à la figure 6.3.
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σσ

O

σ2 = σ

σ1 = σ

ei, e

pi

x2 R, r

rA
R

D

C

B

x1

x3

Fig. 6.3 Inflation d’un ballon : (a) géométrie et (b) conditions aux limites.

Grâce à la symétrie sphérique de la charge et de la géométrie, les deux
contraintes principales sont égales σ1 = σ2 = σ et la troisième est σ3 = 0.
Donc, l’état de contrainte est équibiaxial. Pour relier la pression interne pi avec
la contrainte σ, considérons l’équilibre d’une demi-sphère dans la configuration
déformée. La projection de la force due à la pression sur le plan passant par le
centre est en équilibre avec les contraintes dans l’épaisseur du ballon πr2pi =
2πreσ, d’où nous obtenons

pi = 2
e

r
σ . (6.97)

Pour décrire la déformation du ballon, nous définissons le rapport d’exten-
sion par λ = r/R. La condition d’incompressibilité du matériau s’exprime en
posant l’égalité du volume matériel dans les configurations déformée et non
déformée, c’est-à-dire 4πr2e = 4πR2ei. Donc

e

ei
=

1

λ2
. (6.98)

Combinant les expressions ci-dessus on obtient pour le modèle néo-hookéen

σ = 2

(
λ2 − 1

λ4

)
∂Φ

∂I1
= 2C10

(
λ2 − 1

λ4

)
(6.99)

et la pression

pi(λ) = 4C10
ei
R

1

λ

(
1− 1

λ6

)
. (6.100)

En tenant compte de C10 = ∂Φ/∂I1 et C01 = ∂Φ/∂I2 dans le modèle de
Mooney-Rivlin, nous obtenons pour la contrainte

σ = 2

(
λ2 − 1

λ4

)(
C10 + λ2C01

)
. (6.101)
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En utilisant (6.101) et (6.98) dans (6.97), on obtient

pi(λ) = 4C10
ei
R

1

λ

(
1− 1

λ6

)(
1 + ηλ2

)
(6.102)

avec η = C01/C10. En posant ei/R = 0,01, la pression normalisée pi(λ)/C10

selon (6.102) est montrée à la figure 6.4 en fonction du rapport λ pour des
valeurs différentes de η. La courbe correspondant au cas η = 0 représente le
modèle néo-hookéen (6.100).

0,16

0,14

0,12

0,10

0,08

0,06

0,04

0,02

0,5

p
re

ss
io

n
 n

o
rm

a
li
sé

e

élongation principale

0,15

0,10

0,04
0,02
0

1 3 4 5 6 72

η

Fig. 6.4 Pression normalisée dans un ballon en fonction du rapport d’extension pour
différentes valeurs de η.

6.6 Elasticité linéaire infinitésimale

Comme dans beaucoup de cas, les déplacements et les déformations des so-
lides élastiques sont petits, on utilise une théorie linéarisée dans le cadre des
petits déplacements et des déformations infinitésimales. Ces notions ont été
introduites à la section 2.9.

L’élasticité classique est donc une théorie linéarisée autour de l’état naturel
du matériau considéré comme homogène et isotrope. Dans ce cas, on a démon-
tré que la différence entre les tenseurs de déformation de Green-Lagrange et
d’Euler-Almansi est proportionnelle à des termes d’ordre 2, qui sont négligés
dans la linéarisation. On introduit dès lors le tenseur de déformation infinité-
simale ε défini par (2.150), tel que

εij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
=

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6.103)



196 Lois de comportement classiques

En vertu de cette approximation, les tenseurs de Piola-Kirchhoff se réduisent au
tenseur de Cauchy σ (sect. 3.9). De plus, le principe d’objectivité est satisfait
(sect. 2.11). Au vu de ces linéarisations, les équations de Saint-Venant-Kirchhoff
deviennent

σ = λ tr εI + 2µε , (6.104)

où les coefficients scalaires λ et µ sont les coefficients d’élasticité de Lamé,
dont les dimensions sont une force par unité de surface (Pa). Donc, l’élasticité
linéaire relie la contrainte à la déformation par une relation linéaire connue sous
le nom de loi de Hooke .

Robert Hooke (1635-1703) naquit à Freshwater sur l’̂ıle de
Wight. Le portrait ci-dessus est une représentation d’ar-
tiste. Il fut un scientifique d’abord expérimentateur. Il a
contribué aux domaines de l’architecture, de la mécanique,
de la chimie, de la physique, etc. Il est surtout célèbre pour
la loi d’élasticité (ut tensio, sic vis).

Fig. 6.5 Robert Hooke.

Il est très facile d’inverser la relation (6.104) afin d’obtenir ε en fonction de σ.
La trace de σ s’obtient par

σmm = (3λ+ 2µ)εmm . (6.105)

Avec (6.104) et (6.105), on obtient

ε =
−λ

2µ(3λ+ 2µ)
trσI +

σ

2µ
. (6.106)

Cette relation n’existe que si

3λ+ 2µ 6= 0 et µ 6= 0 . (6.107)

L’équation (6.106) peut également s’écrire

ε = − ν
E

trσ I +
(1 + ν)

E
σ (6.108)

avec E le module de Young (Pa) et ν le coefficient de Poisson sans dimension.
Ces derniers coefficients sont liés à ceux de Lamé par les relations

E =
µ(3λ+ 2µ)

λ+ µ
ν =

λ

2(λ+ µ)
. (6.109)

Le tableau 6.2 donne les valeurs du module de Young, du coefficient de
Poisson et de la masse volumique de quelques matériaux élastiques utilisés
dans l’ingénierie.
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Tableau 6.2 Constantes matérielles de solides élastiques.

E (Pa) ν ρ (kg/m3)

acier 200 109 0,27 7 850

verre 69 109 0,19 2 500

caoutchouc 0,05 109 0,50 850

Nous allons donner une interprétation des coefficients d’élasticité en consi-
dérant quelques cas simples. Le premier exemple est celui de la traction simple
(fig. 6.6). Soit une barre soumise à la traction dans la direction x1. On suppose
que les faces latérales de la barre sont libres et qu’aucune force de contact n’agit
sur elles.

x2

x1

e2

e1O

σ11 σ11

Fig. 6.6 Traction simple.

Le tenseur des contraintes n’a qu’une seule composante non nulle, à savoir
σ11. Pour calculer les déformations, on utilise les équations (6.106). On obtient

ε11 =
λ+ µ

µ(3λ+ 2µ)
σ11

ε22 = ε33 = − λ

2µ(3λ+ 2µ)
σ11 = − λ

2(λ+ µ)

λ+ µ

µ(3λ+ 2µ)
σ11

ε12 = ε23 = ε31 = 0 .

(6.110)

Avec (6.109), les relations (6.110) deviennent

ε11 =
1

E
σ11 ε22 = ε33 = − ν

E
σ11 = −νε11 . (6.111)

Le coefficient de Poisson correspond donc au rétrécissement latéral de l’échan-
tillon soumis à la traction. On peut exprimer les coefficients de Lamé en fonction
de E et ν. Il vient en inversant (6.109)

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
. (6.112)

Le module E est positif car l’expérience montre que si σ11 > 0, ceci entrâıne
que ε11 est positif. La pièce s’allonge sous l’effet d’une traction. L’expérience
montre aussi que ν est positif.
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x2

x1

e2

e1O

σ12 σ12

σ12

σ12

Fig. 6.7 Cisaillement simple.

Le second exemple est celui du cisaillement d’un bloc (fig. 6.7) tel que le
tenseur des contraintes s’écrit

σ12 = σ21 (6.113)

avec
σij = 0 ∀(i, j) 6= (1, 2) et (2, 1) .

Le tenseur des déformations (6.106) avec (6.113) donne

ε12 = ε21 =
σ12

2µ
, (6.114)

les autres composantes étant nulles. Comme la composante ε12 donne la moitié
du complément de l’angle formé après déformation par des fibres initialement
orientées suivant les directions x1 et x2 par (2.158), on a

σ12

µ
= φ12 . (6.115)

On appelle le coefficient de Lamé µ module de cisaillement ou encore mo-
dule de rigidité au glissement .

Le troisième exemple est celui d’une contraction locale uniforme telle que
le tenseur des contraintes soit sphérique (diagonal) avec

σij = −p δij , (6.116)

où la pression est notée p. Alors par (6.106), on calcule

εij = − p

(3λ+ 2µ)
δij (6.117)

ou encore

p = −1

3
(3λ+ 2µ)εkk = −Kεkk . (6.118)

Le coefficient défini par l’égalité

K =
(3λ+ 2µ)

3
=

1

3

E

1− 2ν
(6.119)

est le module de compressibilité ou module de rigidité à la dilatation .
Pour une valeur de pression donnée, la variation volumique εkk sera d’autant
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plus petite que K est grand. L’expérience montre que K est positif, ce qui
conduit à ν ≤ 0,5. Le cas particulier ν = 1/2 est celui du matériau élastique
incompressible pour lequel K →∞. Un exemple de ce dernier type de matériau
est le caoutchouc qu’on traite comme incompressible.

6.7 Conduction de la chaleur

On a vu au paragraphe 5.4.1 que le flux de chaleur s’écrit

q(X, t) =Q(χ, T,X, t) . (6.120)

En appliquant tous les principes généraux des lois de comportement, on aboutit
à l’équation

q(X, t) =Q
(
F , T,

∂T

∂X
, X

)
. (6.121)

On constate que le flux de chaleur dépend du gradient de température. Lors-
qu’on étudie le transfert de chaleur par conduction dans les fluides et les so-
lides, on peut montrer que q dépend essentiellement du gradient de température
∂T/∂X et peu de F . Ceci est d’ailleurs corroboré par l’expérience. On devrait
donc écrire en représentation eulérienne

qi = Kil
∂T

∂xl
. (6.122)

Cependant, on peut spécialiser l’équation (6.122) au cas où le flux de chaleur
est donné par la loi de Fourier avec Kil = −k δil

q = −k(T )∇T qi = −k ∂T
∂xi

. (6.123)

Le coefficient k est le coefficient de conductibilité thermique. Ses unités sont
exprimées en W m−1 K−1. La loi de Fourier est valable aussi bien pour un
fluide que pour un solide.

Joseph Fourier (1768-1830) naquit à Auxerre. Elève
brillant de l’Ecole Polytechnique, il y est nommé pro-
fesseur à l’âge de 16 ans. Il participe à la campagne
d’Egypte avec Champollion. Revenu en France, Napoléon
le nomme préfet de l’Isère. Elu à l’académie des Sciences
en 1817, il en devient le secrétaire perpétuel en 1822.
Fourier a rédigé la Théorie analytique de la chaleur, où il
introduit l’équation aux dérivées partielles de la diffusion
de la chaleur. Il la résout par les séries de fonctions

périodiques qui portent son nom.

Fig. 6.8 Joseph Fourier.
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6.8 Second principe de la thermodynamique

pour les fluides visqueux

L’application de (4.83) aux fluides visqueux newtoniens se fait en y introduisant
les formes (6.14) pour le champ de contraintes et (6.123) pour le flux de chaleur
par conduction. Nous y ajoutons celles de l’énergie interne massique u et de
l’entropie massique s, prises comme fonctions de la température T et de la
masse volumique ρ uniquement. Nous allons établir la relation d’état :

ρ(du− T ds)− p

ρ
dρ = 0 . (6.124)

On se propose également de montrer que les trois coefficients κ, µ et k doivent
toujours être positifs, avec le coefficient κ défini par

κ =
1

3
(3λ+ 2µ) . (6.125)

A cet effet, nous admettrons le postulat suivant.

Postulat

L’inégalité de Clausius-Duhem (4.83) est satisfaite à tout instant, pour des
histoires arbitraires et indépendantes de la température, de la masse volumique,
du taux de déformation déviatoire dd et du gradient thermique (∂T/∂x).

Ces grandeurs sont appelées les variables thermodynamiques du modèle.
Leur histoire, c’est-à-dire l’expression de leurs valeurs en fonction du temps,
pour un point matériel donné, est appelé le processus thermodynamique .
On remarquera que les équations de constitution expriment σij , qi, u et s
en fonction du processus thermodynamique (l’histoire de ρ donnant celle de
trd, par la conservation de la masse). Considérons tout d’abord les relations
suivantes (sous forme indicielle)

ddij = dij −
1

3
dmm δij (6.126)

∂vi
∂xi

= dii = −1

ρ

Dρ

Dt
(6.127)

ddij d
d
ij = ddij

(
dij −

1

3
dmm δij

)
= ddij dij

puisque trdd = 0. L’équation de constitution (6.14) peut se réécrire par (6.125)
et (6.126)

σij = −p δij + κ dkk δij + 2µddij . (6.128)

On peut alors tirer de (4.24), (6.128) et (6.123) le développement

σji
∂vi
∂xj
− qi
T

∂T

∂xi

= −p dii + κ (dmm)2 + 2µddij d
d
ij +

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
=
p

ρ

Dρ

Dt
+ κ (dmm)2 + 2µddij d

d
ij +

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
.

(6.129)
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L’inégalité de Clausius-Duhem (4.83) s’écrit donc sous la forme suivante, valable
pour tous les fluides visqueux newtoniens,

ρ

(
Du

Dt
− T Ds

Dt

)
− p
ρ

Dρ

Dt
≤ κ (dmm)2 +2µddij d

d
ij+

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
. (6.130)

Cette inégalité doit être satisfaite pour un processus thermodynamique quel-
conque (dans les limites d’application du modèle). Dès lors, on peut aussi exiger
qu’elle soit vérifiée à tout instant quelconque, quelles que soient les variables
thermodynamiques

(
T, ρ, ddij , ∂T/∂xi

)
et leurs dérivées matérielles (éq. (6.1)

et (6.6)). Soient T̂ , ρ̂, d̂dij , T̂ ,i des valeurs fixées des variables thermodynamiques

et ̂̇T , ̂̇ρ, . . ., celles de leurs dérivées matérielles. On doit donc avoir, par déve-
loppement en série de Taylor par rapport au temps autour des valeurs fixées,
l’inégalité (6.130)

E ≡ ρ̂
(
∂u

∂ρ
− T ∂s

∂ρ

)
(T̂ ,ρ̂)

̂̇ρ
+ ρ̂

(
∂u

∂T
− T ∂s

∂T

)
(T̂ ,ρ̂)

̂̇T − p(T̂ , ρ̂)

ρ̂
̂̇ρ

≤ κ
(
−
̂̇ρ
ρ̂

)2

+ 2µ d̂dij d̂
d
ij +

k

T̂
T̂ ,iT̂ ,i . (6.131)

D’après le postulat adopté, on peut, en ne changeant pas T̂ , ρ̂, ̂̇T et ̂̇ρ, annuler
les grandeurs arbitraires d̂dij et T̂ ,i dans (6.131) ce qui revient à considérer
un processus thermodynamique identique, mais sans flux de chaleur ni taux
de déformation déviateur au point matériel suivi. On a donc aussi l’inégalité
suivante :

E ≤ κ
(
−
̂̇ρ
ρ̂

)2

. (6.132)

On peut ensuite, suivant le même postulat, multiplier ̂̇T et ̂̇ρ par une quantité
arbitraire ε positive ou négative, sans changer T̂ ni ρ̂ (ce qui revient à ralentir le
processus à l’instant étudié ou à considérer un processus lent de sens opposé).
On obtient ainsi, pour tout ε ∈ R, l’inégalité

εE ≤ ε2κ

(
−
̂̇ρ
ρ̂

)2

,

et donc obligatoirement l’égalité

E =

(
ρ

(
Du

Dt
− T Ds

Dt

)
− p

ρ

Dρ

Dt

)
(T̂ ,ρ̂,̂̇T ,̂̇ρ) = 0 . (6.133)

En mettant (6.133) sous forme différentielle, on trouve la relation (6.124) cher-
chée. Dès le moment où (6.124) est satisfaite, le membre de gauche de (6.131)
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devient identiquement nul. Pour que le membre de droite soit toujours positif,
il faut et il suffit que les coefficients κ, µ et k soient positifs. En effet, on est en
présence d’une combinaison linéaire de carrés d’expressions indépendantes, qui
doit être une forme quadratique définie positive, et donc à coefficients positifs.

Le membre de droite de l’inégalité (6.130),

κ (dmm)2 + 2µddij d
d
ij +

k

T

(
∂T

∂xi

)(
∂T

∂xi

)
, (6.134)

mesure l’irréversibilité locale du processus étudié.

6.9 Thermodynamique du gaz idéal

Dans cette section, nous établissons les liens entre la thermodynamique des
milieux continus et la thermodynamique classique. Pour cette dernière, nous
nous référons à l’ouvrage de L. Borel et D. Favrat [7].

Introduisons la définition de l’enthalpie massique

h = u+
p

ρ
(6.135)

pour un fluide visqueux newtonien.

L’équation de constitution (6.12), complétée par l’hypothèse consistant à
admettre que l’énergie interne massique ne dépend pas de la masse volumique
et donc u = u(T ), fournit le modèle du gaz idéal. Ce gaz qui satisfait la loi de
Boyle-Mariotte, à savoir « à température constante, le produit de la pression p
par le volume V est constant », est parfois appelé gaz parfait dans les ouvrages
de thermodynamique classique. Cette dénomination prête à confusion avec le
fluide parfait (sans viscosité) et nous ne l’emploierons pas pour cette raison.
On déduit de (6.135) qu’il en va de même pour l’enthalpie massique, de sorte
qu’on a les relations

p = ρRT (6.136)

u = u(T ) (6.137)

h = h(T ) . (6.138)

Si on introduit la notion de volume spécifique v = 1/ρ, l’équation d’état (6.136)
correspond à la relation pv = cste dans un processus isotherme. Par dérivation,
on définit les chaleurs massiques (ou chaleurs spécifiques) à volume et pression
constants

du = cv(T ) dT dh = cp(T ) dT . (6.139)

D’autre part, la dérivation de (6.135) en tenant compte de (6.136) et (6.137)
mène à la relation

dh = du+RdT , (6.140)
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dont on tire
cp(T )− cv(T ) = R . (6.141)

La constante R est celle du gaz idéal (parfait) exprimée en J kg−1 K−1. Diverses
expressions de ds se trouvent en combinant (6.124) et (6.137) :

ds =

 cv d(log T )−Rd(log ρ)
cp d(log T )−Rd(log p)
cv d(log p)− cp d(log ρ) .

(6.142)

Notons que l’observation physique révèle que les coefficients de viscosité et
de conduction thermique ne dépendent généralement que de la température
absolue, pour un gaz idéal.

Des simplifications importantes peuvent être faites si on suppose que, pour
un certain intervalle de températures, les chaleurs massiques sont invariables.
Dans ce cas, on peut écrire à des constantes d’intégration près, dans cette
intervalle de températures les relations

u = cvT (6.143)

h = cpT (6.144)

s = cv log p− cp log ρ .

Un écoulement isentropique est alors tel que

p

ργ
= cste (6.145)

avec la définition du rapport calorifique :

γ =
cp
cv
. (6.146)

Le fluide en écoulement isentropique est un fluide barotrope pour lequel la masse
volumique est fonction uniquement de la pression telle que ρ = ρ(p). Dans ce
cas, on montre facilement la relation

1

ρ(p)
∇p =∇

∫
dp

ρ(p)
. (6.147)

En effet, pour une fonction f(p) donnée, on a

∇ f(p) =
df

dp
∇p (6.148)

Posant

f(p) =

∫
dp

ρ(p)
(6.149)

alors il vient
df

dp
=

1

ρ(p)
. (6.150)
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Enfin, toujours à une constante près, on peut écrire

h =
cp
R

p

ρ
=

γ

γ − 1

p

ρ
. (6.151)

La vitesse du son a est définie par la relation

a2 =
∂p

∂ρ

∣∣∣∣
s

. (6.152)

Dans le cas particulier du gaz idéal, (6.152) prend, à l’aide de (6.145), la forme

a2 = γ
p

ρ
, (6.153)

de sorte qu’on peut tirer de (6.151) la relation, vérifiée à une constante près

h =
a2

γ − 1
. (6.154)

Dans le cas de l’air considéré comme un gaz idéal, on a les constantes
suivantes : Rair = 287 J kg−1 K−1, γair = 1, 401, cp = 1006 J kg−1 K−1 à 300
K. L’air conduit la chaleur comme le prédit la loi de Fourier (6.123) avec k =
0, 0262 W m−1 K−1. La vitesse du son dans l’air vaut 340 m s−1 à température
ambiante ; par comparaison, celle dans l’eau de mer est d’environ 1500 m s−1.

6.10 Second principe de la thermodynamique pour

les milieux élastiques classiques

Nous nous plaçons dans le cadre des solides élastiques décrits par la théorie
linéaire infinitésimale. Dans ce cas, le matériau conserve sa forme originale
après déformation. Si on se restreint aux petites déplacements, l’énergie interne
et l’énergie libre définies par la relation (4.84) sont de la forme

u = u(ε, T ) f = f(ε, T ) . (6.155)

L’élasticité classique fait l’hypothèse de la réversibilité des phénomènes thermo-
dynamiques, étant donné que le solide élastique ne subit pas de déformations
permanentes. Dès lors, l’inégalité de Clausius-Duhem devient une égalité, à
savoir

ρ

(
Du

Dt
− T Ds

Dt

)
= σ :∇v − 1

T
q ·∇T . (6.156)

Faisons l’hypothèse d’un processus adiabatique (q = 0). La relation (6.156)
devient, puisque pour des petits déplacements d = ε̇

ρ

(
Du

Dt
− T Ds

Dt

)
= σ : ε̇ = ρ

(
Df

Dt
+ s

DT

Dt

)
. (6.157)
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De la deuxième égalité de (6.157), on tire

1

ρ
σ dε− s dT = df . (6.158)

Il s’ensuit que sous forme indicée, on a

1

ρ
σij =

∂f

∂εij
s = − ∂f

∂T
. (6.159)

L’énergie libre est donc un potentiel pour le tenseur −σ/ρ et pour l’entropie
s. Si on réduit la dépendance de f à εij en ne considérant que des processus
isothermes, alors on peut développer f au voisinage de l’état naturel du milieu
élastique. On a

f = f0 +
∂f

∂εij

∣∣∣∣
0

εij + · · · , (6.160)

où l’indice zéro note l’état naturel non contraint. Par (6.159)1, les coefficients
du terme linéaire sont nuls (σij |0 = 0) . Donc, (f − f0) est d’ordre 2 en εij , et
dans l’identité

∂

∂εij

(
ρ(f − f0)

)
= ρ

∂f

∂εij
+ (f − f0)

∂ρ

∂εij
, (6.161)

le second terme du second membre qui serait au moins d’ordre 2 doit être
négligé par la théorie linéaire. Donc on peut considérer ρ comme une constante.
La première relation de (6.159) peut s’écrire alors

σij =
∂W

∂εij
(6.162)

avec

W = ρ(f − f0) , (6.163)

l’énergie de déformation par unité de volume avec σij et εij comme paramètres
conjugués correspondants. Avec l’équation (6.104), le potentiel d’énergie W
peut se mettre sous la forme

W =
λ

2
εiiεkk + µεijεij . (6.164)

6.11 Thermoélasticité

On fera l’hypothèse de petits déplacements ainsi que de petites déviations par
rapport à une température de référence T0. Comme nous élaborons une théorie
approchée, nous allons développer f(ε, T ) en série de Taylor au voisinage de
ε = 0 et T = T0 et la tronquer après les termes quadratiques. Comme la relation
(6.163) donne des contraintes nulles pour ε = 0 et T = T0, le développement
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ne contient pas de terme linéaire en ε seul. Il est approprié de travailler sur ρf
plutôt que sur f . On a

ρf = ρf0 − ρs0(T − T0) +
λ

2
εiiεkk

+ µεijεij + εijcij(T − T0)− ρc

2T0
(T − T0)2 ,

(6.165)

expression dans laquelle les coefficients f0, s0, cij et c sont encore à déterminer
et les facteurs ρ et ρ/T0 ont été ajoutés pour simplifier les développements
ultérieurs. Si on applique (6.165) au cas ε = 0 et T = T0, on constate que f0

est l’énergie libre de l’état naturel.

Si on impose l’isotropie du matériau élastique, le tenseur cij doit être iso-
trope et de la forme a δij avec a un scalaire. Prenant ce scalaire a = −(3λ+2µ)α
avec α à déterminer, on obtient

cijεij(T − T0) = −(3λ+ 2µ)αεkk(T − T0) . (6.166)

Calculons σij par la relation (6.159) appliquée à (6.165), (6.166). Il vient

σij = ρ
∂f

∂εij
= λεkk δij + 2µεij − (3λ+ 2µ)α(T − T0) δij . (6.167)

C’est la généralisation de la loi de Hooke (6.104). On peut inverser la relation
pour obtenir ε en fonction de σ

ε =
1

2µ

(
σ +

(
2µα(T − T0)− λ

3λ+ 2µ
tr σ

)
I

)
. (6.168)

Cette relation est semblable à (6.106) à l’exception du terme additionnel α(T −
T0) δij qui provient des effets thermiques. Il correspond à une extension uni-
forme α(T − T0) dans toutes les directions, c’est-à-dire à une dilatation du
volume 3α(T − T0). Le coefficient α est le coefficient d’expansion thermique. Il
a les dimensions de l’inverse d’une température.

Si maintenant on applique (6.159)2 à (6.165) et (6.166), on peut évaluer
l’entropie

ρs = −ρ ∂f
∂T

= ρs0 + (3λ+ 2µ)αεkk +
ρc

T0
(T − T0) . (6.169)

La quantité s0 est l’entropie de l’état naturel.

Ayant évalué f et s respectivement par (6.165) et (6.169), on peut obtenir
l’énergie interne

ρu = ρ(f + Ts)

= ρu0 +
λ

2
(tr ε)2 + µε : ε+ (3λ+ 2µ)αT0 tr ε+

ρc

2T0
(T 2 − T 2

0 )
(6.170)

avec u0 l’énergie interne de l’état naturel. L’équation (6.170) montre que l’éner-
gie interne ne peut pas être obtenue simplement par la combinaison linéaire de
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l’énergie de déformation (trois premiers termes du membre de droite de (6.170))
et d’une énergie thermique (dernier terme dans (6.170)). Sa structure est plus
compliquée et implique un couplage entre les effets mécaniques et les effets ther-
miques. En calculant la dérivée partielle de u par rapport à la température, on
obtient

∂u

∂T

∣∣∣∣
T0

= c (6.171)

qui est la chaleur massique à la température T = T0.

6.12 Exercices

6.1 Démontrer la relation Ċ = 2d de l’équation (6.2) valable pour le fluide
simple.

6.2 Exprimer l’équation d’énergie (4.23) pour le cas du fluide visqueux new-
tonien (6.14).

Simplifier cette expression pour le cas du fluide parfait. Si le fluide parfait
est un gaz idéal, que devient l’équation d’énergie ?

6.3 Exprimer l’équation d’énergie (4.23) pour le cas du fluide visqueux new-
tonien incompressible (6.16).

Simplifier cette expression pour le cas du fluide parfait.

6.4 Démontrer que

1) les tenseurs U,C, S ont les mêmes vecteurs propres ;

2) les tenseurs V, c et σ ont les mêmes vecteurs propres.

6.5 A partir de (6.61), (3.152) et les relations (2.88)-(2.90), démontrer la re-
lation (6.63).

6.6 Utiliser l’équation de Cayley-Hamilton (1.123) pour montrer que les rela-
tions des contraintes (6.61) et (6.63) peuvent s’écrire

S = 2

((
∂Φ

∂I1
+ I1

∂Φ

∂I2
+ I2

∂Φ

∂I3

)
I −

(
I1
∂Φ

∂I3
+
∂Φ

∂I3

)
C +

∂Φ

∂I3
C2

)
(6.172)

σ = 2J−1

((
I2
∂Φ

∂I2
+ I3

∂Φ

∂I3

)
I +

∂Φ

∂I1
c− I3

∂Φ

∂I2
c−1

)
. (6.173)

6.7 En utilisant (6.80), démontrer que l’énergie s’annule dans la configuration
de référence lorsque C000 = 0 et qu’elle est indépendante de la contrainte lorsque
les coefficients satisfont la condition C100 + 2C010 + C001 = 0.

6.8 En utilisant les expressions des invariants (6.57) et la relation (1.144),
démontrer les deux premières égalités de (6.59).
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6.9 Pour le modèle néo-hookéen, trouver le rapport d’extension pour lequel la
pression maximale est obtenue dans le cas d’un ballon soumis à une pression
interne (6.100).

6.10 Utiliser le modèle de Ogden (6.86) pour exprimer les composantes des
contraintes pour les cas d’extension uniaxiale, biaxiale et équibiaxiale d’un ma-
tériau incompressible. Avec le choix N = 3 et les paramètres matériels α1 = 1,3,
α2 = 5, α3 = −2, µ1 = 0,63 M Pa, µ2 = 0,0012 M Pa, µ3 = −0,01 M Pa, dessi-
ner les composantes des contraintes en fonction des élongations correspondantes
pour les extensions uniaxiales et équibiaxiales.

6.11 Calculer l’énergie libre d’une barre faite d’un matériau élastique linéaire
soumise à un effort de traction simple σ11.

6.12 Calculer les déformations induites dans une barre rectiligne de longueur
L suivant l’axe x1 où règne un champ de température T = T0 + (T1−T0)x1/L.

6.13 Etant donné la loi de conduction de Fourier et l’équation d’état de gaz
idéal pour un fluide parfait compressible, on demande d’écrire l’équation de
conservation de l’énergie en faisant apparâıtre la température comme inconnue
principale du problème.

6.14 La loi de Hooke (6.104) sous forme indicée s’écrit

σij = λ εkk δij + 2µ εij . (6.174)

1) Décomposons les tenseurs de contrainte et de déformation en leur parties
déviatoire et hydrostatique

σij = σdij + σ0δij σ0 =
1

3
σkk σdij = σij −

1

3
σkkδij (6.175)

εij = εdij + ε0δij ε0 =
1

3
εkk εdij = εij −

1

3
εkkδij . (6.176)

Montrer que (6.174) est équivalente à l’écriture

σdij = 2µεdij σ0 = 3Kε0 , (6.177)

où le module de compressibilité K a été défini en (6.119).

2) Montrer que les axes principaux des tenseurs de contraintes et de déforma-
tion cöıncident.

3) Montrer que le potentiel d’énergie de déformation est

W (ε) =
1

2
λ(εkk)2 + µεijεij =

9

2
K(ε0)2 + µεdijε

d
ij . (6.178)

4) Montrer que la condition de stabilité W (ε) > 0 ∀ε 6= 0 revient à imposer
les conditions K > 0 et µ > 0.
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6.15 En l’absence des force d’inertie et de volume, un corps ω soumis à une
déformation infinitésimale répond par le champ de contrainte σij . Montrer que
pour tout champ de déformation infinitésimal compatible, c’est-à-dire tel que
l’équation (6.103) est vérifiée, on a∫

ω

σijεij dV =

∫
∂ω

tiui dS . (6.179)

6.16 On considère un solide de Hooke dont la relation contrainte-déformation
est donnée par (6.104) et son inverse par (6.106).

1) Si l’état de contrainte est celui d’une compression hydrostatique, c’est-à-
dire

σij = σ δij , (6.180)

montrer que l’état de déformation correspondant est donné par

εij = ε δij ε =
σ

3K
(6.181)

avec K défini en (6.119).

2) Si l’état de déformation est celui d’un cisaillement simple, c’est-à-dire

εij =
1

2
γ(minj +mjni) mimi = nini = 1 mini = 0 , (6.182)

montrer que l’état de déformation correspondant est donné par

σji = τ(minj +mjni) τ = µγ . (6.183)

Donc µ est aussi appelé le module de rigidité au glissement.

3) Si l’état de contrainte est celui d’une traction simple, c’est-à-dire

σij = σninj nini = 1 , (6.184)

montrer que l’état de déformation correspondant est donné par

εij = εnninj + εT (δij − ninj) εn =
σ

E
εT = −νεn , (6.185)

où on retrouve le module de Young et le coefficient de Poisson définis en
(6.109).





Chapitre 7

Introduction à la mécanique

des solides

7.1 Introduction

Dans un problème typique de mécanique des solides, on s’intéresse au calcul
des déplacements, des déformations et des contraintes (qui sont, en général,
des fonctions du temps) en tout point du corps. Il arrive souvent que le com-
portement contrainte-déformation de nombreux matériaux soit non linéaire,
inélastique et anisotrope. La formulation mathématique correspondante appa-
râıt donc difficile. Plusieurs théories ont été développées et sont actuellement
utilisées en ingénierie. Parmi ces approches, on citera l’élasticité linéaire et
non linéaire, la viscoélasticité, la plasticité et la viscoplasticité. Leur dévelop-
pement a été stimulé par l’utilisation de matériaux nouveaux. Chacune de ces
approches vise à modéliser certains aspects spécifiques du comportement des
matériaux. En mécanique des solides, une des formes les plus simples des re-
lations contraintes-déformations est le cas de la dépendance linéaire entre les
contraintes et les déformations. De telles relations linéaires sont présentes dans
tous les matériaux pour les faibles niveaux de charge ou de déplacement et
fournissent souvent des solutions satisfaisantes. Il convient de souligner que la
théorie de l’élasticité linéaire constitue la base de la mécanique des solides.
En effet, pour un grand nombre de matériaux, comme les métaux ou les cé-
ramiques, les déformations restent petites et satisfont la loi de Hooke lorsque
les forces appliquées ne sont pas trop grandes. En outre, l’étude de l’élasticité
linéaire se justifie comme étant préliminaire à l’étude de l’élasticité non linéaire
ou de phénomènes dissipatifs comme la viscoélasticité et l’élastoplasticité. Dans
ce chapitre, on présentera des éléments de la théorie de l’élasticité linéaire d’un
matériau homogène et isotrope et des exemples représentatifs.

On trouvera des compléments de lecture dans les ouvrages suivants : [12,
13, 31, 40, 42, 55, 59, 60, 65].
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7.2 Equations fondamentales de l’élastostatique linéaire

Cette section décrit l’équilibre d’un solide soumis à des forces volumiques ainsi
qu’à des déplacements ou des tractions imposés sur sa frontière. Pour sim-
plifier, on considérera dans la suite uniquement des problèmes isothermes et
stationnaires (statiques).

7.2.1 Equations de champ de l’élastostatique linéaire

Dans le cadre de l’élastostatique linéaire, les champs de déformations et de
contraintes sont régis par le système d’équations composé ainsi :

1) six équations définissant la relation déformation-déplacement (2.150)

ε =
1

2

(
∇u+ (∇u)T

)
; (7.1)

2) les trois équations d’équilibre (3.96)

divσ + f = 0 (7.2)

avec f = ρb la force volumique ;

3) six équations définissant la loi de comportement isotrope homogène (6.104)

σ = λ tr εI + 2µε =
νE

(1 + ν)(1− 2ν)
tr ε I +

E

1 + ν
ε (7.3)

ou son inverse (6.108)

ε =
−λ

2µ(3λ+ 2µ)
trσI +

σ

2µ
= − ν

E
trσI +

(1 + ν)

E
σ (7.4)

où les coefficients d’élasticité λ, µ et E, ν sont indépendants de la position.

Un simple décompte montre qu’il y a 15 inconnues (trois composantes de
déplacement ui, six composantes de déformation εij et six composantes de
contrainte σij) et quinze équations ; le problème est donc bien posé. On a montré
à la section 6.10 que le solide élastique linéaire satisfait le second principe de la
thermodynamique et qu’il existe une fonction potentielle qui, dans ce cas, est
une forme quadratique des déformations (6.164) ou des contraintes.

Il y a deux façons de combiner les 15 équations scalaires précédentes. En
prenant tout d’abord les trois composantes du déplacement ui comme inconnues
primaires et en introduisant (7.1) dans (7.3), on obtient

σij = λuk,k δij + µ(ui,j + uj,i) (7.5)

et par substitution dans (7.2)

(λ+ µ)uk,ki + µui,jj + fi = 0 . (7.6)
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Les relations (7.6) sont les équations de Navier qu’on peut également écrire
sous forme intrinsèque

(λ+ µ)∇(divu) + µ4u+ f = 0 (7.7)

où le déplacement doit être deux fois continûment différentiable. Ces équations
peuvent être résolues lorsqu’on impose les conditions aux limites soit en terme
de déplacement soit en terme de forces de contact exprimées en fonction du dé-
placement à l’aide de (7.5). Une fois les déplacements connus, les déformations
s’obtiennent par (7.1) et les contraintes par (7.3).

On peut également considérer les six composantes de contrainte σij comme
inconnues. Ainsi, en substituant les relations (7.4) dans les six équations de
compatibilité (2.174)

εij,kl + εkl,ij − εjl,ik − εik,jl = 0 , (7.8)

on obtient

(1 + ν)σij,kk − νσmm,nn δij + σpp,ij − (1 + ν)(σiq,qj + σjr,ri) = 0 . (7.9)

D’autre part, il résulte de l’équation d’équilibre (7.2) que

σiq,qj + σjr,ri = −fi,j − fj,i . (7.10)

Ainsi, (7.9) devient

(1 + ν)σij,kk − νσmm,nn δij + σpp,ij + (1 + ν)(fi,j + fj,i) = 0 . (7.11)

En prenant la trace de cette équation, il vient

(1− ν)σmm,nn = −(1 + ν)fk,k (7.12)

ce qui permet de simplifier la relation (7.11) sachant que ν 6= 1

σij,kk +
1

1 + ν
σmm,ij + fi,j + fj,i +

ν

1− ν fn,nδij = 0 . (7.13)

Ces expressions sont les équations de compatibilité de contrainte de
Beltrami-Michell . Si les forces volumiques sont constantes, (7.13) est réduit
à

σij,kk +
1

1 + ν
σmm,ij = 0 . (7.14)

En particulier, les équations (7.14) sont trivialement satisfaites lorsque les com-
posantes σij sont des fonctions affines de x. Dès lors, le champ des contraintes
à l’intérieur du corps doit satisfaire les trois équations d’équilibre, les équa-
tions de Beltrami-Michell et les conditions aux limites du problème. Lorsque
les contraintes sont connues, on calcule les déformations par (7.4) et les dépla-
cements par (7.1).
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7.2.2 Conditions aux limites

Le système d’équations précédent ne peut être résolu que si des conditions aux
limites appropriées sont imposées. Soit un solide occupant un domaine Ω dans
R3 de frontière ∂Ω. D’une manière générale, on peut diviser la surface ∂Ω en
deux parties : ∂Ω = Su ∪ St avec Su ∩ St = ∅, où

• Su représente la partie de ∂Ω sur laquelle les composantes de déplacement
ui sont imposées, c’est-à-dire

ui = ui sur Su , (7.15)

• St représente la partie de ∂Ω sur laquelle les composantes du vecteur de
contrainte ti sont prescrites, c’est-à-dire

ti = σijnj = ti sur St , (7.16)

où nj sont les composantes de la normale unitaire extérieure à St.

On peut classer les problèmes d’élastostatique en trois types selons les
conditions aux limites imposées :

• de type I, où on a uniquement des conditions aux limites du type déplace-
ment (7.15) et Su est non vide ;

• de type II, où on a uniquement des conditions aux limites du type contrainte
(7.16) et St est non vide ;

• de type III ou mixtes, où les conditions aux limites font appel à la fois aux
déplacements et aux contraintes avec Su et St non vides en même temps.

On notera qu’il est interdit d’imposer à la fois la contrainte et le déplace-
ment au même endroit.

Après avoir formulé un problème aux limites, les questions d’existence et
d’unicité de la solution d’un problème d’élasticité linéaire sont posées. Une
discussion de ces sujets sort du cadre introductif de ce chapitre.

Principe de Saint-Venant

Alors qu’il est relativement aisé de définir les conditions aux limites et leur type,
il est souvent plus difficile de les spécifier de manière précise, particulièrement
lorsqu’on considère des forces de surface. La raison en est que l’information sur
la distribution exacte des forces de contact n’est pas connue facilement. Afin de
surmonter cette difficulté, le problème aux limites de l’élasticité est remplacé
par un autre dans lequel le corps est le même et les conditions aux limites sont
substituées par d’autres qui sont statiquement équivalentes. Selon le principe de
Saint-Venant, les effets dus au remplacement des conditions aux limites réelles
par des conditions statiquement équivalentes sont locaux et suffisamment loin
de ces limites, la solution du problème original est pratiquement identique à
celle du problème équivalent. La distance pour laquelle les différences ne sont
pas significatives, dépend des échelles linéaires caractéristiques de la structure
considérée. Ce principe s’est révélé très utile dans plusieurs problèmes d’intérêt
pratique.
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7.2.3 Principe de superposition

Il vaut la peine de noter qu’en théorie de l’élasticité linéaire, les 15 équations
(7.1)-(7.4) ainsi que les conditions aux limites sont linéaires. Ceci conduit à
la formulation du principe de superposition qui s’énonce comme suit pour un
problème de type II : Soit un corps occupant le domaine Ω de R3, soumis aux
tractions ti(1) sur ∂Ω et aux forces de volume fi(1). Le champ de contrainte

engendré dans ce corps par ces forces est noté σ
(1)
ij . Le même corps soumis aux

tractions de surface ti(2) et aux forces de volume fi(2) donne lieu au champ
de contraintes résultant σij(2). L’application simultanée des tractions de sur-
face (ti(1) + ti(2)) et des forces de volume (fi(1) + fi(2)) conduit au champ de
contrainte (σij(1) + σij(2)). En conséquence, les déformations du corps s’ob-
tiennent à partir des équations (7.4) en y insérant les contraintes (σij(1)+σij(2)).

Le principe de superposition s’applique également aux problèmes de type I
et III.

7.3 Elasticité plane linéaire isotrope

De nombreuses applications d’importance pratique ne requièrent pas la résolu-
tion du problème tridimensionnel pour l’état de contrainte et de déformation.
A cause de la géométrie particulière du solide et de la forme de la charge, les
équations de l’élasticité peuvent être considérées comme des fonctions de deux
variables spatiales, uniquement. Le problème se réduit dès lors à un problème
plan.

Dans cette section, deux cas importants de problèmes plans de l’élasticité
linéaire sont définis. Ce sont les cas de déformation plane et de contrainte plane.

7.3.1 Etats de déformation plane

Soit une longue barre prismatique soumise à des forces latérales
(fig. 7.1). On suppose que la composante de la force volumique selon x3 est
nulle alors que les composantes selon les directions x1 et x2 sont des fonctions
de x1 et x2. En raison de la dimension importante de la barre le long de l’axe
x3, on peut supposer que le déplacement u3 à une certaine distance des extré-
mités est une fonction de la seule coordonnée x3 et que les déplacements u1 et
u2 dépendent uniquement de x1 et x2

u1 = u1(x1, x2) u2 = u2(x1, x2) u3 = u3(x3) . (7.17)
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P(x1, x2)
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Fig. 7.1 Cas d’une longue structure chargée en déformation plane.

Pour une barre de longueur infinie ou lorsque les extrémités de celle-ci sont
fixées, on peut supposer de plus que u3 = 0 en chaque section. Les composantes
de déformation sont alors données par

ε11 =
∂u1

∂x1
ε22 =

∂u2

∂x2
ε12 =

1

2

(
∂u1

∂x2
+
∂u2

∂x1

)
(7.18)

et

ε33 =
∂u3

∂x3
= 0

ε13 =
1

2

(
∂u1

∂x3
+
∂u3

∂x1

)
= 0

ε23 =
1

2

(
∂u2

∂x3
+
∂u3

∂x2

)
= 0 .

(7.19)

L’état de déformation ainsi défini est appelé déformation plane. En utilisant
la loi de Hooke (7.3), on remarque que les contraintes σ11, σ22, σ33 et σ12 sont
seulement des fonctions de x1, x2 alors que σ23 et σ31 sont nulles partout. Par
conséquent, les équations d’équilibre (7.2) deviennent

∂σ11

∂x1
+
∂σ12

∂x2
+ f1 = 0

∂σ21

∂x1
+
∂σ22

∂x2
+ f2 = 0 . (7.20)

Connaissant la déformation (éqs (7.18) et (7.19)), on peut employer les relations
contrainte-déformation (7.3) pour calculer les contraintes comme suit :

σ11 =
E

(1 + ν)(1− 2ν)

(
ε11(1− ν) + νε22

)
(7.21)

σ22 =
E

(1 + ν)(1− 2ν)

(
ε22(1− ν) + νε11

)
(7.22)
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σ12 =
E

(1 + ν)
ε12 (7.23)

σ33 =
E

(1 + ν)(1− 2ν)
ν(ε11 + ε22) . (7.24)

Inversement, les déformations sont données par

ε11 =
1 + ν

E

(
(1− ν)σ11 − νσ22

)
(7.25)

ε22 =
1 + ν

E

(
(1− ν)σ22 − νσ11

)
(7.26)

ε12 =
1 + ν

E
σ12 . (7.27)

On impose les mêmes restrictions aux forces de surface (fig. 7.2). Les forces
surfaciques t1 et t2 doivent être seulement des fonctions de x1 et x2, avec t3 = 0,
afin que la déformation soit effectivement plane. Ainsi, pour des conditions de
type II , on écrit

t1 = σ11n1 + σ12n2 t2 = σ12n1 + σ22n2 , (7.28)

où n1 et n2 sont les composantes de la normale unitaire n extérieure à ∂Ω.
Lorsque les contraintes sont choisies comme inconnues, les équations de com-
patibilité doivent être utilisées. Sous l’hypothèse de déformation plane, la seule
équation de compatibilité qui n’est pas identiquement satisfaite s’écrit

∂2ε11

∂x2
2

+
∂2ε22

∂x1
2

= 2
∂2ε12

∂x1∂x2
. (7.29)

O

n

σ11

σ21
σ12

σ22

x2

x1

t1

t2
t

Fig. 7.2 Conditions aux limites pour les contraintes en élasticité plane.
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Donc, dans le cas de déformation plane, huit quantités ε11, ε22, ε12, σ11, σ22,
σ12, u1, u2 doivent être déterminées pour satisfaire les équations (7.18), (7.20)
et (7.25)-(7.27) ainsi que les conditions aux limites (7.28). Les huit équations
scalaires précédentes peuvent être réduites à trois de la manière suivante :

1) En introduisant les équations (7.25)-(7.27) dans (7.29), il vient

∂2

∂x2
2

(
(1− ν)σ11 − νσ22

)
+

∂2

∂x2
1

(
(1− ν)σ22 − νσ11

)
= 2

∂2σ12

∂x1∂x2
. (7.30)

2) En dérivant respectivement les première et deuxième équations de (7.20)
par rapport à x1 et x2 et en additionnant les deux équations résultantes,
on obtient

−2
∂2σ12

∂x1∂x2
=

(
∂2σ11

∂x1
2

+
∂2σ22

∂x2
2

)
+

(
∂f1

∂x1
+
∂f2

∂x2

)
. (7.31)

3) En substituant (7.31) dans (7.30), on a(
∂2

∂x2
1

+
∂2

∂x2
2

)
(σ11 + σ22) = − 1

1− ν

(
∂f1

∂x1
+
∂f2

∂x2

)
(7.32)

qui est l’équation de compatibilité en fonction des composantes de contrainte.

D’après l’analyse précédente, on a maintenant un ensemble de trois équa-
tions : deux équations d’équilibre (7.20) et une équation de compatibilité (7.32).
Ces trois équations ont σ11, σ22 et σ12 pour inconnues. Ce système d’équations,
avec les conditions aux limites (7.28) peut être utilisé dans la recherche d’une
solution pour un problème de déformation plane. On notera que la solution
satisfaisant ce système est unique. Après avoir déterminé les composantes de
contrainte, les déformations se calculent à l’aide des équations (7.25)-(7.27) et
les déplacements à l’aide de (7.18).

Fonction de contrainte pour des problèmes de déformation plane

Le problème de déformation plane peut avantageusement se simplifier à une
équation contenant une seule variable. Si on suppose que les forces de volume
dérivent d’un potentiel V (x1, x2)

fi = − ∂V
∂xi

, i = 1, 2 , (7.33)

il n’est pas difficile de montrer que les équations d’équilibre sont vérifiées si les
composantes de contrainte sont les dérivées d’une fonction Φ(x1, x2), telles que

σ11 = V +
∂2Φ

∂x2
2

σ22 = V +
∂2Φ

∂x1
2

σ12 = − ∂2Φ

∂x1∂x2
. (7.34)

En introduisant ces composantes dans l’équation (7.32), on obtient

∂4Φ

∂x4
1

+ 2
∂4Φ

∂x2
1∂x

2
2

+
∂4Φ

∂x4
2

+
1− 2ν

1− ν

(
∂2V

∂x1
2

+
∂2V

∂x2
2

)
= 0 (7.35)
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ou

44Φ +
1− 2ν

1− ν 4V = 0 . (7.36)

Lorsque les forces de volumes sont négligées, les contraintes sont données par

σ11 =
∂2Φ

∂x2
2

σ22 =
∂2Φ

∂x1
2

σ12 = − ∂2Φ

∂x1∂x2
(7.37)

et l’équation (7.36) devient

44Φ = 0 . (7.38)

qui est appelée une équation biharmonique . Le problème de déformation
plane de l’élasticité linéaire est ainsi réduit à trouver une fonction Φ, appelée
fonction des contraintes d’Airy , satisfaisant (7.38) pour des conditions
aux limites appropriées. La connaissance de cette fonction permet la déter-
mination des contraintes par (7.34), des déformations par (7.25)-(7.27) et des
déplacements par (7.18).

7.3.2 Etats de contrainte plane

On considère maintenant la figure 7.3 où l’on a le cas opposé à celui du long
prisme de la figure 7.1. On suppose que le corps a une dimension selon x3 très
petite par rapport aux dimensions dans le plan x1x2. On suppose aussi que
les forces surfaciques sont appliquées parallèlement au plan x1x2. Les forces
volumiques selon x3 sont nulles alors que selon les directions x1 et x2, elles sont
des fonctions de x1 et x2 seulement. Vu la géométrie du corps et les charges
appliquées, on peut supposer que les composantes de contrainte σ33, σ13 et
σ23 sont nulles partout et que les autres composantes σ11, σ22 et σ12 restent
pratiquement constantes dans l’épaisseur. Un tel état de contrainte est appelé
contrainte plane et s’écrit

σ11 = σ11(x1, x2) σ22 = σ22(x1, x2) σ12 = σ12(x1, x2) (7.39)

σ33 = σ13 = σ23 = 0 . (7.40)

Les équations d’équilibre sont à nouveau données par (7.20) de même que
les conditions aux limites par (7.28). Pour obtenir les relations déformation-
contrainte, on utilise la relation (7.4) qui se réduit à

ε11 =
1

E
(σ11 − νσ22) ε22 =

1

E
(σ22 − νσ11)

ε12 =
1 + ν

E
σ12

(7.41)

ε13 = ε23 = 0 ε33 = − ν
E

(σ11 + σ22) . (7.42)
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h
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Fig. 7.3 Plaque mince avec charges dans le plan.

En inversant ces relations, on trouve les contraintes

σ11 =
E

1− ν2
(ε11 + νε22)

σ22 =
E

1− ν2
(ε22 + νε11)

σ12 =
E

1 + ν
ε12 .

(7.43)

En extrayant (σ11 + σ22) des équations (7.41) et en insérant le résultat dans la
dernière équation de (7.42), on obtient

ε33 = − ν

1− ν (ε11 + ε22) . (7.44)

Cette équation donne la déformation normale « qui sort de la plaque » en
fonction des déformations tangentes « qui se trouvent dans la plaque ». Notons
que ε33 ne fait pas partie des quantités qui caractérisent la contrainte plane.
Cependant, on peut l’obtenir indépendamment en utilisant la dernière équation.
On peut naturellement obtenir u3 en utilisant ε33 = ∂u3/∂x3. Les déplacements
u1 et u2 sont indépendants de x3 et les relations déformation-déplacement sont
données par (7.18).

En ce qui concerne les équations de compatibilité, on dispose de la relation
(7.29) et des équations suivantes qui sont dues à la composante non nulle ε33

∂ε33

∂x1
=
∂ε33

∂x2
=

∂2ε33

∂x1∂x2
= 0 . (7.45)

L’intégration de la dernière égalité impose la condition suivante pour ε33

ε33 = A0 +A1x1 +A2x2 . (7.46)
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Dans la résolution de problèmes de contraintes planes, cette condition est géné-
ralement trop restrictive et n’est pas vérifiée ; seule l’équation (7.29) est considé-
rée. Quoique les solutions résultantes soient approchées, elles sont satisfaisantes
aussi longtemps que l’épaisseur des plaques est très petite.

Comme dans le cas de la déformation plane, les équations de
contraintes planes se réduisent à trois équations qui font intervenir les com-
posantes de contrainte σ11, σ22 et σ12. C’est évident puisque les équations
(7.18) et (7.29) s’appliquent aussi à la contrainte plane. La substitution des
composantes de déformation (7.41) dans (7.29) et l’utilisation des équations
d’équilibre (7.20) donnent(

∂2

∂x2
1

+
∂2

∂x2
2

)
(σ11 + σ22) = −(1 + ν)

(
∂f1

∂x1
+
∂f2

∂x2

)
. (7.47)

Cette dernière équation et les équations d’équilibre forment un système de
trois équations à trois inconnues. On notera que, pour un problème donné, une
solution qui satisfait ce système est unique.

Fonction de contrainte pour des problèmes de contrainte plane

En substituant les équations (7.37) dans l’équation (7.47) et en négligeant les
forces volumiques, on trouve à nouveau une fonction de contrainte satisfaisant

44Φ = 0 . (7.48)

En résumé, nous avons montré qu’une même équation différentielle régit la
fonction de contrainte des deux états bidimensionnels de l’élasticité linéaire : la
déformation plane et la contrainte plane. La distinction entre ces deux cas ap-
parâıt après le calcul des contraintes, lors de la détermination des déformations
qui s’effectue à partir des équations (7.25)-(7.27) et (7.41)-(7.42), respective-
ment, pour les états de déformation plane et de contrainte plane.

En utilisant les combinaisons appropriées des constantes élastiques, les
équations de déformations planes peuvent être converties en celles de contraintes
planes. A savoir :

De déformation plane à contrainte plane :
les relations contraintes-déformations (7.21)-(7.24) dans le cas de défor-
mations planes peuvent être converties en celles de contraintes planes
(7.43) si dans (7.43), on remplace le module de Young E par E(1 +
2ν)/(1 + ν)2 et le coefficient de Poisson ν par ν/(1 + ν).

De contrainte plane à déformation plane :
de façon similaire, les relations contraintes-déformations (7.43) dans le
cas de contraintes planes peuvent être converties en celles de contraintes
planes (7.21)-(7.24) si dans (7.43), on remplace le module de Young E
par E/(1− ν2) et le coefficient de Poisson ν par ν/(1− ν).

Ainsi, la solution d’un problème en contraintes planes peut être déterminée
à partir de celle du problème correspondant en déformations planes, et vice
versa.
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7.4 Méthodes de solution en élasticité linéaire

On a montré dans la section 7.2 que la solution d’un problème tridimension-
nel en élasticité linéaire et isotrope requiert le traitement de quinze équations
à quinze inconnues, ces dernières satisfaisant les conditions aux limites pres-
crites. Ces quinze équations sont combinées de telle sorte que : (a) trois in-
connues soient les composantes du déplacement, solutions des équations (7.6),
(b) six inconnues soient les composantes de la contrainte, solutions des équa-
tions (7.13). Les problèmes d’élasticité plane, tels que déformation plane ou
contrainte plane, peuvent être réduits à huit équations à huit inconnues. Le
nombre d’équations et d’inconnues peut aussi être réduit d’une manière simi-
laire à celle du cas tridimensionnel.

L’écriture directe de solutions analytiques de problèmes d’élasticité n’est
pas chose facile et souvent, elle s’avère impossible. En conséquence, des mé-
thodes basées sur l’application rigoureuse des mathématiques appliquées sont
proposées pour traiter les différentes classes de problèmes, tandis que d’autres
techniques permettent l’obtention de solutions approchées en se basant sur
l’intuition et l’expérience. On donne ci-dessous une liste des méthodes les plus
utilisées en élasticité linéaire.

• Méthode inverse. Dans cette méthode, le champ de déplacements ou de
contraintes est assigné au corps et on détermine toutes les autres quantités,
forces externes comprises. Alors que les solutions de problèmes inverses ne
posent pas de difficulté particulière, il n’est pas toujours possible de trouver
une solution d’intérêt pour l’ingénieur [12, 65].

• Méthode des potentiels. Pour simplifier la solution des équations de l’élasti-
cité, on introduit des fonctions de potentiel. Les potentiels pour les dépla-
cements donnent la solution des équations de Navier et ceux relatifs aux
contraintes engendrent des systèmes de contraintes à l’équilibre [22, 59, 62,
74].

• Méthode semi-inverse. Dans cette méthode, on spécifie une partie des champs
de déplacements et de contraintes. En recourant à ces données partielles et
en s’appuyant sur les équations de la théorie de l’élasticité, on détermine
ensuite les équations qui doivent être satisfaites par les autres déplacements
et contraintes. Ces équations sont normalement faciles à intégrer et, com-
binées avec les données admises pour la première partie des champs de
déplacements et de contraintes, elles fournissent une solution complète et
précise de nombreux problèmes intéressant les ingénieurs. Saint-Venant ap-
pliqua cette méthode au problème de la torsion et de la flexion des barres
prismatiques [12, 65, 71] .

• Méthode des variables complexes. Cette méthode utilise des fonctions ana-
lytiques du plan complexe pour résoudre les équations d’élasticité. Elle ne
peut s’appliquer qu’à des problèmes plans, p. ex. [59].

• Les méthodes variationnelles. Ces méthodes se basent sur le fait que les
équations de l’élasticité peuvent s’obtenir en minimisant un principe d’éner-
gie, p. ex. [22, 59].
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• Autres. D’autres méthodes incluent les méthodes de transformation inté-
grale et les approches numériques telles que la méthode des éléments finis,
p. ex. [22, 25, 60].

Dans ce chapitre, nous allons présenter la méthode des potentiels et la méthode
semi-inverse pour la résolution de problèmes représentatifs avec l’objectif princi-
pal de mettre en évidence les formulations classiques de la théorie de l’élasticité.
L’application des autres méthodes pour la résolution de divers problèmes est
abondamment traitée dans la littérature [22, 59, 60, 65, 71].

Dans les paragraphes précédents, nous avons indiqué que le problème de
l’élasticité peut se formuler en termes de déplacements avec les équations de
Navier (7.6) comme équations de champ. Une autre formulation repose sur les
contraintes pour lesquelles les équations de compatibilité (7.8) et les équations
d’équilibre (7.2) constituent un système de neuf équations. Dans cette section,
nous allons mettre en œuvre un cadre général où les fonctions de déplacement
ou de contrainte sont introduites de manière à satisfaire les équations de Navier
ou celles de compatibilité de Beltrami-Michell (7.13) et les équations d’équilibre
(7.2), respectivement. On montre que de telles fonctions fournissent la solution
de certains problèmes d’élasticité. Pour des raisons de simplicité, on considérera
uniquement le cas de forces de volume nulles. Lorsque les forces de volume sont
prises en considération, la méthodologie devient plus difficile et sort du cadre
de cet ouvrage. Le lecteur trouvera à ce propos des compléments plus avancés
et pertinents dans les ouvrages suivants [22, 59].

7.4.1 Fonctions de déplacement

Pour résoudre les équations de Navier, des fonctions de déplacement ou de
potentiel sont introduites de telle sorte que le vecteur déplacement dans les
équations de Navier s’obtienne à partir des dérivées de ces fonctions. Ces fonc-
tions de potentiel sont régies par les équations de Laplace ou les équations
biharmoniques, bien connues en physique mathématique. Pour aller dans ce
sens, nous nous appuyons sur le théorème de la décomposition de Helmholtz,
cf. [15].

Théorème de Helmholtz

Un champ vectoriel fini et continu a, qui s’annule à l’infini, peut être
représenté comme la somme d’un champ irrotationnel b et d’un champ
solénöıdal c

a = b+ c (7.49)

avec
∇× b = 0 et div c = 0 . (7.50)
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Pour formuler la solution des équations de Navier en termes de fonctions
potentielles, on élabore les définitions suivantes :

• Pour un champ irrotationnel, il existe un potentiel scalaire ϕ tel que b =
∇ϕ. Puisque l’opérateur gradient n’implique que des dérivées premières, la
fonction ϕ n’est déterminée qu’à une constante additive arbitraire près.

• Pour un champ solénöıdal, il existe toujours un potentiel vecteur Ψ tel
que c =∇×Ψ. Ce potentiel n’est déterminé qu’à une fonction vectorielle
additive près.

Donc un champ de déplacement u continu, fini et qui s’annule à l’infini, suivant
le théorème de Helmholtz, peut être représenté par la somme

u =∇ϕ+∇×Ψ (7.51)

avec les conséquences ∇ ×∇ϕ = 0 et div(∇ ×Ψ) = 0. Notons que u a trois
composantes scalaires tandis que ϕ et Ψ en ont quatre. On peut donc imposer
la condition suivante sans perte de généralité

div Ψ = 0 . (7.52)

Il est intéressant d’examiner la divergence et le rotationnel du déplacement
exprimé dans (7.51). En utilisant (7.52), (1.179), (1.188) et (1.190), on obtient

divu = div∇ϕ+ div(∇×Ψ) = div∇ϕ+ 0 = ∇2ϕ (7.53)

∇× u = ∇×∇ϕ+∇× (∇×Ψ) = 0 +∇× (∇×Ψ)

= ∇(div Ψ)−∇2Ψ = −∇2Ψ . (7.54)

Remarquons que par (2.163), divu = εii et donc ∇2ϕ = εii. Le rotationnel du
vecteur déplacement, i.e. ∇ × u, est lié au vecteur de rotation du corps, dont
les composantes sont celles du tenseur antisymétrique de rotation infinitésimale
ω, multipliées par le facteur 2, cf. éq. (2.168).

Comme nous l’avons justifié précédemment, nous supposons f = 0 dans
(7.7). En introduisant (7.51) dans (7.7) et à l’aide de (7.53) ainsi que des iden-
tités vectorielles (1.180), (1.188) et les relations (1.236), (1.237), on obtient

(λ+ 2µ)∇(∇2ϕ) + µ∇× (∇2Ψ) = 0 . (7.55)

Dès lors, toute paire de fonctions ϕ et Ψ satisfaisant (7.55) produit un champ
de déplacement, donné par (7.51), qui est une solution des équations de Navier.
Inversement, pour tout déplacement u satisfaisant les équations de Navier, il
existe au moins un ensemble de fonctions ϕ et Ψ satisfaisant (7.51), p. ex.
[12, 22, 74].

Potentiel de déformation de Lamé

Des solutions particulières de (7.55) sont engendrées par les deux équations

∇2ϕ = cst et ∇2Ψ = cst . (7.56)
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Lorsque
∇2ϕ = cst et Ψ = 0 , (7.57)

la fonction ϕ est appelée le potentiel de déformation de Lamé et le déplacement
s’obtient par

u =∇ϕ (7.58)

qui satisfait l’équation de Navier. Très souvent, pour des raisons de facilité dans
la résolutions d’applications, on écrit (7.58) sous la forme

u =
1

2µ
∇ϕ . (7.59)

Donc toute fonction qui satisfait l’équation de Poisson (7.57) peut servir de
potentiel de déformation. Lorsque ϕ est connu, le vecteur déplacement s’obtient
par (7.59), la déformation par (7.1) et les contraintes par (7.3). Notons que
toutes ces quantités s’expriment en fonction des dérivées premières et secondes
de ϕ. A titre d’exemple, on a

ui =
1

2µ
ϕ,i (7.60)

εij =
1

2
(ui,j + uj,i) =

1

2µ
ϕ,ij (7.61)

εkk = uk,k =
1

2µ
ϕ,kk (7.62)

σij = λδijεkk + 2µεij =
λ

2µ
ϕ,kkδij + ϕ,ij . (7.63)

Dans plusieurs problèmes pratiques de l’élasticité, l’objectif n’est pas d’ob-
tenir une solution générale, mais plutôt une solution particulière. Alors pour
raison de simplicité, considérons

∇2ϕ = 0 . (7.64)

C’est une équation de Laplace et ϕ est une fonction harmonique. On donne ci-
dessous des fonctions harmoniques utiles dans la solution de certains problèmes
pratiques

ϕ(r, θ) = Crn cosnθ, r2 = x2
1 + x2

2, (7.65)

ϕ(r) = C ln
r

K
, r2 = x2

1 + x2
2, (7.66)

ϕ(θ) = Cθ, θ = tan−1 x2

x1
, (7.67)

ϕ(R) =
C

R
, R2 = x2

1 + x2
2 + x2

3 . (7.68)

Lors de l’utilisation des coordonnées sphériques de l’annexe B dans les
exemples suivants, nous remplaçons r par le symbole R. Les deux fonctions du
type Poisson données ci-après sont utiles pour la solution de la sphère creuse et
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du cylindre creux, soumis à des pressions internes et externes en combinaison
avec (7.66) et (7.68)

ϕ(R) = CR2, R2 = x2
1 + x2

2 + x2
3, (7.69)

ϕ(r) = Cr2, r2 = x2
1 + x2

2 . (7.70)

Sphère creuse sous pressions interne et externe

Soit une sphère creuse de rayon interne et externe ri, re (fig. 7.4) qui est soumise
aux pressions interne et externe Pi, Pe, respectivement. Les forces de volume
sont négligées.

ri

re

P
Pi

Pe

RO

x2

x1

Fig. 7.4 Sphère creuse soumise à des pressions internes et externes.

A cause de la symétrie sphérique, on utilise des coordonnées sphériques
(R,ϕ, θ). Dans ce système, toutes les contraintes et déformations de cisaillement
s’annulent et des trois composantes du vecteur déplacement uR, uϕ, uθ, seule
la composante uR n’est pas nulle. La solution de ce problème peut s’obtenir en
combinant les deux potentiels (7.68) et (7.69)

ϕ(R) =
C

R
+DR2 . (7.71)

Ce potentiel satisfait l’équation de Poisson (7.56)1 et fournit les contraintes et
déformations qui remplissent toutes les caractéristiques géométriques du pro-
blème. A l’aide de (7.60) et l’annexe B, les composantes du déplacement sont

uR =
1

2µ

(
− C

R2
+ 2DR

)
, uθ = uϕ = 0 . (7.72)

Avec le déplacement (7.72), les déformations s’obtiennent en utilisant les rela-
tions (B.22)-(B.24) de l’Annexe B

εRR =
1

2µ

(
2C

R3
+ 2D

)
, εϕϕ = εθθ =

1

2µ

(
− C

R3
+ 2D

)
εθϕ = εθR = εϕR = 0 . (7.73)
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En insérant ces composantes dans la loi de Hooke (7.3), on obtient les contraintes

σRR =
2C

R3
+ 2

1 + ν

1− 2ν
D, σϕϕ = σθθ = − C

R3
+ 2

1 + ν

1− 2ν
D

σθϕ = σθR = σϕR = 0 . (7.74)

Les constantes C,D dans (7.74) sont déterminées par les conditions aux limites

σRR = −Pi en R = ri

σRR = −Pe en R = re . (7.75)

En appliquant ces conditions à l’expression de σRR, il vient

C =
1

2

r3
er

3
i (Pe − Pi)
r3
e − r3

i

D =
1

2

1− 2ν

1 + ν

r3
i Pi − r3

ePe
r3
e − r3

i

. (7.76)

En substituant ces expressions dans (7.74), on obtient les contraintes

σRR =
1

R3

r3
er

3
i (Pe − Pi)
r3
e − r3

i

+
r3
i Pi − r3

ePe
r3
e − r3

i

= −
Pi

(
r3e
R3 − 1

)
(
r3e
r3i
− 1
) −

Pe

(
1− r3i

R3

)
(

1− r3i
r3e

) (7.77)

σϕϕ = σθθ = − 1

2R3

r3
er

3
i (Pe − Pi)
r3
e − r3

i

+
r3
i Pi − r3

ePe
r3
e − r3

i

=
1

2

Pi
(
r3e
R3 + 2

)
(
r3e
r3i
− 1
) −

Pe

(
r3i
R3 + 2

)
(

1− r3i
r3e

)
 . (7.78)

La composante non nulle du déplacement devient

uR =
R

2µ

(
− 1

2R3

r3
er

3
i (Pe − Pi)
r3
e − r3

i

+
1− 2ν

1 + ν

r3
i Pi − r3

ePe
r3
e − r3

i

)

=
R

2µ

Pi 1
2
r3e
R3 + 1−2ν

1+ν

r3e
r3i
− 1

− Pe
1
2
r3i
R3 + 1−2ν

1+ν

1− r3i
r3e

 . (7.79)

Il est intéressant de noter que si re � ri, les contraintes et les déplacements
sont approchés par

σRR = −Pi
r3
i

R3
− Pe

(
1− r3

i

R3

)
(7.80)

σθθ = σϕϕ =
Pi
2

r3
i

R3
− Pe

2

(
r3
i

R3
+ 2

)
(7.81)

uR =
R

2µ

(
Pi
2

r3
i

R3
− Pe

(
1− 2ν

1 + ν
+

1

2

r3
i

R3

))
. (7.82)
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A la surface interne, R = ri, les contraintes et les déplacements deviennent

σθθ|R=ri = σϕϕ|R=ri =
Pi
2
− 3Pe

2
, σRR|R=ri = −Pi (7.83)

uR|R=ri =
R

2µ

(
Pi
2
− 3Pe

2

1− ν
1 + ν

)
. (7.84)

Lorsque R→∞, ri/R→ 0 et les équations (7.80)-(7.82) se simplifient

σRR = σθθ = σϕϕ = −Pe et uR = −RPe
2µ

1− 2ν

1 + ν
(7.85)

Cylindre creux sous pressions interne et externe et extrémités fixes

Un cylindre creux de rayons interne et externe ri, re (fig. 7.5) est soumis aux
pressions interne et externe Pi, Pe, respectivement. Les forces de volume sont
supposées nulles.

O
P

r

z

re

ri

Pi
Pi

Pe

Pe

r
x1

x2

θ

Fig. 7.5 Cylindre creux soumis à des pressions interne et externe.

A cause de la symétrie cylindrique, il est utile de recourir aux coordonnées
cylindriques (r, θ, z) (annexe A). Dans ce système, toutes les contraintes et
déformations de cisaillement s’annulent et des trois composantes du vecteur
déplacement, seule la composante ur n’est pas nulle. On est dans le cas d’un
problème de déformation plane, puisqu’aucune déformation n’est permise dans
la direction de l’axe du cylindre, soumis aux conditions aux limites

σrr = −Pi, σrθ = 0 en r = ri (7.86)

σrr = −Pe, σrθ = 0 en r = re . (7.87)

La solution de ce problème peut être obtenue par la combinaison des deux
potentiels (7.66) et (7.70)

ϕ(r) = C1 ln
r

K
+ C2r

2 (7.88)
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où C1,K,C2 sont des constantes déterminées via les conditions aux limites.
En pratiquant la procédure de l’exemple précédent, les composantes de la
contrainte et du déplacement sont

σrr =
1

r2
e − r2

i

(
r2
i Pi − r2

ePe +
r2
i r

2
e

r2
(Pe − Pi)

)
σθθ =

1

r2
e − r2

i

(
r2
i Pi − r2

ePe −
r2
i r

2
e

r2
(Pe − Pi)

) (7.89)

σzz = 2ν
r2
i Pi − r2

ePe
r2
e − r2

i

(7.90)

σrθ = σrz = σθz = 0 (7.91)

ur =
r

2µ

(
− 1

r2

r2
er

2
i (Pe − Pi)
r2
e − r2

i

+
r2
i Pi − r2

ePe
r2
e − r2

i

(1− 2ν)

)
. (7.92)

Ce problème est aussi résolu avec deux méthodes différentes à la section 7.5
pour le cas de l’état de contrainte plane.

Vecteur de Galerkin

Le vecteur déplacement (7.51) est représenté par une somme de dérivées pre-
mières, via l’opérateur différentiel ∇(•) = ∂(•)/∂xi, d’une fonction scalaire ϕ
et d’une fonction vectorielle Ψ. Pour pouvoir construire des solutions d’applica-
tion générale, le recours à des opérateurs différentiels du second ordre est plus
indiqué. Des opérateurs de ce type sont l’opérateur laplacien ∇2 (§ 1.4.8) et

∇(div(•)) = ∂
∂xi

(
∂(•)
∂xj

)
. Ces opérateurs peuvent s’exprimer dans un système

de coordonnées quelconque et s’appliquent à une fonction vectorielle.

Soit une fonction vectorielle V reliée au vecteur déplacement u par l’ex-
pression

2µu = 2(1− ν)∇2V −∇(divV ) . (7.93)

Le facteur 2µ est introduit pour la facilité dans les applications. Le vecteur V
est le vecteur de Galerkin qui fournit une solution générale des équations de
Navier. En introduisant (7.93) dans (7.7), en utilisant les identités vectorielles
(1.188), (1.191) et (1.236), et en se rappelant que 2(1− ν) = (λ+ 2µ)/(λ+ µ),
on obtient

∇2
(
∇2V

)
= 0 . (7.94)

En conséquence, toute fonction vectorielle biharmonique peut servir de vecteur
de Galerkin et le déplacement u dans (7.93) satisfera (7.7). Donc les relations
(7.93) et (7.94) sont équivalentes aux équations de Navier. La comparaison de
(7.93) et (7.51) permet d’écrire

ϕ = − 1

2µ
divV (7.95)

∇×Ψ =
2(1− ν)

2µ
∇2V . (7.96)
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Si on impose aussi la condition que V soit harmonique, i.e. ∇2V = 0, alors
(7.96) conduit à ∇ ×Ψ = 0. De plus, à cause de l’identité vectorielle (1.191),
il résulte de (7.95) que ϕ est une fonction harmonique, ∇2ϕ = 0. Donc, ϕ est
un potentiel de déformation de Lamé, défini antérieurement.

La fonction de déformation de Love

Un cas particulier de vecteur de Galerkin apparâıt lorsque V = V3e3. Alors,
on a la fonction de déformation de Love. La condition (7.94) devient

∇2
(
∇2V3

)
= 0 (7.97)

et (7.93) s’écrit

2µu = 2(1− ν)(∇2V3)e3 −∇(
∂V3

∂x3
) . (7.98)

Les trois composantes du déplacement sont facilement exprimées en coordon-
nées cartésiennes

2µu1 = − ∂2V3

∂x1∂x3
, 2µu2 = − ∂2V3

∂x2∂x3
, 2µu3 = 2(1− ν)∇2V3 −

∂2V3

∂x2
3

.

(7.99)
Love introduisit cette forme particulière du vecteur dans l’étude de solides de
révolution sous charges symétriques. Dans pareils cas, les composantes du dé-
placement s’expriment en termes de cette fonction en coordonnées cylindriques

2µur = − ∂
2Vz
∂r∂z

, 2µuθ = −1

r

∂2Vz
∂θ∂z

, 2µuz = 2(1− ν)∇2Vz−
∂2Vz
∂z2

. (7.100)

Problème de Kelvin : Force concentrée à l’intérieur d’un corps infini

Une application de ce potentiel de déformation consiste à établir la solution
du problème d’une force unique concentrée à l’intérieur d’un corps infini. Cette
application est connue comme le problème de Kelvin défini à la figure 7.6 (a)
[22].

Une force P est appliquée au point O parallèlement à l’axe x3. Elle satisfait
les conditions aux limites suivantes :

• Toutes les contraintes s’annulent à l’infini.

• La singularité à l’origine est équivalente à la force appliquée P . Donc, la
force concentrée peut être considérée comme la limite d’un système de forces
qui s’appliquent à la surface d’une petite cavité située à l’origine.

La solution de ce problème est obtenue en coordonnées cylindriques. Donc,
en raison de la symétrie angulaire, le potentiel de déformation de Love est
indépendant de θ, i.e.

Vz = Vz(r, z) . (7.101)
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P

z

r
O

P

R

θ
x1

x2

x3
σzz

σzz

h

h

O

(a) (b)

Fig. 7.6 Solide infini soumis à une force concentrée (a) et vue en coupe (b).

En utilisant les relations déformation-déplacement et contrainte-déformation
(voir Annexe A), les composantes de la contrainte s’expriment par les relations

σrr =
∂

∂z

(
ν∇2Vz −

∂2Vz
∂r2

)
(7.102)

σθθ =
∂

∂z

(
ν∇2Vz −

1

r

∂Vz
∂r
− 1

r2

∂2Vz
∂θ2

)
(7.103)

σzz =
∂

∂z

(
(2− ν)∇2Vz −

∂2Vz
∂r2

)
(7.104)

σrθ = − ∂3

∂r∂θ∂z

(
Vz
r

)
(7.105)

σθz =
1

r

∂

∂θ

(
(1− ν)∇2Vz −

∂2Vz
∂z2

)
(7.106)

σzr =
∂

∂r

(
(1− ν)∇2Vz −

∂2Vz
∂z2

)
. (7.107)

La forme particulière de la fonction (7.101) qui doit satisfaire (7.97) et ses
dérivées troisièmes, qui apparaissent dans les composantes de la contrainte (éqs.
(7.102)-(7.107)), s’annulent à l’infini et possèdent une singularité à l’origine.
Une fonction qui satisfait ces exigences est donnée par

Vz = K(r2 + z2)1/2 . (7.108)
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En utilisant (7.108) dans (7.100) et dans (7.102)-(7.107), on a

2µur =
Krz

(r2 + z2)3/2
, 2µuθ = 0, (7.109)

2µuz = K

[
2(1− 2ν)

(r2 + z2)1/2
+

1

(r2 + z2)1/2
+

z2

(r2 + z2)3/2

]
σrr = K

[
(1− 2ν)z

(r2 + z2)3/2
− 3r2z

(r2 + z2)5/2

]
(7.110)

σθθ =
(1− 2ν)Kz

(r2 + z2)3/2
(7.111)

σzz = −K
[

(1− 2ν)z

(r2 + z2)3/2
+

3z3

(r2 + z2)5/2

]
(7.112)

σrz = −K
[

(1− 2ν)r

(r2 + z2)3/2
+

3rz2

(r2 + z2)5/2

]
(7.113)

σrθ = σθz = 0 . (7.114)

Notons que les contraintes ne sont pas définies à l’origine puisqu’elles sont
singulières et qu’elles s’annulent à l’infini. Pour établir la constante K, il est
nécessaire de considérer l’équilibre des forces, dans la direction verticale, d’une
bande horizontale symétrique de hauteur ±h qui contient l’axe horizontal et la
force P (fig. 7.6(b)). L’équilibre des forces s’écrit

P =

∫ ∞
0

2π rdrσzz|z=−h −
∫ ∞

0

2π rdrσzz|z=+h (7.115)

En insérant (7.112) dans (7.115) et en intégrant, on trouve la valeur de la
constante

K =
P

8π(1− ν)
. (7.116)

Ce paramètre est substitué dans (7.109)-(7.113) pour obtenir le déplacement
et les composantes de la contrainte, respectivement.

Problème de Cerruti : Force tangentielle à la limite d’un corps semi-infini

En utilisant la méthode des potentiels, on peut résoudre certains problèmes en
combinant un potentiel de déformation de Lamé et un vecteur de Galerkin. Un
problème bien connu qui utilise une telle approche est celui de Cerruti, où une
force tangentielle P agit à la surface d’un corps solide semi-infini comme on
peut le voir à la figure 7.7, [22].

Ce problème peut se résoudre en combinant le vecteur de Galerkin de com-
posantes

V1 = AR, V2 = 0, V3 = Bx1 ln(R+ x3) (7.117)
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Fig. 7.7 Solide semi-infini soumis à une force tangentielle à sa surface.

et le potentiel de déformation de Lamé

ϕ =
Cx1

R+ x3
(7.118)

où les coefficients A,B,C, sont des constantes et R2 = x2
1 + x2

2 + x2
3. Dans ce

cas, le vecteur déplacement est donné par la superposition des équations (7.59)
et (7.93)

2µu =∇ϕ+ 2(1− ν)∇2V −∇(divV ) . (7.119)

Les trois constantes A,B,C, sont déterminées par les conditions aux limites
qui sont (fig. 7.7)

1) en x3 = 0, σ33 = σ23 = 0,

2) la somme des forces le long de x1 et ∀x3 > 0 est nulle :

P +
∫ +∞
−∞

∫ +∞
−∞ σ13 dx1 dx2 = 0.

Ces conditions donnent

A =
P

4π(1− ν)
, B =

P (1− 2ν)

4π(1− ν)
, C =

P (1− 2ν)

2π
. (7.120)

Ces constantes sont insérées dans (7.117) et (7.118) pour calculer le déplace-
ment. Les déformations résultent de (7.1) et les contraintes de (7.3).

La présentation de Papkovich-Neuber

Remarquons que l’équation (7.55) est du troisième ordre, tandis que celle qui
régit le vecteur de Galerkin (7.94) est du quatrième ordre. Dans la formulation
présente, on propose un système d’équations du second ordre qui est équivalent
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aux équations de Navier. Plus précisément, le vecteur déplacement est exprimé
par une combinaison de fonctions harmoniques [12, 20, 74]

2µu = α−∇
[
β +

α · x
4(1− ν)

]
(7.121)

où α, β sont des champs vectoriel et scalaire, respectivement et x est le vecteur
position. En introduisant u avec f = 0 dans (7.7) et en utilisant les identités
vectorielles (1.188), (1.236) et (1.240) ainsi que la relation entre les constantes
élastiques (6.109), on obtient l’équation suivante

µ∇2α− (λ+ 2µ)∇(∇2β)−
(
λ+ µ

2

)
∇(x · ∇2α) = 0 . (7.122)

Cette dernière équation est satisfaite lorsque

∇2α = 0, ∇2β = 0 . (7.123)

On remarquera que ces équations sont du second ordre, et non d’ordre plus élevé
comme l’étaient les équations (7.55) et (7.94). Ces quatre fonctions scalaires ne
sont pas indépendantes. Cependant, on peut montrer que, pour tout domaine
convexe, le nombre de fonctions indépendantes est réduit à 3 [20]. De plus, le
vecteur α et le scalaire β sont reliés au vecteur de Galerkin commme suit

α = 2(1− ν)∇2V (7.124)

β = ∇ · V − α · x
4(1− ν)

. (7.125)

Un cas spécial pour ces quatre fonctions en coordonnées cylindriques est
donné par les relations

αr = αθ = 0, αz = αz(r, z), β = β(r, z) (7.126)

que nous allons utiliser pour résoudre le problème suivant, capital en élasticité.

Problème de Boussinesq : Force verticale à la limite d’un corps semi-infini

Soit un solide semi-infini soumis à une force P agissant normalement à la surface
dans la direction de l’axe vertical ainsi que le montre la figure 7.8.

Les conditions aux limites de ce problème sont

• σrz = 0 partout sur la surface,

• la force résultante verticale sur un plan horizontal due à σzz à une profon-
deur z est égale à la force appliquée P . Notons que σzz n’est pas défini à
l’origine.

En se référant à la figure 7.8, on définit la distance R2 = r2 + z2. La solution
de ce problème est obtenue si on considère les fonctions suivantes

αr = αθ = 0

αz = 4(1− ν)
K

R
(7.127)

β = C ln(R+ z) .
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R

Fig. 7.8 Solide semi-infini soumis à une force verticale concentrée à sa surface.

La substitution de (7.127) dans (7.121) donne

u =
4(1− ν)

2µ

K

R
ez −

1

2µ
∇
(
C ln(R+ z) +

Kz

R

)
(7.128)

dont les composantes en coordonnées cylindriques sont

ur = − Cr

2µR(R+ z)
+
Kzr

2µR3
, uθ = 0, uz =

(3− 4ν)K − C
2µR

+
Kz2

2µR3
. (7.129)

En insérant (7.129) dans les relations déformation-déplacement (A.21)-(A.23)
et les déformations dans les relations correspondantes déformation-contrainte
(7.3), les contraintes nécessaires pour évaluer les conditions aux limites sont

σrz =
r

R3

(
C −K(1− 2ν)− 3Kz2

R3

)
(7.130)

σzz = −3Kz3

R5
. (7.131)

La première condition aux limites énoncée ci-dessus conduit à

C = K(1− 2ν) . (7.132)

Afin de déterminer K, la force résultante à la profondeur z due à σzz est égalée
à la force appliquée P

P =

∫ r=∞

r=0

3Kz3

R5
2π rdr . (7.133)
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L’intégration de (7.133) donne

K = P/2π (7.134)

et la relation (7.132) conduit à

C = P (1− 2ν)/2π . (7.135)

En insérant (7.134) et (7.135) dans (7.129), les composantes du déplacement
sont

ur =
P

4πµR

(
zr

R2
− (1− 2ν)r

R+ z

)
, uθ = 0, uz =

P

4πµR

(
2(1− ν) +

z2

R2

)
(7.136)

Avec les déplacements connus, nous pouvons calculer les déformations en utili-
sant (A21)-(A23). Ces déformations sont insérées dans (7.3) pour exprimer les
contraintes non nulles comme suit

σrr =
P

2πR2

(
−3r2z

R3
+
R(1− 2ν)

R+ z

)
(7.137)

σθθ =
(1− 2ν)P

2πR2

(
z

R
− R

R+ z

)
(7.138)

σzz = − 3Pz3

2πR5
, σrz = −3Prz3

2πR5
. (7.139)

En terminant cette section, il faut mentionner que plusieurs problèmes impor-
tants du point de vue pratique (p. ex. le contact entre corps solides) impliquent
l’analyse des contraintes et déformations dans des domaines semi-infinis soumis
à des efforts appliqués sur des surfaces libres droites. Les solutions de ce type de
problème s’obtiennent par intégration des résultats des solutions de Boussinesq
et Cerruti présentées dans cette section. Le lecteur trouvera pareilles solutions
dans la littérature [34].

7.4.2 Fonctions de contrainte et solutions d’Airy pour

des problèmes plans

A la section 7.2, on a montré que le champ de contrainte en un point d’un corps
à l’équilibre est régi par les équations (7.2), les équations de compatibilité de
Beltrami-Michell (7.14) et les conditions aux limites. De manière semblable
à l’étude des fonctions de déplacement, on a proposé des fonctions qui en-
gendrent les champs de contrainte satisfaisant le système d’équations ci-dessus
mentionnées. Cependant, comme la contrainte est un tenseur du second ordre,
la fonction recherchée devrait refléter cette propriété [12]. Dans la suite, pour
la simplicité de l’exposé, on négligera les forces de volume.
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Introduisons une fonction tensorielle de contraintes Φ(x) qui soit symé-
trique et qui exprime les six composantes de la contrainte comme

σ11 =
∂2Φ22

∂x2
3

+
∂2Φ33

∂x2
2

− 2
∂2Φ23

∂x2∂x3
(7.140)

σ22 =
∂2Φ33

∂x2
1

+
∂2Φ11

∂x2
3

− 2
∂2Φ31

∂x3∂x1
(7.141)

σ33 =
∂2Φ11

∂x2
2

+
∂2Φ22

∂x2
1

− 2
∂2Φ12

∂x1∂x2
(7.142)

σ12 =
∂2Φ23

∂x3∂x1
+

∂2Φ31

∂x3∂x2
− ∂2Φ33

∂x1∂x2
− ∂2Φ12

∂x2
3

(7.143)

σ23 =
∂2Φ31

∂x1∂x2
+

∂2Φ12

∂x1∂x3
− ∂2Φ11

∂x2∂x3
− ∂2Φ23

∂x2
1

(7.144)

σ31 =
∂2Φ12

∂x2∂x3
+

∂2Φ23

∂x2∂x1
− ∂2Φ22

∂x3∂x1
− ∂2Φ31

∂x2
2

. (7.145)

Il est aisé de vérifier que les équations d’équilibre (7.2) avec les forces de volume
nulle (f = 0) sont satisfaites avec les composantes de la contrainte (7.140)-
(7.145). Deux voies alternatives ont été proposées pour engendrer des solutions
complètes à partir des fonctions de contrainte [12, 40]. Ces fonctions sont soit
celles de Maxwell soit celles de Morera. Plus précisément, si on ne retient que
les composantes diagonales Φii, on définit le sytème de Maxwell ; dans le cas
où les éléments non diagonaux sont gardés, on définit le système de Morera.
Chacun des ensembles de fonctions de contrainte est complet, dans la mesure
où pour toute distribution de contrainte satisfaisant les équations d’équilibre,
il existe un ensemble de fonctions de Maxwell et de Morera. Dans cette section,
nous discuterons uniquement les fonctions de Maxwell.

On souligne dans la littérature que si la composante Φ33 est la seule non
nulle dans la représentation de Maxwell, ceci produit la fonction d’Airy pour
les problèmes plans. Puisqu’on fait la distinction dans les problèmes plans
entre contrainte plane et déformation plane (sect. 7.3), nous allons les exa-
miner en termes de fonctions de contrainte. En partant de la seule composante
Φ33 = Φ33(x1, x2), indépendante de x3, les équations (7.140)-(7.145) donnent

σ11 =
∂2Φ33

∂x2
2

, σ22 =
∂2Φ33

∂x2
1

, σ12 = − ∂2Φ33

∂x1∂x2
(7.146)

σ33 = 0 (7.147)

σ23 = σ31 = 0 (7.148)

qui correspondent au cas du problème de contrainte plane puisque σ33 = 0. Afin
d’examiner plus avant la nature de Φ33, il nous faut faire appel aux équations
de compatibilité de Beltrami-Michell. Les six équations (7.14) sont écrites in
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extenso

∇2σ11 +
1

1 + ν

∂2σkk
∂x2

1

= 0 (7.149)

∇2σ22 +
1

1 + ν

∂2σkk
∂x2

2

= 0 (7.150)

∇2σ33 +
1

1 + ν

∂2σkk
∂x2

3

= 0 (7.151)

∇2σ12 +
1

1 + ν

∂2σkk
∂x1∂x2

= 0 (7.152)

∇2σ23 +
1

1 + ν

∂2σkk
∂x2∂x3

= 0 (7.153)

∇2σ31 +
1

1 + ν

∂2σkk
∂x3∂x1

= 0 . (7.154)

Notons qu’à l’aide de (7.146), les équations (7.151), (7.153) et (7.154) sont
satisfaites, tandis que (7.149), (7.150) et (7.152) ne le sont pas. Ceci est dû à
la nature approchée du problème de contrainte plane (§ 7.3.2). Cependant, en
insérant (7.146) dans (7.149) et (7.150) et en les additionnant, il est aisé de
vérifier que Φ33 satisfait l’équation biharmonique

∆∆Φ33 =
∂4Φ33

∂x4
1

+ 2
∂4Φ33

∂x2
1∂x

2
2

+
∂4Φ33

∂x4
2

= 0 . (7.155)

Pour les problèmes de déformation plane, la composante de la contrainte
σ33 est reliée aux composantes σ11, σ22 par la relation

σ33 = ν(σ11 + σ22) . (7.156)

Pour satisfaire cette exigence dans la représentation de Maxwell, il est néces-
saire d’inclure les composantes Φ11,Φ22 en supplément de Φ33 et d’imposer la
condition

Φ11 = Φ22 = νΦ33 avec Φ12 = Φ23 = Φ31 = 0 . (7.157)

Dans ce cas, chaque équation de compatibilité (7.149)-(7.151) conduit à l’équa-
tion biharmonique (7.155), tandis que les relations (7.152)-(7.154) sont satis-
faites.

En comparant les résultats de cette section avec ceux de la section 7.3, on
constate facilement que la fonction de contrainte Φ(x1, x2) définie à la section
7.3 est un cas particulier de la représentation de Maxwell.

Donc, pour les problèmes plans, lorsque Φ33 est connu et satisfait l’équation
biharmonique (7.155), les composantes de la contrainte pour la contrainte plane
(7.146) et celles de (7.146) et (7.156) pour la déformation plane satisfont les
équations d’équilibre. On considère qu’un tel état de contrainte est solution du
problème, s’il satisfait les conditions aux limites.

Avant de présenter quelques exemples, on remarquera qu’il est relativement
facile de trouver une fonction de contrainte qui satisfasse (7.155). Cependant,
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satisfaire les conditions aux limites n’est pas toujours chose aisée. En général,
on devrait être guidé par l’intuition sur la nature de la fonction adéquate et par
l’expérience. Une pratique courante consiste à utiliser des formes polynomiales
et à trouver la combinaison idoine qui satisfait les conditions aux limites. Rem-
plaçant Φ33(x1, x2) par Φ(x1, x2), une fonction polynomiale appropriée s’écrit

Φ(x1, x2) = a1x
2
1 + a2x1x2 + a3x

2
2 + b1x

3
1 + b2x

2
1x2 + b3x1x

2
2 + b4x

4
2

+c1x
4
1 + c2x

3
1x2 + c3x

2
1x

2
2 + c4x1x

3
2 + c5x

4
2 + · · · (7.158)

Notons que tout terme d’un polynôme de degré inférieur ou égal à trois satis-
fait (7.155). Les termes d’ordre supérieur ne doivent pas être considérés, mais
s’ils doivent être inclus, leurs coefficients seront choisis avec soin pour satis-
faire l’équation biharmonique. L’efficacité de cette approche est effective dans
plusieurs problèmes comportant des domaines rectangulaires. Cependant, les
fonctions polynomiales ne peuvent pas décrire facilement des discontinuités de
géométrie et de charges. Alors le principe de Saint-Venant est souvent utilisé
pour remplacer les conditions aux limites actuelles par des conditions stati-
quement équivalentes. Notons que la méthode de résolution qui se base sur
une fonction de contrainte satisfaisant (7.155) est une méthode semi-inverse,
puisque la fonction polynomiale est donnée et on recherche le problème qui
pourra être résolu avec cette fonction.

Grâce à la symétrie de révolution présente dans plusieurs problèmes pra-
tiques, les fonctions d’Airy sont généralement présentées en coordonnées cy-
lindriques. La fonction proposée par Michell [60] offre une solution de (7.155)
pour des problèmes plans

Φ(r, θ) = A0 +A1 ln r +A2r
2 +A3r

2 ln r

+ (A4 +A5 ln r +A6r
2 +A7r

2 ln r)θ

+

(
A11r +A12r ln r +

A13

r
+A14r

3 +A15rθ +A16rθ ln r

)
cos θ

+

(
B11r +B12r ln r +

B13

r
+B14r

3 +B15rθ +B16rθ ln r

)
sin θ

+

∞∑
n=2

(
An1r

n +An2r
2+n +An3r

−n +An4r
2−n) cosnθ

+

∞∑
n=2

(
Bn1r

n +Bn2r
2+n +Bn3r

−n + nn4r
2−n) sinnθ . (7.159)

Ici, Φ33(r, θ) est remplacé par Φ(r, θ). Les coefficients A0, . . . , A7 ; A11, . . . , A16 ;
B11, . . . , B16 ; An1, . . . , An4 ; Bn1, . . . , Bn4 sont des constantes et n est un entier.
On choisira des termes variés dans (7.159) pour résoudre plusieurs problèmes
en coordonnées polaires. On trouvera quelques exemples ci-dessous.

Charge linéique sur une limite droite d’une plaque semi-infinie

Considérons une plaque d’épaisseur unitaire soumise à une charge P par unité
d’épaisseur tel qu’on le montre à la figure 7.9.
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1
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b θ

Fig. 7.9 Plaque semi-infinie soumise à une force verticale concentrée à sa surface
(a), cercle du diamètre d où la contrainte est la même en tout point du cercle (b).

Le problème de contrainte plane a trois composantes de contraintes en co-
ordonnées cylindriques σrr, σθθ, σrθ. Les conditions aux limites de ce problème
sont

• les composantes de la contrainte σθθ = σrθ = 0 en θ = ±π/2 ;

• la force verticale équilibrée par la composante verticale de la force due à la
contrainte radiale à la distance r.

La solution du problème s’obtient en posant la fonction d’Airy suivante

Φ(r, θ) = Crθ sin θ . (7.160)

En connaissant Φ, les composantes de la contrainte obtenue par les relations
(7.146) en coordonnées cylindriques (A.28)-(A.30) sont

σrr =
2C cos θ

r
, σθθ = σrθ = 0 . (7.161)

En appliquant la seconde condition aux limites, la constante C est déterminée
par la relation

P +

∫ +π/2

−π/2
σrr cos θ(rdθ) = P + 2C

∫ +π/2

−π/2
cos2 θdθ = 0 et C = −P

π
.

(7.162)
Donc, les composantes de la contrainte sont

σrr = −2P

π

cos θ

r
, σθθ = σrθ = 0 . (7.163)

On remarque que pour le cercle de diamètre d dont le centre se trouve sur l’axe
vertical et qui est tangent à l’origine, r = d cos θ. Donc la contrainte (fig. 7.9b)

σrr = −2P

π

1

d
(7.164)

est la même en tout point du cercle.
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Une fois les contraintes connues, les déformations s’obtiennent par la loi de
Hooke (7.4) (voir (A.21)-(A.23))

εrr =
∂ur
∂r

= − 2P

πE

cos θ

r

εθθ =
ur
r

+
1

r

∂uθ
∂θ

=
2Pν

πE

cos θ

r
(7.165)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
= 0 .

Ces équations sont intégrées pour calculer les déplacements. Les constantes
d’intégration sont évaluées par l’élimination du mouvement de corps rigide de
la plaque. Ceci est accompli en imposant uθ(r, θ)|θ=0 = 0 et ur(r, θ)|θ=0,r=b = 0,
où b est une distance arbitraire le long de l’axe x1 (fig. 7.9a)

ur =
2P

πE
cos θ ln

b

r
− (1− ν)P

πE
θ sin θ

uθ =
(1 + ν)P

πE
sin θ − 2P

πE
sin θ ln

b

r
− (1− ν)P

πE
θ cos θ . (7.166)

Cylindre creux sous pression interne et externe et extrémités libres

Etant donné la géométrie du cylindre et la configuration des contraintes ap-
pliquées, et en supposant que les extrémités du cylindre sont libres, on peut
montrer que σzz = 0. Donc il s’agit d’un problème de contrainte plane. Les
conditions aux limites sont indépendantes de θ ; de plus, comme la distribution
de contrainte est symétrique par rapport à l’axe x3, ceci implique que σrθ = 0.
Les conditions aux limites de ce problème sont données par (7.86) et (7.87).

Ce problème sera résolu par deux méthodes. Dans la première, on utilise
les équations de Navier (7.6). Dans la seconde méthode, on définit une fonction
de contrainte d’Airy, appropriée pour le problème et on l’utilise pour calculer
les composantes de la contrainte, de la déformation et du déplacement.

Dans la première méthode, on considère qu’un élément du cylindre ne peut
que se mouvoir radialement à cause de la symétrie de la charge et de la géomé-
trie. Donc la seule composante non nulle du déplacement est ur et les relations
déformation-déplacement en coordonnées cylindriques deviennent

εrr =
dur
dr

(7.167)

εθθ =
ur
r

(7.168)

εrθ =
1

2

(
duθ
dr
− uθ

r

)
= 0 (7.169)

εzz = ν (εθθ + εrr) . (7.170)

Dans le cas de contraintes planes, les relations contrainte-déformation (7.41)
sont

εrr =
1

E
(σrr − νσθθ) εθθ =

1

E
(σθθ − νσrr) . (7.171)
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En résolvant ces deux relations (7.171) pour les contraintes et en utilisant
(7.167)-(7.168), on a

σrr =
E

1− ν2

(
dur
dr

+ ν
ur
r

)
(7.172)

σθθ =
E

1− ν2

(
ur
r

+ ν
dur
dr

)
. (7.173)

Avec uθ = uz = 0, et ur 6= 0, une seule équation de Navier n’est pas satisfaite.
En supposant nulle la force de volume, celle-ci s’écrit

d2ur
dr2

+
1

r

dur
dr
− ur
r2

= 0 (7.174)

dont la solution est donnée par

ur = C1r +
C2

r
. (7.175)

En utilisant (7.175) dans (7.172) et (7.173), il vient

σrr =
E

1− ν2

(
C1(1 + ν)− C2

1− ν
r2

)
(7.176)

σθθ =
E

1− ν2

(
C1(1 + ν) + C2

1− ν
r2

)
. (7.177)

On détermine les constantes C1 et C2 par les conditions aux limites (7.86) et
(7.87), ce qui donne

C1 =
1− ν
E

r2
i Pi − r2

ePe
r2
e − r2

i

C2 =
1 + ν

E

r2
i r

2
e(Pe − Pi)
r2
e − r2

i

. (7.178)

Finalement, les contraintes et le déplacement prennent la forme

σrr =
1

r2
e − r2

i

(
r2
i Pi − r2

ePe +
r2
i r

2
e

r2
(Pe − Pi)

)
σθθ =

1

r2
e − r2

i

(
r2
i Pi − r2

ePe −
r2
i r

2
e

r2
(Pe − Pi)

) (7.179)

ur =
1− ν
E

r2
i Pi − r2

ePe
r2
e − r2

i

r − 1 + ν

E

(Pe − Pi)
r2
e − r2

i

r2
i r

2
e

r
. (7.180)

Vérifions maintenant l’hypothèse σzz = 0. Si les extrémités du cylindre sont
libres, alors εzz = cste. Par conséquent, les relations contrainte-déformation
donnent

σzz = ν(σrr + σθθ) + Eεzz = c . (7.181)

La constante c est déterminée en imposant que la force normale totale à l’ex-
trémité du cylindre soit nulle∫ re

ri

σzz2πr dr = πc
(
r2
e − r2

i

)
= 0 =⇒ c = 0 et σzz = 0 . (7.182)
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Dans la seconde méthode, on définit une fonction appropriée des contraintes.
En tenant compte des symétries de la charge et de la géométrie, la fonction de
contrainte Φ est indépendante de θ et n’est plus fonction que de r. En consé-
quence, la fonction de contrainte est prise sous la forme

Φ(r) = A ln r +Br2 + Cr2 ln r +D . (7.183)

Quoique cette fonction soit la solution générale de l’équation biharmonique
(7.38) ou (7.48) ou également (7.155), l’analyse du déplacement radial ur mène
à la conclusion C = 0. La constante D n’affecte pas les composantes de la
contrainte. Donc on ne retiendra que les deux premiers termes de (7.183) dans
la suite. Avec cette fonction, l’équation de compatibilité (7.38) en coordonnées
cylindriques (A.27)

d4Φ

dr4
+

2

r

d3Φ

dr3
− 1

r2

d2Φ

dr2
+

1

r3

dΦ

dr
= 0 (7.184)

est automatiquement satisfaite et les composantes de la contrainte sont

σrr =
1

r

dΦ

dr
=
A

r2
+ 2B

σθθ =
d2Φ

dr2
= −A

r2
+ 2B

σrθ = 0 .

(7.185)

A l’aide des conditions aux limites (7.86) et (7.87), on obtient pour les constantes

A =
r2
i r

2
e

r2
e − r2

i

(Pe − Pi) B =
r2
i Pi − r2

ePe
r2
e − r2

i

. (7.186)

Dès lors, les contraintes s’expriment comme

σrr =
1

r2
e − r2

i

(
r2
i Pi − r2

ePe +
r2
i r

2
e

r2
(Pe − Pi)

)
σθθ =

1

r2
e − r2

i

(
r2
i Pi − r2

ePe −
r2
i r

2
e

r2
(Pe − Pi)

) (7.187)

qui sont des expressions identiques à (7.179 ) et (7.89). La raison pour laquelle
les contraintes sont les mêmes dans les deux problèmes provient du fait que la
fonction des contraintes d’Airy est identique pour les problèmes de contrainte
plane et ceux de déformation plane. La différence n’apparâıt que dans les rela-
tions contrainte-déformation et les déplacements. Les contraintes connues, on
évalue les déformations par (7.171).

L’intégration de ces dernières donne directement le déplacement ur (7.180).

Dans le cas d’une enceinte sous pression à paroi mince d’épaisseur e = re−ri
et e� ri, on peut faire les approximations suivantes :

r2
e − r2

i = (re − ri)(re + ri) ≈ 2eri

r2
i Pi − r2

ePe ≈ r2
i (Pi − Pe)

r2
e ≈ r2

i r2 ≈ r2
i .

(7.188)
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En prenant en compte ces approximations, les contraintes (7.187) se réduisent
aux expressions

σrr ≈ 0 (7.189)

σθθ ≈
ri(Pi − Pe)

e
. (7.190)

Dans les solutions données dans les traités d’introduction à la résistance des
matériaux [65], on suppose que σrr s’annule, parce que e� ri, tandis que σθθ
s’obtient par l’équilibre d’un élément de l’enceinte.

Il nous faut souligner que la solution donnée dans cet exemple n’est valable
que pour des sections placées suffisamment loin des extrémités du cylindre.

Poutre longue et mince sous charge uniforme q

Une poutre longue et mince de longueur l, de hauteur h et d’épaisseur d = 1
est soumise à une charge uniformément répartie q (N/m2) (fig. 7.10). On se
propose de déterminer les contraintes, déformations et déplacements, lorsque
la poutre est en appui simple. L’épaisseur d de la poutre est supposée petite par
rapport à ses dimensions planes, (c.-à-d. h, l � d) et la charge q est parallèle
au plan (x1, x2). Dans ce problème de contrainte plane, on néglige le poids de
la poutre.

ql/2 ql/2

l/2 l/2x2

x1
h

d

q = cste

Fig. 7.10 Poutre longue et mince sous pression uniforme.

Les conditions aux limites sont

x2 = −h
2

σ22 = −q σ12 = 0

x2 =
h

2
σ22 = 0 σ12 = 0 .

(7.191)

En évaluant la force axiale N1 (selon x1), le moment total M3 (par rapport
à l’axe x3) et la force tangentielle N2 parallèle à la section (selon x2) aux
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extrémités x1 = ±l/2 de la poutre, on a

N1 =

∫ h/2

−h/2
σ11 dx2 = 0

M3 =

∫ h/2

−h/2
σ11x2 dx2 = 0

N2 =

∫ h/2

−h/2
σ21 dx2 = −ql

2
.

(7.192)

Une fonction de contrainte qui donne la solution du problème s’écrit

Φ(x1, x2) = Ax3
2

(
x2

1 −
x2

2

5

)
+Bx2

1x2 + Cx3
2 +Dx2

1 , (7.193)

où A,B,C,D sont des constantes déterminées plus loin par les conditions aux
limites (7.191) et (7.192). On vérifie tout d’abord que cette fonction satisfait
l’équation biharmonique (7.38). En utilisant les équations (7.37), les trois com-
posantes du champ de contraintes sont données par

σ11 = 6Ax2x
2
1 − 4Ax3

2 + 6Cx2

σ22 = 2Ax3
2 + 2Bx2 + 2D (7.194)

σ12 = −6Ax2
2x1 − 2Bx1 .

Avec les conditions aux limites (7.191), on obtient

− Ah3

4
−Bh+ 2D = −q

Ah3

4
+Bh+ 2D = 0

3Ah2

2
+ 2B = 0 .

(7.195)

Ce système de trois équations à trois inconnues a pour solution

A = − q

h3
B =

3q

4h
D = −q

4
. (7.196)

La constante C s’obtient par la condition M3 = 0 (N1 = 0 est identiquement
vérifiée)

C =
q

24I3

(
l2

2
− h2

5

)
, (7.197)

où I3 = h3/12 est le moment d’inertie de la section par rapport à x3. On peut
montrer facilement que les deux intégrales restantes de (7.192) sont vérifiées. En
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reportant ces constantes dans (7.194), les contraintes dans la poutre deviennent

σ11 =
q

2I3
x2

(
l2

4
− x2

1

2

)
+

q

2I3
x2

(
2

3
x2

2 −
h2

20

)
σ22 = − q

2I3

(
x3

2

3
− h2x2

4
+
h3

12

)
(7.198)

σ12 = − q

2I3
x1

(
h2

4
− x2

2

)
.

Le premier terme (donnant σ11) est prédit par la théorie élémentaire des poutres.
Le second est un terme additionnel engendré par la prise en considération de
σ22 qui ne dépend pas de x1 et devient négligeable lorsque l � h. Notons que
la solution n’est valable que pour des sections de poutre suffisamment éloignées
de ses supports.

Avec les contraintes (7.198), les déformations sont données par
(7.41). Les déplacements se calculent en intégrant les relations (7.18) avec les
conditions aux limites suivantes :

• en x1 et x2 = 0,

u1 = 0 u2 = f
∂u2

∂x1
= 0 ;

• en x1 = ±l/2 et x2 = 0,
u2 = 0 , (7.199)

où f est la déflexion maximale au centre de la poutre que l’on devra déter-
miner ultérieurement.

On a

u1 =
q

2EI3

((
l2x1

4
− x3

1

3

)
x2 +

(
2x3

2

3
− h2x2

10

)
x1

+ ν

(
x3

2

3
− h2x2

4
+
h3

12

)
x1

)
u2 = − q

2EI3

(
x4

2

12
− h2x2

2

8
+
h3x2

12
+ ν

((
l2
4
− x2

1

)
x2

2

2
+
x4

2

6
− h2x2

2

20

))
− q

2EI3

(
l2x2

1

8
− x4

1

12
− h2x2

1

20
+

(
1 +

1

2
ν

)
h2x2

1

4

)
+ f .

(7.200)
La déflection f au centre de la poutre s’obtient en reportant l’expression obte-
nue pour u2 dans la deuxième condition (7.199)

f =
5

384

ql4

EI3

(
1 +

12

5

h2

l2

(
4

5
+
ν

2

))
. (7.201)

Notons que le premier terme de (7.201) est la déflection prédite par la théorie
élémentaire des poutres. Le second terme apparâıt parce que nous avons pris
en considération σ22 le long de la direction x2. Ce terme est particulièrement
important pour les poutres courtes (c.-à-d. l ∼ h). Pour les poutres longues et
minces, on a l� h et cette contribution devient négligeable.



Propagation d’ondes dans un milieu élastique linéaire 247

7.5 Propagation d’ondes dans un milieu élastique linéaire

Jusqu’à présent, dans ce chapitre, nous avons abordé les problèmes statiques
d’élasticité. A savoir, le solide est considéré au repos sous l’action des charges
appliquées dont le chargement et le déchargement sont effectués suffisamment
lentement, de sorte que les effets dynamiques peuvent être négligés. Une telle
approche est justifiée dans l’analyse de plusieurs problèmes en élasticité et porte
le nom d’« élastostatique linéaire ». Il y a cependant plusieurs problèmes dans
la mécanique des solides où on prend en compte les effets dynamiques, c’est-
à-dire les forces d’inertie. Celles-ci proviennent lorsque les charges externes
sont appliquées à des vitesses élevées, comme les vibrations, l’impact et les
explosions. Des déplacements soudains créent également des effets dynamiques
comme dans le glissement d’une faille sismique. De telles charges dynamiques
engendrent des ondes de contrainte et de déformation transmises à travers le
corps et présentent des vitesses différentes en fonction du mode de déformation.

Pour comprendre et analyser la réponse dynamique d’un milieu élastique,
les équations statiques de l’équilibre (7.7) doivent être remplacées par les équa-
tions du mouvement. Dans cette section, nous présentons les équations tridi-
mensionnelles générales du mouvement pour un solide élastique linéaire ainsi
que les solutions de propagation d’ondes dans des éléments structuraux simples.

Le lecteur consultera [26, 65] pour des compléments d’information.

7.5.1 Ondes de distorsion et de dilatation

L’équation du mouvement en termes de déplacements peut être obtenue à partir
de celles de Navier (7.6) en ajoutant la composante inertielle de la force et en
prenant les déplacements en fonction de xi et de t, ui = ui(xi, t). En supposant
comme dans le cas de l’analyse statique (section 7.4), qu’il n’y a pas de forces
de volume, les équations du mouvement (7.7) sont

(λ+ µ)∇(div u) + µ∇2u = ρa (7.202)

qui donne sous forme indicée

(λ+ µ)uk,ki + µui,jj = ρai . (7.203)

L’accélération peut s’exprimer en termes du vecteur déplacement comme a =
∂2u/∂t2 ou ai = ∂2ui/∂t

2. Notons que vu l’hypothèse des petits déplacements
de la section 2.9, le terme non linéaire de l’accélération est d’ordre deux en ε
(éq. (2.139)) et est donc négligeable. En conséquence, la relation (7.203) devient

(λ+ µ)uk,ki + µui,jj = ρ
∂2ui
∂t2

. (7.204)

Comme les déformations sont petites, les mouvements examinés dans ce mo-
dèle sont de petites oscillations élastiques ou des ondes élastiques. Selon le type
de déformation, on peut distinguer deux types d’ondes de la manière suivante.
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Supposons que le chargement produit des ondes qui se traduisent par une ex-
pansion de volume nulle. Ainsi εii = div u = 0 et (7.204) est remplacée par

µui,jj = ρ
∂2ui
∂t2

. (7.205)

Les ondes décrites par cette dernière équation sont appelées ondes de distorsion.
On suppose ensuite que la déformation produite par la charge appliquée est
irrotationnelle. Autrement dit, le tenseur de rotation (2.166) est égal à zéro, ou

ω32 =
1

2

(
∂u3

∂x2
− ∂u2

∂x3

)
= 0, ω13 =

1

2

(
∂u1

∂x3
− ∂u3

∂x1

)
= 0 ,

ω21 =
1

2

(
∂u2

∂x1
− ∂u1

∂x2

)
= 0,

ou encore

∂u2

∂x1
− ∂u1

∂x2
= 0,

∂u3

∂x2
− ∂u2

∂x3
= 0,

∂u1

∂x3
− ∂u3

∂x1
= 0 . (7.206)

Ces relations impliquent que u dérive d’une fonction potentielle φ(xi, t)

u =∇φ . (7.207)

On vérifie aisément en utilisant (1.238) que la relation (7.207) conduit aux
expressions

div u =
∂ui
∂xi

=
∂2φ

∂xi∂xi
= ∇2φ, et ∇(div u) = ∇2u =∇∇2φ . (7.208)

Par substitution de ces expressions dans (7.204), on obtient les équations des
ondes irrotationnelles ou de dilatation

(λ+ 2µ)∇2u = ρ
∂2u

∂t2
, (7.209)

ou bien

(λ+ 2µ)ui,jj = ρ
∂2ui
∂t2

. (7.210)

Il est intéressant d’exprimer les équations (7.205) et (7.209) sous une forme
similaire

c2∇2u′ =
∂2u′

∂t2
, (7.211)

où on a

c = c1 =

√
λ+ 2µ

ρ
=

√
E(1− ν)

ρ(1− 2ν)(1 + ν)
, (7.212)

pour les ondes de dilatation, et

c = c2 =

√
µ

ρ
=

√
E

2ρ(1 + ν)
, (7.213)
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pour les ondes de distorsion. Notons que c1, c2 ont les dimensions de la vitesse,
puisque (MLT−2L−2M−1L3)1/2 = (L2T−2)1/2 et que c1 > c2, démontrant
ainsi que les ondes élastiques de dilatation voyagent à une vitesse plus élevée que
les ondes élastiques de distorsion. Par ailleurs, le cas général de la propagation
des ondes dans un milieu élastique linéaire peut être obtenu par superposition
d’ondes de dilatation et de distorsion.

Pour exprimer les équations du mouvement en termes des potentiels scalaire
et vecteur ϕ,Ψ, il est nécessaire d’insérer (7.51) dans (7.202). Pour ce faire, nous
exprimons la dérivée temporelle seconde de u et sa divergence comme suit

ü = ∇ϕ̈+∇× Ψ̈ (7.214)

div u = div(∇ϕ) + div(∇×Ψ) = ∇2ϕ (7.215)

∇2u = ∇2(∇ϕ+∇×Ψ) = ∇2(∇ϕ) +∇2(∇×Ψ)

= ∇(∇2ϕ) +∇× (∇2Ψ) . (7.216)

On a utilisé les identités (1.188) et (1.180) pour déduire (7.215), et les rela-
tions (1.236) et (1.237) pour obtenir (7.216). Donc les équations du mouvement
(7.202) deviennent

(λ+ µ)∇(∇2ϕ) + µ
(
∇(∇2ϕ) +∇× (∇2Ψ)

)
= ρ(∇ϕ̈+∇× Ψ̈) (7.217)

que nous pouvons réécrire sous la forme

∇
(
(λ+ 2µ)∇2ϕ− ρϕ̈

)
+∇×

(
µ∇2Ψ− ρΨ̈

)
= 0 . (7.218)

L’égalité (7.218) est satisfaite si

(λ+ 2µ)∇2ϕ− ρϕ̈ = 0 (7.219)

µ∇2Ψ− ρΨ̈ = 0 . (7.220)

Finalement, nous pouvons écrire

(λ+ 2µ)∇2ϕ = ρ
∂2ϕ

∂t2
(7.221)

µ∇2Ψ = ρ
∂2Ψ

∂t2
. (7.222)

Il est intéressant de noter que (7.221) et (7.222) ressemblent aux relations
(7.209) et (7.205), respectivement (voir aussi les exercices 7.6 et 7.7). En outre,
en utilisant la représentation (7.51) pour le champ de déplacement, le problème
de l’élastodynamique se réduit à la résolution des équations d’onde (7.221) et
(7.222).
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7.5.2 Ondes de surface de Rayleigh

Dans la section précédente, nous avons examiné le cas d’ondes se propageant
dans un corps élastique isotrope linéaire infini. Souvent, cependant, se pré-
sentent des frontières libres ou des interfaces entre deux corps. Dans ce cas,
la propagation des ondes devient plus complexe. Les ondes de surface ont été
traitées par Rayleigh (fig. 7.11) et impliquent à la fois les types longitudinal et
transversal des ondes. Les ondes de surface apparaissent aussi après les tremble-
ments de terre, les explosions et les impacts. Dans cette section, nous résumons
les équations essentielles de ce type d’ondes. Pour une analyse détaillée, le lec-
teur est renvoyé à des traitements plus élaborés du sujet [26].

Lord Rayleigh (John William Strutt) né en 1842, fait des
études de mathématiques au Trinity College à Cambridge.
Il hérite du titre de Lord lors du décès de son père en
1872 et consacre une partie de son temps à la gestion
du domaine tout en menant des activités scientifiques.
En 1879, il prend la direction du laboratoire Cavendish à
Cambridge, à la suite de Maxwell. Il décède en 1919. Ses
apports sont considérables et contribuent à l’étude du son,
des vibrations, à l’électrodynamique, l’électromagnétisme,
à la mécanique des fluides et des solides. Son ouvrage The

Theory of Sound paru en 1877 constitue une référence classique dans le do-
maine. Sa découverte la plus importante est celle de l’argon en 1894, ce qui lui
vaut le prix Nobel de physique en 1904.

Fig. 7.11 Lord Rayleigh.

Un schéma d’un demi-espace est représenté à la figure 7.12. L’onde se pro-
page dans la direction x1 telle que le champ de déplacement est donné par
u1(x1, x3, t), u3(x1, x3, t), u2 = 0. Pour résoudre le problème en utilisant la re-
présentation (7.51), on suppose que

ϕ = ϕ(x1, x3, t) et Ψ = −Ψ2(x1, x3, t)e2 . (7.223)

Sur base de ces expressions et de (7.51), nous déduisons les composantes du
déplacement

u1(x1, x3, t) =
∂ϕ

∂x1
+
∂Ψ2

∂x3
(7.224)

u3(x1, x3, t) =
∂ϕ

∂x3
− ∂Ψ2

∂x1

div u =
∂u1

∂x1
+
∂u3

∂x3
= ∇2ϕ (7.225)

ainsi que les composantes du tenseur infinitésimal de rotation

ω13 =
1

2

(
∂u1

∂x3
− ∂u3

∂x1

)
= −1

2
∇2Ψ2

ω21 = ω32 = 0 . (7.226)



Propagation d’ondes dans un milieu élastique linéaire 251

x3

x1

cs

Fig. 7.12 Propagation d’une onde de Rayleigh dans la direction x1.

Pour ce problème plan, les équations du mouvement (7.203) se réduisent à

(λ+ µ)
∂

∂x1

(
∂u1

∂x1
+
∂u3

∂x3

)
+ µ

(
∂2u1

∂x2
1

+
∂2u1

∂x2
3

)
= ρ

∂2u1

∂t2

(λ+ µ)
∂

∂x3

(
∂u1

∂x1
+
∂u3

∂x3

)
+ µ

(
∂2u3

∂x2
1

+
∂2u3

∂x2
3

)
= ρ

∂2u3

∂t2
. (7.227)

En utilisant (7.224)-(7.226) dans (7.227), il vient

(λ+ 2µ)
∂

∂x1
∇2ϕ+ µ

∂

∂x3
(∇2Ψ2) = ρ

(
∂

∂x1

∂2ϕ

∂t2
+

∂

∂x3

∂2Ψ2

∂t2

)
(λ+ 2µ)

∂

∂x3
∇2ϕ− µ ∂

∂x1
(∇2Ψ2) = ρ

(
∂

∂x3

∂2ϕ

∂t2
− ∂

∂x1

∂2Ψ2

∂t2

)
. (7.228)

Notons que ces dernières équations sont satisfaites en y insérant (7.221) et
(7.222). Pour aller plus loin, nous considérons uniquement des formes harmo-
niques de ϕ(x1, x3) et de Ψ2(x1, x3), ou une onde se propageant dans la direction
x1

ϕ(x1, x3, t) = H(x3)ei(kx1−ωt)

Ψ2(x1, x3, t) = G(x3)ei(kx1−ωt) (7.229)

où H(x3), G(x3) sont des fonctions à identifier, k = ω/cs avec cs la vitesse
de l’onde à la surface et i2 = −1. Insérant (7.229) dans (7.221) et (7.222), on
obtient deux équations différentielles ordinaires de la forme

d2H

dx2
3

−
(
k2 − ω2

c21

)
H = 0 (7.230)

d2G

dx2
3

−
(
k2 − ω2

c22

)
G = 0 . (7.231)
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Définissant les symboles

ζ2
1 =

(
k2 − ω2

c21

)
, ζ2

2 =

(
k2 − ω2

c22

)
, (7.232)

les solutions de (7.230) et (7.231) s’écrivent comme suit

H(x3) = A1e
−ζ1x3 +B1e

ζ1x3 (7.233)

G(x3) = A2e
−ζ2x3 +B2e

ζ2x3 . (7.234)

Sur la base de raisonnements physiques du phénomène, les termes avec l’expo-
sant positif donnent une amplitude de l’onde illimitée, ce qui est physiquement
irréaliste. Donc, les constantes correspondantes sont égales à zéro, B1 = B2 = 0.
En utilisant (7.233) et (7.234) dans (7.229), la solution prend la forme

ϕ(x1, x3, t) = A1e
−ζ1x3ei(kx1−ωt)

Ψ2(x1, x3, t) = A2e
−ζ2x3ei(kx1−ωt) . (7.235)

Pour ce problème, la condition aux limites suivante doit être satisfaite à la
surface libre

σ33 = σ31 = σ32 = 0 en x3 = 0 . (7.236)

Pour appliquer ces conditions, il nous faut exprimer les contraintes (7.3) en
termes des fonctions (7.51). En utilisant les déplacements (7.224), nous calcu-
lons les déformations et en les insérant dans (7.3), nous obtenons

σ33 = λ∇2ϕ+ 2µ

(
∂2ϕ

∂x2
3

+
∂

∂x3
(
∂Ψ2

∂x1
− ∂Ψ1

∂x2
)

)
= λ∇2ϕ+ 2µ

∂2ϕ

∂x2
3

− 2µ
∂2Ψ2

∂x3∂x1

σ31 = µ

(
2

∂2ϕ

∂x3∂x1
+

∂

∂x1
(
∂Ψ2

∂x1
− ∂Ψ1

∂x2
) +

∂

∂x3
(
∂Ψ3

∂x2
− ∂Ψ2

∂x3
)

)
= µ

(
2

∂2ϕ

∂x3∂x1
− ∂2Ψ2

∂x2
1

+
∂2Ψ2

∂x2
3

)
. (7.237)

La composante σ32 s’annule, puisque le champ de déplacement est indépendant
de x2, ce qui annule toutes les dérivées par rapport à x2. Avec la solution (7.235)
connue, (7.237) en x3 = 0 produit deux équations homogènes

A1

[
(λ+ 2µ)ζ2

1 − λk2
]

+ 2iA2µζ2k = 0 (7.238)

−2iA1ζ1k +A2

[
ζ2
2 + k2

]
= 0 . (7.239)

Une solution non triviale pour A1, A2, nécessite que le déterminant du système
d’équation s’annule, ce qui conduit à l’équation caractéristique suivante(

cs
c2

)6

− 8

(
cs
c2

)4

+ (24− 16κ−2)

(
cs
c2

)2

+ 16(κ−2 − 1) = 0 (7.240)
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avec κ−2 = c22/c
2
1 = µ/(λ + 2µ) = (1 − 2ν)/(1 − ν). Ainsi, la vitesse de l’onde

cs dépend du matériau via le coefficient de Poisson. Le polynôme (7.240) est
traité comme une équation cubique réduite avec (cs/c2)2 comme inconnue. Par
souci de simplicité, nous considérons un matériau avec ν = 1/4. Dans ce cas
κ−2 = 1/3, et les racines de (7.240) sont

c2s/c
2
2 = 4, 2 + 2/

√
2, 2− 2/

√
2. (7.241)

Parmi ces trois racines, deux d’entre elles ne sont pas réalistes, car elles con-
duisent à des valeurs imaginaires pour les paramètres ζ1, ζ2. Ainsi, c’est la
troisième racine qui est retenue, ce qui donne cs/c2 = 0, 9194 ou

cs = 0, 9194

√
µ

ρ
. (7.242)

Pour le cas où ν = 0, 5, correspondant à la plus grande valeur du coefficient de
Poisson, on obtient cs = 0, 9553

√
µ/ρ. Donc la vitesse de l’onde de surface est

légèrement inférieure à la vitesse des ondes de distorsion (7.213).

Les prochains paramètres importants à calculer sont les composantes de
déplacement (7.224). Connaissant la solution (7.235), nous pouvons facilement
exprimer le déplacement comme suit

u1(x1, x3, t) =
∂ϕ

∂x1
+
∂Ψ2

∂x3

=
(
iA1ke

−ζ1x3 −A2ζ2ke
−ζ2x3

)
ei(kx3−ωt) . (7.243)

En utilisant (7.239) pour éliminer A2 et la formule d’Euler pour remplacer les
exponentielles, on a

u1(x1, x3, t) = −A1k

(
e−ζ1x3 − 2ζ1ζ2

ζ2
2 + k2

e−ζ2x3

)
sin(kx1 − ωt) . (7.244)

De même, on obtient une fonction complexe pour u3(x1, x3, t) dont la partie
réelle est

u3(x1, x3, t) =
∂ϕ

∂x3
− ∂Ψ2

∂x1

= −A1ζ1

(
e−ζ1x3 − 2k2

ζ2
2 + k2

e−ζ2x3

)
cos(kx1 − ωt) . (7.245)

Le mouvement calculé se réfère au déplacement d’une particule dans un plan
vertical Ox1x3. On voit à la figure 7.12 les schémas de ces mouvements pour des
particules le long de l’axe vertical. Notons que le mouvement d’une particule
décrit une ellipse de grand axe normal à x1 et de petit axe normal à x3. Ceci
est évident du fait que les équations paramétriques d’une ellipse sont exprimées
comme u1 = C1 sin θ et u3 = C3 cos θ, où C1 et C3 sont les demi-axes de l’ellipse.
Cela est dû au fait que les ondes de dilatation et de distorsion opèrent ensemble
dans la propagation des ondes de surface. De plus, la solution exprimée par
(7.244) et (7.245) démontre que l’amplitude d’onde de Rayleigh diminue très
vite le long de l’axe x3. Le taux de cette diminution dépend des valeurs de ζ1
et ζ2 définies par (7.232).
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7.5.3 Ondes élastiques planes

Quand une perturbation dynamique se produit (charge d’impact, tremblement
de terre, explosion, etc), les ondes se propagent dans toutes les directions. A des
distances relativement grandes à partir de la perturbation, on peut considérer
que les ondes engendrées se propagent dans un plan. Ainsi, une particule maté-
rielle se déplace dans la direction de la propagation ou perpendiculairement à
celle-ci. Ces ondes sont appelées ondes longitudinales et transversales, respec-
tivement, et correspondent aux ondes de dilatation ou aux ondes de distorsion
définies précédemment.

Prenons une onde longitudinale se déplaçant dans la direction x1. Dans ce
cas, u2 = u3 = 0 et u1 est fonction uniquement de x1 et du temps t, et (7.209)
se réduit à

c21
∂2u1

∂x2
1

=
∂2u1

∂t2
. (7.246)

Cette dernière équation peut être résolue par la méthode bien connue de sé-
paration des variables qui sera présentée dans la section suivante. Pour cette
équation particulière, cependant, il existe une méthode spéciale appelée solution
de d’Alembert qui est décrite ci-dessous.

Nous supposons qu’il existe une fonction f de dérivées première et seconde
continues. Ensuite, en utilisant la règle de dérivation en châıne, on obtient pour
les dérivées première et seconde

∂f(x1 − c1t)
∂t

= −c1
∂f(x1 − c1t)

∂x1
, (7.247)

∂2f(x1 − c1t)
∂t2

= c21
∂2f(x1 − c1t)

∂x2
1

. (7.248)

Il est évident à partir de la deuxième égalité que f satisfait l’équation d’onde
(7.246). D’une manière similaire, on peut montrer que pour une fonction g,
avec des dérivées première et seconde continues, g(x1 + c1t) est une solution de
(7.246). Etant donné que (7.246) est une équation linéaire, il en résulte que la
somme de f et g

u1(x1, t) = f(x1 − c1t) + g(x1 + c1t) (7.249)

est également une solution de (7.246). La solution (7.249) représente la pro-
pagation de perturbations, les unes vers la droite (fonction f(x1 − c1t)) et
les autres vers la gauche (fonction g(x1 + c1t)). Considérons par exemple une
corde étendue de −∞ à +∞. La fonction f(x1 − c1t) est constante lorsque
x1 − c1t = constante. Ainsi une augmentation en temps est nécessaire pour
compenser l’augmentation en x1 et maintenir la fonction constante comme le
montre la figure 7.13. Ce comportement représente la propagation d’une per-
turbation non déformée vers la droite de la corde lorsque le temps crôıt. De la
même manière, g(x1 + c1t) représente une perturbation se propageant vers la
gauche. Pour aller plus loin dans cette analyse, il est nécessaire de définir les
fonctions f et g.
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x1

t1

u1

t2

c1

Fig. 7.13 Propagation d’une perturbation donnée par f(x1 − c1t) dans (7.249).

Les formes spécifiques de f et g sont déterminées par le déplacement initial
décrit par la fonction φ(x1) et la vitesse initiale de la corde θ(x1) en chaque
point x1. Avec ces deux fonctions et (7.249), on obtient

u1(x1, 0) = φ(x1) = f(x1 − c1t)
∣∣
t=0

+ g(x1 + c1t)
∣∣
t=0

= f(x1) + g(x1) , (7.250)

∂u1(x1, t)

∂t

∣∣
x1,t=0

= θ(x1) = −c1
∂f(x1 − c1t)

∂x1

∣∣
t=0

+ c1
∂g(x1 + c1t)

∂x1

∣∣
t=0

= −c1
∂f(x1)

∂x1
+ c1

∂g(x1)

∂x1
. (7.251)

En intégrant (7.251) par rapport à x1, il vient

−f(x1) + g(x1) =
1

c1

∫ x1

x0

θ(x′1)dx′1 . (7.252)

En combinant (7.252) avec (7.250), on trouve

f(x1) =
1

2

[
φ(x1)− 1

c1

∫ x1

x0

θ(x′1)dx′1

]
(7.253)

g(x1) =
1

2

[
φ(x1) +

1

c1

∫ x1

x0

θ(x′1)dx′1

]
. (7.254)

Avec les formes de f et g connues, la solution complète s’écrit

u1(x1, t) = f(x1 − c1t) + g(x1 + c1t)

=

[
φ(x1 − c1t)

2
− 1

2c1

∫ x1−c1t

x0

θ(x′1)dx′1

]
+

[
φ(x1 + c1t)

2
+

1

2c1

∫ x1+c1t

x0

θ(x′1)dx′1

]
(7.255)

=
φ(x1 + c1t) + φ(x1 − c1t)

2
+

1

2c1

∫ x1+c1t

x1−c1t
θ(x′1)dx′1 .
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Exemple 7.1

Une corde infinie est soumise aux conditions initiales

φ(x1) =
0, 02

1 + 9x2
1

, θ(x1) = 0 . (7.256)

Trouver l’expression du mouvement subséquent de la corde. On suppose que
la vitesse d’onde est de 220 ms−1.

En utilisant (7.256) dans (7.255), on obtient

u1(x1, t) =
1

2
[φ(x1 + c1t) + φ(x1 − c1t)]

=
1

2

0, 02

1 + 9(x1 − c1t)2
+

1

2

0, 02

1 + 9(x1 + c1t)2
. (7.257)

Le mouvement est montré schématiquement à la figure 7.14. La configura-
tion au temps t0 = 0 montre la perturbation initiale (7.256). Ensuite, celle-ci
se scinde en deux ondes qui se propagent, l’une vers la gauche, l’autre vers
la droite comme l’indique la solution (7.257) et comme le montre la figure
7.14 pour les temps t > 0, (t1, t2, t3).

x1
x1

x1

u1

t0 = 0 t1 > t0 t1 > t0

t2 > t1 t3 > t2

u1

u1

Fig. 7.14 Propagation d’une perturbation le long d’une corde de longueur infinie
dans les configurations initiale (t0 = 0) et ultérieures (t1, t2, t3).
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7.5.4 Propagation d’une onde dans une corde élastique

La vibration d’une corde est un problème physique qui illustre plusieurs aspects
de la propagation des ondes. En plus de nous permettre d’examiner la solution
de d’Alembert (7.249), la vibration d’une corde tendue a plusieurs applications
dans l’étude des instruments de musique. En outre, l’analyse mathématique de
la corde étirée a des applications dans l’étude des lignes de transport d’énergie
étirées.

υ

x1 + Δx1x1 x1

Δx1
α|x1

α|x1 + Δx1

w(x1,υ,υ,t)

T

T

(a)

(b)

Fig. 7.15 Profil déformé d’une corde étirée (a), un segment de longueur ∆x1(b).

Considérons une corde élastique soumise à une tension T entre deux points
sur l’axe comme le montre la figure 7.15 (a). Dans la formulation du problème
suivant, nous supposons plusieurs hypothèses :

1) Le mouvement a lieu dans un plan, et chaque particule de la corde se déplace
à angle droit par rapport à la position de la corde en équilibre. Dans ce cas
u1 = u3 = 0 et u2 est une fonction uniquement de x1 et du temps t. Pour
la simplicité de l’écriture des équations, nous posons u2(x1, t) = v(x1, t).

2) La corde ne peut transmettre des efforts que dans le sens de la longueur.

3) Les pentes de la corde déformée sont petites.

4) Les déflexions de la corde sont censées être petites de sorte qu’elles n’af-
fectent pas de manière significative la tension T et qu’il n’y ait pas de
dissipation d’énergie.

La masse de la corde par unité de longueur est une fonction connue m′(x1).
En plus des forces élastiques et d’inertie inhérentes au système, la corde peut
être soumise à une charge répartie w(x1, v, v̇, t). Considérons maintenant un
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segment ∆x1 (fig. 7.15b). Par application de la loi de Newton au segment de
la figure 7.15b, on peut écrire

m′∆x1
∂2v

∂t2
= T sinα

∣∣
x1+∆x1

− T sinα
∣∣
x1

+ w∆x1 . (7.258)

La troisème hypothèse implique que sinα
∣∣
x1
≈ tanα

∣∣
x1

et sinα
∣∣
x1+∆x1

≈
tanα

∣∣
x1+∆x1

. En insérant ces approximations dans (7.258) et en divisant par
∆x1 on a

m′
∂2v

∂t2
= T

tanα
∣∣
x1+∆x1

− tanα
∣∣
x1

∆x1
+ w . (7.259)

Ensuite en prenant la limite ∆x1 → 0 et en observant que tanα
∣∣
x1

= ∂v
∂x1

et

que tanα
∣∣
x1+∆x1

= ∂v
∂x1

+ ∂2v
∂x2

1
dx1, la relation (7.259) se réduit à l’équation dif-

férentielle suivante
∂2v

∂t2
=
T
m′

∂2v

∂x2
1

+
w

m′
. (7.260)

Dans la plupart des problèmes d’ordre pratique, les forces externes sont né-
gligeables et m′(x1) est constant le long de la corde. Donc w(x1, v, v̇, t) est
considéré comme nul et m′(x1) est remplacé par une constante m′0. Dans ces
conditions, (7.260) se réduit à

∂2v

∂t2
= a2 ∂

2v

∂x2
1

, a2 =
T
m′0

, (7.261)

où a a les dimensions d’une vitesse, puisque (MLT−2M−1L)1/2 = (L2T−2)1/2.
Donc (7.261) est l’équation de propagation d’onde (7.246) dont la solution

v(x1, t) = f(x1 − at) + g(x1 + at) (7.262)

représente deux ondes se propageant le long de la corde à la vitesse a, l’une
vers la droite et l’autre vers la gauche comme on le voit à la figure 7.14.

Il vaut la peine de remarquer qu’outre de décrire l’onde sur une corde,
l’équation (7.261), ou (7.246), est applicable aux différents types de propagation
d’ondes. En effet, une onde sonore v(xi, t) représente le déplacement d’un gaz où
l’onde se propage. Dans le cas d’ondes électromagnétiques, v(x1, t) représente
la composante de champs électriques ou magnétiques.

Considérons maintenant la solution de l’équation aux dérivées partielles
par la méthode de séparation des variables. La solution par cette méthode nous
permet de traiter directement le problème aux limites rencontré dans plusieurs
applications en ingénierie et en physique. Selon cette méthode, la solution de
(7.261) s’exprime sous la forme

v(x1, t) = X(x1)T (t) . (7.263)

Par substitution de (7.263) dans (7.261), nous obtenons

a2 d
2X/dx2

1

X
=
d2T/dt2

T
= γ . (7.264)
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Dès lors par (7.264) on obtient deux équations différentielles ordinaires

d2X

dx2
1

− γ

a2
X = 0 (7.265)

d2T

dt2
− γT = 0 . (7.266)

La solution de ces équations dépend de la valeur positive, négative ou nulle du
paramètre γ. Si γ > 0 ou γ = 0, la solution de (7.261) n’est pas périodique et
ne peut pas décrire la vibration d’une corde non amortie. La seule valeur qui
produit une solution périodique de la corde vibrante est celle correspondant à
γ < 0.

Puisque γ est négatif, il est usuel de définir γ = −ω2. Alors (7.265) et
(7.266) prennent la forme

d2X

dx2
1

+
(ω
a

)2

X = 0,
d2T

dt2
+ ω2T = 0 , (7.267)

dont les solutions s’écrivent

X = A cos
ω

a
x1 +B sin

ω

a
x1 (7.268)

T = C cosωt+D sinωt , (7.269)

de sorte que

v(x1, t) =
(
A cos

ω

a
x1 +B sin

ω

a
x1

)
(C cosωt+D sinωt) (7.270)

où A,B,C,D sont des constantes arbitraires et ω peut s’interpréter comme
une fréquence circulaire qui dépend des conditions aux limites et qui doit être
évaluée. Notons que la solution (7.270) est périodique puisque lors d’une aug-
mentation dans le temps d’un facteur 2π/ω, elle se répète. La première partie de
l’expression définit la forme de la corde et la seconde spécifie son mouvement.

L’équation (7.270) peut être réécrite sous la forme suivante

v(x1, t) = AC cos
ω

a
x1 cosωt+AD cos

ω

a
x1 sinωt

+ BC sin
ω

a
x1 cosωt+BD sin

ω

a
x1 sinωt . (7.271)

En utilisant des identités trigonométriques élémentaires, on exprime (7.271)
comme

v(x1, t) = B1 sin
(ω
a
x1 + ωt

)
+B2 sin

(ω
a
x1 − ωt

)
+ B3 cos

(ω
a
x1 + ωt

)
+B4 cos

(ω
a
x1 − ωt

)
(7.272)

où les Bi(i = 1, 2, 3, 4) sont des constantes arbitraires. Fait intéressant, cette
dernière équation ressemble à la solution de d’Alembert (7.249) et exprime la
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propagation d’ondes harmoniques dans la corde tendue. Par exemple, un terme
typique de cette solution

v(x1, t) = B4 cos
(ω
a
x1 − ωt

)
(7.273)

représente une onde se propageant dans la direction x1 à la vitesse a comme
on le présente à la figure 7.16. Il est évident que les termes restants de (7.272)
peuvent être interprétés de la même manière.

υ

x1

t1

B4

–B4

a

t2 t3

Fig. 7.16 Déviations transversales à des intervalles de temps successifs comme ré-
sultat de l’onde de propagation (7.273).

Examinons maintenant les composantes de l’énergie au cours de la pro-
pagation des ondes. Supposant qu’il n’y a pas de dissipation de l’énergie, la
corde contient de l’énergie cinétique et potentielle de déformation. A partir de
(7.273), la vitesse et la déformation sont exprimées comme

∂v

∂t
= −B4ω sin

(ω
a
x1 − ωt

)
(7.274)

ε12 =
1

2

∂v

∂x1
= −B4

1

2

ω

a
sin
(ω
a
x1 − ωt

)
. (7.275)

Soit S la section transversale de la corde. En utilisant (7.273), les énergies
cinétiques et potentielles d’un élément dx1 sont

dE =
1

2
ρSdx1

(
∂v

∂t

)2

=
1

2
ρ(B4ω)2 sin2

(ω
a
x1 − ωt

)
Sdx1 (7.276)

dU = 2µSε2
12dx1 = µ

1

2

(
B4

ω

a

)2

sin2
(ω
a
x1 − ωt

)
Sdx1 . (7.277)

En éliminant le paramètre de la vitesse d’onde a via (7.213), il est évident que
dE = dU .
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Vibration d’une corde élastique

Considérons maintenant une corde élastique tendue (ou cordon) fermement
supportée entre deux points situés à une distance ` (fig. 7.17). La solution
générale à ce problème est fournie par (7.270) ou par l’une des deux formes
équivalentes. Pour obtenir la solution pour la corde de la figure 7.17, il nous

υ

υ

ℓ

x1

Fig. 7.17 Corde élastique déformée entre deux points situés à une distance `.

faut évaluer les quatre constantes A,B,C,D et le paramètre ω par les conditions
aux limites v(0, t) = v(`, t) = 0 et la condition initiale. Afin d’établir celles-ci,
il est utile de choisir la vitesse de la corde nulle en t = 0 et de supposer que sa
forme initiale en t = 0 soit dans une configuration de mode normal ou principal.
On définira pareil mode ci-après dans cette section.

Les deux conditions aux limites spécifiées plus haut conduisent à

0 = A (D sinωt+ C cosωt) ,

0 =
(
B sin

ω

a
`+A cos

ω

a
`
)

(D sinωt+ C cosωt) . (7.278)

Celles-ci doivent être satisfaites en tout temps et donc,

A = 0, B sin
ω

a
` = 0 . (7.279)

Pour une solution non triviale, B ne peut pas s’annuler, on obtient sin ω
a ` = 0

d’où on tire
ω

a
` = nπ (7.280)

avec n = 1, 2, 3, . . .. Donc ω est donné par

ω =
nπ

`
a , (7.281)

et la fréquence et la période de l’onde sont

f =
ω

2π
=

n

2`
a, T =

1

f
=

1

a

2`

n
. (7.282)

Nous allons étudier deux conditions initiales dans la suite. En dérivant
(7.270) par rapport au temps, on trouve pour la vitesse

∂v

∂t
=
(
B sin

ω

a
x1

)
(D cosωt− C sinωt)ω . (7.283)
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En imposant la vitesse initiale nulle en t = 0, on obtient D = 0 puisque B 6= 0.
En conséquence la solution se réduit à

v(x1, t) = BC sin
ω

a
x1 cosωt . (7.284)

Pour t = 0, cette dernière relation donne

v(x1, 0) = BC sin
ω

a
x1 , (7.285)

qui définit une configuration de mode principal pour la condition initiale. Fi-
nalement, la solution de la corde vibrante est exprimée par

v(x1, t) = A sin
ω

a
x1 cosωt = A sin

nπ

`
x1 cos

nπa

`
t , (7.286)

où A représente la valeur maximale (ou l’amplitude) de la déviation v(x1, t) et
n = 1, 2, 3, . . .. Notons que le premier terme du produit (7.286) représente la
configuration et le second le mouvement de la corde. La longueur d’onde xλ est
définie par la longueur d’une onde sinusöıdale pour sin ω

ax1, ou pour

ω

a
x1 = 2π ou xλ =

2`

n
. (7.287)

La figure 7.18 montre les formes défléchies des trois principaux modes de vi-
bration selon (7.286). Ce sont

(a) n = 1, xλ = 2`, ω =
π

`
a ;

(b) n = 2, xλ = `, ω =
2π

`
a ;

(c) n = 3, xλ =
2

3
`, ω =

3π

`
a .

Les résultats de l’analyse montrent que la corde se déplace vers le haut
et vers le bas en passant par la position d’équilibre. Un tel mouvement est
appelé une onde stationnaire. Il convient de noter que (7.286) est le résultat de
l’interférence de deux ondes, l’une progressive, l’autre régressive, se déplaçant
dans des directions opposées. Pour démontrer cela, nous pouvons utiliser des
identités trigonométriques pour réécrire (7.286) comme suit

v(x1, t) =
A
2

[ (
sin

ω

a
x1 cosωt+ cos

ω

a
x1 sinωt

)
+
(

sin
ω

a
x1 cosωt− cos

ω

a
x1 sinωt

) ]
= A

[
sin

ω

a
(x1 + at) + sin

ω

a
(x1 − at)

]
. (7.288)
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Fig. 7.18 Les trois premiers modes principaux (a), (b) et (c) (cf. page précédente)
de vibration d’une corde étirée.

En outre, puisque la solution d’onde stationnaire (7.286) représente un
terme typique de (7.271), nous pouvons dire que la solution générale d’une onde
de propagation (7.272) peut être dérivée de la solution d’une onde stationnaire
(7.271).

La méthode décrite dans cette section mène à la solution pour les modes
principaux de vibration d’une corde tendue élastique. La solution est la même
pour les modes principaux de vibration des types courants de corps élastiques.
Bien que ces modes puissent exister seuls, ils peuvent également se produire
simultanément. Dans ce cas, la solution consiste en la somme des solutions du
mode principal.
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Donc la solution d’une corde élastique (7.270) peut s’exprimer comme une
somme sur n de la solution

v(x1, t) =

∞∑
n=1

u1n(x1, t) (7.289)

=

∞∑
n=1

(
An cos

nπ

`
x1 +Bn sin

nπ

`
x1

)(
Cn cos

nπa

`
t+Dn sin

nπa

`
t
)
,

où (7.270) est utilisé avec ω donné par (7.281). Du point de vue mathéma-
tique, ceci exprime le fait que puisque l’équation d’onde (7.261) est linéaire
avec plusieurs solutions, en fonction de la valeur de n (c.-à-d. n = 1, 2, 3, . . .), la
somme des solutions est aussi une solution. Les constantes An, Bn, Cn, Dn, (n =
1, 2, 3, . . . ) sont également liées aux conditions aux limites et initiale. Cette ap-
proche est expliquée dans l’étude de la vibration de torsion d’un arbre circulaire
élastique dans la section suivante.

Vibration de torsion d’un arbre circulaire.

Comme deuxième problème conduisant à une équation aux dérivées partielles
similaire à (7.261), nous considérons un arbre de longueur ` (fig. 7.19(a)) soumis
à des vibrations de torsion. Le matériau de l’arbre est supposé homogène avec
une densité de masse uniforme ρ et l’aire de la section est prismatique.

θ

θ
∂Mt 

∂x1

x1

x1

x1

x1 + dx1

x1 + dx1

dx1

dx1

Mt

(a)

(b)

Mt +       dx1



Fig. 7.19 Un arbre circulaire soumis à torsion (a), une tranche infinitésimale dx1
(b).

En plus des forces élastiques et d’inertie inhérentes au système, la corde
peut être soumise à un couple réparti par unité de longueur w(x1, θ, θ̇, t). Dans
la formulation suivante du problème, nous supposons que

1) les sections transversales de l’arbre restent planes lors de la déformation,

2) une section transversale typique tourne autour de son centre de gravité,

3) la rotation de l’arbre est censée être petite,

4) il n’existe pas de dissipation d’énergie.
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Par la mécanique des solides élémentaire, on sait que, pour des conditions
statiques, la variation de l’angle de torsion θ(x1) le long de l’axe de l’arbre
dθ/dx1 est exprimée comme suit

dθ

dx1
=
Mt

µIp
, (7.290)

où le couple appliqué est Mt(x1), µ est le module de cisaillement et Ip est le
moment d’inertie polaire de la section transversale circulaire. Pour le problème
traité ici, l’angle de torsion est une fonction des variables de temps et d’espace.
Ainsi (7.290) est réécrite comme

∂θ(x1, t)

∂x1
=
Mt(x1, t)

µIp
. (7.291)

La dérivée partielle de (7.291) par rapport à x1 donne

∂Mt(x1, t)

∂x1
= µIp

∂2θ(x1, t)

∂x2
1

. (7.292)

Afin d’établir l’équation différentielle du mouvement, on considère un segment
infinitésimal de l’arbre, délimité par deux sections transversales à une distance
dx1 (fig. 7.19(b)). Le moment d’inertie massique de cette tranche est

dJ =

∫
r2dm =

∫
ρr2dSdx1 = ρdx1

∫
r2dS = ρIpdx1 (7.293)

où dm est la masse d’un élément à une distance r du centre de la section. En
appliquant la loi de Newton sous forme torsionnelle au segment infinitésimal
dx1 (fig. 7.19b), on a

(Ip ρ dx1)
∂2θ

∂t2
=

(
Mt +

∂Mt(x1, t)

∂x1
dx1

)
−Mt + w dx1

=
∂Mt

∂x1
dx1 + w dx1 .

En divisant par dx1 et en utilisant (7.292), il vient

∂2θ

∂t2
= a2 ∂

2θ(x1, t)

∂x2
1

+ w . (7.294)

Dans beaucoup de cas d’intérêt pratique, la force extérieure w peut être né-
gligée, c.-à-d. w(x1, θ, θ̇, t) = 0. Dès lors, la relation (7.294) a la même forme
que l’équation d’onde (7.246) ou (7.261) pour la corde élastique. Notons que
a =

√
µ/ρ a les dimensions d’une vitesse.

Par séparation des variables, la solution s’exprime comme

θ(x1, t) = X(x1)T (t) . (7.295)
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En suivant les mêmes procédures que dans le cas du problème de la corde, traité
dans la section précédente, la solution est exprimée en tant que

θ(x1, t) =
(
A cos

ω

a
x1 +B sin

ω

a
x1

)
(C cosωt+D sinωt) . (7.296)

Toute extrémité de l’arbre peut être libre ou fixe par rapport à la rotation.
Dans cette section, le cas de l’arbre libre aux deux extrémités est étudié. Pour
déterminer les constantes dans (7.296), les conditions aux limites et initiale
doivent être spécifiées. Etant donné que les extrémités de l’arbre sont libres, le
couple au niveau de ces extrémités s’annule. En tenant compte de (7.291), ces
conditions donnent

∂θ(0, t)

∂x1
=
∂θ(`, t)

∂x1
= 0 . (7.297)

Reprenant (7.296), on trouve

∂θ

∂x1
=
(
−Aω

a
sin

ω

a
x1 +B

ω

a
cos

ω

a
x1

)
(C cosωt+D sinωt) . (7.298)

La première condition (7.297) conduit à

B
ω

a
(C cosωt+D sinωt) = 0,∀t . (7.299)

Donc B = 0. De même, en imposant la seconde condition (7.297), on trouve

−Aω
a

sin
ω

a
`(C cosωt+D sinωt) = 0,∀t . (7.300)

Pour une solution non triviale, A ne peut pas s’annuler, on doit avoir

sin
ω

a
` = 0, ou

ω

a
` = nπ . (7.301)

Donc comme dans le cas de la corde élastique, ω devrait prendre les valeurs
suivantes

ωn =
nπa

`
, n = 1, 2, 3, . . . . (7.302)

Il est clair que nous avons un nombre infini de solutions. La n-ième solution du
problème est

θn(x1, t) = cos
ωn
a
x1 (Cn cosωnt+Dn sinωnt) . (7.303)

Notons que la constante An est absorbée dans les constantes Cn et Dn. Puisque
l’équation d’onde est linéaire, la somme sur n de toutes les solutions est aussi
une solution

θ(x1, t) =

∞∑
n=1

θn(x1, t) =

∞∑
n=1

cos
nπx1

`

(
Cn cos

nπa

`
t+Dn sin

nπa

`
t
)
.

(7.304)
La relation (7.304) doit satisfaire les conditions initiales suivantes

θ(x1, 0) = f(x1) et
∂θ(x1, 0)

∂t
= g(x1) . (7.305)
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Les deux fonctions f(x1) et g(x1) sont connues. Pour satisfaire ces conditions,
on doit avoir

θ(x1, 0) = f(x1) =

∞∑
n=1

Cn cos
nπx1

`
. (7.306)

Ce dernier résultat implique que les coefficients Cn soient les coefficients du
développement en cosinus de f(x1) sur la moitié de l’étendue de l’intervalle
(0, `)

Cn =
2

`

∫ `

0

f(x1) cos
nπx1

`
dx1 . (7.307)

La seconde condition initiale impose

∂θ(x1, t)

∂t

∣∣∣
t=0

= g(x1) =

∞∑
n=1

Dn
nπa

`
cos

nπx1

`
, (7.308)

telle que Dn
nπa
` soient les coefficients du développement en cosinus de g(x1)

sur la moitié de l’étendue de l’intervalle (0, `)

Dn
nπa

`
=

2

`

∫ `

0

g(x1) cos
nπx1

`
dx1 ou Dn =

2

nπa

∫ `

0

g(x1) cos
nπx1

`
dx1 .

(7.309)
Notons que la même analyse peut être effectuée pour différentes conditions aux
limites, c.-à-d. lorsque les deux extrémités sont fixées ou lorsque l’une est fixe
et l’autre libre d’entrer en rotation.

Vibration longitudinale d’une poutre prismatique

En utilisant la théorie élémentaire des poutres et en suivant la même procé-
dure que dans le cas de la torsion d’une barre circulaire traité précédemment,
l’équation pour les ondes longitudinales dans la poutre (fig. 7.20) est

∂2u1(x1, t)

∂t2
= a2 ∂

2u1(x1, t)

∂x2
1

(7.310)

où

a =

√
E

ρ
(7.311)

est la vitesse d’onde longitudinale.
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dx1 u1 + du1

N + dN

u1

a

(a)

(b)
N

Fig. 7.20 Une poutre mince soumise à des vibrations longitudinales (a), une tranche
de longueur dx1 (b).

L’obtention de (7.310) est laissée au lecteur à titre d’exercice.

On termine cette section avec des valeurs de la vitesse d’onde dans les corps
élastiques typiques. En utilisant les propriétés de la table 6.2, nous obtenons
les valeurs indiquées à la table suivante.

Tableau 7.1 Vitesse d’onde dans des solides élastiques.

Vitesse d’onde (m/s) Acier Verre Caoutchouc

Dilatation 5240 5505 →∞

Longitudinale 5047 5253 242

Distorsion ou transversale 3169 3405 140

La première ligne de la vitesse longitudinale correspond à la relation (7.212),
la seconde à la relation (7.311). La vitesse transversale est celle de (7.213).
Notons que la vitesse de dilatation pour le caoutchouc n’est pas définie, puisque
nous supposons l’incompressibilité et ν = 0, 5. En utilisant l’expression pour
une poutre mince (7.311), la vitesse longitudinale de ce matériau a une valeur
finie. Dans les autres cas (deuxième ligne), elle est plus petite d’environ 4%,
car les effets latéraux induits par le coefficient de Poisson sont négligés dans la
théorie élémentaire.
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7.6 Exercices

7.1 Montrer que dans le cas de déformation plane, les équations d’équilibre
peuvent s’exprimer en terme de déplacements sous la forme

µ

(
∂2u1

∂x1
2

+
∂2u1

∂x2
2

)
+ (λ+ µ)

∂

∂x1

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f1 = 0 (7.312)

µ

(
∂2u2

∂x1
2

+
∂2u2

∂x2
2

)
+ (λ+ µ)

∂

∂x2

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f2 = 0 , (7.313)

où µ = E/2(1 + ν) est le module de cisaillement et λ est relié à E et ν par la
relation (6.112).

7.2 Montrer que dans le cas de contrainte plane, les équations d’équilibre
peuvent s’exprimer en terme de déplacements sous la forme

µ

(
∂2u1

∂x1
2

+
∂2u1

∂x2
2

)
+

E

2(1− ν)

∂

∂x1

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f1 = 0 (7.314)

µ

(
∂2u2

∂x1
2

+
∂2u2

∂x2
2

)
+

E

2(1− ν)

∂

∂x2

(
∂u1

∂x1
+
∂u2

∂x2

)
+ f2 = 0 . (7.315)

7.3 Montrer que si un champ vectoriel g(x) est tel que

gi,mmnn = 0 , (7.316)

alors le champ de déplacement défini par

ui =
λ+ 2µ

µ(λ+ µ)
gi,mm −

1

µ
gn,ni (7.317)

satisfait les équations de Navier sans force de volume.

7.4 Démontrer que les équations de Navier (7.7) avec f = 0 sont équivalentes
aux équations suivantes

1) (λ+ 2µ)∇2u+ (λ+ µ)∇×∇× u = 0

2) (1− 2ν)∇2u+∇ ·∇u = 0

3) (λ+ 2µ)∇∇ · u− µ∇×∇× u = 0

7.5 Considérons un cylindre creux soumis à des pressions internes et externes
(fig. 7.5) ayant ses extrémités libres sans contraintes. En utilisant la fonction
potentielle donnée par (7.66), dériver les expressions pour les contraintes et les
déplacements. Comparer la solution avec (7.187).
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7.6 Exprimer l’équation d’onde (7.209) en termes de div u comme suit

(λ+ 2µ)∇2(div u) = ρ
∂2(div u)

∂t2
(7.318)

7.7 Exprimer l’équation d’onde (7.205) en termes des composantes de rotation
du champ de déplacement ∇× u comme suit

µ∇2(∇× u) = ρ
∂2(∇× u)

∂t2
(7.319)

7.8 Pour le coin d’épaisseur unitaire d’angle 2α, chargé par le moment M ainsi
qu’il est indiqué à la figure 7.21, déterminer si la fonction de contrainte de la
forme

Φ(r, θ) = Aθ +B sin 2θ (7.320)

est une solution du problème. Montrer ensuite que σrr est donné par

σrr = −2C

r2
sin 2θ (7.321)

avec C = M/(sin 2α− 2α cos 2α).

M

M

r

θ

αα

x1

x2

Fig. 7.21 Coin soumis à un moment M .
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7.9 Pour le coin d’épaisseur unitaire et d’angle 2α, chargé par la force P comme
il est indiqué à la figure 7.22 :

σrr r

θ

αα

P

x1

x2

Fig. 7.22 Coin soumis à une force linéaire P .

(a) Démontrer que la fonction de contrainte

Φ(r, θ) = Crθ sin θ (7.322)

fournit une solution des contraintes du problème. Ensuite exprimer les com-
posantes des contraintes et déterminer la constante C.

(b) Comment peut-on trouver les contraintes d’une plaque d’épaisseur unitaire
semi-infinie et chargée par une force linéique comme dans le cas précédent ?





Chapitre 8

Introduction à la mécanique des

fluides newtoniens

8.1 Introduction

Les fluides sont omniprésents dans la nature, la technologie et les gestes de la vie
quotidienne, comme par exemple, l’eau pour se laver les mains, l’eau du café ou
du thé, l’air que nous respirons, le sang circulant dans notre système vasculaire,
etc. Les deux fluides les plus communs, à savoir l’air et l’eau, constituent les
exemples types des deux grandes catégories qui leur sont associées : les fluides
compressibles et incompressibles.

Nous avons tous été confrontés au pneu plat de notre vélo et à devoir
pomper l’air dans la chambre. C’est là que l’on découvre expérimentalement
que l’air peut être comprimé et qu’ainsi, la pression est augmentée, ce qui est
très utile dans ce cas précis. En ce qui concerne l’eau, on considère généralement
que c’est un fluide incompressible. C’est une idéalisation de la réalité, puisque
la vitesse du son dans l’eau est de 1500 ms−1, c.-à-d. environ cinq fois celle du
son dans l’air.

Les effets de compressibilité donnent lieu à des phénomènes physiques
caractéristiques, comme la propagation d’ondes acoustiques ou la présence
d’ondes de choc en écoulement supersonique. Cependant, on peut traiter l’air
comme un fluide incompressible lorsque le nombre de Mach est faible. C’est une
pratique courante dans l’aérodynamique automobile. On peut aussi traiter l’eau
comme compressible, si on s’intéresse à la propagation des ondes acoustiques,
par exemple, dans l’eau de mer.

Une autre classification des fluides se fait sur la base de leur caractère
newtonien ou non newtonien. L’air et l’eau sont des fluides newtoniens. Les
polymères fondus, le sang, les boues, les fluides agro-alimentaires, les peintures,
la pâte dentifrice, etc. sont non newtoniens.

L’écoulement de Couette entre deux cylindres circulaires est un dispositif
adéquat pour discriminer ces deux catégories de fluides. Soient deux cylindres
verticaux coaxiaux. On maintient, par exemple, le cylindre extérieur fixe, tandis
que le cylindre intérieur est soumis à une vitesse de rotation constante de l’ordre
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d’une dizaine de révolutions par minute. L’espace annulaire est rempli de fluide
(liquide), jusqu’à une certaine hauteur. A la surface libre, le fluide est en contact
avec l’air. Dans le cas du fluide newtonien (comme l’eau), on observe que la
surface libre prend la forme d’un parabolöıde de révolution sous l’action de
la force centrifuge. Pour le fluide non newtonien, celui-ci s’enroule autour du
cylindre tournant. C’est l’effet Weissenberg.

Les équations de Navier-Stokes décrivent la dynamique des écoulements
des fluides visqueux. Elles s’obtiennent à partir des équations de conservation
et de l’équation de constitution. Dans ce chapitre, on choisira celle des fluides
visqueux newtoniens, où le tenseur σ est une fonction linéaire du tenseur d.

Dans certains procédés industriels, on rencontre des matériaux dont le com-
portement à l’état fluide s’écarte du caractère newtonien. Dans ce dernier cas,
on recourt aux concepts de la rhéologie pour étudier l’équation de constitution
qui représente au mieux la phénoménologie associée à l’écoulement du fluide.
Le lecteur consultera la monographie [16] pour un complément d’information.

Néanmoins, les équations de Navier-Stokes constituent un modèle suffisam-
ment riche pour être appliqué dans un très grand nombre de cas. On choisira
la représentation eulérienne des équations de conservation, car d’une part les
fluides subissent en général de très grandes déformations et d’autre part, les
problèmes usuels se définissent dans des repères fixes.

La physique des fluides newtoniens est caractérisée par le nombre sans
dimension de Reynolds défini par la relation

Re =
UL

ν
, (8.1)

où U et L sont, respectivement, une vitesse et une longueur de référence de
l’écoulement considéré et ν la viscosité cinématique du fluide. Ce nombre peut
prendre des valeurs comprises entre zéro et plusieurs millions. Pour Re proche
de zéro, les écoulements sont laminaires. Leur configuration géométrique et
leur dynamique sont relativement simples. Leur interprétation par des solutions
analytiques permet une compréhension en profondeur de la physique associée.
Lorsque Re crôıt, les écoulements laminaires sont soumis à des instabilités qui
les conduisent peu à peu à la turbulence développée. C’est cette dernière que
nous connaissons lors d’un vol où l’aéronef subit de violentes secousses et em-
bardées provoquées par la turbulence atmosphérique. La compréhension de la
turbulence demeure l’un des grands défis posés à la physique, encore aujour-
d’hui.

Le lecteur trouvera des compléments dans les ouvrages suivants : [2, 4, 6,
10, 29, 36, 37, 38, 51].

8.2 Considérations physiques sur les écoulements laminaires et

turbulents de fluide incompressible

Dans cette section, on considère uniquement des écoulements de fluide incom-
pressible en fonction du nombre de Reynolds (éq. 8.1). Ainsi que nous l’avons
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déjà évoqué, la physique des écoulements change drastiquement lorsqu’on passe
des écoulements lents à très bas nombres de Reynolds à ceux pour lesquels
Re ∼ 106 − 107.

Les écoulements lents sont laminaires (du latin laminae : couches minces) ;
ils sont très souvent stationnaires et les lignes de courant épousent les contours
des obstacles placés en leur sein. Ces écoulements présentent des effets aisés à
prédire et à interpréter, car ils correspondent aux équations linéaires de Stokes.
On les trouve dans les laves, le magma terrestre, le verre fondu, les polymères
très visqueux.

Lorsque Re augmente, le terme non linéaire des équations de Navier-Stokes
devient prépondérant et pour des valeurs de quelques dizaines, les écoulements
laminaires deviennent instables et des écoulements secondaires sont engendrés.
On parle d’écoulements transitionnels.

Fig. 8.1 Ecoulement sur un cylindre à Re = 0.

Un excellent exemple est donné par l’écoulement amont uniforme et paral-
lèle incident sur un cylindre circulaire horizontal. Le nombre de Reynolds est
défini par U la vitesse amont uniforme, L = D le diamètre du cylindre et ν la
viscosité cinématique du fluide. La figure 8.1(1) montre l’écoulement à Re = 0
qui présente des lignes de courant symétriques par rapport aux directions ho-
rizontale et verticale et aux diagonales.

Lorsque Re crôıt, pour des valeurs de 13, 1 et 26 montrées à la figure 8.2,
on constate que l’écoulement est stationnaire et symétrique par rapport à l’axe
horizontal. Deux zones de recirculation contra-rotative sont présentes à l’arrière
du cylindre. La longueur de recirculation augmente liéairement avec Re tandis
que la distance séparant les centres des tourbillons crôıt comme

√
Re.

(1)Les figures 8.1 à 8.4 et 8.7 et 8.11 sont extraites de l’ouvrage [73]. Les recherches opérées
à ce jour visant à identifier les ayant-droits n’ont pas abouties, et l’éditeur invite celui
ou celle qui se reconnâıtrait à se faire connâıtre auprès de lui.
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Fig. 8.2 Ecoulement sur un cylindre pour Re = 13, 1 (gauche) et 26 (droite).

Pour Re = 47, 5, on franchit le premier nombre de Reynolds critique pour
lequel la physique devient instationnaire. On engendre l’allée de von Kármán
dont les tourbillons sont lâchés alternativement de la partie supérieure et in-
férieure à l’aval du cylindre. Pareille allée est montrée à la figure 8.3 pour
Re = 140, extraite de [72]. Les bouffées tourbillonnaires présentent une fré-
quence d’alimentation correspondant à un cycle limite dans le plan de phase. Il
s’agit d’une bifurcation de Hopf. La fréquence d’alimentation, notée f , conduit
à l’utilisation du nombre de Strouhal, St ,

St =
fD

U
. (8.2)

Pour les valeurs de Re autour de la centaine, St est de l’ordre de 0, 13.

Fig. 8.3 Allée de von Karman pour Re = 140.

Des analyses de la stabilité font appel à l’équation de Ginzburg-Landau,
([17]) qui détermine le développement non linéaire de perturbations superpo-
sées à un écoulement de base. Cette théorie couvre un domaine très vaste que
cette monographie ne peut pas couvrir. Nous renvoyons le lecteur aux ouvrages
spécialisés, comme par exemple [8, 9, 18, 56]. Si on augmente le nombre de
Reynolds, on passe par des régimes transitionnels pour atteindre finalement
l’état turbulent. Une excellente synthèse de la dynamique des sillages derrière
un cylindre est due à Williamson [75].
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Fig. 8.4 Allée de von Karman pour Re = 2000.

La figure 8.4 montre la configuration de l’écoulement en turbulence faible.
La couche limite qui est le siège des effets visqueux, est laminaire à l’avant du
cylindre, se développe sur celui-ci, subit une séparation et produit un sillage
turbulent. On y distingue encore deux vortex résultant de la dynamique non
linéaire.

Fig. 8.5 Allée de von Karman pour Re = 104.

Pour Re = 104 à la figure 8.5, l’écoulement a grosso modo la même forme,
avec des vortex identifiables.

Lorsque le nombre de Reynolds atteint plusieurs dizaines de milliers, voire
plusieurs millions, la physique des fluides offre une multitude d’échelles spa-
tiales et temporelles ; l’écoulement est en turbulence développée. La turbulence
est présente dans la majorité des écoulements dans la nature. Chacun a certai-
nement pu éprouver au cours d’un vol que les effets turbulents sont chaotiques
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et aléatoires et correspondent à une dynamique à variation très rapide. La com-
préhension de la turbulence est l’un des rares défis que la physique moderne
n’a pas encore totalement relevé.

Les équations non linéaires ont la réputation d’être très difficiles à résoudre
par des moyens analytiques et celles de Navier-Stokes n’y échappent pas. C’est
une des raisons pour lesquelles le recours à la simulation numérique s’est imposé
au cours du temps comme la seule voie pour analyser en profondeur ces phéno-
mènes complexes. La méthode des éléments finis constitue un choix pertinent
pour effectuer ce type de calcul [3].

8.3 Considérations physiques sur les écoulements

de fluide compressible

Les fluides compressibles, comme l’air ou plus généralement les gaz, offrent au
physicien et à l’ingénieur des phénomènes complexes et très intéressants.

Les écoulements où les effets de compressibilité sont à prendre en consi-
dération, impliquent le plus souvent des vitesses élevées. On parle alors de
dynamique des gaz. Dans ce cas, les valeurs du nombre de Reynolds sont très
grandes. Comme, par exemple, la viscosité cinématique de l’air à température
ambiante est νair = 1, 45 10−5 m2s−1 et que les vitesses sont de l’ordre de plu-
sieurs centaines de mètres par seconde, les nombres de Reynolds valent plusieurs
millions. Les écoulements sont évidemment turbulents. Cependant, en aérody-
namique, les effets visqueux se font sentir dans des zones proches des obstacles
ou des corps présents dans l’écoulement. C’est une des raisons pour lesquelles
on peut négliger la turbulence et les effets visqueux pour ne tenir compte que
de la pression comme grandeur importante. C’est cette dernière qui produira
la portance nécessaire pour le vol d’un objet comme une aile ou un aéronef. La
modélisation traite alors les équations d’Euler pour le fluide parfait.

Les écoulements compressibles sont caractérisés par le nombre de Mach
global

M =
U

a
, (8.3)

où U est une vitesse de référence comme celle de l’écoulement amont uniforme
sur un corps et a la célérité du son définie par (6.152). Le nombre de Mach
prend typiquement des valeurs comprises entre 0 et 8. Le cas M = 0 est celui
du fluide incompressible correspondant à une vitesse du son infinie puisque
ρ = cste.

8.3.1 Ecoulements subsonique, supersonique et hypersonique

Considérons un gaz en écoulement uniforme stationnaire de vitesse v = Ue1.
La présence d’un objet volant dans cet écoulement au point P engendre une
perturbation ou onde sonore, qui sera propagée dans l’espace à la vitesse du son
(relative à celle du gaz ou de l’air). Cette perturbation produit des fluctuations
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de pression et de masse volumique. La vitesse de propagation de la perturbation
par rapport à un système de coordonnées fixes est donc la somme de la vitesse
du gaz et de la célérité a dans n’importe quelle direction caractérisée par le
vecteur unitaire n. La vitesse résultante v + an à laquelle la perturbation se
déplace à partir de P s’oriente pour les diverses directions de n dans l’espace.
On les obtient en traçant horizontalement le vecteur v à partir de P . A son
extrémité, on construit la sphère de rayon a. Tous les vecteurs issus de P et
se terminant sur la sphère sont des solutions possibles pour la grandeur et la
direction de la vitesse de propagation.

v v
PP

(a) (b)

α

an an

Fig. 8.6 Propagation de perturbations dans un gaz : (a) cas subsonique ; (b) cas
supersonique.

Pour 0 < M < 1, on est en écoulement subsonique avec U < a. En se rap-
portant à la figure 8.6 (a), on constate que la vitesse résultante se propage dans
tout l’espace, puisque la sphère englobe le point P . On peut aussi interpréter
l’écoulement de la manière suivante. Comme la source de la perturbation se dé-
place de gauche à droite avec la vitesse ‖v‖ < a, l’onde émise au temps initial
t = t0 est située au temps t = t1 > t0 dans la sphère de rayon a(t1−t0). Pendant
ce temps, la source s’est déplacée sur la distance v(t1 − t0). Comme ‖v‖ < a,
l’objet volant se trouve toujours à l’intérieur des sphères créées précédemment.

Si M > 1, l’écoulement est supersonique. La figure 8.6 (b) montre que la
vitesse résultante appartient à un cône de sommet P qui est tangent à la sphère
centrée à l’extrémité de v. Ce cône possède un demi-angle au sommet α tel que

sinα =
a

‖v‖ =
1

M
, (8.4)

dont le sinus est inversement proportionnel au nombre de Mach. Notons que le
nombre de Mach dans (8.4) est basé sur la vitesse v ; c’est donc un nombre de
Mach local qui varie avec la position. Dans un écoulement supersonique, toute
perturbation est propagée en aval dans un cône, dont l’angle au sommet décrôıt
losque M augmente. L’angle α défini par (8.4) est l’angle de Mach.

En résumé, l’écoulement subsonique sur un corps affecte la totalité de l’es-
pace en amont et en aval. L’amplitude de la perturbation s’atténue avec la dis-
tance. Pour l’écoulement supersonique, la perturbation est engendrée lorsque



280 Introduction à la mécanique des fluides newtoniens

l’écoulement incident atteint l’obstacle et est propagée uniquement vers l’aval.
Elle ne peut pas « remonter » en amont. Cette différence phénoménologique
s’explique par le modéle mathématique sous-jacent à la propagation des ondes
acoustiques. Pour cas subsonique, l’équation est de type elliptique, tandis que
dans le cas supersonique, elle est de nature hyperbolique.

Le cas particulier M = 1 est celui de l’écoulement sonique. L’angle de
Mach vaut 90o. Toutes les perturbations sphériques sont tangentes à un plan
perpendiculaire à v. Les petites perturbations (infinitésimales) interagissent
pour créer une perturbation d’amplitude finie : c’est le mur du son.

L’écoulement pour lequel M > 5 est appelé hypersonique. Dans ce cas, l’air
entre en dissociation moléculaire et le gaz s’ionise. Il faut tenir compte de la
réaction chimique entre les composants de l’air et les aspects thermodynamiques
sont prépondérants. Ces écoulements se présentent autour des missiles ou des
navettes spatiales.

8.3.2 Onde de choc

Lorsque l’objet volant n’est pas de petite taille, les perturbations engendrées
ne sont plus infinitésimales et la surface qui sépare la zone de silence de celle
où la propagation s’effectue, devient une surface courbe à travers laquelle la
pression, la masse volumique et la vitesse subissent des changements soudains
d’amplitude finie. Ce changement abrupt des quantités physiques s’appelle un
choc et la surface associée est l’onde de choc. Notons que l’onde de choc
est une onde de compression. Dans la réalité, l’onde de choc a une certaine
épaisseur de l’ordre de quelques millimètres. Cependant, lorsque l’objet est un
avion complet, on assimile l’onde de choc à une surface de discontinuité, ce qui
simplifie son traitement mathématique.

Les figures suivantes ont été réalisées par une méthode optique, l’ombro-
scopie, basée sur les variations d’indice de réfraction dues aux variations de
masse volumique. En plaçant un écran en opposition à la source lumineuse, on
obtient sur celui-ci des ombres chinoises révélant la configuration géométrique
de l’écoulement. Ces figures ont été publiées par von Kármán [73].

En passant de M = 0, 84 à M = 0, 971, on remarque aux figures 8.7 et 8.8
la configuration des ondes de choc qui sont produites sur un obus en vol libre
dans l’air avec un angle d’incidence inférieur à 1, 5o. On reconnâıt également
la présence d’un sillage turbulent à l’arrière du culot. Notons que le nez du
projectile a un demi-angle d’ouverture égal à 20o.

Lorsque l’on approche de la vitesse du son, la configuration des ondes de
choc s’étend latéralement sur des distances plus importantes. Les figures 8.9 et
8.10 montrent toute la complexité de ces ondes et leur interaction compliquée.
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M = 0,840

M = 0,885

M = 0,900

Fig. 8.7 Ecoulement subsonique d’un projectile pour M = 0,84, 0,885 et 0,9.

M = 0,946

M = 0,971

Fig. 8.8 Ecoulement subsonique d’un projectile pour M = 0,946 et 0,971.
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M = 0,978

Fig. 8.9 Ecoulement proche de la vitesse du son, M = 0,978.

M = 0,990

Fig. 8.10 Ecoulement proche de la vitesse du son, M = 0,99.
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Enfin, la figure 8.11 est celle de l’écoulement supersonique autour d’une
sphère de diamètre égal à 1,27 cm en vol libre dans l’air. Le nombre de Mach
vaut M = 1,53. L’onde de choc produite est courbe et se détache du corps
pour se placer en amont. Derrière le choc, l’écoulement redevient subsonique et
couvre la surface sphérique jusqu’à environ 45o, le zéro degré correspondant au
pôle de la sphère situé à l’amont sur l’horizontale. Pour un angle d’environ 90o,
la couche limite laminaire se sépare via une onde de choc oblique et devient
turbulente. Le sillage à l’aval de la sphère engendre un système de perturbations
faibles qui donne naissance à une seconde onde de choc.

Fig. 8.11 Ecoulement supersonique autour d’une sphère à M = 1,53.
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8.4 Equations de Navier-Stokes

Nous allons établir les équations de Navier-Stokes successivement pour le fluide
newtonien compressible, ensuite pour le fluide newtonien incompressible.

8.4.1 Equations de Navier-Stokes pour un gaz idéal

à chaleurs massiques constantes

Ecrivons les équations de Navier-Stokes pour le cas particulier du gaz idéal
compressible à chaleurs massiques constantes.

A l’aide de la relation (6.143), l’équation de l’énergie (4.23) peut se mettre
sous la forme

ρcv
DT

Dt
= σ :∇v − div q + r . (8.5)

L’expression σ :∇v peut s’écrire successivement

σij
∂vi
∂xj

= σij dij = −p δij dij + λ dkk dij δij + 2µ(dij)
2

= −p dii + λ(dii)
2 + 2µ(dij)

2

ou encore

σ : L = σ : d = −p trd+ λ(trd)2 + 2µ(d : d) . (8.6)

Par l’équation de conservation de la masse (3.41), on a l’égalité

trd = −1

ρ

Dρ

Dt
.

Dès lors, l’équation (8.5) devient

ρcv
DT

Dt
=
p

ρ

Dρ

Dt
+ λ (trd)

2
+ 2µd : d− div q + r . (8.7)

En utilisant l’équation d’état (6.136), on transforme (8.7) qui devient

ρcv
DT

Dt
=
Dp

Dt
− ρRDT

Dt
+ λ(trd)2 + 2µd : d− div q + r . (8.8)

Afin d’obtenir l’ensemble des équations, nous utiliserons l’équation de conser-
vation de la masse (3.41). On insère l’équation de comportement (6.14) dans
l’équation de conservation de la quantité de mouvement (3.96). Enfin, on mo-
difie l’équation de l’énergie (8.8) en tenant compte de la loi de Fourier (6.123)
et de la relation (6.141). Le système d’équations de Navier-Stokes s’écrit sous
forme indicée



Forme adimensionnelle des équations de Navier-Stokes 285

∂ρ

∂t
+
∂ρvi
∂xi

= 0 (8.9)

ρ
Dvi
Dt

= − ∂p

∂xi
+

∂

∂xi
(λdkk) +

∂

∂xj
(2µdij) + ρbi (8.10)

ρcp

(
DT

Dt
− γ − 1

γ

T

p

Dp

Dt

)
=

∂

∂xj

(
k
∂T

∂xj

)
+ λ

(
∂vi
∂xi

)2

+ 2µdij dij + r

(8.11)

p = ρRT . (8.12)

Les équations (8.10) et (8.11) se simplifient lorsque λ, µ et k sont des
constantes. En outre, faisons l’hypothèse de Stokes

3λ+ 2µ = 0 . (8.13)

Cette relation a été établie sur base d’un raisonnement tiré de la théorie ci-
nétique des gaz. Quoique cette hypothèse soit vérifiée pour les gaz monoato-
miques, elle n’est plus valable dans le cas des gaz polyatomiques.

Les équations (8.10) et (8.11) deviennent alors

ρ
Dvi
Dt

= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

+
µ

3

∂

∂xi
(dkk) + ρbi (8.14)

ρcp

(
DT

Dt
− γ − 1

γ

T

p

Dp

Dt

)
= k

∂2T

∂xj∂xj
− 2

3
µ(dkk)2 + 2µdij dij + r . (8.15)

8.4.2 Equations de Navier-Stokes pour un fluide incompressible

en écoulement isotherme

Comme l’écoulement est isotherme, T = cste, le principe de conservation de
l’énergie est trivialement respecté. Tenant compte de l’incompressibilité du
fluide (ρ = cste), les équations précédentes se simplifient

div v = 0 (8.16)

ρ
Dv

Dt
= −∇p+ µ4v + ρb . (8.17)

L’équation (8.17) est une équation aux dérivées partielles non linéaire d’ordre 2.
Elle exprime que l’accélération est produite par l’action du gradient de pression,
des forces visqueuses et des forces à distance.

8.5 Forme adimensionnelle des équations de Navier-Stokes

8.5.1 Cas du fluide compressible

Désignons par L, U , p0, ρ0, T0 les grandeurs de référence : longueur, vitesse,
pression, masse volumique et température, caractéristiques de l’écoulement à
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étudier. L’échelle des temps est L/U , celle des forces massiques U2/L. Intro-
duisons ensuite des variables et des fonctions sans dimensions (notées par des
primes) par les relations

xi = Lx′i t =
L

U
t′ vi = Uv′i p = p0p

′

ρ = ρ0ρ
′ T = T0T

′ bi = U2 b
′
i

L
.

On fera l’hypothèse que r = 0.

On réécrit les équations (8.9), (8.12), (8.14) et (8.15) avec ces grandeurs sans
dimensions, y compris les grandeurs constantes caractéristiques µ0, k0 estimées
à la température T0, ainsi que cp, γ, R

∂ρ′

∂t′
+ v′j

∂ρ′

∂x′j
+ ρ′

∂v′j
∂x′j

= 0 (8.18)

∂v′i
∂t′

+ v′k
∂v′i
∂x′k

= − p0

ρ0U2

1

ρ′
∂p′

∂x′i
+

µ0

ULρ0

1

ρ′

(
∂2v′i
∂x′j

2 +
1

3

∂

∂x′i
(d′kk)

)
+ b′i (8.19)

ρ′
(
DT ′

Dt′
− γ − 1

γ

T ′

p′
Dp′

Dt′

)

=
k0

µ0cp

µ0

ρ0UL

∂2T ′

∂x′j
2 −

µ0

ρ0UL

U2

cpT0

2

3
(d′kk)2 − 1

2

(
∂v′i
∂x′j

+
∂v′j
∂x′i

)2
 (8.20)

p′ = ρ′ T ′ , (8.21)

si on pose p0 = ρ0RT0.

Dans les relations (8.18)-(8.20) apparaissent trois nombres sans dimensions

• le nombre de Reynolds

Re = ρ0
UL

µ0
=
UL

ν0
;

• le nombre de Prandtl

Pr =
cpµ0

k0
=
ν0

Λ
;

• le nombre de Mach

M =
U

a0
,

qui apparâıt dans le groupement

p0

ρ0U2
=
RT0

U2
=

a2
0

γU2
=

1

γM2
.
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Le dénominateur du nombre de Mach a0 est la vitesse du son caractéristique
(éq. (6.153)). Le coefficient Λ défini par la relation

Λ =
k0

ρ0cp

apparâıt dans le nombre de Prandtl et s’appelle la diffusivité thermique .

Le nombre de Reynolds exprime l’importance relative des forces d’inertie
par rapport aux forces de viscosité. Il prend ses valeurs depuis zéro jusqu’à
plusieurs millions. Pour Re = 0, les équations de Navier-Stokes se réduisent
aux équations de Stokes. Elles régissent la dynamique des écoulements lents
ou rampants, et laminaires. Pour Re ∼ 106, l’écoulement est turbulent. Le
nombre de Prandtl permet de comparer les phénomènes de diffusion visqueuse
et thermique (Pr = 0, 71 pour l’air ambiant). Le nombre de Mach caractérise
les effets de compressibilité. Sa valeur est M = 0 pour le fluide incompressible.
Il est compris entre 0 < M < 1 pour les écoulements subsoniques et M > 1
pour les écoulements supersoniques.

Les équations de Navier-Stokes prennent la forme réduite

Dρ′

Dt′
+ ρ′ div v′ = 0 (8.22)

ρ′
Dv′

Dt′
= − 1

γM2
∇p′ + 1

Re

(
∇2v′ +

1

3
∇ (div v′)

)
+ ρ′b′ (8.23)

ρ′
(
DT ′

Dt′
− γ − 1

γ

T ′

ρ′
Dp′

Dt′

)
=

1

Pr Re
∇2T ′ − (γ − 1)

M2

Re

(
2

3

(
div v′

)2 − 1

2

(
∂v′i
∂xj

+
∂v′j
∂xi

)2
)

(8.24)

p′ = ρ′ T ′ . (8.25)

Si on fixe les coordonnées xi, le temps t et tous les paramètres M, Pr, γ, et
si l’on fait tendre Re → ∞, alors le système (8.22)-(8.25) conduit au système
des équations d’Euler des fluides parfaits. Le passage à la limite du nombre de
Mach vers zéro, tous les autres paramètres maintenus fixés, devrait conduire
aux équations de Navier-Stokes pour un fluide incompressible.

Cependant, l’examen du système (8.22)-(8.25) montre qu’il n’en est rien
et que le terme −(1/γM2)∇p devient dominant. Ce comportement est dû au
choix de la pression adimensionnelle p′ = p/p0, qui a été fait en considérant
la pression comme variable thermodynamique. L’équation du mouvement ré-
vèle que la pression est aussi une variable dynamique. Le choix d’une pression
adimensionnelle par la relation

p∗ =
p− p0

ρ0U2

est plus naturel.
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Dans ce cas, l’équation (8.23) devient

ρ′
Dv′

Dt′
= −∇p∗ +

1

Re

(
∇2v′ +

1

3
∇
(
div v′

))
+ ρ′b′ . (8.26)

Le passage à la limite du nombre de Mach vers zéro fournit les relations

Dρ′

Dt′
+ ρ′ div v′ = 0 (8.27)

ρ′
Dv′

Dt′
= −∇p∗ +

1

Re

(
∇2v′ +

1

3
∇(div v′)

)
+ ρ′b′ (8.28)

ρ′
DT ′

Dt′
=

1

Pr Re
∇2T ′ (8.29)

ρ′T ′ = 1 (8.30)

qui sont relatives à un fluide incompressible, mais susceptible de dilatation
thermique.

Pour obtenir (8.29), on calcule

Dp′

Dt′
=

1

p0

Dp

Dt′
=
ρ0U

2

p0

Dp∗

Dt′
=

U2

RT0

Dp∗

Dt′
= γM2Dp

∗

Dt′
.

L’équation (8.30) s’obtient par l’évaluation suivante :

p′ = ρ′T ′ =
p

p0
= 1 + p∗

U2

RT0
= 1 + γM2p∗ .

Si on suppose de plus qu’à la paroi du domaine, T ′ = 1, alors les équations
(8.29) et (8.30) ainsi que la condition aux limites sur T sont satisfaites par

ρ′ = 1 (8.31)

T ′ = 1 . (8.32)

Les équations (8.27) et (8.28) se réduisent par conséquent dans ce cas aux
équations d’un écoulement incompressible isotherme.

8.5.2 Cas du fluide incompressible en écoulement isotherme

Dans un premier cas, nous allons examiner le point de vue de l’aérodynamique.
On fait l’hypothèse que la force de volume est celle de gravité, b = g. On
prendra les mêmes échelles de temps, de longueur et de vitesse qu’au paragraphe
précédent. Pour la pression, on pose

p′ =
p− p0

ρU2

et pour la force de gravité, on introduit

g′ =
g

g
,
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où g = ‖g‖ est l’accélération de la pesanteur. L’équation (8.17) sous forme
réduite devient

Dv′

Dt′
= −∇p′ + 1

Re
∇2v′ +

1

Fr
g′ . (8.33)

Il apparâıt une quantité sans dimensions, le nombre de Froude

Fr =
U2

Lg
.

Ce nombre permet de comparer les forces d’inertie aux forces de gravité.

Dans un second cas, on va mettre en œuvre le point de vue des rhéologistes
pour lesquels les écoulements présentent une physique dominée par les effets
visqueux. Si on reprend l’équation (8.17) mais en normalisant la forme réduite
du temps et de la pression par la viscosité

t′ =
νt

L2
et p′ =

p− p0

µU

L

,

la forme réduite des équations de Navier-Stokes pour le fluide incompressible
s’écrit

∂v′i
∂t′

+ Re

(
v′k
∂v′i
∂x′k

)
= − ∂p

′

∂x′i
+∇2v′i +

Re

Fr
g′ . (8.34)

Les équations (8.33) et (8.34) sont différentes parce que la normalisation du
temps se fait d’une part par le temps lié à l’advection (terme d’inertie) L/U et
d’autre part, par le temps caractéristique de la diffusion moléculaire L2/ν.

Par conséquent, la forme limite des équations de Navier-Stokes s’obtient
par (8.33) lorsque Re→∞

Dv′

Dt′
= −∇p′ + 1

Fr
g′ . (8.35)

Ce sont les équations (adimensionnelles) d’Euler. La version dimensionnelle
s’écrit

ρ
Dv

Dt
= −∇p+ ρ g . (8.36)

Par contre, lorsque Re→ 0, l’équation (8.34) se simplifie pour donner

∂v′

∂t′
= −∇p′ +∇2v′ . (8.37)

Ce sont les équations (adimensionnelles) de Stokes. Ces équations sont linéaires,
à la différence des équations de Navier-Stokes qui sont non linéaires. Sous forme
dimensionnelle, on les écrit

ρ
∂v

∂t
= −∇p+ µ∇2v . (8.38)

Rappelons que la viscosité cinématique de l’eau est νeau = 10−6m2s−1.
Donc si U et L sont chacun de l’ordre de l’unité, le nombre de Reynolds sera
O(106). Cette valeur est typique de la turbulence, un sujet qui mériterait à
lui seul une monographie complète. Nous renvoyons le lecteur à la littérature
spécialisée [11, 16, 50, 64].
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8.6 Conditions initiales et aux limites

8.6.1 Fluide visqueux

Le fluide visqueux en contact avec une paroi rigide adhère à cette paroi suite
aux effets de la viscosité. Il y a donc lieu d’écrire la condition d’adhérence :

vfluide = vparoi . (8.39)

D’autre part, lorsque le fluide est en contact avec un milieu gazeux, on
suppose que les forces de contact s’équilibrent de part et d’autre de la surface
de contact et on écrit la relation

niσ
fluide
ij = niσ

gaz
ij .

Si le gaz n’est pas visqueux, il vient

niσ
fluide
ij = −njpgaz . (8.40)

En projetant (8.40) sur la normale à l’interface, on obtient

ninjσ
fluide
ij = −pgaz . (8.41)

Pour la composante tangentielle, il vient :

niτjσ
fluide
ij = −njτjpgaz = 0 , (8.42)

puisque n·τ = 0, τ désignant le vecteur unitaire tangent à la surface de contact.

Les relations (8.41) et (8.42) expriment les conditions dites de « surface
libre ». Elles impliquent qu’on connaisse la forme de cette surface pour pouvoir
être appliquées. Or la forme de la surface est elle-même une partie de la solution
du problème à résoudre. On conçoit donc que les problèmes à surface libre
constituent une des grandes difficultés de la mécanique des fluides, parce qu’ils
sont intrinsèquement non linéaires.

Pour certains fluides, la condition (8.41) doit être complétée pour tenir
compte de la tension superficielle. Il vient alors

ninjσ
fluide
ij = −pgaz + σ

(
1

R1
+

1

R2

)
, (8.43)

expression dans laquelle R1 et R2 sont les rayons de courbure principaux de la
surface et σ le coefficient de tension superficielle liquide-gaz exprimé en N/m.

Dans la pratique, on limite généralement l’étude à une partie de la zone
occupée par le fluide. Dans ce cas, il faut ajouter des conditions sur les sections
d’entrée, dans lesquelles on impose usuellement le vecteur vitesse, et sur les
sections de sortie, pour lesquelles on impose usuellement les forces de contact
qu’on suppose nulles dans la plupart des cas. Ceci correspond à une situation
où on laisse sortir le fluide à sa vitesse propre.

Dans le cas d’un problème transitoire, les conditions initiales sont les vi-
tesses qu’on prend souvent nulles au démarrage.
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8.6.2 Fluides parfaits

Comme la viscosité ne joue pas de rôle ici, le fluide peut glisser à sa vitesse
propre le long d’une paroi. La condition d’adhérence ne s’applique plus. On
impose que la composante normale de la vitesse relative du fluide par rapport
à la paroi avec laquelle il est en contact, est nulle. Dès lors, la condition de
glissement s’écrit :

vfluide · n = vparoi · n . (8.44)

Similairement, on imposera la valeur de la composante normale de la vitesse
du fluide sur toute section d’entrée ainsi que la pression sur toute section de
sortie.

Pour les écoulements transitoires, on procédera comme dans le cas des
fluides visqueux.

Enfin, en aérodynamique (externe, par exemple, pour l’écoulement autour
d’un profil), on trouve très souvent des conditions à imposer sur une frontière
non matérielle (située à distance finie ou non). C’est le cas par exemple d’un
obstacle fini placé dans un écoulement non confiné. On impose alors les condi-
tions d’un écoulement uniforme donné à l’infini.

8.7 Solution exactes des équations de Navier-Stokes

8.7.1 Ecoulements plans stationnaires

Dans cette section, nous allons examiner des solutions exactes des équations de
Navier-Stokes pour des écoulements plans stationnaires.

Ecoulement plan de Couette d’un fluide incompressible

On considère l’écoulement plan, stationnaire d’un fluide visqueux incompres-
sible entre deux parois parallèles.

h

x2

x1

U

Fig. 8.12 Ecoulement plan de Couette
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La figure 8.12 montre la configuration géométrique du domaine. On observe
que la paroi inférieure est fixe tandis que la paroi supérieure se déplace dans
son propre plan à la vitesse constante donnée U dans la direction x1.

Puisque l’écoulement est plan, le vecteur v se réduit à deux composantes
telles que v = (v1, v2, 0). Nous supposerons que l’écoulement est développé,
c’est-à-dire que les effets transitoires ou d’entrée dans la canalisation sont né-
gligeables. Dès lors, on peut estimer que v1 sera une fonction uniquement de
x2. La condition d’incompressibilité (8.16) devient

∂v2

∂x2
= 0 (8.45)

indiquant que v2 n’est pas une fonction de x2. Ce sera donc une fonction de x1.
Cependant comme sur les deux parois, v2 s’annule pour tous les x1, on conclut
que v2 = 0 partout. Nous écrivons l’équation bidimensionnelle de Navier-Stokes
(8.17) pour la composante de vitesse v1

ρ(
∂v1

∂t
+ v1

∂v1

∂x1
+ v2

∂v1

∂x2
) = − ∂p

∂x1
+ µ4v1 + ρb1. (8.46)

Comme la force de gravité est orientée suivant la direction négative de l’axe
x2, b1 = 0. De plus le problème est stationnaire, donc ∂v1/∂t = 0. Le terme
v1∂v1/∂x1 est nul vu que v1 = v1(x2). Enfin v2∂v1/∂x2 est nul également
puisque v2 = 0. On peut supposer que la composante horizontale du gradient
de pression est nul puisque l’écoulement est forcé de manière cinématique par
le mouvement de la paroi supérieure. Il reste donc

µ
d2v1

dx2
2

= 0 . (8.47)

Intégrant une fois (8.47), on obtient

µ
dv1

dx2
= C . (8.48)

Cette relation montre que la contrainte de cisaillement est constante sur la
hauteur du canal. Intégrant encore une fois, il vient

v1 = Ax2 +B. (8.49)

Les conditions aux limites d’adhérence

v1(x2 = 0) = 0, v1(x2 = h) = U (8.50)

permettent de déterminer les constantes d’intégration ; on obtient le profil de
vitesse linéaire

v1 =
Ux2

h
. (8.51)

La contrainte de cisaillement (6.16) obtenue par (8.51) est une valeur constante

σ12 = µ
dv1

dx2
= µ

U

h
. (8.52)
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Si on examine la seconde équation de Navier-Stokes dans la direction x2,
on a

0 = − ∂p

∂x2
− ρg, (8.53)

avec g l’accélération de la gravité. Par intégration de cette relation et en tenant
compte de l’indépendance de p par rapport à x1, on a

p = −ρgx2 + C. (8.54)

Comme la pression dans un fluide incompressible est connue à une constante
près, nous fixons celle-ci en imposant p(x2 = 0) = p0 = C. La pression est en
équilibre hydrostatique

p = p0 − ρgx2. (8.55)

Ecoulement plan de Poiseuille d’un fluide incompressible

On considére l’écoulement plan, stationnaire, d’un fluide visqueux incompres-
sible dans un canal composé de deux parois parallèles fixes. La figure 8.13
montre la configuration géométrique du domaine. Dans ce cas, un gradient de
pression longitudinal, c-à-d. dans la direction x1, est établi. On suppose que
l’écoulement est développé et que les particules de fluide se meuvent sur des
trajectoires parallèles aux parois. Des raisonnements identiques à ceux tenus
pour l’écoulement de Couette permettent d’écrire v1 = v1(x2), v2 = 0.

h

x2

x1

Fig. 8.13 Ecoulement plan de Poiseuille

L’équation dynamique pour la vitesse v1 est la relation (8.17) qui pour
l’écoulement de Poiseuille se réduit à

0 = − ∂p

∂x1
+ µ

∂2v1

∂x2
2
. (8.56)

De manière similaire à l’écoulement de Couette, la pression dans la direction
verticale est en équilibre hydrostatique

0 = − ∂p

∂x2
− ρg . (8.57)
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En intégrant cette relation, on obtient

p = −ρgx2 + P (x1) . (8.58)

Le facteur d’intégration P (x1) est la pression sur la paroi inférieure pour x2 = 0.
Le gradient de pression dans la direction x1 peut s’écrire

∂p

∂x1
=
dP

dx1
(8.59)

comme une fonction de x1 uniquement. L’équation (8.56) donne

d2v1

dx2
2

=
1

µ

dP

dx1
= C. (8.60)

En effet, le premier terme est fonction de x2 tandis que le second terme est
fonction de x1. Il s’ensuit que ces deux termes sont égaux à la même constante
C. L’intégration de (8.60) donne

v1 =
1

µ

dP

dx1

x2
2

2
+Ax2 +B. (8.61)

L’imposition des conditions aux limites

v1(x2 = 0) = v1(x2 = h) = 0, (8.62)

donne le profil de vitesse parabolique de Poiseuille

v1 = −h
2

2µ

dP

dx1

x2

h
(1− x2

h
). (8.63)

Comme dans la canalisation la pression chute linéairement avec la distance x1,
dP/dx1 < 0 et l’écoulement se fait dans la direction positive de l’axe des x1.

La contrainte de cisaillement obtenue à partir de (8.63) est

σ12 = µ
dv1

dx2
= −h

2

dP

dx1
(1− 2x2

h
) . (8.64)

On remarque que le cisaillement (6.16) est nul sur l’axe de symétrie du canal
x2 = h/2 et est maximal en valeur absolue sur les deux parois.

On peut calculer le débit-volume à travers la section S de la canalisation.
En toute généralité, le débit-volume est défini par la relation

Q =

∫
S

v · n dS . (8.65)
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En prenant une surface unitaire selon la direction x3, le débit dans le canal
plan s’écrit

Q =

∫ h

0

v1 dx2 = − h3

12µ

dP

dx1
=

h3

12µ

4p
L
, (8.66)

avec 4P la différence de pression observée en deux points de même ordonnée
x2 distants de la longueur L dans la direction x1. On définit la vitesse moyenne
par Q = vmoy h, d’où il vient

vmoy =
h2

12µ

4P
L
. (8.67)

Comme la vitesse maximale vmax est atteinte sur l’axe de symétrie de la cana-
lisation en x2/h = 1/2, il résulte que

vmax =
h2

8µ

4P
L

(8.68)

et par conséquent

vmoy =
2

3
vmax. (8.69)

Dans le cas où le canal plan est remplacé par une conduite de section circulaire
(voir § 8.7.2), on obtient que la vitesse moyenne est égale à la moitié de la
vitesse maximale. Ceci montre qu’une fraction plus petite de la section contient
la zone de vitesse élevée.

Ecoulement d’un fluide incompressible sur un plan incliné

Soit l’écoulement plan, stationnaire, d’un fluide visqueux newtonien sur un plan
incliné qui fait un angle α avec la direction verticale (fig. 8.14).

h

g
α

x2

x1

Fig. 8.14 Ecoulement sur un plan incliné.
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L’épaisseur de la couche de fluide est uniforme et égale à h. Le fluide est en
contact à la surface libre avec l’air ambiant que nous considérerons comme un
fluide parfait à la pression atmosphérique pa. On suppose que l’écoulement dans
l’air ambiant n’affecte pas ce qui se passe dans le fluide visqueux. L’écoulement
est parallèle puisque les trajectoires des particules fluides sont parallèles au
plan incliné. Dès lors, v = (v1, 0, 0). Par l’incompressibilité, on obtient

∂v1

∂x1
= 0, (8.70)

dont on déduit que v1 = v1(x2). La seule composante du tenseur des contraintes
est σ12 ou σ21. Comme la pression est uniforme à la surface libre, la pression
dans le fluide visqueux ne dépend pas de la direction x1, mais dépend de x2.
Par l’équation du mouvement (3.96) écrite dans la direction x1, il vient

∂σ12

∂x2
+ ρb1 =

∂σ12

∂x2
+ ρgcosα = 0 . (8.71)

Intégrant cette relation, on a

σ12 = −ρg x2cosα+ C . (8.72)

A la surface libre x2 = h, la contrainte de cisaillement doit s’annuler. On obtient

σ12 = ρgcosα(h− x2) . (8.73)

Comme σ12 = µdv1/dx2, on peut évaluer la composante v1 par intégration par
rapport à x2, en tenant compte de la condition aux limites v1(x2 = 0) = 0. Le
profil de vitesse est donné par la relation

v1 =
ρgcosα

2µ
x2(2h− x2) . (8.74)

L’équation de Navier-Stokes relative à la direction x2 produit la relation

− ∂p

∂x2
+ ρb2 = − ∂p

∂x2
− ρgsinα = 0 . (8.75)

Intégrant par rapport à x2 et en tenant compte de la condition à la surface
libre p(x2 = h) = pa, on écrit

p = pa − ρ gsinα(x2 − h) . (8.76)

Le débit-volume par unité de longueur dans la direction x3 est obtenu par

Q =

∫ h

0

v1 dx2 =
ρgcosα h3

2µ
. (8.77)
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Ecoulement plan de Couette d’un fluide compressible

On considére l’écoulement plan, développé et stationnaire d’un fluide visqueux
compressible entre deux parois parallèles. On négligera la gravité dans ce pro-
blème. La figure 8.15 montre la configuration géométrique du domaine. La paroi
inférieure est fixe et la paroi supérieure se déplace dans son propre plan à la vi-
tesse constante donnée U dans la direction x1. Comme le fluide compressible a
ses propriétés matérielles qui dépendent de la masse volumique et de la tempé-
rature (voir éq. (6.15)), l’équation d’énergie est incorporée dans la modélisation
et il nous faut prescrire des conditions aux limites pour la température. A cette
fin, la température de la paroi supérieure est fixée à la valeur constante T0,
tandis que la paroi inférieure est adiabatique, c’est-à-dire q2 = −k ∂T/∂x2 = 0.
Pour simplifier le problème, nous faisons l’hypothèse qu’aucune propriété ma-
térielle ne dépend de x1, x3 et t. Les inconnues du problème sont telles que

v =
(
v1(x2), v2(x2), 0

)
ρ = ρ(x2) T = T (x2) . (8.78)

L’équation de conservation de la masse (8.9) devient

d(ρv2)

dx2
= 0 . (8.79)

U T = T0

T,2 = 0

h

x2

x1

Fig. 8.15 Ecoulement plan de Couette pour un fluide compressible.

Par intégration, ρv2 est une constante. Comme la composante verticale de vi-
tesse v2 s’annule sur les deux parois, il en résulte que v2 = 0 partout. Les
équations de Navier-Stokes (8.10) deviennent

0 =
d

dx2

(
µ
dv1

dx2

)
, (8.80)

0 = − dp

dx2
. (8.81)

La relation (8.81) montre que la pression est constante dans tout l’écoulement.
Par conséquent, on peut supposer que les propriétés matérielles seront fonction
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de la température seule, puisque p = ρRT = cste. L’intégration de (8.80) donne

µ
dv1

dx2
= σ0 (8.82)

avec la convention que σ0 représente une contrainte de cisaillement
constante.

Le flux de chaleur a la seule composante q2 non nulle, étant donné l’hy-
pothèse sur la champ de température. Dans ce cas, l’équation d’énergie (8.11)
est

0 =
d

dx2

(
k
dT

dx2

)
+ µ

(
dv1

dx2

)2

= −d q2

dx2
+ σ0

dv1

dx2
. (8.83)

L’intégration de (8.83) fournit

−q2 + σ0v1 = C . (8.84)

Comme la paroi inférieure fixe (v1(x2 = 0) = 0) est adiabatique, l’imposition
des conditions aux limites à (8.84) donne C = 0 et on obtient

k
dT

dx2
+ σ0v1 = k

dT

dx2
+ µv1

dv1

dx2
= 0 . (8.85)

Ecrivant (8.85) sous la forme

d

dx2

(
1

2
v2

1

)
= −k

µ

dT

dx2
(8.86)

et en tenant compte des relations k = k(T ), µ = µ(T ), l’intégration depuis un
point d’ordonnée x2 jusqu’à la paroi supérieure donne

1

2
(U2 − v2

1) = −
∫ T0

T

k(T ′)

µ(T ′)
dT ′ . (8.87)

Cette équation nous fournit v1 en fonction de T ; cependant, comme k et µ sont
des fonctions positives de T (sect. 6.8), l’intégrale dans (8.87) est une fonction
monotone de T et on peut donc trouver la fonction inverse T (v1). A l’aide de
cette fonction inverse, l’équation (8.82) devient

µ
(
T (v1)

)
dv1 = σ0 dx2 (8.88)

et par intégration depuis la paroi inférieure où v1 = 0 jusqu’en un point arbi-
trairement choisi d’ordonnée x2, on obtient

x2 =
1

σ0

∫ v1

0

µ
(
T (v′1)

)
dv1
′ . (8.89)

Cette équation est le profil de vitesse donné sous forme inverse x2 = x2(v1).

Nous allons illustrer cette théorie par les résultats calculés lorsque la visco-
sité et la conductibilité thermique sont modélisées par des lois de puissance

µ = µ0

(
T

T0

)n
k = k0

(
T

T0

)n
. (8.90)
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L’exposant n de la loi est obtenu par une approximation polynomiale (au sens
des moindres carrés) des données expérimentales dans la gamme des tempéra-
tures impliquées dans le problème considéré. Les quantités de référence µ0, k0

sont les valeurs correspondant à la température de référence T0 de la paroi
supérieure. En combinant (8.87) et (8.90), il vient

1

2
(U2 − v2

1) = − k0

µ0

∫ T0

T

dT ′ (8.91)

et donc
T = T0 +

µ0

2k0
(U2 − v2

1) . (8.92)

La forme inverse du profil de vitesse est évaluée en insérant (8.90) dans (8.89)

x2 =
µ0

σ0

∫ v1

0

(
T

T0

)n
dv′1

=
µ0

σ0

∫ v1

0

(
1 +

µ0

2k0T0

(
U2 − v′1

2))n
dv′1 . (8.93)

Envisageons deux cas : n = 0 est celui des propriétés constantes ; n = 1 est
proche du comportement du gaz idéal.

Lorsque n = 0, la relation (8.93) produit

x2 =
µ0

σ0
v1 . (8.94)

En évaluant σ0 à la paroi supérieure, on retrouve le profil de Couette du fluide
incompressible (8.51). Le profil de température (8.92) devient

T = T0 +
µ0U

2

2k0

(
1−

(x2

h

)2)
. (8.95)

Le cas n = 1 conduit à la forme inverse du profil de vitesse

x2

h
=
v1

U

1 +
µ0 U

2

2k0T0

(
1− 1

3

(v1

U

)2
)

1 +
µ0U

2

3k0T0

. (8.96)

La relation (8.96) n’est pas inversible pour obtenir la solution explicite de v1.
On ne peut donc pas écrire la forme explicite de la température qui satisfait
toujours l’équation (8.92).

8.7.2 Ecoulements axiysmétriques stationnaires

Nous considérons dans cette section des solutions exactes des équations de
Navier-Stokes pour des écoulements stationnaires dans des géométries à symé-
trie de révolution. Nous intégrerons les équations de Navier-Stokes exprimées
dans un système de coordonnées cylindriques. Le vecteur vitesse a pour com-
posantes vr, vθ, vz que nous nommerons vitesse radiale, azimutale et axiale,
respectivement.
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Ecoulement de Couette circulaire

On considère l’écoulement stationnaire d’un fluide visqueux newtonien incom-
pressible entre deux cylindres concentriques de longueur axiale supposée infinie.
On note R1 et R2 les rayons des cylindres intérieur et extérieur, respective-
ment, et ω1, ω2 leur vitesse angulaire de rotation respective, figure 8.16. On
demande de calculer la vitesse azimutale vθ. Cet écoulement est connu sous le
nom d’écoulement de Couette circulaire. On négligera les effets des forces de
volume.

ω1

ω2

z

R2

R1

Fig. 8.16 Ecoulement de Couette circulaire.

L’écoulement n’a pas de vitesse axiale puisqu’il n’y a pas de gradient de
pression dans cette direction. De plus, comme le problème possède une symétrie
de révolution, il ne dépend pas de la coordonnée azimutale et donc ∂(•)/∂θ = 0.
Les deux composantes de vitesse vr, vθ, stationnaires et donc indépendantes
du temps, sont fonction uniquement de la coordonnée radiale r, soit vr =
vr(r), vθ = vθ(r). Comme le fluide adhère à la paroi, les conditions aux limites
sont

vr(R1) = vr(R2) = 0, vθ(R1) = ω1R1, vθ(R2) = ω2R2 . (8.97)

Avec les hypothèses et les déductions sur le profil de vitesse, l’équation de
continuité (A.31) devient

1

r

d

dr
(r vr) = 0 . (8.98)

En tenant compte des conditions aux limites (8.97) nulles pour vr, la solution
donne

vr = 0 . (8.99)
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Les équations de Navier-Stokes (A.32)-(A.33) dans ce cas se réduisent à

1

ρ

∂p

∂r
=
v2
θ

r
, (8.100)

1

r

∂

∂r

(
r
∂vθ
∂r

)
− vθ
r2

= 0 . (8.101)

La solution pour la composante vθ est de la forme vθ =
∑+∞
−∞ anr

n. On trouve
facilement que n = ±1. Par l’imposition des conditions aux limites, il vient

vθ = Ar +
B

r
=
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

r − (ω2 − ω1)R2
1R

2
2

R2
2 −R2

1

1

r
(8.102)

avec des définitions évidentes pour les constantes A et B. Le premier terme du
membre de droite correspond à une rotation d’ensemble du fluide autour de
l’axe central. Si ω1 = ω2 = ω, les deux cylindres tournent à la même vitesse de
rotation ω ; la vitesse devient vθ = ωr, ce qui montre que le fluide effectue une
rotation de corps solide autour de l’axe. Le second terme du second membre
correspond à une déformation des particules au cours du temps. Si R2 → ∞
et ω2 = 0, alors on est dans le cas d’un cylindre dans un fluide s’étendant à
l’infini. La vitesse vθ = ω1R

2
1/r donne des lignes de courant circulaires autour

du cylindre et la distribution de vitesse est irrotationnelle, c-à-d. rot v = 0.

Sur une facette de normale radiale s’exerce une contrainte tangentielle de
cisaillement σθr qui s’exprime par (A.5)

σθr = µ

(
∂vθ
∂r
− vθ

r
+

1

r

∂vr
∂θ

)
= µ

(
∂vθ
∂r
− vθ

r

)
= µ r

∂

∂r

(vθ
r

)
. (8.103)

En combinant (8.102) et (8.103), on obtient

σθr = −2Bµ

r2
. (8.104)

Nous allons calculer le couple de frottement visqueux C exercé sur le cylindre
intérieur par unité de longueur axiale. Ce couple est égal au produit de la
composante σθr évaluée en r = R1 et de la surface 2πR1 sur laquelle agit cette
contrainte, multiplié par le bras de levier R1 de la distance entre l’axe et le
point d’application de la force. On a

C = −2πR2
1

2Bµ

R2
1

= 4πµ
(ω2 − ω1)R2

1R
2
2

R2
2 −R2

1

. (8.105)

Cette dernière relation indique que nous pouvons mesurer la viscosité µ d’un
fluide dans un viscosimètre de Couette où le moteur d’entrâınement impose le
couple sur l’un des cylindres et on mesure la vitesse de rotation résultante sur
l’autre.
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Ecoulement de Poiseuille circulaire dans une conduite cylindrique

L’écoulement de Poiseuille dans une conduite cylindrique de rayon R est sou-
mis à l’action d’un gradient de pression imposé dans la direction z (fig. 8.17).
L’écoulement est stationnaire. A partir des équations de Navier-Stokes en co-
ordonnées cylindriques, montrons d’abord que la seule composante de vitesse
non nulle est vz.

L

R

z

Fig. 8.17 Ecoulement de Poiseuille dans une conduite cylindrique de section circu-
laire.

Etant donné les hypothèses d’écoulement stationnaire et de symétrie de
révolution, les deux seules composantes de vitesse vr, vz sont fonction de r
uniquement. L’équation de continuité (A.31) donne

1

r

∂

∂r
(r vr) = 0 . (8.106)

Son intégration fournit

rvr = f(z) .

Mais comme vr = 0 à la paroi r = R, on conclut que f(z) = 0 et donc
que vr s’annule dans tout l’écoulement. L’équation de Navier-Stokes pour la
composante radiale de vitesse (A.32) se réduit à ∂p/∂r = 0. La pression ne
dépend pas de r ; elle ne dépend que de z. L’équation relative à la composante
de vitesse vz (A.34) donne

−dp
dz

+ µ

(
∂2vz
∂r2

+
1

r

∂vz
∂r

)
= 0 ,

ou encore

dp

dz
=
µ

r

d

dr

(
r
dvz
dr

)
.

Dans le membre de gauche, le terme ne dépend que de z ; à droite, la dépendance
est en r. Donc ces deux termes sont égaux à une constante. Par intégration, on
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obtient

vz =

(
dp

dz

)
1

µ

(
r2

4
+A ln r +B

)
.

La vitesse doit être finie sur l’axe r = 0. Ceci induit A ≡ 0. En tenant compte
de la condition vz(R) = 0, on a

vz = −
(
dp

dz

)
R2

4µ

(
1−

( r
R

)2
)
.

Dans l’écoulement de Poiseuille, le profil de vitesse est parabolique. La vitesse
maximale au centre vaut

vmax = −
(
dp

dz

)
R2

4µ
. (8.107)

Le débit-volume est obtenu par intégration sur la section de la conduite. On a

Q = 2π

∫ R

0

vz(r) r dr = −
(
dp

dz

)
πR4

8µ
=
πR2vmax

2
. (8.108)

La vitesse débitante obtenue comme le rapport du débit à l’aire S de la section
est

vmoy =
Q

S
=
vmax

2
. (8.109)

La vitesse maximale est donc égale à deux fois la vitesse débitante. La contrainte
de cisaillement à la paroi que nous noterons τp, est donnée par la composante
σzr évaluée en r = R

τp = −µdvz
dr
|r=R= −

(
dp

dz

)
R

2
=

2µvmax
R

=
4µvmoy
R

. (8.110)

Le changement de signe entre τp et σzr est la conséquence du fait que τp re-
présente l’effort de cisaillement exercé par le fluide sur la paroi. Le coefficient
de frottement est défini par le rapport de la contrainte de paroi à la pression
dynamique moyenne

Cf =
τp

ρv2moy

2

=
8µ

ρRvmoy
=

8ν

Rvmoy
=

16

ReD
, (8.111)

avec ReD le nombre de Reynolds basé sur la vitesse débitante et le diamètre
de la section. Il est d’usage de définir le coefficient des pertes de charges λ par
la relation

−
(
dp

dz

)
=
ρv2
moy

2

λ

D
. (8.112)

Il vient

λ = 4Cf =
64

ReD
. (8.113)
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8.7.3 Ecoulements plans instationnaires

Nous nous intéressons dans ce paragraphe aux écoulements plans dépendants
du temps. Cette situation conduit à des équations aux dérivées partielles qui
ont pour variables indépendantes l’espace et le temps. Afin d’établir une so-
lution analytique du problème, on effectuera dans certains cas un changement
de variable pour obtenir une équation différentielle ordinaire plus simple à ré-
soudre.

Ecoulement transitoire dans un espace semi-infini

Soit un demi-espace (x2 ≥ 0) occupé par un fluide visqueux newtonien incom-
pressible, au repos pour t < 0. Au temps t = 0, le plan rigide qui limite le
demi-espace est mis instantanément en mouvement à la vitesse constante U
dans la direction positive de l’axe x1. Le mouvement est plan tel que v3 = 0.
Les conditions initiales et aux limites sont données par

t < 0, v1 = v2 = 0, ∀x1, x2 (8.114)

t ≥ 0, v1 = U, v2 = 0, pourx2 = 0, (8.115)

v1 = v2 = 0, pourx2 =∞. (8.116)

On suppose que v1 et v2 sont fonctions de x2 et de t

v1 = v1(x2, t), v2 = v2(x2, t) , (8.117)

et que la pression p est fonction de x2 seulement (il n’y a pas de gradient de
pression dans la direction horizontale ; l’écoulement est engendré par le défile-
ment de la paroi mobile). La conservation de la masse devient

∂v2(x2, t)

∂x2
= 0 . (8.118)

La composante v2 dépend uniquement du temps, et par les conditions (8.115),
elle est identiquement nulle pour tout t. Les équations de Navier-Stokes de-
viennent

ρ
∂v1

∂t
= µ

∂2v1

∂x2
2

, (8.119)

∂p

∂x2
= 0 . (8.120)

La pression p est une constante.

On peut, si on le désire, incorporer l’effet de la gravité dans le calcul de la
pression, en écrivant

∂p

∂x2
= −ρgx2 . (8.121)

L’intégration de cette relation conduit au calcul de la pression hydrostatique
où la pression en un point est celle du poids de la colonne de fluide située au-
dessus de cette position. La pression hydrostatique comme son nom l’indique,
ne participe pas à la dynamique de l’écoulement.
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L’équation du mouvement (8.119) est une équation de diffusion du type
« équation de la chaleur ». On peut transformer cette équation aux dérivées
partielles en une équation différentielle ordinaire par un changement de va-
riables qu’on peut obtenir par analyse dimensionnelle. Comme le problème ne
possède pas d’autre échelle spatiale que la variable x2 ni d’autre échelle de temps
que t lui-même, on les combine pour former le groupement adimensionnel

η =
x2

2
√
νt

. (8.122)

Ceci permet d’obtenir une équation différentielle ordinaire dont la solution est
fonction de η. Elle est appelée solution autosimilaire parce que le profil de
vitesse par rapport à la variable x2 est semblable en tout temps t.

Posant
v1 = U f(η) , (8.123)

la relation (8.119) devient
f ′′ + 2ηf ′ = 0 , (8.124)

avec les conditions
η = 0, f = 1; η =∞, f = 0 . (8.125)

Intégrant (8.124), on obtient

f = A

∫ η

0

e−η
′2
dη′ +B . (8.126)

En tenant compte des conditions (8.125), on a pour η = 0, B = 1 et pour
η =∞, A = −2/

√
π où on a utilisé la fonction d’erreur erf(x) définie par

erf (x) =
2√
π

∫ x

0

e−τ
2

dτ , (8.127)

et telle que erf(∞) = 1. On a donc

f = 1− erf η . (8.128)

La vitesse du fluide pour t > 0 est

v1 = U [1− erf(
x2

2
√
νt

)] . (8.129)

Le profil de vitesse v1/U en fonction de η est donné à la figure 8.18. Pour t
fixé, la variable η est proportionnelle à x2. Dès lors, on peut déduire le profil
de vitesse à tout instant en fonction de la distance à la paroi. Une question
intéressante consiste à savoir quelle est la profondeur de pénétration du mou-
vement du plan dans le milieu semi-infini. Plus précisément, pour t fixé, quelle
est la distance au plan à laquelle la vitesse atteint par exemple un pour cent
de la valeur de U ? Par examen des valeurs de erf, la fonction 1− erf prend la
valeur 0, 01 pour η ∼ 2. La profondeur de pénétration δ ainsi définie est donnée
par

ηδ =
δ

2
√
νt
' 2, δ ' 4

√
νt . (8.130)
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Fig. 8.18 Ecoulement transitoire dans un demi-espace infini.

Elle est proportionnelle à la racine carrée de la viscosité cinématique et du
temps. Ainsi, si la viscosité est très petite, le fluide « colle » moins à la paroi
et son effet est moindre. Si t tend vers l’infini, la vitesse en chaque point du
demi-espace tend vers U .

Ecoulement sur un plan oscillant

On considère l’écoulement produit par l’oscillation périodique d’une plaque
plane dans son propre plan. L’équation à résoudre (8.119) est toujours appli-
cable et la condition à la paroi s’écrit

v1 = U cosωt pour x2 = 0 . (8.131)

Après des phénomènes transitoires initiaux, la vitesse du fluide devient graduel-
lement une fonction périodique du temps à la même fréquence que celle de la
paroi plane. On inspecte cet état de régime périodique. Posons que la solution
v1 est de la forme

v1 = <
(
eiωtf(x2)

)
. (8.132)

La combinaison de (8.119) et (8.132) donne

iωf = ν
d2f

dx2
2

dont la seule solution qui reste finie lorsque x2 →∞ est

f = A exp
(
−(1 + i)(ω/2ν)1/2x2

)
.

L’imposition de la condition aux limites (8.131) établit A = U et la solution
devient

v1 = U exp
(
−(ω/2ν)1/2x2

)
cos
(
ωt− (ω/2ν)1/2x2

)
. (8.133)
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Le profil de vitesse représente une oscillation harmonique amortie d’amplitude

Ue−x2

√
ω/2ν dans un fluide où une couche à la distance x2 possède un retard de

phase x2

√
ω/2ν par rapport au mouvement de la paroi. Deux couches de fluide

séparées par la distance 2π(2ν/ω)1/2 oscillent en phase. Cette distance constitue
une estimation de la longueur du mouvement et on la nomme profondeur de
pénétration de l’onde visqueuse.

8.8 Ecoulements lents

Dans cette section, considérons tout d’abord les équations de Stokes, valables
pour des écoulements très lents que l’on qualifie aussi d’écoulements rampants.
Ces écoulements sont dominés par les forces visqueuses qui l’emportent de loin
sur l’inertie. Des exemples provenant de la technologie couvrent des domaines
aussi divers que les courants de convection dans les fours de fusion du verre, les
lubrifiants dans les paliers, l’écoulement des huiles et des boues (quoique ces
dernières peuvent présenter un comportement non newtonien prononcé). Dans
la nature (qui n’est pas de reste), on trouve la convection thermique dans le
magma terrestre, l’écoulement des laves, etc.

Nous supposons que le nombre de Reynolds Re� 1 et donc que les équa-
tions de Navier-Stokes se réduisent aux équations de Stokes. Comme celles-ci
sont linéaires, elles permettent un traitement analytique complet.

En prenant la divergence de l’équation de Stokes (8.38) et en tenant compte
du caractère solénöıdal du champ de vitesse, on trouve que

∆p = 0 . (8.134)

La pression est donc une fonction harmonique pour un écoulement plan.

En prenant le rotationnel de l’équation de Stokes, on obtient

∂ω

∂t
= ν∆ω , (8.135)

où on a introduit la vorticité ω = rot v, éq. (2.188). Dans le cas stationnaire,
chaque composante de la vorticité est aussi une fonction harmonique.

8.8.1 Ecoulements rampants plans

Soit un écoulement plan pour lequel on a

v = (v1(x1, x2, t), v2(x1, x2, t), 0); p = p(x1, x2, t) . (8.136)

Dans un problème bidimensionnel, la contrainte d’incompressibilité (8.16) est
automatiquement satisfaite par l’introduction de la fonction de courant ψ telle
que

v1 =
∂ψ

∂x2
, v2 = − ∂ψ

∂x1
. (8.137)
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Comme la vorticité se réduit à une seule composante ω = (0, 0, ω), il vient

ω =
∂v2

∂x1
− ∂v1

∂x2
= −∆ψ , (8.138)

et la relation (8.135) devient

∂∆ψ

∂t
= ν∆∆ψ . (8.139)

Pour un problème stationnaire, on aura

∆∆ψ = 0 , (8.140)

indiquant que la fonction de courant est une fonction biharmonique.

En coordonnées polaires (r, θ), la conservation de la masse devient

1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

= 0 . (8.141)

Il existe aussi une fonction de courant ψ telle que

vr =
1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
. (8.142)

Ecoulement dans un coin

Soit l’écoulement dans un coin présenté à la figure 8.19. La paroi inférieure est
fixe tandis que la paroi inclinée d’un angle θ0 est en mouvement de translation
uniforme à la vitesse constante U dans la direction x1. Près de l’origine, les
gradients de vitesse sont élevés ; cependant, on s’attend à ce que les forces
visqueuses soient prépondérantes au voisinage de l’origine. Afin de rendre la
formulation du problème stationnaire, nous choisissons le système d’axes avec
son origine à l’intersection des deux parois et en mouvement avec la paroi
supérieure. Dans ce cas, les conditions aux limites s’écrivent

1

r

∂ψ

∂θ
= −U, ∂ψ

∂r
= 0 en θ = 0 (8.143)

1

r

∂ψ

∂θ
= 0,

∂ψ

∂r
= 0 en θ = θ0 . (8.144)

La forme des conditions aux limites suggère qu’on puisse écrire ψ sous la forme
suivante

ψ = r f(θ) . (8.145)

En substituant (8.145) dans l’équation bifarmonique (8.140), on trouve la rela-
tion

1

r3

(
d4f

dθ4
+ 2

d2f

dθ2
+ f

)
= 0 (8.146)

dont la solution est

f(θ) = A sin θ +B cos θ + Cθ sin θ +Dθ cos θ . (8.147)
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x2

x1

θ0

Fig. 8.19 Ecoulement dans un coin d’angle d’ouverture θ0

(Pour mémoire, si H est une fonction harmonique, θH est une fonction bi-
harmonique.) L’imposition des conditions aux limites (8.143)-(8.144) permet
d’évaluer les constantes et on trouve

A,B,C,D =
(
−θ2

0, 0, θ0 − sin θ0 cos θ0, sin
2 θ0

) U

θ2
0 − sin2 θ0

. (8.148)

Pour le cas particulier du coin rectangulaire, on a

ψ =
rU

(π2 )2 − 1

(
−(
π

2
)2 sin θ +

π

2
θ sin θ + θ cos θ

)
(8.149)

dont on peut tirer facilement les composantes de vitesse

vr =
U

(π2 )2 − 1

(
(1− π2

4
) cos θ +

π

2
(sin θ + θ cos θ)− θ cos θ

)
(8.150)

vθ = − U

(π2 )2 − 1

(
−(
π

2
)2 sin θ +

π

2
θ sin θ + θ cos θ

)
. (8.151)

On peut examiner a posteriori le bien-fondé de l’hypothèse d’écoulement ram-
pant. En effet, les composantes de l’accélération évaluées avec la solution pré-
cédente sont proportionnelles à U2/r avec un facteur qui dépend de θ et qui est
de l’ordre de l’unité. Les effets visqueux sont quant à eux, de l’ordre de µU/r2.
Donc l’hypothèse d’écoulement rampant est satisfaite si ρrU/µ � 1 est réali-
sée. Ceci est vrai dans une région proche de l’origine telle que r � νU . Plus
loin, la solution ne sera plus correcte puisque les forces d’inertie deviennent
rapidement du même ordre de grandeur que les forces visqueuses.

8.8.2 Ecoulement parallèle autour d’une sphère

Soit une sphère de rayon R dans un écoulement visqueux dont la vitesse à
l’infini amont est U . On supposera l’écoulement très lent de sorte que nous
résolvons les équations de Stokes (8.38). Plaçons le système d’axes cartésien de
telle sorte que l’axe x3 soit orienté dans la direction de l’écoulement incident
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sur la sphère (fig. 8.20). Les conditions aux limites exprimées en coordonnées
sphériques (voir fig. 1.6) sont

v = 0 en r = R, (8.152)

v = Ue3 en r =∞ . (8.153)

ϕ
R

U

x3θ

Fig. 8.20 Ecoulement autour d’une sphère.

Le problème ainsi posé possède une symétrie par rapport à l’axe Ox3 et donc
par rapport à la longitude. Par conséquent, ∂(•)/∂ϕ ≡ 0. De même, vϕ = 0.
La contrainte d’incompressibilité (B.30) se réduit à

1

r2

∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) = 0 . (8.154)

On déduit qu’il existe une fonction de courant ψ telle que

vr =
1

r2 sin θ

∂ψ

∂θ
, vθ = − 1

r sin θ

∂ψ

∂r
. (8.155)

Etant donné le caractère plan de l’écoulement, la vorticité aura une seule com-
posante dans la direction du vecteur eϕ et on la notera ω. On écrit (cf. éq.
(B.5))

ω(r, θ) = −1

r

[
1

sin θ

∂2ψ

∂r2
+

1

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)]
. (8.156)

Dans le cas des équations de Stokes, la vorticité est une fonction harmonique.
On a (pour rappel, le laplacien d’un vecteur n’est pas égal au laplacien de ses
composantes)

∆ω − ω

r2 sin2 θ
=

1

r2

(
∂

∂r

(
r2 ∂ω

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂ω

∂θ

)
− ω

sin2 θ

)
=

1

r

∂2

∂r2
(rω) +

1

r2

∂

∂θ

(
1

sin θ

∂

∂θ
(ω sin θ)

)
. (8.157)

La combinaison des relations (8.156)-(8.157) donne l’équation biharmonique
suivante (

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

))2

ψ = 0 . (8.158)
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Les conditions aux limites (8.152)-(8.153), exprimées en termes de la fonction
de courant, deviennent

∂ψ

∂θ
=
∂ψ

∂r
= 0, en r = R,

vr = U cos θ,
∂ψ

∂θ
= Ur2 sin θ cos θ, en r =∞ (8.159)

vθ = −U sin θ,
∂ψ

∂r
= Ur sin2 θ.

La condition à l’infini peut s’intégrer facilement. Il vient

ψ∞ =
1

2
Ur2 sin2 θ . (8.160)

Cette dernière forme de ψ suggère que la fonction de courant peut s’écrire sous
la forme générale

ψ = sin2 θ f(r) . (8.161)

En introduisant (8.161) dans (8.158), on trouve

d4f

dr4
− 4

r2

d2f

dr2
+

8

r3

df

dr
− 8

r4
f = 0 . (8.162)

Cherchant la solution comme une série de puissance rn, on obtient le polynôme
caractéristique

(n− 2)(n− 1)
(
n2 − 3n− 4

)
= 0 ,

dont les racines sont n = −1, 1, 2, 4. La fonction f(r) est donc

f =
C−1

r
+ C1 r + C2 r

2 + C4 r
4 . (8.163)

L’imposition des conditions aux limites (8.160) à l’infini requiert C4 = 0,
C2 = 1

2U , tandis que sur la sphère, avec vr = vθ = 0, on détermine C−1 =
(1/4)U R3, C1 = −(3/4)U R. La fonction de courant est

ψ =
UR2

2
sin2 θ

(
R

2r
− 3

2

r

R
+ (

r

R
)2

)
. (8.164)

On peut en déduire aisément les vitesses. Le champ de vorticité s’écrit

ω = −3

2
UR (

sin θ

r2
) . (8.165)

Le calcul du champ de pression peut s’effectuer facilement en tenant compte
de l’identité vectorielle (1.238) qui donne lieu à l’équation de Stokes

∇p = −µ rot ω . (8.166)
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A l’aide de (B.5), ceci conduit au système d’équations

∂p

∂r
= − µ

r sin θ

∂

∂θ
(ω sin θ) = 3µU R

cos θ

r3
, (8.167)

1

r

∂p

∂θ
=
µ

r

∂(rω)

∂r
=

3µ

2
U R

sin θ

r3
. (8.168)

L’intégration de (8.167) donne

p = −3µ

2
U R

cos θ

r2
+ q(θ) .

En insérant ce résultat dans (8.168), on a

3µ

2
U R

sin θ

r3
+
q′(θ)

r
=

3µ

2
U R

sin θ

r3
.

Le champ de pression est finalement donné par

p = −3µ

2
U R

cos θ

r2
+ p0 , (8.169)

avec p0 une pression constante de référence.

L’écoulement à vitesse uniforme autour de la sphère va engendrer des efforts
de pression et de cisaillement. Pour le calcul des effets de pression dans la
direction Ox3, on effectue l’intégrale par rapport à la colatitude des efforts
élémentaires

dF3,p = −(
3µ

2
U

cos θ

R
+ p0) cos θ (2πR2 sin θ) dθ (8.170)

le facteur 2π provenant de la symétrie du problème qui permet l’intégration
dans la direction de la longitude. En intégrant de θ = 0 à θ = π, on obtient

F3,p = −2πµU R . (8.171)

La trâınée de frottement s’obtient par intégration sur la sphère de la contrainte
de cisaillement qui s’exerce sur elle, à savoir σrθ qui vaut −3µU sin θ/(2R) pour
r = R. Il vient

F3,σ = −
∫ θ=π

θ=0

(σrθ |r=R sin θ) (2πR2 sin θ) dθ = −4πµU R . (8.172)

La trâınée totale F3 = F3,p + F3,σ, connue sous le nom de formule de Stokes,
est la somme de celle de pression et celle de frottement

F3 = −6πµU R . (8.173)

Si on définit le coefficient de trâınée par

Cx =
F3

1
2ρU

2 πR2
, (8.174)
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on obtient

Cx =
24

Re
, (8.175)

où Re = 2UR/ν. Remarquons que la trâınée de pression représente le tiers
de la trâınée totale. La relation (8.175) est confirmée par l’expérience lorsque
Re < 1. Ceci est valable au voisinage de la sphère. Lorsqu’on s’en éloigne,
l’importance des termes d’inertie crôıt et la solution de Stokes s’écarte de la
solution exacte. La solution que nous venons d’établir ne s’applique pas au cas
d’un ensemble de particules sphériques, car la présence d’un obstacle sphérique
dans l’écoulement fait sentir son effet assez loin dans la mesure où les profils
de vitesse décroissent en 1/r.

La solution pour l’écoulement uniforme sur une sphère fixe peut être trans-
posée au cas de la translation à vitesse uniforme U d’une sphère de rayon R
dans un fluide au repos à l’infini. Dans ce cas, le système d’axes est toujours
attaché à la sphère et est en conséquence en translation à vitesse uniforme. Ceci
modifie le signe de U en −U pour la pression et la vorticité. Pour la vitesse dans
le fluide, celle-ci est relative au système d’axes, ce qui entrâıne les modifications
suivantes : pour la vitesse et la fonction de courant, U devient −U et il faut
soustraire également le champ de vitesse uniforme de leur expression.

Amélioration d’Oseen

La solution de Stokes a été améliorée par Oseen [48] qui a proposé d’écrire la
solution des équations de Navier-Stokes (8.17) en une somme d’une répartition
de vitesse constante dans l’espace et une solution de perturbation telle que

v = U e3 + v′ . (8.176)

Dans le cas de l’écoulement autour de la sphère fixe, la vitesse v′ tiendra compte
de la perturbation engendrée par la sphère dans un écoulement uniforme à
l’infini. Avec (8.176), le terme d’inertie stationnaire prend la forme

ρ
Dv

Dt
= ρ

(
v′j
∂v′i
∂xj

+ U
∂v′i
∂x3

)
. (8.177)

L’hypothèse d’Oseen revient à négliger le premier terme du second membre
de (8.177) par rapport au second. On obtient une équation de Navier-Stokes
linéarisée

ρU
∂v′

∂x3
= −∇ p+ µ∆v′ + ρb . (8.178)

Le coefficient de trâınée obtenu pour la solution d’Oseen s’écrit

Cx =
24

Re
(1 +

3

16
Re) . (8.179)

Les résultats expérimentaux montrent que (8.179) est valable pour Re < 5,
approximativement. Par des méthodes de développements asymptotiques rac-
cordés, ce coefficient corrigé devient

Cx =
24

Re
(1 +

3

16
Re− 19

1280
Re2 +O(Re3)) . (8.180)
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8.9 Vorticité et cinématique du tourbillon

Les équations de Navier-Stokes ont été établies à la section 8.4, pour le fluide
visqueux newtonien, en termes des variables primitives : la vitesse et la pression.
Les interactions observées dans un écoulement de fluide ont été interprétées
par un équilibre entre les forces d’inertie, le gradient de pression, les forces
de volume comme, par exemple, la gravité, et les forces visqueuses. Dans cette
section, nous adoptons un point de vue différent basé sur le concept de vorticité
ou tourbillon.

La présence de vorticité dans l’écoulement est une indication de l’ impor-
tance des effets visqueux, étant donné que le tourbillon est engendré par les
contraintes visqueuses. En effet, sous certaines hypothèses, le tourbillon pos-
sède les propriétés suivantes :

i) en l’absence de viscosité, il est transporté par l’écoulement comme un vec-
teur matériel élémentaire ;

ii) en présence de viscosité, il diffuse dans le fluide environnant et est conti-
nuellement produit aux parois solides qui délimitent l’écoulement.

C’est ainsi que le tourbillon produit sur une paroi solide fait apparâıtre la
notion de couche limite qui conduit à modifier certaines conclusions tirées de
la théorie des fluides parfaits irrotationnels. En turbulence, la dynamique de
l’écoulement est largement tributaire de l’allongement ou du raccourcissement
des lignes tourbillons, ainsi que de leur déformation.

Considérations cinématiques

Le tenseur L des gradients de vitesse peut se décomposer en la somme du
tenseur symétrique des taux de déformation d et du tenseur antisymétrique
des taux de rotation ω̇ suivant l’équation (2.184). Le tenseur d est donné par
(2.181) et ω̇ par (2.183). Rappelons que le vecteur dual Ω̇ correspondant au
tenseur des taux de rotation est le vecteur tourbillon introduit par (2.187).

En mécanique des fluides, il est classique d’introduire le vecteur vorticité
ou tourbillon ω en le définissant comme le rotationnel de la vitesse (2.188).
Pour nous familiariser avec le concept de vorticité, étudions l’écoulement près
d’un point d’arrêt placé à l’origine. Les composantes de vitesse sont telles que
l’on a, avec la constante C,

v1 = Cx1, v2 = −Cx2, v3 = 0 . (8.181)

On calcule aisément que pour cet écoulement, ω = 0. L’écoulement à vorticité
nulle est appelé irrotationnel . Notons que la fonction de courant équivalente
est ψ = Cx1x2 qui est représentée par des hyperboles.

Soit l’écoulement de Poiseuille plan dans un canal de hauteur h . Si le
système d’axes a son origine sur la paroi inférieure, le profil de vitesse (8.63)
avec la définition (8.68) est donné par la relation

v1 = 4vmax
x2

h
(1− x2

h
) , (8.182)
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avec vmax la vitesse maximale sur l’axe du canal en x2 = h/2. La seule compo-
sante du tourbillon est ω3. Elle est perpendiculaire au plan de l’écoulement et
vaut

ω3 = ε321
∂v1

∂x2
= −4vmax

h
(1− 2x2

h
) . (8.183)

Dans ce cas, le tourbillon est maximal en valeur absolue sur les deux parois et
s’annule sur l’axe de symétrie de la canalisation.

De ces exemples, on peut conclure que le concept de vorticité n’a pas de
lien avec la courbure des lignes de courant. Dans le premier exemple, les lignes
de courant sont courbes, mais la vorticité est nulle, tandis que dans le second
exemple, les lignes de courant sont des lignes droites et la vorticité est finie.

A partir de la définition du tourbillon (2.188) et du théorème de Stokes
(1.229), on obtient l’identité :

I(S) :=

∫
S

ω · n dS =

∫
S

rotv · n dS =

∮
v · τ dl = Γ . (8.184)

L’intégrale curviligne dans (8.184) définit la circulation de la vitesse, Γ, le long
de la courbe fermée C, de vecteur tangent unitaire τ , qui est donc égale au
flux du vecteur tourbillon à travers une surface quelconque s’appuyant sur le
contour. Cette propriété permettra, par la suite, de donner systématiquement
au concept de circulation une interprétation en termes de tourbillon. Rappe-
lons qu’une ligne tourbillon (fig. 8.21) est une ligne tangente en chacun de ses
points au vecteur tourbillon, et qu’un tube tourbillon est une famille de lignes
tourbillons s’appuyant sur une courbe fermée. L’intensité d’un tube tourbillon
est, pour une surface S délimitée par une ligne fermée sur laquelle s’appuie le
tube tourbillon, le flux I(S) du tourbillon à travers cette surface.
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s2
n

s1

C1

C2

ω

ω

Fig. 8.21 Tube tourbillon.

Les théorèmes de Helmholtz que nous ne démontrons pas, s’énoncent comme
suit :

1. le flux du tourbillon à travers une surface fermée est toujours nul ;

2. l’intensité d’un tube tourbillon ne dépend pas de la section considérée ;

3. un tube tourbillon ne peut se fermer que sur lui-même, ou encore s’étendre
à l’infini, à moins qu’il ne coupe une paroi.

La démonstration de ces théorèmes peut être consultée dans l’ouvrage de Pan-
ton [49].

8.10 Equation dynamique du tourbillon

8.10.1 Equation générale

L’équation qui régit la dynamique du tourbillon requiert l’établissement de
relations préliminaires.

Premièrement, le terme d’accélération a peut s’écrire comme suit :

a =
∂v

∂t
+ ω × v + grad

(v · v
2

)
. (8.185)
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En effet, on peut induire à partir de (8.185) les relations successives

ai =
∂vi
∂t

+ εijkωjvk +
∂

∂xi

(vjvj
2

)
,

=
∂vi
∂t

+ εijkεjlm

(
∂vm
∂xl

)
vk + vj

∂vj
∂xi

,

=
∂vi
∂t

+ (δklδim − δkmδil)
(
∂vm
∂xl

vk

)
+ vj

∂vj
∂xi

,

soit

ai =
∂vi
∂t

+ vk
∂vi
∂xk

.

Cette dernière expression n’est autre que la définition de l’accélération (2.33).

Ensuite, la relation

1

ρ
rota =

D

Dt

(
ω

ρ

)
− 1

ρ
(ω · grad)v (8.186)

est une identité. En effet, en appliquant l’opérateur rot à la relation (8.185), il
vient

rota =
∂

∂t
rotv + rot(ω × v) + rot grad

(v · v
2

)
,

ou encore

rota =
∂ω

∂t
+ rot(ω × v) . (8.187)

Le terme rot(ω × v) se développe comme suit :

rot(ω × v) = v · gradω − (∇v) ω + ω divv − v divω . (8.188)

Le dernier terme de (8.188) s’annule par (1.180). Par (8.187) et (8.188), il vient
dès lors

rota =
Dω

Dt
− (∇v) ω + ω divv .

Par l’équation de conservation de la masse (3.41), on obtient la relation

1

ρ
rota =

1

ρ

Dω

Dt
− (∇v)

(
ω

ρ

)
− 1

ρ2

Dρ

Dt
ω ,

qui est bien équivalente à l’equation (8.186), que nous écrivons sous la forme

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v +

1

ρ
rota . (8.189)

Cette relation constitue une première description de l’évolution temporelle de
la vorticité. Elle est connue comme l’équation de diffusion de Beltrami [58].

Par la conservation de la quantité de mouvement (3.96), on écrit

D

Dt

(
ω

ρ

)
= (

ω

ρ
· grad)v +

1

ρ
rot (b+

1

ρ
divσ) . (8.190)
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Afin de séparer les effets de la pression et de la viscosité, on utilise l’équation
de comportement (6.12) dans (8.190). On a

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v+

1

ρ
rot b+

1

ρ
rot(−1

ρ
∇p)+ 1

ρ
rot(

1

ρ
divT ) , (8.191)

avec le tenseur des extra-contraintes T . En faisant appel à la relation (1.234),
on écrit

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v+

1

ρ
rot b+

∇p
ρ
×∇(

1

ρ
)+

1

ρ
rot(

1

ρ
divT ) . (8.192)

Le membre de gauche de la relation (8.192) contient la dérivée matérielle du
tourbillon rapporté à la masse volumique locale. Dans le membre de droite,
on trouve successivement deux termes qui décrivent la déformation (étirement-
rétrécissement) et la courbure (flexion-basculement) des lignes tourbillon, le
terme de baroclinicité et enfin la diffusion visqueuse de la vorticité.

Si la force de volume est conservative, elle dérive d’un potentiel χ, comme
c’est le cas pour la gravité. Alors on écrit

b = −∇χ . (8.193)

En conséquence, rot b = 0. Ce terme s’annule dans (8.192). Nous adoptons
cette hypothèse pour la suite.

8.10.2 Interprétation physique de la dynamique de la vorticité

Cas du fluide parfait incompressible

Pour un fluide incompressible (∇ρ = 0), non visqueux (T = 0), l’équation
(8.192) se simplifie

D

Dt
ω = (∇v) ω = (ω ·∇)v . (8.194)

Le terme
(ω ·∇)v

n’a pas de contrepartie dans les équations de Navier-Stokes écrites en variables
primitives vitesse-pression. Examinons quelle est sa signification du point de
vue de la physique de l’écoulement.

Dans la figure 8.22, considérons deux points voisins P et Q sur une ligne
tourbillon. Les points P et Q définissent aussi une ligne matérielle de longueur
dx =‖ dx ‖, et on peut montrer l’égalité :

D(dxi)

Dt
= dvi =

∂vi
∂xj

dxj ou encore,
D(dx)

Dt
= dx · gradv . (8.195)

Cette dernière équation exprime à la fois les changements en longueur et en di-
rection d’un élément de ligne matérielle. La comparaison de (8.194) et (8.195)
fait apparâıtre que le vecteur tourbillon ω joue un rôle analogue à celui du



Equation dynamique du tourbillon 319

δv

Q

P

ω

Fig. 8.22 Portion d’une ligne tourbillon.

vecteur matériel dx. Dès lors, tout ce passe comme si le tourbillon ω se com-
portait comme un élément de ligne matérielle cöıncidant instantanément avec
une portion de ligne tourbillon. Soit δv la vitesse relative du fluide en Q par
rapport à celle en P . Dans la relation (8.194), on peut faire la substitution :

(∇v) ω =‖ ω ‖ lim
PQ→0

δv

PQ
.

Une partie du changement de ω mesuré par (8.194) provient donc de la rotation
rigide de l’élément de ligne matérielle (par la composante de δv normale à
ω), et l’autre partie est engendrée par la contraction ou l’extension de la ligne
élémentaire (par la composante δv parallèle à ω). Finalement, l’équation (8.194)
s’interprète comme suit : le tourbillon est transporté par les particules fluides,
tout en s’orientant et se déformant comme les vecteurs matériels élémentaires.

Cas du fluide parfait compressible

Le terme ∇ρ 6= 0 est présent dans (8.192). La production de vorticité par ba-
roclinicité intervient dans des écoulements où les surfaces isobares et isopycnes
(lignes d’égale masse volumique) se coupent. Ceci se produit dans des domaines
d’application, comme la météorologie, l’océanographie et l’astrophysique. Dans
le cas barocline, le centre de masse du fluide ne cöıncide pas avec le centre
de pression, qui est le lieu d’application de la résultante des forces de pres-
sion. Il s’ensuit qu’un couple tend à faire tourner le fluide localement et donne
naissance à la circulation.
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Dans le cas d’un fluide barotrope pour lequel la masse volumique est seule-
ment fonction de la pression (voir sect. 6.9), on a

ρ = ρ(p) ou p = p(ρ) , (8.196)

alors le terme barocline s’annule puisque les isobares et les isopycnes sont des
surfaces parallèles.

8.11 Equation du tourbillon pour le fluide visqueux newtonien

Nous supposons désormais que les viscosités λ et µ sont invariables. Avec (6.13),
on écrit

1

ρ
divT =

λ

ρ
grad (divv) + 2ν grad (divv)− νrot rotv , (8.197)

ou encore

1

ρ
divT = grad

(
λ+ 2µ

ρ
divv

)
− grad

(
λ+ 2µ

ρ

)
divv − νrot rotv .

(8.198)
En prenant le rotationnel de (8.198) et en tenant compte de (1.234), il vient

rot(
1

ρ
divT ) =

λ+ 2µ

ρ2
∇ρ×∇(divv)− rot(ν rotω) . (8.199)

L’équation de la dynamique du tourbillon s’obtient en combinant (8.192) et
(8.199)

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· grad

)
v +

1

ρ3
∇ρ×∇p

+
λ+ 2µ

ρ3
∇ρ×∇(divv)− 1

ρ
rot(ν rotω) . (8.200)

Cette équation se simplifie si le fluide est compressible barotrope (8.196) (∇ρ
est parallèle à ∇p) ou incompressible (∇ρ = 0). On a alors

D

Dt

(
ω

ρ

)
=

(
ω

ρ
· gradv

)
− 1

ρ
rot (ν rotω) . (8.201)

Cas particulier de l’écoulement plan

Pour un écoulement plan incompressible, l’équation (8.201) devient, avec la
notation ω3 = ω :

Dω

Dt
= ν ∆ω , (8.202)
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puisque dans ce cas particulier, le terme (ω · gradv) s’annule vu que ω est
orthogonal au plan de l’écoulement où se trouve gradv. On remarquera que
l’équation (8.202) est analogue à celle de la conduction de chaleur, la visco-
sité cinématique remplaçant la diffusivité thermique. On voit que l’équation
(8.202) est satisfaite pour ω = 0, c’est-à-dire pour un écoulement irrotation-
nel. Cependant, cette solution n’est pas adéquate. Pour le voir, raisonnons par
analogie avec l’équation de la chaleur, qui admet également la solution identi-
quement nulle. On sait, par la théorie de la chaleur, que toute distribution non
uniforme de température à la paroi ou tout flux de chaleur non nul aura pour
effet d’engendrer un champ de température variable dans le matériau. Dès lors,
l’analogie permet de conclure que, dans le cas d’un fluide visqueux, le tour-
billon qui est engendré aux parois, diffusera par cisaillement et sera emporté
ensuite par l’écoulement. La création de tourbillon à la paroi est le résultat de
la contrainte de cisaillement sur celle-ci. Pour obtenir la valeur du tourbillon
de paroi, on recourt classiquement à la méthode de la fonction d’influence de
Green.

8.12 Equation de la circulation

Sous le couvert des hypothèses de la section précédente, on va démontrer que,
pour une courbe matérielle C(t) le long de laquelle la circulation du vecteur
vitesse vaut Γ(t), on peut écrire la relation

dΓ

dt
= −

∮
C(t)

ν(rot rotv) · dl . (8.203)

Cette relation exprime le fait que la variation de la circulation le long d’une
courbe matérielle est due à la viscosité qui amortit le mouvement.

Pour établir la relation (8.203), il faut d’abord démontrer que, pour une
courbe matérielle C(t), le long de laquelle la circulation du vecteur vitesse vaut
Γ(t), on a l’identité suivante

dΓ

dt
=

∮
C(t)

a · dx . (8.204)

En effet, on peut écrire l’équation

dΓ

dt
=

d

dt

∮
C(t)

vidxi =
d

dt

∮
C0

Vi
∂xi
∂Xj

dXj ,

dans laquelle C0 désigne la courbe matérielle C(t) à l’instant t = t0 et les
coordonnées Xi sont les coordonnées lagrangiennes associées. En désignant par
Ai et Vi les représentations lagrangiennes de l’accélération (2.32) et de la vitesse
(2.17), on a les relations :

d

dt

∮
C0

Vi
∂xi
∂Xj

dXj =

∮
C0

(
Ai

∂xi
∂Xj

+ Vi
∂Vi
∂Xj

)
dXj

=

∮
C(t)

aidxi +

∮
C0

∂

∂Xj

(
ViVi

2

)
dXj .



322 Introduction à la mécanique des fluides newtoniens

Le dernier terme du membre de droite de cette égalité est nul sur une courbe
fermée.

A l’aide de la relation (6.14) qu’on porte dans l’équation du mouvement
(3.96), et compte tenu de l’identité vectorielle (1.238) et de l’équation (8.10),
on peut écrire la relation

a = −gradχ− 1

ρ
grad p+

(
λ

ρ
+ 2ν

)
grad (divv)− νrot rotv .

Tenant compte de la conservation de la masse, il vient

a = −grad
(
p

ρ
+ χ− λ+ 2µ

ρ
divv

)
−λ+ 2µ

ρ3

Dρ

Dt
grad ρ−νrotrotv . (8.205)

Dans le cas d’un fluide peu visqueux ou peu compressible, nous considére-
rons le terme λ+2µ

ρ3
Dρ
Dt grad ρ du second ordre par rapport au terme du gradient

de pression. Nous le négligerons dans la suite de l’exposé.

En insérant (8.205) dans (8.204), on obtient (8.203).

8.13 Equation du tourbillon pour le fluide parfait

Pour un fluide parfait incompressible, ou barotrope (et particulièrement en
écoulement isentropique ds = 0), le théorème de la dynamique du tourbillon
devient

D

Dt

(
ω

ρ

)
=

(
ω

ρ

)
· gradv . (8.206)

Dans le cas bidimensionnel, cette relation se réduit à

D

Dt

(
ω

ρ

)
= 0 . (8.207)

De l’équation (8.206), on déduit que, pour un fluide parfait barotrope ou in-
compressible, si un écoulement est irrotationnel à un instant, il le reste constam-
ment. En particulier, un écoulement initialement uniforme sera irrotationnel par
la suite. Cette proposition, appliquée aux écoulements isentropiques de fluide
parfait compressible, porte le nom de théorème de Crocco.

Dans le cas d’un fluide parfait, l’équation (8.203) fournit le théorème de
Kelvin :

dΓ

dt
= 0 . (8.208)

La circulation de la vitesse le long d’une ligne matérielle fermée ne change
pas, pour un fluide parfait incompressible ou barotrope (et particulièrement,
en écoulement isentropique).
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8.14 Equation de Bernoulli

L’équation de Bernoulli s’obtient à partir des équations d’Euler (8.36), pour
les fluides parfaits. Supposant que les forces de volume dérivent d’un potentiel
(8.193), il vient

Dv

Dt
= −1

ρ
∇ p−∇χ . (8.209)

On utilise l’identité vectorielle

v ·∇v = ω × v +∇
(v · v

2

)
, (8.210)

dans la dérivée matérielle de la vitesse pour obtenir

∂v

∂t
= −ω × v − 1

ρ
∇ p−∇

(
v2

2
+ χ

)
. (8.211)

On adopte l’hypothèse supplémentaire que l’écoulement est irrotationnel ω = 0.
Cette hypothèse est une hypothèse drastique car les fluides réels produisent des
écoulements rotationnels. Ceux-ci sont engendrés par exemple par les effets de
viscosité près des parois. L’équation (8.211) s’écrit désormais

∂v

∂t
= −1

ρ
∇ p−∇

(
v2

2
+ χ

)
. (8.212)

Puisque l’écoulement est irrotationnel, le champ de vitesse dérive d’un potentiel
tel que

v =∇Φ . (8.213)

L’équation d’Euler donne

∇
(
∂Φ

∂t
+
v2

2
+ χ

)
= −1

ρ
∇ p. (8.214)

Puisque le membre de gauche de (8.214) correspond au gradient d’une fonction
scalaire, il faut qu’il en soit de même pour le membre de droite. Ceci n’est
réalisable que si la masse volumique ρ est une fonction de p. Ceci revient à
exiger que l’écoulement considéré soit celui d’un fluide barotrope au sens de la
relation (6.147). Conséquemment, l’équation (8.214) devient

∇
(
∂Φ

∂t
+
v2

2
+ χ+

∫
dp

ρ(p)

)
= 0 (8.215)

On intègre cette équation pour obtenir

∂Φ

∂t
+

∫
dp

ρ(p)
+
v2

2
+ χ = C(t) . (8.216)

Si l’écoulement est stationnaire, alors (8.216) donne l’équation de Bernoulli∫
dp

ρ(p)
+
v2

2
+ χ = cste, (8.217)
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qui au vu de la nature du deuxième terme, est une intégrale d’énergie. L’équa-
tion de Bernoulli est une intégrale première de l’équation d’Euler dans le cas
de l’écoulement irrotationnel et stationnaire du fluide parfait.

Si l’écoulement est isentropique, la relation d’état (6.145) permet d’évaluer
le terme de pression présent dans (8.217). On obtient∫

dp

ρ(p)
=

γ

γ − 1

p

ρ
=

a2

γ − 1
(8.218)

où on a utilisé (6.153) pour déduire la dernière égalité. Avec (8.218) et la
définition q2 = vivi, l’équation de Bernoulli s’écrit

∂Φ

∂t
+

a2

γ − 1
+
q2

2
+ χ = cste . (8.219)

En supposant que l’écoulement adiabatique du fluide idéal est stationnaire
et sans forces de volume, on a

a2

γ − 1
+
q2

2
= cste, (8.220)

Comme γ > 1, on trouve facilement que a2 = γp0/ρ
γ
0 ρ

γ−1 = γC ργ−1. Donc,
on constate que a = 0 lorsque ρ = 0. La relation de Bernoulli (8.220) devient

a2

γ − 1
+
q2

2
=

γ + 1

2(γ − 1)
a2
∗ =

q2
max

2
. (8.221)

Les deux constantes a∗ et qmax désignent la vitesse du son critique et la vi-
tesse maximale sur la ligne de courant, respectivement. On trouvera aisément
que si q = a, alors q = a = a∗. Si a = 0, la vitesse q du fluide est égale à
la vitesse maximale qmax. L’équation (8.220) est particulièrement utilisée en
aérodynamique.

Si l’écoulement est incompressible, alors ρ = cste et l’équation de Bernoulli
(8.216) donne

∂Φ

∂t
+
p

ρ
+
v2

2
+ χ = C(t) . (8.222)

Pour l’écoulement stationnaire du fluide parfait incompressible, l’équation de
Bernoulli prend la forme bien connue en physique

p+
ρv2

2
+ ρχ = C , (8.223)

où C est une constante.

8.15 Ondes acoustiques

Les ondes acoustiques sont engendrées par des perturbations de faible ampli-
tude de la pression ou de la masse volumique qui se propagent à une certaine
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vitesse dans un écoulement de fluide. Lorsque les amplitudes sont finies, on
engendre une onde de choc.

Soit un fluide parfait, compressible, en écoulement uniforme, isotherme,
caractérisé par les variables p0, ρ0,v0. L’onde sonore crée une perturbation
p′, ρ′,v′ telle que l’écoulement résultant est donné par

p = p0 + p′, ρ = ρ0 + ρ′, v = v0 + v′ . (8.224)

Comme on suppose que cette perturbation est infinitésimale, on a les estima-
tions d’ordre de grandeur

|p′|
p0
,
|ρ′|
ρ0
,
‖v′‖√
p0
ρ0

� 1 . (8.225)

Les équations de conservation de la masse et de la quantité de mouvement sont

∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vi
∂xi

= 0 , (8.226)

∂vi
∂t

+ vj
∂vi
∂xj

+
1

ρ

∂p

∂xi
= 0 . (8.227)

En insérant les relations (8.224) dans (8.226) et (8.227), on linéarise les équa-
tions en ne retenant que les termes du premier ordre et en supposant que
l’écoulement de base satisfait les équations de conservation. Il vient

∂ρ′

∂t
+ v0j

∂ρ′

∂xj
+ ρ0

∂v′i
∂xi

= 0 , (8.228)

∂v0i

∂t
+ v0j

∂v′i
∂xj

+
1

ρ0

∂p′

∂xi
= 0 . (8.229)

En introduisant l’hypothèse supplémentaire que l’écoulement est globalement
isentropique (ds = 0), par (6.142), il vient pour un gaz idéal

dp′

p0 + p′
= γ

dρ′

ρ0 + ρ′
,

ou encore
∇p′ = γ

p0

ρ0
∇ρ′ . (8.230)

Afin de faciliter l’écriture, on définit la dérivée matérielle de l’écoulement non
perturbé

D0(•)
Dt

=
∂(•)
∂t

+ v0j
∂(•)
∂xj

. (8.231)

Les équations de la dynamique des pertubations deviennent

D0ρ
′

Dt
+ ρ0 div v′ = 0 , (8.232)

D0v
′

Dt
+

1

ρ0
∇p′ = 0 . (8.233)
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En insérant (8.230) dans (8.232), on obtient

D0v
′

Dt
+ γ

p0

ρ2
0

∇ρ′ = 0 . (8.234)

L’application de l’opérateur divergence à (8.234) et l’utilisation de (1.189)
conduisent à la relation

ρ0 div
D0v

′

Dt
+ γ

p0

ρ0
∆ρ′ = 0 . (8.235)

La dérivée matérielle de (8.232) donne

D2
0ρ
′

Dt2
+ ρ0 div

D0v
′

Dt
= 0 . (8.236)

En combinant (8.235) et (8.236), on produit l’équation des ondes

D2
0ρ
′

Dt2
= γ

p0

ρ0
∆ρ′ . (8.237)

La perturbation se propage par rapport à l’écoulement uniforme à une vitesse
donnée par √

γ
p0

ρ0
, (8.238)

appelée la vitesse du son. Dans le cas général d’un écoulement non uniforme,
on obtient la célérité du son

a =

√
γ
p

ρ
, (8.239)

qui n’est autre que l’expression (6.153). Notons qu’à l’aide de (8.230), on peut
mettre (8.237) sous la forme

D2
0p
′

Dt2
= γ

p0

ρ0
∆p′ . (8.240)

De même, on a
D2

0v
′
i

Dt2
= γ

p0

ρ0
∆v′i . (8.241)

Donc toutes les variables du problème satisfont l’équation d’ondes.

Comme l’équation d’ondes est linéaire à coefficient constant, on peut consi-
dérer qu’une harmonique de Fourier en est solution, soit

p′(k, t) =
∑
k

p̂k e
i(k·x−ωt) , (8.242)

où apparaissent le vecteur d’onde k, la pulsation ω et l’amplitude complexe
du mode p̂k. La relation de dispersion s’obtient en introduisant (8.242) dans
(8.240)

ω2 = a2k2 . (8.243)

La vitesse de phase de l’onde est obtenue par |ω|/|k| = a qui montre que la célé-
rité du son ne dépend pas du nombre d’onde. Les ondes acoustiques ne sont donc
pas dispersives. Dans le cas de l’air, avec T0 = 288K, a =

√
γRT0 = 340ms−1.

Pour une onde acoustique de fréquence ω/(2π) = 1000 Hz, la longueur d’onde
λ = 2π/(ω/a) vaut 0, 34 m.



Ecoulement stationnaire irrotationnel et isentropique d’un fluide... 327

8.16 Ecoulement stationnaire irrotationnel et isentropique

d’un fluide parfait compressible

Soit l’écoulement permanent d’un fluide parfait compressible dans lequel on
néglige les forces de volume. On suppose que l’écoulement est adiabatique et
thermodynamiquement réversible. Ceci revient à exclure la présence d’ondes de
choc. L’écoulement est donc isentropique ; le fluide est barotrope et son modèle
correspond à l’équation (6.147). Dès lors, on suppose l’écoulement irrotation-
nel puisque cette propriété se conserve dans le temps pour les fluides parfaits
barotropes. Avec ces hypothèses, les équations de conservation se simplifient

∂

∂xi
(ρvi) = 0 , (8.244)

vj
∂vi
∂xj

= −1

ρ

∂p

∂xi
. (8.245)

Pour l’écoulement isentropique, à l’aide de (6.152), il vient

∂p

∂xi
=
∂p

∂ρ

∂ρ

∂xi
= a2 ∂ρ

∂xi
. (8.246)

L’équation (8.245) devient

vj
∂vi
∂xj

+
a2

ρ

∂ρ

∂xi
= 0 . (8.247)

Multiplions (8.247) par vi et (8.244) par a2/ρ. En combinant les deux relations
ainsi obtenues, il vient

vivj
a2

∂vi
∂xj

=
∂vi
∂xi

. (8.248)

Remarquons que la vitesse du son a dans (8.248) est une fonction de la position.
Elle se calcule à partir de la vitesse du fluide par l’équation d’énergie du gaz
idéal (8.221).

L’irrotationalité de l’écoulement permet d’introduire un potentiel des vi-
tesses (8.213). En l’insérant dans (8.248), on a

1

a2

∂Φ

∂xi

∂Φ

∂xj

∂2Φ

∂xi∂xj
= ∆Φ . (8.249)

L’équation de Bernoulli (8.221) donne

1

2

(
∂Φ

∂xi

)2

+
a2

γ − 1
= cste . (8.250)

Comme les relations (8.249) et (8.250) sont non linéaires, il nous faut procéder
à des simplifications afin d’en trouver une solution.
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8.16.1 Théorie des petites pertubations

On suppose un écoulement uniforme et parallèle de vitesse U dans la direction
x1, perturbé par un obstacle mince ou par des parois peu inclinées par rap-
port à la direction horizontale. Ces dispositions géométriques engendrent des
perturbations telles que

vi = Ue1 + v′i , (8.251)

avec les inégalités ∣∣∣∣v′iU
∣∣∣∣� 1, i = 1, 2, 3 . (8.252)

Le champ de vitesses dépend du potentiel Φ(xi) qu’on écrit sous la forme

Φ(xi) = Ux1 + ϕ(xi) , (8.253)

où ϕ désigne le potentiel de perturbation.

Nous linéarisons les équations (8.248) et (8.221) en négligeant tous les
termes d’ordre égal ou supérieur à deux exprimés en fonction de la pertur-
bation par rapport à ceux du premier ordre. Il vient pour (8.248)

∂vi
∂xi

=
U2

a2

∂v1

∂x1
=
U2

a2

∂v′1
∂x1

. (8.254)

Remarquons que (8.254) n’est pas linéaire, car la vitesse locale du son a dépend
des perturbations v′i.

L’équation de Bernoulli (8.221) peut s’écrire comme

q2

2
+

a2

γ − 1
=
U2

2
+

a2
∞

γ − 1
, (8.255)

où a∞ est la vitesse du son à l’infini amont. La linéarisation permet d’écrire
successivement

a2 = a2
∞ +

γ − 1

2

(
U2 − q2

)
= a2

∞ +
γ − 1

2

[
U2 − (U + v′1)2 − v′22 − v′23

]
= a2

∞ − (γ − 1)Uv′1 + . . . (8.256)

En tenant compte de l’inégalité (8.252), la relation (8.256) est approchée telle
que

a2 ≈ a2
∞ . (8.257)

En combinant les relations (8.254)-(8.257), on obtient(
1− U2

a2
∞

)
∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

+
∂2ϕ

∂x2
3

= 0 . (8.258)

Avec la définition du nombre de Mach (8.3), la relation (8.258) devient(
1−M2

∞
) ∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

+
∂2ϕ

∂x2
3

= 0 . (8.259)
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Lorsque le nombre de Mach approche l’unité, l’équation (8.259) dégénère et
n’est plus valable. On ne l’utilise donc pas dans le cas sonique (ou transsonique).
Du point de vue mathématique, l’équation (8.259) est elliptique dans le cas
subsonique, M∞ < 1, et hyperbolique dans le cas supersonique, M∞ > 1.
Cette différence de nature mathématique induit également des comportements
physiques différents.

L’équation du potentiel (8.259) est soumise à des conditions aux limites
qui vont imposer que le vecteur vitesse v soit parallèle aux parois dans leur
voisinage. Il faudra aussi s’assurer que la méthode des perturbations est bien
vérifiée via (8.252).

Si l’écoulement est délimité par des parois F (x1, x2, x3) = 0, on a à proxi-
mité de celles-ci

v′2
U
≈ v′2
U + v′1

=
dx2

dx1

∣∣∣∣
x3

= − (∂F/∂x1)

(∂F/∂x2)
(8.260)

v′3
U
≈ v′3
U + v′1

= − (∂F/∂x1)

(∂F/∂x3)
. (8.261)

Il faudra donc que les conditions

|∂F/∂x1| � |∂F/∂x2| et |∂F/∂x1| � |∂F/∂x3| (8.262)

soient respectées.

8.16.2 Ecoulement bidimensionnel d’un fluide compressible au voisinage

d’une paroi ondulée sinusoidale

On considère l’écoulement bidimensionnel stationnaire d’un fluide parfait com-
pressible au voisinage d’une paroi ondulée de forme x2 = f(x1) = ε sin(αx1),
dont l’amplitude ε est faible comparée à la longueur d’onde λ = 2π

α , i.e. εα� 2π
à la figure 8.23.

x1

x2

ε

π/α

Fig. 8.23 Paroi ondulée

On résoudra (
1−M2

∞
) ∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

= 0 (8.263)
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avec la condition à la paroi F (x1, x2) = x2 − f(x1) = 0 (éq. (8.260),

∂f

∂x1
=

v′2
U + v′1

≈ v′2
U

∣∣∣∣
x2=f(x1)

. (8.264)

On peut exprimer le dernier terme de (8.264) comme

v′2
U

(x1, ε sinαx1) =
1

U

[
v′2(x1, 0) + (

∂v′2
∂x2

)

∣∣∣∣
x2=0

ε sinαx1 + . . .

]
. (8.265)

La condition à la paroi devient avec le même degré d’approximation

v′2(x1, 0)

U
=

∂f

∂x1
= εα cosαx1 . (8.266)

Ceci revient à imposer la condition sur le plan moyen x2 = 0 ; d’où la nécessité
de l’hypothèse εα � 1. En x2 → ∞, pour le cas subsonique, on imposera
v′1 = v′2 = 0.

Ecoulement subsonique

On procède par séparation de variables en posant dans l’équation (8.263)

ϕ(x1, x2) = ϕ1(x1)ϕ2(x2) (8.267)

ce qui donne, avec n2 = 1−M2
∞

n2ϕ
′′
1

ϕ1
+
ϕ′′2
ϕ2

= 0 . (8.268)

La condition aux limites (8.266) devient

v′2(x1, 0)

U
=

1

U

∂ϕ

∂x2
(x1, 0) = εα cosαx1 (8.269)

d’où on a
ϕ1(x1)ϕ′2(0) = Uεα cosαx1 . (8.270)

On déduit que
ϕ1(x1) = A cosαx1 . (8.271)

Portant (8.271) dans (8.268), il vient

ϕ′′2
ϕ2

= n2α2 . (8.272)

Par intégration (8.272), on obtient

ϕ2(x2) = Be−nαx2 + Cenαx2 . (8.273)

La condition de vitesse nulle en x2 → ∞ impose C = 0, si on suppose n > 0.
Avec (8.270), on a dès lors

ϕ1(x1) = − εU
Bn

cosαx1 (8.274)
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et finalement,

ϕ(x1, x2) = −εU
n

cosαx1e
−nαx2 . (8.275)

On vérifie aisément que la condition |v′1/U | � 1 implique

εα

n
� 1 . (8.276)

Ce sera le cas lorsque n 6= 0, c’est-à-dire que l’on ne soit pas trop proche du
domaine transsonique.

Ecoulement supersonique

Posons M2
∞ − 1 = m2. L’équation (8.263) devient

∂2ϕ

∂x2
2

− 1

m2

∂2ϕ

∂x2
1

= 0 . (8.277)

D’après d’Alembert, cette équation d’ondes a pour solution générale la relation

ϕ = f(x1 −mx2) + g(x1 +mx2) . (8.278)

Le second terme g doit être négligé dans le cas où l’écoulement se situe dans le
plan supérieur à la paroi dans la direction positive de l’axe des x1. La condition
aux limites (8.269) donne

∂ϕ

∂x2
(x1, 0) = Uεα cosαx1 = −mf ′(x1) . (8.279)

Par intégration, il vient

ϕ = f(x1 −mx2) = −Uε
m

sinα(x1 −mx2) (8.280)

La condition de petites perturbations implique que εα/m� 1. Remarquons que
le potentiel de perturbations garde les mêmes valeurs sur des droites inclinées
de coefficient angulaire dx2/dx1 = 1/m = tanα vers l’aval, avec α l’angle de
Mach (8.4). La perturbation se propage donc à l’infini aval, alors que dans le
cas subsonique, son amplitude décroissait rapidement lorsqu’on s’éloignait de
la paroi.

8.17 Exercices

8.1 A partir de l’équation de conservation de la quantité de mouvement (3.96),
établir les équations de Navier-Stokes pour un fluide visqueux newtonien. Que
deviennent ces équations lorsque les coefficients λ et µ sont constants ? Etudier
le cas particulier d’un fluide incompressible (mouvement isochore).
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8.2 On considère l’écoulement plan de Couette-Poiseuille obtenu par la su-
perposition de l’écoulement de Couette induit par le mouvement de la paroi
supérieure à vitesse constante U et celui de Poiseuille engendré par le gradient
de pression dans la direction x1. On demande de calculer le profil de vitesse, la
contrainte de cisaillement et le débit-volume.

8.3 On considère l’écoulement hélicöıdal d’un fluide visqueux incompressible
entre deux cylindres circulaires en rotation relative comme dans l’écoulement
de Couette circulaire. Les cylindres intérieur de rayon R1 et extérieur de rayon
R2 ont une vitesse angulaire de rotation ω1 et ω2, respectivement. Le fluide
entre les cylindres est soumis également à un gradient de pression axial. On
demande de calculer les composantes de vitesse non nulles vθ, vz. On calculera
également le champ de pression p = p(r, z).

8.4 Soit une sphère solide plongée dans un fluide visqueux newtonien incom-
pressible qui remplit tout l’espace, et qui est au repos à l’infini. La sphère tourne
autour d’un de ses diamètres à une vitesse angulaire constante Ω. On suppose
le nombre de Reynolds inférieur à l’unité. On néglige les forces de volume. Les
lignes de courant sont des circonférences centrées sur l’axe de rotation et si-
tuées dans des plans perpendiculaires à celui-ci. En travaillant en coordonnées
sphériques, calculer le profil des vitesses.

8.5 Avec les mêmes hypothèses que dans l’exercice précédent, on étudie l’écou-
lement d’un fluide compris entre deux sphères de rayon R1 et R2 telles que
R1 < R2, et qui tournent à des vitesses angulaires Ω1 et Ω2 aoutour d’un
diamètre commun fixe.

Calculer le profil des vitesses.

8.6 Par application du théorème de Bernoulli pour les fluides parfaits, montrer
que la vitesse de sortie d’un jet par un orifice pratiqué dans une enceinte à la
distance h de la surface libre du fluide est

v =
√

2gh . (8.281)

8.7 On considère l’écoulement d’un fluide visqueux dans une conduite de sec-
tion arbitraire. Faisant l’hypothèse que le champ de vitesse est de la forme

v1 = v1(x2, x3), v2 = v3 = 0 ,

montrer que le champ de vitesse satisfait l’équation

∂2v1

∂x2
2

+
∂2v1

∂x2
3

=
1

µ

dp

dx1
= C = cste

Si la section est de forme elliptique de demi-axes a et b telle que(x2

a

)2

+
(x3

b

)2

= 1 ,
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le champ de vitesse s’écrit

v1 = A

[(x2

a

)2

+
(x3

b

)2
]

+B .

Trouver les constantes A et B.

8.8 Un cylindre de rayon R1 se déplace parallèlement à son axe avec une vitesse
constante U à l’intérieur d’un cylindre co-axial fixe de rayon R2.

Calculer le champ de vitesse du fluide visqueux qui remplit l’espace entre
les deux cylindres. Trouver la force de frottement par unité de longueur qui
s’exerce sur le cylindre mobile.





Annexe A

Coordonnées cylindriques

Nous donnons ci-dessous certains opérateurs différentiels ainsi que les princi-
pales équations dans un système de coordonnées cylindriques. On représente
à la figure A.1 les composantes du tenseur des contraintes dans le système de
coordonnées cylindriques (r, θ, z).

x3

O

x1

dz

dr

rdθr

z

x2

σrr

σrθ

σrz

σzz

σθθ

σθz

θ

dθ

Fig. A.1 Composantes du tenseur des contraintes dans un système de coordonnées
cylindriques.

Divergence d’un champ vectoriel v(r, θ, z) :

div v =
1

r
vr +

∂vr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(A.1)

ou

div v =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

. (A.2)
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Divergence d’un champ tensoriel σ(r, θ, z) :

divσ =

(
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r

)
er

+

(
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

)
eθ

+

(
∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

)
ez .

(A.3)

Gradient d’un champ scalaire f(r, θ, z) :

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez . (A.4)

Gradient d’un champ vectoriel v(r, θ, z) :

∇v =



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

∂vr
∂z

∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

∂vθ
∂z

∂vz
∂r

1

r

∂vz
∂θ

∂vz
∂z

 . (A.5)

Rotationnel d’un champ vectoriel v(r, θ, z) :

rotv =

(
1

r

∂vz
∂θ
− ∂vθ

∂z

)
er +

(
∂vr
∂z
− ∂vz

∂r

)
eθ

+
1

r

(
∂

∂r
(rvθ)−

∂vr
∂θ

)
ez .

(A.6)

Laplacien d’un champ scalaire f(r, θ, z) :

∆f = ∇2f =
1

r

∂f

∂r
+
∂2f

∂r2
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
(A.7)

ou

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
. (A.8)

Laplacien d’un champ vectoriel v(r, θ, z) :

∇2v =

(
∇2vr −

2

r2

∂vθ
∂θ
− vr
r2

)
er

+

(
∇2vθ +

2

r2

∂vr
∂θ
− vθ
r2

)
eθ

+
(
∇2vz

)
ez .

(A.9)
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Dérivée matérielle d’un champ scalaire f(r, θ, z) :

Df

Dt
=
∂f

∂t
+ vr

∂f

∂r
+
vθ
r

∂f

∂θ
+ vz

∂f

∂z
. (A.10)

Accélération :

Dvr
Dt

=
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
+ vz

∂vr
∂z

(A.11)

Dvθ
Dt

=
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

(A.12)

Dvz
Dt

=
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

. (A.13)

Equation de conservation de la masse :

∂ρ

∂t
+
∂(ρvr)

∂r
+
ρvr
r

+
1

r

∂(ρvθ)

∂θ
+
∂(ρvz)

∂z
= 0 . (A.14)

Equations du mouvement :

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2

θ

r

)
=
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
+ ρbr (A.15)

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

)
=
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

+ ρbθ (A.16)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
=
∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

+ ρbz . (A.17)

Equations d’équilibre :

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
+ ρbr = 0 (A.18)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂σθz
∂z

+
2σrθ
r

+ ρbθ = 0 (A.19)

∂σrz
∂r

+
1

r

∂σθz
∂θ

+
∂σzz
∂z

+
σrz
r

+ ρbz = 0 . (A.20)
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Equations de Navier :

µ

(
∇2ur −

ur
r2
− 2

r2

∂uθ
∂θ

)
+ (λ+ µ)

∂

∂r

(
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

)
+ fr = 0 (A.21)

µ

(
∇2uθ −

uθ
r2
− 2

r2

∂ur
∂θ

)
+ (λ+ µ)

1

r

∂

∂θ

(
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

)
+ fθ = 0 (A.22)

µ∇2uz + (λ+ µ)
∂

∂z

(
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂uz
∂z

)
+ fz = 0 (A.23)

Composantes de déformation en fonction du déplacement :

εrr =
∂ur
∂r

εθθ =
ur
r

+
1

r

∂uθ
∂θ

εzz =
∂uz
∂z

(A.24)

εzr =
1

2

(
∂ur
∂z

+
∂uz
∂r

)
εrθ =

1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
(A.25)

εzθ =
1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
. (A.26)

Noter que les équations constitutives sont obtenues en replaçant les
composantes cartésiennes dans (7.3) et (7.4) par les composantes ci-
dessus.

Equation biharmonique :

∇4Φ =

(
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2

)(
1

r

∂Φ

∂r
+
∂2Φ

∂r2
+

1

r2

∂2Φ

∂θ2

)
= 0 .

(A.27)

Composantes de la contrainte :
Via la fonction de contrainte d’Airy pour un état de contrainte plane

σrr =
1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
(A.28)

σθθ =
∂2Φ

∂r2
(A.29)

σrθ =
1

r2

∂Φ

∂θ
− 1

r

∂2Φ

∂r∂θ
. (A.30)
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Equations de Navier-Stokes incompressibles :
Equation de conservation de la masse

∂vr
∂r

+
vr
r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

= 0 (A.31)

Equations du mouvement

ρ(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+ vz
∂vr
∂z
− v2

θ

r
) =

−∂p
∂r

+ µ(4vr −
vr
r2
− 2

r2

∂vθ
∂θ

) + ρbr (A.32)

ρ(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

) =

−1

r

∂p

∂θ
+ µ(4vθ −

vθ
r2

+
2

r2

∂vr
∂θ

) + ρbθ (A.33)

ρ(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

) =

−∂p
∂z

+ µ∆vz + ρbz (A.34)

avec l’opérateur laplacien défini par (A.7) ou (A.8).





Annexe B

Coordonnées sphériques

Nous donnons ci-dessous certains opérateurs différentiels ainsi que les princi-
pales équations dans un système de coordonnées sphériques.

On représente à la figure B.1 les composantes du tenseur des contraintes
dans le système de coordonnées sphériques r, θ, ϕ.

O

x3

x1

x2

σrr

σrr

σϕr
σrϕ

σrϕ

σrϕ

σϕϕ

σϕϕ

σϕϕ

σrr

σθθ

σθθ

σθϕ

σθϕ
σθr

r
θ

dθ

dϕ
ϕ

Fig. B.1 Composantes du tenseur des contraintes dans un système de coordonnées
sphériques.

Divergence d’un champ vectoriel v(r, θ, ϕ) :

div v =
1

r2

∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vϕ
∂ϕ

(B.1)
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Divergence d’un champ tensoriel σ(r, θ, ϕ) :

divσ =

(
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
[2σrr − σθθ − σϕϕ + σrθ cot θ]

)
er

+

(
∂σθr
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
[3σrθ + (σθθ − σϕϕ) cot θ]

)
eθ

+

(
∂σϕr
∂r

+
1

r

∂σϕθ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
[3σrϕ + 2σθϕ cot θ]

)
eϕ .

(B.2)

Gradient d’un champ scalaire f(r, θ, ϕ) :

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ . (B.3)

Gradient d’un champ vectoriel v(r, θ, ϕ) :

∇v =



∂vr
∂r

1

r

∂vr
∂θ
− vθ

r

1

r sin θ

∂vr
∂ϕ
− vϕ

r
∂vθ
∂r

1

r

∂vθ
∂θ

+
vr
r

1

r sin θ

∂vθ
∂ϕ
− vϕ
r tan θ

∂vϕ
∂r

1

r

∂vϕ
∂θ

1

r sin θ

[
∂vϕ
∂ϕ

+ vr sin θ + vθ cos θ

]

 .

(B.4)

Rotationnel d’un champ vectoriel v(r, θ, ϕ) :

rot v =
1

r sin θ

(
∂(vϕ sin θ)

∂θ
− ∂vθ
∂ϕ

)
er +

(
1

r sin θ

∂vr
∂ϕ
− 1

r

∂(rvϕ)

∂r

)
eθ

+
1

r

(
∂(r vθ)

∂r
− ∂vr

∂θ

)
eϕ (B.5)

Laplacien d’un champ scalaire f(r, θ, ϕ) :

∆f = ∇2f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2

(B.6)

Laplacien d’un champ vectoriel v(r, θ, ϕ) :

∇2v =

(
∆vr −

2vr
r2
− 2

r2

∂vθ
∂θ
− 2vθ cot θ

r2
− 2

r2 sin θ

∂vϕ
∂ϕ

)
er

+

(
∆vθ −

vθ

r2 sin2 θ
+

2

r2

∂vr
∂θ
− 2 cos θ

r2 sin2 θ

∂vϕ
∂ϕ

)
eθ (B.7)

+

(
∆vϕ −

vϕ

r2 sin2 θ
+

2

r2 sin θ

∂vr
∂ϕ

+
2 cos θ

r2 sin2 θ

∂vθ
∂ϕ

)
eϕ .
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Dérivée matérielle d’un champ scalaire f(r, θ, ϕ) :

Df

Dt
=
∂f

∂t
+ vr

∂f

∂r
+
vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ
. (B.8)

Accélération :

ar =
Dvr
Dt
− v2

ϕ + v2
θ

r
(B.9)

aθ =
Dvθ
Dt

+
vrvθ − v2

ϕ cot θ

r
(B.10)

aϕ =
Dvϕ
Dt

+
vrvϕ + vϕvθ cot θ

r
. (B.11)

Equation de conservation de la masse :

∂ρ

∂t
+

1

r2

∂(r2 ρ vr)

∂r
+

1

r sin θ

∂(ρ vθ sin θ)

∂θ
+

1

r sin θ

∂(ρ vϕ)

∂ϕ
= 0 . (B.12)

Equations du mouvement :

ρ

(
Dvr
Dt
− v2

ϕ + v2
θ

r

)
=
∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
(2σrr − σθθ − σϕϕ + σrθ cot θ) + ρ br (B.13)

ρ

(
Dvθ
Dt

+
vrvθ − v2

ϕ cot θ

r

)
=
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
[(σθθ − σϕϕ) cot θ + 3σrθ] + ρ bθ (B.14)

ρ

(
Dvϕ
Dt

+
vrvϕ + vϕvθ cot θ

r

)
=
∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
(3σrϕ + 2σθϕ cot θ) + ρ bϕ (B.15)
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Equations d’équilibre :

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
(2σrr − σθθ − σϕϕ + σrθ cot θ) + ρ br = 0 (B.16)

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
[(σθθ − σϕϕ) cot θ + 3σrθ] + ρ bθ = 0 (B.17)

∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
(3σrϕ + 2σθϕ cot θ) + ρ bϕ = 0 . (B.18)

Equations de Navier :

µ

(
∇2ur −

2ur
r2
− 2

r2

∂uθ
∂θ
− 2uθ cot θ

r2
− 2 cot θ

r2 sin θ

∂uϕ
∂ϕ

)
+ (λ+ µ)

∂

∂r

(
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

)
+ fr = 0 (B.19)

µ

(
∇2uθ +

2

r2

∂ur
∂θ
− uθ

r2 sin2 θ
− 2 cot θ

r2 sin2 θ

∂uϕ
∂ϕ

)
+ (λ+ µ)

1

r

∂

∂θ

(
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

)
+ fθ = 0 (B.20)

µ

(
∇2uϕ −

uϕ

r2 sin2 θ
+

2

r2 sin2 θ

∂ur
∂ϕ

+
2 cot θ

r2 sin2 θ

∂uθ
∂ϕ

)
+ (λ+ µ)

1

r sin θ

∂

∂ϕ

(
1

r2

∂(r2ur)

∂r
+

1

r sin θ

∂(uθ sin θ)

∂θ
+

1

r sin θ

∂uϕ
∂ϕ

)
+ fϕ = 0 . (B.21)

Composantes de déformation en fonction du déplacement :

εrr =
∂ur
∂r

εθθ =
ur
r

+
1

r

∂uθ
∂θ

εϕϕ =
1

r sin θ

∂uϕ
∂ϕ

+
ur
r

+
uθ
r

cot θ

(B.22)

εrθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
εrϕ =

1

2

(
1

r sin θ

∂ur
∂ϕ

+
∂uϕ
∂r
− uθ

r

)
(B.23)

εθϕ =
1

2

(
1

r

∂uϕ
∂θ

+
1

r sin θ

∂uθ
∂ϕ
− uϕ

r
cot θ

)
. (B.24)
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Noter que les équations constitutives sont obtenues en replaçant les
composantes cartésiennes dans (7.3) et (7.4) par les composantes ci-
dessus.

Composantes du tenseur des taux de déformation :

drr =
∂vr
∂r

, dθθ =
1

r

∂vθ
∂θ

+
vr
r
, (B.25)

dϕϕ =
1

r sin θ

∂vϕ
∂ϕ

+
vr
r

+
vθ cot θ

r
, (B.26)

dϕθ =
1

2

(
1

r sin θ

∂vθ
∂ϕ

+
1

r

∂vϕ
∂θ
− vϕ cot θ

r

)
, (B.27)

dϕr =
1

2

(
∂vϕ
∂r

+
1

r sin θ

∂vr
∂ϕ
− vϕ

r

)
, (B.28)

drθ =
1

2

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
. (B.29)

Equations de Navier-Stokes incompressibles :
Equation de conservation de la masse

1

r2

∂

∂r
(r2 vr) +

1

r sin θ

∂

∂θ
(vθ sin θ) +

1

r sin θ

∂vϕ
∂ϕ

= 0 . (B.30)

Equations du mouvement

ρ

(
Dvr
Dt
− v2

ϕ + v2
θ

r

)
= −∂p

∂r

+ µ

(
∆vr −

2vr
r2
− 2

r2

∂vθ
∂θ
− 2vθ cot θ

r2
− 2

r2 sin θ

∂vϕ
∂ϕ

)
+ ρbr (B.31)

ρ

(
Dvθ
Dt

+
vrvθ − v2

ϕ cot θ

r

)
= −1

r

∂p

∂θ

+ µ

(
∆vθ −

vθ

r2 sin2 θ
+

2

r2

∂vr
∂θ
− 2 cos θ

r2 sin2 θ

∂vϕ
∂ϕ

)
+ ρbθ (B.32)

ρ

(
Dvϕ
Dt

+
vrvϕ + vϕvθ cot θ

r

)
= − 1

r sin θ

∂p

∂ϕ

+ µ

(
∆vϕ −

vϕ

r2 sin2 θ
+

2

r2 sin θ

∂vr
∂ϕ

+
2 cos θ

r2 sin2 θ

∂vθ
∂ϕ

)
+ ρbϕ . (B.33)

avec l’opérateur laplacien définit par (B.6).





Annexe C

Glossaire

français-anglais

Accélération, Acceleration
Barocline, Baroclinic
Acoustique (adj.), Acoustic
– (nom), Acoustics
Adiabatique, Adiabatic
Aire, Area
Allé de von Kármán,von Kármán
street
Anisotrope, Anisotropic
Appui, Support
Axe principal, Principal axis

Base, Base
Bord, Boundary
Barocline, Baroclinic
Barotrope, Barotropic

Cartésien, Cartesian
Chaleur, Heat
Champ, Field
– de contrainte, Stress field
– de déformation, Strain field
– de vitesse, Velocity field
Charge, Load
Cinématique, Kinematics
Cinétique, Kinetic
Cisaillement, Shear
Coefficient de Poisson,
Poisson’s ratio
Compatibilité, Compatibility
Comportement (loi de),
Constitutive law (equations)
Composante, Component
Condition aux limites,

Boundary conditions
Conduite, Pipe
Configuration, Configuration
Contrainte(s), Stress(es)
– de compression, Compressive

stress
– de traction, Tensile stress
– normale, Normal stress
– plane, Plane stress
– principales, Principal stresses
– tangentielle, Tangential stress
– de cisaillement, Shear stress
Convexe, Convex
Coordonnée, Coordinate
Corps, Body
Courbure, Curvature
Critère, Criterion
Cylindrique, Cylindrical

Débit, Flow rate
Décharge, Unloading
Décomposition polaire, Polar
decomposition
Déformation, Strain, Deformation
– plane, Plane strain
Densité, Density
Déplacement, Displacement
Dérivée particulaire, Material
derivative
Déterminant, Determinant
Déviateur, Deviatoric
Différé, Delayed
Dissipation, Dissipation
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Divergence, Divergence
Dynamique (adj.),Dynamic
– (nom), Dynamics

Echelle, Scale
Ecoulement, Flow
– stationnaire, Steady flow
Ecrouissage, Hardening
Effort, Force
– extérieur, External force
– intérieur, Internal force
– normal, Normal force
– tranchant, Shearing force
Elastique, Elastic
Elastoplastique, Elastoplastic
Encastrement, Fixed support
Energie, Energy
Enthalpie, Enthalpy,
Entropie, Entropy
Equation, Equation
– de continuité, Continuity

equation
– du mouvement, Equation of

motion
Equilibre, Equilibrium
Espace, Space
Essai, Test
– de compression, Compression

test
– de traction, Traction test
Etat, State
– de contrainte, Stress state
– plan de contrainte, Plane

stress state
Eulérien, Eulerian

Fibre, Fiber
Flexion, Bending
Fluage, Creep
Fonction, Function
– de charge, Loading function
– de fluage, Creep function
– de relaxation, Relaxation

function
– seuil, Yield Function
Force, Force
– de masse, Body force per unit

mass
– de volume, Body force per unit

volume
– résultante, Resultant force

– volumique, Body force

Galiléen, Galilean
Gauchissement, Warping
Gaz, Gas
Glissement, Angular distortion
Gradient, Gradient
Grand, Large
– déplacement, Large

displacement
– déformation, Large strain

Homogène, Homogeneous
Hydrostatique, Hydrostatic
Hypersonique, Hypersonic

Incompressibilité, Incompressibility
Incrément, Increment
Incrémental, Incremental
Infinitésimal, Infinitesimal
Instantané, Instantaneous
Invariant, Invariant
Isentropique, Isentropic
Isobare, Isobaric
Isopycne, Isopycnal
Isotrope, Isotropic

Jacobien, Jacobian

Lagrangien, Lagrangian
Laminaire, Laminar
Laplacien, Laplacian
Libre, Free
Liquide, Liquid
Ligne, Line
– d’émission, Streakline
– de courant, Streamline
Linéaire, Linear
Loi, Law
– constitutive, Constitutive law
– de comportement,

Constitutive law
– de bilan, Balance law

Masse volumique, Density
Matériel, Material
Matrice des contraintes,
Stress matrix
Mécanique, Mechanics
Mémoire évanescente,
Fading memory



Glossaire français-anglais 349

Méthode des éléments finis,
Finite element method
Milieu continu, Continuous
medium
Module, Modulus
– de cisaillement, Shear modulus
– de déformation volumique,

Bulk modulus
– de Young, Young’s modulus
Moment, Moment
– cinétique, Angular momentum
– de flexion, Bending moment
– fléchissant, Bending moment
Mouvement, Motion
– rigidifiant, Rigid body motion

Newtonien, Newtonian
Normalité, Normality

Objectivité, Objectivity
– Material frame indifference
Observateur, Observer
Ombroscopie, Shadowgraph
Origine, Origin
Orthotrope, Orthotropic
Orthogonal, Orthogonal

Paramètre de chargement,
Loading parameter
Particule, Particle
Permanent, Steady
Pertes de charges, Pressure drop
Petit(e), Small
– déplacement, Small

displacement
– déformation, Small

deformation
Plan principal, Principal plane
Plastique, Plastic
Plasticité, Plasticity
Polaire, Polar
Portance, Lift
Postulat de Cauchy, Cauchy’s
postulate
Poutre, Beam
Pression, Pressure
Principal, Principal
Principe, Principle
– du minimum, Minimum

principle

Produit, Product
– Produit contracté, Contracted

product
– scalaire, Scalar product
– tensoriel, Tensor product
– vectoriel, Vector product
Puissance, Power, rate of work

Quantité de mouvement,
Linear momentum

Rampant, Creeping
Réciprocité, Reciprocity
Règle d’écoulement, Flow rule
Repère, Frame
Résistance des matériaux,
Strength of materials
Résultante, Resultant
Rigidifiant (mouvement),
Rigid-body (motion)
Rotationnel, Curl

Section droite, Cross section
Stabilité, Stability
Stationnaire, Steady
Statique (adj.), Static
– (nom), Statics
Subsonique, Subsonic
Superposition, Superposition
Supersonic, Supersonic
Surface libre, Free surface
Symétrique, Symmetric
Système, System

Taux, Rate
– de contrainte, Stress rate
– de déformation, Rate of

deformation
Température, Temperature
Tenseur, Tensor
– d’élongation, Stretch tensor
– des contraintes, Stress tensor
– de taux de déformation,

Rate-of-deformation tensor
– des taux de rotation,

Spin tensor
Tension superficielle, Surface tension
Tétraèdre, Tetrahedron
Théorème, Theorem
Thermique, Thermal



350 Mécanique des milieux continus : une introduction

Torsion, Torsion, Twisting
Tourbillon, Vortex, Vorticity,
Trace, Trace
Trâınée, Drag
Trajectoire, Trajectory,
Particle path, Pathline
Transformation (nom),
Transform
Transposé, Transpose
Turbulent, Turbulent

Uniforme, Uniform

Vecteur, Vector
– de position, Position vector
– de tourbillon, Vorticity vector
Viscoélastique, Viscoelastic
Viscoélasticité, Viscoelasticity
Viscosité, Viscosity
Visqueux, Viscous
Vitesse, Velocity
– de déformation, Strain rate
Voisinage, Neighborhood
Volume, Volume
Vorticité, Vorticity



Liste des symboles

Cette liste des symboles reprend les principales notations utilisées dans la mono-
graphie. Celles qui ne sont pas reprises ici, sont définies là où elles apparaissent
et le contexte donne toutes les informations nécessaires pour leur compréhen-
sion et leur emploi.

Symbole Description Unité

Lettres romaines

a vitesse du son m s−1

ai aire de la face si m2

a vecteur accélération (spatial) m s−2

A tenseur d’ordre n –
Ai1···in composantes du tenseur d’ordre n –
A aire m2

A vecteur accélération (matériel) m s−2

Ai vecteurs propres unitaires matériels –
b densité massique de force volumique N kg−1

B densité massique de force volumique N kg−1

bi vecteurs propres unitaires spatials –
c tenseur de déformation

de Cauchy-Green gauche
–

C tenseur de déformation
de Cauchy-Green droit

–

C coefficient de trâınée –
Cijk paramètres matériels –
cp chaleur massique à pression constante J kg−1K−1

cv chaleur massique à volume constant J kg−1K−1

C corps –
d tenseur des taux de déformation s−1

di composantes du vecteur dual –
e épaisseur m
e tenseur de déformation

d’Euler-Almansi
–

ei vecteur de base –
E module de Young Pa
Ec énergie cinétique J
Eint énergie interne J
E tenseur de déformation

de Green-Lagrange
–

E3 espace vectoriel –
F tenseur du gradient de déformation –
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Symbole Description Unité

f b force de volume N
fc force de contact N
f énergie libre de Helmholtz J kg−1

f déflexion m
f fréquence s−1

f(T ) fonction tensorielle du tenseur T –

F b force de volume N
Fr nombre de Froude –
gi vecteurs de base en coordonnées

curvilignes
–

g accélération de la pesanteur m s−2

h hauteur m
h densité d’enthalpie massique J kg−1

H tenseur du gradient de déplacement –
Ii invariants scalaires –
I3 moment d’inertie par rapport à x3 m4

I tenseur identité –
J jacobien –
kB constante de Boltzmann

(= 1,381 10−23)
J K−1

k coefficient de conductibilité thermique W m−1K−1

K module de rigidité Pa
K second vecteur de contrainte

de Piola-Kirchhoff
Pa

l longueur m
L longueur m
L tenseur du gradient de vitesse s−1

m masse kg
m quantité de mouvement kg m s−1

m̂ moment cinétique kg m2 s−1

M nombre de Mach –
M tenseur de déformation –
N vecteur unitaire –
n vecteur unitaire sortant d’un domaine –
ni vecteurs propres unitaires –
O tenseur orthogonal –
p pression Pa
P premier tenseur de contrainte de

Piola-Kirchhoff
Pa

P0 densité initiale de masse kg m−3

P densité de masse actuelle
en description matérielle

kg m−3

Pi pression interne Pa
Pe pression externe Pa
p0 pression de référence Pa
pi pression Pa
pi probabilité –
Pr nombre de Prandtl –
Q débit-volume m3 s−1
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Symbole Description Unité

Q tenseur orthogonal –
q vecteur flux de chaleur Wm−2

q charge uniformément répartie N m−2

R configuration –
R tenseur orthogonal –
R3 espace euclidien –
R rayon m
R constante du gaz idéal J kg−1 K−1

Re nombre de Reynolds –
R = (0,x, t) référentiel de l’observation –
r chaleur produite au sein du volume W m−3

ri rayon interne d’un cylindre m
re rayon externe d’un cylindre m
S second tenseur de contrainte

de Piola-Kirchhoff
Pa

Su surface m2

St surface m2

s densité d’entropie J kg−1 K−1

s temps s
dS élément de surface m2

ds élément de surface m2

si face m2

t temps s
T température K
T tenseur des extra-contraintes Pa
T premier vecteur de contrainte

de Piola-Kirchhoff
Pa

t vecteur de contrainte Pa
tei vecteur de contrainte

dans la direction ei

Pa

tN composante normale du vecteur t Pa
tT composante tangentielle du vecteur t Pa
u vecteur déplacement (spatial) m
u densité d’énergie interne (spatial) J kg−1

U vecteur déplacement (matériel) m
U densité d’énergie interne (matériel) J kg−1

U vitesse m s−1

V voisinage –
v vecteur vitesse (spatial) ms−1

V vecteur vitesse (matériel) m s−1

V fonction de potentiel Pa
V volume en coordonnées matérielles m3

v volume en coordonnées spatiales m3

vmoy vitesse moyenne m s−1

vmax vitesse maximale m s−1

W vecteur déplacement m
W fonction d’énergie de déformation J m−3

W fonction scalaire d’un tenseur T –

W, Ŵ fonction d’énergie de déformation J m−3
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Symbole Description Unité

x vecteur position (spatial) m
X vecteur position (matériel) m
X système physique –

Lettres grecques

α constante –
α angle –
α coefficient d’expansion thermique K−1

αi paramètre matériel –
β angle –
βi fonction scalaire –
Γ,Γ−,Γ+,Γ1 surface m2

γ rapport calorifique –
γ déformation –
γ12 angle –
γ0 diffusivité thermique m2 s−1

δ symbole de Kronecker, composantes δij –
δ accroissement –
∆ incrément
ε tenseur de déformation infinitésimale,

composantes εij

–

εijk symbole de permutation –
ε nombre réel –
θ angle –
Θ angle –
θi coordonnées curvilignes –
λ valeur propre –
λ pertes de charges –
λi valeur propre –
λN dilatation –
λi élongations principales du tenseur U –
λ2
i élongations principales du tenseur C –
λ coefficient de Lamé Pa
λ viscosité volumique Pa s
Λ diffusivité thermique m2 s−1

µ coefficient de Lamé Pa
µ viscosité dynamique Pa s
µ module de cisaillement

ou de rigidité au glissement
Pa

µi paramètre –
ν coefficient de Poisson –
ν viscosité cinématique (= µ/ρ) m2 s−1

Π,Π−,Π+ parties du corps C –
ρ densité actuelle de masse

ou masse volumique
kg m−3

Σ fonctionnelle de contrainte Pa
Σ fonctionnelle tensorielle –
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Symbole Description Unité

σ tenseur de contrainte de Cauchy,
composantes σij

Pa

σi contraintes principales de σ Pa
σ contrainte Pa
σ coefficient de tension superficielle N m−1

σ0 contrainte hydrostatique Pa
τ temps s
τ contrainte de cisaillement Pa
ϕ fonction –
φ fonction d’énergie de déformation J m−3

Φ fonction d’Airy Pa m2

Φ fonction d’énergie de déformation J m−3

Φ fonction
χ fonction vectorielle du mouvement m

Ω̇ vecteur tourbillon s−1

Ω domaine dans la représentation
matérielle

–

∂Ω surface du domaine Ω m2

ω domaine dans la représentation spatiale –
ω1, ω2 vitesse de rotation angulaire s−1

∂ω surface du domaine ω m2

ω̇ tenseur des taux de rotation s−1

ω tenseur de rotation infinitésimale –

Indices et exposants

i,j,k indices des vecteurs et tenseurs valant 1, 2 ou
3

i indice de face, de grandeur physique

0 initial ou de référence ou à l’état
naturel

∗ par rapport au référentiel R∗

ou adimensionnel
. valeur imposée

x,y,z composantes cartésiennes

r,θ,z composantes en coordonnées cylindriques

r,ϕ,θ composantes en coordonnées sphériques

Notations

[ · ] matrice
[ · ]T matrice transposée
[ · ]−1 matrice inverse
v,σ vecteur ou tenseur
LS tenseur symétrique
LA tenseur antisymétrique
Ls tenseur sphérique

Ld tenseur déviateur
0( · ) reste d’un développement
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Symbole Description Unité

o( · ) reste d’un développement tendant
vers 0 lorsque son argument tend
vers 0

Opérateurs

· produit scalaire
⊗ produit tensoriel de deux vecteurs
× produit vectoriel
: produit scalaire de deux tenseurs
C∞ classe des fonctions infiniment

différentielles
det déterminant d’une matrice
diag(a, b, c) matrice diagonale de composantes

a, b, c
∇ gradient
div divergence d’un champ vectoriel
div divergence d’un champ tensoriel
rot = ∇× rotationnel d’un champ vectoriel
‖ · ‖ norme d’un vecteur ou d’un tenseur
tr trace d’un tenseur
4 laplacien
44 opérateur biharmonique
D

Dt
dérivée matérielle

∂

∂t
dérivée partielle par rapport au temps

∂

∂xi
dérivée partielle par rapport à la

coordonnée xi∑n
i=1 somme pour i allant de 1 à n



Suggestions pour la résolution des

exercices

Chapitre 1

1.3 Suivre la démarche de l’exemple 2 (§ 1.3.6).

1.4 Suivre la démarche de l’exemple 2 (§ 1.2.5).

1.6 Suivre la démarche des exemples des paragraphes 1.4.6-8.

1.7 Suivre la démarche des exemples des paragrapes 1.4.6-8.

1.8 Suivre la démarche des exemples des paragrapes 1.4.6-8.

1.15 Suivre la démarche de l’exemple du paragraphe 1.3.8 pour un tenseur
antisymétrique.

1.16 Multiplier la relation (1.123) exprimée pour le tenseur T par l’inverse du
tenseur T et remplacer T 2 dans la relation (1.140).

Chapitre 2

2.4 Eliminer le paramètre t des équations du mouvement.

2.8 Utiliser (2.77), (2.91), (2.166) et (2.181).

2.11 Utiliser (2.108), (2.111), (2.112) et (2.109).

2.12 Exprimer des vecteurs dx et dy en fonction des εij et utiliser l’approxi-
mation (1 + α)n ≈ 1 + nα, lorsque α� 1.

2.15 Utiliser (2.81) lorsque eij est remplacé par εij et faire apparaitre les
définitions suivantes cos θ = dx1

dS , sin θ = dx2

dS .
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Chapitre 3

3.2 Appliquer l’équation de conservation de la masse au champ de vitesse
donné ; en déduire une relation sur la masse volumique ρ. Calculer les trajec-
toires et obtenir l’égalité de l’exercice.

3.4 (2) Trouver le vecteur normal sur le plan et la sphère en utilisant le gradient
et utiliser (3.76).

3.6 Considérer les composantes des forces et des moments comme composantes
de vecteurs. Exprimer l’équilibre de la force et du moment sur la surface et
utiliser le théorème de la divergence.

3.9 Par le théorème de la divergence, convertir l’intégrale de surface en inté-
grale de volume. Ensuite utiliser le principe de conservation de la quantité de
mouvement.

3.11 Utiliser (3.141) et (3.152) ; (3.149), (2.205) et (3.152).

Chapitre 4

4.4 (1) Pour le fluide parfait, le terme σ : d devient −p trd = −p∇ · v.

4.4 (2) La relation à établir s’écrit ρDhDt = Dp
Dt −

∂qi
∂xi

+ r.

Chapitre 5

5.2 Utiliser les relations (2.213), (2.181), (2.183) et (2.56)

5.3 Noter que D/Dt∗ = D/Dt.

5.4 Utiliser les rśultats des exercices 5.2 et 5.3.

5.5 La relation (5.64) est celle résultant de l’exercice 5.3 pour T = d.

Chapitre 6

6.1 Utiliser (2.77) et (2.179).

6.2 Insérer (6.14) dans (4.23).

6.4 Utiliser (2.88), (2.108) et (2.110) ; utiliser (6.61).
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6.6 Exprimer C−1 en utilisant (1.123) pour modifier (6.172) ; exprimer c2 en
utilisant (1.123) pour modifier (6.173).

6.10 Utiliser (6.78) dans (6.86) pour l’état de contrainte plane et suivre la
démarche du paragraphe 6.5.3.

6.11 Simplifier (6.159)1 pour la traction simple et utiliser (6.110)1.

6.14 (1) Introduire (6.175) et (6.176) dans (6.174) et prendre la trace de l’équa-
tion résultante.

6.14 (2) Utiliser (1.109), (6.175)-(6.177) pour montrer que les axes principaux
de σij , σ

d
ij , εij , ε

d
ij cöıncident.

6.14 (3) Introduire (6.176) dans la première partie de (6.178).

6.15 Modifier la partie gauche selon (4.23), et utiliser la relation (3.76) et le
théorème de la divergence.

6.16 (2) Introduire (6.182) dans (6.104).

6.16 (3) Introduire (6.184) dans (6.106).

Chapitre 7

7.1 Insérer (7.18) dans (7.21)-(7.23) et utiliser (7.20).

7.2 Insérer (7.18) dans (7.43) et utiliser (7.20).

7.3 Insérer (7.317) dans (7.7).

7.4 (1) Utiliser (1.190) pour modifier (7.7).

7.4 (2) Utiliser (6.109)2 pour modifier (7.7).

7.4 (3) Utiliser (1.190) pour modifier (7.7).

7.5 Suivre la démarche du problème du cylindre creux avec des extrémités
fixes (p. 228).

7.6 Prendre la divergence de (7.209) et utiliser (1.191).

7.7 Prendre le rotationnel de (7.205) et utiliser (1.237).

7.8 Démontrer (7.38) et suivre la démarche du problème de charge linéique
(p. 239).
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7.9 Démontrer (7.38) et suivre la démarche du problème de charge linéique
(p. 239).

Chapitre 8

8.2 La solution s’obtient par combinaison de l’écoulement plan de Couette et
celui de Poiseuille plan.

8.3 Montrer d’abord que vr est nulle. Pour le calcul de la pression, on se
rappellera que l’intégration de

1

ρ

∂p

∂r
=
v2
θ

r

donne

p = ρ

∫ r

R1

v2
θ

r′
dr′ + f(z)

avec r′ une variable de travail.

8.4 Montrer qu’en tenant compte des symétries du problème, la seule com-
posante de vitesse non nulle est vϕ = vϕ(r, θ). La condition imposée à cette
composante sur la sphère dépend de l’angle de colatitude. On intègre la rela-
tion (B.33) par séparation des variables telle que vϕ = f(r)g(θ). Il faut aussi
tenir compte de la condition aux limites à l’infini.

8.5 Même démarche qu’au problème 8.4. Dans ce cas, on impose une condition
aux limites sur la sphère extérieure.

8.7 On impose la condition sur le bord à la vitesse v1 et on tient compte de
la relation qui lie le champ de vitesse au gradient de pression.

8.8 On exprime le problème en coordonnées cylindriques. On montre que la
seule composante de vitesse est vz = vz(r) où l’axe de la géométrie est repéré par
la coordonnée z. Pour calculer la force de frottement, on utilise la composante
de la contrainte σrz.
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[12] P. C. Chou, N. J. Pagano, Elasticity : Tensor, Dyadic and Engineering Ap-
proaches, Dover, New York, 1992.

[13] P. G. Ciarlet, Mathematical Elasticity : Three-dimensional Elasticity, Vol. I,
North-Holland, Amsterdam, 1988.
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eulérienne, 58
lagrangienne, 58
matérielle, 58, 60
spatiale, 58, 60
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de déformation, 186, 205, 207
de propagation des ondes, 260
interne, 146
libre, 184, 205
libre spécifique de Helmholtz, 160
totale, 146

enthalpie massique, 202
entropie d’un système, 156
équation

de diffusion de Beltrami, 317
biharmonique, 219, 243, 245
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(énergie libre de –), 160
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hypothèse
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Lamé, Gabriel, 192

laplacien
d’un champ scalaire, 40
d’un champ vectoriel, 41
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terne, 149
de Fourier, 199
de Hooke, 196, 206, 216
de transformation, 17

longueur d’onde, 262
Lord Rayleigh, 250
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homogène, 170
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d’objectivité, 167, 174, 179, 182,
196

de conservation de l’énergie
mécanique, 152

de conservation de la masse, 110

de conservation de la quantité de
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objective, 98

tensorielle spatialement objective,
98

vectorielle matériellement
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d’une corde élastique, 264

de d’Alembert, 254, 331

en élasticité linéaire, 222
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