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Deux problèmes majeurs occupaient les mathématiciennes et 
mathématiciens du XVIIe  siècle : la détermination de l’équation 
de la tangente à une courbe en un point donné, et le calcul de 
l’aire d’une surface non polygonale. L’étude du premier problème 
a donné naissance à ce que l’on appelle le calcul différentiel, le 
second, au calcul intégral. Si les problèmes des tangentes et des 
aires sont aujourd’hui maîtrisés, il n’en demeure pas moins que les 
calculs différentiel et intégral occupent une place importante dans 
le monde des sciences naturelles et de la technique.

Consacré aux calculs différentiel et intégral, le présent ouvrage 
s’adresse en priorité aux étudiantes et étudiants débutant une 
formation en ingénierie ; il couvre l’essentiel de la matière traitée 
lors de la première année d’étude au sein d’une haute école d’in-
génierie suisse (HES). La plupart des notions indispensables sont 
introduites avec le souci de les expliquer, tantôt par des éléments 
historiques, tantôt par des besoins provenant des sciences expéri-
mentales ou de l’ingénierie.

Illustrations et exemples détaillés sont les atouts majeurs du pré-
sent ouvrage ; ils permettent à chaque lectrice et lecteur de saisir 
rapidement les enjeux des différents concepts, et ainsi de s’appro-
prier les outils des calculs différentiel et intégral utiles aux sciences 
expérimentales et à l’ingénierie.

Philippe Kocian, physicien et mathématicien, est maître d’enseignement 
à la haute école d’ingénierie HE-Arc à Neuchâtel. Il porte un intérêt 
tout particulier à l’ancrage historique des notions mathématiques et des 
modèles physiques.
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Préambule

Son qualificatif le suggère, le calcul infinitésimal est la branche des mathématiques qui
traite des éléments infiniment petits. De tels éléments apparaissent essentiellement dans
deux problèmes qui occupaient les mathématiciennes et mathématiciens au XVIIe siècle :

• la détermination de l’équation de la tangente à une courbe en un point donné,

• le calcul de quadrature, c’est-à-dire le calcul de l’aire d’une surface quelconque
(non polygonale, en particulier).

L’étude et la résolution du premier problème ont donné naissance à ce que l’on appelle
de nos jours le calcul différentiel ; le deuxième au calcul intégral.

Si le calcul infinitésimal a connu durant le XVIIIe siècle un succès notable, il a
également été la proie d’un certain scepticisme, notamment à cause du concept même
d’élément infiniment petit, qu’il était difficile de définir précisément. Les difficultés ren-
contrées n’ont cependant pas fait le poids par rapport aux nouvelles possibilités qui
s’offraient ; loin de sombrer dans l’oubli, le calcul des infiniment petits a fait l’objet, du-
rant plusieurs décennies, de nombreux travaux et remaniements, le conduisant à prendre,
près de deux siècles après son élaboration, la forme qu’on lui connâıt aujourd’hui.

Le présent ouvrage aborde le calcul infinitésimal sur un fond historique, mais avec
un langage mathématique moderne, basé sur les notions rigoureuses de fonction et de
limite. Les nombreuses références du passé que l’on peut y trouver ont pour but, non
pas de présenter un cours d’histoire des mathématiques, mais de mettre en lumière les
éléments qui ont motivé l’introduction d’une nouvelle notion, justifié le développement
de nouveaux outils...

La matière présentée dans ce document s’adresse en priorité aux étudiantes et étu-
diants de première année d’études en ingénierie. Les différentes notions sont traitées
de manière aussi simple que possible ; certains sujets, comme le calcul intégral ou les
développements limités, nécessitent néanmoins des raisonnements parfois conséquents,
demandant de la part de l’étudiante ou de l’étudiant passablement de perséverance.

La lecture et l’étude du présent travail requièrent une mâıtrise du calcul littéral ainsi
qu’une certaine culture en mathématiques (connaissance des fonctions trigonométriques,
aptitude à la résolution de systèmes d’équations à plusieurs inconnues, etc.). Ce n’est
qu’avec un tel bagage qu’il est possible d’aborder sereinement la matière présentée dans
les pages qui suivent.
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Le présent ouvrage peut être abordé sous différents angles. La lectrice ou le lecteur
peut :

• simplement consulter certains chapitres, dans le but de se remémorer certaines
notions,

• s’informer sur les principaux aboutissements, sans regarder les preuves,
• prendre connaissance des résultats, tout en parcourant rapidement les preuves
(ce qui peut être fait grâce aux nombreuses figures présentes),

• étudier l’intégralité du contenu, en examinant minutieusement les raisonnements
présentés.

La plupart des notions introduites dans le présent travail sont munies d’exemples ; en
outre, certaines d’entre elles, les plus importantes, sont suivies d’illustrations. Exemple
et illustration tiennent tous les deux le même rôle : celui de mettre un concept donné
en situation ; mais alors que l’exemple traite le concept dans un cadre purement mathé-
matique, l’illustration l’ancre dans un contexte technique et pratique.

À la fin du présent ouvrage, se trouve un recueil d’exercices qui couvre l’ensemble
des sujets abordés dans les différents chapitres. Ce recueil permet à chaque instant de
tester l’état de ses propres connaissances ; c’est en essayant de résoudre les problèmes
proposés que l’on peut mieux se rendre compte de ce que l’on a déjà acquis et de ce que
l’on ne mâıtrise pas encore.
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1.5.2 Polynômes du deuxième degré . . . . . . . . . . . . . . . . . . . . 23
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4.5.1 Intégration par parties . . . . . . . . . . . . . . . . . . . . . . . . 212
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Annexe B Théorèmes relatifs aux fonctions continues 413
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C.6.7 Zéros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
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C.8.9 Continuité et asymptotes . . . . . . . . . . . . . . . . . . . . . . . 488
C.8.10 Expressions alternatives des fonctions trigonométriques . . . . . . 489



xii Table des matières
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Série 24 – Équations différentielles linéaires du deuxième ordre . . . . . . . . . 621
Série 25 – Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Série 26 – Extrema et points d’inflexion . . . . . . . . . . . . . . . . . . . . . . 629
Série 27 – Étude d’une fonction . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Série 28 – Aires de surfaces planes . . . . . . . . . . . . . . . . . . . . . . . . . 637
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Chapitre 1

Corps des nombres réels

L’objectif majeur que visaient les savants, en développant au travers des siècles le cal-
cul des éléments infiniment petits , c’était de pouvoir calculer des aires de surfaces non
polygonales, ainsi que des volumes de solides non polyédriques. Si les mathématiciens
grecs de l’Antiquité ont pu traiter avec succès plusieurs problèmes d’aires et de volumes,
ils n’ont, cependant, pas été capables d’exhiber une méthode permettant d’aborder la
question en toute généralité. Un obstacle probable à l’élaboration d’une théorie globale
résidait, entre autres, dans la difficulté de concevoir l’idée de nombre réel. Sans la notion
de nombre réel, il n’est pas envisageable de parler de continuum de nombres (i.e. d’in-
tervalle), et encore moins de concepts de limite, de continuité, de dérivée, d’intégrale...

1.1 Ensembles de nombres

Un nombre est un objet mathématique qui, selon le contexte, est utilisé pour :

• compter, dénombrer, énumérer,
• caractériser une grandeur, une quantité,
• comparer des quantités entre elles.

Loin de faire partie de l’univers des mathématiciens uniquement, les nombres appa-
raissent dans toutes les sciences exactes (physique, chimie, biologie, branches appliquées
de l’ingénierie), ainsi que dans le quotidien de tout un chacun.

Dans la présente étude, il sera essentiellement question des nombres dits réels . Cela
sera détaillé par la suite, l’ensemble des nombres réels peut être vu comme un axe infini,
sur lequel il est possible de s’approcher arbitrairement près d’un nombre donné sans
devoir effectuer un quelconque saut. Cet ensemble offre, de ce fait, le cadre idéal pour
le développement du calcul des éléments infiniment petits ; c’est, en effet, en ayant la
possibilité de réduire constamment et surtout continûment des quantités finies, que l’on
peut concevoir l’idée de grandeur infiniment petite.



2 1 Corps des nombres réels

L’ensemble des nombres réels peut être construit à partir d’une succession d’exten-
sions de l’ensemble des nombres que l’on utilise quotidiennement pour compter : les
nombres naturels.

• On appelle ensemble des nombres naturels l’ensemble :

N = {0; 1; 2; 3; . . . ; n; . . . } .

Ses dix premiers éléments sont les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. En travaillant
dans ce que l’on appelle la base dix I, l’élément qui suit le 9 se note 10, qui
est une combinaison des deux chiffres 0 et 1 ; et de manière générale, tous les
éléments qui suivent le 9 se notent à l’aide d’une combinaison plus ou moins
longue des dix chiffres donnés précédemment. L’ensemble des nombres naturels
est stable sous l’opération d’addition : la somme de deux nombres naturels donne
un nombre naturel. Par définition, le nombre 0 est l’unique nombre naturel pour
lequel n+0 = 0+n = n, où n est un nombre naturel quelconque II ; il est, de ce fait,
ce que l’on appelle l’élément neutre pour l’addition. Cela étant, aucun nombre
naturel n, excepté 0, n’admet d’opposé n′ : quel que soit le nombre naturel n
non nul, il n’existe aucun nombre naturel n′ tel que n + n′ = n′ + n = 0. Pour
prendre en compte les nombres opposés, il est nécessaire d’étendre l’ensemble des
nombres naturels.

• On appelle ensemble des nombres entiers relatifs l’ensemble :

Z = {. . . ; −3; −2; −1; 0; 1; 2; 3; . . . } .

Cet ensemble est également stable sous l’addition et admet 0 comme élément
neutre de l’addition ; de plus, tout élément admet un opposé : l’opposé de n,
noté −n, est dans Z dès lors que n l’est. Z est également stable sous l’opération
de multiplication (comme N, du reste) : le produit de deux nombres entiers relatifs
est un nombre entier relatif. Le nombre 1 est l’unique nombre entier relatif pour
lequel n · 1 = 1 · n = n, où n est un nombre entier relatif ; il est, de ce fait, ce
que l’on appelle l’élément neutre pour la multiplication. Cela étant, excepté le
nombre 1, aucun élément n de Z n’admet d’inverse n′ dans Z : quel que soit le
nombre entier n 6= 1, il n’existe aucun entier n′ tel que n · n′ = n′ · n = 1. Pour
prendre en compte les nombres inverses, il est nécessaire d’étendre l’ensemble des
nombres entiers relatifs.

I. Dans le domaine des mathématiques, la base désigne un nombre dont les puissances servent à
écrire n’importe quel nombre ; en base dix, les puissance de dix sont l’unité, la dizaine, la centaine, le
millier, le dixième, le centième, etc.

II. Le nombre 0 n’existait pas dans l’Europe antique. Il n’a été introduit qu’au VIIe siècle, au travers
des échanges commerciaux avec l’Orient, en particulier l’Inde. Ne concevant pas le nombre 0, les Romains
mentionnaient la première année d’une ère, d’une époque, etc. comme étant l’an 1. Cette façon de
compter a induit une particularité dans la manière dont les siècles s’inscrivent dans les années : le début
du XXIe (par exemple) n’a pas eu lieu en l’an 2000, mais en 2001.
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• On appelle ensemble des nombres rationnels l’ensemble :

Q =
{
r = p

q

∣
∣ p, q ∈ Z, q 6= 0

}
III .

Cet ensemble est stable sous l’addition et la multiplication IV, admet 0 comme
élément neutre pour l’addition et 1 comme élément neutre pour la multiplication,
respectivement. Tout élément r de Q admet un opposé, noté −r, ainsi qu’un
inverse, noté 1

r
; à l’exception de 0 qui n’admet qu’un opposéV. Ces propriétés

font de l’ensemble Q ce que l’on appelle un corps ; on le nomme corps des nombres
rationnels et on le note (Q ; + ; · ).

Plaçons les nombres rationnels sur un axe (i.e. une droite) A, en procédant comme suit.

(a) Le nombre 0
1
est placé arbitrairement, en un point de A ; ce point est appelé 0.

(b) Le nombre 1
1
est placé en un point de A, qui se trouve d’un côté de 0, à une certaine

distance non nulle ; le nombre −1
1

est placé en un point de A situé à la même
distance du point 0 que le point représentant 1

1
, mais de l’autre côté ; les points

de A représentant 1
1
et −1

1
sont appelés respectivement 1 et −1.

(c) Le nombre n
1
, où n est un nombre entier strictement positif, est placé en un point

de A qui se trouve du même côté (par rapport à 0) que 1, et dont la distance par
rapport à 0 est n fois plus grande que la distance entre 0 et 1 ; le nombre n

1
, où n

est un nombre entier strictement négatif, est placé en un point de A situé du même
côté (par rapport à 0) que −1, et dont la distance par rapport à 0 est n fois plus
grande que la distance entre 0 et −1 ; les points de A représentant n

1
sont appelés n.

(d) Les autres nombres rationnels sont placés sur A à la manière de l’exemple suivant.
Soit le nombre 18

7
; ce nombre peut être noté sous la forme 18

7
= 14+4

7
= 14

7
+ 4

7
=

2+ 4
7
. Le point sur l’axe correspondant au nombre 18

7
se trouve alors entre le point

III. Q =
{
r = p

q

∣
∣ p, q ∈ Z, q 6= 0

}
se lit ainsi : Q est l’ensemble des nombres r s’écrivant sous la

forme p
q
(où l’entité p est divisée en q parties égales), tels que p et q sont entiers et q est non nul. Tout

nombre rationnel de la forme p
1
s’identifie au nombre p.

IV. La stabilité sous l’addition est effective à condition d’admettre le fait suivant : deux nombres
rationnels r1 = p1

q1
et r2 = p2

q2
sont considérés comme égaux (ou plus précisément équivalents) s’il existe

un nombre entier m tel que p1

q1
= m·p2

m·q2
ou p2

q2
= m·p1

m·q1
; c’est grâce à cette assertion qu’il est possible

de définir l’opération dite de mise au même dénominateur, qui permet de réduire la somme de deux
nombres rationnels en un seul nombre rationnel (par exemple 7

3
+ 5

4
= 7·4

3·4
+ 5·3

4·3
= 28

12
+ 15

12
= 43

12
). Pour

ce qui est de la multiplication, la stabilité est manifeste : le produit de deux nombres rationnels p1

q1

et p2

q2
, qui est par défintion :

p1

q1
· p2
q2

=
p1 · p2
q1 · q2

,

est aussi un nombre rationnel.
V. Concrètement, si r = p

q
, où p, q ∈ Z et q 6= 0, alors :

1

r
=

1
p
q

=
q

p
,

pour autant que p 6= 0, de sorte que p
q
· q
p
= p·q

q·p
= 1

1
= 1.
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correspondant au 2 et le point correspondant au 3, à la distance 4
7
d du 2 et la

distance 3
7
d du 3, où d est la longueur du segment qui relie le point correspondant

au 2 et le point correspondant au 3. Pour placer ce point, il convient de diviser le
segment qui relie le 2 et le 3 en sept segments égaux, d’en prendre quatre, puis de
les mettre bout à bout depuis le 2.

−2 −1 0 1 2 3

√
2

18
7Les points qu’occupent les nombres rationnels sur

l’axeA sont en quantité infinie (vu qu’il y a une in-
finité de nombres rationnels différents) ; pourtant,
ces points ne couvrent pas A dans son intégralité. Afin de se rendre compte de cette
réalité, considérons par exemple le nombre

√
2 . Ce nombreVI peut être interprété géo-

métriquement comme étant la longueur de l’hypoténuse d’un triangle rectangle dont les
cathètes valent 1 toutes les deux. Avec cette interprétation,

√
2 peut être représenté par

un point sur l’axe A, en suivant la même procédure que celle adoptée pour représenter
les nombres rationnels :

√
2 est le point de l’axe A qui se trouve du même côté de 0

que 1, et dont la distance par rapport à 0 correspond à la longueur de l’hypoténuse du
triangle rectangle dont les cathètes valent 1 toutes les deux. Cela étant,

√
2 ne peut pas

s’écrire sous la forme d’un nombre rationnel. Pour le voir, raisonnons par l’absurde et
supposons qu’il existe p ∈ Z et q ∈ Z∗ tels que

√
2 = p

q
; noter que p et q peuvent être

choisis de sorte qu’ils soient tous les deux positifs et qu’ils n’aient aucun diviseur com-
mun, excepté 1 (i.e. il n’existe aucun nombre entier m 6= 1 pour lequel la division de p
par m soit un nombre entier et la division de q par m soit aussi un nombre entier). Dans

ce cas,
√
2 = p

q
⇔ 2 = p2

q2
⇔ p2 = 2 q2, ce qui montre que p2 est pair ; et comme p2 est

pair, alors nécessairement p est pair (en effet, si p était impair, p2 serait impair aussi).
Le nombre p peut donc s’écrire p = 2 k, où k est un nombre entier positif ; k est même
strictement positif, vu que q 6= 0 et que p2 = 2 q2. Par conséquent :

p2 = 2 q2 ⇔ (2 k)2 = 2 q2 ⇔ 4 k2 = 2 q2 ⇔ q2 = 2 k2 .

Cette dernière équation montre que q2 est pair ; et comme q2 est pair, alors q est pair
aussi. En résumé, p et q sont tous les deux pairs ; ce qui est alors contradictoire avec le
fait que p et q n’ont aucun diviseur commun, excepté 1. Par conséquent,

√
2 ne peut

pas s’écrire sous la forme d’un nombre rationnel.

• Reprenons la correspondance entre les nombres rationnels et les points de l’axe A,
définie plus haut, et étendons-la aux points de A auxquels ne correspond aucun
élément de Q (en imitant ce qui a été fait pour le nombre

√
2 ). Les points de A

auxquels ne correspond aucun nombre rationnel définissent alors de nouveaux
nombres. Notons I l’ensemble de ces nouveaux nombres. On appelle ensemble
des nombres réels l’ensemble noté R, qui résulte de la réunion des ensembles Q

et I. Les éléments de R portent le nom de nombres réels . Définir ce qu’est un
nombre réel de manière formelle n’est pas des plus aisé ; le plus simple, peut-être,
est de le faire au moyen de ce que l’on appelle le développement décimal : le

VI. Largement utilisé par les Grecs de l’Antiquité, le nombre
√
2 était vraisemblablement déjà connu

des Babyloniens de la première moitié du IIe millénaire av. J.-C.
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développement décimal d’un nombre (à supposer qu’il est possible) consiste en
un ensemble de deux suites de chiffres séparées par une virgule, la première suite
étant appelée partie entière du nombre, la deuxième décimales VII. Tout nombre
rationnel possède un développement décimal ; par exemple 33

10
= 30

10
+ 3

10
= 3,3

(= 3,30 = 3,300 = . . . ), 10
3
= 3,33333..... On définit alors le concept de nombre

réel comme étant tout objet admettant un développement décimal (i.e. tout objet
pouvant s’écrire sous la forme de deux suites de chiffres séparées par une virgule,
la partie entière et les décimales).

⋄ Le nombre réel en question est rationnel lorsque les décimales comportent un
nombre fini de chiffres (comme par exemple dans 472,507003) ou lorsque les dé-
cimales comportent un nombre infini de chiffres, qui présentent une périodicité
à partir d’une certaine position (comme par exemple dans 472,507507507.....
ou dans 472,96482507507507..... (cf. sous-section 1.6.2 consacrée aux suites
géométriques), ou encore dans 472,50700300000.....).

⋄ Le nombre réel en question n’est pas rationnel lorsque les décimales com-
portent une infinité de chiffres, qui ne présentent aucune périodicité (comme
par exemple dans

√
2 = 1,41421.....).

On vérifie sans peine que l’ensemble des nombres réels est stable sous l’addition et
la multiplication, que chaque élément admet un opposé, 0 y compris, ainsi qu’un
inverse, à l’exception de 0. Cet ensemble a donc la structure d’un corps ; on l’ap-
pelle corps des nombres réels et on le note (R ; + ; · ). De par sa construction, R
constitue une sorte de continuum d’éléments ; il peut être vu comme l’expression
algébrique du concept géométrique de droite ; du reste, il n’est pas rare d’em-
ployer le terme de droite réelle pour désigner R. Un nombre réel est dit positif
(respectivement strictement positif ) si sa partie entière est un nombre naturel
(respectivement un nombre naturel, excepté 0) ; un nombre réel est dit négatif
si sa partie entière est l’opposé d’un nombre naturel (respectivement l’opposé
d’un nombre naturel, excepté 0). Noter, pour terminer, que les nombres réels
qui ne sont pas rationnels sont dits irrationnels ; l’ensemble I porte alors le nom
d’ensemble des nombres irrationnels .

Si l’ensemble R contient l’ensemble Q, qui contient l’ensemble Z, qui contient l’en-
semble N, il n’en demeure pas moins que R n’est pas le plus grand ensemble de nombres
existant. Plusieurs extensions de R peuvent être conçues ; l’une d’elles, appelée ensemble
des nombres complexes , notée C, est définie par :

C =
{
z = a+ b i | a, b ∈ R et i2 = −1

}
VIII .

VII. Par exemple, le développement décimal 4238,47 a pour partie entière 4238 et pour décimales 47.
La partie entière est constituée de quatre milliers, deux centaines, trois dizaines et huit unités ; les
décimales sont formées de quatre dizièmes et de sept centièmes :

4238,47 = 4 · 1000 + 2 · 100 + 3 · 10 + 8 · 1 + 4 · 0,1 + 7 · 0,01 (+0 · 0,001 + . . . ) ,

où 0,1 = 1

10
et 0,01 = 1

100
.

VIII. C = {z = a+ b i | a, b ∈ R et i2 = −1} se lit ainsi : C est l’ensemble des nombres z s’écrivant sous
la forme a+ b i, où a et b sont des nombres réels et i est l’élément tel que i2 = −1.
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L’ensemble des nombres complexes est d’une importance primordiale, non seulement en
mathématiques, mais également en physique et dans les sciences de l’ingénierie, en géné-
ral. Il ne fera néanmoins pas l’objet d’une étude dans le présent ouvrage ; il apparâıtra
tout au plus dans quelques rares situations.

CRQZN

Dire que l’ensemble C est une extension de l’en-
semble R, qui est une extension de l’ensemble Q, qui
est une extension de l’ensemble Z, qui est une extension
de l’ensemble N, revient à dire que N est inclus dans Z,
qui est inclus dans Q, qui est inclus dans R, qui est
inclus dans C ; on note :

N ⊂ Z ⊂ Q ⊂ R ⊂ C ,

en utilisant le symbole ⊂ , et on dit que N est un sous-ensemble de Z, qui est un sous-
ensemble de Q, qui est un sous-ensemble de R, qui est un sous-ensemble de C.

Le signe ⊂, mentionné ci-dessus, est un symbole utilisé dans la théorie des ensembles.
De nombreux autres symboles sont en vigueur dans cette théorie ; les principaux sont
listés ci-dessous :

• notation d’un ensemble :

⋄ {a; b; c; . . .}, où a, b, c, . . . sont les éléments qui constituent l’ensemble ; par
exemple, N = {0; 1; 2; 3; . . .} ;

⋄ {objet | condition sur l’objet}, où la barre verticale signifie tel que ; par exemple,
Q =

{
r = p

q

∣
∣ p ∈ Z et q ∈ Z∗} ;

• appartenance ∈ et non appartenance /∈ :
par exemple, 2 ∈ N, −3 ∈ Z, − 7

11
∈ Q,

√
2 /∈ Q ;

• inclusion ⊂ :
par exemple, N ⊂ Z ; aussi, I ⊂ R ; selon les circonstances, on note parfois aussi
Z ⊃ N et on dit que Z contient N ; ou R ⊃ I et on dit que R contient I ;

• intersection ∩ :
par exemple, {1; 2; 3} ∩ {2; 3; 4; 5} = {2; 3} ;

• réunion ∪ :
par exemple, {1; 2; 3} ∪ {2; 3; 4; 5} = {1; 2; 3; 4; 5} ; aussi R = Q ∪ I ;

• exclusion r :
par exemple, Q = RrI ; aussi, I = RrQ ;

• exclusion du zéro ∗ :
par exemple, N∗ = Nr{0}, Z∗ = Zr{0}, R∗ = Rr{0}, . . .

• complémentarité ∁A (où A indique l’ensemble général dans lequel on cherche le
complémentaire) :
par exemple, Q = ∁RI ; aussi, I = ∁RQ ;
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• produit cartésien × :
si A et B sont deux ensembles, alors A×B = {(a; b) | a ∈ A et b ∈ B} IX ;
par exemple :

R× R = {(x; y) | x ∈ R et y ∈ R} .
R × R peut être interprété géométriquement comme étant un plan ; ce plan est
appelé plan euclidien (cf. section 2.1 du chapitre 2) ;

• ensemble vide : ∅ ;
c’est l’ensemble qui ne contient aucun élément.

En outre, les symboles ⇒ , ⇐ et ⇔ vont être fréquemment utilisés dans le présent
ouvrage ; ⇒ est une implication (A ⇒ B signifie A implique B), ⇐ une implication
inverse (A ⇐ B signifie B implique A) ; quant à ⇔, il s’agit d’une double implication
(A⇔ B signifie A implique B et B implique A) ; ⇔ se traduit, en mots, par l’expression
si et seulement si.

1.2 Opérations entre nombres réels

Grâce au concept de développement décimal, les opérations d’addition et de multipli-
cation, que l’on utilise couramment dans le cadre des nombres entiers, se généralisent
sans peine à l’ensemble des nombres réels. Des caractéristiques telles que l’associativité
ou la commutativité, que l’on expérimente quotidiennement avec les nombres entiers, se
transposent alors logiquement au monde des nombres réels.

Plusieurs autres opérations peuvent être définies à partir de l’addition et de la mul-
tiplication : la soustraction, la division, l’élévation à une puissance...

• L’addition (ou somme, notée avec le signe +) est :

⋄ commutative : a+ b = b+ a ,

⋄ associative : a + (b+ c) = (a+ b) + c ,

où a, b, c ∈ R.

• La soustraction a − b de deux nombres réels a et b est définie comme étant la
somme de a et de l’opposé −b de b (a− b = a+ (−b)).

• La multiplication (ou produit, noté avec le signe · ) est :
⋄ commutative : a · b = b · a ,
⋄ associative : a · (b · c) = (a · b) · c ,
⋄ distributive par rapport à l’addition : a · (b+ c) = a · b+ a · c ,
où a, b, c ∈ R. Noter que le point symbolisant la multiplication est souvent ommis :
on note souvent a b au lieu de a · b.

• La division a ÷ b de deux nombres réels a et b, où b 6= 0, que l’on note aussi a
b
,

est définie comme étant le produit de a et de l’inverse 1
b
de b (a÷ b = a

b
= a · 1

b
).

IX. A×B = {(a; b) | a ∈ A et b ∈ B} se lit ainsi : A×B est l’ensemble de tous les couples (a; b) tels
que a ∈ A et b ∈ B.
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• La puissance n-ième d’un nombre réel a se note an et est définie par l’égalité :

an = a · a · . . . · a
︸ ︷︷ ︸

n fois

, n ∈ N∗ .

Propriétés :

⋄ am an = am+n , où a ∈ R et m,n ∈ N∗,

⋄ a0 = 1 , où a ∈ R∗ (de sorte que am a0 = am+0 = am),

⋄ a−n = 1
an

, où a ∈ R∗ (de sorte que an 1
an

= an

an
= 1 = a0 = an−n = an a−n),

⋄
(
am
)n

= amn , où a ∈ R et m,n ∈ N∗.

• La racine n-ième d’un nombre réel a se note n
√
a , ou a

1
n , et est définie par l’égalité :

(
n
√
a
)n

=
(
a

1
n

)n
= a , n ∈ Nr{0; 1} .

Si les nombres n = 0 et n = 1 sont exclus, c’est afin d’éviter de se retrouver en
présence de l’expression a∞, qui n’a pas de sens, ou de l’expression a1, qui n’est
pas une racine. Noter que si a > 0, alors n

√
a existe, quel que soit n ∈ Nr {0; 1},

et est positive. Mais si a < 0, alors n
√
a n’existe que si n est impair (si a < 0 et

n est pair, alors n
√
a n’existe pas dans R mais trouve sa place dans C). La racine

n-ième possède les propriétés suivantes :

⋄ n
√
a b = n

√
a n
√
b ,

⋄ m
√

n
√
a = mn

√
a .

Comme illustration du maniement de ces différentes opérations, citons ici certaines éga-
lités, appelées identités remarquables.

• (a± b)2 = a2 ± 2 a b+ b2,

• (a± b)3 = a3 ± 3 a2 b+ 3 a b2 ± b3,

• (a± b)4 = a4 ± 4 a3 b+ 6 a2 b2 ± 4 a b3 + b4,

• . . .

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . .

triangle de Pascal

où a, b ∈ R. Dans ces formules, les coefficients s’obtiennent à l’aide de ce que l’on
appelle le triangle de Pascal X (cf. figure ci-dessus) ; ce triangle se construit en observant
les règles suivantes :

∴ le triangle est formé de lignes de nombres entiers, positifs ;
∴ la n-ième ligne possède n nombres ;
∴ les lignes sont disposées de sorte que le triangle soit isocèle, en quelque sorte ;

X. Blaise Pascal était notamment un mathématicien, physicien, inventeur et philosophe français, né
en 1623 à Clermont-Ferrand et mort en 1662 à Paris. Il est demeuré célèbre pour ses nombreux travaux
en mathématiques, ainsi que pour l’invention d’une machine arithmétique. Si Pascal a étudié et utilisé
le triangle qui porte son nom, il ne l’a toutefois pas inventé ; le triangle en question était connu des
mathématiciens chinois de la fin du XIIIe siècle ; on le retrouve également dans les mathématiques
de l’Islam du XVe siècle ; en Europe, il apparâıt sur la page de titre d’un ouvrage d’arithmétique
germanique de l’époque de la Renaissance.
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∴ chaque ligne commence par le nombre 1 et se termine par le nombre 1 ;
∴ un nombre qui se trouve à l’intérieur d’une ligne s’obtient en sommant les deux

nombres plus proches voisins qui se trouvent dans la ligne précédente.

Attention :

(a ± b)n 6= a
n ± b

n ,

sauf si n = 1. Noter que, dans le cas n = 3 :

• a3 + b3 = (a+ b)(a2 − a b+ b2) ,

• a3 − b3 = (a− b)(a2 + a b+ b2) .

Des formules similaires existent pour tout entier n positif et impair. Citons encore :

• a2 − b2 = (a+ b)(a− b) .

1.3 Relation d’ordre dans les nombres réels

Reprenons la droite réelle, i.e. l’axe représentant le continuum des nombres réels. Consi-
dérons deux points quelconques sur cette droite ; appelons a et b les nombres réels associés
à ces points. Sur l’axe :

• soit le point représentant a se trouve à gauche du point représentant b,

• soit le point représentant a se trouve à droite du point représentant b,

• soit le point représentant a et le point représentant b sont confondus.

Dans le langage des nombres réels, ces assertions se traduisent comme suit :
• soit le nombre réel a est strictement plus petit que le nombre réel b, ce qui se
note a < b,

• soit le nombre réel a est strictement plus grand que le nombre réel b, ce qui se
note a > b,

• soit le nombre réel a est égal au nombre réel b, ce qui se note a = b.

Ces caractéristiques font des nombres réels un ensemble dit totalement ordonné ; on dit
alors qu’il existe une relation d’ordre total dans les nombres réelsXI. Formellement, la
relation d’ordre est définie comme suit : a est plus petit ou égal à b, ce qui se note a 6 b,
si et seulement si b− a est un nombre positif XII.

XI. Le concept d’ordre (tout comme les aspects d’additivité et d’associativité de l’addition ou de la
multiplication) se vit, s’expérimente au quotidien, notamment dans le cadre des nombres naturels : au
marché, le panier de la personne qui a acheté 23 pommes est manifestement plus rempli que celui de
la personne qui en a acheté 16 (à condition que toutes les pommes soient à peu près de tailles égales) ;
on accepte donc, sans réticence, de dire que le nombre 23 est plus grand que le nombre 16 (et on note
23 > 16).
XII. L’idée d’ordre n’est pas inhérente à tout ensemble de nombres. Si elle est présente dans l’ensemble
des nombres réels, ainsi que dans n’importe lequel de ses sous-ensembles, elle n’existe cependant pas
dans l’ensemble des nombres complexes, par exemple. On ne peut, en effet, pas dire qu’un nombre
complexe est plus petit ou plus grand qu’un autre ; on ne peut que se contenter d’affirmer que les deux
nombres sont égaux ou non. Cette réalité est due au fait que tout nombre complexe s’écrit comme la
somme de deux éléments qui ne peuvent se mélanger.
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L’ordre total régnant dans l’ensemble des nombres réels permet de définir les concepts
d’équation et d’inéquation.

• On appelle équation toute relation d’égalité entre deux quantités A et B (chacune
de ces quantités étant une expression algébrique pouvant comporter des grandeurs
inconnues ou non) ; on note A = B et on dit que les quantités A et B sont les
mêmes.

• On appelle inéquation toute relation d’inégalité entre deux quantités A et B
(chacune de ces quantités étant une expression algébrique pouvant comporter
des grandeurs inconnues ou non) ; les inégalités sont de quatre types ; elles sont
notées et définies comme suit :
⋄ A 6 B et on dit que A est plus petite ou égale à B,
⋄ A > B et on dit que A est plus grande ou égale à B,
⋄ A < B et on dit que A est strictement plus petite que B,
⋄ A > B et on dit que A est strictement plus grande que B.

Dans une équation, l’égalité va dans les deux sens (une quantité A est égale à une
quantité B si et seulement si la quantité B est égale à la quantité A, i.e. A = B ⇔
B = A) ; alors que dans une inéquation, le sens de l’inégalité doit être minutieusement
respecté (une quantité A est strictement plus petite qu’une quantité B si et seulement
si la quantité B est strictement plus grande que la quantité A, i.e. A < B ⇔ B > A).
En conséquence, les opérations habituelles effectuées dans la résolution des équations
doivent être appliquées avec prudence dans le cas des inéquations. À ce propos, un
certain nombre de règles méritent d’être rappelées.

Soient deux nombres réels x et y.

• Addition d’un nombre réel : quel que soit le nombre réel a :

x < y ⇔ x+ a < y + a et x < y ⇔ x− a < y − a ;

de même :

x 6 y ⇔ x+ a 6 y + a et x 6 y ⇔ x− a 6 y − a .

• Multiplication par un nombre réel : soit a un nombre réel ; si a > 0 :

x < y ⇔ a x < a y ,

mais si a < 0, alors :

x < y ⇔ a x > a y ;

de même, si a > 0 :

x 6 y ⇔ a x 6 a y ,

mais si a < 0, alors :

x 6 y ⇔ a x > a y .
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• Inverse :

0 < x < y ⇔ 1

x
>

1

y
> 0 ;

de même :

0 < x 6 y ⇔ 1

x
>

1

y
> 0 .

• Puissance n-ième, où n un nombre entier strictement positif :

0 < x < y ⇔ 0 < xn < yn ;

de même :

0 6 x 6 y ⇔ 0 6 xn 6 yn .

• Racine n-ième, où n un nombre entier strictement positif ; alors :

0 < x < y ⇔ 0 < n
√
x < n

√
y ;

de même :

0 6 x 6 y ⇔ 0 6 n
√
x 6 n

√
y .

1.3.1 Exemples : 1. Soit la double inéquation :

−5 6
4− 3 x

2
< 1 .

Alors, en multipliant par 2, puis en soustrayant 4, il vient :

−5 6
4− 3 x

2
< 1 ⇔ −10 6 4− 3 x < 2 ⇔ −14 6 −3 x < −2 ;

pour isoler x, il convient de diviser par −3 ; lors de cette division, le sens des
inégalités doit être inversé ; d’où le résultat :

14

3
> x >

2

3
.

2. Soit l’inéquation :
x2 − 10 > 3 x .

Pour la résoudre, il convient de soustraire 3 x des deux côtés, puis d’écrire l’ex-
pression x2 − 3 x− 10 sous la forme (x+ 2)(x− 5) :

x2 − 10 > 3 x ⇔ x2 − 3 x− 10 > 0 ⇔ (x+ 2)(x− 5) > 0 .

La dernière inégalité obtenue est
satisfaite si et seulement si les
deux parenthèses sont soit simul-
tanément strictement positives,
soit simultanément strictement
négatives, de sorte que l’expres-
sion complète soit strictement po-

x

x+ 2 −

−2

+

5

+

x− 5 −
0

− +0

(x+ 2)(x− 5) + − +0 0
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sitive. Le tableau du bas de la page précédente (appelé tableau des signes) permet
d’identifier les valeurs de x correspondant à ces deux cas de figure. La solution est
donc :

x < −2 ou x > 5 .

3. Soit l’inéquation f(x) > 0, où :

f(x) =
(x2 + x− 6)(x2 + 1)

x2 − 5 x+ 4
.

Pour la résoudre, commençons par écrire la première parenthèse du numérateur,
x2 + x − 6, sous la forme (x + 3)(x − 2), et le dénominateur x2 − 5 x + 4 sous la
forme (x− 1)(x− 4). L’expression f(x) se récrit alors :

f(x) =
(x+ 3)(x− 2)(x2 + 1)

(x− 1)(x− 4)
;

du fait qu’elle ne s’annule pour aucune valeur de x, la parenthèse x2+1 est laissée
telle quelle. Dès lors que f(x) est mise sous cette forme, l’inéquation f(x) > 0
se résout aisément ; il suffit, pour cela, de dresser un tableau des signes et de
l’analyser.

x −3 1 2 4

x+ 3 − + + + +0

x− 2 − − − + +0

x2 + 1 + + + + +

x− 1 − − + + +0

x− 4 − − − − +0

f(x) + − + − +0 ‖ 0 ‖

La solution de l’inéquation est donc :

x 6 −3 ou 1 < x 6 2 ou x > 4 .

Si 1 ne fait pas partie de l’ensemble des solutions de l’inéquation, c’est en raison
du fait que l’expression f(x) n’est pas définie en x = 1 ; il en est de même pour
x = 4.

4. Soit l’inéquation :

|x− 3| < 1

2
;

les barres verticales de part et d’autre de x− 3 symbolisent ce que l’on appelle la
valeur absolue. Avant de résoudre l’inéquation, rappelons la définition de la valeur
absolue d’un nombre réel a :

|a| =
{

a si a > 0

−a si a < 0
,
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et mentionnons les propriétés suivantes (dont les preuves sont laissées en exercice) :

⋄ |a+ b| 6 |a|+ |b|, quels que soient les nombres réels a et b ;

⋄ |a b| = |a| |b|, quels que soient les nombres réels a et b ;

⋄ |a| > b ⇔ a < −b ou a > b,
quels que soient le nombre réel a et le nombre réel b positif ;

⋄ |a| < b ⇔ −b < a < b,
quels que soient le nombre réel a et le nombre réel b strictement positif ;

⋄ |a| = b ⇔ a = −b ou a = b,
quels que soient le nombre réel a et le nombre réel b positif.

Appliquons alors la quatrième propriété citée à l’inéquation donnée :

|x− 3| < 1

2
⇔ −1

2
< x− 3 <

1

2
.

En additionnant 3, il vient :
5

2
< x <

7

2
.

5. Soit l’inéquation :
|2 x− 7| > |4 x+ 3| .

Commençons par remarquer que l’expression 4 x + 3 change de signe lorsque x
passe par la valeur −3

4
; de même, 2 x− 7 change de signe lorsque x passe par 7

2
.

Pour traiter efficacement l’inéquation, il convient alors de séparer la résolution en
trois cas : un premier cas, lorsque les expressions 2 x− 7 et 4 x+ 3 sont toutes les
deux strictement négatives, i.e. lorsque x < −3

4
, un deuxième cas lorsque 4 x+ 3

est positive et 2 x−7 strictement négative, i.e. lorsque −3
4
6 x < 7

2
, et un troisième

cas lorsque 4 x+ 3 et 2 x− 7 sont toutes les deux positives, i.e. lorsque x > 7
2
.

• Supposons que x < −3
4
. Alors, en tenant compte de la définition de la valeur

absolue, l’inéquation devient :

−(2 x− 7) > −(4 x+ 3) ⇔ −2 x+ 7 > −4 x− 3 ⇔ 2 x > −10 ,

d’où :
x > −5 .

Mais comme x < −3
4
par hypothèse, alors :

−5 < x < −3

4
.

• Supposons que −3
4
6 x < 7

2
. Dans ce cas, l’inéquation devient :

−(2 x− 7) > 4 x+ 3 ⇔ −2 x+ 7 > 4 x+ 3 ⇔ −6 x > −4 ,

d’où :

x <
−4

−6
=

2

3
.



14 1 Corps des nombres réels

Mais comme −3
4
6 x < 7

2
par hypothèse, alors :

−3

4
6 x <

2

3
.

• Supposons enfin que x > 7
2
. Dans ce cas :

2 x− 7 > 4 x+ 3 ⇔ −2 x > 10 ,

d’où :
x < −5 ,

ce qui est incompatible avec l’hypothèse x > 7
2
. L’inéquation n’admet donc

aucune solution dans ce dernier cas.

La solution générale de l’inéquation est donc :

−5 < x < −3

4
ou − 3

4
6 x <

2

3
,

ce qui peut s’écrire de manière plus compacte :

−5 < x <
2

3
.

1.4 Sous-ensembles de nombres réels

Ce que l’on entend par sous-ensemble non vide de R (ou sous-ensemble non vide de
nombres réels), c’est tout ensemble dont les éléments sont des nombres réels.

1.4.1 Sous-ensembles bornés

1.4.1 Définitions : Soit S un sous-ensemble non vide de R.

• On dit que S est minoré s’il existe un nombre réel a tel que x > a pour tout
x ∈ S. Le nombre a est alors appelé minorant de S.

• On dit que S est majoré s’il existe un nombre réel b tel que x 6 b pour tout
x ∈ S. Le nombre b est alors appelé majorant de S.

• On dit que S est borné si S est à la fois minoré et majoré.

1.4.2 Exemple : Soit l’ensemble S =
{
x = 1

n

∣
∣n ∈ N∗}. Concrètement :

S =

{

1 ;
1

2
;
1

3
;
1

4
; . . .

}

.

N’étant constitué que de nombres rationnels (qui sont réels), cet ensemble peut être vu
comme un sous-ensemble non vide de R. Ce sous-ensemble est borné ; en effet, il est
minoré, un minorant étant par exemple −7, ainsi que majoré, un majorant étant par
exemple 15.
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1.4.3 Remarque : Un sous-ensemble non vide de R qui n’est pas minoré, ou qui n’est
pas majoré, ou encore qui n’est ni minoré ni majoré est dit non borné.

1.4.4 Définition : Soit S un sous-ensemble non vide de R.

• On dit que S admet une borne inférieure s’il existe un nombre réel a qui satisfait
les propriétés suivantes :

⋄ a est un minorant de S ;

⋄ pour tout nombre réel ε > 0, il existe un élément x ∈ S satisfaisant x−a 6 ε.

Le nombre a est alors appelé borne inférieure de S.

• On dit que S admet une borne supérieure s’il existe un nombre réel b qui satisfait
les propriétés suivantes :

⋄ b est un majorant de S ;

⋄ pour tout nombre réel ε > 0, il existe un élément x ∈ S satisfaisant b−x 6 ε.

Le nombre b est alors appelé borne supérieure de S.

1.4.5 Remarques : • Il existe des situations dans lesquelles la borne inférieure d’un
sous-ensemble non vide de R appartient au sous-ensemble en question, et d’autres
situations dans lesquelles la borne inférieure n’est pas dans le sous-ensemble en
question. Il en est de même pour la borne supérieure.

• Si un sous-ensemble non vide de R admet une borne inférieure (respectivement
supérieure), cette borne inférieure (respectivement supérieure) est unique. Pour
s’en convaincre, il convient de supposer (par l’absurde) que le sous-ensemble en
question admet deux bornes inférieures différentes, puis de montrer que cette
supposition conduit à une contradiction. Soit donc S un sous ensemble non vide
de R admettant deux bornes inférieures a1 et a2 différentes. Comme a2 6= a1, alors
soit a1 < a2, soit a2 < a1. Considérons que c’est a1 qui est strictement plus petite
que a2 (l’autre situation se traitant de manière similaire). Le fait que le nombre
réel a1 est une borne inférieure permet d’affirmer qu’il existe, pour tout nombre
réel ε > 0, un élément x ∈ S tel que x−a1 6 ε. Le fait que l’assertion est valable
pour tout nombre réel ε > 0 permet d’affirmer qu’il existe un élément de S, que
l’on note x̃, tel que x̃− a1 6

1
2
(a2 − a1) (le nombre ε valant ici 1

2
(a2 − a1)). Or :

x̃− a1 6
1

2
(a2 − a1) ⇔ x̃ 6 a1 +

1

2
(a2 − a1)

⇔ x̃ 6
1

2
(a1 + a2) <

1

2
(a2 + a2) = a2 ,

ce qui est contradictoire avec le fait que a2 est une borne inférieure ; d’où la
conclusion. Un raisonnement similaire permet de prouver que la borne supérieure
de S, dès lors qu’elle existe, est unique.

• La borne inférieure (respectivement supérieure) d’un sous-ensemble non vide
de R, à supposer qu’il y en ait une, peut être vue comme le plus grand minorant
(respectivement le plus petit majorant) du sous-ensemble en question. Pour s’en
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convaincre, il convient de supposer (par l’absurde) qu’il existe un minorant du
sous-ensemble donné qui est plus grand que la borne inférieure, puis de montrer
que cette supposition conduit à une contradiction. Soit donc S un sous-ensemble
non vide de R, a sa borne inférieure et ã un minorant de S strictement supérieur
à a. Le fait que le nombre réel a est la borne inférieure permet d’affirmer qu’il
existe, pour tout nombre réel ε > 0, un élément x ∈ S tel que x− a 6 ε. Le fait
que l’assertion est valable pour tout nombre réel ε > 0 permet d’affirmer qu’il
existe un élément de S, que l’on note x̃, tel que x̃ − a 6 1

2
(ã − a) (le nombre ε

valant ici 1
2
(ã− a)). Or :

x̃− a 6
1

2
(ã− a) ⇔ x̃ 6 a+

1

2
(ã− a)

⇔ x̃ 6
1

2
(a+ ã) <

1

2
(ã + ã) = ã ,

ce qui est contradictoire avec le fait que ã est un minorant ; d’où la conclusion.
Un raisonnement similaire permet de prouver que la borne supérieure de S, à
supposer qu’il y en ait une, est le plus petit majorant de S.

1.4.6 Notation : Les bornes inférieure et supérieure d’un sous-ensemble non vide S de R,
à supposer qu’elles existent, se notent généralement Inf(S) et Sup(S), respectivement.

1.4.7 Exemple : Reprenons l’ensemble S de l’exemple précédent.
Cet ensemble admet pour borne supérieure le nombre 1 et pour
borne inférieure le nombre 0.

x
0 1

Inf(S) Sup(S)

⋄ S admet pour borne supérieure le nombre réel 1. En effet, 1 est un majorant de S
(vu que 1

n
6 1 pour tout n ∈ N∗) ; en outre, pour tout nombre réel ε > 0, il existe

un élément x ∈ S tel que 1− x 6 ε (par exemple x = 1).

⋄ S admet pour borne inférieure le nombre réel 0. En effet, 0 est un minorant de S
(vu que 0 6 1

n
pour tout n ∈ N∗) ; en outre, pour tout nombre réel ε > 0, il existe

un élément x ∈ S tel que x − 0 6 ε (par exemple x = 1/
(
E(1

ε
) + 1

)
, où E

(
1
ε

)

désigne la partie entière de 1
ε
, i.e. la suite de chiffres placés avant la virgule, dans

le nombre 1
ε
).

Remarquer que 1 ∈ S, alors que 0 /∈ S.

1.4.8 Propriété : Soit S un sous-ensemble non vide de R.

• S admet une borne inférieure si et seulement si S est minoré.

• S admet une borne supérieure si et seulement si S est majoré.

En effet, dès lors que le sous-ensemble S admet une borne inférieure (respectivement
une borne supérieure), il est nécessairement minoré (respectivement majoré), la borne
inférieure (respectivement supérieure) étant un minorant (respectivement un majorant)
de S. Quant au fait que S admet une borne inférieure (respectivement supérieure) dès
lors qu’il est minoré (respectivement majoré), il s’agit d’une conséquence directe de la
structure même de l’ensemble des nombres réels : cet ensemble pouvant être vu comme
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une droite, un axe, il est possible de passer continûment d’un point à un autre sur
cette droite ; il est donc possible, à partir d’un minorant de S qui n’est pas la borne
inférieure, de passer continûment vers un autre minorant, jusqu’à arriver au plus grand
minorant de S ; or, ce plus grand minorant n’est autre que la borne inférieure de S. Un
raisonnement similaire s’applique dans le cas de la borne supérieure.

1.4.2 Intervalles

Une catégorie importante de sous-ensembles non vides de R sont les intervalles. On en
distingue plusieurs types.

1.4.9 Définitions : • On appelle intervalle fermé et borné tout sous-ensemble non
vide de R, de la forme :

{
x ∈ R

∣
∣ a 6 x 6 b

}
, a b

où a et b sont deux nombres réels tels que a 6 b. On le note [a; b] et le représente
comme indiqué sur la figure ci-dessus.

• On appelle intervalle ouvert et borné tout sous-ensemble non vide de R, de la
forme :

{
x ∈ R

∣
∣ a < x < b

}
, a b

où a et b sont deux nombres réels tels que a < b. On le note ]a; b[ et le représente
comme indiqué sur la figure ci-dessus.

• On appelle intervalle semi-ouvert et borné tout sous-ensemble non vide de R, de
la forme :

{
x ∈ R

∣
∣ a 6 x < b

}

ou de la forme :
{
x ∈ R

∣
∣ a < x 6 b

}
,

a b

a b

où a et b sont deux nombres réels tels que a < b. On le note [a; b[ ou ]a; b],
respectivement, et le représente comme indiqué sur les figures ci-dessus.

• On appelle intervalle fermé et non borné tout sous-ensemble non vide de R, de
la forme :

{
x ∈ R

∣
∣x > a

}

ou de la forme :
{
x ∈ R

∣
∣x 6 b

}
,

a

b

où a et b sont deux nombres réels. On le note [a; ∞[ ou ]−∞; b], respectivement,
et le représente comme indiqué sur les figures ci-dessus.
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• On appelle intervalle ouvert et non borné tout sous-ensemble non vide de R, de
la forme :

{
x ∈ R

∣
∣x > a

}

ou de la forme :
{
x ∈ R

∣
∣x < b

}
,

a

b

où a et b sont deux nombres réels. On le note ]a; ∞[ ou ]−∞; b[ , respectivement,
et le représente comme indiqué sur les figures ci-dessus.

1.4.10 Remarques : • Si l’intervalle [a; b], évoqué dans les définitions 1.4.9, est dit
borné, c’est en raison du fait qu’il admet comme minorant le nombre réel a et
comme majorant le nombre réel b. Noter que a est même la borne inférieure de
l’intervalle et b la borne supérieure. Ces nombres a et b sont appelés bords , ou
bornes , ou encore extrémités de l’intervalle en question. Il en est de même pour
les intervalles ]a; b[ , ]a; b] et [a; b[ .

• Si les intervalles [a; ∞[ et ]a; ∞[ , évoqués dans les définitions 1.4.9, sont dits
non bornés , c’est en raison du fait qu’ils ne possèdent aucun majorant. Cette
absence de majorant est exprimée à l’aide du symbole ∞ (ou +∞), qui évoque
ce que l’on appelle l’infini (ou plus infini) XIII. Aussi, si les intervalles ]−∞; b]
et ]−∞; b[ sont dits non bornés, c’est en raison du fait qu’ils ne possèdent aucun
minorant ; cette absence de minorant est exprimée à l’aide du symbole −∞, qui
évoque ce que l’on appelle moins l’infini.

• Dans la notation utilisée pour décrire les intervalles, afin d’indiquer qu’une borne c
d’un intervalle :

⋄ est dans l’intervalle en question, on utilise un crochet tourné vers l’intérieur :
[c ou c],

⋄ n’est pas dans l’intervalle en question, on utilise un crochet tourné vers l’ex-
térieur : ]c ou c[ .

Noter que, du fait qu’ils ne peuvent jamais être atteints, −∞ et ∞ sont toujours
accompagnés d’un crochet tourné vers l’extérieur.

• L’intervalle semi-ouvert [a; b[ , évoqué dans les définitions 1.4.9, est parfois appelé
intervalle fermé en a et ouvert en b ; ce afin de préciser en mots laquelle des deux
bornes est comprise dans l’intervalle et laquelle ne l’est pas. Il en est de même
pour l’intervalle semi-ouvert ]a; b], qui est parfois appelé intervalle ouvert en a
et fermé en b.

• L’ensemble des nombre réels peut être vu, rappelons-le, comme une droite, un
axe, qui n’a ni commencement ni fin ; il s’étend donc de −∞ à ∞. Sur cette
droite, les intervalles bornés ont l’allure de segments et les intervalles non bornés

XIII. Le symbole ∞ utilisé pour désigner l’infini est dû à John Wallis, mathématicien anglais né le 23
novembre 1616 à Ashford, dans le comté de Kent (en Angleterre) et mort le 28 octobre 1703 à Oxford.
Les travaux de Wallis ont largement influencé la pensée de l’un des inventeurs du calcul infinitésimal :
Isaac Newton.
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correspondent à des demi-droites. Noter que l’intervalle fermé [a; b], où a et b
sont deux nombres réels tels que a = b, qui peut être vu comme un intervalle
réduit à un seul élément, correspond à un point sur la droite réelle.

• Selon les propos tenus au point précédent, l’ensemble des nombres réels, R, peut
s’écrire :

R = ]−∞; ∞[ .

• Les intervalles ]−∞; 0], ]−∞; 0[ , [0; ∞[ et ]0; ∞[ sont fréquemment notés, de
manière compacte, R−, R

∗
−, R+ et R∗

+, respectivement. Les éléments de R− (res-
pectivement R∗

−) sont les nombres négatifs (respectivement strictement négatifs) ;
les éléments de R+ (respectivement R∗

+) sont les nombres positifs (respectivement
strictement positifs).

1.4.3 Concept de voisinage

1.4.11 Définitions : Soit a un nombre réel.

• On appelle intervalle ouvert centré en a tout sous-ensemble de R de la forme
]a− δ ; a+ δ[ , où δ est un nombre réel strictement positif.

• On appelle voisinage de a tout sous-ensemble V de R contenant un intervalle
ouvert centré en a.

1.4.12 Exemple : Soit le nombre réel 2
5
.

• L’intervalle ]−1 ; 4] est un voisinage de 2
5
;

en effet, ]−1 ; 4] contient un intervalle ouvert
centré sur 2

5
: l’intervalle

]
1
5
; 3

5

[
, par exemple.

−1 0 1 2 3 4
2

5

• L’intervalle
]
−1 ; 2

5

]
n’est pas un voisinage de 2

5
, quand bien même il contient 2

5
;

en effet,
]
−1 ; 2

5

]
ne contient aucun intervalle

ouvert centré sur 2
5
; ceci est dû au fait que 2

5

se trouve sur l’un de ses bords.
−1 0 1 2 3 4

2

5

1.5 Polynômes

Les polynômes à coefficients réels sont des objets qui méritent une certaine attention,
non seulement à cause de leur omniprésence dans le monde des mathématiques, mais
également parce qu’ils présentent un large champ d’application en physique et dans les
branches appliquées de l’ingénierie. Ils sont à la base de certaines courbes utilisées dans
le design industriel (telles les courbes de Bézier XIV, utilisées entre autres dans l’élabora-
tion des formes de pièces d’automobiles ainsi que dans le rendu de certaines polices de
caractères) et permettent, grâce à des techniques d’approximation, de simplifier l’étude
de courbes dont la description et le tracé sont délicats.

XIV. Pierre Bézier, né le 1er septembre 1910 à Paris et mort le 25 novembre 1999 dans la même ville,
était un ingénieur français qui a travaillé pour le groupe automobile Renault.
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1.5.1 Généralités sur les polynômes à coefficients réels

1.5.1 Définition : On appelle polynôme en l’indéterminée (ou variable) x (ou simple-
ment polynôme), et on note Pn(x) toute expression de la forme :

Pn(x) = an x
n + an−1 x

n−1 + an−2 x
n−2 + . . .+ a1 x+ a0 ,

où a0, a1, a2, . . . , an−1, an sont des nombres fixés, n un nombre entier positif et x ∈ R. Si
a0, a1, a2, . . . , an−1, an sont tous des nombres réels, on parle de polynôme à coefficients
réels. La plus grande puissance de x apparaissant dans le polynôme définit ce que l’on
appelle le degré du polynôme. Dans l’expression ci-dessus, le degré du polynôme est n
pour autant que an 6= 0.

1.5.2 Remarque : Toutes les puissances de x apparaissant dans un polynôme sont en-
tières et positives. Si une expression contient des puissances de x non entières ou néga-
tives, il ne s’agit pas d’un polynôme.

1.5.3 Définitions : • Un polynôme de degré n > 2 est dit factorisable s’il peut
s’écrire sous la forme d’un produit de polynômes, chacun d’eux ayant un degré
strictement inférieur à n.

• On appelle factorisation l’opération visant à écrire un polynôme de degré n > 2
sous la forme d’un produit de polynômes, chacun d’eux ayant un degré strictement
inférieur à n.

1.5.4 Définition : Un polynôme à coefficients réels est dit factorisable dans R s’il peut
s’écrire sous la forme d’un produit de polynômes à coefficients réels, chacun de ces
polynômes ayant un degré strictement inférieur à n. Le polynôme en question est dit
non factorisable dans R s’il ne peut pas s’écrire sous la forme d’un produit de polynômes
à coefficients réels, chacun de ces polynômes ayant un degré strictement inférieur à n.

1.5.5 Remarques : • Dans l’ensemble des polynômes de degré n = 2 (appelés éga-
lement polynômes du deuxième degré), à coefficients réels, certains polynômes
sont factorisables dans R, d’autres non.

• Les circonstances dans lesquelles un polynôme de degré 2, à coefficients réels, est
factorisable dans R sont exposées dans la sous-section suivante.

1.5.6 Théorème : Tout polynôme de degré n > 3, à coefficients réels, peut s’écrire sous la
forme d’un produit de polynôme(s) de degré 1, à coefficients réels, et/ou de polynôme(s)
de degré 2, à coefficients réels, et non davantage factorisable(s) dans R.

Preuve : Ce résultat est une conséquence d’un théorème majeur des mathématiques : le
théorème fondamental de l’algèbre XV. �

XV. L’énoncé de ce théorème est le suivant : tout polynôme à coefficients complexes admet au moins
une racine complexe.
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1.5.7 Remarque : La factorisation est une opération d’une importance capitale dans la
théorie des polynômes ; et pour cause : elle permet de cerner les caractéristiques d’un
polynôme donné, notamment les éventuelles valeurs où il s’annule.

1.5.8 Définition : Soit Pn(x) un polynôme de degré n, à coefficients réels. On appelle
zéro, ou racine de Pn(x) dans R, tout nombre x0 ∈ R qui annule Pn(x), i.e. tout nombre
x0 ∈ R tel que Pn(x0) = 0.

1.5.9 Lemme : Soit Pn(x) un polynôme de degré n > 1, à coefficients réels. Un nombre
réel x0 est un zéro de Pn(x) si et seulement si Pn(x) peut s’écrire sous la forme Pn(x) =
(x−x0)Q(x), où Q(x) est un polynôme de degré n−1, à coefficients réels. Autrement dit,
si x0 est un zéro de Pn(x), alors Pn(x) peut s’écrire sous la forme Pn(x) = (x−x0)Q(x),
où Q(x) est un polynôme de degré n−1, à coefficients réels ; et si Pn(x) peut s’écrire sous
la forme Pn(x) = (x− x0)Q(x), où Q(x) est un polynôme de degré n− 1, à coefficients
réels, alors x0 est un zéro de Pn(x).

Preuve : Soient Pn(x) un polynôme de degré n > 1, à coefficients réels, et x0 un nombre
réel.

• Supposons que x0 est un zéro de Pn(x). Écrivons concrètement Pn(x) :

Pn(x) = an x
n + . . .+ a1 x+ a0 ,

où a0, a1, . . . , an sont des nombres réels fixes. Alors :

Pn(x0) = an x0
n + . . .+ a1 x0 + a0 .

Or, Pn(x0) = 0, vu que x0 est un zéro de Pn(x). Ainsi :

Pn(x) = Pn(x)− Pn(x0)

= an x
n + . . .+ a1 x+ a0 − (an x0

n + . . .+ a1 x0 + a0)

= an x
n + . . .+ a1 x+ a0 − an x0

n − . . .− a1 x0 − a0

= an (x
n − x0

n) + . . .+ a1 (x− x0) + (a0 − a0)

= an (x− x0)(x
n−1 + xn−2 x0 + . . .+ xx0

n−2 + x0
n−1) + . . .+ a1 (x− x0)

= (x− x0)
(
an (x

n−1 + xn−2 x0 + . . .+ xx0
n−2 + x0

n−1) + . . .+ a1
)
,

du fait que :

xn − x0
n = (x− x0)(x

n−1 + xn−2 x0 + . . .+ xx0
n−2 + x0

n−1)

dans le cas où n > 2, et xn − x0
n = x− x0 dans le cas où n = 1. Or, l’expression

(
an (x

n−1+xn−2 x0+. . .+xx0
n−2+x0

n−1)+. . .+a1
)
est un polynôme de degré n−1,

à coefficients réels. Pn(x) peut donc s’écrire sous la forme Pn(x) = (x− x0)Q(x),
où Q(x) est un polynôme de degré n− 1, à coefficients réels.
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• Réciproquement, supposons que Pn(x) peut s’écrire Pn(x) = (x − x0)Q(x),
où Q(x) est un polynôme de degré n − 1, à coefficients réels, et x0 un nombre
réel. Alors :

Pn(x0) = (x0 − x0)Q(x0) = 0 ·Q(x0) = 0 ,

ce qui montre que x0 est un zéro de Pn(x). �

Différentes techniques de factorisation existent ; elles s’appliquent plus ou moins bien
selon les circonstances.

• Mise en évidence :
par exemple :

x2 + 2 x = x (x+ 2) .

• Utilisation des identités remarquables :
par exemple :

x4 − 6 x2 + 9 =
(
x2 − 3

)2
=
[(
x−

√
3
)(
x+

√
3
)]2

=
(
x−

√
3
)2(
x+

√
3
)2
.

• Regroupement et mise en évidence :
par exemple :

x3 − 2 x2 − x+ 2 = (x3 − 2 x2)− (x− 2) = x2 (x− 2)− (x− 2)

= (x2 − 1)(x− 2) = (x− 1)(x+ 1)(x− 2) .

• Recherche d’un zéro par tâtonnement puis division euclidienne :
par exemple, le polynôme x3 − 2 x2 − x+ 2 s’annule lorsque x = 1 ; il doit donc
pouvoir s’écrire sous la forme d’un produit de (x − 1) et d’un autre polynôme.
Cet autre polynôme s’obtient en effectuant ce que l’on appelle une division eu-
clidienne :

x3 −2 x2 −x +2 x− 1

−(x3 −x2) x2 − x− 2

−x2 −x
−(−x2 +x)

−2 x +2

−(−2 x +2)

0

Ainsi, x3 − 2 x2 − x + 2 = (x − 1)(x2 − x − 2). Ensuite, en remarquant que
x2 − x− 2 = (x+ 1)(x− 2), il vient finalement :

x3 − 2 x2 − x+ 2 = (x− 1)(x+ 1)(x− 2) .
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1.5.2 Polynômes du deuxième degré

Selon la définition 1.5.1, un polynôme de degré 2, i.e. un polynôme du deuxième degré,
à coefficients réels, est une expression de la forme a2 x

2+a1 x+a0, où a0 et a1 sont deux
nombres réels quelconques, et a2 un nombre réel non nul ; de manière compacte, on le
note P2(x). Lorsque a2 est rebaptisé en a, a1 en b et a0 en c, l’expression a2 x

2+a1 x+a0
prend l’allure que l’on trouve habituellement dans la littérature :

P2(x) = a x2 + b x+ c .

Dans le plan euclidien R2, muni d’un système de coordonnées cartésiennes Oxy (i.e.
un système de deux axes x et y, correspondant à deux copies de la droites réelle R,
perpendiculaires entre eux et se coupant au point O, appelé origine), l’ensemble des
points de coordonnées (x; y), où x ∈ R et y = P2(x), forme ce que l’on appelle une courbe
qui, dans le contexte présent, porte le nom de parabole (cf. section 2.1 du chapitre 2) ;

• si a > 0, la parabole est dite convexe (elle semble «sourire» : ) ;
• si a < 0, la parabole est dite concave (elle semble «malheureuse» : ).

Cherchons à écrire le polynôme du deuxième degré a x2 + b x + c sous la forme
d’un produit de polynômes à coefficients réels, chacun d’eux ayant un degré strictement
inférieur à 2. Pour cela, commençons par mettre le nombre a en évidence, puis complétons
l’expression x2 + b

a
x, afin d’obtenir une identité remarquable :

a x2 + b x+ c = a

(

x2 +
b

a
x+

c

a

)

= a

(

x2 + 2 · b

2 a
x+

b2

4 a2
− b2

4 a2
+
c

a

)

= a

((

x+
b

2 a

)2

− b2 − 4 a c

4 a2

)

= a

[(

x+
b

2 a

)

+

√
b2 − 4 a c

2 a

][(

x+
b

2 a

)

−
√
b2 − 4 a c

2 a

]

= a

[

x+

(
b

2 a
+

√
b2 − 4 a c

2 a

)][

x+

(
b

2 a
−

√
b2 − 4 a c

2 a

)]

.

Dans les deux dernières lignes du calcul, les expressions entre crochets sont des poly-
nômes à coefficients réels pour autant que la quantité b2 − 4 a c soit positive ; en effet,√
b2 − 4 a c ∈ R ⇔ b2 − 4 a c > 0. En résumé, le polynôme a x2 + b x+ c est factorisable

dans R à condition que b2 − 4 a c > 0 ; dans ce cas :

a x2 + b x+ c = a (x− x1)(x− x2) ,

où :

x1 =
−b−

√
b2 − 4 a c

2 a
∈ R et x2 =

−b+
√
b2 − 4 a c

2 a
∈ R .
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Les nombres x1 et x2 sont des zéros du polynôme. Leurs expressions, données ci-dessus,
s’écrivent volontiers en une seule formule ; on l’appelle formule du deuxième degré :

x1,2 =
−b±

√
b2 − 4 a c

2 a
.

1.5.10 Remarque : Les zéros x1 et x2 d’un polynôme du deuxième degré a x2 + b x+ c
(où a 6= 0), à coefficients réels, factorisable dans R, satisfont les deux propriétés sui-
vantes :

x1 + x2 = − b

a
et x1 x2 =

c

a
.

Ces deux expressions sont appelées formules de Viète XVI ; elles se déduisent directement
de la formule du deuxième degré.

Cela a été mentionné précédemment, tout polynôme du deuxième degré P2(x) =
a x2+b x+c, à coefficients réels, décrit une parabole dans le plan euclidien R2 (muni d’un
système de coordonnées cartésiennes Oxy). Certaines caractéristiques de cette parabole
peuvent être précisées grâce au calcul effectué ci-dessus.

⋄ Si b2 − 4 a c < 0, la parabole représentant a x2 + b x+ c ne coupe jamais l’axe x ;

⋄ si b2 − 4 a c > 0, la parabole représentant a x2 + b x + c coupe l’axe x en x1 et
en x2.

x

y

O
x1

S
x2

En outre, le point le plus bas (respectivement le plus haut) de
la parabole, dans le cas où elle «sourit» (respectivement dans
le cas où elle est «malheureuse»), a pour coordonnées :

(

− b

2 a
; −b

2 − 4 a c

4 a

)

.

Ce point, noté S, est appelé sommet de la parabole. Sa première coordonnée peut être
directement déduite de l’expression de la troisième ligne du calcul effectué plus haut :

a

((

x+
b

2 a

)2

− b2 − 4 a c

4 a2

)

;

dans cette expression, la quantité
(
x + b

2 a

)2
ne peut être que positive ; en outre, elle

s’annule en x = − b
2 a

uniquement ;
(
x+ b

2 a

)2 − b2−4 a c
4 a2

est donc minimale lorsque x =
− b

2 a
. Pour ce qui est de la deuxième coordonnée de S, elle s’obtient en remplaçant x

par − b
2 a

dans a
((
x+ b

2 a

)2 − b2−4 a c
4 a2

)
.

1.5.11 Remarque : Des considérations faites ci-dessus, il ressort que tout polynôme en x
de degré 2 et à coefficients réels, a x2 + b x+ c, peut s’écrire sous la forme :

a x2 + b x+ c = a (x− xS)
2 + yS ,

où xS = − b
2 a

et yS = − b2−4 a c
4 a

. L’expression a (x − xS)
2 + yS est ce que l’on appelle la

forme canonique du polynôme a x2 + b x+ c.

XVI. François Viète était un avocat et mathématicien français, né en 1540 à Fontenay-le-Comte, en
Vendée (dans le royaume de France), et mort en 1603 à Paris.
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1.5.12 Exemples : 1. Soit le polynôme du deuxième degré 6 x2+5 x−6. Ce polynôme
peut être factorisé dans R comme suit :

6 x2 + 5 x− 6 = 6

(

x2 +
5

6
x− 1

)

= 6

(

x2 + 2 · 5

12
x+

(
5

12

)2

−
(

5

12

)2

− 1

)

= 6

(

x2 + 2 · 5

12
x+

(
5

12

)2

− 169

144

)

= 6

((

x+
5

12

)2

−
(
13

12

)2
)

= 6

[(

x+
5

12

)

− 13

12

][(

x+
5

12

)

+
13

12

]

= 6

(

x− 8

12

)(

x+
18

12

)

= 3

(

x− 2

3

)

2

(

x+
3

2

)

= (3 x− 2)(2 x+ 3) .

Le même résultat peut être obtenu plus rapidement en utilisant la formule du
deuxième degré :

6 x2 + 5 x− 6 = 6 (x− x1)(x− x2) ,

où :

x1,2 =
−5 ±

√

52 − 4 · 6 · (−6)

2 · 6 =
−5±

√
169

12
=

−5± 13

12
⇔

{

x1 = −3
2

x2 = 2
3

.

2. Le polynôme du deuxième degré x2+2 x+5 ne peut pas être factorisé dans R ; en
effet :

x2 + 2 x+ 5 = (x2 + 2 x+ 1− 1 + 5) = (x2 + 2 x+ 12 + 4)

= (x+ 1)2 + 22 ,

ce qui ne peut pas s’écrire comme un produit de deux polynômes du premier degré
à coefficients réels. Un tel constat peut être fait plus rapidement en analysant la
quantité b2 − 4 a c dans le cas présent, où a = 1, b = 2 et c = 5 : le fait que
b2 − 4 a c = 22 − 4 · 1 · 5 = −16 < 0 montre que le polynôme n’est pas factorisable
dans R.

3. Dans le plan euclidien, muni d’un système de co-
ordonnées cartésiennes Oxy, considérons une para-
bole coupant l’axe x en x1 = 1 et x2 = 3 et ayant
pour sommet le point S(2; 1). Selon les considérations
faites précédemment, le polynôme du deuxième de-
gré P2(x) correspondant à cette parabole peut s’écrire

x
1 2 3

y

−1

1

0

S
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sous la forme :

P2(x) = a (x− x1)(x− x2) = a (x− 1)(x− 3) .

Le coefficient a s’obtient en introduisant les coordonnées de S dans P2(x) :

1 = P2(2) ⇔ 1 = a (2− 1)(3− 1) ⇔ 1 = −a ,

d’où a = −1. Le polynôme du deuxième degré associé à la parabole donnée est
donc :

P2(x) = −(x− 1)(x− 3) .

1.5.13 Remarques : • Rechercher la ou les solution(s) de l’équation Pn(x) = 0, où
Pn(x) est un polynôme de degré n, revient à rechercher les zéros de Pn(x), i.e. à
factoriser au maximum Pn(x).

• Dire que l’équation P2(x) = 0 n’a pas de solution réelle, où P2(x) est un polynôme
de degré 2, à coefficients réels, revient à dire que P2(x) n’a pas de zéro réel, i.e.
qu’il n’est pas davantage factorisable dans R.

• Un polynôme du deuxième degré, à coefficients réels, qui n’admet aucun zéro réel
est dit irréductible dans R.

1.5.14 Exemples : 1. Soit l’équation :

3 x2 + 2 x− 5 = 0 .

Les valeurs de x qui satisfont cette équation correspondent aux zéros du polynôme
3 x2 + 2 x− 5 ; ceux-ci s’obtiennent grâce à la formule du deuxième degré :

x1,2 =
−2±

√

22 − 4 · 3 · (−5)

2 · 3 =
−2 ±

√
64

6
=

−2 ± 8

6
.

Les solutions de l’équation sont donc x1 = −10
6
= −5

3
et x2 =

6
6
= 1. Pour présenter

de manière compacte ces solutions, on écrit volontiers :

x ∈
{

−5

3
; 1

}

.

2. Soit l’équation :
(x2 − 5 x+ 6)(x2 − 4) = 0 .

Noter que x2 − 5 x+ 6 = (x− 2)(x− 3) et x2 − 4 = (x− 2)(x+ 2). L’équation se
récrit alors :

(x− 2)(x− 3)(x− 2)(x+ 2) = 0 .

L’expression de gauche étant un polynôme (de degré 4) complètement factorisé (car
écrit sous la forme d’un produit de quatre polynômes de degré 1), les solutions se
déduisent immédiatement : x1 = −2, x2 = x3 = 2 et x4 = 3 ; de façon compacte :

x ∈ {−2 ; 2 ; 3} .
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1.5.3 Décomposition d’une fraction polynomiale
en éléments simples

La factorisation des polynômes trouve une application dans le processus de décomposi-
tion de fractions polynomiales (i.e. de fractions constituées d’un polynôme au numéra-
teur ainsi que d’un polynôme au dénominateur) en fractions plus élémentaires appelées
éléments simples. Correspondant en quelque sorte à l’opération inverse de la mise au
même dénominateur, un tel mécanisme s’avère utile pour calculer certaines intégrales
(cf. sous-section 4.5.3 de la section 4.5 du chapitre 4, consacrée aux méthodes d’intégra-
tion) ainsi que pour résoudre des équations dites différentielles, via ce que l’on appelle
la transformée de Laplace.

Pour illustrer le processus de décomposition en éléments simples, considérons par
exemple la fraction 1

x2+x
; cette fraction peut être récrite comme suit :

1

x2 + x
=

1

x (x+ 1)
=

1 + x− x

x (x+ 1)
=

1 + x

x (x+ 1)
− x

x (x+ 1)
=

1

x
− 1

x+ 1
,

pour autant que x /∈ {0 ; −1}, de sorte que la simplification dans la dernière étape soit
possible. Les fractions 1

x
et − 1

x+1
sont des spécimens d’éléments simples .

Par définition, les éléments simples d’une décomposition sont des fractions de la
forme J(x)

(K(x))n
, où n est un nombre entier plus grand ou égal à 1, K(x) un polynôme

à coefficients réels, de degré 1 ou de degré 2 et irréductible, et J(x) un polynôme à
coefficients réels, de degré strictement inférieur à celui de K(x).

La plupart des fractions de polynômes ne se décomposent pas de façon aussi évidente
et rapide que celle donnée en exemple. Dans le cas général d’une fraction :

f(x) =
P (x)

Q(x)
,

où P (x) et Q(x) sont des polynômes réels en x, de degrés m et n respectivement, la
procédure de décomposition s’avère souvent longue, car elle se compose de plusieurs
étapes incontournables dont il s’agit de respecter l’ordre.

• Si m > n, il convient d’effectuer au préalable une division euclidienne de P (x)
par Q(x), afin d’obtenir :

f(x) = S(x) +
T (x)

Q(x)
,

où S(x) est le résultat de la division et correspond à un polynôme de degré m−n,
et T (x) le reste, qui est un polynôme de degré n − 1 au maximum. La fraction
T (x)
Q(x)

est ensuite décomposée en éléments simples selon les règles données au point
suivant.
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• Si m < n, il convient d’effectuer directement la décomposition en éléments
simples. Les éléments simples sont de quatre types.

⋄ Si Q(x) contient un zéro simple x0, i.e. si Q(x) contient l’expression x − x0
lorsqu’il est complètement factorisé, et si cette expression n’apparâıt qu’une
seule fois, la décomposition contient l’élément simple de première espèce :

A

x− x0
,

où A un coefficient réel à déterminer.

⋄ Si Q(x) contient un zéro x0 d’ordre k (où k = 2, 3, . . . ), i.e. si Q(x) contient
l’expression (x− x0)

k lorsqu’il est complètement factorisé, la décomposition
contient la somme suivante, appelée élément simple de deuxième espèce :

A1

x− x0
+

A2

(x− x0)2
+ . . .+

Ak

(x− x0)k
,

où A1, A2, . . . , Ak sont des coefficients réels à déterminer.

⋄ SiQ(x) contient, lorsqu’il est complètement factorisé, un polynôme du deuxième
degré irréductible (dans R), s’écrivant a x2 + b x+ c, et si ce polynôme du
deuxième degré n’apparâıt qu’une seule fois, la décomposition contient l’élément
simple de troisième espèce :

Ax+B

ax2 + b x+ c
,

où A et B sont des coefficients réels à déterminer.

⋄ SiQ(x) contient, lorsqu’il est complètement factorisé, un polynôme du deuxième
degré irréductible (dans R) élevé à la puissance k, s’écrivant (a x2+b x+c)k (où
k = 2, 3, . . . ), la décomposition contient la somme suivante, appelée élément
simple de quatrième espèce :

A1 x+B1

a x2 + b x+ c
+

A2 x+B2

(a x2 + b x+ c)2
+ . . .+

Ak x+Bk

(a x2 + b x+ c)k
,

où A1, A2, . . . , Ak, B1, B2, . . . , Bk sont des coefficients réels à déterminer.

Dans la plupart des cas, on est en présence d’un cas hybride, dans lequel la forme facto-
risée du dénominateur Q(x) contient des polynômes de degré un (élevés à la puissance 1
et/ou à une puissance strictement supérieure à 1) et/ou des polynômes de degré deux ir-
réductibles dans R (élevés à la puissance 1 et/ou à une puissance strictement supérieure
à 1). La décomposition correspondante est alors une somme d’éléments de première
(et/ou deuxième) espèce, et/ou d’éléments de troisième (et/ou quatrième) espèce. En
ce qui concerne les coefficients à déterminer (présents dans les éléments simples), ils se
déduisent des coefficients du polynôme présent au numérateur de la fraction que l’on
cherche à décomposer (P (x) ou T (x), selon les situations).
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1.5.15 Exemples : 1. Soit f(x) la fraction polynomiale donnée par :

f(x) =
2 x2 + 4 x− 4

x3 + 4 x2 + 4 x
.

Comme le degré du polynôme au numérateur est inférieur au degré du polynôme
au dénominateur (2 < 3), il convient directement d’effectuer la décomposition
en éléments simples. Les différentes espèces d’éléments simples se déduisent de la
factorisation du dénominateur :

x3 + 4 x2 + 4 x = x (x2 + 4 x+ 4) = x (x+ 2)2 .

Comme x est élevé à la puissance 1 et x+2 à la puissance 2, la décomposition est
une somme d’éléments simples de première et de deuxième espèces :

2 x2 + 4 x− 4

x3 + 4 x2 + 4 x
=

2 x2 + 4 x− 4

x (x+ 2)2

=
A

x
+

B

x+ 2
+

C

(x+ 2)2
,

où A, B et C sont des coefficients réels. Ces coefficients s’obtiennent en récrivant
la somme des éléments simples sous la forme d’une unique fraction :

A

x
+

B

x+ 2
+

C

(x+ 2)2
=

A (x+ 2)2

x (x+ 2)2
+
B x (x+ 2)

x (x+ 2)2
+

C x

x (x+ 2)2

=
A (x+ 2)2 +B x (x+ 2) + C x

x (x+ 2)2

=
Ax2 + 4Ax+ 4A+B x2 + 2B x+ C x

x (x+ 2)2

=
(A+B) x2 + (4A+ 2B + C) x+ 4A

x (x+ 2)2
,

puis en comparant le numérateur de cette dernière expression avec le numérateur
de f(x) :

⋄ les coefficients devant x2 doivent être égaux,
⋄ les coefficients devant x doivent être égaux,
⋄ les coefficients constants doivent être égaux.

De cette comparaison résulte un système de trois équations à trois inconnues, dont
la solution se déduit presque immédiatement :







A +B = 2

4A+ 2B + C = 4

4A = −4

⇔







B = 3

C = 2

A = −1

.
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L’écriture de f(x) en termes d’éléments simples est donc :

f(x) =
2 x2 + 4 x− 4

x3 + 4 x2 + 4 x
= −1

x
+

3

x+ 2
+

2

(x+ 2)2
.

2. Soit f(x) la fraction polynomiale donnée par :

f(x) =
x4 + 3 x2 − x

x3 − 1
.

Dans le cas présent, le degré du polynôme au numérateur est supérieur au degré
du polynôme au dénominateur (4 > 3). Avant d’envisager la décomposition en
éléments simples, il convient donc d’effectuer d’abord une division euclidienne :

x4 +3 x2 −x x3 − 1

−(x4 −x) x

3 x2

Ainsi :

f(x) = x+
3 x2

x3 − 1
.

Intéressons-nous alors à la fraction 3x2

x3−1
. Comme :

x3 − 1 = (x− 1)(x2 + x+ 1)

et comme x2 + x + 1 est un polynôme irréductible (dans R), la décomposition de
3x2

x3−1
est une somme d’élément simples de première et de troisième espèces :

3 x2

x3 − 1
=

3 x2

(x− 1)(x2 + x+ 1)
=

A

x− 1
+

B x+ C

x2 + x+ 1
,

où A, B et C sont des coefficients réels. Ces coefficients s’obtiennent en récrivant
la somme des éléments simples sous la forme d’une unique fraction :

A

x− 1
+

B x+ C

x2 + x+ 1
=

A (x2 + x+ 1)

(x− 1)(x2 + x+ 1)
+

(B x+ C)(x− 1)

(x− 1)(x2 + x+ 1)

=
A (x2 + x+ 1) + (B x+ C)(x− 1)

(x− 1)(x2 + x+ 1)

=
Ax2 + Ax+ A+B x2 − B x+ C x− C

(x− 1)(x2 + x+ 1)

=
(A+B) x2 + (A− B + C) x+ (A− C)

(x− 1)(x2 + x+ 1)
,

puis en comparant le numérateur de cette dernière expression avec la quantité 3 x2

obtenue précédemment (qui peut être écrite sous la forme 3 x2+0 x+0). De cette
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comparaison résulte le système d’équations suivant, dont la résolution demande un
certain nombre d’opérations (addition des deuxième et troisième équations, puis
addition de la première et de la nouvelle deuxième équation) :







A+B = 3

A− B + C = 0

A − C = 0

⇔







A+B = 3

2A− B = 0

A − C = 0

⇔







A = 1

B = 2

C = 1

.

La décomposition de f(x) est donc :

f(x) =
x4 + 3 x2 − x

x3 − 1
= x+

1

x− 1
+

2 x+ 1

x2 + x+ 1
.

1.6 Suites de nombres et séries numériques

Les ensembles de nombres évoqués précédemment (N, Z, Q, R, C) sont tous infinis,
en ce sens qu’ils contiennent tous une infinité d’éléments. On peut toutefois observer
certaines nuances dans le concept d’infini, selon les cas : alors que les éléments de certains
ensembles peuvent être énumérés (comme ceux de N, Z et même Q), ceux d’autres
ensembles ne le peuvent pas (comme ceux de R ou C).

1.6.1 Définition : Un ensemble E est dit dénombrable, ou infini dénombrable, s’il existe
une correspondance telle qu’à chaque élément de E est attribué un unique élément de
l’ensemble des nombres naturels N, et qu’à chaque élément de N est attribué un unique
élément de E.

1.6.2 Remarques : • Dire qu’un ensemble E est dénombrable revient à dire que ses
éléments peuvent être énumérés : on peut dire qu’il y a un zéroième élément, un
premier élément, un deuxième, un troisième... Le zéroième élément, le premier
élément, le deuxième,... génèrent alors ce que l’on appelle une liste ; le fait même
de parler de zéroième élément, de premier élément, de deuxième... indique qu’un
ordre règne dans la liste.

• Dans un ensemble dénombrable E, dès lors qu’une liste est établie, il est possible
de créer d’autre listes à partir de la première ; il suffit, pour cela, de changer
l’ordre des éléments : le premier élément dans une liste peut être par exemple le
quinzième dans une autre liste, ou le 324 896-ème dans une autre encore.

• Dans un ensemble dénombrable E, dès lors qu’une liste est établie, les éléments
de E peuvent être indexés par les nombres naturels ; autrement dit, ils peuvent
être notés a0, a1, a2, a3, a4, . . . , où les a sont des éléments de E.

1.6.3 Exemple : L’ensemble N2 = N × N est dénombrable. L’ensemble des nombres
rationnels Q est également dénombrable ; ce qui permet de l’affirmer, c’est le fait que Q
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peut être identifié à un sous-ensemble de Z × N∗ XVII, qui est dénombrableXVIII. Les
diagrammes ci-dessous montrent qu’il est effectivement possible, dans chacun des cas,
de suivre un chemin permettant d’énumérer les éléments sans en répéter ni en omettre.

0 1 2 3 4 5

0

1

2

3

4

5

N× N Z× N∗

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

1.6.1 Généralités sur les suites

1.6.4 Définition : • On appelle suite illimitée toute famille d’éléments pouvant être
indexée par les nombres naturels. Si les éléments sont tous des nombres réels, on
parle de suite de nombres réels, ou simplement de suite réelle.

• Si la famille d’éléments est finie, les éléments sont indexés par des nombres na-
turels inférieurs ou égaux à un certain nombre naturel N ; on parle alors de suite
finie. Le nombre N +1 est appelé longueur de la suite ; il s’agit du nombre d’élé-
ments de la suite.

1.6.5 Notation : Une suite de nombres se note (u0 ; u1 ; u2 ; u3 ; . . . ), ou de manière plus
compacte (un)n∈N, ou encore simplement (un).

1.6.6 Définition : Dans toute suite de nombres (un), l’expression un est appelée terme
général de la suite.

1.6.7 Remarques : • Pour des raisons de commodité, il arrive qu’une suite de
nombres commence avec l’élément u1 et non l’élément u0. Dans un tel cas, la
suite en question s’écrit (un)n∈N∗ .

• Les termes un d’une suite ne sont pas forcément tous différents les uns des autres.
Par exemple, dans la suite donnée par :

u0 = 0 , u1 = 1 , u2 = −1 , u3 = 2 , u4 = −2 , u5 = 3 , u6 = −3 , . . .

XVII. Comme tout nombre rationnel r s’écrit sous la forme r = p
q
, où p est un nombre entier et q un

nombre entier non nul, l’ensemble des nombres rationnels Q peut être identifié à l’ensemble Z × Z∗

(Z étant l’ensemble des valeurs possibles pour p et Z∗ l’ensemble des valeurs possibles pour q) ; pour
obtenir un nombre rationnel négatif, il n’est cependant pas nécessaire d’exiger que p ∈ Z et q ∈ Z∗ ; il
suffit que p ∈ Z et q ∈ N∗. Enfin, comme tout nombre rationnel peut s’écrire d’une infinité de façons,
par exemple 1

2
= 2

4
= 5

10
= 365

730
, il n’est pas nécessaire de prendre en compte chaque élément de Z×N∗

dans le dénombrement de Q.
XVIII. Un sous-ensemble A d’un ensemble E dénombrable ne peut qu’être dénombrable ou posséder
un nombre fini d’éléments ; et pour cause : dans tout sous-ensemble de E contenant un nombre fini
d’éléments, le nombre d’éléments qui sont dans A est inférieur ou égal au nombre d’éléments qui sont
dans E.
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qui est une suite permettant de montrer que l’ensemble Z est dénombrable, les
éléments sont tous différents les uns des autres ; alors que dans la suite de terme
général un = (−1)n, où n ∈ N, il n’y a que deux éléments différents, 1 et −1.
L’ensemble des éléments de cette suite est donc fini. Dans ce dernier cas, à chaque
élément de N correspond un unique élément de la suite ; mais à chaque élément
de la suite ne correspond pas un unique élément de N.

Intimement liées aux procédés illimités de calcul, les suites de nombres ont fait leur
apparition dans l’Antiquité, notamment chez les Grecs et les Égyptiens, qui cherchaient
à résoudre des problèmes à l’aide de méthodes d’approximation basées sur des proces-
sus itératifs (dans lesquelles une opération est répétée autant de fois que souhaité). Au
Ier siècle après J.-C., le mathématicien et ingénieur grec Héron d’Alexandrie a exposé
un procédé illimité de calcul permettant de trouver une valeur approchée de la racine
carrée d’un nombre A donné ; l’idée est la suivante : on prend un nombre a strictement
positif quelconque et on calcule la moyenne arithmétique entre a et le nombre A

a
; on

recommence ensuite cette opération autant de fois que souhaité avec le nouveau ré-
sultat obtenu. Dans un langage plus formel, ce mécanisme se traduit par l’expression
mathématique suivante, qui lie le résultat de l’étape n à celui de l’étape n + 1 :

un+1 =
1

2

(

un +
A

un

)

, avec u0 = a ∈ R∗
+ .

Du processus résulte une suite de nombres (un), où u0 = a, u1 = 1
2

(
a + A

a

)
, u2 =

1
2

(
u1 +

A
u1

)
, . . . , dont les éléments se rapprochent toujours plus de

√
A à mesure que le

nombre naturel n augmente. La méthode est particulièrement efficace : pour A = 5 et
en choisissant par exemple a = u0 = 2, on obtient u1 = 9

4
= 2,25 et u2 ≈ 2,236, qui

correspond à
√
5 jusqu’à la troisième décimale ; seules deux étapes ont été nécessaires

pour obtenir une telle précision.

1.6.8 Remarques : • Lorsqu’une suite (un) est définie par une expression reliant
l’élément un+1 à l’élément précédent un (comme c’est le cas dans le procédé de
Héron d’Alexandrie), on dit que la suite est définie par récurrence.

• Dans la méthode de Héron d’Alexandrie, visant à déterminer la racine carrée d’un
nombre réel A, les éléments de la suite donnée s’approchent de plus en plus de√
A à mesure que n crôıt. On dit alors que la suite converge vers

√
A , ou que

√
A

est la limite de la suite. On note alors :

lim
n→∞

un =
√
A .

Remarquer que si A et a = u0 sont tous les deux des nombres rationnels, alors
tous les éléments de la suite sont rationnels. Mais la limite de la suite, elle,
n’est pas forcément rationnelle (par exemple, a = u0 = 2 ∈ Q, A = 5 ∈ Q et
limn→∞ un =

√
5 /∈ Q).
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• L’élément ∞ n’a pas le statut de nombre réel. C’est un objet vers lequel on peut
tendre, mais que l’on n’atteint jamais. De ce fait, son maniement est quelque
peu délicat et peut, dans certains cas, conduire à des conclusions erronées si l’on
n’applique pas les précautions adéquates ; voilà pourquoi on évite de l’employer
tel quel dans les définitions mathématiques, y compris celles dans lesquelles il est
question de limite à l’infini ou de limite infinie.

1.6.9 Définition : On dit qu’une suite de nombres réels (un) admet pour limite le nombre
réel ℓ lorsque n tend vers l’infini, et on note :

lim
n→∞

un = ℓ ,

si pour tout nombre réel ε > 0, il existe un nombre
N ∈ N tel que, pour tout nombre entier n > N :

|un − ℓ| 6 ε (⇔ ℓ− ε 6 un 6 ℓ+ ε) .
n

ℓ−ε

ℓ+ε
ℓ

0 1 2 N

1.6.10 Exemple : Soit la suite
(
1
n

)
(avec n ∈ N∗ (et non N), vu que 1

n
n’existe pas si

n = 0). Cette suite admet pour limite :

ℓ = lim
n→∞

1

n
= 0 .

En effet, soit ε un nombre réel quelconque, strictement posi-
tif. Alors :
∣
∣
∣
∣

1

n
− 0

∣
∣
∣
∣
6 ε ⇔ 1

n
6 ε ⇔ n >

1

ε
.

Ainsi,
∣
∣ 1
n
− 0
∣
∣ 6 ε, quel que soit le nombre naturel non nul n

plus grand ou égal àN , oùN est un nombre naturel supérieur
à 1

ε
; par exemple N = E

(
1
ε

)
+ 1, où E

(
1
ε

)
désigne la partie

entière de 1
ε
, i.e. la suite de chiffres placés avant la virgule,

dans le nombre 1
ε
. Illustrons le raisonnement avec différentes

valeurs de ε.

• Si ε = 2, alors N = E
(
1
2

)
+1 = 0+1 = 1. L’expression

∣
∣ 1
n
− 0
∣
∣ est effectivement plus petite ou égale à 2 quel

que soit n > 1.

• Si ε = 8
10
, alors N = E

(
10
8

)
+1 = 1+1 = 2. L’expres-

sion
∣
∣ 1
n
−0
∣
∣ est effectivement plus petite ou égale à 8

10

quel que soit n > 2.

n
0 1

=

N

2 3 4 5 6

1

2

−1

−2

n
0 1

=

N

2 3 4 5 6

1

2

−1

n
0 1 2 3 4 5

=

N

6

1

2

−1

• Si ε = 23
100

, alors N = E
(
100
23

)
+1 = 4+1 = 5. L’expression

∣
∣ 1
n
−0
∣
∣ est effectivement

plus petite ou égale à 23
100

quel que soit n > 5.
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En choisissant ε aussi petit que l’on veut, on trouve toujours un nombre naturel N pour
lequel l’expression

∣
∣ 1
n
− 0
∣
∣ est plus petite ou égale à ε, quel que soit n > N .

Tout nombre, autre que 0, ne peut pas faire office de limite de la suite
(
1
n

)
. Pour s’en

convaincre, supposons par l’absurde que la limite vaille 1
10
, par exemple. Alors :

∣
∣
∣
∣

1

n
− 1

10

∣
∣
∣
∣
6 ε ⇔ −ε 6

1

n
− 1

10
6 ε ⇔ −ε+ 1

10
6

1

n
6 ε+

1

10
.

Pour ε = 1
20
, par exemple :

− 1

20
+

1

10
6

1

n
6

1

20
+

1

10
⇔ 1

20
6

1

n
6

3

20
⇔ 20

3
6 n 6 20 .

Ce n’est donc que pour les nombres entiers compris entre 20
3
et 20 que l’expression

∣
∣ 1
n
− 1

10

∣
∣

est plus petite ou égale à 1
20
. Par conséquent, il n’existe aucun nombre N ∈ N∗ pour

lequel
∣
∣ 1
n
− 1

10

∣
∣ 6 1

20
quel que soit n > N . Le nombre 1

10
ne peut donc pas être la limite

de la suite.

1.6.11 Définition : On dit qu’une suite de nombres réels (un) tend vers ∞ (respective-
ment vers −∞) lorsque n tend vers l’infini, et on note :

lim
n→∞

un = ∞ (respectivement lim
n→∞

un = −∞ ) ,

si pour tout nombre réel υ > 0, il existe un nombre
N ∈ N tel que pour tout nombre entier n > N :

un > υ (respectivement un 6 −υ ) .
n

υ

0 1 2 N

1.6.12 Exemple : Soit la suite (n2). Alors :

lim
n→∞

n2 = ∞ .

En effet, soit υ un nombre réel quelconque, strictement positif. Alors :

n2 > υ ⇔ n >
√
υ ,

vu que n est un nombre entier positif. Ainsi, n2 > υ pour tout n > N , où N est le
nombre naturel donné par N = E

(√
υ
)
+ 1 (E

(√
υ
)
désignant la partie entière de

√
υ ).

1.6.13 Définitions : • Une suite de nombres réels (un) est dite convergente (ou de
manière équivalente, on dit que la suite (un) converge) s’il existe un nombre réel ℓ
tel que ℓ = limn→∞ un. Si un tel nombre réel n’existe pas, (un) est dite divergente
(ou de manière équivalente, on dit que (un) diverge).

• On dit que la limite d’une suite de nombres réels (un) existe si limn→∞ un = ℓ ∈ R

ou si limn→∞ un = ∞, ou encore si limn→∞ un = −∞. Dans le cas contraire, on
dit que la limite de (un) n’existe pas.
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1.6.14 Remarque : Des définitions précédentes, on déduit immédiatement qu’une suite
de nombre réels (un) diverge si et seulement si limn→∞ un = ∞ ou limn→∞ un = −∞,
ou encore limn→∞ un n’existe pas.

1.6.15 Exemple : Soit la suite
(
(−1)n

)
. Alors :

lim
n→∞

(−1)n n’existe pas ,

vu que (−1)n passe incessamment de −1 à 1 et de 1 à −1 à mesure que n augmente. En
conséquence,

(
(−1)n

)
diverge.

1.6.2 Suites arithmétiques

1.6.16 Définition : On appelle suite arithmétique toute suite de nombres réels (un) sa-
tisfaisant la relation de récurrence :

un+1 = un + r ⇔ un+1 − un = r , quel que soit n ∈ N .

Le nombre réel r = un+1−un, indépendant de n, est appelé
raison de la suite arithmétique.

u0 u1 u2 u3 u4

r (>0)

1.6.17 Remarque : Reprenons la définition précédente. De la formule de récurrence
un+1 = un + r, on tire :

un = un−1 + r = un−2 + r + r
︸ ︷︷ ︸

2 r

= un−3 + r + r + r
︸ ︷︷ ︸

3 r

= . . . ,

d’où, le terme général de la suite (un) :

un = u0 + n r ,

Une telle suite converge si r = 0 et diverge si r 6= 0 :

lim
n→∞

un = lim
n→∞

(u0 + n r) =







−∞ si r < 0

u0 si r = 0

∞ si r > 0

.

Ce résultat se déduit directement des définitions 1.6.9 et 1.6.11.

1.6.18 Exemple : La suite (−7 ; −4 ; −1 ; 2 ; 5 ; . . . ), dont le terme général s’écrit :

un = −7 + 3n ,

est une suite arithmétique. En effet :

un+1 − un =
(
−7 + 3 (n+ 1)

)
−
(
−7 + 3n

)

= −7 + 3n+ 3 + 7− 3n = 3 ,

qui est un nombre indépendant de n ; il correspond à la raison de la suite.
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Un jour de la fin du XVIIIe siècle, dans une classe d’une école primaire de Basse-Saxe,
un enseignant a demandé à ses élèves de calculer la somme des cent premiers nombres
naturels non nuls. Il pensait avoir ainsi occupé sa classe pour un certain temps. Mais
peu après que le devoir a été posé, un élève a donné la réponse : 5050. Le nom de cet
élève était Carl Friedrich GaußXIX. Son raisonnement était le suivant : en additionnant
le premier et le dernier terme de la somme, on obtient 1+100 = 101 ; en additionnant le
deuxième et l’avant-dernier terme de la somme, on obtient 2+99 = 101 ; en additionnant
le troisième et l’avant-avant-dernier terme de la somme, on obtient 3 + 98 = 101 ; etc. ;
en additionnant le cinquantième et le cinquante-et-unième terme de la somme on obtient
50 + 51 = 101. La somme des nombres entiers compris entre 1 et 100 vaut donc 50 fois
le nombre 101, soit :

50 · 101 = 5050 .

Si ce résultat peut être obtenu si rapidement, c’est grâce au fait que l’espacement entre
deux nombres entiers consécutifs vaut toujours 1. Qu’en est-il alors dans le cas d’une
suite finie de nombres réels, dont l’espacement entre deux nombres consécutifs demeure
constant, mais est différent de 1 ? Peut-on exhiber une formule de sommation similaire ?

1.6.19 Proposition : Soit (un) une suite arithmétique de terme général un = u0 + n r,
où u0 et r sont des nombres réels donnés. Alors la somme des N +1 premiers termes de
la suite, SN =

∑N
n=0 un = u0 + u1 + . . .+ uN , est donnée par :

SN =

N∑

n=0

un =
N + 1

2
(u0 + uN)

=
N + 1

2
(2 u0 +N r) .

Preuve : Soit (un) une suite arithmétique de terme général un = u0+n r (où u0 et r sont
des nombres réels donnés) et SN = u0 + u1 + . . .+ uN . Écrivons la somme SN deux fois,
une fois en commençant par les premiers termes et la deuxième fois par les derniers :

SN = u0 + u1 + u2 + . . .+ uN−2 + uN−1 + uN ,

SN = uN + uN−1 + uN−2 + . . .+ u2 + u1 + u0 .

XIX. Carl Friedrich Gauß était un mathématicien, physicien et astronome germanique, né le 30 avril
1777 à Brunswick et mort le 23 février 1855 à Göttingen (en Basse-Saxe). Il est considéré comme une
figure majeure du monde scientifique du début du XIXe siècle, tant son œuvre est riche, variée et
aboutie. En mathématiques, on retrouve son nom dans de nombreux domaines : algèbre, théorie des
nombres, géométrie, statistiques, analyse...
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En sommant ces deux lignes colonne par colonne, il vient :

2SN = (u0 + uN) + (u1 + uN−1) + . . .+ (uN−1 + u1) + (uN + u0)

=
(
u0 + u0 +N r

)
+
(
u0 + r + u0 + (N − 1) r

)
+ . . .

+
(
u0 + (N − 1) r + u0 + r

)
+
(
u0 +N r + u0

)

=
(
u0 + u0 +N r

)
+
(
u0 + u0 +N r

)
+ . . .

+
(
u0 + u0 +N r

)
+
(
u0 + u0 +N r

)

= (N + 1)(u0 + u0 +N r) = (N + 1)(u0 + uN) = (N + 1)(2 u0 +N r) ,

d’où le résultat donné dans la proposition. �

1.6.20 Exemple : Sommons tous les nombres entiers pairs allant de 0 à 250. Pour ce faire,
remarquons que l’ensemble des nombres pairs positifs constitue une suite arithmétique de
raison r = 2 et dont l’élément u0 est nul. Sommer les nombres entiers pairs allant de 0 à
250 revient donc à additionner les 126 premiers termes de la suite arithmétique de terme
général un = 2n, i.e. d’additionner les termes u0 = 0,u1 = 2,u2 = 4, . . .,u125 = 250.
Avec la formule de sommation déduite plus haut, il vient :

125∑

n=0

2n =
125∑

n=0

un =
125 + 1

2
(u0 + u125) = 63 · (0 + 250) = 15 750 .

1.6.3 Suites géométriques

1.6.21 Définition : On appelle suite géométrique toute suite de nombres réels (un) telle
que u0 6= 0 et satisfaisant la relation de récurrence :

un+1 = q un ⇔ un+1

un
= q , quel que soit n ∈ N ,

où q = un+1

un
est un nombre réel non nul, indépendant de n.

Ce nombre est appelé raison de la suite géométrique.

0

u0

u1

u2 u3 u4

q > 1

0

u0u1u2u3...

0 < q < 1

1.6.22 Remarque : Reprenons la définition précédente. De la formule de récurrence
un+1 = un q, on tire :

un = q un−1 = q q
︸︷︷︸

q2

un−2 = q q q
︸︷︷︸

q3

un−3 = . . . ,

d’où, le terme général de la suite (un) :

un = u0 q
n .
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Une telle suite converge si −1 < q 6 1 et diverge si q 6 −1 ou q > 1 :

lim
n→∞

un = lim
n→∞

u0 q
n =







0 si −1 < q < 1

u0 si q = 1

∞ si q > 1 et u0 > 0

−∞ si q > 1 et u0 < 0

n’existe pas si q 6 −1

.

Ce résultat se déduit directement des définitions 1.6.9 et 1.6.11.

1.6.23 Exemple : La suite
(
4 ; −8

3
; 16

9
; −32

27
; 64

81
; . . .

)
, dont le terme général s’écrit :

un = 4 ·
(

−2

3

)n

,

constitue une suite géométrique. En effet :

un+1

un
=

4 ·
(
− 2

3

)n+1

4 ·
(
− 2

3

)n =
4 ·
(
− 2

3

)n(− 2
3

)

4 ·
(
− 2

3

)n = −2

3

est un nombre indépendant de n ; il correspond à la raison de la suite.

Dans la sous-section précédente, a été établie une formule de sommation dans le cadre
des suites arithmétiques. La proposition qui suit montre qu’une formule de sommation
existe aussi dans le cadre des suites géométriques.

1.6.24 Proposition : Soit (un) une suite géométrique de terme général un = u0 q
n, où u0

est un nombre réel donné et q un nombre réel donné, différent de 1. Alors, la somme des
N + 1 premiers termes de la suite, SN =

∑N
n=0 un = u0 + u1 + . . .+ un, est donnée par :

SN =

N∑

n=0

un = u0
1− qN+1

1− q
.

Preuve : Soit (un) une suite géométrique satisfaisant les hypothèses de la proposition.
Écrivons SN et q SN l’une sous l’autre, de façon judicieuse :

SN = u0 + u0 q + u0 q
2 + . . .+ u0 q

N−2 + u0 q
N−1 + u0 q

N ,

q SN = u0 q + u0 q
2 + . . .+ u0 q

N−2 + u0 q
N−1 + u0 q

N + u0 q
N+1 .

En soustrayant ces deux lignes, la plupart des termes du côté droit de l’égalité dispa-
raissent, si bien que :

SN − q SN = u0 − u0 q
N+1 ⇔ SN (1− q) = u0

(
1− qN+1

)
;

le résultat donné dans la proposition s’ensuit. �
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1.6.25 Corollaire : Soit (un) une suite géométrique de terme général un = u0 q
n, où u0

est un nombre réel donné et q un nombre réel tel que −1 < q < 1. Alors, la somme de
l’infinité de termes que contient la suite,

∑∞
n=0 un, n’est pas infinie ; elle est égale à un

nombre réel S, qui est donné par :

∞∑

n=0

un = S =
u0

1− q
.

Preuve : Soit (un) une suite géométrique satisfaisant les hypothèses du corollaire. Alors,
selon la proposition précédente et en tenant compte du fait que qN+1 tend vers 0
lorsque N tend vers l’infini (du fait que −1 < q < 1) :

∞∑

n=0

un = lim
N→∞

SN = lim
N→∞

u0
1− qN+1

1− q
=

u0
1− q

,

ce qui montre, en outre, que la somme de l’infinité de termes que contient la suite n’est
pas infinie. �

1.6.26 Remarque : La formule du corollaire précédent s’avère particulièrement utile
lorsque l’on cherche à exprimer sous forme rationnelle un nombre à décimales pério-
diques.

1.6.27 Exemples : 1. Écrivons le nombre 5,427 sous forme rationnelle :

5,427 = 5,4272727..... = 5,4 + 0,0272727.....

= 5,4 + 0,027 + 0,00027 + 0,0000027 + . . .

= 5,4 + 0,027 · (1 + 0,01 + 0,0001 + . . . )

=
54

10
+

27

1000
·
(

1 +
1

100
+

1

10 000
+ . . .

)

=
54

10
+

27

1000
·
[(

1

100

)0

+

(
1

100

)1

+

(
1

100

)2

+ . . .

]

=
54

10
+

27

1000
·

∞∑

n=0

(
1

100

)n

=
54

10
+

27

1000
· 1

1− 1
100

=
54

10
+

27

1000
· 1

99
100

=
54

10
+

27

1000
· 100
99

=
54

10
+

27

990

=
54

10
+

3

110
=

594

110
+

3

110
=

597

110
,

du fait que 27
1000

·
∑∞

n=0

(
1

100

)n
peut être vue comme la somme d’une infinité d’élé-

ments constituant une suite géométrique, dont le terme général est un = 27
1000

·
(

1
100

)n

et dont la raison est comprise strictement entre −1 et 1.
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2. Écrivons le nombre 0,9 sous forme rationnelle :

0,9̄ = 0,999..... = 0,9 + 0,09 + 0,009 + . . . = 0,9 · (1 + 0,1 + 0,01 + . . . )

=
9

10
·
(

1 +
1

10
+

1

100
+ . . .

)

=
9

10
·
[(

1

10

)0

+

(
1

10

)1

+

(
1

10

)2

+ . . .

]

=
9

10
·

∞∑

n=0

(
1

10

)n

=
9

10
· 1

1− 1
10

=
9

10
· 1

9
10

=
9

10
· 10
9

= 1 ,

du fait que 9
10
·∑∞

n=0

(
1
10

)n
peut être vue comme la somme d’une infinité d’éléments

constituant une suite géométrique, dont le terme général est un = 9
10
·
(

1
10

)n
et dont

la raison est comprise strictement entre −1 et 1.

1.6.4 Critères de convergence relatifs aux séries numériques

La somme de l’infinité des éléments qui constituent une suite arithmétique est infinie,
du fait que l’écart entre deux éléments consécutifs est constant. La somme de l’infinité
des éléments qui constituent une suite géométrique de raison q > 1 est également infinie.
Qu’en est-il dans le cas d’une suite de nombres quelconque, qui n’est ni arithmétique,
ni géométrique ? Les résultats qui suivent permettent de répondre en partie à cette
question.

1.6.28 Définitions : Soit (un) = (u0; u1; u2; u3; u4; . . .) une suite de nombres réels
(contenant une infinité d’éléments).

• On appelle somme partielle d’indice N , de terme général un, la quantité SN

donnée par :

SN = u0 + u1 + . . .+ uN =

N∑

n=0

un .

• On appelle série numérique (ou simplement série), de terme général un, la somme
de l’infinité des éléments qui constituent la suite (un) :

u0 + u1 + u2 + u3 + . . . =

∞∑

n=0

un .

1.6.29 Remarques : • Selon leurs définitions, certaines suites de nombres (un) n’ont
pas d’élément u0, elles débutent avec l’élément u1. Les séries numériques asso-
ciées à de telles suites n’ont donc pas de terme u0 ; dans de telles circonstances,
l’indice n, dans le signe

∑
, va de 1 à ∞ (et non de 0 à ∞).

• Dans la définition précédente, la série numérique
∑∞

n=0 un est la limite de la
somme partielle SN lorsque N tend vers l’infini :

∞∑

n=0

un = lim
N→∞

SN .
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• L’ensemble (SN ) (qui se note aussi, en écriture longue, (SN)N∈N), formé des
sommes partielles de terme général un (où (un) est une suite de nombres réels),
peut être lui-même vu comme une suite de nombres :

S0 =
0∑

n=0

un = u0 ,

S1 =

1∑

n=0

un = u0 + u1 ,

S2 =

2∑

n=0

un = u0 + u1 + u2 ,

S3 =
3∑

n=0

un = u0 + u1 + u2 + u3 ,

...
...

...

On dit que la série numérique
∑∞

n=0 un converge si la suite (SN) converge, i.e. si
la suite (SN) admet pour limite un nombre réel S. Dans le cas contraire, on dit
que la série numérique diverge.

1.6.30 Exemples : 1. Soit (un) la suite de terme général un = 1
n
, avec n > 1. La série

numérique associée à cette suite est appelée série harmonique ; elle s’écrit :

∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ . . .

Dans la sous-section 4.6.4 du chapitre 4, il est montré que cette série diverge. La
somme partielle d’indice N est donnée par :

SN =
N∑

n=1

1

n
= 1 +

1

2
+

1

3
+ . . .+

1

N
;

et alors :
lim

N→∞
SN = ∞ .

2. On appelle série harmonique alternée la somme de l’infinité de termes de la suite
(un), de terme général un = (−1)n

n
, avec n > 1 :

∞∑

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+ . . .

Contrairement à la série harmonique, la série harmonique alternée converge. Une
preuve de ce résultat se trouve dans l’annexe A du présent ouvrage (cf. proposi-
tion A.2.6 de la section A.2).
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3. Soit (un) la suite de terme général un = 1
n2 , avec n > 1. Alors la somme de l’infinité

de ses termes : ∞∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ . . .

est une série convergente. Ce résultat est prouvé dans la sous-section 4.6.4 du
chapitre 4.

1.6.31 Proposition : Soit (un) une suite de nombres réels. Pour que la série numérique
∑∞

n=0 un converge, il faut que limn→∞ un = 0.

Preuve : Soit (un) une suite de nombres réels. Considérons les sommes partielles Sn−1

et Sn, d’indice n− 1 et n respectivement :

Sn−1 =
n−1∑

k=0

uk = u0 + u1 + . . .+ un−1 ,

Sn =
n∑

k=0

uk = u0 + u1 + . . .+ un−1 + un .

Alors :

Sn − Sn−1 = (u0 + u1 + . . .+ un−1 + un)− (u0 + u1 + . . .+ un−1) = un .

Dire que la série numérique
∑∞

k=0 un converge revient à dire que la limite limn→∞ Sn

est égale à un certain nombre réel S. Or, si S = limn→∞ Sn, alors évidemment S =
limn→∞ Sn−1. Par conséquent, si la série

∑∞
k=0 un converge, alors :

0 = lim
n→∞

Sn − lim
n→∞

Sn−1

= lim
n→∞

(Sn − Sn−1)

= lim
n→∞

un .

Autrement dit, pour que la série
∑∞

n=0 un converge, il faut que limn→∞ un = 0. Noter
qu’il conviendrait, pour compléter la preuve, de montrer que la différence de limites
limn→∞ Sn − limn→∞ Sn−1 est égale à la limite limn→∞(Sn − Sn−1). Une telle propriété
n’est pas prouvée ici ; une démonstration est donnée dans la partie annexe du présent
ouvrage (cf. proposition A.1.6 de l’annexe A). �

1.6.32 Remarque : La proposition précédente est une condition nécessaire pour qu’une
série numérique converge, mais pas une condition suffisante. Il existe, en effet, des suites
de nombres qui tendent vers 0 et dont la somme de l’infinité de termes diverge ; la série
harmonique en est un exemple : elle diverge, quand bien même limn→∞

1
n
= 0. Ainsi,

pour savoir si une série numérique converge ou non, il est nécessaire de faire appel à
d’autres critères. Deux d’entre eux sont présentés ici.
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1.6.33 Proposition : Soit (un) une suite de nombres réels. Supposons que :

lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= ℓ ,

où ℓ est un nombre réel.

• Si ℓ < 1, la série
∑∞

n=0 un converge.

• Si ℓ > 1, la série
∑∞

n=0 un diverge.

• Si ℓ = 1, il n’est pas possible de conclure, dans le cadre de la proposition présente,
que la série

∑∞
n=0 un converge ou diverge.

Ce résultat est connu sous le nom de critère de d’Alembert XX, ou critère du

quotient.

Preuve : Soit (un) une suite de nombre réels pour laquelle limn→∞
∣
∣un+1

un

∣
∣ = ℓ, où ℓ est

un nombre réel.

• Supposons que :

ℓ = lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
< 1 .

Par définition de la notion de limite d’une suite, il existe alors un nombre réel r
compris strictement entre ℓ et 1 (i.e. ℓ < r < 1) tel que :

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
< r ,

pour tout nombre entier n supérieur ou égal à un certain nombre N ∈ N. Autre-
ment écrit : ∣

∣
∣
∣

uN+m+1

uN+m

∣
∣
∣
∣
< r ,

pour tout m ∈ N. Or :

∣
∣
∣
∣

uN+m+1

uN+1

∣
∣
∣
∣
=

∣
∣
∣
∣

uN+m+1

uN+m

uN+m

uN+m−1
· · · uN+3

uN+2

uN+2

uN+1

∣
∣
∣
∣

=

∣
∣
∣
∣

uN+m+1

uN+m

∣
∣
∣
∣

∣
∣
∣
∣

uN+m

uN+m−1

∣
∣
∣
∣
· · ·
∣
∣
∣
∣

uN+3

uN+2

∣
∣
∣
∣

∣
∣
∣
∣

uN+2

uN+1

∣
∣
∣
∣
;

et comme chacun des facteurs, dans la dernière expression, est strictement plus
petit que r, alors :

∣
∣
∣
∣

uN+m+1

uN+1

∣
∣
∣
∣
< rm ⇔ |uN+m+1|

|uN+1|
< rm .

XX. Jean Le Rond d’Alembert était un mathématicien et encyclopédiste français, né le 16 novembre
1717 à Paris et mort le 29 octobre 1783 dans la même ville. Il est demeuré célèbre notamment pour son
étude sur la vibration d’une corde fixée en ses deux extrémités.
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Ainsi, pour tout m ∈ N :

0 < |uN+m+1| < |uN+1| rm.

Noter que |uN+m+1| peut être vu comme le terme général d’une suite de nombres.
Il en est de même pour |uN+1| rm ; c’est même le terme général d’une suite géo-
métrique de raison r. Comme −1 < r < 1, la somme de l’infinité de ses élé-
ments

∑∞
m=0 |uN | rm converge (cf. sous-section 1.6.3 consacrée aux suites géomé-

triques). En résumé,
(
|uN+m+1|

)
et
(
|uN+1| rm

)
sont deux suites pour lesquelles

|uN+m+1| < |uN+1| rm pour tout m ∈ N ; de plus,
∑∞

m=0 |uN | rm converge. Selon
le critère de comparaison relatif aux séries numériques (cf. proposition A.2.1 de
l’annexe A), qui est applicable ici, la série numérique

∑∞
m=0 |uN+m+1| converge

donc. Et vu que :

∞∑

n=0

|un| =
N∑

n=0

|un|+
∞∑

n=N+1

|un| =
N∑

n=0

|un|+
∞∑

m=0

|uN+m+1| ,

où
∑N

n=0 |un| est une somme contenant un nombre fini de termes, la série
∑∞

n=0 |un|
converge également. Enfin, dès lors que

∑∞
n=0 |un| converge, alors

∑∞
n=0 un converge

aussi (cf. proposition A.2.2, section A.2 de l’annexe A).

• Supposons que :

lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
> 1 .

Par définition de la notion de limite d’une suite, il existe alors un nombre réel r
compris strictement entre 1 et ℓ (i.e. 1 < r < ℓ) tel que :

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
> r ,

pour tout n supérieur ou égal à un certain nombre N ∈ N. Ainsi :

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
=

|un+1|
|un|

> r > 1 ⇔ |un+1| > |un| ,

ce qui implique que :

lim
n→∞

|un+1| 6= 0 et donc que : lim
n→∞

un+1 6= 0 ,

ou encore que :

lim
n→∞

un 6= 0 .

La proposition 1.6.31 permet alors de conclure que la série
∑∞

n=0 un diverge.
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• Si :

ℓ = lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= 1 ,

il n’est pas possible de dire si la série
∑∞

n=0 un converge ou diverge : la série
∑∞

n=1
1
n

diverge et satisfait :

lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
n+1
1
n

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n

n + 1

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

1

1 + 1
n

∣
∣
∣
∣
= 1 ;

la série
∑∞

n=1
1
n2 converge et satisfait également :

lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(n+1)2

1
n2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

n2

(n+ 1)2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

1
(
1 + 1

n

)2

∣
∣
∣
∣
∣
= 1 .

1.6.34 Proposition : Soit (un) une suite de nombres réels. Supposons que :

ℓ = lim
n→∞

n
√

|un| = ℓ ,

où ℓ est un nombre réel.

• Si ℓ < 1, la série
∑∞

n=0 un converge.

• Si ℓ > 1, la série
∑∞

n=0 un diverge.

• Si ℓ = 1, il n’est pas possible de conclure, dans le cadre de la proposition présente,
que la série

∑∞
n=0 un converge ou diverge.

Ce résultat est connu sous le nom de critère de la racine.

Preuve : Soit (un) une suite de nombres réels pour laquelle la limite limn→∞
n
√

|un| = ℓ,
où ℓ est un nombre réel.

• Supposons que :
ℓ = lim

n→∞
n
√

|un| < 1 .

Par définition de la notion de limite d’une suite, il existe alors un nombre réel r
compris strictement entre ℓ et 1 (i.e. ℓ < r < 1), tel que :

n
√

|un| < r ,

pour tout n supérieur ou égal à un certain nombre naturel N . Autrement écrit :

|un| < rn ,

pour tout n > N ; ou, de manière équivalente, pour tout m ∈ N :

|uN+m| < rN+m ;

et vu que |uN+m| > 0 et que rN+m = rN rm, alors, pour tout m ∈ N :

0 6 |uN+m| < rN rm .
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Noter que |uN+m| peut être vu comme le terme général d’une suite de nombres.
Il en est de même pour rN rm ; c’est même le terme général d’une suite géomé-
trique de raison r. Comme −1 < r < 1, la somme de l’infinité de ses éléments
∑∞

m=0 r
N rm converge. En résumé,

(
|uN+m|

)
et
(
rN rm

)
sont deux suites pour

lesquelles 0 6 |uN+m| < rN rm pour tout m ∈ N ; de plus,
∑∞

m=0 r
N rm converge.

Selon le critère de comparaison relatif aux séries numériques, qui est applicable
ici, la série numérique

∑∞
m=0 |uN+m| converge donc ;

∑∞
m=0 |uN+m+1| converge

donc évidemment aussi (du fait qu’il s’agit de la série
∑∞

m=0 |uN+m| de laquelle a
été oté le terme uN). Et vu que :

∞∑

n=0

|un| =
N∑

n=0

|un|+
∞∑

n=N+1

|un| =
N∑

n=0

|un|+
∞∑

m=0

|uN+m+1| ,

où
∑N

n=0 |un| est une somme contenant un nombre fini de termes, la série
∑∞

n=0 |un|
converge également. Enfin, dès lors que

∑∞
n=0 |un| converge, alors

∑∞
n=0 un converge

aussi (cf. proposition A.2.2, section A.2 de l’annexe A).

• Supposons que :

ℓ = lim
n→∞

n
√

|un| > 1 .

Par définition de la notion de limite d’une suite, il existe alors un nombre réel r
compris strictement entre 1 et ℓ (i.e. 1 < r < ℓ), tel que :

n
√

|un| > r ,

pour tout n supérieur ou égal à un certain nombre naturel N ; autrement écrit :

|un| > rn ,

pour tout n > N . Ainsi :

|un| > 1 ,

pour tout n > N , ce qui implique que :

lim
n→∞

|un| 6= 0 et donc que : lim
n→∞

un 6= 0 .

La proposition 1.6.31 permet alors de conclure que la série
∑∞

n=0 un diverge.

• Si :

ℓ = lim
n→∞

n
√

|un| = 1 ,

il n’est pas possible de dire si la série
∑∞

n=0 un converge ou diverge : la série
∑∞

n=0(−1)n diverge (vu que 1− 1 + 1− 1 + 1− 1 + . . . «oscille» entre 0 et 1) et
satisfait :

lim
n→∞

n
√

|un| = lim
n→∞

n
√

|(−1)n| = lim
n→∞

n
√
1 = 1 ;
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la série
∑∞

n=1
1
n2 converge et satisfait également :

lim
n→∞

n
√

|un| = lim
n→∞

n

√

1

n2
= 1 .

Une preuve de ce dernier résultat est donnée dans la section 3.9 du chapitre 3
(cf. deuxième des exemples 3.9.13). �

1.6.35 Exemple : La série :
∞∑

n=1

3n

n2

diverge ; pour le voir, appliquons le critère de d’Alembert. Notons un = 3n

n2 ; alors un+1 =
3n+1

(n+1)2
. Ainsi :

ℓ = lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣

3n+1

(n+1)2

3n

n2

∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

3n+1

(n+ 1)2
· n

2

3n

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

3 · 3n n2

3n (n + 1)2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

3n2

(n+ 1)2

∣
∣
∣
∣
= lim

n→∞

3n2

(n+ 1)2

= lim
n→∞

3n2

[
n
(
1 + 1

n

)]2 = lim
n→∞

3n2

n2
(
1 + 1

n

)2 = lim
n→∞

3
(
1 + 1

n

)2 = 3 .

Le fait que ℓ est un nombre réel strictement supérieur à 1 permet de conclure.



Chapitre 2

Fonctions réelles

L’idée de relation entre deux grandeurs peut être déjà entrevue dans les écrits ma-
thématiques des Babyloniens et des anciens Égyptiens. Longtemps, elle a été affiliée
exclusivement (ou presque) à l’arithmétique ; ce n’est que vers la fin de la Renaissance,
en Europe, qu’elle a commencé à se manifester dans d’autres contextes.

Dans la première moitié du XVIIe siècle, le concept de relation entre deux grandeurs
a commencé à être utilisé en géométrie, pour décrire différents objets du plan euclidien :
chaque point du plan pouvant être caractérisé par deux nombres réels x et y, appelés
coordonnées du point, une ligne (courbe ou non) peut être vue comme un ensemble de
points dont les coordonnées sont liées entre elles par une équation donnée.

Si une relation entre deux grandeurs permet de décrire une courbe, elle ne fournit tou-
tefois pas explicitement les caractéristiques permettant d’en faire rapidement une bonne
esquisse ; comment, en effet, tracer une ligne dans le plan à partir d’une expression dans
laquelle deux variables sont interdépendantes ? Une telle question a pu être résolue dans
le courant du XVIIIe siècle, lorsqu’a été précisée, petit à petit, la notion de fonction.
L’adoption d’un tel concept a conduit à un véritable changement de paradigme : deux
grandeurs réelles x et y, qui auparavant étaient traitées comme des variables interdépen-
dantes entre elles via une équation, sont devenues variable indépendante pour l’une, par
exemple x, et variable dépendante pour l’autre, par exemple y, cette dernière dépendant
alors explicitement de la première.

Du concept de fonction, ressort le fait qu’à chaque valeur d’une variable indépen-
dante x donnée, n’est affiliée qu’une unique valeur de la variable dépendante y associée.
Grâce à ce concept, il devient alors envisageable d’étudier la variation de y à mesure
que x augmente ; autrement dit, il devient possible de s’imaginer l’allure de la courbe
plane qui résulte du lien entre x et y. La figure obtenue est à l’image de ce qu’un enre-
gistreur de température trace dans un diagramme : la température augmente, diminue
ou demeure constante à mesure que le temps s’écoule. Le fait que l’aiguille du traceur ne
revient jamais en arrière, ni ne se sépare en plusieurs parties, exprime bien le fait qu’à
chaque instant, la température ne prend qu’une seule valeur.
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2.1 Relation entre deux grandeurs réelles

S’il est vrai que l’idée de relation entre deux grandeurs réelles, et plus particulièrement
la notion de fonction, occupe une place centrale dans l’étude du calcul infinitésimal, il
n’en demeure pas moins vrai que de tels concepts se retrouvent également dans d’autres
domaines des mathématiques, en géométrie notamment, ainsi que dans les sciences phy-
siques et en ingénierie. En géométrie, par exemple, les fonctions sont fréquemment uti-
lisées pour décrire ce que l’on appelle des courbes planes.

Vu le nombre d’applications géométriques qui vont être exposées dans le présent ou-
vrage (dans les chapitres 3 et 8 notamment), il convient de revenir, en premier lieu, sur
certaines notions fondamentales de la géométrie dans le plan et dans l’espace. Toute per-
sonne pour qui de telles notions sont suffisamment familières peut se rendre directement
à la section 2.2.

2.1.1 Plan euclidien

2.1.1 Définition : On appelle plan euclidien l’ensemble :

R2 = R× R =
{
(x; y)

∣
∣x ∈ R, y ∈ R

}

constitué de deux copies de la droite réelle R se coupant à angle droit.

2.1.2 Remarques : • Ce qui caractérise deux droites qui s’intersectent à angle droit,
c’est qu’elles découpent tout cercle, dont le centre se trouve sur le point d’inter-
section, en quatre arcs de longueurs égales. L’idée de cercle
est essentielle dans la définition d’angle droit, et plus généra-
lement d’angle : la mesure d’un angle entre deux demi-droites
Oa et Ob, de même sommet O, est définie comme étant la lon-
gueur d’un arc de cercle de rayon unité, délimité par les deux
demi-droites en question ; noter que les deux demi-droites
définissent systématiquement deux angles, l’un plus petit et
l’autre plus grand que π. Deux demi-droites, de même som-
met, forment un angle droit entre elles si l’un des deux angles
qu’elles définissent vaut π

2
. Deux droites qui se coupent à angle

droit sont dites perpendiculaires, ou orthogonales.

==

= =

O
Oa

Ob

• Les deux copies de la droite réelle, mentionnées dans la définition de R2, sont
fréquemment appelées axe x, ou axe des abscisses , et axe y, ou axe des ordonnées .

• Parler d’un point P dans le plan euclidien, c’est faire référence à un couple de
nombres réels (xP ; yP ) ∈ R2 qui caractérise P . Ce couple (xP ; yP ) est appelé
coordonnées cartésiennes de P . La coordonnée xP est souvent appelée abscisse
de P , la coordonnée yP ordonnée de P . Pour indiquer qu’un couple de nombres
réels (x0; y0) ∈ R2 correspond à un point A, on adopte la notation A(x0; y0).
Parfois, on écrit A ∈ R2 ; par cette écriture, on sous-entend (x0; y0) ∈ R2.
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• Le point O(0; 0) ∈ R2, dont les coordonnées sont (0; 0),
est appelé origine. Sauf indication contraire, il est sup-
posé que les axes x et y (i.e. les deux copies de la droite
réelle constituant le plan euclidien) se coupent en l’ori-
gine O. Dans ce cas, les axes x et y se notent Ox et Oy.
L’ensemble de ces axes Ox et Oy constitue ce que l’on
appelle un système de coordonnées cartésiennes ; on le
note Oxy.

x

y

O xP

yP
P

• La coordonnée xP d’un point P (xP ; yP ) dans le plan euclidien correspond à
l’intersection de la droite parallèle à l’axe Oy et passant par P , et de l’axe Ox ;
la coordonnée yP correspond à l’intersection de la droite parallèle à l’axe Ox et
passant par P , et de l’axe Oy.

• Dans R2, il n’existe pas un unique système de coordon-
nées cartésiennes ; on peut imaginer une infinité de sys-
tèmes de deux axes orthogonaux (i.e. perpendiculaires
entre eux), tous différents les uns des autres. Dans cette
infinité de systèmes, l’un d’eux se distingue des autres :
c’est Oxy, dont la définition est intimement liée à la
construction même de R2. Ce système, naturellement af-

x

y

O

filié au plan euclidien, est appelé système de coordonnées cartésiennes canonique
de R2 ; il est généralement tracé de la manière suivante : l’axe Ox est horizontal
et pointe vers la droite, l’axe Oy est verticale et pointe vers le haut.

2.1.2 Vecteurs dans le plan euclidien

x

y

O

P
Q

xQ−xP

yQ−yP

A
B

xB−xA

yB−yA

Dans le plan euclidien R2, muni de son système de coordonnées
cartésiennes canonique Oxy, à tout couple de points P (xP ; yP )
et Q(xQ; yQ) peut être associée une flèche, notée PQ, allant
de P à Q. Une telle flèche est complètement caractérisée par
deux nombres, appelés composantes selon x et selon y et don-
nés par xQ − xP et yQ − yP respectivement ; on note alors :

PQ =

(

xQ − xP

yQ − yP

)

.

Soient A(xA; yA) et B(xB; yB) deux autres points du plan euclidien R2. Si la flèche
AB a les mêmes composantes selon x et selon y que PQ, on dit qu’il s’agit d’une même et
unique flèche : PQ et AB ont les mêmes longueurs, directions et sens ; la seule différence
réside dans le fait que PQ commence en P , alors que AB débute en A.

2.1.3 Remarques : • L’ensemble des flèches du plan euclidien R2, muni de la loi
d’addition des flèches et de multiplication des flèches par un scalaire réel, consti-
tue ce que l’on appelle un espace vectoriel. Les éléments de cet espace, les flèches,
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sont alors appelées vecteurs. Les opérations d’addition et de multiplication par
un scalaire sont définies comme suit.

⋄ Addition des flèches :
Soient PQ une flèche, reliant deux points P (xP ; yP ) et Q(xQ; yQ) dans R2,
et AB une autre flèche, reliant les points A(xA; yA) et B(xB; yB), dans R2

aussi. On définit la somme PQ+ AB par :

PQ+ AB =

(

xQ − xP

yQ − yP

)

+

(

xB − xA

yB − yA

)

=

(

xQ − xP + xB − xA

yQ − yP + yB − yA

)

;

en notant ~v = PQ, ~w = AB, vx = xQ − xP ,
vy = yQ − yP , wx = xB − xA et wy = yB − yA,
la somme ci-dessus s’écrit :

~v + ~w =

(

vx

vy

)

+

(

wx

wy

)

=

(

vx + wx

vy + wy

)

. x

y

O

P

Q~v A

B

~w~v
~w

~v + ~w

⋄ Multiplication d’une flèche par un scalaire réel :
Soient PQ une flèche reliant deux points P (xP ; yP ) et Q(xQ; yQ) du plan
euclidien, et λ un nombre réel. On définit la
multiplication λPQ par :

λPQ = λ

(

xQ − xP

yQ − yP

)

=

(

λ (xQ − xP )

λ (yQ − yP )

)

;

en notant ~v = PQ, vx = xQ−xP et vy = yQ−yP ,
x

y

O

P

Q~v

λ~v (λ>0)

λ~v (λ<0)

l’opération ci-dessus s’écrit :

λ~v = λ

(

vx

vy

)

=

(

λ vx

λ vy

)

.

• Soient ~v = PQ une flèche dans R2, reliant deux points P (xP ; yP ) et Q(xQ; yQ),
et ~w = AB une autre flèche dans R2, reliant les points A(xA; yA) et B(xB; yB).
Notons :

~v =

(

vx

vy

)

et ~w =

(

wx

wy

)

.

⋄ On appelle produit scalaire euclidien de ~v et ~w la quantité ~v · ~w définie par la
relation suivante :

~v · ~w = vx wx + vy wy .

⋄ On appelle norme euclidienne de ~v la quantité ‖~v ‖
définie par la relation suivante :

‖~v ‖ =
√

vx2 + vy2 .
x

y

O

P
Q

vx

vy
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Le théorème de Pythagore I permet d’affirmer que ‖~v ‖ correspond à la lon-
gueur de la flèche ~v. De fait, ‖~v ‖ est égale à la distance entre les points P
et Q (vu que PQ = ~v ).

⋄ Le produit scalaire euclidien satisfait la propriété suivante (qui se déduit de
la définition même du produit scalaire euclidien, ainsi que du théorème du
cosinus II) :

~v · ~w = ‖~v ‖ ‖~w‖ cos(α) ,

où α est l’angle entre les vecteurs ~v et ~w, i.e. et
cos(α) le cosinus de α. Une définition précise du
cosinus est donnée à la fin du présent ouvrage,
dans la section C.8 de l’annexe C x

y

O

P

Q~v A

B

~w

B′

~w

α

2.1.3 Espace euclidien

2.1.4 Définition : On appelle espace euclidien l’ensemble :

R3 = R× R× R =
{
(x; y; z)

∣
∣ x ∈ R, y ∈ R, z ∈ R

}

constitué de trois copies de la droite réelle R se coupant deux à deux à angle droit.

2.1.5 Remarques : • Les trois copies de la droite réelle, mentionnées dans la défi-
nition de R3, sont fréquemment appelées axe x, axe y et axe z.

• Parler d’un point P dans l’espace euclidien, c’est faire référence à un triplet de
nombres réels (xP ; yP ; zP ) ∈ R3 qui caractérise P . Ce triplet (xP ; yP ; zP ) est
appelé coordonnées cartésiennes de P . Pour indiquer qu’un triplet de nombres
réels (x0; y0; z0) ∈ R3 correspond à un point A de l’espace euclidien, on adopte
la notation A(x0; y0; z0).

• Le point O(0; 0; 0), dont les coordonnées sont (0; 0; 0), est appelé origine. Sauf
indication contraire, il est supposé que les axes x, y et z (i.e. les trois copies de
la droite réelle constituant l’espace euclidien) se coupent en l’origine O. Dans ce
cas, les axes x, y et z se notent Ox, Oy et Oz respectivement. L’ensemble de ces
trois axes Ox, Oy et Oz constitue ce que l’on appelle un système de coordonnées
cartésiennes .

I. Le théorème de Pythagore s’énonce comme suit : dans tout triangle rectangle (i.e. dans tout
triangle possédant un angle droit), le carré de la longueur du côté opposé à l’angle droit est égal à
la somme des carrés des longueurs des deux autres côtés. Le théorème doit son nom au savant grec
Pythagore (né dans la première moitié du VIe siècle av. J.-C., à Samos (̂ıle du sud-est de la mer Égée),
et mort au début du Ve siècle av. J.-C.). Le résultat semble toutefois ne pas avoir été découvert par
Pythagore même, puisqu’il était connu plus de mille ans auparavant chez les Mésopotamiens.

II. Le théorème du cosinus peut être considéré comme une généralisation du théorème de Pythagore
aux triangles non rectangles. Il s’énonce comme suit : c2 = a2 + b2 − 2 a b cos(γ), où a, b et c sont les
longueurs des côtés d’un triangle et γ l’angle opposé au côté de longueur c.
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• Ce qui caractérise un système de coordonnées cartésiennes dans l’espace euclidien,
c’est la donnée de trois axes, gradués de la même manière et orthogonaux deux
à deux. Dans R3, il n’existe pas un unique système de coordonnées cartésiennes ;
on peut imaginer une infinité de systèmes de trois axes orthogonaux deux à deux,
tous différents les uns des autres. Dans cette infinité de systèmes, l’un d’eux
se distingue des autres : c’est Oxyz, dont la définition est intimement liée à la
construction même de R3. Ce système, naturellement affilié au plan euclidien, est
appelé système de coordonnées cartésiennes canonique de R3.

• Dans l’espace euclidien R3, dans lequel on considère le système de coordonnées
cartésiennes canonique Oxyz, le plan généré par les axes Ox et Oy constitue
une copie du plan euclidien R2. Il en est de même pour le plan généré par Oy
et Oz, et le plan généré par Ox et Oz. Dans le cas où l’on est amené à travailler
simultanément dans le plan et l’espace euclidiens (comme ce sera le cas dans le
chapitre 8), on suppose que le plan euclidien R2 est le plan généré par les axes Ox
et Oy, où Oxyz est le système de coordonnées cartésiennes canonique de R3.

• Les considérations faites précédemment sur les flèches dans le plan euclidien R2

se transposent sans difficulté à l’espace euclidien R3. Les détails ne sont pas
présentés ici.

2.1.4 Relations implicites et explicites

Soient le plan euclidien R2, Oxy son système de coordonnées cartésiennes canonique et
(x; y) un élément (i.e. un point) de R2.

• Si les grandeurs x et y ne sont liées par aucune expression, elles peuvent prendre,
indépendamment l’une de l’autre, toutes les valeurs réelles possibles. Dans ce
cas, l’ensemble de tous les couples (x; y), où x ∈ R et y ∈ R, correspond au plan
euclidien dans son intégralité.

• Si x et y sont liées entre elles, que ce soit par une équation ou même une inéqua-
tion, elles ne peuvent en général pas prendre, indépendamment l’une de l’autre,
toutes les valeurs réelles possibles. Dans ce cas, l’ensemble de tous les couples
(x; y), où x et y sont liées entre elles par une expression donnée, ne correspond
en général pas au plan euclidien dans son intégralité ; selon l’expression qui relie x
et y, on peut a priori être en présence d’une surface, d’une ligne, d’un point, de
l’ensemble vide ou encore d’une réunion de plusieurs de ces éléments cités.

2.1.6 Exemples : Soient le plan euclidien R2 et Oxy son système de coordonnées carté-
siennes canonique.

1. Soit l’équation :

x2 + y2 = 4 .

L’ensemble des couples (i.e. des points) P (x; y) du plan euclidien satisfaisant cette
équation forme ce que l’on appelle un cercle. Par définition, un cercle est le lieu
géométrique de tous les points qui se trouvent à la même distance d’un point



2.1 Relation entre deux grandeurs réelles 55

particulier, appelé centre du cercle ; et la distance entre chacun des points du
cercle et le centre porte le nom de rayon. Dans le cas présent, le centre du cercle
est le point O(0; 0) (i.e. l’origine du système Oxy) et son rayon vaut 2. En effet,
tout point P (x; y) obéissant à l’équation x2+y2 = 4 satisfait également la relation :

√

x2 + y2 = 2 ,

vu que
(√

x2 + y2
)2

= 4. Or,
√

x2 + y2 n’est rien d’autre que la norme ‖OP‖
du vecteur OP , où :

OP =

(

x− 0

y − 0

)

=

(

x

y

)

;

comme ‖OP‖ correspond, par définition, à la distance
entre O et P , on conclut que l’ensemble des points P (x; y)
tels que x2 + y2 = 4 constitue bien un cercle de centre
O(0; 0) et de rayon r = 2.

x

y

O 2

2

−2

−2
x2+y2=4

2. Soit l’inéquation :

x2 + y2 6 4 .

Tout point P (x; y) du plan euclidien satisfaisant cette in-
équation se trouve sur ou à l’intérieur d’un cercle de centre
O(0; 0) et de rayon 2 ; en effet, selon les considérations
faites au point précédent, tout point P (x; y) satisfaisant
x2 + y2 6 4 est tel que la norme du vecteur OP est in-
férieure ou égale à 2 (et aussi supérieure ou égale à 0, vu
qu’une racine est toujours positive ou nulle). L’ensemble
de tous les points qui se trouvent sur ou à l’intérieur d’un
cercle est appelé disque fermé. Dans le cas où x2 + y2 < 4,
seuls les points P (x; y) qui sont à l’intérieur du cercle de
centre O et de rayon 2 satisfont l’inégalité stricte ; on parle
alors de disque ouvert. Disques ouvert et fermé sont tous
les deux des surfaces.

x

y

O 2

2

−2

−2
x2+y264

x

y

O 2

2

−2

−2
x2+y2<4

3. Soit l’équation :

x2 + y2 = 0 .

Le fait que x2 > 0 quel que soit x ∈ R, et y2 > 0 quel que soit y ∈ R (vu
que tout nombre élevé au carré est positif ou nul), implique x2 + y2 > 0 quel que
soit (x; y) ∈ R2. En conséquence, il n’existe qu’un seul point de R2 qui satisfait
l’équation ci-dessus : c’est l’origine O(0; 0).

4. Soit l’inéquation :

x2 + y2 6 0 .
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Un raisonnement similaire à celui du point précédent permet d’affirmer que seule
l’origine O(0; 0) satisfait cette expression. La conclusion diffère toutefois si l’in-
égalité est stricte (i.e. si x2+y2 < 0) ; dans ce cas, aucun point, pas même l’origine
O(0; 0), ne remplit la condition donnée.

5. Soit l’équation :

x2 + y2 = −4 .

Aucun point de R2 ne peut satisfaire cette équation. L’ensemble de tous les points
P (x; y) ∈ R2 pour lesquels x2 + y2 = −4 est donc vide.

2.1.7 Remarques : • Dans le propos tenu précédemment, ont été évoqués, entre
autres, les notions de réunion de points et de ligne, sans en donner une défini-
tion précise. On pourrait légitimement penser que les deux concepts n’en sont
qu’un seul : une ligne peut être vue comme une réunion de points. Une définition
rigoureuse de ligne sera donnée à la fin du présent chapitre (cf. section 2.11).
Retenons à ce stade l’idée suivante : une ligne est une figure géométrique que
l’on peut tracer sur une feuille plane en une fois, sans devoir lever le crayon ; une
réunion de points peut, selon les circonstances, correspondre à :

⋄ une ligne,

⋄ un ensemble de points tel qu’il n’est pas possible de passer d’un point à un
autre sans devoir lever le crayon,

⋄ une figure hybride entre les deux qui viennent d’être évoquées.

• On peut se demander dans quelles circonstances une équation liant deux gran-
deurs réelles x et y décrit une ligne dans le plan euclidien. Plusieurs théorèmes,
tous moins banals les uns que les autres, traitent de cette question ; le présent ou-
vrage n’en retient qu’un seul : le théorème des fonctions implicites. Il sera discuté
dans la section 3.6 du prochain chapitre.

Toute équation liant les grandeurs x et y porte le nom d’équation cartésienne. Consi-
dérons une telle équation.

• Si l’équation est de la forme F (x; y) = 0, où F (x; y) est une expression algébrique
dans laquelle apparaissent à la fois x et y, on parle de forme implicite. Dans une
telle situation, à une valeur de x peuvent correspondre plusieurs valeurs différentes
de y (et vice versa). L’expression F (x; y) = 0 est parfois appelée équation de
contrainte, ou simplement contrainte.

• Si l’équation est de la forme y = f(x), où f est une expression dépendant uni-
quement de x, telle qu’à chaque valeur de x ne correspond qu’une seule valeur
de y, on parle de forme explicite.

2.1.8 Illustration : On appelle lentille optique tout volume formé d’une substance ré-
fringente, délimité par deux surfaces, dont l’une au moins est courbe, souvent de forme
sphérique. Toute lentille optique est caractérisée par une grandeur ϕ, appelée distance
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focale III. Les lentilles pour lesquelles ϕ > 0 sont dites convergentes ; les lentilles pour
lesquelles ϕ < 0 sont dites divergentes. Lorsqu’un objet lumineux, noté A, est placé
devant une lentille, à une distance d, celle-ci produit une image de l’objet, notée A′, à
une distance q. Dans le cas où la lentille est
suffisamment mince (i.e. son épaisseur est né-
gligeable par rapport à p), il peut être établi
que p et q sont liés par l’expression suivante :

1

ϕ
=

1

p
+

1

q
.

A′

OF

F ′

A

p

q

ϕ ϕ

Une telle relation est appelée loi des lentilles minces ; elle peut être déduite de schémas
du genre de celui de la figure ci-dessus. Dans de tels schémas :

⋄ la lentille est symbolisée par si elle est convergente, et par si elle est divergente ;

⋄ F et F ′ sont des points qui se trouvent à la distance ϕ du centre O de la lentille ;

⋄ les traits rouges symbolisent des rayons lumineux issus de l’objet A ; appelés
rayons principaux, ils obéissent à des règles de construction particulières (telles
que suggérées sur le schéma ci-dessus).

Par exemple, pour une lentille de distance focale ϕ = 200mm, l’équation des lentilles
minces s’écrit :

1

200mm
=

1

p
+

1

q
(2.1.1)

ou, de manière équivalente :

1

p
+

1

q
− 1

200mm
= 0 .

Cette dernière équation peut être vue comme une équation de contrainte pour les gran-
deurs p et q : lorsque l’on fait varier p, alors nécessairement q varie selon la relation
ci-dessus ; et vice versa. Si l’on cherche à isoler q dans l’équation, on obtient :

1

200mm
=

1

p
+

1

q
⇔ 1

q
=

1

200mm
− 1

p
⇔ q =

1
1

200mm
− 1

p

.

La dernière expression est la forme explicite de l’équation 2.1.1 ; on y voit explicitement
la dépendance de q par rapport à p. Noter que l’on pourrait également exprimer p en
fonction de q ; on obtiendrait alors :

p =
1

1
200mm

− 1
q

.

2.1.9 Exemples : 1. Soit l’équation :

2 x− y + 2 = 0 .

III. La distance focale d’une lentille se note généralement f ; si elle est notée ϕ ici, c’est afin de ne
pas la confondre avec le symbole général d’une fonction mathématique.
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Cette équation est une forme implicite, vu qu’elle a l’allure F (x; y) = 0, où
F (x; y) = 2 x− y + 2. Lorsque la quantité y est passée du côté droit de l’éga-
lité, l’équation devient une forme explicite (dans laquelle, à chaque valeur de x
correspond une unique valeur de y) :

2 x+ 2 = y ⇔ y = 2 x+ 2 .

Dans le plan euclidien R2, muni de son système de coordonnées cartésiennes ca-
nonique Oxy, ces équations décrivent ce que l’on appelle une droite. Pour s’en
convaincre, il suffit de revenir à la définition de ce qu’est une droite : un ensemble
de points, dans R2, forme une droite si le vecteur OP de n’importe quel point
P (x; y) de l’ensemble peut s’écrire sous la forme OP = OA+AP , avec AP = t ~v,
A(x0; y0) étant un point de l’ensemble, ~v un vecteur dans R2, fixe, non nul, et t un
nombre réel ; ~v est ce que l’on appelle un vecteur directeur de la droite en question
et t un paramètre ; l’équation OP = OA+ AP se note concrètement :

(

x

y

)

=

(

x0

y0

)

+ t

(

vx

vy

)

,

expression qui peut être récrite sous la forme d’un système de deux équations :

{

x = x0 + vx t

y = y0 + vy t
,

où vx et vy sont les composantes selon x et selon y, respectivement, de ~v. Revenons
maintenant à la forme explicite y = 2 x + 2 ; tout couple (x; y) ∈ R2 satisfaisant
cette forme obéit également à l’équation :

(

x

y

)

=

(

0

2

)

+ t

(

1

2

)

;

pour le voir, il suffit de récrire cette dernière expression sous
la forme d’un système de deux équations :

{

x = t

y = 2 + 2 t
, x

y

A

−1

0
1

1

2

3

4

~v

puis d’injecter la première équation du système dans la deuxième. Un tel raison-
nement montre que la relation y = 2 x + 2 décrit effectivement une droite. Noter
que :

⋄ les équations du système ci-dessus, dans lesquelles apparâıt le paramètre t,
portent le nom d’équations paramétriques de la droite,

⋄ les équations y = 2 x+2 et 2 x−y+2 = 0 sont appelées équations cartésiennes .
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Observer, pour terminer, les éléments plus généraux suivants :

⋄ une même droite peut être décrite au moyen de différents points et différents
vecteurs directeurs : la droite générée par le point A′(−1; 0) et le vecteur direc-
teur ~w, ayant pour composantes wx = −2 et wy = −4, est exactement la même
que celle générée par le point A(0; 2) et le vecteur ~v, ayant pour composantes
vx = 1 et vy = 2 ;

⋄ le rapport vy
vx

porte le nom de pente de la droite ; il se note généralement m ; il
ne dépend pas du choix du vecteur directeur de la droite en question ; dans la
forme cartésienne explicite de la droite, il apparâıt comme facteur multiplicatif
de x.

Dans la situation présente, m = 2
1
= 2 ; ce nombre correspond effectivement au

facteur devant x dans l’équation cartésienne y = 2 x+ 2.

2. Considérons à nouveau l’équation :

x2 + y2 = 4 ,

qui, rappelons-le, décrit un cercle, dans R2, de rayon 2 et dont le centre est à
l’origine O du système de coordonnées cartésiennes canonique Oxy. En passant le
nombre 4 du côté gauche de l’égalité, il vient :

x2 + y2 − 4 = 0 ;

cette expression est une forme implicite, vu qu’elle a l’allure F (x; y) = 0, où
F (x; y) = x2 + y2 − 4. Cherchons maintenant à isoler y :

x2 + y2 = 4 ⇔ y2 = 4− x2 ⇔ y = ±
√
4− x2 ;

il y a manifestement non pas une forme explicite, mais deux :

y =
√
4− x2 et y = −

√
4− x2 ;

la première correspond au demi-cercle qui se trouve au-dessus de l’axe Ox, la
deuxième au demi-cercle qui se trouve en dessous ; deux formes explicites sont
donc nécessaires pour décrire le cercle dans son intégralité. Noter que le cercle en
question peut aussi être caractérisé par le système d’équations suivant, dans lequel
interviennent des fonctions trigonométriques :

{

x = 2 cos(t)

y = 2 sin(t)
,

t étant un nombre réel appelé paramètre. En effet, comme cos2(t) + sin2(t) = 1
quel que soit t ∈ R (cf. section C.8 de l’annexe C), alors :

x2 + y2 =
(
2 cos(t)

)2
+
(
2 sin(t)

)2
= 4 cos2(t) + 4 sin2(t)

= 4
(
cos2(t) + sin2(t)

)
= 4 ,

ce qui correspond bien à la forme implicite donnée plus haut.
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2.1.10 Remarques : • Lorsqu’une ligne est décrite par un ensemble d’équations
dans lesquelles intervient un paramètre, on dit que la ligne en question est don-
née sous forme paramétrique ; les équations en question sont appelées équations
paramétriques .

• Les formes paramétriques sont fréquemment utilisées en mécanique, dans la des-
cription de la trajectoire d’un point matériel ; le paramètre correspond générale-
ment au temps qui s’écoule.

• Parmi les lignes de R2 données par une équation de la forme F (x; y) = 0, toutes
ne peuvent pas être décrites par une seule forme explicite y = f(x) : si l’on
privilégie la forme explicite, on se retrouve avec plusieurs expressions, et si l’on
cherche à n’avoir qu’une seule équation, on se retrouve avec une forme implicite.
Dans certains cas, la réduction à une seule forme explicite est néanmoins possible ;
et ce en introduisant un nouveau système de coordonnées.

2.1.11 Définition : Soit le plan euclidien R2 et Oxy son système de coordonnées carté-
siennes canonique. Soit P (xP ; yP ) un point de R2. Appelons rP la distance entre l’ori-
gine O et le point P , et θP l’angle entre la demi-droite partant de O et suivant l’axe x en
direction de l’infini (et non moins l’infini), et le segment OP . Les nombres rP et θP sont
appelés coordonnées polaires du point P . La demi-droite commençant en O et suivant
l’axe x en direction de l’infini est notée Or et est appelée axe polaire ; l’angle θP porte
le nom d’angle polaire.

2.1.12 Remarques : Soient le plan euclidien R2, Oxy son système de coordonnées car-
tésiennes canonique et Or l’axe polaire associé à Oxy (i.e. l’axe confondu avec la
droite Ox).

• Soit (x; y) un point de R2, r sa distance par rapport à O et θ son angle polaire. En
faisant varier θ entre 0 compris et 2 π non compris, on couvre toutes les directions
possibles ; aussi, en faisant varier r entre 0 compris et ∞ non compris, on couvre
toutes les distances possibles. L’ensemble :

{
(r; θ)

∣
∣ 0 6 r <∞, 0 6 θ < 2 π

}

correspond donc au plan euclidien R2 dans son intégralité. Ainsi, tout point
P ∈ R2 est complètement caractérisé par la donnée des deux grandeurs réelles
rP ∈ [0; ∞[ et θP ∈ [0; 2 π[ , où rP est la distance entre O et P et θP l’angle
polaire de P . Noter que rP ne peut de toute façon jamais être négative, vu qu’elle
correspond à une distance.

• Dans le système des coordonnées polaires, l’origine O est un point particulier ; il
s’agit de l’unique point de R2 qui peut être décrit au moyen de plusieurs (et en
fait d’une infinité d’) angles polaires différents. S’il en est ainsi, c’est en raison
du fait que sa distance par rapport à l’origine, i.e. par rapport à lui-même, est
nulle.

• Soit P un point de R2 différent de l’origine O(0; 0). Si l’on connâıt son angle
polaire θP et sa distance rP par rapport à l’origine, il est possible de retrouver
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ses coordonnées cartésiennes xP et yP , grâce aux équations trigonométriques sui-
vantes : {

xP = rP cos(θP )

yP = rP sin(θP )
,

où sin(θP ) et cos(θP ) désignent respectivement le sinus et le cosinus de l’angle θP
(cf. section C.8 de l’annexe C). En effet, en regardant la figure ci-contre, on voit
que xP

rP
= cos(θP ) et

yP
rP

= sin(θP ), où rP = ‖~rP‖. Ré-
ciproquement, si l’on connâıt les coordonnées carté-
siennes xP et yP de P , il est possible de trouver ses
coordonnées polaires, grâce aux équations suivantes :

{

rP =
√

xP 2 + yP 2

tg(θP ) = yP
xP

, x

y

O

P

~rP

θP
xP

yP

où tg(θP ) désigne la tangente de l’angle θP ; elle est définie par la relation tg(θP ) =
sin(θP )
cos(θP )

. La première équation du système, rP =
√

xP 2 + yP 2 , n’est rien d’autre

qu’une application du théorème de Pythagore ; quant à la deuxième, tg(θP ) =
yP
xP

,
elle se déduit du premier système d’équations, mentionné plus haut, en divisant
yP = sin(θP ) par xP = cos(θP ). Noter les deux faits suivants :

⋄ Si la coordonnée xP de P est nulle, alors tg(θP ) n’est pas définie. L’angle θP
cependant existe : il vaut π

2
ou 3π

2
, vu que P se trouve alors sur l’axe Oy.

⋄ Deux angles θ et ϑ tels que ϑ = θ + π ont la même tangente. De fait, deux
points distincts, ayant des angles polaires θ et ϑ distincts, peuvent être tels que
tg(θ) = tg(ϑ) ; les deux points P (xP = 1 ; yP = 2) et Q(xQ = −1 ; yQ = −2)
sont dans cette situation : tg(θP ) =

2
1
= −2

−1
= tg(θQ). Lors de la recherche de

l’angle polaire θP d’un point P à partir de la relation tg(θP ) =
yP
xP

, il convient
alors d’observer une certaine vigilance : la valeur que donne la machine à
calculer, grâce à la touche «tan−1

» (qui est la fonction Arctg, cf. section C.9
de l’annexe C), est toujours comprise dans l’intervalle

]
−π

2
; π

2

[
; à cette valeur,

qui ne correspond pas forcément à l’angle correct, il est nécessaire d’ajouter
éventuellement π ou même 2 π, afin que l’angle cherché soit dans l’intervalle
[0 ; 2 π[ d’une part, et qu’il soit compatible avec les signes des coordonnées
cartésiennes xP et yP de P d’autre part.

2.1.13 Exemples : Soient le plan euclidien R2, Oxy son système de coordonnées carté-
siennes canonique et Or l’axe polaire associé à Oxy.

1. Soit P (xP = −1 ; yP =
√
3 ) un point de R2. Ses coordonnées polaires sont données

par le système suivant :







rP =
√
(
− 1
)2
+
(√

3
)2

tg(θP ) =
√
3

−1

.
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Comme la coordonnée xP est négative et la coordonnée yP positive, alors θP =
Arctg

(
−
√
3
)
+ π = 2π

3
(et non Arctg

(
−
√
3
)
+ 2 π = 5 π

3
). Ainsi :

P
(
rP = 2 ; θP = 2π

3

)
.

2. Soit Q
(
rQ = 3 ; θQ = 7π

4

)
un point de R2. Ses coordonnées cartésiennes sont

données par le système suivant :

{

xQ = 3 cos
(
7π
4

)

yQ = 3 sin
(
7π
4

) .

Comme cos
(
7π
4

)
= 1√

2
et sin

(
7π
4

)
= − 1√

2
, alors :

Q
(
xQ = 3√

2
; yQ = − 3√

2

)
.

Les considérations faites précédemment sur les grandeurs x et y, en particulier sur
les différents types d’expressions qui les lient, ainsi que les figures géométriques qui en
résultent, s’appliquent également aux grandeurs polaires r et θ : l’ensemble de tous les
couples (r; θ), où les grandeurs r et θ sont liées par une relation (une équation ou une
inéquation), ne correspond pas au plan euclidien dans son intégralité ; selon le type de
relation, on a affaire à un domaine de R2, à une ligne, à un point, etc.

Toute équation liant les grandeurs r et θ est appelée équation polaire. Considérons
une telle équation.

• Si l’équation a l’allure F (r; θ) = 0, on parle de forme polaire implicite.

• Si l’équation a l’allure r = f(θ), où f(θ) est une expression dépendant uniquement
de θ, telle qu’à chaque valeur de θ ne corresponde qu’une seule valeur de r, on
parle de forme polaire explicite.

2.1.14 Exemples : Soient le plan euclidien R2, Oxy son système de coordonnées carté-
siennes canonique et Or l’axe polaire associé à Oxy.

1. Reprenons l’équation y = 2 x+ 2, décrivant une droite de pente m = 2 et passant
par le point (0; 2). En remplaçant y par r sin(θ) et x par r cos(θ), il vient :

r sin(θ) = 2 r cos(θ) + 2 ⇔ r sin(θ)− 2 r cos(θ)− 2 = 0 ,

cette dernière équation est la forme polaire implicite de la droite. La forme polaire
explicite s’obtient en isolant r :

r sin(θ)− 2 r cos(θ)− 2 = 0 ⇔ r
(
sin(θ)− 2 cos(θ)

)
= 2

⇔ r =
2

sin(θ)− 2 cos(θ)
.
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2. Reprenons l’équation x2 + y2 = 4, décrivant le cercle centré en O et de rayon 2.
Le côté gauche de l’égalité n’est rien d’autre que r2 ; en effet, r =

√

x2 + y2 ⇔
r2 = x2 + y2, vu que r est une grandeur toujours positive. L’équation x2 + y2 = 4
devient alors r2 = 4, ce qui est équivalent à :

r = 2 ;

cette expression est la forme polaire explicite du cercle. Pour ce qui est de la forme
implicite, elle se déduit immédiatement de la forme explicite :

r − 2 = 0 .

Manifestement, ce qui n’est pas possible en coordonnées cartésiennes devient pos-
sible en coordonnées polaires : une unique forme explicite pour décrire le cercle en
question. Noter que dans cette forme, θ n’intervient pas ; r demeure constant quel
que soit θ.

3. Soit l’équation polaire :
r + r cos(θ) = 2 .

En passant le 2 du côté gauche de l’égalité, il vient :

r + r cos(θ)− 2 = 0 ,

ce qui est la forme polaire implicite. La forme polaire explicite s’obtient en isolant r
dans la forme polaire implicite :

r + r cos(θ) = 2 ⇔ r
(
1 + cos(θ)

)
= 2 ⇔ r =

2

1 + cos(θ)
.

Cherchons à présent l’expression F (x; y) = 0 associée à l’équation polaire donnée ;
à cet effet, utilisons les égalités r =

√

x2 + y2 et x = r cos(θ) :

r + r cos(θ) = 2 ⇔
√

x2 + y2 + x = 2 ⇔
√

x2 + y2 = 2− x ;

élevons cette dernière équation au carré :
√

x2 + y2 = 2− x ⇒ x2 + y2 = (2− x)2 ⇔ x2 + y2 = 4− 4 x+ x2 ,

puis simplifions l’expression obtenue :

x2 + y2 = 4− 4 x+ x2 ⇔ y2 = 4− 4 x ⇔ 4 x+ y2 − 4 = 0 ;

cette dernière équation est l’expression cherchée ; il s’agit d’une forme implicite.
Pour éviter toute confusion avec la forme polaire implicite, on parle volontiers de
forme cartésienne implicite, ou d’équation cartésienne implicite. En isolant y dans
cette expression, il vient :

4 x+ y2 − 4 = 0 ⇔ y2 = 4− 4 x ⇔ y = ±
√
4− 4 x .
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Comme dans le cas du cercle, il y a non pas une forme
explicite, mais deux :

y =
√
4− 4 x et y = −

√
4− 4 x .

Pour éviter toute confusion avec la forme polaire expli-
cite, on parle volontiers de formes cartésiennes explicites ,
ou d’équations cartésiennes explicites . La figure corres-
pondant à ces expressions est une parabole ; elle est dite
couchée, en raison du fait que son axe de symétrie est
parallèle à l’axe Ox (et même confondu avec Ox dans le
cas présent).

x

y

−1 0 1

−2

−1

1

2
y=

√
4− 4x

y=−
√
4− 4x

2.2 Notion de fonction

Toute ligne dans R2 peut être décrite de multiples façons, à l’aide de différentes ex-
pressions algébriques liant deux grandeurs réelles (cf. section précédente). Parmi ces
expressions, s’il y en a une (au moins) qui est une forme explicite (i.e. s’il y en a une
dans laquelle l’une des grandeurs impliquées dépend explicitement de l’autre), c’est en
général elle qui est plébiscitée ; et pour cause : la dépendance concrète d’une des gran-
deurs par rapport à l’autre facilite considérablement l’étude et la caractérisation de la
ligne en question.

Dire qu’une ligne dans R2 est décrite au moyen d’une forme explicite, c’est dire qu’elle
est donnée par une fonction. Étudier les caractéristiques de la ligne en question revient
donc à étudier la fonction qui la décrit. Parmi les objectifs du présent ouvrage, l’un
d’eux consiste précisément à fournir les outils permettant de caractériser une fonction
donnée.

2.2.1 Définition : Soient D et E deux ensembles non vides. On appelle fonction de D
dans E toute correspondance f qui, à chaque élément x de D fait correspondre exacte-
ment un (i.e. un et un unique) élément y de E. On note :

f : D −→ E

x 7−→ y = f(x)

D est appelé ensemble de départ ou domaine de définition de f , E porte le nom
d’ensemble d’arrivée ; x est appelé variable indépendante et y variable dépendante. Dans
le cas où D et E sont des sous-ensembles non vides de R, on dit que f est une fonction
réelle.

2.2.2 Exemple : La correspondance :

f : R −→ R

x 7−→ y = x2
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assigne à chaque élément x ∈ R un unique élément y ∈ R. Par exemple :

0 7−→ 02 = 0

1 7−→ 12 = 1

−3
2

7−→
(
− 3

2

)2
= 9

4

√
3 7−→

(√
3
)2

= 3

π 7−→ π2

...

2.2.3 Illustrations : 1. Reprenons l’illustration 2.1.8, traitant de la loi des lentilles
minces. La forme explicite qui y a été obtenue, dans laquelle q dépend explicitement
de p, peut être vue comme une fonction réelle ; elle peut être notée comme suit :

f : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[

p 7−→ q =
1

1
200mm

− 1
p

À chaque élément p de l’ensemble de départ correspond exactement un unique
élément q dans l’ensemble d’arrivée. Noter que p et q peuvent être aussi bien des
grandeurs positives que négatives.

⋄ Dans le cas où p est positive, l’objet est dit réel,

⋄ Dans le cas où p est négative, l’objet est dit virtuel ; une telle situation se
produit lorsque des rayons lumineux semblent converger vers un point qui se
trouve derrière la lentille, mais en réalité n’y convergent pas en raison du fait
qu’ils sont déviés par la lentille.

Les observations qui viennent d’être formulées s’appliquent aussi à la grandeur q ;
dans ce cas, on parle d’image réelle ou d’image virtuelle.

2. La figure ci-contre illustre la température de
l’air en ville de Neuchâtel (en Suisse) durant
la journée du 8 septembre 2021. Cette tem-
pérature, qui évolue au cours de la journée,
peut être vue comme une fonction du temps.
En notant T la température et t le temps qui
s’écoule, on peut écrire :

f : [0 h 00 ; 24 h 00[ −→ [12 ◦C ; 28 ◦C]

t 7−→ T = f(t)

12 ◦C

16 ◦C

20 ◦C

24 ◦C

28 ◦C

00 :00 06 :00 12 :00 18 :00 24 :00

Neuchâtel
8 septembre 2021

température

où f est la fonction du temps t décrivant la température T . À chaque instant t
de l’ensemble de départ correspond exactement une unique température T dans
l’ensemble d’arrivée. Noter que l’ensemble d’arrivée a été choisi ici par rapport aux
valeurs extrêmes données verticalement sur le diagramme ci-dessus.
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2.2.4 Remarques : • Dans la définition 2.2.1, la quantité f(x) désigne une expres-
sion qui dépend de la variable x. Cette variable est fréquemment appelée argument
de f .

• Le domaine de défintion D d’une fonction réelle f est fréquemment noté Df . Sauf
indication spécifique, Df est le sous-ensemble de tous les x ∈ R pour lesquels
f(x) ∈ R. Si une fonction réelle est définie comme étant une somme, différence,
produit, quotient, composition... de plusieurs fonctions réelles plus élémentaires,
son domaine de définition dépend des domaines de définition de chacune des
fonctions plus élémentaires (cf. section 2.5 du présent chapitre).

• Écrire f : D → E, c’est dire que f est une fonction définie dans l’ensemble D et
qui prend ses valeurs dans l’ensemble E.

• Dire qu’une fonction réelle f est définie dans un ensemble D ⊂ R revient à
dire que f(x) ∈ R pour tout x ∈ D. En particulier, dire qu’une fonction réelle
f : D → E est définie dans un voisinage V d’un point a ∈ D revient à dire que
f(x) ∈ R pour tout x ∈ V . Il va alors sans dire que V ⊂ D.

• Afin de bénéficier d’un cadre suffisamment large, l’ensemble d’arrivée E d’une
fonction réelle f sera souvent considéré comme étant R dans son intégralité.

• Toute suite de nombres (un) peut être vue comme une fonction f dont l’ensemble
de départ est N ; le terme général de la suite peut alors s’écrire un = f(n).

2.2.5 Définition : Soit f : D → E une fonction réelle. On appelle ensemble image de f ,
et on note If , l’ensemble de toutes les valeurs y ∈ R pour lesquelles il existe x ∈ D tel
que y = f(x) :

If =
{
y ∈ R

∣
∣ il existe x ∈ D tel que y = f(x)

}
.

2.2.6 Exemples : 1. Soit f la fonction réelle donnée par f(x) = x3. Son domaine de
définition est :

Df = R ;

en effet, quel que soit x ∈ R, la grandeur y = x3 est un nombre réel. L’ensemble
image de f est :

If = R ;

en effet, y = x3 balaie toutes les valeurs réelles à mesure que x balaie toutes les
valeurs de Df = R.

2. Soit f la fonction réelle donnée par f(x) = 1
x2 . Son domaine de définition est :

Df = Rr{0} = R∗ ;

en effet, la grandeur y = 1
x2 est un nombre réel quel que soit x ∈ R, sauf lorsque x

est nulle. L’ensemble image de f est :

If = R∗
+ ( = ]0; ∞[ ) ;
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en effet, x2 ne balaie que les valeurs réelles strictement positives (i.e. les valeurs
de R∗

+) à mesure que x balaie toutes les valeurs de Df = R∗ ; de fait, 1
x2 balaie

toutes les valeurs strictement positives à mesure que x balaie toutes les valeurs de
Df = R∗.

2.2.7 Illustrations : 1. Reprenons la première des illustrations 2.2.3. La fonction :

f : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[

p 7−→ q =
1

1
200mm

− 1
p

admet pour domaine de définition l’ensemble Df donné par :

Df = ]−∞mm; ∞mm[ r {0mm ; 200mm} ;

si l’élément 200mm ne peut pas être pris en compte, c’est en raison du fait qu’il
annule le dénominateur 1

200mm
− 1

p
dans l’expression de q ; aussi, si l’élément 0mm

n’est pas admis, c’est en raison de la fraction 1
p
présente au dénominateur de cette

même expression ; noter, du reste, qu’il n’est techniquement pas possible de placer
un objet à l’endroit même où se trouve la lentille (à moins que cet objet soit en
fait une image produite par une autre lentille placée devant la lentille dont il est
question). Pour ce qui est de l’ensemble image (à ne pas confondre ici avec l’image
de l’objet), il s’agit de l’ensemble If donné par :

If = ]−∞mm; ∞mm[ r {0mm ; 200mm} ;

ce dernier se déduit du fait que la relation entre p et q est parfaitement symétrique :
l’expression de q en fonction de p a exactement la même allure que l’expression
de p en fonction de q (cf. illustration 2.1.8).

2. Reprenons la deuxième des illustrations 2.2.3. La fonction :

f : [0 h 00 ; 24 h 00[ −→ [12 ◦C ; 28 ◦C]

t 7−→ T = f(t)

admet pour domaine de définition l’en-
semble Df donné par :

Df = [0 h 00 ; 24 h 00[ ,

et pour ensemble image l’ensemble If donné
par :

If = [14,8 ◦C ; 26,2 ◦C] .

Ces ensembles se déduisent directement du
diagramme ci-contre.

12 ◦C

16 ◦C

20 ◦C

24 ◦C

28 ◦C

00 :00 06 :00 12 :00 18 :00 24 :00

If

Df

Neuchâtel
8 septembre 2021

température
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2.2.8 Remarque : L’ensemble image d’une fonction réelle f : D → E peut dépendre de
l’ensemble de départ D, mais pas forcément systématiquement. Par exemple, la fonction
réelle f , donnée par f(x) = sin(x) (cf. section C.8 de l’annexe C), a le même ensemble
image [−1; 1] que le domaine de départ soit R ou

[
−π

2
; π

2

]
; mais dans le cas où l’ensemble

de départ est
[
0 ; π

6

]
, l’ensemble image correspondant est seulement

[
0 ; 1

2

]
.

2.2.9 Définition : Soient le plan euclidien R2, Oxy son système de coordonnées carté-
siennes canonique et f : D → R, où D ⊂ R, une fonction réelle. On appelle graphe de la
fonction f le sous-ensemble de R2 constitué de tous les couples (x; y) ∈ R2 pour lesquels
y = f(x) et x ∈ D.

2.2.10 Remarques : • Le graphe d’une fonction réelle f peut être une ou plusieurs
lignes, un ensemble de points... mais pas un domaine (i.e. une surface) de R2. Ce
résultat, si intuitif soit-il, ne se démontre pas aisément ; la preuve nécessite des
outils dont la complexité sort du cadre de la présente étude.

• Le graphe d’une fonction réelle peut avoir l’allure de la figure de gauche ci-dessous,
mais aucunement celle de la figure de droite ; et pour cause : dans la figure de
droite, à une valeur donnée de x peuvent correspondre plusieurs valeurs diffé-
rentes de y, ce qui n’est pas compatible avec la définition d’une fonction.

x

y

O x0

y1

ligne correspondant à une fonction

x

y

O x0

y1

y2

y3

ligne ne correspondant pas à une fonction

2.2.11 Illustrations : 1. Reprenons la première des illus-
trations 2.2.3. Un échantillon du graphe de la fonc-
tion f , dont l’expression est (rappelons-le) :

q =
1

1
200mm

− 1
p

,

est représenté sur la figure ci-contre. Les flèches au-
tour de l’origine servent à indiquer que la fonction est
définie autour de 0, mais pas en 0.

p

q

−0,4m 0,4m 0,8m

−0,4m

0,4m

0,8m

2. Reprenons la deuxième des illustrations 2.2.3. Dans cette illustration, le diagramme
donné n’est rien d’autre que le graphe de la fonction donnée par T = f(t).
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2.3 Fonctions particulières

2.3.1 Définition : On appelle fonction identiquement nulle toute fonction f : D → R,
où D ⊂ R, telle que f(x) = 0 pour tout x ∈ D.

2.3.2 Définition : On appelle partie entière, et on note E, la fonction réelle qui, à chaque
x ∈ R, assigne l’unique nombre entier n satisfaisant x−1 < n 6 x. Cette fonction admet
pour domaine de définition l’ensemble R et pour ensemble image l’ensemble Z.

2.3.3 Notation : La partie entière d’un nombre réel x se note E(x). Une telle écriture a
déjà pu être observée dans le chapitre précédent.

2.3.4 Exemple :

• E(2) = 2 • E
(
9
4

)
= 2 • E

(√
2
)
= 1

• E(π) = 3 • E
(
− 16

5

)
= −4 • E(−14,3) = −15

2.4 Caractéristiques d’une fonction réelle

2.4.1 Injectivité, surjectivité et bijectivité

2.4.1 Définitions : Soit f : D → E une fonction réelle (où D ⊂ R et f(D) ⊂ E ⊂ R).

• La fonction f est dite injective si pour tous x1, x2 ∈ D :

x1 6= x2 implique f(x1) 6= f(x2) ,

ou, de manière équivalente :

f(x1) = f(x2) implique x1 = x2 .

• La fonction f est dite surjective si :

f(D) = If = E ,

c’est-à-dire si l’ensemble d’arrivée correspond à l’ensemble image If de f .

• La fonction f est dite bijective si elle est à la fois injective et surjective, i.e. si
pour tout y ∈ E, il existe un unique x ∈ D tel que f(x) = y.

2.4.2 Remarque : Toute fonction réelle f : D → If dont l’ensemble d’arrivée est l’en-
semble image (i.e. pour laquelle f(D) = If ) est surjective. Pour qu’elle soit bijective, il
suffit donc qu’elle soit injective.
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2.4.3 Exercice : Dans chacun des cas suivants, déterminer si la correspondance indiquée
représente une fonction ou non. Si tel est le cas, préciser si la fonction est injective, sur-
jective, bijective, ou ni injective ni surjective IV.

2.4.4 Exemples : 1. Soit :

f1 : R −→ R

x 7−→ y = x2 .

f1 n’est pas injective ; en effet, quel que soit x ∈ R∗, −x 6= x ;
et pourtant f1(−x) = (−x)2 = x2 = f1(x). f1 n’est pas
surjective non plus, car il n’existe aucun x ∈ R pour lequel
f1(x) = x2 ∈ R∗

− ; autrement dit, les valeurs négatives de y ne
sont pas atteintes par f .

x

y

0 1

1

−1

−1

2. Soit :

f2 : R −→ R+

x 7−→ y = x2 .

f2 n’est pas injective, vu que, quel que soit x ∈ R∗, −x 6= x et
pourtant f2(−x) = (−x)2 = x2 = f2(x). f2 est surjective, car
f2(R) = If2 = R+ ; tous les nombres réels positifs (y compris
le nombre zéro) sont atteints par f .

x

y

0−1 1

1

3. Soit :

f3 : R+ −→ R+

x 7−→ y = x2 .

IV. Réponses : Première ligne, de gauche à droite : fonction ni injective ni surjective, pas une fonction,
fonction surjective uniquement ; deuxième ligne, de gauche à droite : fonction injective uniquement,
fonction injective uniquement ; troisième ligne, de gauche à droite : fonction bijective, pas une fonction,
fonction ni injective ni surjective.



2.4 Caractéristiques d’une fonction réelle 71

f3 est injective, vu que f(x1) = f(x2) implique x1 = x2,
quels que soient x1, x2 ∈ R+. f3 est également surjective, car
f3(R+) = If3 = R+.

x

y

0 1

1

4. Soit :

f4 : R− −→ R+

x 7−→ y = x2 .

f4 est injective, vu que f(x1) = f(x2) implique x1 = x2,
quels que soient x1, x2 ∈ R−. f4 est également surjective, car
f4(R−) = If4 = R+.

x

y

0−1

1

2.4.5 Illustrations : 1. Reprenons la fonction f de la première des illustrations 2.2.3 :

f : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[

p 7−→ q =
1

1
200mm

− 1
p

Cette fonction n’est pas bijective. Certes, elle est injective (vu que f(x1) 6= f(x2) si
x1 6= x2, où x1, x2 ∈ Df (cf. graphe de f dans la première des illustrations 2.2.11)) ;
elle n’est toutefois pas surjective, vu que son ensemble d’arrivée ne cöıncide pas
avec son ensemble image. Pour la rendre surjective, et ainsi bijective, il suffit de
restreindre son ensemble d’arrivée à son ensemble image.

2. Reprenons la fonction f de la deuxième des illustrations 2.2.3.

f : [0 h 00 ; 24 h 00[ −→ [12 ◦C ; 28 ◦C]

t 7−→ T = f(t)

Cette fonction f n’est pas bijective. Et pour cause :

✄ f n’est pas injective ; en effet, dans la
journée du 8 septembre 2021, il existe
plusieurs instants différents auxquels cor-
respond une seule et même température
(par exemple 21,4 ◦C à 0 h 00, 13 h 00 et
21 h 00) ;

✄ f n’est pas surjective ; en effet, son en-
semble d’arrivée ne cöıncide pas avec son
ensemble image.

12 ◦C

16 ◦C

20 ◦C

24 ◦C

28 ◦C

00 :00 06 :00 12 :00 18 :00 24 :00

Neuchâtel
8 septembre 2021

température

2.4.2 Parité

2.4.6 Définitions : Soit f : D → R (où D ⊂ R) une fonction réelle.

• f est dite paire si :

f(−x) = f(x) , pour tout x ∈ D .
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• f est dite impaire si :

f(−x) = −f(x) , pour tout x ∈ D .

2.4.7 Remarques : • Le domaine de départ D de toute fonction f paire est néces-
sairement symétrique par rapport à 0 : si x0 ∈ D, alors nécessairement −x0 ∈ D ;
si x0 /∈ D, alors nécessairement −x0 /∈ D. Il en est de même dans le cas de toute
fonction impaire.

• Le graphe d’une fonction paire présente une symétrie axiale d’axe Oy (où Oy
est l’un des axes du système de coordonnées cartésiennes canonique Oxy de R2) ;
le graphe d’une fonction impaire présente une symétrie centrale, de centre O
(l’origine).

• L’étude d’une fonction f paire peut être limitée à l’ensemble Df ∩ R+, où Df est
le domaine de définition de f ; la propriété f(−x) = f(x) permet, en effet, de
retrouver toutes les caractérisitiques de f dans Df ∩ R− à partir des caractéris-
tiques présentes dans Df ∩R+. Une telle observation s’applique également au cas
d’une fonction impaire.

• Aucune fonction paire ne peut être bijective, à moins que son domaine de départ
ne se limite à {0} ; la propriété f(−x) = f(x) rend, en effet, toute fonction paire
non injective.

2.4.8 Exemples : 1. La fonction f : R → R, donnée par f(x) =
x2 + 1 est paire ; en effet, pour tout x ∈ R :

f(−x) = (−x)2 + 1 = x2 + 1 = f(x) .
x

y

0 1

2

2. La fonction f : R → R, donnée par f(x) = x3− 3 x, est impaire ;
en effet, pour tout x ∈ R :

f(−x) = (−x)3−3 (−x) = −x3+3 x = −(x3−3 x) = −f(x) .
x

y

0 1

1

2.4.9 Illustrations : 1. La fonction f donnée dans la première des illustrations 2.2.3
n’est ni paire, ni impaire ; en effet, son domaine de définition n’est pas symétrique
par rapport à 0.

2. La fonction f donnée dans la deuxième des illustrations 2.2.3 n’est ni paire, ni
impaire ; en cause : son domaine de définition qui n’est pas symétrique par rapport
à 0.

2.4.3 Croissance et décroissance

2.4.10 Définitions : Soit f : D → R (où D ⊂ R) une fonction réelle, définie dans un
ensemble H ⊂ D qui n’est pas réduit à un seul point.

• La fonction f est dite croissante (respectivement strictement croissante) dans H
si, quels que soient x1, x2 ∈ H tels que x1 < x2 :

f(x1) 6 f(x2) (respectivement f(x1) < f(x2)).
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• La fonction f est dite décroissante (respectivement strictement décroissante)
dans H si, quels que soient x1, x2 ∈ H tels que x1 < x2 :

f(x1) > f(x2) (respectivement f(x1) > f(x2)).

• La fonction f est dite constante dans H si, quels que soient x1, x2 ∈ H :

f(x1) = f(x2) .

2.4.11 Exemples : 1. La fonction réelle f , donnée par f(x) = x3, est strictement
croissante dans R ; en effet, x1

3 < x2
3 quels que soient x1, x2 ∈ R tels que x1 < x2.

2. La fonction réelle f , donnée par f(x) = x2, est strictement décroissante dans R−
et strictement croissante dans R+ . En effet, x1

2 > x2
2 quels que soient x1, x2 ∈ R−

tels que x1 < x2 ; et x1
2 < x2

2 quels que soient x1,x2 ∈ R+ tels que x1 < x2.

2.4.4 Extrema

2.4.12 Définitions : Soit f : D → R (où D ⊂ R) une fonction réelle, définie dans un
ensemble H ⊂ D qui n’est pas vide.

• On dit que f atteint, dans H, son minimum s’il existe un élément dans H , que
l’on note xm, tel que pour tout x ∈ H :

f(x) > f(xm) .

On dit alors que f atteint, dans H, son minimum en xm. Le nombre réel m =
f(xm) est appelé le minimum de f dans H . Quant au couple (xm ; m) ∈ R2, il
s’agit des coordonnées du minimum, sur le graphe de f .

• On dit que f atteint, dans H, son maximum s’il existe un élément dans H , que
l’on note xM , tel que pour tout x ∈ H :

f(x) 6 f(xM) .

On dit alors que f atteint, dans H, son maximum en xM . Le nombre réel M =
f(xM) est appelé le maximum de f dans H . Quant au couple (xM ; M) ∈ R2, il
s’agit des coordonnées du maximum, sur le graphe de f .

2.4.13 Exemple : La fonction f : R → R, donnée par f(x) = x2, atteint dans R son
minimum en 0 ; en effet, quel que soit x ∈ R :

f(x) = x2 > 02 = f(0) .

Le nombre 0 = f(0) est le minimum de f dans R.
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2.4.14 Illustration : Reprenons la fonction f de la deuxième des illustrations 2.2.3.

f : [0 h 00 ; 24 h 00[ −→ [12 ◦C ; 28 ◦C]

t 7−→ T = f(t)

Comme le montre son graphe (cf. figure ci-dessous), cette fonction atteint, dans l’inter-
valle [0 h 00 ; 24 h 00[ , son minimum et son maximum.

⋄ Le minimum est atteint aux alentours de 7 h 00 ; la température minimale est
alors de 14,8 ◦C.

⋄ Le maximum est atteint aux alentours de
17 h 00 ; la température maximale est alors
de 26,2 ◦C.

En outre, la fonction f est :

⋄ décroissante (et même strictement décrois-
sante) entre 0 h 00 et 7 h 00, ainsi qu’entre
17 h 00 et 24 h 00 (y compris entre 22 h 00 et
23 h 00),

12 ◦C

16 ◦C

20 ◦C

24 ◦C

28 ◦C

00 :00 06 :00 12 :00 18 :00 24 :00

Neuchâtel
8 septembre 2021

température

⋄ croissante (et même strictement croissante) entre 7 h 00 et 17 h 00.

2.4.15 Remarques : • Il existe des fonctions réelles, définies dans un certain en-
semble H , qui atteignent leur minimum (respectivement leur maximum) non pas
en un, mais en plusieurs éléments de H (cf. illustration précédente).

• Les concepts de croissance, décroissance, minimum et maximum seront illustrés
et davantage détaillés dans le chapitre 7.

2.4.5 Périodicité

2.4.16 Définition : Une fonction réelle f : D → R est dite
périodique s’il existe un nombre réel c non nul tel que :

f(x+ c) = f(x) , quel que soit x ∈ D ,
x

y
T

Le plus petit nombre réel c > 0 satisfaisant cette condition, pour autant qu’il existe, est
appelé période ; il se note généralement T . On dit alors que f est T-périodique.

2.4.17 Remarques : • Le nombre T , évoqué dans la définition précédente, n’existe
pas forcément : une fonction réelle f peut être périodique sans qu’elle admette un
plus petit nombre T > 0 pour lequel f(x+ T ) = f(x). Comme exemple, prenons
la fonction f : R → R donnée par :

f(x) =

{

1 si x ∈ Q

0 si x ∈ RrQ
.

Cette fonction est périodique ; en effet, il existe c ∈ R∗ tel que f(x + c) = f(x)
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pour tout x ∈ R (par exemple c = 1, du fait que x+1 ∈ Q si x ∈ Q et x+1 /∈ Q

si x /∈ Q) ; mais il n’existe aucun plus petit nombre T > 0 tel que f(x+T ) = f(x)
pour tout x ∈ R.

• Les fonctions sinus et cosinus (cf. section C.8 de l’annexe C) sont toutes les deux
2π-périodique. La fonction tangente, elle, est π-périodique.

• Revenons à la définition précédente. S’il existe, le nombre T est lié au nombre c
par la relation c = k T , où k ∈ Z. En effet, tout c = k T , où k ∈ Z, satisfait
f(x+ c) = f(x) :

⋄ dans le cas où k > 0 :

f(x+ c) = f(x+ k T ) = f
(
(x+ (k − 1) T ) + T

)

= f(x+ (k − 1) T ) = . . . = f(x) ;

⋄ dans le cas où k < 0 :

f(x+ k T ) = f(x+ (k + 1) T ) = . . . = f(x) ;

aussi, si c 6= k T , où k ∈ Z, alors il existe un nombre réel a compris strictement
entre 0 et T (i.e. 0 < a < T ) tel que c = mT + a, où m ∈ Z ; dans ce cas, pour
au moins un x ∈ D :

f(x+ c) = f(x+mT + a) = f
(
(x+ a) +mT

)
= f(x+ a) 6= f(x) ,

vu que 0 < a < T .

• Du point précédent, on déduit immédiatement que le domaine de départ D d’une
fonction réelle T -périodique est forcément T -périodique : si x0 est dans D, alors
nécessairement x0 + nT , où n ∈ Z, est dans D aussi ; et si x0 n’est pas dans D,
alors nécessairement x0 + nT , où n ∈ Z, n’est pas dans D également.

2.4.18 Exemples : 1. Soit f la fonction réelle donnée par f(x) = sin(3 x), où sin
désigne la fonction sinus . Cette fonction est une fonction T -périodique, de période
T = 2π

3
. Pour le voir, il suffit d’écrire :

f(x+ T ) = f(x) ⇔ sin
(
3 (x+ T )

)
= sin(3 x)

⇔ sin(3 x+ 3 T ) = sin(3 x) ,

et de raisonner comme suit : la fonction sinus est 2π-périodique, le plus petit
nombre réel c > 0 pour lequel sin(α+ c) = sin(α) existe et vaut c = 2 π. Ainsi, par
identification, 3 T = 2 π, d’où T = 2π

3
.

2. Soit f la fonction réelle donnée par f(t) = A cos(ω t + ϕ) + b, où cos désigne
la fonction cosinus , et A 6= 0, ω > 0, ϕ et b sont des nombres réels fixés. Cette
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fonction, appelée communément fonction cosinus généralisé, est une fonction T -
périodique, où T = 2π

ω
. Pour le voir, il suffit d’écrire :

f(t+ T ) = f(t) ⇔ A cos
(
ω (t + T ) + ϕ

)
+ b = A cos(ω t+ ϕ) + b

⇔ cos
(
ω (t+ T ) + ϕ

)
= cos(ω t + ϕ)

⇔ cos(ω t+ ω T + ϕ) = cos(ω t + ϕ)

⇔ cos(ω t+ ϕ+ ω T ) = cos(ω t + ϕ) ,

et de raisonner comme suit : la fonction cosinus étant 2π-périodique, le plus petit
nombre réel c > 0 tel que cos(α + c) = cos(α) existe et vaut c = 2 π ; ainsi, par
identification, ω T = 2 π, d’où T = 2π

ω
.

2.4.6 Prolongement

2.4.19 Définition : Soient f : D1 → R et g : D2 → R, où D1, D2 ⊂ R, deux fonctions
réelles. Supposons que D1 ⊂ D2 et que f(x) = g(x) pour tout x ∈ D1. Alors f est
appelée restriction de g à D1 ; et g porte le nom de prolongement de f .

2.4.7 Définition par morceaux

Considérons une voiture se déplaçant sur une longue route rectiligne. Supposons qu’elle
est à l’arrêt, à un feu rouge, jusqu’au temps t0, et qu’à partir de t0 elle suit un mouvement
rectiligne uniformément accéléré. Plaçons un axe z le long de la route rectiligne. Comme
il n’est pas possible de remonter le temps et que la voiture ne se dédouble pas, sa position
sur la route, i.e. sur l’axe z, peut être décrite par une fonction réelle f du temps t qui
s’écoule : à chaque instant t correspond une unique position z = f(t). Pour écrire cette
fonction, une expression ne suffit pas, deux sont nécessaires : une pour les instants
antérieurs à t0, lorsque la voiture se trouve immobile au feu rouge, et occupe donc une
certaine position fixe z0 de l’axe z, et une deuxième pour les instants postérieurs à t0,
lorsque le véhicule subit un mouvement rectiligne uniformément accéléré, se traduisant
par l’expression z = 1

2
a (t − t0)

2 + z0, où a est l’accélération de l’automobile. On écrit
alors :

z = f(t) =

{

z0 si t < t0
1
2
a (t− t0)

2 + z0 si t > t0
,

et dit que f est définie par morceaux. Il n’est pas rare de rencontrer de telles fonc-
tions dans différents domaines de la physique ainsi que dans les sciences appliquées de
l’ingénierie.

2.5 Opérations entre fonctions réelles

2.5.1 Définitions : Soient f : D1 → R et g : D2 → R deux fonctions réelles telles que
D1 ∩D2 6= ∅. Soit aussi H un sous-ensemble non vide de D1 ∩D2.

• Les fonctions f et g sont dites égales dans H si f(x) = g(x) pour tout x ∈ H .
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• La fonction f est dite supérieure (respectivement strictement supérieure) à la
fonction g dans H si f(x) > g(x) (respectivement f(x) > g(x)) pour tout x ∈ H .

• La fonction f est dite inférieure (respectivement strictement inférieure) à la
fonction g dans H si f(x) 6 g(x) (respectivement f(x) < g(x)) pour tout x ∈ H .

2.5.2 Définitions : Soient f : D1 → R et g : D2 → R deux fonctions réelles telles que
D1 ∩D2 6= ∅. Soient aussi α et β deux nombres réels.

• On définit la combinaison linéaire de f et g par :

(α f + β g)(x) = α f(x) + β g(x) , pour tout x ∈ D1 ∩D2 ;

on parle de somme de fonctions lorsque α = β = 1 et de différence de fonctions
lorsque α = 1 et β = −1.

• On définit le produit de f et g par :

(f g)(x) = f(x) g(x) , pour tout x ∈ D1 ∩D2 .

• On définit l’inverse de g par :
(
1

g

)

(x) =
1

g(x)
, pour tout x ∈ D2 tel que g(x) 6= 0 .

• On définit le quotient de f et g par :
(
f

g

)

(x) =
f(x)

g(x)
, pour tout x ∈ D1 ∩D2 tel que g(x) 6= 0 .

2.5.3 Définition : Soient f : Df → R et g : Dg → R deux fonctions réelles. On appelle
composition des fonctions f et g la fonction g ◦ f donnée par :

(g ◦ f)(x) = g
(
f(x)

)
.

Un élément x ∈ Df est envoyé sur un élément u = f(x) qui est lui-même envoyé, à
supposer que cela soit possible, sur un élément y = g(u) :

g ◦ f : x 7−→ u = f(x) 7−→ y = g(u) = g
(
f(x)

)
= (g ◦ f)(x) .

x f u g y

Le domaine de définition Dg◦f de g ◦ f est l’ensemble de tous les x ∈ Df pour lesquels
u = f(x) ∈ Dg .

2.5.4 Remarque : En général, g ◦ f 6= f ◦ g, où f et g sont deux fonctions réelles.
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2.5.5 Exemple : Soient f et g les deux fonctions réelles données par f(x) = x2 + 2 et
g(x) =

√
x . Alors :

(
g ◦ f

)
(x) = g(x2 + 2) =

√
x2 + 2 ;

Dg◦f = R, du fait que Df = R et que, quel que soit x ∈ R, l’élément u = f(x) se trouve
dans l’intervalle [2; ∞[ , qui est inclus dans Dg = R+. Aussi :

(
f ◦ g

)
(x) = f(

√
x ) = (

√
x )2 + 2 = x+ 2 ;

Df◦g = R+, du fait que Dg = R+ et que quel que soit x ∈ R+, l’élément u = g(x) se
trouve dans R+, qui est inclus dans Df = R.

2.5.6 Remarque : Nombre de fonctions réelles peuvent être vues comme une compo-
sition de fonctions réelles plus élémentaires. Par exemple, la fonction de la première
des illustrations 2.2.3 peut être vue comme une composition des fonctions x 7→ 1

x
,

x 7→ 1
200mm

− x et à nouveau x 7→ 1
x
:

p 7−→ u = 1
p
7−→ v =

1

200mm
− u

=
1

200mm
− 1

p
7−→ q =

1

v

=
1

1
200mm

− u

=
1

1
200mm

− 1
p

.

2.6 Réciproque d’une fonction réelle

2.6.1 Définition : Soit f : D → E une fonction réelle bijective. On
appelle fonction réciproque a de f la fonction réelle rf : E → D
telle que pour tout x ∈ D :

y = f(x) ⇔ x = rf(y) , où y ∈ E .

a. Dans la littérature en rapport avec le sujet, la fonction réciproque d’une
fonction f se note généralement f−1 ; si la notation f−1 n’a pas été retenue
ici, c’est afin d’éviter toute confusion entre fonction réciproque et fonction
inverse ( 1

f
).

D E

f

rf

2.6.2 Remarques : • Dès lors qu’une fonction réelle f : D → E est bijective, sa
réciproque rf : E → D est bien définie ; en effet, le fait que f est bijective implique
qu’à chaque élément y ∈ E correspond un et un unique élément x ∈ D ; ce qui
est la condition requise pour que rf soit une fonction.
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• Si une fonction réelle f : D → E n’est pas bijective, alors rf n’est pas définie. En
effet :

⋄ si f n’est pas injective, à un certain élément dans E correspondent plusieurs
éléments dans D ; ce qui n’est pas cohérent avec la définition d’une fonction ;

⋄ si f n’est pas surjective, à un élément dans E, au moins, ne correspond aucun
élément dans D ; ce qui n’est pas cohérent avec la définition d’une fonction.

• Soit f : D → E une fonction réelle bijective. Alors rf : E → D vérifie les deux
conditions suivantes :

(rf ◦ f)(x) = rf
(
f(x)

)
= x , pour tout x ∈ D

et :
(f ◦ rf)(y) = f

(
rf(y)

)
= y , pour tout y ∈ E .

2.6.3 Procédure pour déterminer la réciproque rf d’une fonction réelle f : D → E.

(a) Vérifier que f est bijective. Si f ne l’est pas, elle n’admet pas de réciproque ; cela
étant, en restreignant suffisamment son domaine de départ, ou son domaine d’arri-
vée, ou encore les deux, il est possible de définir la réciproque d’une restriction de f
(aux domaines restreints).

(b) Dans le cas où f n’est pas bijective, restreindre le domaine de départ, ou d’arrivée,
ou les deux, en adéquation avec le problème à résoudre, de sorte que la fonction f
restreinte à ces nouveaux domaines soit bijective.

(c) Écrire l’équation y = f(x) et la résoudre par rapport à x, de sorte à obtenir x = . . .

(d) Échanger y et x dans l’expression obtenue.

Si cela ne représente pas un travail trop important, vérifier que l’on a bien (rf ◦ f)(x) =
rf
(
f(x)

)
= x pour tout x ∈ D et (f ◦ rf)(y) = f

(
rf(y)

)
= y pour tout y ∈ E.

2.6.4 Exemples : 1. La fonction :

f : R −→ R

x 7−→ x2

n’est pas bijective. Pour qu’elle le soit, il est nécessaire de
restreindre son ensemble de départ ainsi que son ensemble
d’arrivée. Il vient, par exemple, f1 : R+ → R+, f1(x) = x2 ;
et alors :

rf1 : R+ −→ R+

x 7−→
√
x

Ou également f2 : R− → R+, f2(x) = x2 ; et alors :

rf2 : R+ −→ R−

x 7−→ −
√
x

rf

x

y f

0 1

1

rf

x

yf

0 1

1

−1

−1
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2. La fonction :

f : R −→ R

x 7−→ sin(x)

n’est pas bijective (cf. section C.8 de l’annexe C),
sa nature périodique lui empêchant d’être injective
(f(x+2 π k) = f(x), où k ∈ Z, alors que x+2 π k 6= x,
sauf si k = 0). Pour définir une fonction réciproque, il
est nécessaire de restreindre les ensembles de départ
et d’arrivée. Le nombre de possibilités est infini. L’une
d’elles est f1 :

[
− π

2
; π

2

]
→ [−1; 1], f(x) = sin(x) ; et

alors :

rf1 : [−1 ; 1] −→
[
− π

2
; π

2

]

x 7−→ rf1(x)

rf1

x

y

f1

0
1

1

−1

−1

π
2

−π
2

π
2

−π
2

Parmi l’infinité de possibilités, une autre
est f2 :

[
π
2
; 3π

2

]
→ [−1; 1], f2(x) = sin(x) ;

et alors :

rf2 : [−1 ; 1] −→
[
π
2
; 3π

2

]

x 7−→ rf2(x)

Noter que la réciproque rf1 n’est rien
d’autre que la fonction Arcsin (cf. sec-
tion C.9 de l’annexe C) ; c’est cette réci-
proque que l’on trouve sur les machines à
calculer.

rf2

x

y

f2

0
1

1

π
2

3 π
2

π
2

3 π
2

2.6.5 Remarque : Dans le plan euclidien R2, muni de son système de coordonnées car-
tésiennes canonique Oxy, le graphe de la fonction réciproque rf d’une fonction réelle f
donnée s’obtient en prenant le graphe de f et en lui appliquant une symétrie axiale
d’axe d, où d est la diagonale principale du système Oxy, i.e. la droite d’équation y = x.

2.6.6 Illustration : Reprenons la fonction f de la première des illustrations 2.2.3. Cette
fonction est injective, rappelons-le, mais pas surjective ; pour qu’elle le soit, il suffit de
restreindre son ensemble d’arrivée à son ensemble image. Il vient alors :

f : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[ r {0mm ; 200mm}

p 7−→ q =
1

1
200mm

− 1
p
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La fonction f , telle qu’elle vient d’être écrite, est bijective. Elle admet donc une réci-
proque ; cette réciproque s’écrit :

rf : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[ r {0mm ; 200mm}

q 7−→ p =
1

1
200mm

− 1
q

Noter que l’expression de p peut être déduite de celle de q ;
elle peut également être obtenue à partir de la loi des len-
tilles minces (cf. illustration 2.1.8, section 2.1). Observer, en
outre, que les grandeurs p et q n’ont pas été interverties dans
la formulation de rf ; ceci afin d’éviter toute confusion entre
objet et image (au sens optique des termes). Remarquer en-
fin que les fonctions f et rf sont exactement les mêmes ;
la figure ci-contre l’illustre : le graphe de f étant parfaite-
ment symétrique par rapport à la diagonale principale d, son
graphe est confondu avec celui de rf .

p

q

−0,4m 0,4m 0,8m

−0,4m

0,4m

0,8m

df

rf

2.7 Limite d’une fonction réelle

Soient f et g les deux fonctions réelles données respectivement par :

f(x) =
1

x− 1
et g(x) =

x2 − 1

x− 1
.

Si ces deux expressions partagent la caractéristique de ne pas être définies en x = 1,
elles n’ont, pour autant, pas du tout le même comportement autour de x = 1 : f(x)
prend des valeurs de plus en plus extrêmes à mesure que x s’approche de 1, ce qui n’est
pas le cas de g(x) (vu que g(x) = x2−1

x−1
= (x−1)(x+1)

x−1
= x+ 1 si x 6= 1).

Comment caractériser le comportement d’une fonction réelle f dans le voisinage d’un
point donné de l’axe x ? Une réponse satisfaisante à cette question peut être obtenue en
introduisant le concept de limite.

• Soit u une variable réelle quelconque. On dit que u tend vers le nombre réel a,
et on note u → a, si u s’approche arbitrairement près de a sans pour autant
l’atteindre (u reste donc différente de a).

• Soient x une variable réelle indépendante et y une variable réelle dépendante, qui
dépend de x selon la relation y = f(x), où f est une fonction réelle. Si y = f(x)
tend vers le nombre réel ℓ ou est égal au nombre réel ℓ lorsque x tend vers le
nombre réel a, on dit que ℓ est la limite de f lorsque x tend vers a ; on note :

ℓ = lim
x→a

f(x) ou f(x)
x→a−→ ℓ .

Mathématiquement parlant, l’expression « s’approcher toujours plus de» manque de
rigueur ; raison pour laquelle il convient d’introduire la définition suivante.
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2.7.1 Définition : Soient a un nombre réel et f : D → E une fonction réelle (où D ⊂ R

et E ⊂ R), définie dans un voisinage de a (i.e. dans un sous-ensemble de D contenant
un intervalle ouvert de la forme ]a − γ ; a + γ[ , où γ est un nombre réel strictement
positif), sauf éventuellement en a. On dit que f admet pour limite le nombre réel ℓ
lorsque x tend vers a, et on note ℓ = limx→a f(x), si
pour tout nombre réel ε > 0, il existe un nombre réel
δ > 0 tel que les relations :

0 < |x− a| 6 δ ,

où x ∈ D, impliquent :

∣
∣f(x)− ℓ

∣
∣ 6 ε .

x

y

O

ℓ

a

ℓ+ε

ℓ−ε

a−δ a+δ

2.7.2 Remarques : • Les inégalités 0 < |x − a| 6 δ, évoquées dans la définition
précédente, sont équivalentes aux relations :

a− δ 6 x < a ou a < x 6 a + δ ;

aussi, l’inéquation |f(x)− ℓ | 6 ε est équivalente à la double inéquation :

ℓ− ε 6 f(x) 6 ℓ+ ε .

• La précédente définition s’applique aussi bien dans le cas où a ∈ D que dans le
cas où a /∈ D.

• Comme l’illustre la figure ci-dessus, le nombre δ, évoqué dans la définition précé-
dente, peut dépendre de ε et de a, mais en aucun cas de la variable x.

• Si une fonction réelle f de la variable réelle x admet pour limites les nombres
réels ℓ1 et ℓ2 lorsque x tend vers le nombre réel a, alors forcément ℓ1 = ℓ2 (cf.
proposition B.1.4 de l’annexe B).

• Si une fonction réelle f admet pour limite le nombre réel ℓ lorsque la variable
réelle de laquelle f dépend tend vers un nombre réel a, ce nombre réel ne dépend
pas du nom de la variable :

ℓ = lim
x→a

f(x) = lim
u→a

f(u) = lim
t→a

f(t) = . . .

2.7.3 Exemples : 1. Soit f la fonction réelle donnée par f(x) = 1
x2 . Dans le cas où

l’on cherche la limite de f en un point a appartenant au domaine de définition de f ,
le calcul de limite revient à remplacer x par a dans l’expression de f . Présentement,
la limite de f lorsque x tend vers 2 vaut :

lim
x→2

f(x) = lim
x→2

1

x2
=

1

22
=

1

4
.

Vérifions maintenant, à l’aide de la définition de limite, que 1
4
est bien la limite de f

lorsque x tend vers 2. Pour cela, prenons un nombre réel ε > 0 quelconque (stricte-
ment positif). Le but est de trouver un nombre réel δ > 0 (qui, selon la définition,
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peut dépendre de ε, mais pas de x) tel que 0 < |x−2| 6 δ implique
∣
∣f(x)− 1

4

∣
∣ 6 ε.

Pour y parvenir, commençons par développer l’expression
∣
∣f(x)− 1

4

∣
∣ :

∣
∣
∣
∣
f(x)− 1

4

∣
∣
∣
∣
=

∣
∣
∣
∣

1

x2
− 1

4

∣
∣
∣
∣
=

∣
∣
∣
∣

4− x2

4 x2

∣
∣
∣
∣
=

|4− x2|
4 x2

=
|2− x| |2 + x|

4 x2
=

|x− 2| |x+ 2|
4 x2

6
δ |x+ 2|
4 x2

,

du fait que, selon la définition, |x − 2| 6 δ, où δ est un nombre réel strictement
positif. Or, toujours selon la définition, on cherche à avoir

∣
∣f(x)− 1

4

∣
∣ 6 ε. On serait

donc tenté d’écrire δ |x+2|
4x2 = ε, de sorte que

∣
∣f(x) − 1

4

∣
∣ 6 δ |x+2|

4x2 = ε. Mais dans
ce cas, l’expression de δ dépendrait non seulement de ε, mais également de x, ce
qui n’est pas cohérent avec la définition de limite. Ce souci peut être écarté en
fixant momentanément la valeur de δ ; en choisissant par exemple δ = 1, il vient
|x− 2| 6 δ = 1, ce qui peut se récrire sous la forme −1 6 x− 2 6 1 ⇔ 1 6 x 6 3,
ou encore sous la forme x ∈ [1; 3] ; et alors :

∣
∣
∣
∣
f(x)− 1

4

∣
∣
∣
∣
6

δ |x+ 2|
4 x2

6
δ |3 + 2|
4 · 12 =

5

4
δ .

Pour maximiser la fraction dans ce calcul, on a pris la plus grande valeur possible
de x dans l’intervalle [1; 3] au numérateur et sa plus petite valeur (dans le même
intervalle) au dénominateur. Comme 5

4
δ ne dépend plus de x, on peut poser :

5

4
δ = ε ⇔ δ =

4

5
ε .

Et ainsi, en considérant δ = min
{
1 ; 4

5
ε
}
, i.e. la plus petite valeur entre 1 et 4

5
ε,

on peut conclure :

0 < |x− 2| 6 δ ⇒
∣
∣
∣
∣

1

x2
− 1

4

∣
∣
∣
∣
6 ε ;

le nombre 1
4
est donc la limite de f lorsque x tend vers 2.

Note :

⋄ L’inégalité 0 < |x−2| n’a pas d’impact sur le fait que
∣
∣ 1
x2 − 1

4

∣
∣ 6 ε ; elle indique

simplement que x 6= 2.

⋄ Dans le choix momentané de δ, on peut considérer n’importe quel nombre
strictement positif, pour autant que celui-ci soit strictement inférieur à 2. Cette
condition a toute son importance : si elle n’était pas remplie, la valeur x = 0
se trouverait dans l’intervalle [2 − δ ; 2 + δ], ce qui poserait problème dans les
calculs ci-dessus, f n’étant pas définie en 0.
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Afin de bien saisir le raisonnement qui vient d’être
fait, illustrons-le dans trois situations concrètes.

• Si ε = 2, par exemple, alors :

δ = min

{

1 ;
4

5
· 2
}

= min

{

1 ;
8

5

}

= 1 .

En fait, pour tout ε > 5
4
, le nombre δ est égal à 1.

Quel que soit x ∈ [1; 3], f(x) ∈
[
1
4
− ε ; 1

4
+ ε
]
.

x

y

2

1

4

1 3

1

4
+2

1

4
−2• Si ε = 5

4
, alors :

δ = min

{

1 ;
4

5
· 5
4

}

= min {1 ; 1} = 1 .

Pour cette valeur particulière de ε, le nombre δ
vaut encore 1.

x

y

2

1

4

1 3

1

4
+ 5

4

1

4
− 5

4

• Si ε = 1
2
, par exemple, alors :

δ = min

{

1 ;
4

5
· 1
2

}

= min

{

1 ;
4

10

}

=
4

10
=

2

5
.

Pour tout ε 6 5
4
, le nombre δ est proportionnel

à ε. Plus ε est petit, plus δ est petit aussi, de sorte
que |x− 2| 6 δ implique toujours |f(x)− 1

4
| 6 ε.

x

y

2

1

4

8

5

12

5

1

4
+ 1

2

1

4
− 1

2
En résumé, quelle que soit l’épaisseur de la bande
gris clair horizontale, la bande gris foncé horizontale,
image par f de la bande gris foncé verticale, est con-

tenue dans la bande gris clair. Plus la bande gris clair est mince, plus la bande gris
foncé est mince aussi.

2. Soit f la fonction réelle donnée par :

f(x) =
2 x2 − 2

x− 1
.

Dans le cas où l’on cherche la limite de f en un point a n’appartenant pas au
domaine de définition de f , le calcul de limite nécessite un travail de mise en
évidence et de simplification, avant le remplacement de x par a :

lim
x→1

f(x) = lim
x→1

2 x2 − 2

x− 1
= lim

x→1

2 (x− 1)(x+ 1)

x− 1

= lim
x→1

2 (x+ 1) = 2 (1 + 1) = 4 .

Montrons que la valeur obtenue est bien la limite de f lorsque x tend vers 1.
Pour cela, considérons un nombre réel ε > 0 quelconque. Le but est de trouver un
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nombre réel δ > 0 (qui, selon la définition, peut dépendre de ε, mais pas de x) tel
que 0 < |x − 1| 6 δ implique

∣
∣f(x) − 4

∣
∣ 6 ε. Pour y parvenir, commençons par

développer l’expression |f(x)− 4| :
∣
∣f(x)− 4

∣
∣ =

∣
∣
∣
∣

2 x2 − 2

x− 1
− 4

∣
∣
∣
∣
=

∣
∣
∣
∣

2 x2 − 2− 4 (x− 1)

x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

2 x2 − 4 x+ 2

x− 1

∣
∣
∣
∣

=

∣
∣
∣
∣

2 (x2 − 2 x+ 1)

x− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

2 (x− 1)2

x− 1

∣
∣
∣
∣

x 6=1
= 2 |x− 1| 6 2 δ ,

du fait que, selon la définition, |x − 1| 6 δ où δ est un nombre réel strictement
positif. Comme l’expression 2 δ ne dépend pas de x, on peut directement poser
ε = 2 δ, de sorte que δ = ε

2
; et ainsi :

0 < |x− 1| 6 δ ⇒
∣
∣f(x)− 4

∣
∣ 6 ε ;

le nombre 4 est donc la limite de f lorsque x tend vers 1.

3. Le raisonnement visant à prouver que ℓ = limx→a f(x) est effectivement la limite
de la fonction f lorsque x tend vers a n’est pas uniquement un jeu de l’esprit,
ayant pour objectif de faire passer le temps. Dans cer-
taines situations, on peut penser qu’une fonction réelle f
admet une limite lorsque x tend vers a, du fait qu’il est
possible de remplacer x par a dans l’expression de f .
Mais en réalité, la limite n’existe pas. Ce qui permet de
l’affirmer, c’est la définition même de la notion de limite.

Soit, par exemple, la fonction partie entière (cf. defini-
tion 2.3.2, section 2.3) :

E(x) = n ∈ Z , où n est tel que x− 1 < n 6 x .

x

y

0 1

1

−1
−1

Bien que E(1) = 1, il n’est pas possible d’attribuer une valeur réelle à l’expression
limx→1E(x). Pour le voir, prenons le nombre réel ε = 1

2
. Pour cette valeur de ε,

il n’existe aucun nombre réel δ > 0 pour lequel les relations 0 < |x − 1| 6 δ
impliquent

∣
∣E(x) − 1

∣
∣ 6 ε ; en effet, quel que soit x < 1,

∣
∣E(x) − 1

∣
∣ > 1 > ε. Un

raisonnement similaire permet de montrer que la limite de E lorsque x tend vers 1
ne peut pas être 0 non plus ; ni aucun autre nombre réel, du reste.

2.7.4 Définitions : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R).

• Supposons que f est définie dans un intervalle de la forme ]a−γ ; a[ , où γ est
un nombre réel strictement positif. On dit que f admet pour limite à gauche le
nombre réel ℓ1 lorsque x tend vers a par valeurs plus petites que a, si pour tout
nombre réel ε > 0, il existe un nombre réel δ > 0 tel que les relations 0 < a−x 6 δ
(qui sont équivalentes aux inégalités a − δ 6 x < a) impliquent |f(x)− ℓ1| 6 ε.
La limite à gauche se note :

lim
x→a
x<a

f(x) ou aussi lim
x→a−

f(x) .
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• Supposons que f est définie dans un intervalle de la forme ]a ; a+γ[ , où γ est
un nombre réel strictement positif. On dit que f admet pour limite à droite le
nombre réel ℓ2 lorsque x tend vers a par valeurs plus grandes que a si pour tout
nombre réel ε > 0, il existe un nombre réel δ > 0 tel que les relations 0 < x−a 6 δ
(qui sont équivalentes aux inégalités a < x 6 a + δ) impliquent |f(x) − ℓ2| 6 ε.
La limite à droite se note :

lim
x→a
x>a

f(x) ou aussi lim
x→a+

f(x) .

2.7.5 Exemple : Considérons à nouveau la fonction partie entière E (cf. troisième des
exemples précédents). Manifestement :

lim
x→1
x<1

E(x) = 0 , alors que : lim
x→1
x>1

E(x) = 1 .

Dans un tel cas, on dit que limx→1E(x) n’existe pas.

2.7.6 Définitions : • Soient a un nombre réel et f : D → E une fonction réelle dé-
finie dans un voisinage de a, sauf éventuellement en a. On dit que f tend vers ∞
(respectivement −∞) lorsque x tend vers a si, pour tout
nombre réel υ > 0, il existe un nombre réel δ > 0 tel que
les relations 0 < |x−a| 6 δ, où x ∈ D, implique f(x) > υ
(respectivement f(x) 6 −υ). Dans une telle situation, on
parle de limite infinie et on note :

lim
x→a

f(x) = ∞ (respectivement lim
x→a

f(x) = −∞ ) . x

y

O aa−δ a+δ

υ

• Soit f : D → E une fonction réelle, définie dans un intervalle de la forme ]α ; ∞[
(respectivement ]−∞ ; α[ ), où α est un nombre réel. On dit que f admet pour li-
mite le nombre ℓ lorsque x tend vers ∞ (respectivement lorsque x tend vers −∞)
si, pour tout nombre réel ε > 0, il existe un nombre réel ζ
tel que la relation x > ζ (respectivement x 6 ζ), où
x ∈ D, implique |f(x)− ℓ| 6 ε. Dans un tel cas, on parle
de limite à l’infini et on note :

lim
x→∞

f(x) = ℓ (respectivement lim
x→−∞

f(x) = ℓ ) . x

y

O

ℓ
ℓ−ε

ℓ+ε

ζ

• Soit f : D → E une fonction réelle, définie dans un intervalle de la forme ]α ; ∞[ ,
où α est un nombre réel. On dit que f tend vers∞ (respectivement −∞) lorsque x
tend vers ∞ si, pour tout nombre réel υ > 0, il existe un nombre réel ζ tel que
la relation x > ζ , où x ∈ D, implique f(x) > υ (respectivement f(x) 6 −υ). On
note :

lim
x→∞

f(x) = ∞ (respectivement lim
x→∞

f(x) = −∞) .

Aussi, soit f : D → E une fonction réelle, définie dans un intervalle de la forme
]−∞ ; α[ , où α est un nombre réel. On dit que f tend vers ∞ (respective-
ment −∞) lorsque x tend vers −∞ si, pour tout nombre réel υ > 0, il existe
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un nombre réel ζ tel que la relation x 6 ζ , où x ∈ D, implique f(x) > υ (respec-
tivement f(x) 6 −υ). On note :

lim
x→−∞

f(x) = ∞ (respectivement lim
x→−∞

f(x) = −∞) .

Dans les deux cas, on parle de limite infinie à l’infini.

2.7.7 Remarque : La première des trois définitions précédentes se transpose sans pro-
blème dans la situation où x tend vers a par valeurs plus petites que a, ainsi que dans
celle où x tend vers a par valeurs plus grandes que a ; il suffit de remplacer les relations
0 < |x − a| 6 δ par 0 < a − x 6 δ dans le premier cas et par 0 < x − a 6 δ dans le
deuxième.

2.7.8 Exemples : 1. Reprenons la fonction réelle f donnée par f(x) = 1
x2 . Alors :

lim
x→0

1

x2
= ∞ .

Pour le montrer, considérons un nombre réel υ > 0 quelconque. Posons δ = 1√
υ
.

Alors :

0 < |x− 0| 6 δ =
1√
υ

implique : f(x) =
1

x2
> υ ;

en effet, si |x − 0| = |x| 6 1√
υ
, alors x2 6 1

υ
et donc 1

x2 > υ, ce qui achève la
démonstration. Aussi :

lim
x→−∞

1

x2
= 0 et lim

x→∞

1

x2
= 0 .

Pour le montrer, considérons un nombre réel ε > 0 quelconque. Posons ζ = 1√
ε
.

Alors :

x > ζ =
1√
ε

implique :
∣
∣f(x)− 0

∣
∣ =

∣
∣
∣
∣

1

x2
− 0

∣
∣
∣
∣
6 ε ;

et :

x 6 −ζ = − 1√
ε

implique :
∣
∣f(x)− 0

∣
∣ =

∣
∣
∣
∣

1

x2
− 0

∣
∣
∣
∣
6 ε ;

en effet, si x > 1√
ε
, alors x2 > 1

ε
et donc

∣
∣f(x)−0

∣
∣ =

∣
∣ 1
x2

∣
∣ = 1

x2 6 ε ; et si x 6 − 1√
ε
,

alors x2 > 1
ε
et donc

∣
∣f(x) − 0

∣
∣ =

∣
∣ 1
x2

∣
∣ = 1

x2 6 ε. Ces considérations achèvent la
démonstration.

2. Soit f la fonction réelle donnée par :

f(x) =
2 x+ 1

x
.
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Alors :

lim
x→0
x>0

f(x) = ∞ , lim
x→0
x<0

f(x) = −∞ ;

en effet, f est négative (respectivement positive) lorsque x tend vers 0 par valeurs
plus petites (respectivement par valeurs plus grandes). Aussi :

lim
x→∞

f(x) = 2 , lim
x→−∞

f(x) = 2 ;

en effet :

lim
x→±∞

f(x) = lim
x→±∞

2 x+ 1

x
= lim

x→±∞

x
(
2 + 1

x

)

x
= lim

x→±∞

(

2 +
1

x

)

= 2 ,

du fait que 1
x
tend vers 0 lorsque x tend vers ±∞. Noter que ces résultats se

démontrent à l’aide des définitions de limite infinie et de limite à l’infini.

2.7.9 Définition : Soient a un nombre réel et f : D → E une fonction réelle, définie dans
un voisinage de a, sauf éventuellement en a.

• On dit que la limite de f lorsque x tend vers a par valeurs plus petites (respec-
tivement par valeurs plus grandes) existe si limx→a− f(x) = ℓ (respectivement
limx→a+ f(x) = ℓ), où ℓ est un nombre réel, ou si limx→a− f(x) = ∞ (respecti-
vement limx→a+ f(x) = ∞), ou encore si limx→a− f(x) = −∞ (respectivement
limx→a+ f(x) = −∞). Si ce n’est pas le cas, on dit que la limite n’existe pas.

• On dit que la limite de f lorsque x tend vers a existe si limx→a− f(x) et limx→a+ f(x)
existent et si limx→a− f(x) = limx→a+ f(x). Si ce n’est pas le cas, on dit que la
limite n’existe pas.

2.7.10 Illustration : Reprenons la fonction f de la première des illustrations 2.2.3 :

f : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[

p 7−→ q =
1

1
200mm

− 1
p

Les seules valeurs réelles où cette fonction n’est pas définie sont 0mm et 200mm. Étu-
dions alors ce qu’il se passe aux alentours de ces valeurs.

⋄ Autour de 0mm :

lim
p→ 0mm
p< 0mm

q = lim
p→ 0mm
p< 0mm

1
1

200mm
− 1

p

= lim
p→ 0mm
p< 0mm

1
p−200mm
p·200mm

= lim
p→ 0mm
p< 0mm

p · 200mm

p− 200mm
= 0mm
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et :

lim
p→ 0mm
p> 0mm

q = lim
p→ 0mm
p> 0mm

1
1

200mm
− 1

p

= lim
p→ 0mm
p> 0mm

1
p−200mm
p·200mm

= lim
p→ 0mm
p> 0mm

p · 200mm

p− 200mm
= 0mm .

Les deux limites obtenues étant égales, la limite de q lorsque p tend vers 0mm
existe donc ; et elle vaut 0mm.

⋄ Autour de 200mm :

lim
p→ 200mm
p< 200mm

q = lim
p→ 200mm
p< 200mm

1
1

200mm
− 1

p

= −∞mm

et :

lim
p→ 200mm
p> 200mm

q = lim
p→ 200mm
p> 200mm

1
1

200mm
− 1

p

= ∞mm ;

en effet, le dénominateur 1
200mm

− 1
p
tend

vers 0mm−1 par valeurs plus petites (res-
pectivement plus grandes) lorsque p tend
vers 200mm par valeurs plus petites (res-
pectivement plus grandes). Les deux limites
obtenues n’étant pas égales, la limite de q
lorsque p tend vers 200mm n’existe pas.
Noter qu’en optique géométrique, dans une

F F ′

A

A′

A′

telle situation (où un objet A est placé à la distance focale de la lentille, ici
200mm), on dit que l’image A′ de A se forme à l’infini. Remarquer alors que
l’on ne fait pas de distinction entre ∞ et −∞, quand bien même les deux li-
mites calculées ci-dessus ont des signes différents. Et pour cause : une image à
l’infini correspond à des rayons lumineux parallèles ; or des rayons parallèles ne
se coupent qu’à l’infini, d’un côté comme de l’autre côté de la lentille donnée (cf.
figure ci-dessus).

Étudions encore le comportement de la fonction f lorsque p tend vers ∞ ou −∞ :

lim
p→−∞mm

q = lim
p→−∞mm

1
1

200mm
− 1

p

=
1
1

200mm

= 200mm

et :

lim
p→∞mm

q = lim
p→∞mm

1
1

200mm
− 1

p

=
1
1

200mm

= 200mm .
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En optique géométrique, de tels calculs de limites
s’interprètent comme suit : pour que l’image A′

d’un objet A se forme à une distance égale à la
distance focale de la lentille, l’objet A doit se trou-
ver à une distance infinie de la lentille ; noter alors
que dans une telle configuration, les rayons issus
de l’objet, ou qui convergent vers l’objet, sont pa-
rallèles entre eux (cf. figure ci-contre).

F F ′

A′

A

A

2.7.11 Propriétés : Soient a un nombre réel, f : D1 → R et g : D2 → R deux fonctions
réelles, toutes les deux définies dans un voisinage de a, sauf éventuellement en a. Sup-
posons que limx→a f(x) = ℓ1, ainsi que limx→a g(x) = ℓ2, où ℓ1 et ℓ2 sont deux nombres
réels. Alors :

• lim
x→a

(
αf(x) + β g(x)

)
= α ℓ1 + β ℓ2 , où α et β sont deux nombres réels ;

• lim
x→a

(
f(x) g(x)

)
= ℓ1 ℓ2 ;

• lim
x→a

f(x)

g(x)
=
ℓ1
ℓ2

, pour autant que ℓ2 6= 0 ;

Si, en outre, f est une fonction constante dans V r{a}, où V est un voisinage de a, i.e.
si f(x) = c pour tout x ∈ V r{a}, où c est un nombre réel fixe, alors ℓ1 = c :

• lim
x→a

f(x) = lim
x→a

c = c .

Revenons aux hypothèses sur f : D1 → R formulées initialement ; et supposons à pré-
sent que g : D2 → R est une fonction réelle définie dans un voisinage de ℓ1, sauf éven-
tuellement en ℓ1. Supposons aussi que limx→ℓ1 g(x) = ℓ3, où ℓ3 est un nombre réel.
Faisons, en outre, l’hypothèse supplémentaire suivante au sujet de f : f(x) 6= ℓ1 quel
que soit x ∈ V r{a}, où V est un voisinage de a. Alors :

• lim
x→a

(
g ◦ f

)
(x) = lim

x→a
g
(
f(x)

)
= ℓ3 .

Revenons aux hypothèses sur les fonctions f : D1 → R et g : D2 → R formulées initiale-
ment.

• Si f(x) 6 g(x) pour tout x ∈ V r{a}, où V est un voisinage de a, alors :

lim
x→a

f(x) = ℓ1 6 ℓ2 = lim
x→a

g(x) .

Reprenons les fonctions f : D1 → R et g : D2 → R ; et soit h : D3 → R une troisième
fonction réelle ; supposons que f , g et h sont toutes les trois définies dans un voisinage
d’un nombre réel b, sauf éventuellement en b.

• Si f(x) 6 h(x) 6 g(x) pour tout x ∈ Ṽ r{b}, où Ṽ est un voisinage de b, et si
limx→b f(x) = ℓ = limx→b g(x), où ℓ est un nombre réel, alors :

lim
x→b

h(x) = ℓ ;

ce résultat est connu sous le nom de théorème des deux gendarmes.
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Toutes ces propriétés découlent de la définition 2.7.1. Une démonstration détaillée (uti-
lisant comme outil les suites de nombres) est présentée à la fin du présent ouvrage, dans
l’annexe B.

2.7.12 Remarque : Dans la cinquième des propriétés précédentes (concernant la limite
de la composition des fonctions f et g), l’hypothèse consistant à dire que f(x) 6= ℓ1 quel
que soit x ∈ V r{a}, où V est un voisinage de a, a toute son importance ; l’omettre
reviendrait à accepter que la fonction f puisse être constante et égale à ℓ1 dans un
voisinage de a (sauf éventuellement en a), ce qui aurait pour conséquence que g ◦ f
pourrait être éventuellement non définie, non seulement en a, mais dans tout un voisinage
de a. Parler de limite (de g ◦ f , lorsque x tend vers a), dans de telles circonstances, ne
ferait alors pas sens.

2.7.13 Exemple : Soit f la fonction réelle donnée par f(x) = x2 sin
(

1
x2

)
(où sin désigne

la fonction sinus). Alors, pour tout x ∈ R∗ :

−x2 6 x2 sin

(
1

x2

)

6 x2 ;

en effet, −1 6 sin(α) 6 1, quel que soit α ∈ R. Aussi, limx→0 x
2 = 0 et limx→0(−x2) = 0.

Selon le théorème des deux gendarmes, qui est manifestement applicable ici :

lim
x→0

x2 sin

(
1

x2

)

= 0 .

2.7.14 Remarques : • Les propriétés 2.7.11 s’appliquent aussi dans le cas de limites
infinies, ainsi que dans le cas de limites à l’infini ; les conventions suivantes, concer-
nant les infinis et la division par zéro, sont alors à observer :

⋄ ∞+∞ = ∞, ⋄ ∞+ ℓ = ∞ quel que soit le nombre réel ℓ,

⋄ ∞ · ℓ = ∞ si ℓ > 0, ⋄ ∞ · ℓ = −∞ si ℓ < 0,

⋄ ∞ ·∞ = ∞, ⋄ ∞ · (−∞) = −∞ ·∞ = −∞,

⋄ −∞ · (−∞) = ∞, ⋄ 1

±∞ = 0,

⋄ lim
x→0
x<0

1

x
= −∞, ⋄ lim

x→0
x>0

1

x
= ∞.

• Si, lors du calcul de la limite suivante :

lim
x→1

x2 − 3 x+ 2√
x− 1

on remplaçait x par la valeur vers laquelle x tend (comme cela a été fait dans
le premier des exemples 2.7.3), présentement 1, on se retrouverait avec une ex-
pression de la forme 0

0
. Vu la division par 0, cette quantité serait-elle égale à ∞
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ou −∞ ? Ou serait-elle égale à 0, vu qu’il y a 0 au numérateur ? Ou serait-elle
égale à une autre valeur ? Rien ne permet à ce stade de le dire. Des investigations
plus poussées sont nécessaires pour pouvoir conclure (cf. exemple ci-dessous).

• L’expression 0
0
, évoquée au point précédent, est ce que l’on appelle une forme in-

déterminée. Elle n’est pas la seule du genre ; d’autres existent. Les plus courantes
sont les suivantes :

0

0
,

±∞
±∞ , ∞−∞ , 0 · (±∞) , 00 , ∞0 , 1±∞ .

• Diverses techniques peuvent être utilisées pour se débarrasser d’une forme indé-
terminée ; elle fonctionnent plus ou moins bien selon les circonstances. En présence
d’une fraction polynomiale, la technique de mise en évidence suivie d’une simpli-
fication est en général efficace. Si l’expression contient une racine, la technique
dite d’amplification fonctionne bien (cf. exemple ci-dessous). Si l’expression consi-
dérée contient des fonctions exponentielles , logarithmes, etc. (cf. chapitre 3), il
est nécessaire de recourir à des techniques plus poussées, basées sur des résultats
qui seront présentés dans les chapitres suivants (règle de Bernoulli-L’Hôpital (cf.
section 3.9 du chapitre 3), utilisation des développements limités (cf. section 5.5
du chapitre 5)).

2.7.15 Exemple : Soit f la fonction réelle donnée par :

f(x) =
x2 − 3 x+ 2√

x− 1
.

Pour calculer la limite de f lorsque x tend vers 1, on utilise la technique d’amplification,
qui consiste ici à multiplier le numérateur et le dénominateur par

√
x+ 1 :

lim
x→1

f(x) = lim
x→1

x2 − 3 x+ 2√
x− 1

= lim
x→1

x2 − 3 x+ 2√
x− 1

·
√
x+ 1√
x+ 1

= lim
x→1

(x2 − 3 x+ 2)
(√

x+ 1
)

x− 1
= lim

x→1

(x− 1)(x− 2)
(√

x+ 1
)

x− 1

= lim
x→1

(x− 2)
(√

x+ 1
)
= −1 · 2 = −2 .

2.8 Asymptotes d’une fonction

Le terme d’asymptote, et plus généralement de comportement asymptotique, se rencontre
dans différents domaines des sciences ; en mathématiques bien sûr, mais également en
physique, en chimie, dans les sciences de l’ingénierie, etc. En mathématiques, on parle
d’asymptote, essentiellement, dans l’étude des courbes planes (i.e. des lignes qu’il est
possible de tracer, dans le plan euclidien, sans devoir lever le crayon (cf. section 2.11)).

On dit qu’une droite d, dans le plan euclidien R2 (muni de son système de coordonnées
cartésiennes canonique Oxy), est une asymptote d’une certaine courbe C ⊂ R2 donnée,
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si la distance entre un point quelconque P (x; y) ∈ C et d tend vers 0 lorsque x et/ou y
tend vers l’infini.

Lorsqu’une courbe plane est décrite au moyen d’une fonction réelle, la définition qui
vient d’être donnée se transpose comme suit.

2.8.1 Définitions : Soient le plan euclidien R2 et Oxy son système de coordonnées car-
tésiennes canonique. Soit aussi f : D → R (où D ⊂ R) une fonction réelle.

• On dit que f admet une asymptote verticale d’équation x = a, où a est un nombre
réel, si l’un des deux points suivants, au moins, est satisfait :

⋄ f est définie dans un intervalle de la forme ]a−γ ; a[ , où γ est un nombre réel
strictement positif, et :

lim
x→a
x<a

f(x) = −∞ ou lim
x→a
x<a

f(x) = ∞ ;

⋄ f est définie dans un intervalle de la forme ]a ; a+γ[ , où γ est un nombre réel
strictement positif, et :

lim
x→a
x>a

f(x) = −∞ ou lim
x→a
x>a

f(x) = ∞ .

• On dit que f admet une asymptote horizontale d’équation y = b, où b est un
nombre réel, si l’un des deux points suivants, au moins, est satisfait :

⋄ f est définie dans un intervalle de la forme ]−∞ ; α[ , où α est un nombre
réel, et :

lim
x→−∞

f(x) = b ;

⋄ f est définie dans un intervalle de la forme ]α ; ∞[ , où α est un nombre réel
strictement positif, et :

lim
x→∞

f(x) = b .

• On dit que f admet une asymptote oblique d’équation y = mx + b, où m et b
sont des nombres réels, si l’un des deux points suivants, au moins, est satisfait :

⋄ f est définie dans un intervalle de la forme ]−∞ ; α[ , où α est un nombre
réel, et :

lim
x→−∞

(
f(x)− (mx+ b)

)
= 0 ;

⋄ f est définie dans un intervalle de la forme ]α ; ∞[ , où α est un nombre réel
strictement positif, et :

lim
x→∞

(
f(x)− (mx+ b)

)
= 0 .

2.8.2 Remarques : • Dire qu’une fonction réelle admet une asymptote constitue
un léger abus de langage ; ce n’est, en effet, pas la fonction même qui admet une
asymptote, mais son graphe.
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• Les définitions précédentes sont consistantes avec les considérations faites en dé-
but de section. En effet :

⋄ dire que y = f(x) tend vers −∞ ou ∞ lorsque x tend
vers a (par valeurs plus petites, plus grandes, ou plus
petites et plus grandes) revient à dire que la distance
δ = |x − a|, entre un point

(
x ; f(x)

)
sur le graphe de f

et la droite d’équation x = a, tend vers 0 lorsque le point
en question part à l’infini (tout en restant sur le graphe
de f) ;

x

y

ax

f(x)

⋄ dire que y = f(x) tend vers b lorsque x tend vers −∞
ou vers ∞ revient à dire que la distance δ = |f(x) − b |,
entre un point

(
x ; f(x)

)
sur le graphe de f et la droite

d’équation y = b, tend vers 0 lorsque le point en question
part à l’infini (tout en restant sur le graphe de f) ;

x

y

b

x

f(x)

⋄ dire que f(x) − (mx + b) tend vers 0 lorsque x tend vers −∞ ou ∞ revient
à dire que la distance δ = |f(x)− (mx+ b)| cos(θ) (où θ
est l’angle entre la droite d’équation y = mx + b et
l’axe Ox (cf. figure ci-contre)), entre un point

(
x ; f(x)

)

sur le graphe de f et la droite d’équation y = mx+b, tend
vers 0 lorsque le point en question part à l’infini (tout en
restant sur le graphe de f).

x

y

x

f(x)

θ

θ

• Soit f : D → R une fonction réelle admettant une asymptote oblique d’équation
y = mx+ b. Alors, la condition :

lim
x→±∞

(
f(x)− (mx+ b)

)
= 0

implique :

m = lim
x→±∞

f(x)

x
et b = lim

x→±∞

(
f(x)−mx

)
.

En effet, le fait que f(x)− (mx+ b) tend vers 0 lorsque x tend vers ±∞ permet
d’écrire :

f(x)

x
−m− b

x
=

f(x)− (mx+ b)

x
x→±∞ 0 ;

et comme b
x
tend vers 0 lorsque x tend vers ±∞, alors :

0 = lim
x→±∞

(
f(x)

x
−m− b

x

)

= lim
x→±∞

f(x)

x
−m ⇔ lim

x→±∞

f(x)

x
= m.

Aussi, par définition :

0 = lim
x→±∞

(
f(x)− (mx+ b)

)
= lim

x→±∞
(f(x)−mx)− b ,

ce qui est équivalent à :

lim
x→±∞

(
f(x)−mx

)
= b .
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2.8.3 Exemples : 1. Soit f la fonction réelle donnée par :

f(x) =
2 x+ 1

x
.

Cette fonction a pour domaine de définition Df = R∗. Le fait que :

lim
x→0
x<0

f(x) = lim
x→0
x<0

2 x+ 1

x
= −∞

permet de conclure que f admet une asymptote verticale d’équation x = a ; noter
aussi que :

lim
x→0
x>0

f(x) = lim
x→0
x>0

2 x+ 1

x
= ∞ .

La fonction f admet également une asymptote horizontale d’équation y = 2 ; en
effet :

lim
x→∞

f(x) = lim
x→∞

2 x+ 1

x
= lim

x→∞

x
(
2 + 1

x

)

x
= lim

x→∞

(

2 +
1

x

)

= 2 ;

noter aussi que :

lim
x→−∞

f(x) = lim
x→−∞

2 x+ 1

x
= lim

x→−∞

x
(
2 + 1

x

)

x
= lim

x→−∞

(

2 +
1

x

)

= 2 .

Le fait que ces deux limites sont égales permet de conclure que f possède une
même asymptote horizontale, que x tende vers −∞ ou que x tende vers ∞.

2. Soit f la fonction réelle donnée par :

f(x) =
4 x2 − 6 x+ 1

2 x− 2
.

Cette fonction a pour domaine de définition Df = Rr{1}. Le fait que :

lim
x→1
x<1

f(x) = lim
x→1
x<1

4 x2 − 6 x+ 1

2 x− 2
= ∞

permet d’affirmer que f possède une asymptote verticale d’équation x = 1 ; noter
aussi que :

lim
x→1
x>1

f(x) = lim
x→1
x>1

4 x2 − 6 x+ 1

2 x− 2
= −∞ .
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La fonction f admet également une asymptote oblique d’équation y = 2 x− 1 ; en
effet :

lim
x→∞

f(x)

x
= lim

x→∞

1

x
· 4 x

2 − 6 x+ 1

2 x− 2
= lim

x→∞

4 x2 − 6 x+ 1

2 x2 − 2 x

= lim
x→∞

x2
(
4− 6

x
+ 1

x2

)

x2
(
2− 2

x

) = lim
x→∞

4− 6
x
+ 1

x2

2− 2
x

=
4

2
= 2

et :

lim
x→∞

(
f(x)− 2 x

)
= lim

x→∞

(
4 x2 − 6 x+ 1

2 x− 2
− 2 x

)

= lim
x→∞

4 x2 − 6 x+ 1− 2 x (2 x− 2)

2 x− 2

= lim
x→∞

4 x2 − 6 x+ 1− 4 x2 + 4 x

2 x− 2

= lim
x→∞

−2 x+ 1

2 x− 2
= lim

x→∞

x
(
−2 + 1

x

)

x
(
2− 2

x

)

= lim
x→∞

−2 + 1
x

2− 2
x

=
−2

2
= −1 .

Des calculs similaires dans le cas où x tend vers −∞ mènent aux mêmes résultats.
f possède donc une même asymptote oblique, que x tende vers −∞ ou que x tende
vers ∞. Noter que l’équation y = 2 x−1 peut être aussi obtenue, dans la situation
présente, en effectuant la division euclidienne du numérateur 4 x2 − 6 x+ 1 par le
dénominateur 2 x− 2 de l’expression de f ; le résultat s’écrit :

f(x) = 2 x− 1− 1

2 x− 2
;

lorsque x prend des valeurs extrêmes (dans les nombres positifs ou négatifs), la
fraction − 1

2 x−2
devient négligeable, si bien que y = f(x) se comporte de plus en

plus comme y = 2 x− 1.

2.8.4 Remarques : • Il existe des fonctions réelles dont les asymptotes horizon-
tales (respectivement obliques) sont différentes selon que la variable indépendante
prend des valeurs positives ou négatives. Pour distinguer les cas, on parle d’asymp-
tote horizontale (respectivement oblique) à droite et à gauche. En outre, certaines
fonctions réelles n’ont une asymptote horizontale (respectivement oblique) que
d’un seul côté. D’autres fonctions réelles, encore, ont une asymptote horizontale
d’un côté et une asymptote oblique de l’autre. En résumé, plusieurs cas de figure
sont possibles.
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• Si une fonction réelle possède une asymptote horizontale à droite (respectivement
à gauche), elle ne peut pas avoir une asymptote oblique à droite (respectivement
à gauche) ; et vice versa. Une fonction réelle ne peut, en effet, pas tendre vers
deux limites différentes (un nombre réel b et ∞ (ou −∞)) lorsque la variable
indépendante tend vers ∞ (respectivement vers −∞).

2.8.5 Illustration : Reprenons la fonction f de la première des illustrations 2.2.3 :

f : ]−∞mm; ∞mm[ r {0mm ; 200mm} −→ ]−∞mm; ∞mm[

p 7−→ q =
1

1
200mm

− 1
p

Les calculs de limites effectués dans l’illustration 2.7.10 per-
mettent d’affirmer que f admet :

⋄ une asymptote verticale d’équation p = 200mm,

⋄ une asymptote horizontale, à gauche et à droite,
d’équation q = 200mm.

Noter que f ne peut pas avoir une quelconque asymptote
oblique, vu qu’elle possède une asymptote horizontale, à
gauche et à droite. La figure ci-contre illustre un échantillon
du graphe de f avec ses asymptotes.

p

q

−0,4m 0,4m 0,8m

−0,4m

0,4m

0,8m

2.9 Notion de continuité

D’un point de vue intuitif, on dit qu’une fonction réelle f est continue dans un intervalle I
si son graphe peut être tracé, dans la portion I×R du plan euclidien, sans devoir lever le
crayon. Transposée dans un langage plus rigoureux, cette réalité se traduit par l’énoncé
suivant.

2.9.1 Définition : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R), définie dans
un voisinage d’un nombre réel x0 ∈ D. On dit que f est continue en x0 ∈ D si la limite
de f lorsque x tend vers x0 existe et si :

lim
x→x0

f(x) = f(x0) ;

autrement dit, f est continue en x0 ∈ D si, pour tout nombre réel ε > 0, il existe un
nombre réel δ > 0 tel que la relation :

|x− x0| 6 δ , où x ∈ D , implique la relation :
∣
∣f(x)− f(x0)

∣
∣ 6 ε .

2.9.2 Remarques : • Le nombre réel δ, évoqué dans la définition précédente, ainsi
que dans les définitions qui suivent, peut dépendre de ε et de x0, mais en aucun
cas de la variable x (cf. définition de la limite d’une fonction réelle).

• Dans la définition précédente, comme x0 ∈ D, il n’est pas nécessaire d’exiger
0 < |x− x0| ; l’inégalité |x− x0| 6 δ suffit.
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2.9.3 Définitions : Soit f : D → E (où D ⊂ R et E ⊂ R) une fonction réelle.

• Soit x0 un nombre réel dans D.

⋄ On dit que f est continue à gauche en x0 si f est définie dans un intervalle
de la forme ]α; x0], où α est un nombre réel strictement plus petit que x0, et
si :

lim
x→x0
x<x0

f(x) = f(x0) ,

i.e. si, pour tout nombre réel ε > 0, il existe un nombre réel δ > 0 tel que
x0 − δ 6 x 6 x0, où x ∈ D, implique

∣
∣f(x)− f(x0)

∣
∣ 6 ε.

⋄ On dit que f est continue à droite en x0 si f est définie dans un intervalle de
la forme [x0; α[ , où α est un nombre réel strictement plus grand que x0, et
si :

lim
x→x0
x>x0

f(x) = f(x0) ,

i.e. si, pour tout nombre réel ε > 0, il existe un nombre réel δ > 0 tel que
x0 6 x 6 x0 + δ, où x ∈ D, implique

∣
∣f(x)− f(x0)

∣
∣ 6 ε.

• Soient I = ]a; b[ un intervalle ouvert et Ī = [a; b] le plus petit intervalle fermé
contenant I, où a et b sont deux nombres réels tels que a < b.

⋄ On dit que f est continue dans I si f est définie et continue en chaque point
x0 ∈ I.

⋄ On dit que f est continue dans Ī si f
est définie en chaque point x0 ∈ Ī et si
elle est à la fois :

✄ continue dans I,

✄ continue à droite en a,

✄ continue à gauche en b.

x

y

O a b

continuité dans [a; b]

x

y

O a b

continuité dans ]a; b[

2.9.4 Définition : Une fonction réelle f : D → E, qui est définie dans un voisinage d’un
nombre réel x0, sauf éventuellement en x0, et qui n’est pas continue en x0, est dite
discontinue en x0. On dit alors que f admet une discontinuité en x0 ; et aussi que x0 est
un point de discontinuité de f .

2.9.5 Remarques : • Les discontinuités peuvent être regroupées en cinq catégories
distinctes.

⋄ Discontinuité de type trou :
Une fonction réelle f , définie dans un voisinage d’un
nombre réel x0, sauf éventuellement en x0, possède
une discontinuité de type trou en x0 si la limite de f
lorsque x tend vers x0 existe et est égale à un nombre x

y

O x0réel ℓ :

lim
x→x0

f(x) = ℓ ⇔ lim
x→x0
x<x0

f(x) = ℓ = lim
x→x0
x>x0

f(x) ,
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mais f n’est pas définie en x0 (autrement dit, x0 n’appartient pas au domaine
de définition de f).

⋄ Discontinuité de type trou-saut :
Une fonction réelle f , définie dans un voisinage d’un
nombre réel x0, possède une discontinuité de type
trou-saut en x0 si d’une part f est définie en x0, si
d’autre part la limite de f lorsque x tend vers x0 existe x

y

O x0

f(x0)

et est égale à un nombre réel ℓ :

lim
x→x0

f(x) = ℓ ⇔ lim
x→x0
x<x0

f(x) = ℓ = lim
x→x0
x>x0

f(x) ,

mais :
lim
x→x0

f(x) 6= f(x0) .

⋄ Discontinuité de type saut :
Une fonction réelle f , définie dans un voisinage d’un
nombre réel x0, sauf éventuellement en x0, possède
une discontinuité de type saut en x0 si :

lim
x→x0
x<x0

f(x) = ℓ1 6= ℓ2 = lim
x→x0
x>x0

f(x) , x

y

O x0

où ℓ1 et ℓ2 sont deux nombres réels. Cette définition s’applique aussi bien dans
le cas où f est définie en x0 que dans le cas où elle ne l’est pas.

⋄ Discontinuité de type fluctuant :
Une fonction réelle f , définie dans un voisinage d’un nombre réel x0, sauf
éventuellement en x0, possède une discontinuité de
type fluctuant en x0 si l’une, au moins, des deux li-
mites suivantes n’existe pas :

lim
x→x0
x<x0

f(x) , lim
x→x0
x>x0

f(x) . x

y

O x0

Cette définition s’applique aussi bien dans le cas où f est définie en x0 que
dans le cas où elle ne l’est pas.

⋄ Discontinuité de type asymptotique :
Une fonction réelle f , définie dans un voisinage d’un
nombre réel x0, sauf éventuellement en x0, possède une
discontinuité de type asymptotique si l’une, au moins,
des deux limites suivantes vaut ∞ ou −∞ :

lim
x→x0
x<x0

f(x) , lim
x→x0
x>x0

f(x) .

x

y

O x0

Cette définition s’applique aussi bien dans le cas où f est définie en x0 que dans
le cas où elle ne l’est pas. Noter qu’une discontinuité de type asymptotique
est parfois dite irréductible, ou infinie.
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Si une fonction réelle f , définie dans un voisinage d’un nombre réel x0, sauf éven-
tuellement en x0, a une limite non existante lorsque x tend vers x0 par valeurs plus
petites (respectivement par valeurs plus grandes), et une limite infinie lorsque x
tend vers x0 par valeurs plus grandes (respectivement par valeurs plus petites),
on dit que f admet une discontinuité de type asymptotique en x0 (et non une
discontinuité de type fluctuant).

• Lors du tracé du graphe d’une fonction réelle présentant une discontinuité, la
discontinuité en question se manifeste par la nécessité de devoir lever le crayon à
un moment donné au moins.

• Si la nécessité de devoir lever le crayon, lors du tracé du graphe d’une fonc-
tion réelle, témoigne d’une forme d’interruption, l’interruption en question ne
correspond toutefois pas forcément à une discontinuité au sens de la défini-
tion 2.9.4. Pour illustrer ce propos, considérons la fonction réelle f donnée par
f(x) =

√
x2 − 1 . Pour tracer le graphe de f dans le plan euclidien R2, il est

nécessaire de lever une fois le crayon (cf. figure ci-contre). L’interruption du tracé
ne correspond cependant pas, dans le cas présent, à
une discontinuité en un point (dont le type est dé-
terminé à partir de calculs de limites), mais à une
non-définition de la fonction dans un intervalle (pré-
sentement ]−1; 1[ ). Dans un tel cas, on dit simple-
ment que f n’est pas définie dans ]−1; 1[ , et non
qu’elle est discontinue dans ]−1; 1[ .

x

y

−1 10

1

• À toute fonction réelle f : D → R admettant une discontinuité de type trou en
un nombre réel x0, il est possible d’associer une fonction f̄ qui cöıncide avec f en
tout point du domaine de définition D de f et qui est continue en x0. Appelée
prolongement par continuité, une telle fonction s’écrit concrètement :

f̄(x) =

{
f(x) si x ∈ Df

lim
u→x0

f(u) si x = x0 /∈ Df
,

Dans de telles circonstances, on dit que f est prolongeable par continuité en x0.
Noter que :

⋄ la continuité de f̄ en x0 découle de sa construction même ;

⋄ le prolongement f̄ de f est unique, du fait que la limite d’une fonction réelle,
dès lors qu’elle existe, est unique ;

⋄ un prolongement par continuité de f en x0 n’est envisageable ni dans le cas
où elle possède une discontinuité de type trou-saut en x0 (du fait que f est
définie en x0), ni dans le cas où elle possède une discontinuité de type saut
en x0 (du fait que limx→x0 f(x) n’existe pas), ni dans le cas où elle possède
une discontinuité de type fluctuant en x0 (du fait que l’une des deux limites
limx→x0

− f(x), limx→x0
+ f(x), au moins, n’existe pas), ni dans le cas où elle

possède une discontinuité de type asymptotique en x0 (du fait que l’une des
deux limites limx→x0

− f(x), limx→x0
+ f(x), au moins, est égale à −∞ ou à ∞).
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2.9.6 Exemples : 1. Soit f la fonction réelle donnée par :

f(x) =
1

x2
.

Dans le premier des exemples 2.7.3, il a été montré que limx→2 f(x) valait 1
4
.

Or, 1
4
= 1

22
= f(2). De fait, f est continue en x0 = 2. Qu’en est-il en d’autres

valeurs x0 ?

⋄ Soit x0 ∈ R∗
+ . Considérons alors un nombre réel ε > 0 quelconque. Si f est

continue en x0, il doit être possible de trouver un nombre réel δ > 0 (dépendant
de ε, de x0 mais pas de x) tel que l’inégalité |x − x0| 6 δ implique l’inégalité
∣
∣f(x) − f(x0)

∣
∣ 6 ε. Regardons si un tel δ existe ; à cet effet, développons

l’expression
∣
∣f(x)− f(x0)

∣
∣ :

∣
∣f(x)− f(x0)

∣
∣ =

∣
∣
∣
∣

1

x2
− 1

x02

∣
∣
∣
∣
=

∣
∣
∣
∣

x0
2 − x2

x02 x2

∣
∣
∣
∣
=

|x02 − x2|
x02 x2

=
|x0 − x| |x0 + x|

x02 x2
=

|x− x0| |x+ x0|
x02 x2

6
δ |x+ x0|
x02 x2

,

du fait que, selon la définition, δ > 0 est un nombre réel tel que |x − x0| 6 δ.
Or, toujours selon la définition, on cherche à avoir

∣
∣f(x)−f(x0)

∣
∣ 6 ε. On serait

donc tenté d’écrire δ |x+x0|
x0

2 x2 = ε. Mais dans ce cas, l’expression de δ dépendrait
non seulement de ε et de x0, mais également de x, ce qui n’est pas cohérent
avec la définition. Ce souci peut être écarté en fixant momentanément la valeur
de δ ; en choisissant par exemple δ = 1

2
x0, il vient |x− x0| 6 δ = x0

2
⇔ −x0

2
6

x − x0 6 x0

2
⇔ x0

2
6 x 6 3x0

2
⇔ x ∈

[
1
2
x0 ;

3
2
x0
]
; dans ces circonstances,

l’expression 1
x2 est définie (vu que x 6= 0) et :

∣
∣f(x)− f(x0)

∣
∣ 6

δ |x+ x0|
x02 x2

6
δ
∣
∣3
2
x0 + x0

∣
∣

x02
(
1
2
x0
)2 =

10 δ

x03
.

Pour maximiser la fraction δ |x+x0|
x0

2 x2 , on a pris, dans l’intervalle
[
1
2
x0 ;

3
2
x0
]
, la

plus grande valeur possible de x au numérateur et la plus petite au dénomina-
teur. Comme 10 δ

x0
3 ne dépend plus de x, on peut poser :

10 δ

x03
= ε ⇔ δ =

x0
3 ε

10
.

Et ainsi, en considérant δ = min
{

x0

2
; x0

3 ε
10

}
, i.e. la plus petite valeur entre x0

2

et x0
3 ε
10

, on peut affirmer qu’il existe δ > 0 tel que |x − x0| 6 δ implique
∣
∣f(x)− f(x0)

∣
∣ 6 ε. La fonction f est donc continue en x0 ∈ R∗

+.

⋄ Soit x0 ∈ R∗
− . Considérons à nouveau un nombre réel ε > 0 quelconque. Alors,

comme précédemment :

∣
∣f(x)− f(x0)

∣
∣ =

∣
∣
∣
∣

1

x2
− 1

x02

∣
∣
∣
∣
=

|x02 − x2|
x02 x2

=
|x0 − x| |x0 + x|

x02 x2
6

δ |x+ x0|
x02 x2

,
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du fait que |x − x0| 6 δ. Comme x0 < 0, il convient de choisir ici, momen-
tanément, δ = −x0

2
, de sorte que δ soit strictement positif ; il vient alors

|x − x0| 6 δ = −x0

2
, ce qui peut se récrire sous la forme x0

2
6 x − x0 6

−x0

2
⇔ 3x0

2
6 x 6 x0

2
, ou encore x ∈

[
3
2
x0 ;

1
2
x0
]
; dans ces circonstances,

l’expression 1
x2 est définie (vu que x 6= 0) et :

∣
∣f(x)− f(x0)

∣
∣ 6

δ |x+ x0|
x02 x2

6
δ
∣
∣3
2
x0 + x0

∣
∣

x02
(
1
2
x0
)2 = −10 δ

x03
.

Les choix de x au numérateur et au dénominateur sont les mêmes que dans le
cas précédent : avec la présence de la valeur absolue, c’est effectivement 3

2
x0 qui

maximise le numérateur, et c’est aussi 1
2
x0 qui minimise le dénominateur (du

fait de l’élevation au carré). Noter, en outre, que le signe négatif apparaissant
dans l’expression finale vient du retrait de la valeur absolue au numérateur.
Comme −10 δ

x0
3 ne dépend plus de x, on peut poser :

−10 δ

x03
= ε ⇔ δ = −x0

3 ε

10
.

Et ainsi, en prenant δ = min
{
−x0

2
; −x0

3 ε
10

}
, on peut affirmer qu’il existe δ > 0

tel que |x−x0| 6 δ implique |f(x)−f(x0)| 6 ε. La fonction f est donc continue
en x0 ∈ R∗

−.

⋄ f n’est pas continue en x0 = 0. En effet, selon le premier des exemples 2.7.8,
il existe, pour tout nombre réel υ > 0, un nombre réel δ > 0 tel que les
relations 0 < |x − 0| 6 δ impliquent f(x) > υ ; autrement dit, f(x) tend
vers ∞ lorsque x tend vers 0. En outre, f n’est pas définie en 0. La limite en 0
valant ∞, la discontinuité en x0 = 0 est de type asymptotique.

2. Soit f la fonction réelle donnée par :

f(x) = x3 .

Montrons que f est continue en tout x0 ∈ R. Pour faciliter le raisonnement, il
convient de distinguer trois cas : x0 = 0, x0 > 0 et x0 < 0.

⋄ Soit x0 = 0. Considérons alors un nombre réel ε > 0 quelconque. Si f est
continue en x0 = 0, il doit être possible de trouver un nombre réel δ > 0 (qui
peut dépendre de ε mais pas de x) tel que l’inégalité |x−0| = |x| 6 δ implique
l’inégalité

∣
∣f(x) − f(0)

∣
∣ =

∣
∣f(x)

∣
∣ 6 ε. Cherchons δ ; pour cela, développons

l’expression
∣
∣f(x)− f(0)

∣
∣ :

∣
∣f(x)− f(0)

∣
∣ =

∣
∣x3 − 03

∣
∣ = |x3| = |x|3 6 δ3 ,

du fait que, selon la définition, |x| 6 δ. Comme δ3 ne dépend pas de x, on peut
poser :

δ3 = ε ⇔ δ = 3
√
ε .

Et ainsi, en considérant δ = 3
√
ε , on peut affirmer qu’il existe δ > 0 tel que

|x| 6 δ implique
∣
∣f(x)− f(0)

∣
∣ 6 ε. La fonction f est donc continue en x0 = 0.
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⋄ Soit x0 ∈ R∗
+ . Considérons alors un nombre réel ε > 0. Si f est continue

en x0, il doit être possible de trouver un nombre réel δ > 0 (qui peut dépendre
de ε, de x0 mais non de x) tel que |x − x0| 6 δ implique

∣
∣f(x) − f(x0)

∣
∣ 6 ε.

Cherchons δ ; pour ce faire, développons l’expression
∣
∣f(x)− f(x0)

∣
∣ :

∣
∣f(x)− f(x0)

∣
∣ =

∣
∣x3 − x0

3
∣
∣ =

∣
∣(x− x0)(x

2 + xx0 + x0
2)
∣
∣

= |x− x0|
∣
∣x2 + xx0 + x0

2
∣
∣ 6 δ

∣
∣x2 + xx0 + x0

2
∣
∣ ,

du fait que, selon la définition, |x − x0| 6 δ. Comme la dernière expression
obtenue dépend encore de x, il n’est pas possible, à ce stade, de poser ε =
δ
∣
∣x2 + xx0 + x0

2
∣
∣ et de conclure. Afin de faire disparâıtre la dépendance en x,

il convient de fixer momentanément la valeur de δ ; en choisissant par exemple
δ = x0, il vient |x − x0| 6 δ = x0, ce qui peut se récrire sous la forme −x0 6
x− x0 6 x0 ⇔ 0 6 x 6 2 x0, ou encore x ∈ [0 ; 2 x0] ; et ainsi :

∣
∣f(x)− f(x0)

∣
∣ 6 δ

∣
∣x2 + xx0 + x0

2
∣
∣

6 δ
∣
∣(2 x0)

2 + 2 x0 x0 + x0
2
∣
∣ = δ

∣
∣7 x0

2
∣
∣ = 7 x0

2 δ ;

pour maximiser l’expression en valeur absolue, on a pris la plus grande valeur
de x dans l’intervalle [0 ; 2 x0], qui est x = 2 x0. Comme 7 x0

2 δ ne dépend plus
de x, on peut poser :

7 x0
2 δ = ε ⇔ δ =

ε

7 x02
.

Et ainsi, en considérant δ = min
{
x0 ;

ε
7x0

2

}
, on peut affirmer que |x− x0| 6 δ

implique
∣
∣f(x)− f(x0)

∣
∣ 6 ε. La fonction f est donc continue en x0 ∈ R∗

+ .

⋄ Soit x0 ∈ R∗
− . Considérons alors un nombre réel ε > 0. En suivant un raison-

nement similaire à celui mené précédemment :
∣
∣f(x)− f(x0)

∣
∣ =

∣
∣x3 − x0

3
∣
∣ =

∣
∣(x− x0)(x

2 + xx0 + x0
2)
∣
∣

= |x− x0|
∣
∣x2 + xx0 + x0

2
∣
∣ 6 δ

∣
∣x2 + xx0 + x0

2
∣
∣ ,

du fait que, selon la définition, |x − x0| 6 δ. Comme x0 < 0, il convient de
choisir ici, momentanément δ = −x0, de sorte que δ soit strictement positif ; il
vient alors |x−x0| 6 δ = −x0, ce qui peut s’écrire sous la forme x0 6 x−x0 6
−x0 ⇔ 2 x0 6 x 6 0, ou encore x ∈ [2 x0 ; 0] ; et ainsi :

∣
∣f(x)− f(x0)

∣
∣ 6 δ

∣
∣x2 + xx0 + x0

2
∣
∣

6 δ
∣
∣(2 x0)

2 + 2 x0 x0 + x0
2
∣
∣ = δ

∣
∣7 x0

2
∣
∣ = 7 x0

2 δ ;

même si x0 < 0, c’est lorsque x = 2 x0 (qui est la plus petite valeur possible
dans l’intervalle [2 x0 ; 0]) que l’expression en valeur absolue est maximisée.
Comme 7 x0

2 δ ne dépend plus de x, on peut poser :

7 x0
2 δ = ε ⇔ δ =

ε

7 x02
.
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Et ainsi, en considérant δ = min
{
−x0 ; ε

7x0
2

}
, on peut affirmer que |x−x0| 6 δ

implique
∣
∣f(x)− f(x0)

∣
∣ 6 ε. La fonction f est donc continue en x0 ∈ R∗

− .

En résumé, la fonction réelle f , donnée par f(x) = x3, est continue en x0 = 0, en
tout x0 ∈ R∗

+ et également en tout x0 ∈ R∗
− ; la fonction f est donc continue dans

tout l’ensemble R.

3. Soit f la fonction réelle donnée par :

f(x) =
2 x2 − 2

x− 1
.

Cette fonction est continue en tout x0 ∈ Rr{1} ; pour le prouver, il suffit de mener
un raisonnement similaire à celui de l’exemple précédent. En x = 1, f n’est pas
continue, vu qu’elle n’est pas définie en ce point de l’axe x. Cela étant, sa limite
lorsque x tend vers 1 existe et vaut 4 (cf. deuxième exemple des exemples 2.7.3).
f possède donc une discontinuité de type trou en x = 1. Elle peut, de ce fait, être
prolongée par continuité en 1 ; la fonction f̄ , donnée par :

f̄(x) = 2 x+ 2 , où x ∈ R ,

constitue un prolongement par continuité de f . En effet :

f(x) =
2 x2 − 2

x− 1
=

2 (x− 1)(x+ 1)

x− 1
= 2 (x+ 1) = 2 x+ 2 = f̄(x) ,

quel que soit x ∈ Rr {1}, et :

lim
x→1

f(x) = 4 = f̄(1) .

2.9.7 Illustrations : 1. Reprenons la fonction f de la première des illustrations 2.2.3 ;
rappelons son expression :

q =
1

1
200mm

− 1
p

.

Les calculs de limites effectués dans l’illustration 2.7.10 permettent d’affirmer que f
possède :

⋄ une discontinuité de type trou en p = 0mm,

⋄ une discontinuité de type asymptotique en p = 200mm.

Noter que la fonction f̄ , donnée par :

f̄ =
p · 200mm

p− 200mm
,

constitue le prolongement par continuité de f . Remarquer que le prolongement
par continuité n’est possible qu’en p = 0mm et non en p = 200mm.
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2. Reprenons la fonction f de la deuxième des illustrations 2.2.3. Une observation
attentive du graphe permet de conclure que f ne possède aucune discontinuité. Le
graphe peut, en effet, être tracé en une seule fois, sans devoir lever le crayon.

3. Une personne se trouve dans la nacelle d’une mongolfière, à une hauteur h au-
dessus du sol. À un instant donné, elle lâche un sac de sable et enclenche simulta-
nément un chronomètre. À supposer que les frottements avec l’air sont négligeables,
le sac tombe en chute libre, avec une accélération constante, jusqu’à ce qu’il at-
teigne le sol. En bonne approximation, la norme v de
la vitesse du sac peut alors s’écrire :

v(t) =

{

(9,8m s−2) t si 0 s 6 t < tsol

0m s−1 si t > tsol
,

t

v

tsol

vsol

où t est le temps qui s’écoule sur le chronomètre et tsol l’instant où le sac touche
le sol. La grandeur v, telle qu’écrite ici, peut être vue comme une fonction réelle
de la variable t. Cette fonction présente manifestement une discontinuité de type
saut en t = tsol ; en effet (cf. graphe de v ci-dessus) :

lim
t→tsol
t<tsol

v(t) = lim
t→tsol
t<tsol

(9,8m s−2) t = (9,8m s−2) tsol 6= 0ms−1 = lim
t→tsol
t>tsol

v(t) .

Note : Dans tout problème de mécanique en rapport avec la chute libre d’un corps,
lorsqu’il est question de trouver la vitesse du corps en question juste avant qu’il ne
touche le sol, il s’agit en fait de déterminer la limite de v(t) lorsque t tend vers tsol
par valeurs plus petites (ce qui correspond à vsol sur la figure ci-dessus). Dans la
pratique, le calcul de limite est rarement effectué proprement : la variable t est
simplement remplacée par l’instant tsol dans l’expression (9,8m s−2) t, sans faire
allusion à un quelconque symbole de limite.

2.9.8 Propriétés : Soient f : D1 → R et g : D2 → R deux fonctions réelles, définies
toutes les deux dans un voisinage d’un nombre réel x0, et continues en x0. Alors :

• αf + β g est continue en x0, quels que soient les nombres réels α et β ;

• fg est continue en x0 ;

• f
g
est continue en x0, pour autant que g(x0) 6= 0.

Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage de f(x0), et continue
en f(x0). Alors :

• g ◦ f est continue en x0.

Tous ces résultats découlent des définitions 2.7.1 et 2.9.1. Le détail des raisonnements
est présenté à la fin du présent ouvrage, dans l’annexe B.

2.9.9 Remarques : • Dans la quatrième des propriétés précédentes (concernant la
continuité de la composition des fonctions f et g), il n’est pas nécessaire de poser
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une hypothèse similaire à celle formulée dans la cinquième des propriétés 2.7.11
(concernant la limite de la composition des fonctions f et g), à savoir que f(x) 6=
f(x0) quel que soit x ∈ V r{x0}, où V est un voisinage de x0. La raison en est
que g est définie en f(x0) (vu que f est définie en x0) ; alors que dans la cinquième
des propriétés 2.7.11, g n’est pas nécessairement définie en ℓ1.

• De la définition de la continuité d’une fonction réelle en un point, ainsi que des
propriétés précédentes, on déduit immédiatement que :

⋄ toute fonction polynomiale réelle (i.e. toute fonction dont l’expression est un
polynôme réel en la variable x) est continue en tout x0 ∈ R.

⋄ toute fonction rationnelle (i.e. toute fonction dont l’expression est une fraction
contenant aussi bien au numérateur qu’au dénominateur un polynôme réel en
la variable x) est continue en tout nombre réel x0 de son domaine de définition.

2.10 Théorèmes relatifs aux fonctions continues

Les fonctions réelles continues possèdent des propriétés qui sont pour la plupart intui-
tives, mais qui ne se démontrent pas aisément. Ces propriétés sont résumées dans les
théorèmes qui suivent.

2.10.1 Théorème : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R), définie
et continue dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels que
a < b. Alors, f prend, dans [a; b], au moins une fois les valeurs f(a) et f(b), ainsi que
toutes les valeurs comprises entre f(a) et f(b). Ce résultat est connu sous le nom de
théorème des valeurs intermédiaires.

Preuve : Une démonstration détaillée de ce résultat, utilisant comme outil les suites de
nombres, est donnée à la fin du présent ouvrage, dans l’annexe B.

On peut raisonner intuitivement comme suit. Dire qu’une fonction réelle f est définie
et continue dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels que
a < b, revient à dire que le graphe de f , dans le plan euclidien R2 (muni de son système
de coordonnées cartésiennes canonique Oxy), peut être tracé, entre les points

(
a ; f(a)

)

et
(
b ; f(b)

)
sans devoir lever le crayon. Si la coordonnée x de la pointe du crayon balaye

toutes les valeurs réelles comprises entre a et b, et que le crayon n’est levé à aucun
moment durant le tracé, la coordonnée y de la pointe du crayon doit nécessairement
balayer au moins une fois toutes les valeurs réelles comprises entre f(a) et f(b). �

2.10.2 Corollaire : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R). Si f est
continue dans un intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que
a < b, et que f(a) et f(b) sont de signes opposés, alors il existe un nombre réel c ∈ [a; b]
pour lequel f(c) = 0.

Preuve : Ce résultat est une conséquence directe du théorème des valeurs intermédiaires.
Pour s’en convaincre, considérons une fonction réelle f : D → E, définie et continue dans
un intervalle [a; b], où a et b sont deux nombres réels tels que a < b. Selon le théorème des
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valeurs intermédiaires (dont les hypothèses sont satisfaites ici), f prend, dans [a; b], au
moins une fois les valeurs f(a) et f(b), ainsi que toutes les valeurs comprises entre f(a)
et f(b). En conséquence, f prend, dans [a; b], au moins une fois la valeur 0, vu que f(a)
et f(b) sont de signes opposés. Ce qui revient à dire qu’il existe, dans [a; b], au moins
un nombre réel c pour lequel f(c) = 0. �

2.10.3 Théorème : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R), défi-
nie et continue dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels
que a < b. Alors, dans [a; b], f atteint une valeur minimale m ainsi qu’une valeur
maximale M (cf. définition 2.4.12) ; autrement dit, il existe xm ∈ [a; b] et xM ∈ [a; b]
tels que f(xm) = m, f(xM) = M , où m et M sont deux nombres réels satisfaisant
m = f(xm) 6 f(x) 6 f(xM) =M pour tout x ∈ [a; b]. En outre, f prend au moins
une fois toutes les valeurs de l’intervalle [m; M ]. Un tel résultat est connu sous le nom
de théorème du minimum et du maximum, ou sous le nom de théorème des

valeurs extrêmes.

Preuve : Une démonstration détaillée de ce résultat est donnée à la fin du présent
ouvrage, dans l’annexe B.

On peut raisonner intuitivement comme suit. Dire qu’une fonction réelle f est définie
et continue dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels que
a < b, c’est dire que f ne possède aucune discontinuité, d’aucun type dans [a; b] ; en
particulier, f ne possède aucune discontinuité de type asymptotique dans [a; b]. Lors du
tracé du morceau de graphe de f pour lequel x ∈ [a; b], le crayon ne part donc à aucun
moment à l’infini. De ce fait, et en vertu de la continuité de f dans [a; b], il existe, parmi
les points qui forment le morceau de graphe en question, au moins un point de plus petite
deuxième coordonnée et aussi au moins un point de plus grande deuxième coordonnée.
Ce qui revient à dire que la fonction f atteint, dans [a; b], une valeur minimale ainsi
qu’une valeur maximale. Enfin, le théorème des valeurs intermédiaires garantit que f
atteint aussi toutes les valeurs comprises entre sa valeur minimale et sa valeur maximale
dans [a; b]. �

2.10.4 Remarques : • Les deux théorèmes précédents peuvent se résumer en disant
que l’image d’un intervalle fermé, par une fonction réelle définie et continue dans
ledit intervalle, est un intervalle fermé.
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• Dans les deux théorèmes précédents, l’hypothèse de continuité de la fonction f
dans [a; b] est essentielle ; si elle n’est pas satisfaite, les conclusions ne sont plus
nécessairement vraies (cf. figures ci-dessous).

x

y

O a b

M

m

f continue : l’image d’un intervalle
fermé est un intervalle fermé.

x

y

O a b

M

f non continue : l’image d’un intervalle fermé
n’est pas nécessairement un intervalle fermé.

2.10.5 Illustration : Reprenons la fonction f de la deuxième des illustrations 2.2.3. La
figure ci-dessous montre que f atteint son minimum et son maximum dans l’intervalle
[0 h 00 ; 24 h 00[ :

⋄ f atteint son minimum à 7 h 00 environ ; le minimum est 14,8 ◦C ;

⋄ f atteint son maximum à 17 h 00 environ ; le maximum est 26,2 ◦C.

En outre, f atteint toutes les valeurs comprises entre 14,8 ◦C et 26,2 ◦C. Noter que si f
atteint effectivement son minimum et son maximum dans [0 h 00 ; 24 h 00[ , c’est grâce au
fait que f est continue dans [0 h 00 ; 24 h 00[ d’une part, et d’autre part que l’instant où
le minimum (respectivement le maximum) est atteint est strictement supérieur à 0 h 00
et strictement inférieur à 24 h 00. Si la température
juste avant 24 h 00 avait été strictement inférieure
à 14,8 ◦C (ou au contraire strictement supérieure
à 26,2 ◦C), la fonction n’admettrait pas de mini-
mum (respectivement de maximum) dans l’inter-
valle [0 h 00 ; 24 h 00[ . Pour qu’elle l’admette, il fau-
drait considérer l’intervalle fermé [0 h 00 ; 24 h 00]
(intervalle dans lequel le théorème du minimum et
du maximum est alors applicable).

12 ◦C

16 ◦C

20 ◦C

24 ◦C

28 ◦C

00 :00 06 :00 12 :00 18 :00 24 :00

Neuchâtel
8 septembre 2021

température

2.10.6 Proposition : Soit f : I → J une fonction réelle, continue et strictement crois-
sante (respectivement strictement décroissante) dans I, où I est un intervalle ouvert
dans R. Supposons que J = f(I) ; autrement dit, supposons que J est l’ensemble image If
de f . Alors :

• f : I → J est bijective ;
• l’ensemble J = f(I) est un intervalle ouvert de R ;
• f : I → J admet une fonction réciproque rf : J → I qui est continue est stricte-
ment croissante (respectivement strictement décroissante) dans J .
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Preuve : Une démonstration détaillée de ce résultat est donnée à la fin du présent
ouvrage, dans l’annexe B.

On peut raisonner intuitivement comme suit. Soit f : I → J une fonction réelle
satisfaisant les hypothèses de la proposition.

• La fonction f étant strictement croissante (respectivement strictement décrois-
sante) dans I, elle est injective. En effet, quels que soient x1, x2 ∈ I tels que
x1 6= x2, ou bien x1 < x2 et donc f(x1) < f(x2) (respectivement f(x1) > f(x2),
ou bien x2 < x1 et donc f(x2) < f(x1) (respectivement f(x2) > f(x1)) ; dans
tous les cas, f(x1) 6= f(x2). En outre, f est surjective, par hypothèse. Donc f est
bijective.

• Notons I = ]a; b[ , où a et b sont deux nombres réels tels que a < b. Soient alors x1
et x2 deux nombres réels tels que a < x1 < x2 < b. La fonction f étant conti-
nue et strictement croissante (respectivement strictement décroissante) dans I,
et donc dans [x1; x2], elle prend les valeurs f(x1), f(x2), ainsi que toutes les va-
leurs comprises entre f(x1) et f(x2) (cf. théorème des valeurs intermédiaires) ;
f([x1; x2]) est donc un intervalle. Une telle conclusion étant valable pour tous
x1, x2 tels que a < x1 < x2 < b, y compris lorsque x1 tend vers a par valeurs plus
grandes et x2 par valeurs plus petites, permet d’affirmer que l’ensemble J = f(I)
est un intervalle. Cet intervalle est ouvert, vu qu’il contient tous les nombres réels
compris entre f(a) et f(b), mais pas f(a), ni f(b).

• La fonction f : I → J étant bijective, elle admet une réciproque ; notons rf : J → I
cette réciproque. Rappelons que le graphe de rf : J → I s’obtient à partir du
graphe de f en lui appliquant, dans R2 (muni de son système de coordonnées car-
tésiennes canonique Oxy), une symétrie axiale dont l’axe est la droite d’équation
y = x. De fait, si la fonction f : I → J est continue dans I, i.e. si le graphe de f
peut, dans I × J (⊂ R2), être tracé sans devoir lever le crayon, alors le graphe
de rf peut, dans J × I (⊂ R2), être également tracé sans devoir lever le crayon ;
ce qui revient à dire que rf : J → I est continue dans J . Aussi, si f est stric-
tement croissante (respectivement strictement décroissante) dans I, alors rf est
strictement croissante (respectivement strictement décroissante) dans J . �

2.10.7 Remarque : La proposition précédente possède une variante qui peut être for-
mulée comme suit.

2.10.8 Corollaire : Soit f : I → J une fonction réelle, surjective et strictement croissante
(respectivement strictement décroissante) dans I, où I est un intervalle ouvert dans R.
Supposons que J est un intervalle de R. Alors :

• f est continue dans I ;
• f : I → J est bijective ;
• l’intervalle J est ouvert ;
• f : I → J admet une fonction réciproque rf : J → I qui est continue est stricte-
ment croissante (respectivement strictement décroissante) dans J .



110 2 Fonctions réelles

Preuve : Elle est similaire à celle de la proposition précédente, notamment en ce qui
concerne les deux derniers points. Pour ce qui est du premier point, il se déduit du
fait que f : I → J est surjective et strictement croissante (respectivement strictement
décroissante) dans I, d’une part, et d’autre part que l’ensemble J est un intervalle.

Une démonstration détaillée de ce corollaire est donnée à la fin du présent ouvrage,
dans l’annexe B. �

2.10.9 Remarque : La proposition 2.10.6 et le corollaire 2.10.8 sont valables, que l’in-
tervalle de départ I et/ou l’intervalle d’arrivée J soient bornés ou infinis.

2.10.10 Exemple : La fonction :

f : R∗
+ −→ R∗

+

x 7−→ x2

est bijective, continue et strictement croissante (dans R∗
+) ; elle admet donc une réci-

proque (cf. premier des exemples 2.6.4) ; selon la proposition 2.10.6, cette réciproque est
continue et strictement croissante (dans R∗

+) :

rf : R∗
+ −→ R∗

+

x 7−→
√
x

Aussi, la fonction :

f : R∗
− −→ R∗

+

x 7−→ x2

est bijective, continue et strictement décroissante (dans R∗
−) ; elle admet donc une ré-

ciproque (cf. premier des exemples 2.6.4) ; selon la proposition 2.10.6, cette réciproque
est continue et strictement décroissante (dans R∗

+) :

rf : R∗
+ −→ R∗

−
x 7−→ −

√
x

2.11 Courbes planes

La notion de continuité ayant été traitée, il est envisageable à présent de donner une
définition rigoureuse de l’idée de ligne, évoquée dans la première section du présent
chapitre.

2.11.1 Définition : Soient le plan euclidien R2 et Oxy son système de coordonnées car-
tésiennes canonique. On appelle courbe plane tout ensemble C ⊂ R2 pouvant s’écrire
sous la forme :

C =
{
(x; y) ∈ R2

∣
∣ (x; y) =

(
γx(t) ; γy(t)

)
, où t ∈ I

}
,
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où γx : I → R et γy : I → R sont deux fonctions continues dans I, l’ensemble I étant un
intervalle dans R. Les équations :

{

x = γx(t)

y = γy(t)

sont appelées équations paramétriques .

2.11.2 Notation : Les équations paramétriques figurant dans la définition précédente se
notent fréquemment : {

x = x(t)

y = y(t)
.

Avec cette écriture, x prend à la fois le rôle de variable et celui de fonction ; il en est de
même pour y. Si cette double affectation est généralement acceptée, c’est parce qu’elle
n’engendre pas de réelle ambiguité.

2.11.3 Remarques : • Retranscrite en mots, la précédente définition exprime le fait
qu’une courbe plane est une sorte de déformation, dans le plan euclidien, d’une
droite ou d’un segment de droite ; l’agent responsable de la déformation étant
l’ensemble des deux fonctions γx et γy.

• La continuité des fonctions γx et γy, évoquée dans la définition précédente, assure
le fait que toute courbe plane C est une figure géométrique qui peut être tracée,
dans le plan euclidien, en une fois, sans devoir lever le crayon : comme à tout
point (x0; y0) ∈ C peut être associé (au moins) un élément t0 dans l’intervalle I
pour lequel x0 = γx(t0) et y0 = γy(t0), et comme γx et γy sont continues dans I,
alors (x0; y0) =

(
γx(t0) ; γy(t0)

)
∈ C peut être considéré comme la limite de

(x; y) =
(
γx(t) ; γy(t)

)
∈ C lorsque t tend vers t0.

• Les considérations faites dans les deux points précédents permettent de dire que
les idées de courbe plane (définie plus haut) et de ligne dans le plan euclidien
(mentionnée dans la section 2.1 du présent chapitre) ne sont qu’un unique et
même concept : les deux notions évoquent une figure géométrique d’« épaisseur
nulle » qui peut être tracée, dans le plan euclidien, en une fois, sans devoir lever
le crayon. Les termes courbe plane et ligne peuvent donc être considérés comme
des synonymes. Dans la suite, c’est l’expression courbe plane qui sera davantage
utilisée.

• Le graphe de n’importe quelle fonction réelle f : I → R, continue dans I, où I
est un intervalle dans R, peut être considéré comme une courbe plane. En effet,
le graphe d’une telle fonction f , qui est l’ensemble :

{
(x; y) ∈ R2

∣
∣ (x; y) =

(
x ; f(x)

)
, où x ∈ I

}
,

peut s’écrire sous la forme :
{
(x; y) ∈ R2

∣
∣ (x; y) =

(
t ; f(t)

)
, où t ∈ I

}

,

qui remplit les conditions de la définition de courbe plane.
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• Tout graphe de fonction réelle n’est pas nécessairement une courbe plane.

⋄ Il existe des fonctions qui ont pour graphe une réunion de plusieurs courbes
planes qui n’ont entre elles aucun point en commun ; le nombre de courbes peut
être fini (comme dans le cas de la fonction f : R∗ → R donnée par f(x) = 1

x
,

dont le graphe est constitué de deux courbes planes qui n’ont aucun point en
commun) ou infini (comme dans le cas de la fonction tangente, définie dans la
section C.8 de l’annexe C, dont le graphe est formé d’une infinité dénombrable
de courbes planes qui ne partagent aucun point en commun).

⋄ Certaines fonctions ont pour graphe un ensemble de points ; le nombre de
points de l’ensemble peut être fini (comme dans le cas de la fonction f :
{−1; 1} → R donnée par f(x) = x) ou infini dénombrable (comme dans
le cas de la fonction f : Z → R donnée par f(x) = x), ou encore infini
non dénombrable (comme dans le cas de la fonction f : R → R donnée par
f(x) = 1 si x ∈ Q et f(x) = 0 si x ∈ RrQ).

À partir de ces cas, on peut en imaginer d’autres ; on peut par exemple conce-
voir une fonction dont le graphe est constitué d’un ensemble de courbes planes
n’ayant aucun point en commun, et d’un ensemble de points qui ne forment pas
une courbe. Noter, pour terminer, que la caractérisation infinité non dénombrable
de points est quelque peu ambigue : il peut s’agir, selon les circonstances, d’une
courbe, d’une réunion de courbes, d’un ensemble de points que l’on ne peut tra-
cer qu’en levant le crayon pour passer d’un point à l’autre... Chaque fois qu’il est
question d’ensemble de points, il convient donc d’apporter les précisions néces-
saires, afin d’éviter toute confusion.



Chapitre 3

Calcul différentiel

Achille est un héros légendaire de la mythologie grecque, qui apparâıt dans le récit de
la guerre de Troie. Connu pour être un coureur particulièrement rapide, il est l’un des
acteurs d’une mise en scène imaginée par le philosophe grec Zénon d’Élée (490-430 av.
J.-C.), ayant pour but d’illustrer une invraisemblance, connue sous le nom de paradoxe
d’Achille et de la tortue. La situation est la suivante : Achille dispute une course avec
une tortue. L’animal étant réputé particulièrement lent, Achille laisse au départ une
longueur d’avance au reptile. Selon Zénon, Achille ne peut alors jamais rattraper la
tortue, son argument étant le suivant : pendant qu’Achille court jusqu’à la position ou
se trouvait la tortue initialement, celle-ci avance d’une certaine distance et se trouve
donc devant Achille. En répétant ce raisonnement autant de fois que souhaité, il semble
ressortir qu’Achille ne peut jamais rattraper la tortue. Pourtant, il n’est pas difficile de
s’imaginer qu’un être humain dépasse une tortue... L’expérience peut le révéler.

L’élément essentiel qui manque dans le raisonnement de Zénon, et dont l’absence
mène à une conclusion erronée, est l’aspect du temps qui s’écoule. Chaque étape décrite
dans le raisonnement de Zénon est de plus en plus courte, si bien qu’Achille rattrape
finalement la tortue. Deux méthodes, au moins, permettent de s’en convaincre. Afin de
les exposer clairement, supposons que les vitesses d’Achille et de la tortue, présumées
constantes, sont respectivement vA = 10,0m s−1 et vt = 0,1m s−1, et qu’Achille laisse
une distance d’avance d1 = 100m à la tortue.

• Première méthode :
Soit T1 la durée de la première étape, i.e. le temps que met Achille pour parcourir
la distance d1 = 100m. Comme vA est constante, alors :

d1 = vA T1 ⇔ T1 =
d1
vA

.

Pendant ce temps, la tortue avance de la distance d2 = vt T1 = d1 vt
vA

= d1
vt
vA

.
Soit T2 la durée de la deuxième étape, i.e. le temps que met Achille pour parcourir
la distance d2. Alors :

d2 = vA T2 ⇔ T2 =
d2
vA

= d1
vt
vA2

=
d1
vA

vt
vA

.
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Pendant ce temps la tortue avance de la distance d3 = vt T2 = d1
vt2

vA2
= d1

(
vt
vA

)2
.

Soit T3 la durée de la troisième étape, i.e. le temps que met Achille pour parcourir
la distance d3. Alors :

d3 = vA T3 ⇔ T3 =
d3
vA

=
d1
vA

(
vt
vA

)2

.

En continuant ainsi de suite, il ressort que l’étape n (où n ∈ N∗) a une durée :

Tn =
d1
vA

(
vt
vA

)n−1

=
d1
vt

(
vt
vA

)n

.

Une observation attentive de la dernière expression ci-dessus révèle que Tn est le
terme général d’une suite géométrique (Tn) de raison vt

vA
= 0,1 ms−1

10,0 m s−1 = 1
100

< 1.

Noter que la somme de l’infinité des termes de cette suite (i.e. la somme des
durées des première, deuxième, troisième... étapes) n’est rien d’autre que la durée
totale T que met Achille pour rattraper la tortue. La raison étant strictement
inférieure à 1, cette durée T est finie :

T = T1 + T2 + T3 + . . . =
∞∑

n=1

Tn =
∞∑

n=1

d1
vt

(
vt
vA

)n

=

∞∑

n=1

d1
vA

(
vt
vA

)n−1
k=n−1
=

∞∑

k=0

d1
vA

(
vt
vA

)k

=
d1
vA

1

1− vt
vA

=
100m

10,0m s−1

1

1− 1
100

= 10 s
1
99
100

= 10 s
100

99
=

1000

99
s ;

le passage de la première à la deuxième ligne de calcul se justifie par le fait que
(
vt
vA

)n
= vt

vA

(
vt
vA

)n−1
.

• Deuxième méthode :
Prenons un axe gradué, que l’on note z, et plaçons-le selon la direction et le
sens de la course, de sorte que l’origine soit à l’endroit où se trouve Achille au
départ. Posons, en outre, l’origine du temps à l’instant où la course débute. Dans
ces circonstances, les positions d’Achille zA(t) et de la tortue zt(t) s’écrivent
zA(t) = vA t et zt(t) = vt t + d1, où d1 est la distance qui sépare Achille de la
tortue au début de la course et t le temps qui s’écoule. Notons T l’instant où
Achille rejoint la tortue. À cet instant, les positions d’Achille et de la tortue sont
égales : zA(T ) = zt(T ) ; concrètement :

vAT = vt T + d1 ⇔ vAT − vt T = d1 ⇔ (vA − vt) T = d1 .

Ainsi :

T =
d1

vA − vt
=

100m

10,0m s−1 − 0,1m s−1
=

100m

9,9m s−1
=

1000m

99ms−1
=

1000

99
s .
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Manifestement, les deux méthodes conduisent au même résultat. La première méthode
illustre bien le fait qu’une infinité d’étapes n’implique pas une durée infinie ; l’étude
des suites géométriques dans le premier chapitre avait déjà mis en évidence ce type de
constat. La vitesse de chacun des protagonistes ne changeant pas durant la course, la
durée de chaque étape ne peut que diminuer, de sorte que :

vA =
d1
T1

=
d2
T2

=
d3
T3

= . . . = lim
k→∞

dk
Tk

,

vt =
d2
T1

=
d3
T2

=
d4
T3

= . . . = lim
k→∞

dk+1

Tk
,

d1 d2 d3

dk étant la distance parcourue par Achille lors de la k-ième étape et Tk la durée cor-
respondante, où k = 1, 2, 3, . . . Les rapports dk

Tk
et

dk+1

Tk
expriment ce que l’on appelle

des vitesses moyennes : ce sont les vitesses moyennes d’Achille et de la tortue, respec-
tivement, sur la k-ième étape. Lorsque k tend vers ∞, ce qui correspond à l’infinitième
étape, les quantités dk, et donc dk+1, ainsi que Tk tendent vers 0. Cela étant, les rap-
ports dk

Tk
et dk+1

Tk
ne tendent ni vers 0, ni vers ∞, mais vers vA pour le premier, et vers vt

pour le second. Les quantités vA et vt ne sont, de fait, pas uniquement des rapports de
grandeurs finies non nulles, mais également des quantités résultant de calculs de limites ;
de telles quantités sont ce que l’on appelle des vitesses instantanées : ce sont les vitesses
instantanées d’Achille et de la tortue, respectivement, à l’instant où Achille rejoint la
tortue.

Noter que le concept de vitesse moyenne, que ce soit pour Achille ou la tortue, peut
être défini non seulement sur les étapes mentionnées plus haut, mais dans n’importe
quel intervalle de temps [t0; t1], où t0 et t1 sont deux instants où Achille et la tortue
avancent, tels que t0 < t1. Pour cela, il suffit de :

• prendre un axe gradué, que l’on note z, et de le placer selon la direction et le sens
de la course,

• relever les positions d’Achille zA(t0) et zA(t1), ou celles de la tortue zt(t0) et zt(t1),
aux instants t0 et t1 respectivement,

• calculer le rapport zA(t1)−zA(t0)
t1−t0

ou le rapport zt(t1)−zt(t0)
t1−t0

. Par définition, ces rap-
ports sont ce que l’on appelle les vitesses moyennes d’Achille et de la tortue,
respectivement, dans l’intervalle [t0; t1].

Pour ce qui est de la notion de vitesse instantanée, que ce soit pour Achille ou pour la
tortue, elle peut être définie non seulement en l’instant où Achille rattrape la tortue,
mais aussi en n’importe quel autre instant t0 de la course. Pour cela, il suffit de :

• reprendre le rapport zA(t1)−zA(t0)
t1−t0

ou le rapport zt(t1)−zt(t0)
t1−t0

, donnés précédemment,
et d’en prendre la limite lorsque t1 tend vers t0, i.e. lorsque ∆t tend vers 0, où
∆t = t1 − t0. Par définition, les limites de ces rapports sont ce que l’on appelle
les vitesses instantanées d’Achille et de la tortue, respectivement, à l’instant t0.

Reprenons l’axe gradué z introduit précédemment, lors de la résolution du paradoxe
de Zénon d’Élée avec la deuxième méthode proposée. Sur cet axe, la position d’Achille
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zA(t) s’écrit, rappelons-le, zA(t) = vA t. De fait :

zA(t1)− zA(t0)

t1 − t0
=

zA(t0 +∆t)− zA(t0)

∆t
=

vA(t0 +∆t)− vA t0
∆t

=
vA t0 + vA∆t− vA t0

∆t
=

vA∆t

∆t
= vA ;

où ∆t = t1 − t0. Aussi :

lim
t1→t0

zA(t1)− zA(t0)

t1 − t0
= lim

∆t→0

zA(t0 +∆t)− zA(t0)

∆t
= lim

∆t→0
vA = vA .

Pour ce qui est de la tortue, sa position zt(t) sur l’axe z mentionné précédemment
s’écrit zt(t) = vt t+ d1. Des calculs similaires à ceux qui viennent d’être faits mènent au
résultat vt. Sans surprise, les quantités obtenues ici ne sont rien d’autre que les vitesses
d’Achille et de la tortue, respectivement, introduites au début du présent chapitre.

T1 T2 T3

d1

d2

d3

t

z

∆t

∆zA

∆t

∆zt

Le diagramme ci-contre représente les positions d’Achille zA(t)
et de la tortue zt(t) en fonction du temps t qui s’écoule. Le fait que
la fonction t 7→ zA(t) (respectivement t 7→ zt(t)) a pour graphe un
morceau de droite illustre bien le fait que vA (respectivement vt)
correspond aussi bien à la vitesse moyenne d’Achille (respective-
ment de la tortue) sur chaque étape qu’à sa vitesse instantanée en
chaque instant de la course : vA (respectivement vt) n’est en effet
rien d’autre que la pente du morceau de droite qui forme le graphe
de t 7→ zA(t) (respectivement t 7→ zt(t)) ; cette pente demeure la
même, quelles que soient les quantités utilisées pour la calculer,
grandes, petites ou même infiniment petites.

3.1 Tangente et vitesse instantanée

Dans le paradoxe formulé par Zénon d’Élée, que ce soit Achille ou la tortue, les deux
avancent à vitesse constante ; autrement dit, les deux ont des vitesses instantanées qui ne
changent pas durant toute la course. Ce fait a pour conséquence que la vitesse moyenne
de chacun des protagonistes, dans tout intervalle de temps donné, est égale à sa vitesse
instantanée de chaque instant. Si un tel résultat s’applique à tout coureur, ou à tout objet
mobile, dont la vitesse instantanée demeure constante durant sa course, il ne s’observe
en revanche pas lorsqu’il est question d’un mouvement avec vitesse instantanée variable.
Pour justifier un tel propos, considérons la situation concrète suivante :

• on place une boule au sommet d’un plan incliné (formant un certain angle non
nul avec l’horizontale),

• on lâche la boule ; elle se met a rouler sans glisser le long du plan incliné.
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z (m)Plaçons un axe gradué z le long du plan incliné, pointant vers le
bas, de sorte que son origine cöıncide avec la position de la boule
lorsqu’elle est immobile au sommet. Choisissons, en outre, comme
origine du temps l’instant où la boule est lâchée. En mesurant
avec précision la position de la boule à différents instants, on
remarque que sa position z peut s’écrire en fonction du temps t
comme suit :

z(t) = (2,5m s−2) t2 , t > 0 s .

La figure ci-contre représente un échantillon du graphe de la fonc-
tion t 7→ z(t). Dans l’intervalle de temps [t0; t1], où t0 = 2 s et
t1 = 3 s, la vitesse moyenne de la boule est, par définition :

v3 s−2 s =
z(3 s)− z(2 s)

3 s− 2 s
=

(2,5m s−2) (3 s)2 − (2,5m s−2) (2 s)2

3 s− 2 s

=
22,5m− 10m

1 s
= 12,5m s−1 .

Dans le cas où t0 = 2 s et t1 = 2,5 s, la vitesse moyenne, dans l’intervalle [t0; t1], est :

v2,5 s−2 s =
z(2,5 s)− z(2 s)

2,5 s− 2 s
=

(2,5m s−2) (2,5 s)2 − (2,5m s−2) (2 s)2

2,5 s− 2 s

=
15,625m− 10m

0,5 s
= 11,25m s−1 .

Ce dernier résultat est manifestement différent du précédent. Plus généralement, dans
l’intervalle de temps [t0; t1], où t0 = 2 s et t1 = t0 +∆t = 2 s+∆t, où ∆t est un nombre
réel non nul quelconque, la vitesse moyenne de la boule s’écrit :

v∆t =
z(t0 +∆t)− z(t0)

t0 +∆t− t0
=

(2,5m s−2) (t0 +∆t)2 − (2,5m s−2) t0
2

∆t

=
(2,5m s−2) (t0

2 + 2 t0∆t +∆t2)− (2,5m s−2) t0
2

∆t

=
(5ms−2) t0∆t + (2,5m s−2)∆t2

∆t
=

∆t
(
(5m s−2) t0 + (2,5m s−2)∆t

)

∆t

= (5ms−2) t0 + (2,5m s−2)∆t = (5ms−2) · 2 s + (2,5m s−2)∆t

= 10ms−1 + (2,5m s−2)∆t ,

où ∆t2 = (∆t)2 (les parenthèses étant souvent omises pour ne pas alourdir l’écriture).
Le fait que l’expression de v∆t dépend de ∆t montre clairement que la vitesse moyenne
de la boule dépend de l’intervalle de temps considéré. En faisant tendre ∆t vers 0, il
vient :

lim
∆t→0

v∆t = lim
∆t→0

(
10m s−1 + (2,5m s−2)∆t

)
= 10ms−1 .
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La dernière quantité obtenue est, par définition, la vitesse instantanée de la boule à
l’instant t0 = 2 s ; on la note ici vinst,2 s :

vinst,2 s = 10ms−1 .

Noter que cette quantité est encore différente des précédentes.
D’un point de vue graphique, la vitesse moyenne vt1−t0 peut être interprétée comme

étant la pente du segment reliant les points P0

(
t0 ; z(t0)

)
et P1

(
t1 ; z(t1)

)
sur le graphe

de la fonction t 7→ z(t). Dans le cas où t1 tend vers t0, i.e. où ∆t = t1 − t0 tend vers 0,
le segment en question devient infiniment petit et se trouve sur la droite tangente au
graphe de t 7→ z(t) en P0. La vitesse instantanée vinst,t0 n’est, de fait, rien d’autre que
la pente de la tangente au graphe de t 7→ z(t) en P0.

3.1.1 Remarques : • Si la méthode visant à déterminer les tangentes à une courbe
a été formulée pour la première fois par Pierre de Fermat I dans la première moitié
du XVIIe siècle, la notion de vitesse instantanée n’a été réellement mise au point
qu’à la fin du même siècle, après que Gottfried Wilhelm Leibniz II a élaboré le
formalisme des infiniment petits.

• Les considérations et calculs effectués depuis le début du chapitre permettent de
tenir les propos suivants :

⋄ Pour tout corps se déplaçant en ligne droite, avec une vitesse instantanée
demeurant constante durant le mouvement, la valeur de la vitesse instanta-
née peut être déduite en calculant la vitesse moyenne dans n’importe quel
intervalle de temps, sans devoir recourir à un calcul de limite.

⋄ Pour tout corps se déplaçant en ligne droite, avec une vitesse instantanée
ne demeurant pas constante durant le mouvement, la valeur de la vitesse
instantanée, en un instant t0 donné, ne peut être déduite qu’en recourant à
un calcul de limite, comme cela a été fait ci-dessus.

Le calcul de limite qui permet d’obtenir la vitesse instantanée d’un corps à un
instant t0 donné est ce que l’on appelle une opération de dérivation. Et la vitesse
instantanée à l’instant t0 est ce que l’on appelle la dérivée de la position du corps
(par rapport au temps) à l’instant t0.

3.2 Notion de dérivée

3.2.1 Définitions : Soit f : D → R (où D ⊂ R) une fonction réelle. Soient aussi x0 et x1
deux nombres réels dans D tels que x0 6= x1.

• On appelle accroissement de la variable indépendante x, dans l’intervalle [x0; x1],
le nombre réel ∆x = x1 − x0 .

I. Pierre de Fermat était un magistrat et mathématicien français, né en 1601 à Beaumont-de-
Lomagne et mort en 1665 à Castres (dans le sud-ouest du royaume de France).

II. Gottfried Wilhelm Leibniz était notamment un philosophe et mathématicien germanique, né le
1er juillet 1646 à Leipzig et mort le 14 novembre 1716 à Hanover. Avec Isaac Newton, il est l’un des
inventeurs du calcul infinitésimal.
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• On appelle accroissement de la variable dépendante y, associée à l’accroisse-
ment ∆x = x1 − x0, le nombre réel ∆y= f(x1)−f(x0) ; autrement écrit, ∆y =
f(x0 +∆x)− f(x0) (vu que x1 = x0 +∆x).

3.2.2 Définitions : Soit f : D → R (où D ⊂ R) une fonction réelle, définie dans un
voisinage d’un nombre réel x0 ∈ D (i.e. définie dans un sous-ensemble de R contenant un
intervalle ouvert de la forme ]x0−γ ; x0+γ[ , où γ est un nombre réel strictement positif) ;
soit aussi x1 un nombre réel dans D, différent de x0. À l’accroissement ∆x = x1 − x0 de
la variable x correspond l’accroissement ∆y = f(x1)− f(x0) de la variable y.

• On dit que la fonction f est dérivable en x0 ∈ D si la
quantité :

∆y

∆x
=

f(x0 +∆x)− f(x0)

∆x

admet pour limite un nombre réel lorsque ∆x tend
vers 0.

x

y

O x0 x1

f(x0)

f(x1)

∆x

∆yP0

P1

• Supposons que f est dérivable en x0. On appelle dérivée de f en x0 la quantité
f ′(x0) donnée par :

f ′(x0) = lim
∆x→0

∆y

∆x
= lim

∆x→0

f(x0 +∆x)− f(x0)

∆x
.

3.2.3 Remarques : Reprenons les notations de la définition précédente.

• Dans sa formulation du calcul différentiel (et intégral), dans la deuxième moitié
du XVIIe siècle, Leibniz a utilisé le concept d’élément infiniment petit pour définir
la dérivée d’une fonction ; selon son point de vue :

f ′(x0) =
dy

dx
,

où :

⋄ dx est ce que l’on appelle un accroissement infinitésimal (i.e. infiniment petit)
de la variable indépendante x (depuis x0),

⋄ dy est ce que l’on appelle un accroissement infinitésimal (i.e. infiniment petit)
de la variable dépendante y (depuis f(x0)).

Le point de vue de Leibniz fait sens : lorsque les accroissements ∆x et ∆y de-
viennent toujours plus petits, le point P

(
x1; f(x1)

)
se trouve toujours plus près

de P0

(
x0; f(x0)

)
, si bien que le rapport des accroissements s’approche toujours

plus de la dérivée de la fonction f en x0 .

• Qu’est-ce qu’un accroissement infiniment petit , au juste ? Est-ce un nombre nul
ou non ? S’il est nul, le rapport dy

dx
introduit au point précédent n’a pas de sens, vu

qu’il s’agit alors d’une forme indéterminée ; s’il n’est pas nul, alors dy
dx

ne corres-
pond qu’approximativement à la dérivée de la fonction f en x0. Manifestement, le
concept d’élément infiniment petit ne peut pas être défini rigoureusement. Il est
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toutefois volontiers utilisé car il permet de noter de manière compacte la limite
d’un rapport de deux grandeurs continues.

• De manière générale, le rapport dy
dx

(introduit au point avant précédent) n’est

pas égal au rapport ∆y
∆x

; ce n’est qu’à la limite où ∆x tend vers 0 que les deux
fractions sont égales.

• Dans le plan euclidien R2 (muni de son système de coordonnées cartésiennes
canonique Oxy), la tangente au graphe de la fonction f au point P0

(
x0; f(x0)

)
,

à supposer qu’elle existe, a pour pente le nombre réel f ′(x0). Un tel résultat est
une conséquence directe du fait que le rapport ∆y

∆x
est égal, par définition, à la

pente de la droite passant par les points P0

(
x0 ; f(x0)

)
et P1

(
x1 ; f(x1)

)
, et du

fait que f ′(x0) est égale à la limite dudit rapport lorsque ∆x tend vers 0.

3.2.4 Définitions : Soit f : D → R une fonction réelle.

• Soit x0 un nombre réel dans D.

⋄ On dit que f est dérivable à gauche en x0 si f est définie dans un intervalle
de la forme ]α; x0], où α est un nombre réel strictement plus petit que x0, et
si la limite suivante existe et est égale à un nombre réel :

lim
∆x→0
∆x<0

f(x0 +∆x)− f(x0)

∆x
.

Cette limite est alors appelée dérivée à gauche de f .

⋄ On dit que f est dérivable à droite en x0 si f est définie dans un intervalle de
la forme [x0; α[ , où α est un nombre réel strictement plus grand que x0, et si
la limite suivante existe et est égal à un nombre réel :

lim
∆x→0
∆x>0

f(x0 +∆x)− f(x0)

∆x
.

Cette limite est alors appelée dérivée à droite de f .

• Soient I = ]a; b[ un intervalle ouvert et Ī = [a; b] le plus petit intervalle fermé
contenant I, où a et b sont deux nombres réels tels que a < b.

⋄ On dit que f est dérivable dans I si f est définie et dérivable en chaque point
x0 ∈ I.

⋄ On dit que f est dérivable dans Ī si f est définie en chaque point x0 ∈ Ī et si
elle est à la fois :

✄ dérivable dans I,

✄ dérivable à droite en a,

✄ dérivable à gauche en b.

3.2.5 Définition : Soient f : D → R une fonction réelle. Supposons que f est dérivable
en tout x ∈ H , où H est un sous-ensemble non vide de D. On appelle fonction dérivée
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(ou simplement dérivée) de f la fonction :

f ′ : H −→ R

x 7−→ f ′(x) ,

donnée par :

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
.

3.2.6 Remarques : • Dans la définition précédente, f ′ : H → R est bien une fonc-
tion. En effet, comme :

⋄ la limite du rapport f(x+∆x)−f(x)
∆x

lorsque ∆x tend vers 0 est définie en tout
point de H , par hypothèse ;

⋄ toute limite, dès lors qu’elle existe, est unique,

alors, à tout x ∈ H correspond un et un unique nombre réel ; il s’agit de :

lim
∆x→0

f(x+∆x)− f(x)

∆x
;

la conclusion s’ensuit.

• Le domaine de définition de la dérivée d’une fonction réelle est systématiquement
inclus dans le domaine de définition de ladite fonction.

3.2.7 Notation : Différentes notations sont admises pour désigner la dérivée f ′ d’une
fonction f ; voici les plus courantes :

f ′(x) =
dy

dx
=

df

dx
=

d

dx
f(x) .

Selon la notation, la dépendance en la variable x apparâıt explicitement ou non.

3.2.8 Exemple : Soit f : R → R la fonction donnée par f(x) = x2. Alors, pour tout
x ∈ R :

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

(x+∆x)2 − x2

∆x

= lim
∆x→0

x2 + 2 x∆x+∆x2 − x2

∆x
= lim

∆x→0

2 x∆x+∆x2

∆x

= lim
∆x→0

∆x (2 x+∆x)

∆x
= lim

∆x→0
(2 x+∆x) = 2 x .

Ce calcul montre que la dérivée f ′ de f est définie dans tout R. Considérons à présent
le plan euclidien R2, muni de son système de coordonnées cartésiennes canoniques Oxy.
Dans ce plan, intéressons-nous à la tangente au graphe de f au point P (xP ; yP ), où
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xP = 1 et yP = f(xP ) = f(1) = 1. Selon les propos tenus dans le quatrième point des
remarques 3.2.3, la pente m de cette tangente est donnée par :

m = f ′(xP ) = f ′(1) = 2 · 1 = 2 .

P étant le point de tangence, il appartient non seulement au graphe
de f , mais aussi à la tangente en question. De fait, les coordon-
nées (x; y) de n’importe quel point se trouvant sur cette tangente
doivent satisfaire l’équation :

y − yP
x− xP

= f ′(xP ) ⇔ y − 1

x− 1
= 2 .

L’équation de la tangente au graphe de f en P (1; 1) s’écrit donc :

y − 1 = 2 (x− 1) ⇔ y = 2 x− 1 .

x

y

0 1

−1

1 P

3.2.9 Remarque : La dérivée f ′ d’une fonction réelle f en un nombre réel x0 peut ne
pas être définie, quand bien même f est définie dans un voisinage de x0. La proposition
qui suit indique la condition que doit nécessairement satisfaire f pour qu’elle puisse être
dérivable en x0.

3.2.10 Proposition : Soit f : D → R une fonction réelle définie, dans un voisinage d’un
nombre réel x0 ∈ D. Si f est dérivable en x0, alors f est nécessairement continue en x0.

Preuve : Soit f : D → R une fonction réelle, définie dans un voisinage d’un nombre réel
x0 ∈ D. Pour tout x ∈ D tel que x 6= x0, l’expression f(x) peut s’écrire sous la forme :

f(x) = f(x0) +
f(x)− f(x0)

x− x0
(x− x0) .

f étant dérivable en x0, la limite suivante existe et correspond à la dérivée de f en x0 :

lim
x→x0

f(x)− f(x0)

x− x0
= lim

∆x→0

f(x0 +∆x)− f(x0)

∆x
= f ′(x0) ,

où ∆x = x− x0 ⇔ x = x0 +∆x. Ainsi :

lim
x→x0

f(x) = lim
x→x0

(

f(x0) +
f(x)− f(x0)

x− x0
(x− x0)

)

= f(x0) + f ′(x0) (x0 − x0) = f(x0) ,

ce qui montre la continuité de f en x0 . �

3.2.11 Remarques : • La réciproque de la proposition précédente n’est pas vraie ;
une fonction réelle f : D → R, définie dans un voisinage d’un nombre réel x0 ∈ D,
peut être continue en x0 sans qu’elle soit dérivable en x0 (cf. définition ci-dessous).
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• La proposition précédente dit que si une fonction réelle f : D → R, définie dans
un voisinage d’un nombre réel x0 ∈ D, est dérivable en x0, elle est continue
en x0 ; mais elle n’affirme pas que la dérivée f ′ est elle-même continue en x0.
Une fonction peut être dérivable en un nombre réel x0, sans que la dérivée soit
continue en x0. Pour s’en convaincre, considérons la fonction f : R → R donnée
par :

f(x) =

{

x2 sin
(
1
x

)
si x 6= 0

0 si x = 0
,

où sin désigne la fonction sinus (cf. section C.8). Cette
fonction f est continue en 0 ; en effet :

lim
x→0

f(x) = lim
x→0

x2 sin

(
1

x

)

= 0 = f(0) ;

x

y

1

1

−1

−1 0

le fait que limx→0 x
2 sin

(
1
x

)
= 0 se justifie en invoquant le théorème des deux

gendarmes : d’une part, −x2 6 x2 sin
(
1
x

)
6 x2 pour tout x ∈ R∗ (vu que −1 6

sin
(
1
x

)
6 1 pour tout x ∈ R∗) ; d’autre part, limx→0−x2 = 0 = limx→0 x

2 ; la
conclusion s’ensuit. Intéressons-nous à présent à la dérivée f ′ de f .

⋄ En x = 0, f ′ est définie et vaut 0 ; en effet :

f ′(0) = lim
∆x→0

f(0 + ∆x)− f(0)

∆x
= lim

∆x→0

(0 + ∆x)2 sin
(

1
0+∆x

)
− 0

∆x

= lim
∆x→0

∆x2 sin
(

1
∆x

)

∆x
= lim

∆x→0
∆x sin

(
1

∆x

)

= 0 ;

le fait que lim∆x→0∆x sin
(

1
∆x

)
= 0 se justifie en invoquant (comme précédem-

ment) le théorème des deux gendarmes : d’une part, −|∆x| 6 ∆x sin
(

1
∆x

)
6

|∆x| pour tout ∆x 6= 0 ; d’autre part, lim∆x→0−|∆x| = 0 = lim∆x→0 |∆x| ; la
conclusion s’ensuit.

⋄ En x ∈ R∗, f ′ est définie et vaut (cf. section 3.3 et sous-section C.8 de l’an-
nexe C) :

f ′(x) = 2 x sin

(
1

x

)

+ x2 cos

(
1

x

)

·
(

− 1

x2

)

= 2 x sin

(
1

x

)

− cos

(
1

x

)

.

En résumé :

f ′(x) =

{

2 x sin
(
1
x

)
− cos

(
1
x

)
si x 6= 0

0 si x = 0
.
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Si f ′ est définie en tout x ∈ R, elle n’est toutefois pas continue en x = 0 ; et pour
cause :

lim
x→0

f ′(x) = lim
x→0

[

2 x sin

(
1

x

)

− cos

(
1

x

)]

= lim
x→0

2 x sin

(
1

x

)

− lim
x→0

cos

(
1

x

)

= 0− lim
x→0

cos

(
1

x

)

= − lim
x→0

cos

(
1

x

)

;

x

y

1

1

−1

−1

or, limx→0 cos
(
1
x

)
n’existe pas. Noter que si limx→0 2 x sin

(
1
x

)
= 0, c’est (encore

une fois) en vertu du théorème des deux gendarmes.

3.2.12 Définition : Soient le plan euclidien R2 et Oxy son système de coordonnées car-
tésiennes canonique. Soit aussi f : D → R une fonction réelle,
définie dans un voisinage d’un nombre réel x0 ∈ D. On dit
que le point P

(
x0 ; f(x0)

)
∈ R2 est un point anguleux du

graphe de f si :

x

y

O x0

f(x0)
P

⋄ f est continue en x0,

⋄ les deux limites :

lim
∆x→0
∆x>0

f(x0 +∆x)− f(x0)

∆x
et lim

∆x→0
∆x<0

f(x0 +∆x)− f(x0)

∆x

existent, mais ne sont pas égales.

Dans le cas où les deux limites mentionnées ci-dessus valent respectivement ∞ et −∞
ou −∞ et ∞, on dit que P est un point de rebroussement.

3.2.13 Remarques : • Soit f : D → R une fonction réelle, définie dans un voisinage
d’un nombre réel x0 ∈ D et continue en x0. Dans le cas où :

lim
∆x→0
∆x>0

f(x0 +∆x)− f(x0)

∆x
= lim

∆x→0
∆x<0

f(x0 +∆x)− f(x0)

∆x
= ∞

ou :

lim
∆x→0
∆x>0

f(x0 +∆x)− f(x0)

∆x
= lim

∆x→0
∆x<0

f(x0 +∆x)− f(x0)

∆x
= −∞ ,

on dit que f admet une dérivée infinie en x0. Vu les circonstances, x0 ne fait
pas partie du domaine de définition de la dérivée de f . Dans le plan euclidien R2

(muni de son système de coordonnées cartésiennes canonique Oxy), le graphe
de f admet néanmoins une tangente au point P

(
x0; f(x0)

)
: il s’agit d’une droite

verticale. Comme exemple, on peut mentionner la fonction :

f : R −→ R

x 7−→ 3
√
x
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En x = 0, f admet une dérivée infinie ; en effet :

lim
∆x→0

f(0 + ∆x)− f(0)

∆x
= lim

∆x→0

3
√
0 + ∆x− 3

√
0

∆x

= lim
∆x→0

3
√
∆x

∆x
= lim

∆x→0

∆x
1
3

∆x

= lim
∆x→0

1

∆x
2
3

= ∞ ,

x

y

0 1

1

−1

−1

et ce, que ∆x tende vers 0 par valeurs plus petites ou par valeurs plus grandes.
La figure ci-dessus illustre la situation : la droite confondue avec l’axe Oy est
verticale et tangente au graphe de f en O(0; 0).

• Un point du graphe d’une fonction où la tangente est verticale n’est pas un point
de rebroussement.

3.2.14 Illustration : La figure ci-contre représente la trajectoire d’une automobile qui
avance vers une place de stationnement, s’y arrête, puis recule afin de repartir dans
l’autre sens. Il est supposé que le véhicule se déplace dans un plan. En assimilant ce
plan au plan euclidien R2 et en choisissant un système de
coordonnées cartésiennes de manière judicieuse, dans ce
plan R2, on peut voir la trajectoire de l’automobile comme
le graphe d’une fonction réelle f d’une variable réelle. Dans
ces circonstances, le point où l’automobile s’arrête pour en-
suite reculer peut être vu comme un point de rebroussement
du graphe de f .

x

y

3.3 Formules de dérivation

Le calcul de limite visant à obtenir la dérivée d’une fonction donnée peut s’avérer souvent
laborieux.

La présente section a pour objectif de présenter et démontrer un certain nombre de
formules qui permettent de faciliter les calculs de dérivées. Avec de telles formules, et en
connaissant la dérivée de certaines fonctions basiques, il est possible de trouver aisément
l’expression de la dérivée de la plupart des fonctions que l’on retrouve en physique et
dans les sciences de l’ingénierie, sans devoir recourir à un quelconque calcul de limite.

3.3.1 Proposition : Soit h : D → R une fonction réelle, définie et constante dans un
intervalle ouvert I ⊂ D ; autrement dit, soit h une fonction telle que h(x) = c, pour tout
x ∈ I, où c est un nombre réel et I un intervalle ouvert. Alors :

• h est dérivable dans I ; de plus :

h′(x0) = 0 , pour tout x0 ∈ I.
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Soient maintenant f : D1 → R et g : D2 → R deux fonctions réelles, toutes les deux
définies dans un voisinage d’un nombre réel x0 ∈ D, et dérivables en x0. Alors :

• la fonction f + g est dérivable en x0 ; de plus :

(
f + g

)′
(x0) = f ′(x0) + g′(x0) ;

• la fonction fg est dérivable en x0 ; de plus :

(
fg
)′
(x0) = f ′(x0) g(x0) + f(x0) g

′(x0) ;

• la fonction cf , où c est un nombre réel, est dérivable en x0 ; de plus :

(
cf
)′
(x0) = cf ′(x0) ;

• la fonction f
g
est dérivable en x0, pour autant que g ne s’annule pas en x0 ; de

plus :
(
f

g

)′
(x0) =

f ′(x0) g(x0)− f(x0) g
′(x0)

(
g(x0)

)2 ;

• la fonction 1
g
est dérivable en x0, pour autant que g ne s’annule pas en x0 ; de

plus :
(
1

g

)′
(x0) =

−g′(x0)
(
g(x0)

)2 .

Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage de f(x0), et qu’elle est
dérivable en f(x0). Alors :

• la fonction g ◦ f est dérivable en x0 ; de plus :

(
g ◦ f

)′
(x0) = g′

(
f(x0)

)
f ′(x0) .

Preuve : Soit h : D → R une fonction réelle, définie et constante dans un intervalle
ouvert I ⊂ D.

• Dire que h est constante dans I revient à écrire h(x) = c pour tout x ∈ I, où c est
un nombre réel. Soient x0 un élément de I et ∆x un accroissement de la variable x
tel que x0 +∆x ∈ I. Alors h(x0) = c = h(x0 +∆x) et donc :

h′(x0) = lim
∆x→0

h(x0 +∆x)− h(x0)

∆x
= lim

∆x→0

c− c

∆x

= lim
∆x→0

0

∆x
= lim

∆x→0
0 = 0 ;

ce qui montre, en outre, que h est dérivable en tout x0 ∈ I.
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Soient maintenant f : D1 → R et g : D2 → R deux fonctions réelles, toutes les deux
définies dans un voisinage d’un nombre réel x0 ∈ D, et dérivables en x0.

• Soit f + g la somme des fonctions f et g. Alors :

(
f + g

)′
(x0) = lim

∆x→0

(
f + g

)
(x0 +∆x)−

(
f + g

)
(x0)

∆x

= lim
∆x→0

(
f(x0 +∆x) + g(x0 +∆x)

)
−
(
f(x0) + g(x0)

)

∆x

= lim
∆x→0

(
f(x0 +∆x)− f(x0)

)
+
(
g(x0 +∆x)− g(x0)

)

∆x

= lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
+ lim

∆x→0

g(x0 +∆x)− g(x0)

∆x

= f ′(x0) + g′(x0) ;

ce qui montre, en outre, que f + g est dérivable en x0.

• Soit fg le produit des fonctions f et g. Alors :
(
fg
)′
(x0) =

= lim
∆x→0

(
fg
)
(x0 +∆x)−

(
fg
)
(x0)

∆x

= lim
∆x→0

f(x0 +∆x) g(x0 +∆x)− f(x0) g(x0)

∆x

= lim
∆x→0

f(x0 +∆x) g(x0 +∆x)− f(x0) g(x0 +∆x) + f(x0) g(x0 +∆x)− f(x0) g(x0)

∆x

= lim
∆x→0

(
f(x0 +∆x)− f(x0)

)
g(x0 +∆x) + f(x0)

(
g(x0 +∆x)− g(x0)

)

∆x

= lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
g(x0 +∆x) + lim

∆x→0
f(x0)

g(x0 +∆x)− g(x0)

∆x

= f ′(x0) g(x0) + f(x0) g
′(x0) ;

ce qui montre, en outre, que fg est dérivable en x0. Noter que l’introduction
de l’expression −f(x0) g(x0 +∆x) + f(x0) g(x0 +∆x), dans le numérateur de la
fraction à la quatrième ligne de calcul, est tout à fait licite, vu qu’il s’agit d’une
quantité nulle.

• Le fait que
(
cf
)′
(x0) = cf ′(x0), où c est une constante, est une conséquence di-

recte du calcul précédent, ainsi que du fait que la dérivée d’une fonction constante
est la fonction qui vaut zéro partout :

(
cf
)′
(x) = c′f(x) + cf ′(x) = 0 · f(x) + cf ′(x) = cf ′(x) .
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• Soit f
g
le quotient des deux fonctions f et g. Alors :

(
f

g

)′
(x0) = lim

∆x→0

(
f
g

)
(x0 +∆x)−

(
f
g

)
(x0)

∆x

= lim
∆x→0

1

∆x

[(
f

g

)

(x0 +∆x)−
(
f

g

)

(x0)

]

= lim
∆x→0

1

∆x

(
f(x0 +∆x)

g(x0 +∆x)
− f(x0)

g(x0)

)

= lim
∆x→0

1

∆x

f(x0 +∆x) g(x0)− f(x0) g(x0 +∆x)

g(x0 +∆x) g(x0)

= lim
∆x→0

f(x0 +∆x) g(x0)− f(x0) g(x0 +∆x)

∆x g(x0 +∆x) g(x0)

= lim
∆x→0

f(x0 +∆x) g(x0)− f(x0) g(x0) + f(x0) g(x0)− f(x0) g(x0 +∆x)

∆x g(x0 +∆x) g(x0)

= lim
∆x→0

(
f(x0 +∆x)− f(x0)

)
g(x0)− f(x0)

(
g(x0 +∆x)− g(x0)

)

∆x g(x0 +∆x) g(x0)

= lim
∆x→0

(
f(x0 +∆x)− f(x0)

)
g(x0)

∆x g(x0 +∆x) g(x0)
− lim

∆x→0

f(x0)
(
g(x0 +∆x)− g(x0)

)

∆x g(x0 +∆x) g(x0)

= lim
∆x→0

f(x0 +∆x)− f(x0)

∆x

g(x0)

g(x0 +∆x) g(x0)

− lim
∆x→0

f(x0)

g(x0 +∆x) g(x0)

g(x0 +∆x)− g(x0)

∆x

= f ′(x0)
g(x0)
(
g(x0)

)2 − f(x0)
(
g(x0)

)2 g
′(x0) =

f ′(x0) g(x0)− f(x0) g
′(x0)

(
g(x0)

)2 .

Ce calcul montre, en outre, que f
g
est dérivable en x0.

• Pour prouver la formule :

(
1

g

)′
(x0) = − g′(x0)

(
g(x0)

)2 ,

il suffit d’appliquer le résultat obtenu au point précédent dans le cas où f est
une fonction constante, qui vaut 1 (dans un voisinage de x0) ; la conclusion est
immédiate.
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Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage de f(x0), et qu’elle est
dérivable en f(x0).

• Posons u = f(x), u0 = f(x0) et ∆u = f(x0 +∆x)− f(x0), où ∆x est un accrois-
sement de la variable x et ∆u l’accroissement correspondant de la variable u.
Alors :

(
g ◦ f

)′
(x0) = lim

∆x→0

(g ◦ f)(x0 +∆x)− (g ◦ f)(x0)
∆x

= lim
∆x→0

g
(
f(x0 +∆x)

)
− g
(
f(x0)

)

∆x
.

Deux situations peuvent se présenter, lors du calcul de la limite.

⋄ ∆u 6= 0 lorsque l’on s’approche arbitrairement près de x0 (sans toucher x0) ;
dans ce cas :

lim
∆x→0

g
(
f(x0 +∆x)

)
− g
(
f(x0)

)

∆x
=

= lim
∆x→0

g(u0 +∆u)− g(u0)

∆x

= lim
∆x→0

g(u0 +∆u)− g(u0)

∆u
· ∆u
∆x

= lim
∆x→0

g(u0 +∆u)− g(u0)

∆u
· f(x0 +∆x)− f(x0)

∆x

= lim
∆x→0

g(u0 +∆u)− g(u0)

∆u
lim

∆x→0

f(x0 +∆x)− f(x0)

∆x

= lim
∆u→0

g(u0 +∆u)− g(u0)

∆u
lim

∆x→0

f(x0 +∆x)− f(x0)

∆x

= g′(u0) f
′(x0) = g′

(
f(x0)

)
f ′(x0) ,

du fait que ∆u tend nécessairement vers 0 lorsque ∆x tend vers 0. En consé-
quence :

(
g ◦ f

)′
(x0) = g′

(
f(x0)

)
f ′(x0)

dans ce cas.

⋄ ∆u = 0 lorsque l’on s’approche arbitrairement près de x0 (sans toucher x0) ;
dans ce cas, f(x0 +∆x)− f(x0) = 0, i.e. f(x0 + ∆x) = f(x0). Ainsi, d’une
part :

lim
∆x→0

g
(
f(x0 +∆x)

)
− g
(
f(x0)

)

∆x
= lim

∆x→0

g
(
f(x0)

)
− g
(
f(x0)

)

∆x

= lim
∆x→0

0

∆x
= lim

∆x→0
0 = 0 ;
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d’autre part :

f ′(x0) = lim
∆x→0

f(x0 +∆x)− f(x0)

∆x
= lim

∆x→0

f(x0)− f(x0)

∆x

= lim
∆x→0

0

∆x
= lim

∆x→0
0 = 0 .

En conséquence :

(
g ◦ f

)′
(x0) = 0 = g′

(
f(x0)

)
· 0 = g′

(
f(x0)

)
f ′(x0)

dans ce cas.

En résumé, quelle que soit la situation,
(
g ◦ f

)′
(x0) = g′

(
f(x0)

)
f ′(x0). �

3.3.2 Remarque : Reprenons l’énoncé de la proposition précédente.

• Il n’est pas rare de voir le dernier point de la proposition écrit sous la forme :

d

dx
(g ◦ f)(x0) =

dg

du
(u0)

df

dx
(x0) .

où u = f et u0 = f(x0).

• Dire que
(
f + g

)′
(x0) = f ′(x0)+ g

′(x0) et que
(
c f
)′
(x0) = c f ′(x0) (cf. premier et

troisième points de la proposition), c’est dire que la dérivation est une opération
linéaire.

3.4 Dérivées des fonctions usuelles

Ce que l’on entend par fonctions usuelles, ce sont :

• les fonctions polynomiales et rationnelles,

• les fonctions logarithmes, exponentielles et puissances,

• les fonctions hyperboliques et hyperboliques réciproques,

• les fonctions trigonométriques et trigonométriques réciproques.

Ces fonctions sont décrites en détail dans l’annexe C, à la fin du présent ouvrage. Dans
l’annexe F se trouve un tableau présentant les expressions de leurs dérivées.

3.5 Dérivées d’ordres supérieurs

Cela a été vu dans la première section du présent chapitre, si f est une fonction dérivable
dans un ensemble H ⊂ R, la dérivée f ′ de f peut être vue comme une fonction définie
dans H . En tout élément x0 ∈ H où la fonction f ′ est dérivable, à supposer qu’un tel x0
existe, il est alors possible de définir la dérivée de la fonction dérivée f ′.
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3.5.1 Définitions : Soit f : D → R (où D ⊂ R) une fonction réelle, définie et dérivable
dans un sous-ensemble H ⊂ D ; soit aussi f ′ : H → R la fonction dérivée de f .

• Supposons que f ′ est définie dans un voisinage d’un nombre réel x0 ∈ H et
dérivable en x0 ∈ H . On appelle dérivée seconde de f en x0 la quantité f ′′(x0)
donnée par :

f ′′(x0) = (f ′)′(x0) .

• Supposons à présent que f ′ est dérivable en tout x ∈ H̃, où H̃ est un sous-
ensemble non vide de H . On appelle fonction dérivée seconde (ou simplement
dérivée seconde) de f dans H̃ la fonction :

f ′′ : H̃ −→ R

x 7−→ f ′′(x)

donnée par :
f ′′(x) = (f ′)′(x) .

3.5.2 Remarques : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel x0 ∈ D.

• En répétant p fois le processus de dérivation de f (où p ∈ N), on peut définir
la p-ième dérivée de f en x0, à supposer qu’elle soit définie. Notée f (p) (avec
des parenthèses autour de p, afin qu’il n’y ait pas de confusion possible avec la
notation des exposants), notamment lorsque p est grand, elle est définie comme
suit :

f (p)(x0) =
((
(f ′)′ . . .

)′
)′
(x0) (où le signe ′ apparâıt p fois) .

La pème dérivée de f est également appelée dérivée d’ordre p. Par convention, la
dérivée d’ordre 0 de f est égale à f : f (0) = f .

• Si f admet une dérivée jusqu’à l’ordre p dans un ensemble H ⊂ R, on dit que f
est p fois dérivable dans H . En outre, si f est p fois dérivable dans H , quel que
soit le nombre naturel p, on dit que f est infiniment dérivable dans H .

3.5.3 Notation : Différentes notations sont admises pour désigner la dérivée seconde f ′′

d’une fonction f ; voici les plus courantes :

f ′′(x) =
d

dx

(
d

dx
f

)

=
d2f

dx2
=

d2

dx2
f(x) .

De même, pour la dérivée d’ordre p :

f (p)(x) =
dpf

dxp
=

dp

dxp
f(x) .

Selon la notation, la dépendance en la variable x apparâıt explicitement ou non.
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3.5.4 Exemples : 1. Soit f : R → R la fonction donnée par f(x) = x5. Cette fonction
est infiniment dérivable dans R. En effet, les expressions :

f ′(x) = 5 x4 ,

f ′′(x) =
(
f ′)′ = 20 x3 ,

f ′′′(x) =
(
f ′′)′ = 60 x2 ,

f (4)(x) =
(
f ′′′)′ = 120 x ,

f (5)(x) =
(
f (4)
)′

= 120 ,

f (6)(x) =
(
f (5)
)′

= 0 = f (7)(x) = f (8)(x) = . . .

sont toutes définies, en tout x ∈ R. Noter que les dérivées d’ordre supérieur ou
égal à 6 correspondent toutes à la fonction qui prend la valeur 0 pour tout x ∈ R.

2. Soit f : R+ → R la fonction donnée par f(x) =
√
x , ou de manière équivalente,

par f(x) = x
1
2 . Cette fonction est infiniment dérivable dans R∗

+. En effet, les
expressions :

f ′(x) =
1

2
x−

1
2 =

1

2
√
x
,

f ′′(x) =
(
f ′)′ = −1

4
x−

3
2 = − 1

4
√
x3

,

f ′′′(x) =
(
f ′′)′ =

3

8
x−

5
2 =

3

8
√
x5

,

f (4)(x) =
(
f ′′′)′ = −15

16
x−

7
2 = − 15

16
√
x7

,

...
...

...

sont toutes définies, en tout x ∈ R∗
+. Noter que f est définie en x = 0, mais pas

ses dérivées ; et en tout x ∈ R∗
−, ni f , ni aucune de ses dérivées n’est définie.

3. Soit f : R → R la fonction donnée par f(x) = exp(λ x), où λ est un nombre réel
donné. Cette fonction est infiniment dérivable dans R. En effet, les expressions :

f ′(x) = λ exp(λ x) ,

f ′′(x) =
(
f ′)′ = λ

(
λ exp(x)

)
= λ2 exp(x) ,

f ′′′(x) =
(
f ′′)′ = λ

(
λ2 exp(x)

)
= λ3 exp(x) ,

f (4)(x) =
(
f ′′′)′ = λ

(
λ3 exp(x)

)
= λ4 exp(x) ,

...
...

...

f (n)(x) = λn exp(x) où n ∈ N ,

sont toutes définies, en tout x ∈ R.
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3.5.5 Illustration : Considérons un corps matériel M qui se déplace dans l’espace, dans
un certain intervalle de temps ]t1; t2[ , où t1 est un instant antérieur à t2. Supposons
que M a des dimensions suffisamment petites pour qu’il puisse être assimilé à un point.
L’espace dans lequel évolue M peut être vu comme l’espace euclidien R3 muni de son
système de coordonnées cartésiennes canonique Oxyz. Notons γx(t), γy(t) et γz(t) les
coordonnées de M selon Ox, Oy et Oz, respectivement, à l’instant t ∈ ]t1; t2[ . Le sous-
ensemble T de R3, donné par :

T =
{
(x; y; z) ∈ R3

∣
∣ x = γx(t), y = γy(t), z = γz(t), où t ∈ ]t1; t2[

}
,

est appelé trajectoire deM ; il a l’allure d’une ligne ininterrompue dans R3. Noter que les
quantités γx, γy et γz peuvent être vues comme des fonctions du temps t ; ces fonctions
sont toutes continues, vu que la ligne que forme T est ininterrompue.

⋄ Soit P
(
γx(t); γy(t); γz(t)

)
le point de T où se trouve le corps M à l’instant t. On

appelle (vecteur) position de M à l’instant t le vecteur ~r(t), dans R3, donné par
~r(t) = OP ; concrètement :

~r(t) =






γx(t)

γy(t)

γz(t)




 .

⋄ Supposons que γx, γy et γz sont toutes dérivables à l’ins-
tant t. On appelle (vecteur) vitesse (instantanée) de M
à l’instant t le vecteur ~v(t) donné par ~v(t) = d~r

dt
(t) ;

concrètement :

~v(t) =







dγx
dt

(t)

dγy
dt
(t)

dγz
dt
(t)






.

x y

z

P

O
~r(t)

~v(t)

~a(t)

Dit avec des mots, le vecteur vitesse de M à l’instant t est la dérivée première par
rapport au temps du vecteur position, à l’instant t. Noter que ce vecteur vitesse
est tangent à la trajectoire de M en P .

⋄ Supposons que γx, γy et γz sont toutes deux fois dérivables à l’instant t. On
appelle (vecteur) accélération (instantanée) de M à l’instant t le vecteur ~a(t)
donné par ~a(t) = d2~r

dt2
(t) ; concrètement :

~a(t) =







d2γx
dt2

(t)

d2γy
dt2

(t)

d2γz
dt2

(t)






.

Dit avec des mots, le vecteur accélération à l’instant t est la dérivée seconde par
rapport au temps du vecteur position, à l’instant t ; c’est également la dérivée
première par rapport au temps du vecteur vitesse, à l’instant t : ~a(t) = d~v

dt
(t).
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Noter qu’en mécanique, on écrit souvent x(t), respectivement y(t) et z(t), à la place
de γx(t), respectivement γy(t) et γz(t).

3.6 Dérivation implicite

Les outils développés jusqu’à présent permettent de déterminer l’équation de la tangente
au graphe d’une fonction f en n’importe quel point du graphe où f ′ est définie. S’il est
vrai que le graphe d’une fonction continue est une courbe dans le plan euclidien, il
n’en demeure pas moins vrai que toute courbe dans le plan euclidien ne correspond pas
forcément au graphe d’une fonction. Se pose alors naturellement la question de savoir
comment obtenir l’équation de la tangente à une courbe en un point donné, lorsque la
courbe en question ne peut pas être décrite au moyen d’une unique expression de la
forme y = f(x). La présente section, ainsi que la suivante, tentent de répondre à cette
question.

Dans le plan euclidien R2, muni de son système de coordonnées cartésiennes cano-
nique Oxy, considérons le cercle de rayon R, centré sur l’origine O du système Oxy. Cela
a été vu dans la première section du chapitre 2, une telle courbe ne peut pas être décrite
à l’aide d’une seule fonction ; deux sont nécessaires, l’une pour le demi-cercle supérieur,
f1, et l’autre pour le demi-cercle inférieur, f2, où :

f1(x) =
√
R2 − x2 et f2(x) = −

√
R2 − x2 .

Pour déterminer l’équation de la tangente à ce cercle en un point donné, il convient de
calculer la dérivée de f1 ou de f2, selon que le point de tangence est sur le demi-cercle
supérieur ou sur le demi-cercle inférieur :

f1
′(x) = − x√

R2 − x2
et f2

′(x) =
x√

R2 − x2
.

Prenons maintenant l’équation cartésienne implicite de ce même cercle : x2+y2−R2 = 0.
Même si, dans cette expression, aucune des grandeurs x et y ne dépend explicitement
de l’autre, faisons comme si la variable y était une fonction de la variable x. En dérivant
des deux côtés par rapport à x, il vient alors :

d

dx

(
x2 + y2 − R2

)
=

d

dx
0

⇔ d

dx
x2 +

d

dx
y2 − d

dx
R2 = 0

⇔ 2 x+ 2 y
dy

dx
+ 0 = 0 ,

où dy
dx

est la dérivée de y par rapport à x ; elle peut être aussi notée y′. Cette dérivée n’est
pas nulle, vu que y est vue comme une fonction de x. De la dernière égalité obtenue, il
ressort :

dy

dx
= y′ = −x

y
.
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Cette expression est équivalente aussi bien à celle de f1
′ qu’à celle de f2

′. Pour s’en
convaincre, il suffit de remarquer que le dénominateur de f1

′(x) (respectivement f2
′(x))

n’est rien d’autre que f1(x) (respectivement −f2(x)), d’une part, et d’autre part que
l’équation décrivant le demi-cercle supérieur (respectivement inférieur) est y = f1(x)
(respectivement y = f2(x)) :

f1
′(x) = − x√

R2 − x2
= − x

f1(x)
= −x

y

et :

f2
′(x) =

x√
R2 − x2

=
x

−f2(x)
= − x

f2(x)
= −x

y
.

Si les expressions de f1
′ et f2

′ présentent l’avantage de ne dépendre que de la variable x,
l’expression de dy

dx
a l’intérêt d’être unique, valable aussi bien pour le demi-cercle supé-

rieur que le demi-cercle inférieur. Le fait que dy
dx

dépend aussi bien de x que de y n’est
pas problématique en soi : dans la pratique, lorsque l’on cherche la tangente au cercle
en un point P , on est de toute façon amené à connâıtre les deux coordonnées (xP ; yP )
de P .

Résumons le travail qui vient d’être réalisé : en tout point P (xP ; yP ) du cercle d’équa-
tion x2+y2−R2 = 0, excepté les points de coordonnées (±R; 0), il est possible d’exhiber
une fonction f (présentement f1 ou f2, dont les expressions sont données plus haut) dont :

• le graphe correspond localement au cercle,

• la dérivée f ′(xP ) en xP est égale à la grandeur dy
dx

∣
∣
P
, obtenue en dérivant des deux

côtés par rapport à x l’équation x2 + y2 −R2 = 0 (tout en tenant compte du fait
que y dépend de x) puis en l’évaluant en P (xP ; yP ).

Ce qui vient d’être établi pour le cercle, est-ce transposable à n’importe quelle courbe
du plan euclidien ? Plus précisément :

• toute courbe dans le plan euclidien R2, décrite par une équation de la forme
F (x; y) = 0, peut-elle systématiquement être exprimée à l’aide d’une relation
sous forme explicite y = f(x), du moins localement autour d’une valeur réelle x0
où l’on voudrait calculer la dérivée de f (à supposer que f existe) ?

• étant donné une fonction réelle f : D → R, l’expression de la dérivée f ′ est-elle la
même que celle de dy

dx
obtenue en dérivant des deux côtés l’équation F (x; y) = 0

par rapport à x (tout en considérant que y dépend de x), où F (x; y) est la forme
implicite de la forme explicite y = f(x) ?

Ces questions trouvent réponses dans le résultat qui suit, connu sous le nom de théorème
des fonctions implicites.

3.6.1 Théorème : Soient le plan euclidien R2 et Oxy son système de coordonnées carté-
siennes canonique. Soient aussi P (xP ; yP ) un point de R2 et F : A×B → R une fonction
réelle des deux grandeurs réelles x et y, définie dans un domaine rectangulaire ouvert
A×B ⊂ R2 contenant P . Supposons que :

• F (xP ; yP ) = 0,
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• la dérivée de F par rapport à x (y étant considérée
comme constante), notée ∂F

∂x
, est définie et continue

dans A× B,

• la dérivée de F par rapport à y (x étant considérée
comme constante), notée ∂F

∂y
, est définie et continue

dans A× B, et satisfait la condition :

∂F

∂y
(xP ; yP ) 6= 0 .

x

y

O

C

P

I

K
f

Alors il existe un intervalle ouvert I ⊂ A contenant xP , un intervalle ouvert K ⊂ B
contenant yP , ainsi qu’une fonction continue f : I → R tels que, pour tout x ∈ I :

F (x; y) = 0 , où (x; y) ∈ I ×K ⇔ y = f(x) , où x ∈ I .

En outre, f est dérivable dans I ; l’expression de la dérivée f ′ de f peut être obtenue
en dérivant par rapport à x l’équation F (x; y) = 0, dans laquelle y est préalablement
remplacée par f(x).

Preuve : La démonstration de ce théorème ne peut pas être donnée ici car elle fait appel
à des outils provenant de la théorie des fonctions de plusieurs variables. �

3.6.2 Remarque : Se référant à des notions qui n’ont pas été discutées jusqu’à présent,
les hypothèses et conclusions du théorème des fonctions implicites méritent un certain
nombre de clarifications.

⋄ Dire que le domaine rectangulaire A×B est ouvert revient à dire que A×B ne
contient aucun point (de R2) qui se trouve sur son bord (i.e. sur son pourtour,
qui est de forme rectangulaire), mais uniquement des points (de R2) qui sont dans
son intérieur ; il en est de même pour le domaine rectangulaire I ×K.

⋄ Le terme de fonction, mentionné dans l’énoncé du théorème pour parler de F , est
à prendre au même sens que celui de la définition 2.2.1 donnée dans la section 2.2
du chapitre 2 : à un point (x; y) ∈ R2 correspond un et un unique élément
F (x; y) ∈ R.

⋄ La grandeur ∂F
∂x

(respectivement ∂F
∂y
) porte le nom de dérivée partielle de F par

rapport à x (respectivement par rapport à y). Pratiquement :

∂F

∂x
(x; y) =

dgy
dx

(x) = gy
′(x) et

∂F

∂y
(x; y) =

dgx
dy

(y) = gx
′(y) ,

où x 7→ gy(x) = F (x; y) doit être considérée comme une fonction de la seule
variable x, y n’étant alors qu’un paramètre (devant être considéré comme fixe),
et y 7→ gx(y) = F (x; y) doit être vue comme une fonction de la seule variable y
(x n’étant alors qu’un paramètre devant être considéré comme fixe).

⋄ Dans le cas des fonctions de deux (et plus généralement de n, où n ∈ {2; 3; . . . })
variables, la notion de continuité est plus subtile que dans le cas des fonctions
d’une seule variable. Cette réalité est due au fait qu’il existe une infinité de
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façons de tendre vers un point de R2 (et plus généralement de Rn, où n est un
nombre naturel plus grand ou égal à 2), alors qu’il n’existe que deux manières de
s’approcher d’un point de R : soit par la gauche, soit par la droite. Dans le cadre
de la présente étude, ne seront considérées que des fonctions F pour lesquelles la
question de la continuité des dérivées partielles n’aura pas à être discutée.

⋄ Dans un langage moins formel, la première partie de la conclusion du théorème
précédent peut être énoncée comme suit : il existe une fonction réelle f (d’une
seule variable réelle) dont le graphe cöıncide avec la courbe C ⊂ R2, donnée par
l’équation cartésienne F (x; y) = 0, dans une fenêtre ouverte (i.e. un domaine rec-
tangulaire ouvert) contenant le point P ∈ R2 ; et ce pour autant que F satisfasse
les hypothèses mentionnées.

⋄ Dans l’expression F (x; y) = 0, la grandeur y peut correspondre à plusieurs fonc-
tions implicites différentes. Ce qui permet de dire à quelle fonction elle se réfère,
ce sont les coordonnées du point P , sur la courbe plane C décrite par F (x; y) = 0,
autour duquel on cherche a représenter C par une fonction.

⋄ La dérivée f ′ de la fonction implicite f , dont il est question dans la deuxième
partie du théorème précédent, peut être exprimée à l’aide des dérivées partielles
de F :

d

dx

(

F
(
x ; f(x)

))

=
d

dx
0

⇔ ∂F

∂x

(
x ; f(x)

) dx

dx
+
∂F

∂y

(
x ; f(x)

) df

dx
(x) = 0

⇔ ∂F

∂x

(
x ; f(x)

)
· 1 + ∂F

∂y

(
x ; f(x)

)
f ′(x) = 0

⇔ ∂F

∂y

(
x ; f(x)

)
f ′(x) = −∂F

∂x

(
x ; f(x)

)

⇔ f ′(x) = −
∂F
∂x

(
x ; f(x)

)

∂F
∂y

(
x ; f(x)

) .

Noter que la deuxième ligne du calcul ci-dessus se déduit de la première en appli-
quant la règle de dérivation de la composition des fonctions de plusieurs variables.

⋄ Dans la pratique, lors du calcul de la dérivée f ′ de la fonction implicite f à partir
de l’équation F (x; y) = 0, on omet souvent de remplacer y par f(x) ; on garde
toutefois à l’esprit que y dépend (implicitement) de x.

⋄ Le procédé visant à calculer la dérivée f ′ de la fonction implicite f porte le
nom de dérivation implicite. S’il est ainsi appelé, c’est en raison du fait que la
fonction f n’apparâıt pas concrètement dans le calcul. Du reste, c’est pour cette
même raison que la dérivée de la fonction implicite se note plus volontiers :

dy

dx
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au lieu de f ′ ; et évaluée en la coordonnée xP d’un point P (xP ; yP ) ∈ C, où C est
la courbe plane décrite par l’équation F (x; y) = 0, la même dérivée se note plus
volontiers :

dy

dx

∣
∣
∣
∣
P

au lieu de f ′(xP ).

3.6.3 Exemple : Reprenons le cercle de rayon R, centré sur l’origine O du système de
coordonnées cartésiennes canonique Oxy du plan euclidien R2 ; et considérons le point
P
(
R
2
;

√
3R
2

)
∈ R2. Remarquons que le cercle en question peut être décrit par l’équation

F (x; y) = 0, où F est la fonction réelle des deux variables réelles x et y, donnée par
F (x; y) = x2 + y2 − R2. Relevons alors les points suivants :

• F est définie dans R× R (= R2) ;

• F
(
R
2
;

√
3R
2

)
=
(
R
2

)2
+
(√

3R
2

)2 − R2 = 0, ce qui montre que P est sur le cercle ;

• il peut être montré que la dérivée partielle ∂F
∂x

(dont l’expression est ∂F
∂x
(x; y) =

∂
∂x
(x2 + y2 −R2) = 2 x+ 0− 0 = 2 x) est une fonction continue dans R2 ;

• il peut être montré que la dérivée partielle ∂F
∂y

(dont l’expression est ∂F
∂y
(x; y) =

∂
∂y
(x2 + y2 − R2) = 0 + 2 y − 0 = 2 y), est une fonction continue dans R2 ; en

outre :
∂F

∂y

(
R
2
;

√
3R
2

)
= 2

√
3R

2
=

√
3R 6= 0 .

Manifestement, toutes les conditions sont réunies pour pouvoir appliquer le théorème
des fonctions implicites. Selon ce théorème, il existe un intervalle ouvert I ⊂ R conte-
nant R

2
, un intervalle ouvert K ⊂ R contenant

√
3R
2

et une fonction continue f : I → R

satisfaisant :

x2 + y2 −R2 = 0 , où (x; y) ∈ I ×K ⇔ y = f(x) , où x ∈ I .

Présentement, la fonction f est f1, mentionnée en début
de section :

f(x) = f1(x) =
√
R2 − x2 ;

I peut être n’importe quel intervalle ouvert contenant R
2

et inclus dans ]−R ; R[ ; quant à K, il peut être n’importe

quel intervalle ouvert contenant
√
3R
2

, inclus (par exemple)
dans ]0 ; 2R[ et compatible avec I (cf. figure ci-contre).

x

y

O

f
P

I

K

3.6.4 Remarque : Dans l’exemple précédent, si le point P avait pour coordonnées (R ; 0)
ou (−R ; 0), il ne serait pas possible d’exhiber un quelconque domaine rectangulaire
ouvert contenant P , dans lequel le cercle donné (de rayon R et centré sur O) pourrâıt
cöıncider avec le graphe d’une quelconque fonction. Cette réalité s’explique par le fait que
les points de coordonnées (±R ; 0) sont des points qui se trouvent à la jonction du graphe
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de la fonction f1, donnée par f1(x) =
√
R2 − x2 , et du graphe de la fonction f2, donnée

par f2(x) = −
√
R2 − x2 (cf. fonctions introduites en début de section) ; en passant par

un de ces points de jonction, on change forcément de demi-cercle : soit on passe du
demi-cercle inférieur au demi-cercle supérieur, soit on passe du demi-cercle inférieur au
demi-cercle supérieur. Et justement, en chacun de ces deux points de jonction, l’une des
hypothèses du théorème des fonctions implicites n’est pas satisfaite :

∂F

∂y
(±R ; 0) = 0 .

3.6.5 Exemple : Soient le plan euclidien R2 et Oxy son système de coordonnées carté-
siennes canonique. Soient aussi P (11; 3) un point dans R2 et C ⊂ R2 la courbe donnée
par l’équation F (x; y) = 0, où F est la fonction réelle des deux variables réelles x et y,
donnée par F (x; y) = y6 − y − 6 x2. Relevons les points suivants :

• F est définie dans R× R (= R2) ;

• F (11; 3) = 36 − 3− 6 · 112 = 0, ce qui montre que P ∈ C ;

• il peut être montré que la dérivée partielle ∂F
∂x

(dont l’expression est ∂F
∂x
(x; y) =

∂
∂x
(y6 − y − 6 x2) = 0− 0− 12 x = −12 x) est une fonction continue dans R2 ;

• il peut être montré que ∂F
∂y

(dont l’expression est ∂F
∂y
(x; y) = ∂

∂y
(y6−y−6 x2) =

6 y5 − 1− 0 = 6 y5 − 1) est une fonction continue dans R2 ; en outre :

∂F

∂y
(11; 3) = 6 · 35 − 1 = 1457 6= 0 .

Manifestement, toutes les conditions sont réunies pour pouvoir appliquer le théorème des
fonctions implicites ; selon ce théorème, il existe un intervalle ouvert I ⊂ R contenant 11,
un intervalle ouvert K ⊂ R contenant 3 et une fonction continue f : I → R satisfaisant :

y6 − y − 6 x2 = 0 , où (x; y) ∈ I ×K ⇔ y = f(x) , où x ∈ I .

Cherchons à présent l’équation de la tangente à C en P . Pour trouver la pente m de
cette tangente, il n’est pas nécessaire d’exhiber la fonction implicite f , en vue du calcul
de f ′(11) ; il suffit de dériver des deux côtés par rapport à x l’équation F (x; y) = 0 (tout
en gardant à l’esprit que y dépend de x), d’isoler ensuite la quantité dy

dx
:

d

dx
F (x; y) = 0 ⇔ d

dx
(y6 − y − 6 x2) = 0

⇔ 6 y5
dy

dx
− dy

dx
− 12 x = 0

⇔ dy

dx
(6 y5 − 1) = 12 x

⇔ dy

dx
=

12 x

6 y5 − 1
,
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et enfin d’évaluer cette quantité en P :

dy

dx

∣
∣
∣
∣
P

=
12 · 11

6 · 35 − 1
=

132

1457
.

P étant le point de tangence, il appartient non seulement à C mais également à la
tangente en question. De fait, les coordonnées (x; y) de n’importe quel point se trouvant
sur cette tangente doivent satisfaire :

y − 3

x− 11
=

132

1457
⇔ y − 3 =

132

1457
(x− 11) .

L’équation de la tangente est donc :

y =
132

1457
(x− 11) + 3 ⇔ y =

132

1457
x+

2919

1457
.

3.6.6 Remarque : La technique de dérivation implicite permet de faire le lien entre la
dérivée d’une fonction et celle de sa réciproque ; le résultat qui suit le met en évidence.

3.6.7 Proposition : Soient I un intervalle ouvert dans R et f : I → J une fonction réelle,
bijective et continue dans I ; soit aussi rf : J → I la réciproque de f . Alors, en tout x ∈ I
où f est dérivable et où f ′(x) 6= 0, rf est dérivable en y = f(x) ; en outre :

(
rf
)′
(y) =

1

f ′(x)
.

Preuve : Soit f : I → J une fonction réelle, bijective et continue dans I, où I est un
intervalle ouvert dans R. Le fait que f est bijective implique qu’elle est strictement
croissante ou strictement décroissante : si ce n’était pas le cas, il existerait deux éléments
x1, x2 ∈ I, tels que x1 6= x2, pour lesquels f(x1) = f(x2), ce qui impliquerait que f
ne serait pas injective. La proposition 2.10.6 (cf. section 2.10 du chapitre 2) permet
alors d’affirmer que J est un intervalle ouvert. Soit à présent la fonction réciproque
rf : J → I ; cette fonction est bien définie dans J , vu que f : I → J est bijective ; elle
est aussi continue dans J , vu que f est continue dans I. Par définition de la réciproque,
rf
(
f(x)

)
= x pour tout x ∈ I. Autrement écrit, avec y = f(x) :

rf(y) = x ⇔ rf(y)− x = 0 .

Posons alors F (x; y) = rf(y) − x ; avec cette écriture, la dernière équation ci-dessus se
récrit F (x; y) = 0. En appliquant le procédé de dérivation implicite, i.e. en dérivant
F (x; y) = 0 des deux côtés par rapport à x, tout en gardant à l’esprit que y dépend
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de x, il vient :

d

dx
F (x; y) =

d

dx
0 ⇔ d

dx

(
rf(y)− x

)
= 0

⇔
(
rf
)′
(y)

dy

dx
− 1 = 0

⇔
(
rf
)′
(y)

dy

dx
= 1

⇔
(
rf
)′
(y) =

1
dy
dx

.

Or, dy
dx

= f ′(x). Donc :
(
rf
)′
(y) =

1

f ′(x)
.

Cette expression montre, en outre, que rf est dérivable en y = f(x) ∈ J dès lors que f
est dérivable en x ∈ I et f ′(x) 6= 0. �

3.6.8 Remarque : L’égalité
(
rf
)′
(y) = 1

f ′(x)
, donnée dans la proposition précédente,

peut s’écrire sous la forme :
dx

dy
=

1
dy
dx

.

Tout comme la dérivée de f en x peut s’écrire f ′(x) = dy
dx

, la dérivée de rf en y peut se

noter
(
rf
)′
(y) = dx

dy
.

3.6.9 Exemples : 1. Soit la fonction exp : R → R∗
+. Alors, pour tout x ∈ R :

ln
(
exp(x)

)
= x ⇔ ln

(
exp(x)

)
− x = 0 ⇔ ln(y)− x = 0 ,

où y = exp(x). Dérivons cette dernière équation des deux côtés par rapport à x,
tout en gardant à l’esprit que y dépend de x :

d

dx

(
ln(y)− x

)
=

d

dx
0 ⇔ 1

y

dy

dx
− 1 = 0

⇔ 1

y

dy

dx
= 1

⇔ dy

dx
= y .

Or, y = exp(x) et dy
dx

= exp′(x). Donc :

exp′(x) = exp(x) .
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2. Soit la fonction Arccos : [−1; 1] → [0; π]. Alors, pour tout x ∈ [−1; 1] :

cos
(
Arccos(x)

)
= x ⇔ cos

(
Arccos(x)

)
− x = 0 ⇔ cos(y)− x = 0 ,

où y = Arccos(x). Dérivons cette dernière équation des deux côtés par rapport
à x, tout en gardant à l’esprit que y dépend de x :

d

dx

(
cos(y)− x

)
=

d

dx
0 ⇔ − sin(y)

dy

dx
− 1 = 0

⇔ − sin(y)
dy

dx
= 1

⇔ dy

dx
= − 1

sin(y)
.

Noter que la dernière expression obtenue n’est définie que si sin(y) 6= 0. Elle n’est,
de fait, définie que pour y ∈ ]0; π[ ; en effet, d’une part Arccos ne prend que les
valeurs de l’intervalle [0; π], et d’autre part sin ne s’annule, dans [0; π], qu’en 0 et
en π. Ces observations, combinées au fait que cos2(y) + sin2(y) = 1, permettent
alors d’écrire sin(y) =

√

1− cos2(y) =
√
1− x2 (et non −

√

1− cos2(y) , du fait
que y ∈ ]0; π[ et donc que sin(y) > 0). Par conséquent :

dy

dx
= − 1√

1− x2
⇔ Arccos′(x) = − 1√

1− x2
,

vu que y = Arccos(x) et donc dy
dx

= Arccos′(x).

3.7 Tangentes à une courbe paramétrée

Le procédé de dérivation implicite permet de déterminer la pente, et par conséquent
l’équation de la tangente à une courbe C ⊂ R2 en un point P ∈ C, dans le cas où C est
donnée par une équation de la forme F (x; y) = 0. Qu’en est-il dans le cas d’une courbe
paramétrée, i.e. d’une courbe donnée par des équations paramétriques (cf. section 2.11
du chapitre 2) : {

x = x(t)

y = y(t)
?

Comment déterminer l’équation de la tangente à une telle courbe en un point P (xP ; yP ),
où xP = x(tP ) et yP = y(tP ) (où tP est une certaine valeur du paramètre t) ? Pour
répondre à cette question, il convient de revenir à l’idée première de la dérivée, à savoir
la limite d’un rapport d’accroissements.

Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes cano-
nique. Soit aussi C ⊂ R2 une courbe, donnée par les deux équations paramétriques
x = x(t) et y = y(t), où t ∈ I, I étant un intervalle. Soient encore P (xP ; yP ) un point
sur C et Q(x; y) un autre point sur C, distinct de P . Noter que les coordonnées de P
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et Q peuvent s’écrire, respectivement, xP = x(tP ) et yP = y(tP ), et x = x(t) et y = y(t),
où t, tP ∈ I, t 6= tP . Considérons à présent un point mobile sur C ; lorsque le point en
question se déplace de P à Q :

• sa coordonnée x subit un accroissement ∆x donné par ∆x = x− xP ,
• sa coordonnée y subit un accroissement ∆y donné par ∆y = y − yP .

x

y

O

C

xP

yP P

x

y Q

Par définition, le rapport ∆y
∆x

est égal à la pente de la droite
passant par P et Q. La valeur de cette pente dépend évidem-
ment de la position de Q par rapport à P . Dans la situation
où Q est infiniment proche de P , les accroissements ∆x et ∆y
sont infiniment petits ; on les note alors respectivement dx
et dy. Quant au rapport ∆y

∆x
, que l’on note dans ce cas dy

dx

∣
∣
P
,

il n’est rien d’autre que la pente de la tangente à la courbe C
en P . À supposer que x(t) 6= x(tP ) pour tout t ∈ V r{tP },
où V est un voisinage de tP , ce rapport peut s’écrire :

dy

dx

∣
∣
∣
∣
P

= lim
t→tP

y(t)− y(tP )

x(t)− x(tP )
= lim

∆t→0

y(tP +∆t)− y(tP )

x(tP +∆t)− x(tP )
,

où ∆t = t − tP est l’accroissement selon t auquel correspondent les accroissements ∆x
selon x et ∆y selon y. Remarquer que la quantité ∆t = t− tP peut être introduite dans
l’expression de dy

dx

∣
∣
P
, comme suit :

dy

dx

∣
∣
∣
∣
P

= lim
∆t→0

y(tP +∆t)− y(tP )

∆t

∆t

x(tP +∆t)− x(tP )

= lim
∆t→0

y(tP+∆t)−y(tP )
∆t

x(tP+∆t)−x(tP )
∆t

=
lim∆t→0

y(tP+∆t)−y(tP )
∆t

lim∆t→0
x(tP+∆t)−x(tP )

∆t

.

Dans la dernière fraction obtenue, le numérateur n’est rien d’autre que la dérivée de y
par rapport à t en tP ,

dy
dt
(tP ) ; et le dénominateur la dérivée de x par rapport à t en tP ,

dx
dt
(tP ). Ainsi donc :

dy

dx

∣
∣
∣
∣
P

=
dy
dt
(tP )

dx
dt
(tP )

.

Et plus généralement, si le point de tangence n’est pas spécifié :

dy

dx
=

dy
dt
dx
dt

,

pour autant que dx
dt

et dy
dt

soient définies et que ni dx
dt
, ni dy

dt
ne s’annule ; avec la notation

ẋ = dx
dt

et ẏ = dy
dt

:

dy

dx
=

ẏ

ẋ
.
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Un moyen simple permettant de retrouver cette formule consiste à multiplier la quan-
tité dy

dx
par la fraction dt

dt
, puis de réarranger les différents éléments, comme suit :

dy

dx
=

dy

dx

dt

dt
=

dy

dt

dt

dx
=

dy
dt
dx
dt

.

Ce moyen permet aussi de trouver facilement la quantité dny
dxn , où n = 2, 3, . . . Par

exemple :

d2y

dx2
=

d

dx

(
dy

dx

)

=
d

dt

(
dy

dx

)
dt

dx
=

d
dt

(
dy
dx

)

dx
dt

=
1
dx
dt

d

dt

(
dy
dt
dx
dt

)

=
1
dx
dt

d2y
dt2

dx
dt

− dy
dt

d2x
dt2

(
dx
dt

)2 =
d2y
dt2

dx
dt

− dy
dt

d2x
dt2

(
dx
dt

)3 =
ÿ ẋ− ẏ ẍ

ẋ3
,

où ẍ = d2x
dt2

et ÿ = d2y
dt2

.

3.7.1 Remarque : La notation ẋ (respectivement ẏ), introduite ci-dessus, est un héri-
tage du calcul des fluxions développé par le scientifique anglais Isaac Newton (cf. aperçu
historique présenté au début du chapitre 4) ; elle apparâıt essentiellement dans le cadre
de l’étude des courbes paramétrées, où elle exprime la dérivée de la grandeur x (respec-
tivement de la grandeur y) par rapport au paramètre donné.

3.7.2 Définition : Soient le plan euclidien R2, muni de son système de coordonnées car-
tésiennes canonique Oxy, et C ⊂ R2 une courbe donnée par les équations paramétriques
x = x(t) et y = y(t), où t ∈ I, I étant un intervalle. On appelle point singulier tout
point P ∈ C où ẋ = dx

dt
est définie et vaut 0, et ẏ = dy

dt
est définie et vaut 0.

3.7.3 Remarques : Reprenons les notations de la définition précédente.

• En tout point singulier P , l’expression ẏ
ẋ
n’est pas définie, vu qu’elle équivaut à

la forme indéterminée 0
0
. Que ẏ

ẋ
ne soit pas définie en P ne permet toutefois pas

de conclure que la tangente à C en P n’existe pas, mais uniquement que la pente
de cette tangente, si elle existe, ne peut pas être obtenue avec l’expression ẏ

ẋ
.

• Pour se faire une image du concept de point singulier, on peut penser à un point
d’une ligne de chemin de fer où un train s’arrête. À supposer que la ligne se
trouve dans un plan, la trajectoire du train peut être décrite au moyen de deux
équations paramétriques x = x(t) et y = y(t), où x(t) et y(t) sont les coordonnées
du train à l’instant t, relatives à un système de coordonnées cartésiennes Oxy
placé dans le plan de la ligne. Les dérivées ẋ(t) et ẏ(t) correspondent alors aux
composantes selon x et y, respectivement, du vecteur vitesse ~v(t) du train à
l’instant t. Supposons que le train s’arrête à un instant tP donné, en un point P
de sa trajectoire, puis repart en continuant sa route, sans changer de sens. À cet
instant tP , son vecteur vitesse est nul : ~v(tP ) = ~0 ; de fait ẋ(tP ) = 0 et y(tP ) = 0.
Le point P , où le train est arrêté, peut donc être considéré comme un point
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singulier. Que le vecteur vitesse du train à l’instant tP soit nul n’implique toutefois
pas nécessairement que la trajectoire du train, i.e. la ligne de chemin de fer,
n’admette pas de tangente en P ; un autre train, sur la même ligne, qui passerait
par le point P sans devoir s’y arrêter constituerait une preuve de l’existence d’une
telle tangente, vu que le vecteur vitesse de cet autre train, en P , serait non nul.

3.7.4 Exemples : 1. Soient le plan euclidien R2 et Oxy son système de coordonnées
cartésiennes canonique. Soit C ⊂ R2 la courbe donnée par les équations paramé-
triques : {

x = x(t) = R cos(t)

y = y(t) = R sin(t)
, où t ∈ R .

Le fait que
(
x(t)

)2
+
(
y(t)

)2
= R2 cos2(t) + R2 sin2(t) = R2 montre que C est un

cercle de rayon R, centré sur l’origine O du sytème Oxy. Cherchons l’équation de
la tangente à C au point P

(
x
(
π
3

)
; y
(
π
3

))
. Pour cela, calculons l’expression de dy

dx
:

dy

dx
=

ẏ

ẋ
=

R cos(t)

−R sin(t)
= −cos(t)

sin(t)
,

et évaluons-la en P , i.e. en t = π
3
:

dy

dx

∣
∣
∣
∣
P

= −cos
(
π
3

)

sin
(
π
3

) = −
1
2√
3
2

= − 1√
3
.

P étant le point de tangence, il appartient non seulement à C mais également à
la tangente en question. De fait, les coordonnées (x; y) de n’importe quel point se
trouvant sur cette tangente doivent satisfaire :

y − y
(
π
3

)

x− x
(
π
3

) = − 1√
3

⇔ y −
√
3R

2
= − 1√

3

(

x− R

2

)

,

avec x
(
π
3

)
= R cos

(
π
3

)
= R

2
et y

(
π
3

)
= R sin

(
π
3

)
=

√
3R
2

. L’équation de la tangente
s’écrit donc :

y = − 1√
3

(

x− R

2

)

+

√
3R

2
⇔ y = − 1√

3
x+

2R√
3
.

Noter que la pente de cette droite peut aussi être obtenue en dérivant des deux
côtés par rapport à x l’équation cartésienne x2 + y2 − R2 = 0, tout en gardant à
l’esprit que y dépend de x :

d

dx
(x2 + y2 − R2) =

d

dx
0 ⇔ 2 x+ 2 y

dy

dx
= 0

⇔ 2 y
dy

dx
= −2 x

⇔ dy

dx
= −x

y
;
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en P
(
R
2
;

√
3R
2

)
:

dy

dx

∣
∣
∣
∣
P

= −
R
2√
3R
2

= − 1√
3
.

2. Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes cano-
nique. Soit C̃ ⊂ R2 la courbe donnée par les équations paramétriques :

{

x(t) = R cos(t2 − 4 t)

y(t) = R sin(t2 − 4 t)
, où t ∈ R .

Le fait que
(
x(t)

)2
+
(
y(t)

)2
= R2 cos2(t2−4 t)+R2 sin2(t2−4 t) = R2 montre que C̃

n’est autre que la courbe C décrite dans l’exemple précédent, à savoir un cercle de
rayon R, centré sur l’origine O du sytème Oxy. Dans la situation présente :

dy

dx
=

(2 t− 4)R cos(t2 − 4 t)

−(2 t− 4)R sin(t2 − 4 t)
= −(2 t− 4)R cos(t2 − 4 t)

(2 t− 4)R sin(t2 − 4 t)
.

En t = 2, dy
dx

n’est pas définie ; le point P
(
x(2); y(2)

)
est donc un point singulier. Il

n’empêche que la tangente à C̃ en P existe ; sa pente est bien définie ; elle ne peut
simplement pas être déterminée avec les équations paramétriques données ici.

3.7.5 Remarques : Soient le plan euclidien R2, Oxy son système de coordonnées carté-
siennes canonique et C ⊂ R2 une courbe.

• Supposons que C peut être décrite simultanément par des équations paramé-
triques x = x(t) et y = y(t), et par une équation cartésienne implicite F (x; y) = 0.
Alors, en tout point P (xP ; yP ) ∈ C où les hypothèses du théorème des fonctions
implicites sont satisfaites, la quantité dy

dx

∣
∣
P
obtenue par dérivation implicite (i.e.

par dérivation par rapport à x de l’équation F (x; y) = 0, dans laquelle y est vue

comme une grandeur dépendant de x) est égale au rapport ẏ(tP )
ẋ(tP )

, où tP est tel

que x(tP ) = xP et y(tP ) = yP , pour autant que
ẏ(tP )
ẋ(tP )

soit défini (i.e. pour autant

que P ne soit pas un point singulier). Pour s’en convaincre, il suffit d’appliquer
le théorème des fonctions implicites ; selon ce théorème, il existe un intervalle
ouvert I contenant xP , un intervalle ouvert K contenant yP , ainsi qu’une fonction
f : I → R, dérivable dans I, dont le graphe cöıncide avec C dans I × K. De
fait, f(x) = y = y(t) ∈ K pour tout x = x(t) ∈ I ; ce qui implique que pour
tout accroissement ∆x = x(tP + ∆t) − x(tP ) selon x (où x(tP + ∆t) ∈ I), les
accroissements correspondants ∆f = f(x + ∆x) − f(x) (où f(x + ∆x) ∈ K) et
∆y = y(tP +∆t)− y(tP ) (où y(tP +∆t) ∈ K) selon y sont égaux, si bien que :

dy

dx

∣
∣
∣
∣
P

= lim
∆x→0

f(xP +∆x)− f(xP )

∆x
= lim

∆t→0

y(tP +∆t)− y(tP )

x(tP +∆t)− x(tP )

= lim
∆t→0

y(tP+∆t)−y(tP )
∆t

x(tP+∆t)−x(tP )
∆t

=
ẏ

ẋ
(tP ) .
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• Dans le cas où C peut être décrite simultanément par des équations paramétriques
x = x(t) et y = y(t), et par une équation cartésienne implicite F (x; y) = 0, les
grandeurs ẋ = dx

dt
et ẏ = dy

dt
se retrouvent liées entre elles. En effet, de la dérivation

par rapport à t de l’équation F (x; y) = 0, où x = x(t) et y = y(t), découle une
relation dans laquelle apparaissent dx

dt
et dy

dt
. Noter que la quantité ẋ = dx

dt
,

respectivement ẏ = dy
dt
, est parfois appelée taux de variation de la grandeur x,

respectivement taux de variation de la grandeur y. Lorsque les deux taux ẋ et ẏ
sont liés entre eux par une équation, on parle de taux liés.

3.7.6 Exemple : Reprenons le cercle C ⊂ R2 de rayon R et centré sur l’origine O du
système de coordonnées cartésiennes canonique Oxy de R2. Ce cercle peut être décrit
aussi bien par les équations paramétriques :

{

x(t) = R cos(t)

y(t) = R sin(t)
, où t ∈ R ,

que par l’équation cartésienne x2 + y2 − R2 = 0, où x et y sont des grandeurs réelles.
La dérivation par rapport à t de cette dernière équation, dans laquelle x et y sont
considérées comme des fonctions du temps, conduit à une expression qui lie les taux
ẋ = dx

dt
et ẏ = dy

dt
:

d

dt

((
x(t)

)2
+
(
y(t)

)2 − R2
)

=
d

dt
0

⇔ 2 x(t)
dx

dt
(t) + 2 y(t)

dy

dt
(t)− 0 = 0

⇔ 2 y(t)
dy

dt
= −2 x(t)

dx

dt
(t)

⇔ dy

dt
(t) = −x(t)

y(t)

dx

dt
(t) .

C’est bien ce que l’on observe lorsqu’on calcule directement dx
dt

et dy
dt

:

dy

dt
(t) = R cos(t) =

R sin(t)

R sin(t)
R cos(t) = −R cos(t)

R sin(t)

(
−R sin(t)

)

= −x(t)
y(t)

dx

dt
(t) ,

vu que :
dx

dt
(t) = −R sin(t) et

dy

dt
(t) = R cos(t) .

3.7.7 Illustration : Lorsqu’un gaz se trouve confiné dans un volume V fixe, sa pression p
(qui se mesure en pascals (Pa)) et sa température T (qui se mesure en kelvins (K))
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obéissent, pour autant que p soit suffisamment petite, à l’équation suivante, appelée loi
de Gay-Lussac III :

p

T
= C ,

où C est une constante. Comme le rapport de p et T est constant, la variation dans
le temps d’une des deux grandeurs entrâıne nécessairement la variation dans le temps
de l’autre. À un instant t1 donné, on a mesuré une pression p(t1) = 1200Pa et une
température T (t1) = 293K ; de plus, on a relevé que la température augmentait au taux
dT
dt
(t1) = 1,8K/min. En récrivant la loi de Gay-Lussac sous la forme p = C T , puis en

dérivant cette dernière des deux côtés par rapport à t :

p(t)

T (t)
= C ⇔ p(t) = C T (t) ⇒ dp

dt
(t) = C

dT

dt
(t) ,

on trouve une expression qui lie le taux dp
dt

au taux dT
dt

. En évaluant dT
dt

en t1, tout en

remarquant que C = p(t1)
T (t1)

, on obtient le taux de variation de la pression en t1 :

dp

dt
(t1) =

p(t1)

T (t1)

dT

dt
(t1) ≈ 7,4 Pa/min ,

et ce, sans connâıtre explicitement les équations paramétriques p = p(t) et T = T (t).

3.8 Différentielles

Au paragraphe 1.2, il a été vu que la dérivée d’une fonction f en x, si elle est définie,
peut être vue comme un rapport de grandeurs infiniment petites :

f ′(x) =
dy

dx
,

où dx est un accroissement infinitésimal (i.e. infiniment petit) de la variable indépen-
dante x et dy l’accroissement infinitésimal de la variable dépendante y = f(x), associé
à dx. Multipliée des deux côtés par dx, cette relation devient :

dy = f ′(x) dx ;

à un accroissement infiniment petit dx de la variable x correspond un accroissement
infiniment petit dy de la variable y, qui s’écrit comme le produit de l’accroissement infi-
nitésimal dx et de la dérivée de f au point où l’on considère l’accroissement infinitésimal.

Si une telle formulation s’avère utile dans la pratique, pour effectuer des calculs
d’incertitude ou d’approximation, elle souffre néanmoins d’un manque de rigueur, du
fait qu’elle traite d’éléments infiniment petits, mal définis mathématiquement. Plutôt
que de parler d’accroissements infinitésimaux, on recourt plus volontiers au concept de
différentielle ; et plutôt que d’écrire des relations entre accroissements infinitésimaux, on
parlera de différentiabilité, dont la définition repose sur la notion précise de limite.

III. Louis Joseph Gay-Lussac était un chimiste et physicien français, né en 1778 à Saint-Léonard-de-
Noblat (en Haute-Vienne, dans le royaume de France) et mort en 1850 à Paris (sous la IIe République).
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3.8.1 Différentiabilité et dérivabilité

3.8.1 Définition : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel x0 ∈ D (i.e. définie dans un sous-ensemble de R contenant un intervalle
ouvert de la forme ]x0 − γ ; x0+ γ[ , où γ est un nombre réel
strictement positif). On dit que f est différentiable en x0 si,
pour tout x ∈ D, f(x) peut s’écrire sous la forme :

f(x) = f(x0) + a (x− x0) +R(x) ,

où a est un nombre réel et R : D → R une fonction réelle
satisfaisant :

lim
x→x0

R(x)

x− x0
= 0 . x

y

O x0 x

∆x
a∆x

R(x)

f(x0)

f(x)

3.8.2 Remarques : • La relation f(x) = f(x0) + a (x− x0) +R(x), donnée dans la
définition précédente, peut s’écrire sous la forme :

∆y = a∆x+R(x) ,

où ∆x = x− x0 et ∆y = f(x)− f(x0).

• La quantité ∆y, mentionnée au point précédent, est souvent notée ∆f ; que ce
soit ∆y ou ∆f , toutes les deux écritures font référence à un seul et même objet : il
s’agit de l’accroissement de la variable dépendante y, associé à l’accroissement ∆x
de la variable indépendante x.

3.8.3 Proposition : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel x0 ∈ D. Alors f est différentiable en x0 si et seulement si elle est dérivable
en x0.

Preuve : Soit f : D → R une fonction réelle, définie dans un voisinage d’un nombre réel
x0 ∈ D. Supposons que f est différentiable en x0. Dire que f est différentiable en x0
revient à dire que f(x) peut s’écrire, pour tout x ∈ D, sous la forme :

f(x) = f(x0) + a (x− x0) +R(x) ,

où a est un nombre réel et R : D → R une fonction réelle satisfaisant :

lim
x→x0

R(x)

x− x0
= 0 .

Noter que pour tout x ∈ D tel que x 6= x0, l’équation f(x) = f(x0) + a (x− x0) +R(x)
peut être récrite comme suit :

f(x)− f(x0) = a (x− x0) +R(x) ⇔ f(x)− f(x0)

x− x0
= a+

R(x)

x− x0
.

En passant à la limite lorsque x tend vers x0, il vient alors :

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

(

a+
R(x)

x− x0

)

= a ,
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vu que, par hypothèse, R(x)
x−x0

tend vers 0 lorsque x tend vers x0. Or, la limite qui se trouve
du côté gauche dans l’expression ci-dessus n’est rien d’autre que la dérivée de f en x0 :

lim
x→x0

f(x)− f(x0)

x− x0
= lim

∆x→0

f(x0 +∆x)− f(x0)

∆x
= f ′(x0) ,

où ∆x = x − x0 ⇔ x = x0 + ∆x. En résumé, f ′(x0) = a ; ce qui montre que f est
dérivable en x0.

Réciproquement, supposons que f est dérivable en x0. Une telle hypothèse permet
d’écrire f(x) sous la forme :

f(x) = f(x0) + f ′(x0) (x− x0) +
(
f(x)− f(x0)− f ′(x0) (x− x0)

)
;

noter que tous les termes, du côté droit de l’égalité, se compensent deux à deux,
excepté f(x) qui demeure (d’où l’égalité). Posons à présent a = f ′(x0) et R(x) =
f(x)− f(x0)− f ′(x0) (x− x0) ; notons alors les deux points suivants :

• a est un nombre réel, vu que f ′ est définie en x0 ;

• R(x) peut être vue comme l’expression d’une fonction réelle, définie dans D et

satisfaisant limx→x0

R(x)
x−x0

= 0 ; en effet :

lim
x→x0

R(x)

x− x0
= lim

x→x0

(
f(x)− f(x0)− f ′(x0) (x− x0)

)

x− x0

= lim
x→x0

(
f(x)− f(x0)

x− x0
− f ′(x0)

)

= f ′(x0)− f ′(x0) = 0 .

En résumé, f(x) peut s’écrire, pour tout x ∈ D, sous la forme :

f(x) = f(x0) + a (x− x0) +R(x) ,

où a est un nombre réel etR une fonction réelle, définie dansD et satisfaisant la condition
limx→x0

R(x)
x−x0

= 0 ; la fonction f est donc différentiable en x0. �

3.8.4 Remarque : La proposition précédente permet d’affirmer que les qualificatifs dif-
férentiable et dérivable sont complètement équivalents. Ces qualificatifs seront désormais
considérés comme synonymes.

3.8.5 Exemple : La fonction f : R → R, donnée par f(x) = x+ 1
2

3
√
x4 − 1, est différen-

tiable en x0 = 0. Pour s’en convaincre, il suffit d’écrire f(x) sous la forme :

f(x) = f(0) + 1 · (x− 0) +R(x) ⇔ f(x) = −1 + x+R(x) ,
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avec :

R(x) = f(x)− (−1 + x)

= x+
1

2

3
√
x4 − 1− (−1 + x) =

1

2

3
√
x4 ,

et de remarquer que R est une fonction définie dans R, qui
satisfait limx→0

R(x)
x−0

= 0 :

lim
x→0

R(x)

x− 0
= lim

x→0

1
2

3
√
x4

x
= lim

x→0

1

2
3
√
x = 0 .

x

y

−1 1

−1

1

0

Noter que le facteur 1 multipliant la parenthèse (x − 0), présente dans l’expression
f(x) = f(0) + 1 · (x− 0) +R(x), n’est rien d’autre que f ′(0).

3.8.6 Remarque : La condition limx→x0

R(x)
x−x0

= 0, présente dans la définition de la dif-
férentiabilité d’une fonction f en un point x0 de l’axe x (cf. définition 3.8.1), est d’une
importance capitale pour le lien entre dérivabilité et différentiabilité de f en x0 ; si cette
condition n’est pas respectée, il n’est pas envisageable de parler de tangente au graphe
de f en

(
x0 ; f(x0)

)
. Les deux exemples qui suivent illustrent bien cette réalité.

⋄ Soit la fonction g : R → R, donnée par g(x) = x + 1
2

4
√
x4 − 1, ou de manière

équivalente par g(x) = x + 1
2
|x| − 1. Certes, pour tout x ∈ R, il est possible

d’écrire :

g(x) = g(0) + 1 · (x− 0) +Rg(x) = −1 + x+Rg(x) ,

où :

Rg(x) = g(x)− (−1 + x) = x+
1

2
4
√
x4 − 1− (−1 + x)

=
1

2

4
√
x4 =

1

2
|x| ;

mais :

lim
x→0

Rg(x)

x− 0
= lim

x→0

1
2
|x|
x

=

{

−1
2

si x < 0

1
2

si x > 0
,

ce qui montre que la limite de Rg(x)
x

, lorsque x tend
vers 0, n’existe pas. Or, dans R2, le point (0 ; −1) est
un point anguleux, où la tangente au graphe de g
n’existe pas (cf. figure ci-contre). Noter qu’un raison-
nement similaire à celui qui vient d’être mené, mais

x

y

−1 1

−1

1

0

avec, dans l’expression de g(x), un facteur devant la parenthèse (x − 0) autre

que 1, conduirait à la même conclusion au sujet de la limite de Rg(x)

x
: au mieux
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le rapport Rg(x)
x

tendrait vers 0 lorsque x tendrait vers 0 par valeurs plus petites
(respectivement par valeurs plus grandes) ; mais ce même rapport ne tendrait
alors pas vers 0 lorsque x tendrait vers 0 par valeurs plus grandes (respectivement
par valeurs plus petites).

⋄ Soit la fonction h : R → R, donnée par h(x) = x + 1
2

5
√
x4 − 1 ; Certes, pour

tout x ∈ R, il est possible d’écrire :

h(x) = h(0)+1 · (x−0)+Rh(x) = −1+x+Rh(x) ,

où :

Rh(x) = h(x)− (−1 + x)

= x+
1

2
5
√
x4 − 1− (−1 + x) =

1

2
5
√
x4 ;

x

y

−1 1

−1

1

0

mais :

lim
x→0

Rh(x)

x− 0
= lim

x→0

1
2

5
√
x4

x
= lim

x→0

1

2 5
√
x

=

{

−∞ si x < 0

∞ si x > 0
,

ce qui montre que la limite n’existe pas. Avec des limites infinies, on est particu-
lièrement loin de la condition donnée dans la définition 3.8.1.

3.8.7 Définition : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel x0 ∈ D et différentiable en x0. Soit aussi l’accroissement ∆x = x − x0,
où x ∈ D. On appelle différentielle d’ordre 1 de f , ou simplement différentielle de f
la quantité proportionnelle à ∆x dans l’expression de l’accroissement ∆f de f (associé
à ∆x) :

f ′(x0) (x− x0) ou, de manière équivalente : f ′(x0)∆x .

3.8.8 Remarque : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel x0 ∈ D et différentiable en x0.

⋄ Soit l’accroissement ∆x = x−x0, où x ∈ D, et ∆f = f(x)−f(x0) l’accroissement
correspondant (associé à ∆x). De manière générale, ∆f 6= f ′(x0)∆x, vu que :

∆f = f ′(x0)∆x+R(x) ,

où R(x) n’est en général pas égal à 0 si x 6= x0. Ce n’est que lorsque l’ac-
croissement ∆x de x devient un accroissement infinitésimal (i.e. un accroisse-
ment infiniment petit), noté alors dx, que l’accroissement correspondant selon y,
noté df , infinitésimal aussi, peut s’écrire df = f ′(x0) dx ; car dans ce cas, R(x)

devient infiniment petit (du fait que le rapport R(x)
x−x0

devient infiniment petit).
L’accroissement df peut, de fait, être vu comme la différentielle de f , vu qu’il est
proportionnel à l’accroissement dx.
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⋄ Les accroissements infinitésimaux dx et dy peuvent être considérés comme étant
les différentielles des variables x et y, respectivement ;

✄ si dy peut être vu comme la différentielle de y, c’est en raison du fait qu’il peut
être identifié à df : comme y = f(x), alors dy = df , avec df = f ′(x0) dx ;
d’où dy = f ′(x0) dx.

✄ si dx peut être vu comme la différentielle de x, c’est en raison du fait qu’il
peut être identifié à la différentielle de la fonction ι, donnée par ι(x) = x :
comme ι′(x) = 1 pour tout x ∈ R, alors ∆ι = 1 · ∆x ; en particulier, dι =
1 · dx ⇔ dι = dx.

Du point de vue adopté ici, les termes accroissement infinitésimal et différen-
tielle sont complètement équivalents. Ils seront désormais considérés comme sy-
nonymes.

3.8.9 Exemple : La fonction f : R → R, donnée par f(x) = x2 + 3, est différentiable
en 1. Pour s’en convaincre, il suffit d’écrire f(x) sous la forme :

f(x) = f(1) + f ′(1)(x− 1) +R(x) ⇔ f(x) = 4 + 2 (x− 1) +R(x) ,

avec :

R(x) = f(x)− 4− 2 (x− 1) = x2 + 3− 4− 2 (x− 1) = x2 − 2 x+ 1 ,

et de remarquer que R est une fonction définie dans R, qui satisfait limx→1
R(x)
x−1

= 0 :

lim
x→1

R(x)

x− 1
= lim

x→1

x2 − 2 x+ 1

x− 1
= lim

x→1

(x− 1)2

x− 1
= lim

x→1
(x− 1) = 0 .

Noter que la relation exprimant la différentiabilité de f en 1 peut être récrite comme
suit :

f(x)− f(1) = f ′(1)(x− 1) +R(x) ⇔ ∆f = 2∆x+R(x) .

où ∆x = x − 1 et ∆f = f(x) − f(1), avec f(1) = 4. Lorsque ∆x et ∆f deviennent
des accroissements infinitésimaux, dx et df respectivement, la quantité R(x) devient
négligeable ; la relation ∆f = 2∆x+R(x) devient alors :

df = 2dx .

Cette expression n’est rien d’autre que la différentielle de f en 1. On écrit parfois df(1),
au lieu de df ; ce afin que le point de l’axe x où df est considérée soit clairement indiqué.

3.8.10 Propriétés : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes
les deux définies dans un voisinage d’un nombre réel x0 ∈ D, et différentiables en x0.
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Notons df(x0), respectivement dg(x0), la différentielle de f , respectivement g.

• La fonction f + g est différentiable en x0 ; de plus :

d
(
f + g

)
(x0) = df(x0) + dg(x0) .

En effet :

d
(
f + g

)
(x0) =

(
f + g

)′
(x0) dx

=
(
f ′(x0) + g′(x0)

)
dx

= f ′(x0) dx+ g′(x0) dx

= df(x0) + dg(x0) .

• La fonction fg est différentiable en x0 ; de plus :

d
(
fg
)
(x0) = df(x0) g(x0) + f(x0) dg(x0) .

En effet :

d(fg)(x0) = (fg)′(x0) dx =
(
f ′(x0) g(x0) + f(x0) g

′(x0)
)
dx

= f ′(x0) g(x0) dx+ f(x0) g
′(x0) dx

= f ′(x0) dx g(x0) + f(x0) g
′(x0) dx

= df(x0) g(x0) + f(x0) dg(x0) .

• La fonction f
g
est différentiable en x0, pour autant que g ne s’annule pas en x0 ;

de plus :

d

(
f

g

)′
(x0) =

df(x0) g(x0)− f(x0) dg(x0)
(
g(x0)

)2 .

En effet :

d

(
f

g

)

(x0) =

(
f

g

)′
(x0) dx =

f ′(x0) g(x0)− f(x0) g
′(x0)

(
g(x0)

)2 dx

=
f ′(x0) g(x0) dx− f(x0) g

′(x0) dx
(
g(x0)

)2

=
f ′(x0) dx g(x0)− f(x0) g

′(x0) dx
(
g(x0)

)2

=
df(x0) g(x0)− f(x0) dg(x0)

(
g(x0)

)2 .
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• La fonction fn (où fn(x) =
(
f(x)

)n
pour tout x ∈ D1, n étant un nombre entier

strictement positif) est différentiable en x0 ; de plus :

d(fn)(x0) = n fn−1(x0) df(x0) ,

où fn−1(x0) =
(
f(x0)

)n−1
. En effet :

d(fn)(x0) =
(
fn
)′
(x0) dx = n fn−1(x0) f

′(x0) dx = n fn−1(x0) df(x0) .

Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage de f(x0), et qu’elle est
différentiable en f(x0).

• La fonction g ◦ f est différentiable en x0 ; de plus :

d
(
g ◦ f

)
(x0) = g′

(
f(x0)

)
df(x0) .

En effet :

d
(
g ◦ f

)
(x0) =

(
g ◦ f

)′
(x0) dx = g′

(
f(x0)

)
f ′(x0) dx = g′

(
f(x0)

)
df(x0) .

3.8.11 Remarque : La proposition 3.8.3 permet d’affirmer que le calcul différentiel, i.e.
le calcul traitant des différentielles, et le calcul traitant des dérivées sont un seul et même
domaine des mathématiques.

3.8.2 Approximation

La relation exprimant la différentiabilité d’une fonction f en un point x0 (cf. défi-
nition 3.8.1) peut s’avérer utile pour calculer des valeurs numériques approchées de
nombres irrationnels.

Considérons un nombre irrationnel et supposons qu’il est possible de l’écrire sous
la forme f(x1), où f est une fonction réelle, définie dans un voisinage V d’un nombre
réel x0 et différentiable en x0, et x1 un nombre réel dans V . Supposons, en outre, que
les valeurs numériques de f(x0) et f

′(x0) peuvent être aisément obtenues. Le fait que f
est différentiable en x0 permet d’écrire :

f(x1) = f(x0) + f ′(x0)(x1 − x0) +R(x1) .

Si x1 est «suffisamment près» de x0, R(x1) est «suffisamment petit», si bien que :

f(x1) ≈ f(x0) + f ′(x0)(x1 − x0) . (3.8.1)

Le signe ≈ indique qu’il s’agit d’une approximation et non d’une égalité.
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3.8.12 Exemples : 1. Cherchons une valeur approchée de
√

11
10

:

√

11

10
=

√

10 + 1

10
=

√

1 +
1

10

≈
√
1 +

1

2
√
1

(
11

10
− 1

)

= 1 +
1

2
· 1

10
= 1 +

1

20
=

21

20
= 1,05 .

Ce calcul a été effectué en considérant la fonction f donnée par f(x) =
√
x , dont

la dérivée f ′ s’écrit f ′(x) = 1
2
√
x
, et en utilisant la formule 3.8.1, avec x0 = 1 et

x1 =
11
10
. Noter que la machine à calculer donne :

√

11

10
= 1,0488.....

2. Cherchons une valeur approchée de sin(31◦). Pour cela, commençons par exprimer
la mesure d’angle de 31◦ sous forme de longueur d’un arc de cercle de rayon égal
à 1 :

31◦ ↔ 31

360
· 2 π .

Ainsi :

sin(31◦) = sin

(
31

360
· 2 π

)

= sin

(( 30

360
+

1

360

)

2 π

)

= sin
(π

6
+

π

180

)

≈ sin
(π

6

)

+ cos
(π

6

)(π

6
+

π

180
− π

6

)

=
1

2
+

√
3

2
· π

180
= 0,51511.....

Le calcul a été effectué en considérant la fonction f donnée par f(x) = sin(x), dont
la dérivée f ′ s’écrit f ′(x) = cos(x), et en utilisant la formule 3.8.1, avec x0 =

π
6
et

x1 =
π
6
+ π

180
. La conversion de la mesure d’angle, faite au préalable, est essentielle ;

si elle n’avait pas été effectuée, il n’aurait pas été possible d’utiliser la formule de
dérivation sin′ = cos ; la formule encadrée n’aurait, de fait, pas été applicable telle
quelle. Noter, pour terminer, que la machine à calculer donne :

sin(31◦) = 0,515038.....

3.8.13 Illustration : La formule 3.8.1 est fréquemment utilisée en physique et dans les
sciences de l’ingénierie, notamment lorsqu’il s’agit d’exprimer un lien approximatif entre
deux grandeurs, le lien exact n’étant pas connu ou non modélisable de manière simple.
Comme exemple, on peut mentionner le phénomène de dilatation thermique, qui met en
évidence la dépendance des dimensions d’un objet matériel par rapport à sa température.
Prenons une barre métallique de longueur L0 à la température T0. Pour trouver la
longueur L1 de la barre à la température T1, on utilise généralement l’expression :

L1 = L0

(
1 + α (T1 − T0)

)
,
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où α est un coefficient appelé coefficient de dilatation linéaire à la température T0 ; ce
coefficient dépend du matériau dont est composée la barre. Bien que l’usage veuille qu’on
l’écrive en utilisant le signe = et non ≈ , l’expression donnée ici n’est qu’une forme
approximative d’une relation plus complexe qui ne peut pas être aisément modélisée.
Cette expression a la même allure que la formule 3.8.1 ; afin que la ressemblance soit
plus manifeste, il convient de poser L1 = L(T1), λ = αL0 et de remplacer le signe = par
le symbole ≈ :

L(T1) ≈ L0 + λ (T1 − T0) .

3.8.3 Calcul d’incertitudes

Dans les sciences expérimentales, les mesures réalisées sur un dispositif n’ont jamais une
précision infinie ; elles comportent ce que l’on appelle une incertitude. L’incertitude sur
une mesure traduit l’erreur possible sur la mesure effectuée. La cause de l’erreur est
multiple : l’instrument de mesure utilisé, l’expérimentateur, la méthode de mesure, etc.
Plus une mesure est précise, plus son incertitude est petite.

L’incertitude sur une mesure x est un paramètre positif qui se note ∆x. Une me-
sure x accompagnée de son incertitude ∆x s’écrit x ± ∆x. Une telle notation indique
que la mesure en question peut être a priori n’importe quel élément de l’intervalle
[x−∆x ; x+∆x].

Supposons que la mesure x est utilisée pour calculer un résultat y, via la relation
y = f(x), où f est une fonction de la mesure x. L’incertitude ∆x sur la mesure x induit
alors une incertitude ∆y sur le résultat y. Si le dispositif expérimental est correctement
conçu, l’expérimentateur soigneux, la méthode de mesure appropriée..., l’écart ∆x est
suffisamment petit pour que la dérivée f ′ de f (à supposer qu’elle soit définie) ne varie
pas trop dans l’intervalle [x−∆x ; x+∆x]. Dans la relation exprimant la différentiabilité
d’une fonction (cf. définition 3.8.1), le reste R(x) devient alors négligeable, si bien que
l’écart ∆y peut s’écrire, dans ce cas, ∆y ≈ f ′(x)∆x. Afin que ∆y soit positif, les deux
côtés de l’expression sont considérés en valeurs absolues :

|∆y| ≈
∣
∣f ′(x)∆x

∣
∣ =

∣
∣f ′(x)

∣
∣ |∆x| ;

Dans la pratique, on note simplement :

∆y ≈
∣
∣f ′(x)

∣
∣∆x .

Une telle écriture fait sens, vu que ∆x et ∆y sont des incertitudes et donc des quantités
positives.

3.8.14 Exemple : On aimerait connâıtre l’aire A d’un disque. Pour cela, on mesure son
diamètre ℓ à l’aide d’un pied à coulisse ; on obtient ℓ = (32,8±0,1)mm. Une telle écriture
indique que ℓ = 32,8mm et que son incertitude est ∆ℓ = 0,1mm. L’aire A est alors :

A = π

(
ℓ

2

)2

≈ 845,0mm2 ≈ 845mm2
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et son incertitude :

∆A =

∣
∣
∣
∣

dA

dℓ

∣
∣
∣
∣
∆ℓ =

∣
∣
∣
∣
2 π · ℓ

2
· 1
2

∣
∣
∣
∣
∆ℓ =

π ℓ∆ℓ

2
≈ 5,2mm2 ≈ 5mm2 .

Comme le concept d’incertitude véhicule une idée d’imprécision, et qu’il ne fait pas
sens d’être trop précis dans l’imprécision, la valeur de ∆A est arrondie à un seul chiffre
significatif. Aussi, vu que l’incertitude, après avoir été arrondie, porte sur l’unité, la
valeur de A est arrondie à l’unité également. Ainsi, sous forme compacte :

A = (845± 5)mm2 = (8,45± 0,05) · 102mm2 .

3.8.15 Remarques : • Dans le cas où un résultat y dépend, non pas d’une, mais
de n mesures x1, . . . , xn (où n = 2, 3, 4, . . .) via la relation :

y = f(x1; . . . ; xn) ,

f étant une fonction des n grandeurs x1, . . . , xn, l’incertitude ∆y sur y s’obtient
de la manière suivante :

∆y =

∣
∣
∣
∣

∂f

∂x1

∣
∣
∣
∣
∆x1 +

∣
∣
∣
∣

∂f

∂x2

∣
∣
∣
∣
∆x2 + . . .+

∣
∣
∣
∣

∂f

∂xn

∣
∣
∣
∣
∆xn =

n∑

k=1

∣
∣
∣
∣

∂f

∂xk

∣
∣
∣
∣
∆xk ,

où ∂f
∂xk

est ce que l’on appelle la dérivée partielle de f par rapport à la variable xk
et ∆xk l’incertitude sur la mesure xk. Dans la pratique, le calcul de la dérivée
partielle de f par rapport à xk se solde par un calcul de dérivée habituelle (basé
sur les techniques développées dans le présent chapitre), dans lequel f est vue
comme une fonction de la seule variable xk, les autres grandeurs xj , où j ∈
{1; . . . ; n} est tel que j 6= k, étant considérées comme des paramètres constants.
Nécessitant des outils provenant de la théorie des fonctions de plusieurs variables,
la démonstration de l’expression écrite ci-dessus ne peut pas être donnée ici.

• L’estimation et le calcul d’incertitudes sont un vaste sujet qui s’inscrit dans la
science de la mesure. Les considérations faites ici ne constituent qu’une version
simplifiée d’un ensemble cohérent de techniques plus complexes, basées entre
autres sur des outils statistiques, qui permettent de caractériser aussi justement
que possible la précision d’une mesure ou d’un résultat obtenu à partir de mesures.

3.9 Théorèmes relatifs aux fonctions dérivables

Outre la caractéristique de différentiabilité, ouvrant la voie au calcul d’approximation,
les fonctions dérivables possèdent des propriétés dont l’intérêt ne se cantonne pas uni-
quement aux mathématiques, mais s’étend également à d’autres domaines ; par exemple
la physique, notamment la cinématique.
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3.9.1 Théorème : Soit f : D → R une fonction réelle, définie dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Supposons que f est
continue dans [a; b], dérivable dans ]a; b[ (i.e. dérivable dans le plus grand intervalle
ouvert contenu dans [a; b] ) et qu’elle satisfait f(a) = f(b). Alors il existe au moins un
nombre réel c ∈ ]a; b[ tel que f ′(c) = 0. Ce résultat est connu sous le nom de théorème

de Rolle IV.

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses du théorème.
f étant continue dans [a; b], elle atteint une valeur minimale m ainsi qu’une valeur
maximale M dans [a; b] (cf. théorème 2.10.3, section 2.10 du chapitre 2). En d’autres
termes, il existe au moins un élément xm ∈ [a; b] et au moins un élément xM ∈ [a; b]
tels que, pour tout x ∈ [a; b] :

m = f(xm) 6 f(x) 6 f(xM) = M ;

en particulier :

m = f(xm) 6 f(a) = f(b) 6 f(xM) = M .

Deux situations peuvent alors se présenter :

• m =M , ce qui implique m = f(a) = f(b) =M :
La fonction f ne peut qu’être constante dans [a; b] ; dans cette situation, f ′(x) = 0
pour tout x ∈ ]a; b[ .

• m 6=M , ce qui implique m 6 f(a) = f(b) 6 M :
Trois cas peuvent être distingués :

1. xm = a ; alors nécessairement xM ∈ ]a; b[ . En effet,
si xm = a, alors m = f(xm) = f(a) = f(b) et donc
f(a) = f(b) 6= M = f(xM), vu que m 6= M ; ainsi
xM 6= a et xM 6= b. Un raisonnement similaire s’ap-
plique dans le cas où xm = b.

2. xM = a ; alors nécessairement xm ∈ ]a; b[ . En effet,
si xM = a, alors M = f(xM) = f(a) = f(b) et donc
f(a) = f(b) 6= m = f(xm), vu que m 6=M ; ainsi xm 6=
a et xm 6= b. Un raisonnement similaire s’applique dans
le cas où xM = b.

3. xm, xM ∈ ]a; b[ .

x

y

O a xM b

x

y

O a xm b

x

y

O a xM xm b

Dans tous les cas, au moins l’un des deux éléments xm et xM est dans l’intervalle
ouvert ]a; b[ . Supposons que ce soit xM qui est dans ]a; b[ . Alors :

f ′(xM ) = lim
∆x→0

f(xM +∆x)− f(xM)

∆x
;

IV. Michel Rolle était un mathématicien français, né le 21 avril 1652 à Ambert (en Auvergne, dans
le royaume de France) et mort le 8 novembre 1719 à Paris.
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autrement écrit, avec ∆x = x− xM :

f ′(xM ) = lim
x→xM

f(x)− f(xM)

x− xM
=







lim
x→xM
x<xM

f(x)− f(xM)

x− xM

lim
x→xM
x>xM

f(x)− f(xM)

x− xM

;

or :

⋄ lim
x→xM
x<xM

f(x)− f(xM)

x− xM
> 0 vu que x− xM < 0 et f(x)− f(xM) 6 0 par

définition d’un maximum ;

⋄ lim
x→xM
x>xM

f(x)− f(xM)

x− xM
6 0 vu que x− xM > 0 et f(x)− f(xM) 6 0 par

définition d’un maximum ;

en conséquence, et vu que f ′ est définie dans ]a; b[ , en particulier en xM :

f ′(xM ) = 0 .

Un raisonnement similaire s’applique si c’est xm qui est dans ]a; b[ . Dans tous
les cas, il existe au moins un c ∈ ]a; b[ tel que f ′(c) = 0. �

3.9.2 Exemple : Soient f la fonction réelle donnée par f(x) = 4 x2−20 x+29, I = ]1; 4[
un intervalle ouvert et Ī = [1; 4] le plus petit intervalle fermé contenant I. Vu que f est
une fonction polynomiale, elle est continue et dérivable dans R ; elle est, de fait, continue
dans Ī et dérivable dans I. En outre, elle prend la même valeur en 1 et en 4 : f(1) =
13 = f(4). Manifestement, toutes les conditions sont réunies pour pouvoir appliquer le
théorème de Rolle. Selon ce théorème, il existe au moins un nombre réel c ∈ I tel que
f ′(c) = 0 ; déterminons-le. Comme f ′(x) = 8 x− 20, alors :

f ′(c) = 0 ⇔ 8 c− 20 = 0 .

Un seul nombre réel satisfait cette équation ; il s’agit de :

c =
20

8
=

5

2
;

comme attendu, ce nombre est dans I.

3.9.3 Illustration : Considérons un point matériel M se déplaçant sur un axe z. Sur cet
axe, la position de M peut être décrite par une expression de la forme z = f(t), où f
est une fonction continue du temps t qui s’écoule. Supposons que la position de M en
un instant ta est la même que celle en un instant tb > ta ; autrement dit, supposons que
f(ta) = f(tb). Supposons aussi que la vitesse instantanée de M est définie en tout t, et
donc en particulier en tout t ∈ ]ta; tb[ ; en d’autres termes, supposons que f ′ est définie
en tout t, en particulier en tout t ∈ ]ta; tb[ . Alors, selon le théorème de Rolle, il existe au
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moins un instant tc ∈ ]ta; tb[ où la dérivée f ′ de f est nulle : f ′(tc) = 0. Un tel résultat
n’a rien d’étonnant : si le point matériel se retrouve au même endroit en ta et en tb :

⋄ soit il reste immobile dans [ta; tb], auquel cas sa vitesse est nulle pour tout t ∈
]ta; tb[ ,

⋄ soit il est mobile, auquel cas il doit nécessairement rebrousser chemin en un
instant tc au moins, qui n’est ni l’instant ta, ni l’instant tb ; or, en tc, sa vitesse
est nécessairement nulle.

3.9.4 Théorème : Soit f : D → R une fonction réelle, définie dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Supposons que f est continue
dans [a; b] et dérivable dans ]a; b[ . Alors il existe au moins un nombre réel c ∈ ]a; b[ tel
que :

f ′(c) =
f(b)− f(a)

b− a

(
ou, de manière équivalente : f(b)− f(a) = f ′(c) (b− a)

)
.

Ce résultat est connu sous le nom de théorème des accroissements finis, ou théo-

rème de Lagrange V.

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses du théorème. Soit
alors g la fonction réelle donnée par :

g(x) = f(x)− f(b)− f(a)

b− a
(x− a) .

De par sa définition, g est définie et continue dans [a; b], dérivable dans ]a; b[ et satisfait
g(a) = f(a) = g(b). La fonction g remplit donc toutes les conditions nécessaires à
l’application du théorème de Rolle. Selon ce théorème, il existe au moins un nombre réel
c ∈ ]a; b[ tel que g′(c) = 0. Comme :

g′(x) =
d

dx

(

f(x)− f(b)− f(a)

b− a
(x− a)

)

=
d

dx
f(x)− f(b)− f(a)

b− a

d

dx
(x− a) = f ′(x)− f(b)− f(a)

b− a
,

alors :

g′(c) = 0 ⇔ f ′(c)− f(b)− f(a)

b− a
= 0 .

En résumé, il existe au moins un nombre réel c ∈ ]a; b[ tel que :

f ′(c) =
f(b)− f(a)

b− a
. �

V. Joseph Louis de Lagrange était un mathématicien né le 25 janvier 1736 à Turin (dans le royaume
de Sardaigne) et mort le 10 avril 1813 à Paris (dans l’Empire napoléonien). Il est le fondateur de la
mécanique analytique, discipline qui étudie les phénomènes mécaniques à l’aide des outils fournis par le
calcul différentiel et intégral.
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3.9.5 Remarques : • Dans l’énoncé du théorème précé-
dent, la quantité f(b)−f(a)

b−a
n’est rien d’autre que la

pente du segment reliant les points A
(
a ; f(a)

)
et

B
(
b ; f(b)

)
, dans R2.

• La conclusion du théorème précédent peut être formu-
lée comme suit : il existe au moins un point

(
c ; f(c)

) x

y

O a

f(a) A

b

f(b)
B

c

du graphe de f , avec c ∈ ]a; b[ , où la tangente est parallèle au segment reliant
(
a ; f(a)

)
et
(
b ; f(b)

)
(cf. figure ci-contre).

3.9.6 Illustrations : 1. Considérons un point matériel M se déplaçant sur un axe z.
Sur cet axe, la position de M peut être décrite par une expression de la forme
z = f(t), où f est une fonction continue du temps t qui s’écoule. Notons za,
respectivement zb, la position de M en un instant ta, respectivement un instant
tb > ta. Supposons que la vitesse instantanée de M est définie en tout t, et donc
en particulier en tout t ∈ ]ta; tb[ ; en d’autres termes, supposons que f ′ est définie
en tout t, en particulier en tout t ∈ ]ta; tb[ . Alors, selon le théorème de Lagrange,
il existe au moins un instant tc ∈ ]ta; tb[ tel que :

f ′(tc) =
f(tb)− f(ta)

tb − ta
.

Autrement dit, il existe au moins un instant tc ∈ ]ta; tb[
où la vitesse instantanée du point matériel est égale à sa
vitesse moyenne dans [ta; tb] ; en effet, f ′(tc) n’est rien
d’autre que la vitesse instantanée de M en tc ; alors que
le terme de droite est sa vitesse moyenne dans l’intervalle
de temps [ta; tb].

t

z

O ta

za

tb

zb

tc

2. Assis au volant de son véhicule, un automobiliste se déplace sur une autoroute
rectiligne. En un instant tA, il se trouve au point A ; à cet instant, un radar
mesure la vitesse de sa voiture et relève vA = 115 km/h. Quatre minutes plus
tard, à l’instant tB, l’automobiliste se trouve au point B, distant de d = 10 km
du point A ; à cet instant tB, un deuxième radar mesure la vitesse de la voiture
et relève vB = 118 km/h. Tout porte à croire que l’automobiliste respecte les
limitations de vitesse ; pourtant, il est amendable. Et pour cause : sur le tronçon
entre les points A et B, la vitesse moyenne de l’automobile est :

vmoy =
d

tB − tA
=

10 km

4min
=

10 km
1
15
h

= 150 km/h ;

or, selon le théorème de Lagrange (qui est applicable ici, vu que la trajectoire de
la voiture peut être décrite par une fonction du temps t, continue dans [tA; tB] et
dérivable dans ]tA; tB[ ), il existe au moins un instant tC ∈ ]tA; tB[ où la vitesse
instantanée de l’automobile est de 150 km/h.

3.9.7 Théorème : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies dans un intervalle fermé [a; b] ⊂ D1 ∩ D2, où a et b sont deux nombres
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réels tels que a < b. Supposons que f et g sont continues dans [a; b] et dérivables dans
]a; b[ ; supposons, en outre, que g′ ne s’annule en aucun point de ]a; b[ . Alors il existe
au moins un nombre réel c ∈ ]a; b[ tel que :

f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

Ce résultat est connu sous le nom de théorème des accroissements finis généralisé,
ou théorème de CauchyVI.

Preuve : Soient f : D1 → R et g : D2 → R deux fonctions réelles satisfaisant les
hypothèses du théorème. Le fait que g′ ne s’annule en aucun point de ]a; b[ permet
d’affirmer, grâce au théorème de Rolle, que g(a) 6= g(b). Soit alors la fonction réelle h
donnée par :

h(x) = f(x)− f(b)− f(a)

g(b)− g(a)

(
g(x)− g(a)

)
.

De par sa définition, h est définie et continue dans [a; b], dérivable dans ]a; b[ et satisfait
h(a) = f(a) = h(b). La fonction h remplit donc toutes les conditions nécessaires à
l’application du théorème de Rolle. Selon ce théorème, il existe au moins un nombre réel
c ∈ ]a; b[ tel que h′(c) = 0. Comme :

h′(x) =
d

dx

(

f(x)− f(b)− f(a)

g(b)− g(a)

(
g(x)− g(a)

)
)

=
d

dx
f(x)− f(b)− f(a)

g(b)− g(a)

d

dx

(
g(x)− g(a)

)
= f ′(x)− f(b)− f(a)

g(b)− g(a)
g′(x) ,

alors :

h′(c) = 0 ⇔ f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c) = 0 .

En résumé, il existe au moins un nombre réel c ∈ ]a; b[ tel que :

f ′(c) =
f(b)− f(a)

f(b)− f(a)
g′(c) ⇔ f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
. �

3.9.8 Remarque : Le théorème des accroissements finis généralisés n’est rien d’autre que
le théorème des accroissements finis appliqué à des courbes C données non pas par une
équation cartésienne explicite y = f(x), mais par deux équations paramétriques :

{

x = g(t)

y = f(t)
,

VI. Augustin Louis Cauchy était un mathématicien français, né le 21 août 1789 à Paris (près de six
semaines après la prise de la Bastille) et mort le 23 mai 1857 à Sceaux (dans les Hauts-de-Seine, dans
le Second Empire de France). Il est connu pour ses nombreux travaux de mathématiques, notamment
ceux en lien avec les calculs différentiel et intégral.



164 3 Calcul différentiel

où f et g sont deux fonctions définies et continues dans un cer-
tain intervalle [ta ; tb], où ta et tb sont deux nombres réels tels
que ta < tb, et dérivables dans ]ta ; tb[ . Pour s’en convaincre,
il suffit d’observer la figure ci-contre et de se référer aux re-
marques 3.9.5 : en notant xa = g(ta), xb = g(tb), ya = f(ta)
et yb = f(tb), et en observant que dy

dx
= ẏ

ẋ
, où ẋ = dx

dt
= g′

et ẏ = dy
dt

= f ′ (cf. section 3.7 consacrée aux tangentes à une
courbe paramétrée), il vient :

x

y

O xa

ya

xb

yb

x(tc)

dy

dx
(tc) =

yb − ya
xb − xa

⇔ f ′(tc)

g′(tc)
=

f(tb)− f(ta)

g(tb)− g(ta)
.

3.9.9 Théorème : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies dans un intervalle fermé [a; x0] ⊂ D1 ∩D2, où a et x0 sont deux nombres
réels tels que a < x0. Supposons que f et g sont continues dans [a; x0] et dérivables dans
]a; x0[ . Supposons, de plus, que :

f(x0) = 0 = g(x0) ,

que g et g′ ne s’annulent en aucun point de ]a; x0[ et que :

lim
x→x0
x<x0

f ′(x)

g′(x)
= ℓ ,

où ℓ est un nombre réel. Alors :

lim
x→x0
x<x0

f(x)

g(x)
= ℓ .

Un tel résultat est connu sous le nom de Règle de Bernoulli VII-L’Hôpital VIII.

Preuve : Soient f : D1 → R et g : D2 → R deux fonctions réelles satisfaisant les
hypothèses du théorème, et x un élément quelconque de ]a; x0[ . D’une part, vu que

VII. Jean Bernoulli était un mathématicien helvétique, d’origine flamande, né en 1667 à Bâle (en
Suisse) et mort en 1748 dans la même ville. Disciple, avec son frère Jacques, de Leibniz, il a été parmi
les premiers à comprendre le calcul infinitésimal et à l’appliquer dans diverses situations.
VIII. Guillaume François de L’Hôpital (marquis de Saint-Mesme, compte d’Autremont et seigneur
d’Ouques) était un mathématicien français, né en 1661 à Paris (dans le royaume de France) et mort
en 1704 dans la même ville. L’Hôpital a acquis une certaine notoriété peu après sa mort, grâce à un
ouvrage paru de son vivant, intitulé Analyse des infiniment petits. C’est dans cet ouvrage qu’est apparu
pour la première fois le résultat appelée de nos jours règle de Bernoulli-L’Hôpital, ou parfois simplement
règle de L’Hôpital. Les publications successives, dans la première moitié du XXe siècle, du traité de
Bernoulli sur le calcul différentiel, puis de sa correspondance, ont permis d’établir que cette règle,
certes publiée pour la première fois dans l’ouvrage de L’Hôpital, n’était pas due à L’Hôpital lui-même,
mais à Bernoulli. Si elle n’a pas été publiée par Bernoulli lui-même, c’est parce que L’Hôpital avait
passé un accord avec Bernoulli (en 1694) : en échange d’une allocation annuelle de 300 livres, Bernoulli
s’engageait à transmettre à L’Hôpital toutes ses découvertes, s’abstenant de les communiquer à toute
autre personne.
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f(x0) = 0 = g(x0) et que g ne s’annule pas dans ]a; x0[ :

f(x0)− f(x)

g(x0)− g(x)
=

0− f(x)

0− g(x)
=

f(x)

g(x)
;

d’autre part, selon le théorème des accroissements finis généralisé (dont les hypothèses
sont toutes satisfaites dans [a; x0]), il existe un nombre réel cx ∈ ]x; x0[ tel que :

f(x0)− f(x)

g(x0)− g(x)
=

f ′(cx)

g′(cx)
.

En résumé, il existe un nombre réel cx ∈ ]x; x0[ tel que :

f(x)

g(x)
=

f ′(cx)

g′(cx)
.

Par conséquent :

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

f ′(cx)

g′(cx)
= lim

x→x0
x<x0

f ′(x)

g′(x)
= ℓ ,

vu que x et cx tendent tous les deux vers x0 lorsque x tend vers x0. �

3.9.10 Remarques : • La conclusion du théorème précédent demeure valable si,
dans l’énoncé, la condition a < x0 est remplacée par la condition a > x0 ; noter
alors que la modification de a < x0 en a > x0 entrâıne la substitution des inter-
valles [a; x0] et ]a; x0[ par les intervalles [x0; a] et ]x0; a[ , respectivement, ainsi
que la substitution des limites par valeurs plus petites (x→ x0 avec x < x0) par
des limites par valeurs plus grandes (x→ x0 avec x > x0).

• Dans le cas où la limite de f ′(x)
g′(x)

lorsque x tend vers x0 par valeurs plus petites

(évoquée dans le théorème précédent) et la limite de f ′(x)
g′(x)

lorsque x tend vers x0
par valeurs plus grandes (mentionnée au point précédent) sont égales à un seul et

même nombre réel ℓ, l’expression f(x)
g(x)

admet pour limite le nombre réel ℓ lorsque x
tend vers x0, que ce soit par valeurs plus petites ou par valeurs plus grandes.

• Dans la conclusion du théorème précédent, il s’agit bien du rapport entre la
dérivée du numérateur et la dérivée du dénominateur, et non de la dérivée du
rapport entre le numérateur et le dénominateur.

3.9.11 Exemple : Cherchons la limite de sin(x)
x

lorsque x tend vers 0. À cet effet, remar-
quons que, pour tous nombres réels a et b tels que a < 0 < b :

⋄ les fonctions données par sin(x) et par x sont continues dans [a; b] et dérivables
dans ]a; 0[ ∪ ]0; b[ ,

⋄ limx→0

d
dx

sin(x)
d
dx

x
= limx→0

cos(x)
1

= 1,

⋄ les quantités x et 1 ne s’annulent pas dans ]a; 0[ ∪ ]0; b[ .



166 3 Calcul différentiel

Manifestement, toutes les conditions sont réunies pour pouvoir appliquer la règle de
Bernoulli-L’Hôpital (B-H) ; selon cette règle :

lim
x→0

sin(x)

x
B-H
= lim

x→0

cos(x)

1
=

1

1
= 1 .

3.9.12 Remarques : • Première généralisation de la règle de Bernoulli-L’Hôpital :
La conclusion du théorème 3.9.9 demeure valable si, dans les hypothèses, la condi-
tion f(x0) = 0 = g(x0) est remplacée par la condition :

lim
x→x0
x<x0

f(x) = 0 = lim
x→x0
x<x0

g(x) ,

et la condition de la continuité des fonctions f et g dans [a; x0] remplacée par la
condition de la continuité de f et g dans [a; x0[ . Pour s’en convaincre, il suffit de
reprendre la preuve du théorème 3.9.9 et de l’adapter comme suit. Soient x et b
deux éléments de l’intervalle ]a; x0[ , tels que x 6= b. Alors, selon le théorème des
accroissements finis généralisé, il existe un nombre réel cx compris strictement
entre x et b (i.e. un nombre réel cx ∈ ]x; b[ si x < b ou cx ∈ ]b; x0[ si b < x) tel
que :

f(b)− f(x)

g(b)− g(x)
=

f ′(cx)

g′(cx)
,

et ce aussi bien dans le cas où x < b que dans le cas où x > b (du fait que
f(b)−f(x)
g(b)−g(x)

= f(x)−f(b)
g(x)−g(b)

). Ainsi, en passant à la limite lorsque b tend vers x0 par
valeurs plus petites :

lim
b→x0
b<x0

f(b)− f(x)

g(b)− g(x)
= lim

b→x0
b<x0

f ′(cx)

g′(cx)
⇔ f(x)

g(x)
= lim

b→x0
b<x0

f ′(cx)

g′(cx)
,

vu que, d’une part, f(b) et g(b) tendent toutes les deux vers 0 lorsque b tend

vers x0 par valeurs plus petites, d’autre part 0−f(x)
0−g(x)

= −f(x)
−g(x)

= f(x)
g(x)

. Par consé-
quent :

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

lim
b→x0
b<x0

f ′(cx)

g′(cx)
.

Or :

lim
x→x0
x<x0

lim
b→x0
b<x0

f ′(cx)

g′(cx)
= lim

cx→x0
cx<x0

f ′(cx)

g′(cx)
,

du fait que cx tend aussi vers x0 lorsque b et x tendent tous les deux vers x0 (vu
que cx est strictement compris entre x et b) ; et comme :

lim
cx→x0
cx<x0

f ′(cx)

g′(cx)
= lim

x→x0
x<x0

f ′(x)

g′(x)
,

il ne s’agit là, en effet, que de deux écritures différentes de la même limite, alors :

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

f ′(x)

g′(x)
. �
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• Deuxième généralisation de la règle de Bernoulli-L’Hôpital : La conclusion du
théorème 3.9.9 demeure valable si, dans les hypothèses, la condition f(x0) = 0 =
g(x0) est remplacée par la condition :

lim
x→x0
x<x0

f(x) =

{
∞ ou

−∞ et lim
x→x0
x<x0

g(x) =

{
∞ ou

−∞ ,

et la condition de la continuité des fonctions f et g dans [a; x0] remplacée par la
condition de la continuité de f et g dans [a; x0[ . Pour s’en convaincre, il suffit de
reprendre la preuve du théorème 3.9.9 et de l’adapter comme suit. Soient x et b
deux éléments de l’intervalle ]a; x0[ , tels que x 6= b. Alors, selon le théorème des
accroissements finis généralisé, il existe un nombre réel cx compris strictement
entre x et b tel que :

f(b)− f(x)

g(b)− g(x)
=

f ′(cx)

g′(cx)
,

et ce aussi bien dans le cas où x < b que dans le cas où x > b. Intéressons-nous à
présent à la quantité f(x)

g(x)
; celle-ci peut être récrite comme suit, pour autant que

f(x) 6= 0, f(x) 6= f(b), g(x) 6= 0 et g(x) 6= g(b) :

f(x)

g(x)
=

f(b)− f(x)

f(b)− f(x)

g(b)− g(x)

g(b)− g(x)

f(x)

g(x)
=

(

−f(b)− f(x)

f(x)− f(b)

)(

−g(x)− g(b)

g(b)− g(x)

) 1
g(x)

1
f(x)

=
f(b)− f(x)

g(b)− g(x)

g(x)− g(b)

f(x)− f(b)

1
g(x)

1
f(x)

=
f(b)− f(x)

g(b)− g(x)

1− g(b)
g(x)

1− f(b)
f(x)

.

Noter que les conditions f(x) 6= 0, f(x) 6= f(b), g(x) 6= 0 et g(x) 6= g(b) sont
de toute façon satisfaites lorsqu’il est question de passer à la limite où x, puis b,
tendent tous les deux vers x0 par valeurs plus petites ; en effet :

⋄ f ne peut pas valoir 0 ou f(b) juste avant x0 et satisfaire en même temps
limx→x0

− f(x) = ∞ ou limx→x0
− f(x) = −∞ ;

⋄ g ne peut pas valoir 0 ou g(b) juste avant x0 et satisfaire en même temps
limx→x0

− g(x) = ∞ ou limx→x0
− g(x) = −∞.

Des deux derniers résultats obtenus, il ressort que :

f(x)

g(x)
=

f(b)− f(x)

g(b)− g(x)

1− g(b)
g(x)

1− f(b)
f(x)

=
f ′(cx)

g′(cx)

1− g(b)
g(x)

1− f(b)
f(x)

.

Par conséquent, en passant à la limite lorsque x tend vers x0 par valeurs plus
petites :

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

(

f ′(cx)

g′(cx)

1− g(b)
g(x)

1− f(b)
f(x)

)

= lim
x→x0
x<x0

f ′(cx)

g′(cx)
lim
x→x0
x<x0

1− g(b)
g(x)

1− f(b)
f(x)

= lim
x→x0
x<x0

f ′(cx)

g′(cx)
· 1 = lim

x→x0
x<x0

f ′(cx)

g′(cx)
,
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vu que les rapports f(b)
f(x)

et g(b)
g(x)

tendent tous les deux vers 0 lorsque x tend vers x0
par valeurs plus petites (du fait que f(x) tend vers ∞ ou −∞ et g(x) vers ∞
ou −∞ lorsque x tend vers x0 par valeurs plus petites), quel que soit b ∈ ]a; x0[ .
Et donc, en passant à la limite lorsque b tend vers x0 par valeurs plus petites :

lim
b→x0
b<x0

lim
x→x0
x<x0

f(x)

g(x)
= lim

b→x0
b<x0

lim
x→x0
x<x0

f ′(cx)

g′(cx)
.

Or, d’une part :

lim
b→x0
b<x0

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

f(x)

g(x)
,

vu que la limite de f(x)
g(x)

lorsque x tend vers x0 par valeurs plus petites ne dépend
pas de b, et d’autre part :

lim
b→x0
b<x0

lim
x→x0
x<x0

f ′(cx)

g′(cx)
= lim

cx→x0
cx<x0

f ′(cx)

g′(cx)
,

du fait que cx tend vers x0 lorsque b et x tendent tous les deux vers x0 (vu que cx
est strictement compris entre x et b) ; et comme :

lim
cx→x0
cx<x0

f ′(cx)

g′(cx)
= lim

x→x0
x<x0

f ′(x)

g′(x)
,

alors :

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

f ′(x)

g′(x)
. �

• Troisième généralisation de la règle de Bernoulli-L’Hôpital : Si, dans les hypo-
thèses du théorème 3.9.9 (respectivement de sa première, sa deuxième générali-
sation), la condition :

lim
x→x0
x<x0

f ′(x)

g′(x)
= ℓ

est remplacée par la condition :

lim
x→x0
x<x0

f ′(x)

g′(x)
= ∞

(

respectivement lim
x→x0
x<x0

f ′(x)

g′(x)
= −∞

)

,

la conclusion du théorème en question (respectivement de sa première, sa deuxième
généralisation) est :

lim
x→x0
x<x0

f(x)

g(x)
= ∞

(

respectivement lim
x→x0
x<x0

f(x)

g(x)
= −∞

)

.
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Pour s’en convaincre, il suffit de remarquer que :

lim
x→x0
x<x0

f ′(x)

g′(x)
=

{
∞ ou

−∞ ⇔ lim
x→x0
x<x0

g′(x)

f ′(x)
= lim

x→x0
x<x0

1
f ′(x)
g′(x)

= 0 ,

puis de mener le même raisonnement que celui présenté dans la preuve du théo-
rème 3.9.9 (ou dans la preuve de l’une ou l’autre de ses généralisations), mais avec

le rapport g(x)
f(x)

(et non f(x)
g(x)

). Noter que, pour que l’argumentation soit valable, il

est nécessaire de s’assurer qu’il existe un intervalle ]α; x0[ (où α est un nombre
réel strictement inférieur à x0) dans lequel ni f ni f ′ ne s’annulent. Or, une telle

condition est satisfaite dès lors que f ′(x)
g′(x)

tend vers ∞ (ou −∞) lorsque x tend
vers x0 par valeurs plus petites :

⋄ g et g′ ne s’annulant pas dans ]a; x0[ , f
′ ne peut pas s’annuler juste avant x0

et satisfaire en même temps limx→x0
−

f ′(x)
g′(x)

= ∞ ou limx→x0
−

f ′(x)
g′(x)

= −∞ ;

⋄ f ′ ne s’annulant pas juste avant x0, f ne peut pas s’annuler juste avant x0 et sa-
tisfaire en même temps la condition limx→x0

− f(x) = 0 ou limx→x0
− f(x) = ∞,

ou encore limx→x0
− f(x) = −∞.

Ainsi donc :

lim
x→x0
x<x0

g(x)

f(x)
= lim

x→x0
x<x0

g′(x)

f ′(x)
= 0 .

Et comme les rapports g(x)
f(x)

et g′(x)
f ′(x)

ont les mêmes signes juste avant x0 au moins,
alors :

lim
x→x0
x<x0

f(x)

g(x)
= lim

x→x0
x<x0

f ′(x)

g′(x)
=

{
∞ ou

−∞ .

• Les remarques 3.9.10, relatives au théorème 3.9.9, s’appliquent également aux
trois généralisations du dit théorème, énoncées dans les points précédents.

• Le théorème 3.9.9, ou l’une ou l’autre de ses généralisations, peut être également
utilisé pour calculer des limites à l’infini (i.e. des limites lorsque x tend vers ∞ ou
vers −∞). Pour s’en convaincre, il convient d’introduire une nouvelle variable,
la variable réelle t donnée par t = 1

x
, de sorte que la limite lorsque x tend

vers ∞ (respectivement vers −∞) soit transformée en limite lorsque t tend vers 0
par valeurs plus grandes (respectivement par valeurs plus petites). Le détail du
raisonnement est laissé en exercice.

3.9.13 Exemples : 1. Calculons la limite du quotient de la fonction logarithme natu-
rel par la fonction racine carrée, lorsque x tend vers l’infini ; à cet effet, commençons
par introduire la variable t donnée par t = 1

x
, de sorte que la limite lorsque x tend

vers ∞ se ramène à une limite lorsque t tend vers 0 par valeurs plus grandes :

lim
x→∞

ln(x)√
x

x= 1
t= lim

t→0
t>0

ln
(
1
t

)

√
1
t

= lim
t→0
t>0

ln(t−1)√
t−1

= lim
t→0
t>0

− ln(t)

t−
1
2

.
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À ce stade, relevons que, pour tout nombre réel b > 0 :

⋄ les fonctions données par − ln(t) et par t−
1
2 sont continues dans ]0; b] et déri-

vables dans ]0; b[ ,

⋄ les expressions − ln(t) et t−
1
2 tendent toutes les deux vers ∞ lorsque t tend

vers 0 par valeurs plus grandes,

⋄ les fonctions données par t−
1
2 et par d

dt
t−

1
2 (i.e. par −1

2
t−

3
2 ) ne s’annulent pas

dans ]0; b[ ,

⋄ la limite suivante existe (cf. calcul ci-dessous) :

lim
t→0
t>0

d
dt

(
−ln(t)

)

d
dt
t−

1
2

.

Manifestement, toutes les conditions sont réunies pour pouvoir appliquer la deuxième
généralisation de la règle de Bernoulli-L’Hôpital ; selon cette deuxième généralisa-
tion :

lim
x→∞

ln(x)√
x

= lim
t→0
t>0

− ln(t)

t−
1
2

= lim
t→0
t>0

−1
t

−1
2
t−

3
2

= lim
t→0
t>0

t−1

1
2
t−

3
2

= lim
t→0
t>0

2 t
1
2 = 0 .

2. Calculons la limite suivante :

lim
n→∞

n

√

1

n2
.

À cet effet, considérons la fonction f donnée par f(x) =
(

1
x2

)1
x , où x ∈ R∗

+, et
calculons sa limite lorsque x tend vers l’infini :

lim
x→∞

(
1

x2

)1
x

= lim
x→∞

(
1

x

)2
x

= lim
x→∞

exp

[

ln

((
1

x

)2
x

)]

= lim
x→∞

exp

[
2

x
ln

(
1

x

)]
t= 1

x= lim
t→0
t>0

exp
[
2 t ln(t)

]

= exp
[

lim
t→0
t>0

2 t ln(t)
]

= exp

[

lim
t→0
t>0

2 ln(t)
1
t

]

B-H
= exp

[

lim
t→0
t>0

2
t

− 1
t2

]

= exp
[

lim
t→0
t>0

−2 t
]

= exp(0) = 1 .

L’introduction de la limite dans l’argument de l’exponentielle se justifie par le fait
que la fonction exp est continue dans R. Pour ce qui est de la règle de Bernoulli-
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L’Hôpital (B-H), elle est applicable, vu que :

⋄ les fonctions données par 2 ln(t) et par 1
t
sont continues et dérivables dans R∗

+,

⋄ les expressions 2 ln(t) et 1
t
tendent respectivement vers −∞ et vers ∞ lorsque t

tend vers 0 par valeurs plus grandes,

⋄ les quantités 1
t
et − 1

t2
ne s’annulent pas dans R∗

+ ;

⋄ la limite suivante existe :

lim
t→0
t>0

2
t

− 1
t2

.

En résumé :

lim
x→∞

(
1

x2

)1
x

= 1 .

En conséquence, et vu que n

√
1
n2 =

(
1
n2

)1
n :

lim
n→∞

n

√

1

n2
= lim

n→∞

(
1

n2

)1
n

= 1 .

3.9.14 Remarque : La règle de Bernoulli-L’Hôpital, tout comme ses généralisations,
constitue une condition suffisante (et non nécessaire) d’existence de la limite d’un quo-
tient de deux fonctions ; le fait, par exemple, que deux fonctions f et g ne satisfont pas
l’hypothèse d’existence de la limite du quotient de f ′ par g′ n’implique pas que la limite
du quotient de f par g n’existe pas. Les deux fonctions f : R → R et g : R → R, données
par :

f(x) =

{

x2 sin
(
1
x

)
si x 6= 0

0 si x = 0
et g(x) = x ,

reflètent bien cette réalité : f et g satisfont toutes les hypothèses du théorème 3.9.9,
excepté le fait que la limite du quotient de la dérivée f ′ par la dérivée g′ lorsque x tend
vers 0 par valeurs plus petites existe (cf. deuxième des remarques 3.2.11) :

lim
x→0
x<0

f ′(x)

g′(x)
= lim

x→0
x<0

2 x sin
(
1
x

)
− cos

(
1
x

)

1
= lim

x→0
x<0

[

2 x sin

(
1

x

)

− cos

(
1

x

)]

.

Pourtant, la limite du quotient de f par g lorsque x tend vers 0 par valeurs plus petites
existe :

lim
x→0
x<0

f(x)

g(x)
= lim

x→0
x<0

x2 sin
(
1
x

)

x
= lim

x→0
x<0

x sin

(
1

x

)

= 0 .

Effectivement, −|x| 6 x sin
(
1
x

)
6 |x| pour tout x ∈ R∗ ; or, −|x| et |x| tendent toutes

les deux vers 0 lorsque x tend vers 0 par valeurs plus petites, d’où la conclusion (cf.
théorème des deux gendarmes). Noter, pour terminer, que les considérations faites ici,
dans le cas où x tend vers 0 par valeurs plus petites, s’appliquent aussi dans la situation
où x tend vers 0 par valeurs plus grandes.





Chapitre 4

Calcul intégral

Dans l’Antiquité déjà, l’être humain s’intéressait aux problèmes de quadratures I et de
cubatures II. Alors qu’il est parvenu sans trop de peine à calculer des aires de polygones III

ou des volumes de polyèdres IV, il a rencontré nombre de difficultés lorsqu’il était question
de surfaces délimitées par des courbes ou des solides délimités par des surfaces courbes.

Si les Grecs anciens ont développé des techniques astucieuses permettant de s’atta-
quer à certaines surfaces non polygonales, ils n’ont toutefois pas été en mesure d’exhiber
une méthode générale, pouvant être appliquée en toutes circonstances. L’approche glo-
bale, permettant de résoudre n’importe quel problème de quadrature (ou presque), n’est
apparue que près de vingt siècles plus tard. Appelée calcul infinitésimal, en raison du
fait qu’elle se base sur la notion d’élément infinitésimal (i.e. d’élément infiniment pe-
tit), cette approche a littéralement révolutionné le monde des mathématiques et de la
physique des XVIIe et XVIIIe siècles.

Le calcul infinitésimal se compose de deux domaines qui s’avèrent être complémen-
taires :

• le calcul différentiel, développé dans le but de pouvoir obtenir l’équation de la
tangente à une courbe en un point donné,

• le calcul intégral, dont l’objectif premier est le calcul d’aires de surfaces non
polygonales.

I. Par définition, la quadrature d’une surface est la détermination d’un carré dont l’aire est égale à
l’aire de la surface en question. Par extension, le terme désigne le calcul de l’aire d’une surface ; et dans
le domaine du calcul intégral, il se réfère au calcul d’une intégrale, i.e. au calcul de l’aire d’une surface,
dans le plan euclidien R2 (muni de son système de coordonnées cartésiennes canonique Oxy), délimitée
par une courbe d’équation y = f(x), l’axe Ox et les droites verticales d’équations x = a et x = b, où a

et b sont deux nombres réels tels que a < b.
II. Par définition, la cubature d’un solide est la détermination d’un cube dont le volume est égal au

volume du solide en question. Par extension, le terme désigne le calcul du volume d’un solide.
III. Par définition, un polygone est une surface plane (i.e. une surface qu’il est possible de mettre dans

le plan euclidien) délimitée par une ligne polygonale fermée ; par ligne polygonale fermée, on comprend
un ensemble de segments mis bout à bout, la deuxième extrémité du dernier segment touchant la
première extrémité du premier segment.
IV. Par définition, un polyèdre est un solide, dans l’espace euclidien, délimité par un nombre fini de

polygones, chaque côté de chacun des polygones étant commun au côté d’un autre polygone.
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Dans le présent ouvrage, le calcul différentiel est traité dans le troisième chapitre ; quant
au calcul intégral, il fait l’objet du présent chapitre. Nombre de notions et de notations
apparaissant dans ces deux chapitres se réfèrent aux mathématiques et aux mathéma-
ticiens des siècles passés. Ces notions et notations peuvent être mieux comprises et
acceptées lorsqu’elles sont replacées dans le contexte dans lequel elles sont nées ; voilà
pourquoi un bref historique du calcul infinitésimal est proposé ici, avant de rentrer dans
le vif du sujet dans la section suivante (cf. section 4.1).

Aperçu historique

Antiquité

On doit les premiers écrits relatifs aux calculs d’aires de surfaces non polygonales, en
Europe du moins, aux mathématiciens grecs de l’Antiquité.

• Au IVe siècle av. J.-C., le savant grec Eudoxe de Cnide (408-355 av. J.-C.) a
développé et utilisé une technique propre pour aborder les problèmes de qua-
dratures. Appelée méthode d’exhaustion (près de vingt siècles plus tard, par le
jésuite flammand Grégoire de Saint-Vincent), du fait qu’elle traite de manière
exhaustive tous les cas possibles, cette approche ne permet pas de déduire les for-
mules, mais seulement de les démontrer. C’est avec cette méthode qu’Eudoxe a
pu établir le fait que l’aire A d’un disque D est proportionnelle à son diamètre d.
L’idée de la preuve est la suivante.

✄ On considère deux disques D1 et D2, d’aires A1

et A2 respectivement et délimités par les
cercles C1 et C2 respectivement ; on considère
aussi deux polygones semblables P1 et P2, le
premier inscrit dans C1, le deuxième dans C2.

C1P1
C2P2

✄ Par un calcul direct, on montre que P2

P1
= d2

2

d1
2 , où d1 est le diamètre de D1,

d2 le diamètre de D2, P1 l’aire de P1 et P2 l’aire de P2 ; et on note que
le résultat est valable quel que soit le polygone P1 inscrit dans D1 et son
polygone semblable P2 inscrit dans C2.

✄ On suppose que A2

A1
> d2

2

d1
2 . On considère alors le disque D3

délimité par le cercle C3, dont l’aire, notée A3, satisfait
A3

A1
= d2

2

d1
2 . De A2

A1
> d2

2

d1
2 et d2

2

d1
2 = A3

A1
, on déduit que A2 > A3.

On prend ensuite un polygone P2 inscrit dans C2, dont l’aire,

C2
P2

C3

notée P2, satisfait A2 > P2 > A3 (un tel acte est toujours possible, en vertu
des deux résultats énoncés ci-dessous) ; et on considère son polygone sem-
blableV P1 inscrit dans C1, dont l’aire est P1 ; on raisonne enfin comme suit :
selon les considérations faites au point précédent et ici, A3

A1
= d2

2

d1
2 = P2

P1
; or,

P2 > A3, par choix de P2 ; donc nécessairement P1 > A1, de sorte que
A3

A1
= P2

P1
.

V. Deux polygones sont dits semblables si l’un peut être obtenu à partir de l’autre par une transfor-
mation géométrique qui conserve les angles.
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Cette conclusion est toutefois absurde, vu que P1 est inscrit dans C1. En
conclusion, A2

A1
ne peut pas être strictement supérieur à d2

2

d1
2 .

✄ En menant un raisonnement similaire à celui du point précédent, on montre
que A2

A1
ne peut pas être strictement inférieur à d2

2

d1
2 .

✄ Des deux points précédents, on conclut que A2

A1
= d2

2

d1
2 ; ce qui établit que l’aire

d’un disque est proportionnelle à son diamètre (en effet, A2

A1
= d2

2

d1
2 ⇔ A2 =

A1

d1
2 d2

2).

La preuve qui vient d’être donnée, et plus généralement la méthode d’exhaustion
dans son intégralité, repose sur les deux résultats essentiels suivants :

⋄ étant donné deux grandeurs qui ont un rapport, on peut trouver un multiple
de la première ou de la deuxième qui excède l’autre ;

⋄ si de toute grandeur on lui soustrait une partie supérieure ou égale à sa moitié,
et si du reste, on lui soustrait une partie supérieure ou égale à sa moitié, et
si l’on continue ainsi de suite ce procédé, il reste à la fin une grandeur plus
petite que toute grandeur donnée de la même espèce ; en notation moderne :
limn→∞A (1− r)n = 0, où A est la grandeur initiale, r un nombre réel tel que
1
2
6 r < 1 et n le nombre d’étapes dans le procédé.

Appelé lemme d’Archimède, le premier énoncé a été, selon Archimède lui-même,
formulé par Eudoxe ; quant au deuxième, il peut être déduit (en procédant à un
raisonnement par l’absurde) du premier.

• Le IIIe siècle av. J.-C. a vu nâıtre et mourir l’un des plus grands, sinon le plus
grand mathématicien grec de l’Antiquité, Archimède de Syracuse (287-212 av.
J.-C.). Ayant pour père un astronome (nommé Phéidias), Archimède en est venu
naturellement à s’intéresser à l’astronomie ; mais ses travaux les plus fameux
sont sans doute dans les mathématiques (géométrie et algèbre) et la physique
(mécanique et hydrostatique). Ayant acquis une grande mâıtrise de la méthode
d’exhaustion, il a été capable de déterminer l’aire de plusieurs surfaces non poly-
gonales (disque, surface délimitée par un arc de parabole...) ainsi que le volume
de certains solides non polyédriques.

⋄ Disque D de diamètre d : Archimède a déterminé relativement précisément le
facteur de proportionnalité entre d et l’aire A de D ; et ce en considérant des
polygones inscrits et circonscrits ayant toujours plus de côtés. Il a ainsi établi
que le nombre π était compris entre 223

71
et 22

7
.

⋄ Surface S délimitée par une parabole P et une droite intersectant P en deux
points P et Q : Le savant grec en a déterminé l’aire A de deux façons diffé-
rentes ; l’une d’elles repose sur une décomposition de S en surfaces triangu-
laires ; la décomposition en question s’effectue pas à pas, selon un procédé ité-
ratif ; les trois premières étapes sont représentées ci-dessous.

✄ Dans la figure du milieu, le point M (respectivement N) résulte de l’in-
tersection de P et de la médiatrice du segment PO (respectivement la
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médiatrice du segment OQ), où O est le point sur le segment PQ qui se
trouve à la même distance de P et de Q.

✄ Dans la figure de droite, le point I (respectivement J) résulte de l’in-
tersection de P et de la médiatrice du segment PM ′ (respectivement la
médiatrice du segment M ′O), où M ′ est le point sur le segment PO qui
se trouve à la même distance de P et de O ; aussi, le point K (respective-
ment L) résulte de l’intersection de P et de la médiatrice du segment ON ′

(respectivement la médiatrice du segment N ′Q), où N ′ est le point sur le
segment OQ qui se trouve à la même distance de O et de Q.

✄ Soit T l’aire du triangle △PQS présent dans la figure de gauche ; par un
calcul direct, on montre que la somme des aires des deux triangles △PSM
et △SQN , présents dans la figure du milieu, vaut 1

4
T ; et que la somme

des aires des quatre triangles △PMI, △MSJ , △SNK et △NQL vaut
1
4

(
1
4
T
)
, soit

(
1
4

)2
T . En continuant le processus de décomposition à l’infini,

on arrive à la conclusion que l’aire A vaut :

A = T +
1

4
T +

(
1

4

)2

T +

(
1

4

)3

T + . . .

=

∞∑

n=0

(
1

4

)n

T =
1

1− 1
4

T =
4

3
T ;

ce résultat s’obtient en réalisant que l’on est en présence d’une somme
d’une infinité de termes d’une suite géométrique de raison 1

4
. Noter qu’Ar-

chimède est arrivé à cette conclusion, non pas à l’aide d’une formule de
sommation infinie, mais en la déduisant avec quelque raisonnement intui-
tif, puis en la prouvant par la méthode d’exhaustion (i.e. par un double
raisonnement par l’absurde).

P Q

S

P Q

S

M

O

N

P Q

S

M ′

M

O N ′

N

I

J K

L

Moyen Âge

Avec les bouleversements qu’a connus l’Europe dans les IVe et Ve siècles (christianisa-
tion de l’Empire romain, chute de l’Empire romain d’Occident), nombre de connaissances
mathématiques acquises par la civilisation grecque ont été perdues ou ont sombré dans
l’oubli. Durant les siècles qui ont suivi, les peuples d’Europe ont eu souvent d’autres
priorités que l’avancée des mathématiques, si bien que le développement des techniques
relatives aux calculs d’aires a connu un net ralentissement, pour ne pas dire une régres-
sion. Si la géométrie et l’algèbre des Grecs antiques n’ont que peu progressé en Occident
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durant le Haut Moyen Âge, elles ont en revanche connu un enrichissement certain à
pareille époque au Proche et au Moyen-Orient. Avec les conquêtes musulmanes des VIIe

et VIIIe siècles et grâce à une relative stabilité politique des régions conquises qui s’est
ensuivie, le monde arabe de l’époque s’est retrouvé dans une conjoncture propice à l’es-
sor des activités intellectuelles. En contact avec différents peuples, différentes cultures,
grecque et hindoue notamment, les mathématiciens de l’Islam ont eu accès à leurs sa-
voirs ; en traduisant leurs œuvres mathématiques, ils ont pu se les approprier et ainsi les
développer en apportant de nouveaux résultats. Sur le nombre de savants que comptait
le monde musulman dans la période du Moyen Âge européen, on ne citera ici que trois
d’entre eux, qui ont eu un rapport direct avec le calcul infinitésimal :

• Thābit ibn Qurra (né autour de 826 et mort en 901), qui a déterminé, avec des
techniques propres, l’aire de surfaces finies délimitées par des arcs de paraboles,
ainsi que le volume de solides finis délimités par des parabolöıdes ;

• Ibn al-Haitam (connu en Europe sous le nom de Alhazen, né autour de 965 et
mort en 1039), qui a généralisé certaines expressions de volumes obtenues par Ar-
chimède, et démontré de manière géométrique certaines formules de sommation ;

• al-Bı̄rūn̄ı (né en 973 et mort en 1048), qui a évoqué, lors de ses études sur les
mouvements non uniformes des corps, le concept de vitesse instantanée.

Temps modernes

Si les mathématiques européennes n’ont que peu évolué durant le Haut Moyen Âge,
elles ont, en revanche, été marquées par un certain progrès à partir du Xe siècle, lorsque
les savants occidentaux ont commencé à absorber, peu à peu, la culture scientifique du
monde arabe (en traduisant les textes arabes, que l’on pouvait trouver alors en Espagne,
qui était à l’époque sous domination musulmane, et en Sicile, qui était un carrefour des
cultures arabe, latine et grecque). Mais c’est certainement durant la Renaissance que les
sciences ont connu un nouvel essor en Europe ; parmi les nombreux facteurs qui sont à
l’origine de cet éveil, trois ont une importance fondamentale :

✄ la chute de l’Empire romain d’Orient, en particulier la prise de Constantinople par
les Ottomans en 1453, qui a entrâıné la migration vers l’Italie de nombreux réfu-
giés byzantins, emmenant avec eux des œuvres de la Grèce antique pratiquement
inconnues du monde occidental ;

✄ l’apparition de l’imprimerie, qui a favorisé la diffusion et la standardisation des
connaissances ;

✄ la Réforme et les bouleversements religieux qui se sont ensuivis, qui ont contribué
à ce que le savoir soit largement diffusé et non réservé à certaines classes de la
population.

La redécouvertes des œuvres grecques antiques a eu pour conséquence un nouvel inté-
rêt pour la géométrie, domaine qui n’avait pas grandement évolué durant le Moyen Âge,
que ce soit en Orient ou en Occident. Avec ce regain d’intérêt, combiné à une certaine
mâıtrise des outils algébriques hérités du monde arabe, les mathématiciens européens
du XVIe, puis du XVIIe siècle, ont peu à peu eu tendance à résoudre les problèmes liés
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à des courbes planes, des surfaces, des solides, non pas avec des constructions mais à
l’aide de calculs arithmétiques.

L’inclusion progressive de l’arithmétique dans la géométrie a permis de faire émerger
une nouvelle discipline : la géométrie analytique. Et c’est de cette nouvelle discipline
qu’est né un nouveau type de calcul : le calcul infinitésimal, i.e. le calcul des éléments
infiniment petits.

Nombre de mathématiciens ont contribué à l’élaboration du calcul infinitésimal. Dans
les points qui suivent, seuls les plus incontournables sont évoqués.

• Luca Valerio (né en 1553 à Naples et mort en 1618 à Rome) était un mathé-
maticien italien, connu pour ses travaux sur les calculs d’aires, de volumes et
de centres de gravité. Dans ses calculs d’aires de surfaces non polygonales, il
considérait deux figures en escaliers, l’une inscrite dans la surface en question
et l’autre circonscrivant cette même surface ; il calculait alors l’aire de ces deux
figures en escaliers puis réduisait la différence entre les deux en augmentant le
nombre d’escaliers (ce qui rendait ceux-ci de plus en plus petits). Une telle dé-
marche rappelle celle employée par Archimède ; sauf qu’Archimède utilisait plutôt
des figures construites à partir de triangles.

• Galileo Galilei (dit Galilée, né en 1564 à Pise et mort en 1642 à Arcetri, dans les
environs de Florence, en Toscane) était un astronome, physicien et mathémati-
cien toscan ; il a d’abord étudié la médecine avant de se tourner vers la physique.
Lorsque l’on évoque le personnage de Galilée, on pense en premier lieu à la lunette
astronomique qu’il a construite, grâce à laquelle il a découvert quatre satellites
de la planète Jupiter, ainsi qu’au modèle héliocentrique du monde, qu’il a dé-
fendu avec conviction (avant d’être forcé de le renier publiquement). L’œuvre
scientifique du savant ne se limite toutefois pas à ces deux aspects ; ses travaux
dans les autres domaines des sciences, en mécanique notamment, sont tout aussi
remarquables. Ses découvertes scientifiques ont fait l’objet de deux publications :
la première, en 1632, traite d’astronomie, la seconde, en 1638, de physique. Dans
les deux ouvrages, on retrouve plusieurs passages dans lesquels les propriétés de
l’infiniment grand ou de l’infiniment petit sont invoquées.

S’il est vrai que Galilée a fréquemment mentionné les concepts d’infini et d’in-
finiment petit, il n’en demeure pas moins vrai qu’il ne les a pas étudiés en détail.
Ces notions, que l’on retrouve déjà chez les Grecs anciens (Leucippe, Démo-
crite...), et qui ont été reprises au XIIIe siècle par le courant philosophique de la
scolastique, ont eu davantage d’écho chez un disciple de Galilée : Cavalieri.

• Johannes Kepler (né en 1571 à Weil, dans l’actuel Baden-Würtemberg, dans
le sud de l’Allemagne, et mort à Ratisbonne, dans l’actuelle Bavière) était un
astronome germanique. Il est demeuré célèbre notamment pour ses trois lois sur
le mouvement des planètes :

(I) chaque planète a une trajectoire elliptique dont l’un des foyers est
occupé par le Soleil ;
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(II) le segment joignant le Soleil à une planète balaie
des aires égales en des temps égaux ;

(III) pour chaque planète, le rapport entre le cube du
demi-grand axe de la trajectoire elliptique et le
carré de la période de révolution est une constante
indépendante de la masse de la planète en question.

Dans sa deuxième loi, Kepler concevait l’aire d’un morceau d’ellipse (balayé par le
segment Soleil-planète) comme formée de triangles infinitésimaux, i.e. de triangles
infiniment petits, dont les sommets étaient le Soleil, la planète en un instant donné
et la planète en un instant ultérieur, infiniment proche de l’instant précédent.

En matière de calcul d’aires de surfaces, Kepler a égale-
ment fait remarquer que l’élément essentiel dans la preuve
d’Archimède, relative à la formule de l’aire d’un cercle, ne se
trouve pas dans le raisonnement par l’absurde mais dans la
démarche consistant à approximer un disque à l’aide de sur-
faces polygonales inscrites ayant toujours plus de faces (cf.
figure ci-contre).

• Grégoire de Saint-Vincent (né en 1584 à Bruges, dans les Flandres (aujourd’hui
en Belgique), et mort en 1667 à Gand, dans les Flandres) était un jésuite et mathé-
maticien flammand, qui a développé une technique de calcul d’aires s’apparentant
à la méthode d’exhaustion des Grecs antiques. Mais à la différence d’Archimède,
Saint-Vincent considérait que les polygones pouvaient avoir jusqu’à une infinité
de côtés. Typiquement, dans le cas du cercle, il considérait un polygone inscrit
à 2n faces, où n pouvait aller jusqu’à l’infini ; il voyait donc le disque comme la
limite obtenue en multipliant indéfiniment par deux le nombre de côtés d’un po-
lygone régulier inscrit. De fait, avec sa conception du calcul d’aires, Saint-Vincent
a donné une définition géométrique de la limite d’une série numérique.

• Bonaventura Cavalieri (né en 1598 à Milan et mort en 1647 à Bologne) était
un mathématicien et astronome italien ; il a été l’élève de Galilée, certainement
l’un des meilleurs. S’il est demeuré célèbre, c’est essentiellement grâce à l’un de
ses ouvrages, dans lequel il a introduit le concept d’indivisible. Cavalieri conce-
vait toute surface comme un ensemble indéfini d’indivisibles : des segments de
droites équidistants ; et tout solide comme un ensemble indéfini d’indivisibles :
des morceaux de plans parallèles équidistants. En décomposant des surfaces ou
des solides en indivisibles, et en appliquant le résultat suivant (appelé parfois, de
nos jours, principe de Cavalieri) :

si deux surfaces ou solides ont même hauteur et si les indivisibles de l’un et
les indivisibles de l’autre sont deux à deux dans le même rapport, les volumes
des deux solides sont aussi dans ce même rapport,

le disciple de Galilée est parvenu non seulement à retrouver des formules déjà
connues, mais également à en obtenir de nouvelles. Il a notamment établi le
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résultat suivant : la somme des n-ièmes puissances des indivisibles x compris
entre 0 et a est égale à la (n + 1)-ème puissance de a divisée par n + 1 ; dans la
notation qui sera adoptée plus loin dans ce chapitre, ce résultat s’écrit

∫ a

0
xn dx =

1
n+1

an+1. Le cas où n = 1 se démontre très simplement, en remarquant que tout
parallélogramme de hauteur a et de base a peut être vu comme une composition
de deux triangles isométriques ayant chacun la même hauteur a ; l’aire de l’un de
ces triangles étant égale à la moitié de l’aire du parallélogramme, la somme des
indivisibles du triangle (

∫ a

0
x dx) est égale à la moitié de la somme des indivisibles

du parallélogramme (1
2
a2).

Il est intéressant de relever que le résultat qui vient d’être prouvé avait déjà été
obtenu trois siècles avant Cavalieri par le mathématicien, physicien, philosophe
et théologien Nicole Oresme (né en 1323 et mort en 1382, en Normandie), mais
dans un contexte quelque peu différent : dans ses études sur le mouvement unifor-
mément accéléré des objets, Oresme représentait la vitesse en un instant donné
sous la forme d’un batonnet vertical de hauteur égale à la valeur de cette vitesse ;
en posant successivement et verticalement tous les bâtonnets, chacun désignant
une vitesse en un instant donné, sur un axe horizontal représentant le temps, il
obtenait, pour un objet accélérant depuis le repos, un triangle rectangle dont la
hauteur était égale à la vitesse finale (vf) atteinte (à l’instant tf) ; il considérait
alors la somme des bâtonnets comme la distance totale parcourue par l’objet en
question ; de plus, il associait la somme des bâtonnets à l’aire
totale du triangle. Avec ce genre de raisonnement, Oresme a
jeté les prémices de ce qui allait devenir au XVIIe siècle la
théorie des indivisibles, et mentionné par la même occasion
(de façon implicite du moins) le concept de vitesse instanta-
née.

0 tf

vf

La méthode des indivisibles permet aussi de retrouver des formules d’aires de
surfaces non polygonales ; par exemple l’aire de la surface délimitée par un cercle
de rayon R. Pour l’obtenir, on procède comme suit.

✄ On décompose le disque en
cercles concentriques ; ces cercles
constituent les indivisibles du
disque.

✄ On prend un triangle de hau-
teur R et de base égale à 2 π R et
on le décompose en lignes paral-
lèles à la base ; ces lignes consti-
tuent les indivisibles du triangle
en question.

✄ On compare les indivisibles du cercles et les indivisibles du triangle ; on re-
marque que les indivisibles des deux figures sont deux à deux égaux ; ce qui
permet d’établir que l’aire du disque de rayon R est égale à l’aire du triangle
de base 2 π R et de hauteur R, et vaut donc 1

2
· 2 π R · R = π R2.
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Noter que le résultat obtenu ici est très similaire à une proposition énoncée et dé-
montrée (par la méthode d’exhaustion, évidemment) par Archimède vingt siècles
avant que Cavalieri n’établisse sa théorie des indivisibles, à savoir que l’aire d’un
disque de rayon R est égale à l’aire d’un triangle rectangle de hauteur R et de
base égale à 2 π R.

Si la théorie des indivisibles permet d’obtenir nombre de résultats intéres-
sants, elle comporte aussi des risques dans son application : le fait que l’épaisseur
d’un indivisible n’apparâıt nulle part dans les raisonnements peut conduire à des
conclusions erronées.

• Pierre de Fermat (né en 1601 à Beaumont-de-Lomagne et mort à Castres en
1665, dans le sud-ouest du royaume de France) a été probablement le mathéma-
ticien français le plus prolifique du XVIIe siècle. De formation juridique, il a été
magistrat à Toulouse et conseiller au Parlement de la même ville ; les mathéma-
tiques, il ne les a pratiquées que dans ses moments de loisirs. Parmi ses nombreux
travaux, aussi impressionnants que variés, on compte une méthode permettant
de trouver les minima et les maxima d’un certain type de fonctions, les fonctions
algébriques (parmi lesquelles on trouve les fonctions polynomiales et rationnelles,
entre autres). La procédure est la suivante :

✄ dans la fonction f de la variable x, dont on cherche les minima et maxima,
on remplace x par la quantité x+ e ;

✄ on pose l’égalité approximative f(x+ e) ≈ f(x) et on la divise des deux côtés
par la quantité e ;

✄ dans le résultat obtenu, on élimine tous les termes contenant e ; il en résulte
une équation dont la ou les éventuelle(s) solution(s) correspondent à des mi-
nima ou des maxima.

Dans le langage mathématique moderne, cette marche à suivre revient à calculer
la dérivée f ′ de la fonction f et à résoudre l’équation f ′(x) = 0.

En 1632, peu après qu’il l’a élaborée, Fermat a cherché à appliquer sa méthode
des minima et des maxima pour déterminer les normales, et donc aussi les tan-
gentes, à une courbe plane donnée. Comme dans le raisonnement sur les minima
et les maxima, on retrouve dans son argumentation le concept de dérivée.

En 1637, l’année même où Fermat a rédigé par écrit sa méthode sur la dé-
termination des minima et des maxima, le philosophe, biologiste, physicien et
mathématicien français René Descartes (né en 1596 à La Haye, en Touraine,
dans le royaume de France, et mort en 1650 à Stockholm, dans le royaume de
Suède), autre personnage illustre de la première moitié du XVIIe siècle, a com-
mencé à s’intéresser au problème des tangentes. Pour trouver la tangente à une
courbe plane donnée en un certain point, il a proposé une approche basée sur la
détermination de la normale à la courbe en question au point considéré. Que ce
soit la méthode de Fermat ou celle de Descartes, toutes les deux ont une même
idée commune, celle de considérer deux points de la courbe qui, devenant toujours
plus proches l’un de l’autre, n’en deviennent plus qu’un, le point de tangence.
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• Isaac Newton (né le 25 décembre 1642 (de l’ancien calendrier (le calendrier ju-
lien), ce qui correspond au 4 janvier 1643 du nouveau calendrier (le calendrier
grégorien)) à Woolsthorpe, dans le Lincolnshire, en Angleterre, et mort le 20 mars
1727 (du calendrier julien, ce qui correspond au 31 mars 1727 du calendrier gré-
gorien) à Londres, dans le royaume de Grande-Bretagne) était un philosophe,
mathématicien, physicien, astronome et théologien anglais. Il est une figure in-
contournable des mathématiques et de la physique, tant son œuvre est riche est
variée. S’il s’est distingué en physique par ses trois lois sur le mouvement des
corps, ainsi que par sa loi de la gravitation universelle, il s’est également montré
comme un génie des mathématiques : il a été le premier savant à avoir élaboré une
méthode générale permettant à la fois de déterminer les tangentes à une courbe
plane et de calculer des aires de surfaces non polygonales. La formulation de sa
théorie s’est faite en deux étapes.

⋄ Dans un premier temps, Newton a montré que si l’aire A de la surface sous
une courbe (i.e. entre une courbe et l’axe horizontal des x) valait A = a xm,
où a est un paramètre (positif) et m un nombre entier ou fractionnaire, alors
le taux de variation de cette aire est égal à maxm−1. Pour y parvenir, il a
considéré un accroissement infinitésimal (i.e. infiniment petit) o de la gran-
deur x, et a désigné par oy l’accroissement infinitésimal de l’aire A lorsque la
grandeur x passe de x à x+o ; ce qui lui a permis d’écrire A+oy = a (x+o)m.
En développant alors en série la partie droite de cette équation (i.e. en déve-
loppant l’expression (x+ o)m en une somme de termes, somme finie si m est
un nombre entier positif, somme infinie dans tout autre cas), en soustrayant
ensuite des deux côtés la quantité A, puis en divisant par o, et en négligeant
enfin tous les termes contenant o, il a obtenu le résultat y = maxm−1. De
façon similaire, Newton a également montré que pour toute courbe d’équation
y = maxm−1, l’aire sous cette courbe vaut A = a xm.

⋄ Dans un deuxième temps, Newton a procédé à une généralisation des résul-
tats obtenus pour les courbes y = maxm−1, en introduisant deux nouveaux
concepts : les fluentes et les fluxions. Newton concevait les fluentes comme
des grandeurs qui peuvent être augmentées ou diminuées de façon continue,
et les fluxions comme les vitesses auxquelles les fluentes sont augmentées ou
diminuées ; il notait les fluentes x, y, . . . et les fluxions associées ẋ, ẏ, . . . Il
affirmait alors que, lorsqu’il s’écoule un intervalle de temps infinitésimal o, les
fluentes x, y, . . . sont augmentées des quantités infinitésimales ẋ o, ẏ o, . . . , res-
pectivement. Aussi, il considérait que les grandeurs x, y, . . . apparaissant dans
une équation pouvaient être substituées par les grandeurs x+ ẋ o, y+ ẏ o, . . . ,
respectivement, en invoquant le fait que ẋ o, ẏ o, . . . sont des quantités infini-
ment petites ; de plus il admettait que tous les termes multiples de o ou d’une
puissance (positive) de o pouvaient être négligés. Avec de telles considéra-
tions, Newton a été en mesure de résoudre le problème qui consiste à déduire
d’une relation entre des fluentes x, y, . . . l’équation qui lie les fluxions ẋ, ẏ, . . .
correspondantes (par exemple, x3 − y3 = 0 ⇒ 3 x2 ẋ − 3 y2 ẏ = 0). Quant
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au problème consistant à retrouver une relation entre des fluentes x, y, . . . à
partir d’une équation liant les fluxions ẋ, ẏ, . . . , Newton disait qu’il s’agissait
de l’inverse du problème précédent ; il résolvait donc ce deuxième problème
par un procédé contraire à celui du premier.

En mâıtrisant les deux problèmes évoqués ci-dessus, Newton a été en mesure de
traiter non seulement les questions des tangentes et des aires de surfaces dans leur
globalité, mais également de déterminer d’autres propriétés, telles la concavité
d’une courbe ou la longueur d’une courbe.

• Gottfried Wilhelm Leibniz (né le 1er juillet 1646 à Leipzig, en Saxe, dans le Saint-
Empire romain germanique, et mort le 14 novembre 1716 à Hanovre, dans le
même Empire) était notamment un philosophe, diplomate et mathématicien ger-
manique. Il a étudié le droit à l’université de Leipzig et la philosophie à l’université
d’Altdorf, près de Nuremberg. En 1667, il est entré au service du baron Johann
Christian von Boineburg, puis du prince-électeur de Mayence, Johann Philipp von
Schönborn. Envoyé au printemps 1672 à Paris pour une mission diplomatique, il y
a fait la connaissance, en automne, de Christiaan Huygens (né en 1629 à la Haye,
dans les Provinces-Unies, aujourd’hui les Pays-Bas, et mort en 1695 dans la même
ville), éminent scientifique grâce auquel il a acquis peu à peu de solides connais-
sances en mathématiques et en physique. En 1673, lors d’un voyage politique de
trois mois à Londres, Leibniz a eu l’occasion de rencontrer plusieurs mathémati-
ciens anglais. De retour à Paris, il a continué d’étudier les mathématiques, sous
l’impulsion et la bienveillance de Huygens, et a pris connaissance des différents
travaux, notamment ceux du mathématicien et opticien écossais James Gregory
(né en 1638 à Drumoak, près d’Aberdeen, et mort en 1675) sur les tangentes et
les calculs d’aires de surfaces. L’année 1674 a marqué le début de ses grandes
découvertes ; de 1674 à 1676, Leibniz a élaboré l’essentiel de sa méthode sur le
calcul des éléments infinitésimaux. Les résultats qu’il a obtenus sont identiques
à ceux de Newton, mais le formalisme qu’il a développé est bien différent de ce-
lui des fluentes et des fluxions : Leibniz résolvait le problème des tangentes en
calculant non pas une fluxion à partir d’une fluente, mais un rapport d’éléments
infinitésimaux dy

dx
; et il déterminait l’aire d’une surface non pas en cherchant une

fluente de laquelle découle une fluxion donnée, mais en considérant des sommes
d’éléments infiniment petits

∫
dA.

De nos jours, en présence d’une expression de la forme
∫
dA, on parle d’intégrale.

S’il est vrai que la notation
∫
dA vient de Leibniz, il est également vrai que le

terme intégral est dû à un autre mathématicien : la première fois que l’on trouve
le mot intégral, c’est dans un problème de calcul infinitésimal résolu en 1690 par
le mathématicien helvétique Jacques Bernoulli (né en 1654 à Bâle, en Suisse, et
mort en 1705 dans la même ville, membre d’une famille originaire d’Anvers, dans
les Flandres). Ce mot a ensuite été repris par Leibniz lui-même : ce qu’il désignait
d’abord par calcul sommatoire est alors devenu calcul intégral. Noter que le terme
intégral a pour origine le mot latin integer, qui signifie entier ; il n’est, de fait, pas
étonnant de voir apparâıtre ce terme dans le contexte du calcul infinitésimal, vu
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que, dans les problèmes liés aux infiniment petits, on est souvent amené à calculer
la somme d’éléments infinitésimaux, i.e. à considérer de tels éléments dans leur
intégralité.

Newton, qui a élaboré son calcul des fluxions en 1671, n’a publié ses travaux qu’en 1687.
Leibniz, qui a mis au point son calcul des éléments infinitésimaux entre 1674 et 1676,
a publié une première version de ses résultats en 1684 déjà. Ainsi, quand bien même
postérieure à celle de Newton, l’œuvre de Leibniz est passée dans le domaine public
avant celle du savant anglais. Cette réalité historique a été la cause d’une profonde
division au sein du monde mathématique occidental de l’époque : d’un côté se trouvaient
les mathématiciens du continent, qui pensaient que Leibniz était l’inventeur du calcul
infinitésimal, de l’autre côté les mathématiciens anglais, qui soutenaient le fait que le
calcul infinitésimal avait été inventé par Newton, au travers de sa théorie des fluxions. À
la querelle sur la primauté de la découverte se sont ajoutées des accusations de plagiat...
Survenu tout à la fin du XVIIe siècle, le différend entre les deux parties s’est prolongé
sur près d’un siècle. De nos jours, on estime, après relecture des faits historiques, que
Newton et Leibniz ont tous les deux, de manière quasi indépendante, chacun avec son
originalité, élaboré le calcul infinitésimal ; on reconnâıt ainsi qu’ils sont tous les deux les
co-inventeurs du calcul infinitésimal.

Au XVIIIe siècle, alors que le calcul infinitésimal de Leibniz se développait rapide-
ment sur le continent, des voix se sont élevées, tant parmi les mathématiciens que les
philosophes, pour dénoncer un certain manque de logique dans cette nouvelle discipline :
Que sont les éléments infinitésimaux ? Sont-ils nuls ou non ? S’ils sont nuls, comment
donner du sens au rapport dy

dx
? S’ils ne sont pas nuls, comment peut-on les négliger à

un moment donné dans les calculs ? À ces remarques dérangeantes est venue s’ajouter
une question qui a germé peu à peu chez les scientifiques dès la deuxième moitié du
XVIIIe siècle : dans quelle mesure une fonction est-elle intégrable ? Quels critères doit
remplir une fonction pour que son intégrale existe ?

S’il est vrai que la notion de fonction (déjà bien présente chez nombre de mathémati-
ciens et physiciens du XVIIe siècle, tels Galilée, Gregory, etc.) a été précisée dans la pre-
mière moitié du XVIIIe siècle, notamment par Leibniz ainsi que par Leonhard Euler (ma-
thématicien helvétique né en 1707 à Bâle, en Suisse, et mort en 1783 à Saint-Petersbourg,
dans l’Empire russe), il est également vrai qu’elle a fait l’objet d’une nouvelle discussion
à partir de la deuxième moitié du même siècle, lorsque les mathématiciens de l’époque
ont commencé à s’intéresser à certaines questions de physique telles que la vibration
d’une corde ou la propagation de la chaleur. En étudiant le phénomène de vibration
d’une corde fixée en ses deux extrémités, le médecin, mathématicien et physicien Daniel
Bernoulli (né en 1700 à Groningue, dans les Provinces-Unies (aujourd’hui les Pays-Bas),
et mort en 1782 à Bâle, fils de Jean et neveu de Jacques Bernoulli) a émis l’idée que
toute fonction f pouvait, dans un intervalle donné, s’écrire sous la forme d’une série
trigonométrique (i.e. sous la forme d’une somme infinie de fonctions trigonométriques,
que l’on note de nos jours a0

2
+
∑∞

n=1

(
an cos(n s x)+bn sin(n s x)

)
, où a0, a1, b1, a2, b2, . . .

sont des coefficients réels et s un nombre réel strictement positif). Reprenant cette idée
pour décrire la propagation de la chaleur dans une plaque, le mathématicien français
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Jean-Baptiste-Joseph Fourier (né en 1768 à Auxerre, dans le royaume de France, et
mort en 1830 à Paris) l’a complétée en donnant les formules qui permettent de trouver
les coefficients de la série à partir de la fonction f en question. S’exprimant sous la
forme d’intégrales contenant f , ces formules n’ont de sens que si f est intégrable. La
représentabilité d’une fonction sous la forme d’une série trigonométrique dépend donc
directement de l’intégrabilité de la fonction en question.

Époque contemporaine

Les mathématiciens du XIXe siècle l’ont bien compris : s’ils voulaient en savoir plus
sur la possibilité de représenter une fonction sous la forme d’une série trigonométrique,
ils devaient disposer d’une définition suffisamment précise du concept d’intégrale. Cette
définition, plusieurs mathématiciens ont cherché à la donner, avec plus ou moins de
succès. Deux seront retenus ici : Augustin Cauchy et Bernhard Riemann.

• Augustin-Louis Cauchy (né le 21 août 1789 à Paris, près de six semaines après
la prise de la Bastille, et mort le 23 mai 1857 à Sceaux, près de Paris) était un
mathématicien français, connu notamment pour sa rigueur dans le domaine du
calcul infinitésimal. Il a été le premier à donner une définition arithmétique du
concept de limite : si l’idée de limite figurait déjà dans les méthodes infinitési-
males de mathématiciens antérieurs à Cauchy, elle ne se présentait que sous une
conception essentiellement géométrique ; alors que chez Cauchy, elle est devenue
une notion abstraite, purement algébrique. Dans le domaine du calcul intégral,
Cauchy, toujours soucieux de la précision, s’est vu définir l’intégrale d’une fonc-
tion d’une manière différente de celle considérée jusqu’alors : tandis qu’elle était
vue au XVIIIe siècle comme le résultat d’une opération inverse de la dérivation,
l’intégrale est devenue avec Cauchy l’expression algébrique de la limite d’une
somme d’aires. Sa formulation est la suivante.

✄ Soit f une fonction continue dans l’intervalle délimité par les nombres réels x0
et X ; pour trouver son intégrale entre x0 et X , on commence par diviser
l’intervalle délimité par x0 et X en n intervalles, en plaçant n− 1 points, x1,
x2, . . . , xn−1 entre x0 et X .

✄ On considère ensuite la somme suivante :

Sn = (x1 − x0) f(x0) + (x2 − x1) f(x1) + . . .+ (X − xn−1) f(xn−1) .

✄ Lorsque le nombre de points entre x0 et X augmente indéfiniment et que les
quantités (x1 − x0), (x2 − x1), . . . décroissent indéfiniment, Sn tend vers une
limite S, appelée intégrale de f , limite qui ne dépend que de x0, X et de la
forme de f .

Cette conclusion, Cauchy l’a non seulement énoncée, mais également démontrée.
Sa preuve n’était toutefois pas complètement rigoureuse, du fait qu’il ne possédait
à son époque pas tous les outils nécessaires pour pouvoir formuler un raisonne-
ment complet et sans faille.
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• Georg Friedrich Bernhard Riemann (né le 17 septembre 1826 à Breselenz, dans
le royaume de Hanovre, et mort le 20 juillet 1866 à Selasca, dans le nord de
l’Italie) était un mathématicien germanique, qui s’est distingué par ses travaux
tant dans le domaine du calcul différentiel et intégral que dans une branche de
la géométrie qui venait d’éclore à son époque : la géométrie différentielle. En
1846, alors qu’il songeait à devenir pasteur, il a débuté des études de philosophie
et de théologie à l’université de Göttingen (à l’époque dans le royaume de Ha-
novre). Mais la fréquentation des cours de l’illustre mathématicien Carl Friedrich
Gauss (né en 1777 à Göttingen et mort en 1855 dans la même ville), fonda-
teur de la géométrie différentielle, l’a convaincu de changer d’orientation et de
se consacrer aux mathématiques. Au début des années 1850, alors qu’il étudiait
la possibilité de développer des fonctions toujours plus singulières en séries tri-
gonométriques, Riemann s’est retrouvé à devoir fournir une définition claire de
la notion d’intégrabilité d’une fonction ; autrement dit, il s’est retrouvé dans la
nécessité de préciser les hypothèses que doit satisfaire une fonction pour qu’elle
soit intégrable. Ses réflexions l’ont conduit à reprendre la définition d’intégrale
de Cauchy et à la repenser, à la généraliser.

Ayant également une structure de limite d’une somme, la formulation de Rie-
mann est toutefois plus cohérente que celle de Cauchy. D’un maniement relati-
vement simple, elle fournit un certain cadre à la notion d’intégrabilité ; en outre,
elle permet de donner un sens rigoureux au concept vague de somme d’éléments
infiniment petits. Voilà probablement pourquoi elle demeure encore aujourd’hui
le point de départ de la plupart des discours introductifs au calcul intégral.

4.1 Intégrale de (Cauchy-) Riemann

Que ce soit l’intégrale de Cauchy ou celle de Riemann, les deux se basent sur l’idée de
limite d’une somme. Afin de bien comprendre cette notion, qui sera définie proprement
plus loin, illustrons-la à l’aide d’un exemple concret de calcul d’aire de surface non
polygonale.

x

y

S

0 b

eb
Dans le plan euclidien R2, muni de son système de coordonnées

cartésiennes canonique Oxy (cf. section 2.1 du chapitre 2), consi-
dérons la surface S délimitée par la courbe d’équation y = f(x), où
f(x) = exp(x), l’axe Ox (d’équation y = 0) et les deux droites ver-
ticales d’équations x = 0 et x = b (cf. figure ci-contre). Cherchons
l’aire A de cette surface S, en utilisant la définition d’intégrale telle
que l’a formulée le mathématicien français Augustin-Louis Cauchy
au XIXe siècle (cf. introduction historique). À cet effet, procédons
comme suit.

• On décompose l’intervalle [0; b] en n sous-intervalles, que l’on note [xk−1 ; xk], où
k = 1, . . . , n. Pour simplifier les calculs, on considère que tous les intervalles ont
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la même taille. Dans ce cas :

xk−1 =
(k − 1) b

n
et xk =

k b

n
;

en particulier, x0 = 0 et xn = b.

• On explicite la somme Sn = (x1 − x0) f(x0) + . . .+ (xn − xn−1) f(xn−1) :

Sn = (x1 − x0) f(x0) + (x2 − x1) f(x1) + . . .+ (xn − xn−1) f(xn−1)

=

n∑

k=1

(xk − xk−1) f(xk−1) =

n∑

k=1

(
k b

n
− (k − 1) b

n

)

exp

(
(k − 1) b

n

)

=
n∑

k=1

b

n
exp

(
(k − 1) b

n

)

ℓ= k−1
=

n−1∑

ℓ=0

b

n
exp

(
ℓ b

n

)

=
n−1∑

ℓ=0

b

n

[

exp

(
b

n

)]ℓ

.

La dernière expression étant la somme des n premiers termes d’une suite géomé-
trique de raison exp

(
b
n

)
, elle peut se récrire sous la forme (cf. sous-section 1.6.3

du chapitre 1) :

n−1∑

ℓ=0

b

n

[

exp

(
b

n

)]ℓ

=
b

n

1−
[
exp
(
b
n

)](n−1)+1

1− exp
(
b
n

) =
b

n

1−
[
exp
(
b
n

)]n

1− exp
(
b
n

)

=
b

n

1− exp
(
n b
n

)

1− exp
(
b
n

) .

Ainsi :

Sn =
b

n

1− exp(b)

1− exp
(
b
n

) .

• On calcule la limite de Sn lorsque n tend vers l’infini :

lim
n→∞

Sn = lim
n→∞

b

n

1− exp(b)

1− exp
(
b
n

) = lim
n→∞

b
[
1− exp(b)

]

n
[
1− exp

(
b
n

)]

= b
[
1− exp(b)

]
lim
n→∞

1

n
[
1− exp

(
b
n

)]

= b
[
1− exp(b)

] 1

−b = exp(b)− 1 . x

y

x0 x1x2x3x4

eb

Noter que l’avant-dernière expression s’obtient grâce à la règle de Bernoulli-
L’Hôpital (B-H) ; pour pouvoir l’appliquer, il convient simplement de remplacer
la variable entière n par une variable continue x :

lim
x→∞

x

[

1− exp

(
b

x

)]
u= 1

x= lim
u→0
u>0

1

u

(
1− exp(b u)

)
= lim

u→0
u>0

1− exp(b u)

u

B-H
= lim

u→0
u>0

−b exp(b u)
1

= −b .
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Selon Cauchy, la limite de Sn lorsque n tend vers l’infini est l’intégrale de la fonction
exp entre 0 et b ; autrement dit, la limite de Sn lorsque n tend vers l’infini est égale à
l’aire A cherchée.

Quel que soit n ∈ N∗, la somme Sn représente, dans le cas présent, l’aire d’un poly-
gone inscrit dans la surface S considérée ; en effet, la fonction x 7→ exp(x) étant croissante
dans l’intervalle [0; b], chacun des termes (x1 − x0) f(x0), . . . , (xn − xn−1) f(xn−1) cor-
respond à l’aire d’un rectangle qui se trouve complètement entre l’axe Ox (i.e. entre la
droite d’équation y = 0) et la courbe d’équation y = exp(x), et qui touche cette courbe
en un unique point, le sommet supérieur gauche. Si le graphe de la fonction f , déli-
mitant supérieurement S, était celui d’une fonction décroissante dans l’intervalle [0; b]
(par exemple x 7→ exp(−x)), Sn correspondrait alors à l’aire d’un polygone circonscrit
à S ; et si la courbe délimitant supérieurement S était en partie croissante et en partie
décroissante dans [0; b], Sn serait l’aire d’un polygone ni inscrit, ni circonscrit à S.

Le polygone d’aire Sn, inscrit dans S, rappelle manifestement les figures en escalier
qu’utilisait le mathématicien italien Luca Valerio au début du XVIIe siècle pour calculer
des aires. Seulement, Valerio n’utilisait pas uniquement des polygones inscrits, mais
également des polygones circonscrits. Que se passerait-il alors, dans le cas présent, si
l’on calculait l’aire d’un polygone en escalier circonscrit à S et si l’on faisait tendre,
comme précédemment, le nombre d’escaliers vers l’infini ? Pour le voir, reprenons la
procédure utilisée précédemment pour le calcul de Sn et adaptons-la en conséquence.

• Pour simplifier les calculs, on reprend la décomposition de l’intervalle [0; b] en n
sous-intervalles de tailles égales, [xk−1 ; xk], où k = 1, . . . , n et :

xk−1 =
(k − 1) b

n
et xk =

k b

n
;

en particulier, x0 = 0 et xn = b.

• On explicite la somme Tn = (x1 − x0) f(x1) + . . .+ (xn − xn−1) f(xn) :

Tn = (x1 − x0) f(x1) + (x2 − x1) f(x2) + . . .+ (xn − xn−1) f(xn)

=

n∑

k=1

(xk − xk−1) f(xk) =

n∑

k=1

(
k b

n
− (k − 1) b

n

)

exp

(
k b

n

)

=

n∑

k=1

b

n
exp

(
k b

n

)

=

n∑

k=1

b

n
exp

(
(k − 1 + 1) b

n

)

=

n∑

k=1

b

n
exp

(
b

n
+

(k − 1) b

n

)

=

n∑

k=1

b

n
exp

(
b

n

)

exp

(
(k − 1) b

n

)

ℓ= k−1
=

=
n−1∑

ℓ=0

b

n
exp

(
b

n

)

exp

(
ℓ b

n

)

= exp

(
b

n

) n−1∑

ℓ=0

b

n

[

exp

(
b

n

)]ℓ

,

et on remarque que :

Tn = exp

(
b

n

)

Sn .
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• On calcule la limite de Tn lorsque n tend vers l’infini :

lim
n→∞

Tn = lim
n→∞

exp

(
b

n

)

Sn

= lim
n→∞

exp

(
b

n

)

lim
n→∞

Sn

= 1 ·
(
exp(b)− 1

)
= exp(b)− 1 .

x

y

x0 x1x2x3x4

eb

En résumé, les sommes Sn et Tn, telles que définies plus haut,
tendent vers la même limite exp(b)− 1 lorsque n tend vers l’infini :

lim
n→∞

Sn = lim
n→∞

Tn = exp(b)− 1 .

Autrement dit, le polygone en escalier inscrit dans la surface S donnée et le polygone
en escalier circonscrit à cette même surface ont des aires de plus en plus égales à mesure
que n augmente. Ce résultat implique alors que tout polygone en escalier, formé de
rectangles d’aires (xk − xk−1) f(ξk), où ξk ∈ [xk−1; xk] pour tout k = 1, . . . , n, a une
aire de plus en plus égale à celle du polygone inscrit ou celle du polygone circonscrit à
mesure que n augmente ; pour le voir, il suffit d’écrire l’aire d’un tel polygone :

Un = (x1 − x0) f(ξ1) + (x2 − x1) f(ξ2) + . . .+ (xn − xn−1) f(ξn) ,

et de remarquer que Sn 6 Un 6 Tn pour tout n ∈ N∗ ; le théorème des deux gendarmes
pour les suites (cf. annexe B) permet alors de conclure.

C’est avec une expression comme celle de Un exposée ci-dessus que Riemann a formulé
sa version de l’intégrale d’une fonction. À la différence de Cauchy, Riemann a considéré,
pour chaque intervalle [xk−1; xk], non pas la quantité f(xk−1) mais la quantité f(ξk),
où ξk peut être n’importe quel élément de l’intervalle en question. Il n’a, de ce fait,
privilégié aucun polygone en escalier ; ni le polygone inscrit, ni le polygone circonscrit,
en particulier. N’importe quel polygone en escalier, dont les marches touchent chacune
au moins une fois la courbe donnée peut être pris en considération.

4.1.1 Définitions : Soit [a; b] un intervalle fermé dans R, où a et b sont deux nombres
réels tels que a < b.

• On appelle subdivision d’ordre n de [a; b] toute suite finie de nombres réels σn =
(x0; x1; . . . ; xn), où n ∈ N∗, telle que :

a = x0 < x1 < . . . < xn = b .

On appelle pas de la subdivision σn le nombre réel strictement positif :

δσn = max
{
(xk − xk−1)

∣
∣ k = 1, . . . , n

}
,

où max{(xk − xk−1)
∣
∣ k = 1, . . . , n} désigne le plus grand des nombres réels

(x1 − x0), (x2 − x1), . . . , (xn − xn−1).
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• On appelle subdivision régulière d’ordre n de [a; b] la suite finie de nombres réels

rσn = (x0; x1; . . . ; xn), où n ∈ N∗, telle que :

xk = a +
k (b− a)

n
, pour tout k = 0, 1, . . . , n ;

en particulier x0 = a et xn = b.

4.1.2 Définitions : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b.

• Soient σn = (x0; x1; . . . ; xn) une subdivision d’ordre n
de [a; b] et δσn son pas. On appelle somme de Riemann
de f associée à σn toute somme Sσn de la forme :

Sσn =
n∑

k=1

f(ξk) (xk − xk−1) ,

où ξk ∈ [xk−1; xk] pour tout k = 1, . . . , n.

x
xk−1 xk xk+1ξk

• Supposons que la limite de la somme de Riemann Sσn
notée au point précédent, lorsque n tend vers l’infini
et δσn tend vers 0, existe et qu’elle est égale à un certain
nombre réel I :

I = lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk − xk−1) .

Dans le cas où I ne dépend ni du choix de la sub-
division σn = (x0; x1; . . . ; xn) de [a; b], ni, pour
chaque subdivision, du choix des nombres réels ξ1 ∈
[x0; x1], . . . , ξn ∈ [xn−1; xn], on dit que l’intégrale de

x

y

O a b

x

y

O a b

Riemann de f entre a et b existe, ou de manière équivalente que f est inté-
grable (au sens de Riemann) dans [a; b] ; I est alors appelé l’intégrale de Cauchy-
Riemann, ou simplement l’intégrale de Riemann de f entre a et b, ou plus sim-
plement encore l’intégrale de f entre a et b. Dans le cas où la limite de la somme
de Riemann Sσn n’existe pas ou que la limite existe mais dépend du choix de la
subdivision σn = (x0; x1; . . . ; xn) de [a; b] et/ou du choix, pour chaque subdivi-
sion, des nombres réels ξ1 ∈ [x0; x1], . . . , ξn ∈ [xn−1; xn], on dit que l’intégrale
de Riemann de f entre a et b n’existe pas, ou de manière équivalente que f n’est
pas intégrable (au sens de Riemann) dans [a; b].

4.1.3 Notation : Soit f : D → R une fonction réelle, définie et continue dans un intervalle
fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. L’intégrale de
Riemann I de f entre a et b, si elle existe, se note :

I =

∫ b

a

f(x) dx .
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Le signe
∫ b

a
symbolise la limite de la somme qui se trouve dans l’expression de I donnée

dans la deuxième des définitions 4.1.2. Quant à l’élément dx, qui est un accroissement
infinitésimal de la variable x (cf. section 3.2 du chapitre 3), il peut être vu comme ce qui
reste des quantités (x1−x0), . . . , (xn−xn−1) après le passage à la limite (lorsque n tend
vers l’infini et δσn tend vers 0). Avec l’écriture ∆xk = (xk−xk−1) pour tout k = 1, . . . , n,
la correspondance est particulièrement manifeste :

I = lim
n→∞
δσn→0

n∑

k=1
︸ ︷︷ ︸

f(ξk)∆xk

=

∫ b

a

f(x) dx .

Une telle notation, introduite à la fin du XVIIe siècle par le mathématicien germanique
Gottfried Wilhelm Leibniz, retranscrit bien l’idée de somme d’éléments infiniment petits
que tant de mathématiciens, dans l’histoire du calcul infinitésimal, ont mentionnée dans
leurs différentes approches du calcul d’aires de surfaces non polygonales.

4.1.4 Remarques : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b.

• Quelle que soit la subdivision σn = (x0; x1; . . . ; xn) d’ordre n de [a; b], si son
pas δσn tend vers 0, alors nécessairement son ordre n tend vers l’infini.

• Dans l’intégrale de Riemann I de f entre a et b, à supposer qu’elle existe, les
nombres réels a et b sont appelés bornes d’intégration ; la grandeur x, elle, porte
le nom de variable d’intégration.

• Soient le plan euclidien R2 et Oxy son système de coor-
données cartésiennes canonique (cf. section 2.1 du cha-
pitre 2). Dans le cas où f(x) > 0 pour tout x ∈ [a; b],
l’intégrale de Riemann de f entre a et b, à supposer
qu’elle existe (ce qui est le cas, cela sera vu plus loin),
est une grandeur positive qui, par définition, correspond

x

y

O a b

y = f(x)

à l’aire de la surface finie, dans R2, délimitée par la courbe d’équation y = f(x),
la droite horizontale d’équation y = 0 (i.e. l’axe Ox) et les droites verticales
d’équation x = a et x = b. Dans le cas où f(x) 6 0 pour tout x ∈ [a; b],
l’intégrale de Riemann de f entre a et b est une grandeur négative. Or, d’un
point de vue géométrique, l’aire d’une surface est une quantité positive ou nulle.
L’intégrale de f entre a et b, lorsque f(x) 6 0 pour tout x ∈ [a; b], correspond
donc à l’opposé de l’aire de la surface finie, dans R2, délimitée par la courbe
d’équation y = f(x), la droite horizontale d’équation y = 0 (i.e. l’axe Ox) et les
droites verticales d’équation x = a et x = b.

• L’intégrale de Riemann de f entre a et b est une grandeur qui, si elle existe, ne
dépend pas de la variable d’intégration ; étant associée au concept géométrique
d’aire de surface, elle ne peut effectivement pas dépendre de la manière dont elle
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est calculée. De ce fait :

∫ b

a

f(x) dx =

∫ b

a

f(t) dt =

∫ b

a

f(u) du = . . .

• L’aire d’une surface réduite à un segment de droite étant nulle, l’intégrale de
Riemann de f entre n’importe quel point c ∈ [a; b] et lui-même est nécessairement
nulle :

∫ c

c

f(x) dx = 0 ;

• Soit σn = (x0; x1; . . . ; xn) une subdivision d’ordre n de [a; b]. Dès lors que la
fonction f : D → R est continue dans [a; b], elle est continue dans l’intervalle
[xk−1; xk], et ce quel que soit k = 1, . . . , n. Or, l’intervalle [xk−1; xk] est fermé,
quel que soit k = 1, . . . , n. f atteint donc nécessairement son minimum et son
maximum dans [xk−1; xk], quel que soit k = 1, . . . , n (cf. théorème du minimum
et du maximum, section 2.10 du chapitre 2). Pour chaque k = 1, . . . , n, notonsmk

le minimum et Mk le maximum de f dans [xk−1; xk]. Parmi toutes les sommes de
Riemann de f associées à la subdivision σn, deux peuvent alors être distinguées :

n∑

k=1

mk (xk − xk−1) et
n∑

k=1

Mk (xk − xk−1) .

4.1.5 Définition : Soit f : D → R une fonction réelle, définie et continue dans un in-
tervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Soit aussi
σn = (x0; x1; . . . ; xn) une subdivision d’ordre n de [a; b].

• On appelle somme de Darboux VI inférieure de f associée à la subdivision σn la
somme Sσn donnée par :

Sσn =

n∑

k=1

mk (xk − xk−1) ,

où mk est le minimum de f dans l’intervalle [xk−1; xk], k = 1, . . . , n.

• On appelle somme de Darboux supérieure de f associée à la subdivision σn la
somme Sσn donnée par :

Sσn =

n∑

k=1

Mk (xk − xk−1) .

où Mk est le maximum de f dans l’intervalle [xk−1; xk], k = 1, . . . , n.

VI. Gaston Darboux était un mathématicien français, né en 1842 à Nı̂mes, dans le sud de la France,
et mort en 1917 à Paris.
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4.1.6 Exemple : Au début de la présente section, il a été question de la surface finie S
dans R2, délimitée par la courbe d’équation y = exp(x), la droite horizontale d’équa-
tion y = 0 et les deux droites verticales d’équations x = 0 et x = b. Lors du calcul de
son aire, deux sommes ont été explicitées. Ces sommes, rappelons-les ici :

Sn =

n∑

k=1

b

n
exp

(
(k − 1) b

n

)

et Tn =

n∑

k=1

b

n
exp

(
k b

n

)

,

ne sont rien d’autre que les sommes de Darboux inférieure et supérieure, respectivement,
de la fonction exp associée à la subdivision régulière d’ordre n de l’intervalle [0; b].

4.1.7 Lemme : Soit f : D → R une fonction réelle, définie et continue dans un intervalle
fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Alors, l’intégrale
de Riemann de f entre a et b existe si et seulement si, pour toute subdivision σn =
(x0; x1; . . . ; xn) d’ordre n de [a; b], de pas δσn :

• la limite de la somme de Darboux inférieure Sσn de f associée à σn, lorsque n
tend vers l’infini et δσn tend vers 0, existe et est égale à un nombre réel I qui ne
dépend pas du choix de σn,

• la limite de la somme de Darboux supérieure Sσn de f associée à σn, lorsque n
tend vers l’infini et δσn tend vers 0, existe et est égale à un nombre réel I qui ne
dépend pas du choix de σn,

• les deux limites sont égales : I = I.

Autrement dit, l’intégrale de Riemann de f entre a et b existe si et seulement si :

lim
n→∞
δσn→0

Sσn = I = lim
n→∞
δσn→0

Sσn ,

où I est un nombre réel indépendant du choix de la subdivision σn de [a; b]. Ce nombre
réel est alors, par définition, l’intégrale de Riemann de f entre a et b.

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses du lemme.
Supposons que l’intégrale de Riemann de f entre a et b existe. Soit alors σn =

(x0; x1; . . . ; xn) une subdivision d’ordre n de [a; b], de pas δσn . Par hypothèse, toutes
les sommes Sσn , où :

Sσn =

n∑

k=1

f(ξk) (xk − xk−1) ,

admettent pour limite le même nombre réel I lorsque n tend vers l’infini et δσn tend
vers 0, et ce quel que soit le choix de la subdivision σn = (x0; x1; . . . ; xn) de [a; b] et
quel que soit le choix, pour chaque subdivision, des nombres réels ξ1 ∈ [x0; x1], . . . , ξn ∈
[xn−1; xn]. Or, parmi les sommes Sσn se trouvent les sommes de Darboux inférieure Sσn

et supérieure Sσn de f associées à σn. Par conséquent, Sσn et Sσn admettent chacune
pour limite, lorsque n tend vers l’infini et δσn tend vers 0, le même nombre réel I, qui ne
dépend pas du choix de la subdivision σn = (x0; x1; . . . ; xn) de [a; b].

Réciproquement, supposons que les sommes de Darboux inférieure Sσn et supé-
rieure Sσn de f associée à une subdivision σn = (x0; x1; . . . ; xn) d’ordre n de [a; b],
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de pas δσn , admettent toutes les deux pour limite, lorsque n tend vers l’infini et δσn tend
vers 0, le même nombre réel I, et que ce nombre ne dépend pas du choix de la subdi-
vision σn. Alors, par définition des sommes de Darboux inférieure et supérieure, pour
tout n ∈ N∗ :

Sσn =
n∑

k=1

mk (xk − xk−1) 6

n∑

k=1

f(ξk) (xk − xk−1) 6

n∑

k=1

Mk (xk − xk−1) = Sσn ,

où mk et Mk sont, respectivement, le minimum et le maximum de f dans [xk−1; xk], et
ξk ∈ [xk−1; xk], k = 1, . . . , n. Par conséquent, selon le théorème des deux gendarmes
pour les suites (cf. proposition A.1.6 de l’annexe A), la somme

∑n
k=1 f(ξk) (xk − xk−1)

admet pour limite, lorsque n tend vers l’infini et δσn tend vers 0, le nombre réel I ; en
outre, ce nombre ne dépend ni du choix de la subdivision σn = (x0; x1; . . . ; xn) de
[a; b], ni du choix, pour chaque subdivision σn, des nombres réels ξ1 ∈ [x0; x1], . . . ,
ξn ∈ [xn−1; xn]. L’intégrale de Riemann de f entre a et b existe donc. �

4.1.8 Proposition : Soit f : D → R une fonction réelle, définie dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Si f est continue dans
[a; b], alors f est intégrable (au sens de Riemann) entre a et b. Autrement dit, si f est
continue dans [a; b], l’intégrale de Riemann de f entre a et b existe.

Éléments de preuve : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Pour
prouver que f est intégrable (au sens de Riemann) entre a et b, il suffit, selon le lemme
précédent, de montrer les deux points suivants : premièrement, les sommes de Darboux
inférieure et supérieure de f , associées à une subdivision donnée, tendent vers le même
nombre réel I lorsque l’ordre de la subdivision en question tend vers l’infini et le pas
tend vers 0 ; deuxièmement, le nombre réel I ne dépend pas du choix de la subdivision.

• Soit σn = (x0; x1; . . . ; xn) une subdivision d’ordre n de [a; b], de pas δσn . No-
tons mk le minimum et Mk le maximum de f dans l’intervalle fermé [xk−1; xk],
où k = 1, . . . , n. Lorsque n tend vers l’infini et δσn tend vers 0, les quantités
∆xk = xk−xk−1, où k = 1, . . . , n, tendent toutes vers 0 ; ce qui implique, du fait
de la continuité de f dans [a; b], que les différences Mk −mk, où k = 1, . . . , n,
tendent toutes vers 0 ; ce qui revient à dire que mk et Mk tendent vers le même
nombre réel ℓk (où k = 1, . . . , n). De ce résultat, il découle immédiatement que
la différence entre la somme de Darboux supérieure Sσn et la somme de Darboux
inférieure Sσn tend vers 0 lorsque n tend vers l’infini et δσn tend vers 0. En consé-
quence, soit Sσn et Sσn convergent toutes les deux vers un même nombre réel I,
lorsque n tend vers l’infini et δσn vers 0, soit elles tendent à diverger toutes les
deux. Dans la situation présente, avec les hypothèses formulées, les deux sommes
convergent. Passablement technique, et nécessitant l’introduction de notions qui
n’ont pas été vues jusqu’à présent, la preuve de cette dernière assertion n’est pas
exposée ici. Une démonstration détaillée est donnée à la fin du présent ouvrage,
dans l’annexe D.
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• Avec les concepts et résultats vus jusqu’à présent, il n’est pas possible de prouver
que le nombre réel I, mentionné au point précédent, ne dépend pas du choix de
la subdivision de [a; b]. Une démonstration détaillée de ce résultat est exposée
dans l’annexe D, à la fin du présent ouvrage.

4.1.9 Remarque : Pour calculer l’intégrale de Riemann d’une fonction réelle f : D → R,
définie et continue dans un intervalle fermé [a; b], a et b étant deux nombres réels tels que
a < b, il suffit de considérer une seule subdivision σn d’ordre n de [a; b], de pas δσn , puis
une seule somme de Riemann de f associée à σn (par exemple l’une des deux sommes de
Darboux de f associée à σn), et enfin d’en prendre la limite lorsque n tend vers l’infini
et δσn tend vers 0. Il n’est pas nécessaire de considérer toutes les sommes de Riemann
possibles de f , associées à toutes les subdivisions possibles de [a; b] ; la proposition
précédente garantit que l’on obtient dans tous les cas le même résultat lorsque n tend
vers l’infini et δσn tend vers 0.

4.1.10 Propriétés : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Selon la

proposition précédente, l’intégrale de Riemann
∫ b

a
f(x) dx de f entre a et b existe.

• Soient σn = (x0; x1; . . . ; xn) une subdivision d’ordre n de [a; b] et δσn son pas. On
définit l’intégrale de Riemann de f entre b et a comme étant la limite suivante :

lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk−1 − xk) ,

où ξk ∈ [xk−1; xk] pour tout k = 1, . . . , n. On note cette limite :
∫ a

b

f(x) dx .

Vu que :
∫ a

b

f(x) dx = lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk−1 − xk)

= lim
n→∞
δσn→0

n∑

k=1

f(ξk)
[
−(xk − xk−1)

]

= lim
n→∞
δσn→0

−
n∑

k=1

f(ξk) (xk − xk−1)

= − lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk − xk−1)

et que, par définition :
∫ b

a

f(x) dx = lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk − xk−1) ,
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il vient :
∫ a

b

f(x) dx = −
∫ b

a

f(x) dx .

Noter que
∫ a

b
f(x) dx existe, vu que

∫ b

a
f(x) dx existe.

• Soit c ∈ [a; b]. Alors :

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx ,

où
∫ c

a
f(x) dx et

∫ b

c
f(x) dx sont respectivement l’intégrale de f entre a et c et l’in-

tégrale de f entre c et b. Pour s’en convaincre, il convient de considérer une subdi-
vision σn = (x0; x1; . . . ; xn) d’ordre n de [a; c] (pour laquelle x0 = a et xn = c),
une subdivision ςm = (xn; xn+1; . . . ; xn+m) d’ordre m de [c; b] (pour laquelle
xn = c et xn+m = b) et la subdivision τℓ = (x0; x1; . . . ; xn; xn+1; . . . ; xn+m)
d’ordre ℓ = n+m de [a; b]. Il vient alors :

∫ b

a

f(x) dx = lim
ℓ→∞
δτℓ→0

ℓ∑

k=1

f(ξk) (xk − xk−1)

= lim
ℓ→∞
δτℓ→0

(
n∑

k=1

f(ξk) (xk − xk−1) +
ℓ∑

k=n+1

f(ξk) (xk − xk−1)

)

= lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk − xk−1) + lim
m→∞
δςm→0

n+m∑

k=n+1

f(ξk) (xk − xk−1) ,

où δσn , δςm et δτℓ sont les pas de σn, ςm et τℓ, respectivement, et ξk ∈ [xk−1; xk] pour
tout k = 1, . . . , n, n+1, . . . , n+m. Noter que le passage de la deuxième à la troi-
sième ligne de calcul est tout à fait licite puisque, dès le moment où δτℓ tend vers 0,
alors nécessairement δσn et δςm tendent tous les deux vers 0 aussi (en effet, dès
lors que le plus grand des nombres (x1 − x0), . . . , (xn − xn−1), (xn+1 − xn), . . . ,
(xn+m − xn+m−1) tend vers 0, alors nécessairement tous ces nombres tendent
vers 0, en particulier le plus grand des nombres (x1 − x0), . . . , (xn − xn−1) ainsi
que le plus grand des nombres (xn+1 − xn), . . . , (xn+m − xn+m−1)). Par défini-
tion, la dernière ligne du calcul n’est rien d’autre que la somme de l’intégrale de f
entre a et c et l’intégrale de f entre c et b. Ainsi donc :

∫ b

a

f(x) dx = lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk − xk−1) + lim
m→∞
δςm→0

n+m∑

k=n+1

f(ξk) (xk − xk−1)

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .
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Remarquer que
∫ c

a
f(x) dx et

∫ b

c
f(x) dx existent, vu que f , qui est continue dans

[a; b], est continue dans [a; c] et dans [c; b].

• Le précédent résultat demeure valable si c /∈ [a; b], pour autant que f soit définie
et continue dans [c; b] au moins, dans le cas où c < a, ou dans [a; c] au moins,
dans le cas où c > b. Pour s’en convaincre, il convient de supposer que c < a (la
situation où c > b se démontrant de manière analogue), d’écrire l’intégrale de f
entre c et b, puis de développer celle-ci comme suit (en notant que c < a < b, ce
qui permet d’utiliser le résultat obtenu au point précédent) :

∫ b

c

f(x) dx =

∫ a

c

f(x) dx+

∫ b

a

f(x) dx ,

En tenant compte du fait que
∫ a

c
f(x) dx = −

∫ c

a
f(x) dx, il vient alors :

∫ b

a

f(x) dx = −
∫ a

c

f(x) dx+

∫ b

c

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .

4.1.11 Remarques : • Les propriétés précédentes sont en accord avec le fait que
l’intégrale d’une fonction entre un point et le même point, si elle existe, est nulle :

0 =

∫ a

a

f(x) dx =

∫ b

a

f(x) dx+

∫ a

b

f(x) dx =

∫ b

a

f(x) dx−
∫ b

a

f(x) dx ,

où f : D → R (où D ⊂ R) est une fonction continue dans l’intervalle [a; b] ⊂ D
au moins, où a et b sont deux nombres réels tels que a < b.

• D’autres propriétés de l’intégrale d’une fonction seront énoncées dans les sections
qui suivent. Un résultat, néanmoins, va encore être évoqué ici ; suffisamment
important, il est présenté sous la forme d’un théorème.

4.1.12 Théorème : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Alors, il
existe un élément c ∈ [a; b] tel que :

∫ b

a

f(x) dx = f(c) (b− a) .

Ce résultat est connu sous le nom de théorème de la valeur moyenne. Le nombre
f(c) est appelé valeur moyenne de f dans l’intervalle [a; b].

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses du théorème. Soit
aussi σn = (x0; x1; . . . ; xn) une subdivision d’ordre n de [a; b], de pas δσn .

Comme f est continue dans [a; b] et que [a; b] est fermé, f atteint son minimum, que
l’on note m, et son maximum, que l’on note M , dans [a; b] (cf. théorème du minimum
et du maximum, section 2.10 du chapitre 2). Ainsi, pour tout x ∈ [a; b], m 6 f(x) 6M .
En particulier, pour tout ξk ∈ [xk−1; xk] ⊂ [a; b], m 6 f(ξk) 6M , où k = 1, . . . , n. Par
conséquent :

m (xk − xk−1) 6 f(ξk) (xk − xk−1) 6 M (xk − xk−1) ,
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pour tout k = 1, . . . , n, et donc :

n∑

k=1

m (xk − xk−1) 6

n∑

k=1

f(ξk) (xk − xk−1) 6

n∑

k=1

M (xk − xk−1) .

Or, comme :

n∑

k=1

(xk − xk−1) = (x1 − x0) + (x2 − x1) + . . .+ (xn−1 − xn−2) + (xn − xn−1)

= −x0 + xn = xn − x0 = b− a ,

x

y

O a b

m

x

y

O a b

M

vu que x0 = a et xn = b, alors :

n∑

k=1

m (xk − xk−1) = m
n∑

k=1

(xk − xk−1)

= m (xn − x0) = m (b− a)

et :
n∑

k=1

M (xk − xk−1) = M

n∑

k=1

(xk − xk−1)

= M (xn − x0) = M (b− a) .

Ainsi :

m (b− a) 6

n∑

k=1

f(ξk) (xk − xk−1) 6 M (b− a) ,

d’où (cf. dernier point de la remarque A.1.6 de l’annexe A) :

lim
n→∞
δσn→0

m (b− a) 6 lim
n→∞
δσn→0

n∑

k=1

f(ξk) (xk − xk−1) 6 lim
n→∞
δσn→0

M (b− a) ;

autrement écrit :

m (b− a) 6

∫ b

a

f(x) dx 6 M (b− a) ⇔ m 6
1

b− a

∫ b

a

f(x) dx 6 M ,

vu que ni m (b− a), ni M (b− a) ne dépend de n.
Pour terminer, rappelons que, du moment que f est continue dans [a; b], f prend,

dans [a; b], une fois au moins la valeur m, une fois au moins la valeur M , ainsi qu’une
fois au moins toute valeur comprise entre m et M (cf. théorème du minimum et du
maximum). Autrement dit, pour tout nombre réel y ∈ [m; M ], il existe au moins un
nombre réel x ∈ [a; b] tel que f(x) = y. Or, selon la dernière double inégalité obtenue

ci-dessus, 1
b−a

∫ b

a
f(x) dx ∈ [m; M ]. Par conséquent, il existe au moins un nombre réel

c ∈ [a; b] tel que :

f(c) =
1

b− a

∫ b

a

f(x) dx ⇔ f(c) (b− a) =

∫ b

a

f(x) dx �
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4.1.13 Remarque : Le théorème de la valeur moyenne peut
être interprété comme suit : pour toute fonction réelle
f : D → R définie et continue dans un intervalle [a; b] ⊂ D,
a et b étant deux nombres réels tels que a < b, il existe un
nombre réel c ∈ [a; b] tel que la surface finie S, dans le plan
euclidien R2 (muni de son système de coordonnées carté-
siennes canonique Oxy), délimitée par la courbe d’équation
y = f(x), la droite horizontale d’équation y = 0 et les deux
droites verticales d’équations x = a et x = b, a une aire A
qui est égale à celle d’un rectangle de base (b − a) et de
hauteur f(c).

x

y

O a b

A

c
x

y

O a b

f(c)

A

4.2 Notion de primitive

Si la formulation de Riemann de l’intégrale d’une fonction permet de définir de manière
claire et relativement générale l’idée de somme d’éléments infiniment petits, elle ne four-
nit, en revanche, pas une méthode pratique pour la détermination de l’aire de surfaces
non polygonales ; le calcul de la limite d’une somme étant souvent lourd et laborieux.

L’objectif principal que visait Riemann, et avant lui Cauchy, au travers de leur
formulation d’intégrale, était de donner une définition précise de la notion d’intégrabilité,
et non pas d’élaborer des techniques pratiques de calcul d’aires ; de telles techniques,
rappelons-le, ont déjà été mises au point près de deux siècles plus tôt par les savants
Isaac Newton et Gottfried Wilhelm Leibniz.

Reposant sur une opération inverse de celle de la dérivation, les méthodes de Newton
et de Leibniz offrent la possibilité de résoudre de façon relativement simple et élégante
nombre de problèmes, non seulement en géométrie, mais également en mécanique, et
plus généralement en physique ; le formalisme qui en résulte est souvent plus simple à
manier que le calcul fastidieux des sommes et des limites.

Retraçons ici, avec le langage mathématique d’aujourd’hui, les différentes étapes qui
ont permis aux deux inventeurs du calcul infinitésimal d’élaborer une conception générale
du calcul de l’aire d’une surface non polygonale. À cet effet, considérons une fonction
réelle f : D → R (où D ⊂ R) d’une variable réelle t, définie et continue dans un intervalle
fermé [a; b], où a et b sont deux nombres réels tels que a < b.

• Soit A(x) l’intégrale de f entre a et un nombre réel
x ∈ ]a; b[ :

A(x) =

∫ x

a

f(t) dt .

Soient aussi le plan euclidien R2 et Oty son système de
coordonnées cartésiennes canonique, composé de l’axe

t

y

O a x x+∆x

des abscisses Ot et de l’axe des ordonnées Oy. Géométriquement parlant, A(x)
peut être vue comme l’aire de la surface finie, dans R2, délimitée par la courbe
d’équation y = f(t), la droite horizontale d’équation y = 0 (i.e. l’axe Ot) et les
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deux droites verticales d’équations t = a et t = x (surface sur la figure du
bas de la page précédente).

• Soit A(x + ∆x) l’intégrale de f entre a et un nombre réel x1 ∈ ]a; b[ , que l’on
note x1 = x+∆x :

A(x+∆x) =

∫ x+∆x

a

f(t) dt .

Géométriquement parlant, A(x + ∆x) peut être vue comme l’aire de la surface
finie, dans R2 (muni de son système de coordonnées cartésiennes canonique Oty),
délimitée par la courbe d’équation y = f(t), la droite horizontale d’équation
y = 0 (i.e. l’axe Ot) et les deux droites verticales d’équations t = a et t = x+∆x
(surface sur la figure du bas de la page précédente).

Selon la première et la deuxième des propriétés 4.1.10 :

A(x+∆x)− A(x) =

∫ x+∆x

a

f(t) dt−
∫ x

a

f(t) dt = −
∫ x

a

f(t) dt+

∫ x+∆x

a

f(t) dt

=

∫ a

x

f(t) dt+

∫ x+∆x

a

f(t) dt =

∫ x+∆x

x

f(t) dt .

Or, f est continue dans [x ; x + ∆x], vu qu’elle est continue dans [a; b]. Il existe donc,
selon le théorème de la valeur moyenne (théorème 4.1.12), un nombre réel c ∈ [x ; x+∆x]
tel que :

∫ x+∆x

x

f(t) dt = f(c)
(
x+∆x− x

)
.

Par conséquent :

A(x+∆x)− A(x) = f(c)∆x ⇔ f(c) =
A(x+∆x)− A(x)

∆x
.

Lorsque ∆x tend vers 0, c tend vers x, vu que c ∈ [x ; x +∆x], et f(c) tend vers f(x),

vu que f est continue dans [a; b] ⊃ [x ; x+∆x] ; quant au rapport A(x+∆x)−A(x)
∆x

, il tend,
par définition, vers la dérivée A′ de A en x. Ainsi :

A′(x) = f(x) ;

l’aire A de la surface finie, dans R2, délimitée par la courbe d’équation y = f(t), la
droite horizontale d’équation y = 0 et les droites verticales d’équations t = a et t = x,
semble donc pouvoir s’obtenir directement à partir de f , en appliquant à f une opération
contraire à celle de la dérivation, de sorte que, lorsque l’on dérive A, on retrouve f .

4.2.1 Définition : Soit f : D → R une fonction réelle, définie et continue dans un inter-
valle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. On appelle
primitive de f dans [a; b] toute fonction F : [a; b] → R, continue dans [a; b], telle que,
pour tout x ∈ ]a; b[ :

F ′(x) = f(x) .
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4.2.2 Exemple : Soit f : R → R la fonction donné par f(x) = 2 x. Alors, dans tout
intervalle fermé [a; b], où a et b sont deux nombres réels tels que a < b, la fonction
F : [a; b] → R, donnée par F (x) = x2, est une primitive de f dans [a; b]. En effet, F
étant une fonction polynomiale, F est continue dans tout R ; de fait, elle est continue
dans [a; b] (i.e. elle est continue dans ]a; b[ , continue à droite en a et continue à gauche
en b). De plus, pour tout x ∈ ]a; b[ :

F ′(x) =
dF

dx
(x) =

d

dx
x2 = 2 x = f(x) .

Noter que la fonction F̃ : [a; b] → R, donnée par F̃ (x) = x2 + 5, est aussi une primitive
de f dans [a; b] ; en effet, F̃ étant une fonction polynomiale, elle est continue dans
tout R ; et donc en particulier dans [a; b]. De plus, pour tout x ∈ ]a; b[ :

F̃ ′(x) =
dF̃

dx
(x) =

d

dx
(x2 + 5) = 2 x+ 0 = 2 x = f(x) .

Plus généralement, toute fonction G : [a; b] → R, donnée par G(x) = x2 + C, où C est
un nombre réel quelconque, est une primitive de f dans [a; b].

4.2.3 Lemme : Soit f : D → R une fonction réelle, définie et continue dans un intervalle
fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Supposons, en outre,
que f admet dans [a; b] deux primitives F1 : [a; b] → R et F2 : [a; b] → R. Alors, pour
tout x ∈ [a; b], F2(x) = F1(x) + C, où C est un nombre réel.

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses du lemme. Soit,
en outre, G : [a, b] → R la fonction définie par G(x) = F2(x)− F1(x), où F1 : [a; b] → R

et F2 : [a; b] → R sont les deux primitives de f mentionnées dans les hypothèses du
lemme. Alors, pour tout x ∈ ]a; b[ :

G′(x) =
dG

dx
(x) =

d

dx

(
F2 − F1

)
(x) =

dF2

dx
(x)− dF1

dx
(x)

= F ′
2(x)− F ′

1(x) = f(x)− f(x) = 0 .

Par conséquent, G(x) = C pour tout x ∈ ]a; b[ , où C est un nombre réel. Et comme G
est continue dans [a; b] (vu qu’elle est définie, dans [a; b], comme étant la différence
de deux fonctions continues dans [a; b]), alors G(x) = C, pour tout x ∈ [a; b]. Ainsi,
F2(x) = F1(x) + C pour tout x ∈ [a; b]. �

4.2.4 Remarque : Le lemme précédent permet d’affirmer que toute fonction réelle f :
D → R, définie et continue dans un intervalle fermé [a; b] ⊂ D, où a et b sont deux
nombres réels tels que a < b, dès le moment où elle admet une primitive dans [a; b], en
possède une infinité ; en outre, toutes ces primitives se distinguent entre elles par des
constantes réelles.
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4.2.5 Notation : L’ensemble de toutes les primitives dans [a; b] d’une fonction réelle
f : D → R, définie et continue dans un intervalle fermé [a; b] ⊂ D (où a et b sont deux
nombres réels tels que a < b), à supposer qu’il existe, se note :

∫

f(x) dx ou aussi : F (x) + C ,

où F est une primitive de f dans [a; b] et C un nombre réel quelconque. L’utilisation
des symboles

∫
et dx, dans la première écriture, vient du fait que la primitive d’une

fonction f , si elle existe, s’emploie volontiers pour calculer l’intégrale de f entre a et b.
Remarquer que l’on parle volontiers d’intégrer une fonction pour indiquer que l’on re-
cherche en fait ses primitives.

4.2.6 Proposition : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b.

• La grandeur A, donnée par :

A(x) =

∫ x

a

f(t) dt ,

est une fonction à valeurs réelles, définie dans l’intervalle [a; b].

• La fonction A : [a; b] → R, définie au point précédent, est une primitive de f dans
[a; b].

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses de la proposition ;
soit A la grandeur donnée par :

A(x) =

∫ x

a

f(t) dt .

• Par définition, A(x) est l’intégrale de Riemann de f entre a et x. Cette intégrale
existe, quel que soit x ∈ [a; b], vu que f est continue dans [a; b] (cf. proposi-
tion 4.1.8). Pour chaque x ∈ [a; b], la quantité A(x) est donc égale à une et une
unique valeur réelle. A peut donc être vue comme une fonction à valeurs réelles ;
elle est définie dans [a; b], vu que A(x) existe pour tout x ∈ [a; b].

• Au début de la présente section, il a été montré que :

A′(x) = f(x) , pour tout x ∈ ]a; b[ .

A′(x) existe donc pour tout x ∈ ]a; b[ ; A est, de fait, continue dans ]a; b[ . Reste
alors à montrer que A est aussi continue à droite en a et continue à gauche en b.

⋄ Continuité à droite en a : Comme f est continue dans [a; b], elle est continue
dans [a; x], quel que soit x ∈ ]a; b]. Il existe donc, selon le théorème de la
valeur moyenne, un nombre réel c1 ∈ [a; x] tel que :

A(x) =

∫ x

a

f(t) dt = f(c1) (x− a) .
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Or, lorsque x tend vers a par valeurs plus grandes, c1 tend vers a, vu que
c ∈ [a; x], et f(c1) tend vers f(a), vu que f est continue dans [a; b] ⊃ [a; x].
Par conséquent :

lim
x→a
x>a

A(x) = lim
x→a
x>a

f(c1) (x− a) = f(a) (a− a) = 0 = A(a) ,

vu que A(a) =
∫ a

a
f(t) dt = 0. La fonction A est donc continue à droite en a.

⋄ Continuité à gauche en b : La quantité A(x) peut s’écrire :

A(x) =

∫ x

a

f(x) dx =

∫ b

a

f(x) dx+

∫ x

b

f(x) dx

=

∫ b

a

f(x) dx−
∫ b

x

f(x) dx = A(b)−
∫ b

x

f(x) dx .

Comme f est continue dans [a; b], elle est continue dans [x; b], quel que soit
x ∈ [a; b[ . Il existe donc, selon le théorème de la valeur moyenne, un nombre
réel c2 ∈ [x; b] tel que :

∫ b

x

f(t) dt = f(c2) (b− x) .

Or, lorsque x tend vers b par valeurs plus petites, c2 tend vers b, vu que
c2 ∈ [x; b], et f(c2) tend vers f(b), vu que f est continue dans [a; b] ⊃ [x; b].
Par conséquent :

lim
x→b
x<b

A(x) = lim
x→b
x<b

(

A(b)−
∫ b

x

f(x) dx

)

= lim
x→b
x<b

(
A(b)− f(c2) (b− x)

)

= A(b)− f(b) (b− b) = A(b) .

La fonction A est donc continue à gauche en b.

En résumé, la fonction A : [a; b] → R, donnée par A(x) =
∫ x

a
f(t) dt, est continue

dans [a; b] et satisfait A′(x) = f(x) pour tout x ∈ ]a; b[ . A est donc une primitive
de f dans [a; b]. �

4.2.7 Remarque : La proposition précédente permet d’affirmer que toute fonction réelle
f : D → R, définie et continue dans un intervalle fermé [a; b] ⊂ D, où a et b sont deux
nombres réels tels que a < b, admet une primitive dans [a; b]. Le lemme 4.2.3 permet
alors de conclure qu’une telle fonction possède en fait une infinité de primitives distinctes
dans [a; b].

4.2.8 Propriétés : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies et continues dans un intervalle fermé [a; b], où a et b sont deux nombres réels
tels que a < b. Selon la proposition précédente et le lemme 4.2.3, f et g admettent toutes
les deux une infinité de primitives distinctes dans [a; b]. Notons F une des primitives
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de f dans [a; b] et G une des primitives de g dans [a; b]. Alors :

• αF est une primitive de la fonction αf dans [a; b] ; en effet, αF est continue
dans [a; b], vu que F l’est, par définition ; de plus, pour tout x ∈ ]a; b[ :

(
αF
)′
(x) = αF ′(x) = αf(x) ;

• F + G est une primitive de f + g dans [a; b] ; en effet, F + G est continue dans
[a; b], vu que F et G le sont, par définition ; de plus, pour tout x ∈ ]a; b[ :

(
F +G

)′
(x) = F ′(x) +G′(x) = f(x) + g(x) .

4.2.9 Exemple : Soit f : R → R la fonction donnée par :

f(x) = x2 − 3 x+ 2 .

Alors, dans tout intervalle fermé [a; b], où a et b sont deux nombres réels tels que a < b,
la fonction F : [a; b] → R, donnée par :

F (x) =
1

3
x3 − 3

2
x2 + 2 x ,

est une primitive de f dans [a; b]. En effet, F étant une fonction polynomiale, elle est
continue dans tout R ; et donc en particulier dans [a; b] ; de plus, pour tout x ∈ ]a; b[ :

F ′(x) =
d

dx

(
1

3
x3 − 3

2
x2 + 2 x

)

=
1

3
· 3 x2 − 3

2
· 2 x+ 2 = x2 − 3 x+ 2 = f(x) .

Selon le lemme 4.2.3, n’importe quelle primitive de f est égale à F à une constante réelle
près. Ainsi : ∫

(x2 − 3 x+ 2) dx =
1

3
x3 − 3

2
x2 + 2 x+ C .

4.3 Théorème fondamental du calcul intégral

4.3.1 Théorème : Soit f : D → R une fonction réelle, définie et continue dans un inter-
valle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Alors :

∫ b

a

f(x) dx = F (b)− F (a) ,

où F est une primitive quelconque de f dans [a; b]. Ce résultat est connu sous le nom
de théorème fondamental du calcul intégral.

Preuve : Soit f : D → R une fonction réelle satisfaisant les hypothèses du théorème.
Selon la proposition 4.2.6, la fonction A : [a; b] → R, donnée par :

A(x) =

∫ x

a

f(t) dt ,
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est une primitive de f dans [a; b]. Cette primitive s’annule en x = a, vu que
∫ a

a
f(t) dt = 0.

Soit alors F une autre primitive de f dans [a; b]. Selon le lemme 4.2.3, il existe un nombre
réel C tel que A(x) = F (x) + C pour tout x ∈ [a; b]. Ainsi :

∫ b

a

f(x) dx =

∫ b

a

f(t) dt =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt

= A(b)− A(a) =
(
F (b) + C

)
−
(
F (a) + C

)

= F (b)− F (a) ,

et ce, quelle que soit la primitive F de f dans [a; b]. �

4.3.2 Notation : L’expression F (b)−F (a), notée dans la proposition précédente, s’écrit
volontiers :

F (b)− F (a) = F (x)
∣
∣b

a
ou aussi F (b)− F (a) =

[
F (x)

]b

a
.

4.3.3 Exemples : 1. Calculons l’intégrale entre 0 et b de la fonction f : R → R donnée
par f(x) = exp(x). Grâce au théorème fondamental du calcul intégral, il vient :

∫ b

0

f(x) dx =

∫ b

0

exp(x) dx = exp(x)
∣
∣
b

0

= exp(b)− exp(0) = exp(b)− 1 ;

la fonction x 7→ exp(x) est bien une primitive de f dans
[0; b] : elle est continue dans [0; b] et sa dérivée, don-
née par d

dx
exp(x) = exp(x), est égale à f dans ]0; b[ .

Comme f(x) > 0 pour tout x ∈ [0; b], le résultat ob-
tenu ci-dessus est égal, par définition de l’intégrale de f
entre 0 et b, à l’aire de la surface finie, dans le plan eu-
clidien R2 (muni de son système de coordonnées carté-
siennes canonique Oxy), délimitée par la courbe d’équa-
tion y = exp(x), la droite horizontale d’équation y = 0
et les deux droites verticales d’équations x = 0 et x = b.
Noter que cette expression exp(b) − 1 est identique à
celle obtenue dans le début de la section consacrée à l’in-
tégrale de (Cauchy-) Riemann, en calculant des limites
de sommes.

b
x

y

0

1

eb

2. Calculons l’intégrale entre 1 et 3 de la fonction f : R → R donnée par f(x) = 2 x.
Grâce au théorème fondamental du calcul intégral, il vient :

∫ 3

1

f(x) dx =

∫ 3

1

2 x dx = x2
∣
∣3

1
= 32 − 12 = 8 ;
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la fonction x 7→ x2 est bien une primitive de f dans
[1; 3] : elle est continue dans [1; 3] et sa dérivée, donnée
par d

dx
x2 = 2 x, est égale à f dans ]1; 3[ . Vu que f(x) > 0

pour tout x ∈ [1; 3], le résultat obtenu ci-dessus est égal,
par définition de l’intégrale de f entre 1 et 3, à l’aire de la
surface finie, dans le plan euclidien R2 (muni de son sys-
tème de coordonnées cartésiennes canonique Oxy), déli-
mitée par la droite oblique d’équation y = 2 x, la droite
horizontale d’équation y = 0 et les deux droites verticales
d’équations x = 1 et x = 3. 1 3

x

y

0
1

2

5

3. Calculons l’intégrale entre −2 et 1 de la fonction f : R → R donnée par f(x) =
x2 + 2 x+ 3. Grâce au théorème fondamental du calcul intégral, il vient :

∫ 1

−2

f(x) dx =

∫ 1

−2

(x2 + 2 x+ 3) dx =

[
1

3
x3 + x2 + 3 x

]1

−2

=

(
1

3
· 13 + 12 + 3 · 1

)

−
(
1

3
· (−2)3 + (−2)2 + 3 · (−2)

)

=
13

3
−
(

−14

3

)

=
27

3
= 9 ;

la fonction x 7→ 1
3
x3 + x2 + 3 x est bien une primitive

de f dans [−2; 1] : elle est continue dans [−2; 1] et sa
dérivée, d

dx

(
1
3
x3 + x2 + 3

)
= x2 + 2 x + 3, est égale à f

dans ]−2; 1[ . Comme f(x) > 0 pour tout x ∈ [−2; 1],
le résultat obtenu ci-dessus est égal, par définition de
l’intégrale de f entre −2 et 1, à l’aire de la surface fi-
nie, dans le plan euclidien R2 (muni de son système de
coordonnées cartésiennes canonique Oxy), délimitée par
la parabole d’équation y = x2 + 2 x + 3, la droite hori-
zontale d’équation y = 0 et les deux droites verticales
d’équations x = −2 et x = 1.

−2 1
x

y

0

1

5

4. Calculons l’intégrale entre 0 et 2 de la fonction f : R → R donnée par f(x) = x2−1.
Grâce au théorème fondamental du calcul intégral, il vient :

∫ 2

0

f(x) dx =

∫ 2

0

(x2 − 1) dx =

[
1

3
x3 − x

]2

0

=

(
1

3
· 23 − 2

)

−
(
1

3
· 0− 0

)

=
2

3
− 0 =

2

3
;
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la fonction x 7→ 1
3
x3 − x est bien une primitive de f

dans [0; 2] : elle est continue dans [0; 2] et sa déri-
vée, donnée par d

dx

(
1
3
x3 − x

)
= x2 − 1, est égale à f

dans ]0; 2[ . Comme f(x) < 0 pour tout x ∈ [0; 1[ et
f(x) > 0 pour tout x ∈ [1; 2], le résultat obtenu ci-
dessus n’est pas égal à l’aire de la surface finie, dans le
plan euclidien R2 (muni de son système de coordonnées
cartésiennes canonique Oxy), délimitée par la parabole
d’équation y = x2 − 1, la droite horizontale d’équation
y = 0 et les deux droites verticales d’équations x = 0 et
x = 2.

1 2
x

y

0

1

5

4.3.4 Illustration : Selon la loi de Coulomb, une particule chargée électriquement, de
charge q 6= 0, située à une distance d non nulle d’une autre particule chargée, de charge
Q 6= 0, subit une force ~FE, dite électrique, de norme :

FE = k
|Qq|
d2

,

où k ≈ 8,99 · 109Nm2C−2 est une grandeur constante, appelée constante de Coulomb.
Une telle expression est valable pour autant que les dimensions des particules char-
gées soient négligeables par rapport à la distance d ; si l’une des deux particules, ou
les deux, ont des tailles non négligeables, l’expression ci-dessus n’est plus valable en
l’état, elle doit être adaptée. Afin de se rendre compte comment il est possible d’obtenir
la force électrique entre deux charges dont l’une au
moins a des dimensions quelque peu conséquentes,
considérons une situation concrète ; par exemple celle
représentée sur la figure ci-contre. Dans cette confi-
guration :

x
q

Q

d ℓ

xj
∆xj

• une charge Q, supposée strictement positive, se trouve répartie uniformément sur
une barre cylindrique de longueur ℓ > 0 et de section négligeable,

• à une distance d > ℓ
2
du centre de la barre, sur l’axe de la barre, se trouve une

charge q de dimensions négligeables, supposée strictement négative.

Plaçons un x de sorte qu’il soit confondu avec l’axe de la barre, qu’il aille de q en
direction de Q, et que son origine soit confondue avec q. Décomposons ensuite la barre
en n rondelles d’épaisseurs ∆x1, . . . ,∆xn. En bonne approximation, un élément d’épais-
seur ∆xj , situé à une distance xj de q (cf. figure ci-dessus), produit une force ∆~FE,j sur q,
de norme :

∆FE,j = k

∣
∣
(∆xj

ℓ
Q
)
q
∣
∣

xj2
=

k∆xj |Qq|
ℓ xj2

;

en effet, la charge portée par l’élément de barre d’épaisseur ∆xj est ∆Qj =
∆xj

ℓ
Q.

Vu la disposition des charges q et ∆Qj , la force ∆~FE,j n’est que selon l’axe x. Ainsi,

∆~FE,j = ∆FE,j,x ~ex, où :

∆FE,j,x =
k∆xj |Qq|

ℓ xj2
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et ~ex est un vecteur unitaire (i.e. de norme égale à 1) ayant la direction et le sens de
l’axe x ; noter que ∆FE,j,x > 0, en raison du fait que q et ∆Qj sont de signes opposés.
Pour obtenir la force électrique totale que subit q, due à tous les éléments de la barre,
il suffit alors de considérer la somme ∆~FE,1 + . . . + ∆~FE,n, puis de passer à la limite
lorsque n tend vers l’infini et que tous les éléments ∆x1, . . . ,∆xn tendent vers 0. La
limite de la somme se déduit aisément grâce au théorème fondamental du calcul intégral :

~FE = lim
n→∞

∆x1,...,∆xn→0

n∑

j=1

∆~FE,j = lim
n→∞

∆x1,...,∆xn→0

n∑

j=1

k∆xj |Qq|
ℓ xj2

~ex

= lim
n→∞

∆x1,...,∆xn→0

n∑

j=1

k |Qq|
ℓ xj2

∆xj ~ex =

∫ d+ ℓ
2

d− ℓ
2

k |Qq|
ℓ x2

dx~ex

=
k |Qq|
ℓ

∫ d+ ℓ
2

d− ℓ
2

1

x2
dx~ex =

k |Qq|
ℓ

[

−1

x

]d+ ℓ
2

d− ℓ
2

~ex

=
k |Qq|
ℓ

[

− 1

d+ ℓ
2

+
1

d− ℓ
2

]

~ex =
k |Qq|
ℓ

ℓ

d2 − ℓ2

4

~ex

= k
|Qq|
d2 − ℓ2

4

~ex .

De cette expression peut être déduite la norme de la force électrique totale que subit q :

FE = k
|Qq|
d2 − ℓ2

4

.

4.3.5 Propriétés : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies et continues dans un intervalle fermé [a; b], où a et b sont deux nombres
réels tels que a < b.

• Soit α un nombre réel quelconque. Alors, l’intégrale de α f entre a et b est égale
à α fois l’intégrale de f entre a et b :

∫ b

a

(
αf
)
(x) dx =

∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx .

En effet, soit F une primitive de f dans [a; b]. Alors, selon la première des pro-
priétés 4.2.8, αF est une primitive de α f dans [a; b]. Ainsi :

∫ b

a

(
αf
)
(x) dx =

(
αF
)
(x)
∣
∣b

a
=
(
αF
)
(b)−

(
αF
)
(a) = αF (b)− αF (a)

= α
(
F (b)− F (a)

)
= α

[
F (x)

]b

a
= α

∫ b

a

f(x) dx .
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• L’intégrale de la somme de f et de g entre a et b est égale à la somme de l’intégrale
de f entre a et b et de l’intégrale de g entre a et b :

∫ b

a

(
f + g

)
(x) dx =

∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx .

En effet, soient F une primitive de f dans [a; b] et G une primitive de g dans [a; b].
Alors, selon la deuxième des propriétés 4.2.8, F + G est une primitive de f + g
dans [a; b]. Ainsi :

∫ b

a

(
f + g

)
(x) dx =

(
F +G

)
(x)
∣
∣
b

a
=
(
F +G

)
(b)−

(
F +G

)
(a)

= F (b) +G(b)− F (a)−G(a)

=
(
F (b)− F (a)

)
+
(
G(b)−G(a)

)

= F (x)
∣
∣
b

a
+G(x)

∣
∣
b

a
=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx .

• La valeur absolue de l’intégrale de f entre a et b est plus petite ou égale à
l’intégrale de la valeur absolue de f entre a et b :

∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
6

∫ b

a

∣
∣f(x)

∣
∣ dx .

Pour s’en convaincre, il convient de considérer les deux fonctions f− : D → R et
f+ : D → R définies comme suit :

f−(x) =

{

f(x) en tout x pour lequel f(x) < 0

0 en tout x pour lequel f(x) > 0

et :

f+(x) =

{

0 en tout x pour lequel f(x) < 0

f(x) en tout x pour lequel f(x) > 0
.

Par définition de ces deux fonctions, f−(x) 6 0 et f+(x) > 0 quel que soit x ∈ D ;
en outre :

(
f− + f+

)
(x) = f−(x) + f+(x) = f(x) ,

(
−f− + f+

)
(x) = −f−(x) + f+(x) =

∣
∣f(x)

∣
∣

pour tout x ∈ D. Comme f−(x) 6 0 et f+(x) > 0 pour tout x ∈ D, alors
∫ b

a
f−(x) dx 6 0 et

∫ b

a
f+(x) dx > 0, ce qui implique que :

∣
∣
∣
∣

∫ b

a

f−(x) dx

∣
∣
∣
∣
= −

∫ b

a

f−(x) dx =

∫ b

a

−f−(x) dx ,
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et :
∣
∣
∣
∣

∫ b

a

f+(x) dx

∣
∣
∣
∣
=

∫ b

a

f+(x) dx .

Ainsi, selon le résultat donné au point précédent :
∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

(
f− + f+

)
(x) dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

(
f−(x) + f+(x)

)
dx

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ b

a

f−(x) dx+

∫ b

a

f+(x) dx

∣
∣
∣
∣

6

∣
∣
∣
∣

∫ b

a

f−(x) dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ b

a

f+(x) dx

∣
∣
∣
∣

=

∫ b

a

−f−(x) dx+
∫ b

a

f+(x) dx

=

∫ b

a

(
−f−(x) + f+(x)

)
dx =

∫ b

a

(
−f− + f+

)
(x) dx

=

∫ b

a

∣
∣f(x)

∣
∣ dx .

Noter que
∫ b

a
f+(x) dx est l’aire de la surface finie S+, dans le plan euclidien R2

(muni de son système de coordonnées cartésiennes canonique Oxy), délimitée par
la courbe d’équation y = f+(x), la droite horizontale d’équation y = 0 et les deux

droites verticales d’équations x = a et x = b ; et
∫ b

a
f−(x) dx est l’opposé de l’aire

de la surface finie S−, dans R
2, délimitée par la courbe

d’équation y = f−(x), la droite horizontale d’équation
y = 0 et les deux droites verticales d’équations x = a
et x = b ; remarquer alors que S+ et/ou S− peuvent
être constituées de plusieurs domaines disjoints (par
exemple S+ = S1 ∪ S3 dans la figure ci-contre).

x

y

O a b

S1

S2

S3

• Si f(x) > 0 pour tout x ∈ [a; b], alors :
∫ b

a

f(x) dx = 0 ⇔ f(x) = 0 pour tout x ∈ [a; b] .

En effet, si f(x) = 0 pour tout x ∈ [a; b], alors :
∫ b

a

f(x) dx =

∫ b

a

0 dx = C
∣
∣
b

a
= C − C = 0 ,

où C est un nombre réel quelconque. Réciproquement, si
∫ b

a
f(x) dx = 0, i.e. si

∫ b

a
f(t) dt = 0, alors, pour tout x ∈ [a; b] :

∫ x

a

f(t) dt = 0 ,
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vu que :

0 =

∫ b

a

f(t) dt =

∫ x

a

f(t) dt+

∫ b

x

f(t) dt

et que
∫ x

a
f(t) dt > 0 et

∫ b

x
f(t) dt > 0, du fait que f(x) > 0 pour tout x ∈ [a; b],

par hypothèse. Par conséquent, pour tout x ∈ ]a; b[ :

0 =
d

dx

∫ x

a

f(t) dt = f(x) ;

et comme f est supposée être continue dans [a; b], alors f(x) = 0 pour tout
x ∈ [a, b].

• Si f(x) > 0 pour tout x ∈ [a; b], alors la fonction F : [a; b] → R, donnée par
F (x) =

∫ x

a
f(t) dt est croissante dans [a; b]. En effet, quels que soient x1, x2 ∈ [a; b]

tels que x1 < x2 :

F (x1) =

∫ x1

a

f(t) dt 6

∫ x1

a

f(t) dt+

∫ x2

x1

f(t) dt =

∫ x2

a

f(t) dt = F (x2) ,

du fait que
∫ x2

x1
f(t) dt > 0, vu que f(t) > 0 pour tout t ∈ [a; b].

• Si f(x) 6 g(x) pour tout x ∈ [a; b], alors :
∫ b

a

f(x) dx 6

∫ b

a

g(x) dx .

Pour s’en convaincre, il convient de considérer la fonction h : [a; b] → R, donnée
par h(x) = g(x) − f(x). Manifestement, h(x) > 0 pour tout x ∈ [a; b] ; et donc
∫ b

a
h(x) dx > 0. Par conséquent :

0 6

∫ b

a

h(x) dx =

∫ b

a

(
g − f

)
(x) dx

=

∫ b

a

(
g(x)− f(x)

)
dx =

∫ b

a

g(x) dx−
∫ b

a

f(x) dx ,

d’où le résultat.

4.4 Primitives des fonctions usuelles

Jusqu’à présent, les primitives d’une fonction ont été définies dans des intervalles fer-
més. Cela étant, rien n’empêche, conceptuellement, de les spécifier dans d’autres types
d’intervalles.

4.4.1 Définition : Soit f : D → R une fonction réelle, définie et continue dans un in-
tervalle J ⊂ D. On appelle primitive de f dans J toute fonction F : J → R, continue
dans J et telle que F ′(x) = f(x) pour tout x ∈ I, où I est le plus grand intervalle ouvert
contenu dans J .
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4.4.2 Remarque : Dans la définition précédente, l’hypothèse de continuité de f dans J
implique nécessairement l’existence de F ; la proposition 4.2.6 l’atteste : l’expression
∫ x

x0
f(x) dx, où x0 est un élément fixe dans J , est bien définie et correspond à une primitive

de f dans J .

C’est au sens de la définition donnée ci-dessus que sera comprise, par la suite, la
notion de primitive d’une fonction.

À la fin du présent ouvrage, dans l’annexe F, se trouve un tableau présentant les ex-
pressions des primitives de certaines fonctions usuelles. Pour la plupart de ces fonctions,
les primitives se déduisent presque immédiatement. Mais pour certaines, telle la tan-
gente, les primitives sont plus difficiles à deviner. Et pour d’autres encore, par exemple
les fonctions trigonométriques réciproques, les primitives ne peuvent pas être trouvées
sans recourir à des techniques particulières ; raison pour laquelle de telles primitives ne
figurent pas dans le tableau.

4.5 Méthodes d’intégration

S’il est relativement aisé, grâce aux formules de dérivation, d’obtenir l’expression de
la dérivée d’une fonction s’écrivant sous la forme d’une somme, d’une différence, d’un
produit, d’un quotient, d’une composition,... de fonctions usuelles, il est, en revanche,
souvent difficile de trouver une expression relativement simple de la primitive d’une
fonction, ne serait-ce que dans le cas où la fonction en question est un produit ou une
composition de deux fonctions usuelles. Plusieurs techniques peuvent être élaborées et
mises en œuvre pour trouver des primitives ; elles ne sont cependant pas universelles et
fonctionnent plus ou moins bien selon les circonstances.

4.5.1 Intégration par parties

Cette méthode peut s’avérer efficace, essentiellement, dans les deux situations suivantes :

• la fonction dont on cherche une primitive est un produit de deux fonctions
usuelles,

• la fonction dont on cherche une primitive est une fonction usuelle (dont on connâıt
évidemment l’expression de la dérivée, mais dont l’expression d’une primitive ne
s’obtient pas de façon évidente).

4.5.1 Proposition : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes
les deux définies et dérivables dans un intervalle ouvert I. Supposons, en outre, que la
dérivée f ′ de f et la dérivée g′ de g sont toutes les deux continues dans I. Alors, pour
tous nombres réels a, b ∈ I tels que a < b :

∫ b

a

f(x) g′(x) dx = f(x) g(x)
∣
∣
∣

b

a
−
∫ b

a

f ′(x) g(x) dx .

Cette égalité est appelée formule d’intégration par parties.
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Preuve : Soient f : D1 → R et g : D2 → R deux fonctions réelles satisfaisant les
hypothèses de la proposition. Alors, selon la formule de dérivation d’un produit de deux
fonctions,

(
f g
)′
(x) = f ′(x) g(x) + f(x) g′(x) pour tout x ∈ I. Ainsi, f(x) g′(x) =

(
f g
)′ − f ′(x) g(x) et donc, quels que soient les nombres réels a,b ∈ I, où a < b :

∫ b

a

f(x) g′(x) dx =

∫ b

a

((
f g
)′
(x)− f ′(x) g(x)

)

dx

=

∫ b

a

(
f g
)′
(x) dx−

∫ b

a

f ′(x) g(x) dx

=
(
f g
)
(x)
∣
∣
∣

b

a
−
∫ b

a

f ′(x) g(x) dx

= f(x) g(x)
∣
∣
∣

b

a
−
∫ b

a

f ′(x) g(x) dx ,

vu que f g est une primitive de (f g)′ dans I. �

4.5.2 Remarque : De la proposition précédente, on déduit immédiatement que, pour
tout x ∈ I (où I est l’intervalle ouvert défini dans l’énoncé de la proposition) :

∫

f(x) g′(x) dx = f(x) g(x)−
∫

f ′(x) g(x) dx .

Appelée également formule d’intégration par partie, cette égalité peut servir à calculer
l’ensemble des primitives d’une fonction s’écrivant sous la forme f(x) g′(x).

4.5.3 Exemples : 1. Déterminons l’ensemble des primitives de la fonction donnée par
x exp(x), dans tout intervalle I de son domaine de définition, qui est R. À cet effet,
posons f(x) = x et g′(x) = exp(x), puis appliquons la formule d’intégration par
parties :

∫

x exp(x) dx = x exp(x)−
∫

1·exp(x) dx

= x exp(x)−
∫

exp(x) dx

= x exp(x)− exp(x) + C

= (x− 1) exp(x) + C , où C ∈ R ,

du fait que f ′(x) = 1 et g(x) = exp(x), par exemple. Si l’ajout d’une constante
réelle A à exp(x) n’est pas nécessaire, il n’est pas interdit non plus ; dans tous les
cas, on retrouve le même résultat.
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2. Cherchons l’ensemble des primitives de la fonction Arctg, dans tout intervalle I
de son domaine de définition, qui est R. Pour cela, posons f(x) = Arctg(x) (ce
qui entrâıne que f ′(x) = 1

1+x2 ) et g′(x) = 1 (ce qui implique que g(x) = x, par
exemple) ; puis appliquons la formule d’intégration par parties :

∫

Arctg(x) dx =

∫

1·Arctg(x) dx

= xArctg(x)−
∫

x
1

1 + x2
dx

= xArctg(x)− 1

2
ln
(
1 + x2

)
+ C

= xArctg(x)− ln
(√

1 + x2
)
+ C , où C ∈ R ,

le passage de la première à la deuxième ligne de calcul se justifie par le fait que :

d

dx

(
1

2
ln
(
1 + x2

)
)

=
1

2

1

1 + x2
2 x =

x

1 + x2
.

3. Déterminons l’ensemble des primitives de la fonction donnée par exp(x) sin(x),
dans tout intervalle I de son domaine de définition, qui est R. À cet effet, posons
f(x) = exp(x) (ce qui entrâıne que f ′(x) = exp(x)) et g′(x) = sin(x) (ce qui im-
plique que g(x) = − cos(x), par exemple) ; puis appliquons la formule d’intégration
par parties :

∫

exp(x) sin(x) dx = − exp(x) cos(x)−
∫

− exp(x) cos(x) dx

= − exp(x) cos(x) +

∫

exp(x) cos(x) dx .

Ensuite, dans l’expression
∫
exp(x) cos(x) dx, posons f̃(x) = exp(x) (ce qui en-

trâıne que f̃(x) = exp(x)) et g̃′(x) = cos(x) (ce qui implique, par exemple, que
g̃(x) = sin(x)), puis appliquons à nouveau la formule d’intégration par parties :
∫

exp(x) sin(x) dx = − exp(x) cos(x) +

∫

exp(x) cos(x) dx

= − exp(x) cos(x) + exp(x) sin(x)−
∫

exp(x) sin(x) dx .

On obtient ainsi une équation pour l’inconnue
∫
exp(x) sin(x) dx :

∫

exp(x) sin(x) dx = − exp(x) cos(x) + exp(x) sin(x)−
∫

exp(x) sin(x) dx .

Isolons alors la quantité
∫
exp(x) sin(x) dx et ajoutons une constante C̃, afin d’avoir

l’ensemble de toutes les primitives :

2

∫

exp(x) sin(x) dx = exp(x) sin(x)− exp(x) cos(x) + C̃ .



4.5 Méthodes d’intégration 215

Finalement, en posant C = 1
2
C̃ :

∫

exp(x) sin(x) dx =
1

2

(
exp(x) sin(x)− exp(x) cos(x) + C̃

)

=
1

2
exp(x)

(
sin(x)− cos(x)

)
+ C , où C ∈ R .

4. Calculons l’intégrale entre 0 et π
2
de la fonction donnée par x sin(x). Pour cela,

posons f(x) = x (ce qui entrâıne que f ′(x) = 1) et g′(x) = sin(x) (ce qui implique
que g(x) = − cos(x), par exemple) ; puis appliquons la formule d’intégration par
parties :

∫ π
2

0

x sin(x) dx = x
(
−cos(x)

)
∣
∣
∣

π
2

0
−
∫ π

2

0

1 ·
(
−cos(x)

)
dx

= −x cos(x)
∣
∣
∣

π
2

0
+

∫ π
2

0

cos(x) dx

= −x cos(x)
∣
∣
∣

π
2

0
+ sin(x)

∣
∣
∣

π
2

0
=
[

−x cos(x) + sin(x)
]π

2

0

=
[

−π
2
cos
(π

2

)

+ sin
(π

2

)]

−
[
−0 · cos(0) + sin(0)

]

=
(

−π
2
· 0 + 1

)

− (−0 + 0) = 1 .

4.5.2 Intégration par changement de variable et par substitution

Cette méthode est utilisée pour transformer des fonctions difficiles à intégrer en d’autres
fonctions dont les primitives sont plus faciles à déterminer.

4.5.4 Proposition : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Soient aussi
I ⊂ R un intervalle ouvert et ϕ : I → R une fonction réelle, dérivable dans I, dont la
dérivée ϕ′ est continue dans I. Soit encore [α; β] un intervalle fermé inclus dans I, où α
et β sont deux nombres réels tels que α < β, tel que ϕ([α; β]) ⊂ [a; b]. Alors :

∫ ϕ(β)

ϕ(α)

f(x) dx =

∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt .

Cette égalité est appelée formule d’intégration par changement de variable ;
l’expression x = ϕ(t) porte le nom de changement de variable.

Preuve : Reprenons les hypothèses de la proposition ; et considérons la fonction G :
[α; β] → R donnée par :

G(x) =

∫ ϕ(x)

ϕ(α)

f(s) ds .
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Cette fonction G peut être vue comme la composition de deux fonctions : G(x) =
F
(
ϕ(x)

)
=
(
F ◦ ϕ

)
(x), où F : ϕ

(
[α; β]

)
→ R est donnée par F (u) =

∫ u

ϕ(α)
f(s) ds.

Remarquer que G est continue dans [α; β], vu que F est continue dans ϕ
(
[α; β]

)
(cf.

proposition 4.2.6) et que ϕ est continue dans I ⊃ [α; β] ; de plus, pour tout x ∈ ]α; β[ :

G′(x) =
dG

dx
=

dF

du

(
ϕ(x)

) dϕ

dx
(x) = F ′(ϕ(x)

)
ϕ′(x) = f

(
ϕ(x)

)
ϕ′(x) .

G est donc une primitive, dans [α; β], de la fonction g : [α; β] → R donnée par g(x) =
f
(
ϕ(x)

)
ϕ′(x). Noter que g est continue dans [α; β], vu que f est continue dans [a; b] ⊃

ϕ([α; β]) et ϕ continue dans [α; β]. Ainsi, d’une part, selon le théorème fondamental du
calcul intégral :

G(β)−G(α) =

∫ β

α

f
(
ϕ(x)

)
ϕ′(x) dx ,

d’autre part, par définition de G :

G(β)−G(α) =

∫ ϕ(β)

ϕ(α)

f(s) ds−
∫ ϕ(α)

ϕ(α)

f(s) ds =

∫ ϕ(β)

ϕ(α)

f(s) ds .

Par conséquent :
∫ ϕ(β)

ϕ(α)

f(s) ds =

∫ β

α

f
(
ϕ(x)

)
ϕ′(x) dx ;

autrement écrit :

∫ ϕ(β)

ϕ(α)

f(x) dx =

∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt . �

4.5.5 Remarques : • Dans la proposition précédente, ϕ : [α; β] → ϕ([α; β]) n’a pas
besoin d’être injective ; dans la preuve, à aucun moment il n’a été nécessaire de
parler d’injectivité.

• La formule d’intégration par changement de variable peut s’avérer utile pour
calculer non seulement des intégrales, mais également des primitives. Lors du
calcul des primitives, il convient alors, à la fin du calcul, de revenir à la variable
originale, de sorte que le résultat soit cohérent avec l’expression de départ. Ne
pas oublier d’appliquer, à chaque étape du calcul, les précautions qui s’imposent.

• Il n’est pas rare que la formule d’intégration par changement de variable soit
utilisée dans le sens inverse à celui donné dans la proposition précédente, i.e.
dans le sens : ∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt =

∫ ϕ(β)

ϕ(α)

f(x) dx ,

et exprimée avec une notation adaptée aux circonstances :

∫ β

α

f
(
ϕ(x)

)
ϕ′(x) dx =

∫ ϕ(β)

ϕ(α)

f(u) du ,
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où u = ϕ(x). Dans un tel cas de figure, on parle alors plutôt de substitution
que de changement de variable, du fait que l’on substitue u à ϕ(x) ; et comme
u = ϕ(x), alors du

dx
= ϕ′(x).

4.5.6 Exemples : 1. Déterminons l’ensemble des primitives de la fonction donnée par√
5 x+ 7 , dans tout intervalle I de son domaine de définition, qui est

[
− 7

5
; ∞

[
.

À cet effet, posons u = 5 x + 7 (avec du
dx

= 5 ⇔ dx = 1
5
du), puis appliquons la

formule de changement de variable :

∫ √
5 x+ 7dx =

∫ √
u
1

5
du =

∫

u
1
2
1

5
dx

=
1

5

∫

u
1
2 du =

1

5
· 2
3
u

3
2 + C

=
2

15

√
u3 + C =

2

15

√

(5 x+ 7)3 + C , où C ∈ R .

2. Cherchons l’ensemble des primitives de la fonction donnée par 3
√

sin(x) cos(x),

dans tout intervalle I de son domaine de définition, qui est R. À cet effet, posons
u = sin(x) (avec du

dx
= cos(x) ⇔ du = cos(x) dx), puis appliquons la formule

d’intégration par changement de variable :

∫

3
√

sin(x) cos(x) dx =

∫

3
√
u du =

∫

u
1
3 du

=
3

4
u

4
3 + C =

3

4
3

√

sin4(x) + C , où C ∈ R .

3. Déterminons l’ensemble des primitives de la fonction donnée par x
1+x2 , dans tout

intervalle I de son domaine de définition, qui est R. Pour cela, posons u = 1 + x2

(avec du
dx

= 2 x ⇔ 1
2
du = x dx), puis appliquons la formule d’intégration par

changement de variable :

∫
x

1 + x2
dx =

∫
1

1 + x2
x dx =

∫
1

u
· 1
2
du =

1

2

∫
1

u
du

=
1

2
ln |x|+ C =

1

2
ln |1 + x2|+ C

=
1

2
ln
(
1 + x2

)
+ C = ln

(√
1 + x2

)
+ C , où C ∈ R .

4. Cherchons l’ensemble des primitives de la fonction donnée par 1
a2+x2 , où a est un

nombre réel strictement positif, dans tout intervalle I de son domaine de définition,
qui est R. À cet effet, posons u = x

a
(avec du

dx
= 1

a
⇔ a du = dx), puis appliquons



218 4 Calcul intégral

la formule d’intégration par changement de variable :
∫

1

a2 + x2
dx =

∫
1

a2
(
1 + x2

a2

) dx =

∫
1

a2
1

1 +
(
x
a

)2 dx

=
1

a2

∫
1

1 + u2
a du =

a

a2

∫
1

1 + u2
du

=
1

a
Arctg(u) + C =

1

a
Arctg

(x

a

)

+ C , où C ∈ R .

5. Calculons l’intégrale entre 0 et 1 de la fonction donnée par
√
1− x2 . Pour cela,

posons x = cos(t) (avec dx
dt

= − sin(t) ⇔ dx = − sin(t) dt), puis appliquons
la formule d’intégration par changement de variable ; remarquons que les bornes
d’intégration passent de 0 à π

2
et de 1 à 0 (vu que cos

(
π
2

)
= 0 et cos(0) = 1) :

∫ 1

0

√
1− x2 dx =

∫ 0

π
2

√

1−
(
cos(t)

)2 (−sin(t)
)
dt

= −
∫ 0

π
2

√

1− cos2(t) sin(t) dt = −
∫ 0

π
2

√

sin2(t) sin(t) dt

= −
∫ 0

π
2

sin(t) sin(t) dt = −
∫ 0

π
2

sin2(t) dt

= −
∫ 0

π
2

1

2

(
1− cos(2 t)

)
dt = −1

2

[

t− 1

2
sin(2 t)

]0

π
2

= −1

2

(

0− 1

2
sin(0)

)

−
(

−1

2

(
π

2
− 1

2
sin(π)

))

=
π

4
.

Noter les points suivants.

• Le passage de la deuxième à la troisième ligne de calcul a été effectué en
considérant que

√

sin2(t) = sin(t) ; si
√

sin2(t) = sin(t) (et non
√

sin2(t) =
− sin(t)), c’est en raison du fait que sin(t) > 0 dans l’intervalle [0 ; π

2
].

• Le passage de la troisième à la quatrième ligne de calcul a été effectué en
recourant à l’identité trigonométrique sin2(t) = 1

2

(
1− cos(2 t)

)
.

• La fonction t 7→ 1
2
cos(2 t) est effectivement une primitive de t 7→ − sin(2 t)

dans R (et donc dans
[
0 ; π

2

]
) ; en effet, d

dt

(
1
2
cos(2 t)

)
= 1

2

(
− sin(2 t)

)
· 2 =

− sin(2 t) pour tout t ∈ R.

• Il aurait aussi été possible de considérer le changement de variable x = sin(t) ;
il aurait même donné lieu à des calculs légèrement plus simples (comprenant
moins de signes négatifs). Si c’est x = cos(t) qui a été privilégié ici, c’est afin
de faire le lien avec les coordonnées polaires : la première coordonnée, i.e. la
coordonnée x, d’un point situé à une distance 1 de l’origine O du système de
coordonnées cartésiennes canonique Oxy satisfait x = cos(t), où t est l’angle
des coordonnées polaires associées au système Oxy.
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6. Calculons l’intégrale entre π
6
et π

2
de la fonction donnée par cos(x)

sin(x)
. À cet effet, po-

sons u = sin(x) (avec du
dx

= cos(x) ⇔ du = cos(x) dx), puis appliquons la formule
d’intégration par changement de variable ; remarquons que les bornes d’intégration
passent de π

6
à 1

2
et de π

2
à 1 (vu que 1

2
= sin

(
π
6

)
et 1 = sin

(
π
2

)
) :

∫ π
2

π
6

cos(x)

sin(x)
dx =

∫ π
2

π
6

1

sin(x)
cos(x) dx =

∫ 1

1
2

1

u
du = ln

∣
∣u
∣
∣1
1
2

= ln |1| − ln

∣
∣
∣
∣

1

2

∣
∣
∣
∣
= 0− ln

(
1

2

)

= ln(2) .

4.5.7 Exemples : La liste qui suit présente les techniques permettant d’obtenir relative-
ment aisément les expressions des primitives des fonctions f de la forme f(x) = Ax+B

ax2+b x+c

ou de la forme f(x) = Ax+B√
ax2+b x+c

, où A,B, b, c ∈ R et a ∈ R∗.

1. Cherchons l’ensemble des primitives de la fonction donnée par 1
2x2+8x+20

, dans tout

intervalle I de son domaine de définition, qui est R. À cet effet, commençons par
mettre en évidence le facteur 2 dans l’expression 2 x2 + 8 x+ 20 ; cherchons ensuite
à compléter le carré de x2+4 x ; enfin, posons u = x+2 (avec du

dx
= 1 ⇔ du = dx)

et appliquons la formule d’intégration par changement de variable :
∫

1

2 x2 + 8 x+ 20
dx =

∫
1

2 (x2 + 4 x+ 10)
dx =

∫
1

2
· 1

x2 + 4 x+ 10
dx

=

∫
1

2
· 1

(x2 + 4 x+ 4) + 6
dx =

1

2

∫
1

(
x+ 2

)2
+
(√

6
)2 dx

=
1

2

∫
1

u2 +
(√

6
)2 du =

1

2
· 1√

6
Arctg

(
u√
6

)

+ C

=
1

2
√
6
Arctg

(
x+ 2√

6

)

+ C , où C ∈ R .

2. Cherchons l’ensemble des primitives de la fonction donnée par 7x+1
3x2+12x+24

, dans

tout intervalle I de son domaine de définition, qui est R. À cet effet, commen-
çons par faire apparâıtre au numérateur de l’expression de la fonction la quantité
d
dx
(3 x2 + 12 x+ 24), i.e. la quantité 6 x+ 12, de sorte que :

7 x+ 1

3 x2 + 12 x+ 24
=

7

6
· 6 x+ 12

3 x2 + 12 x+ 24
− 13 · 1

3 x2 + 12 x+ 24
.

Ainsi, l’ensemble des primitives de la fonction peut s’écrire sous la forme :
∫

7 x+ 1

3 x2 + 12 x+ 24
dx =

7

6

∫
6 x+ 12

3 x2 + 12 x+ 24
dx− 13

∫
1

3 x2 + 12 x+ 24
dx .

Dans 7
6

∫
6x+12

3x2+12 x+24
dx, posons u = 3 x2+12 x+24 (de sorte que du

dx
= 6 x+ 12 ⇔

du = (6 x + 12) dx) ; dans 13
∫

1
3x2+12 x+24

dx, mettons 3 en évidence au dénomi-
nateur, complétons ensuite l’expression x2 + 4 x de façon à obtenir une identité
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remarquable, et posons enfin v = x + 2 (avec dv
dx

= 1 ⇔ dv = dx). Avec ces
changements de variables, il vient :
∫

7 x+ 1

3 x2 + 12 x+ 24
dx =

7

6

∫
6 x+ 12

3 x2 + 12 x+ 24
dx− 13

∫
1

3 x2 + 12 x+ 24
dx

=
7

6

∫
1

3 x2 + 12 x+ 24
(6 x+ 12) dx− 13

∫
1

3 (x2 + 4 x+ 8)
dx

=
7

6

∫
1

3 x2 + 12 x+ 24
(6 x+ 12) dx− 13 · 1

3

∫
1

x2 + 4 x+ 8
dx

=
7

6

∫
1

u
du− 13

3

∫
1

x2 + 4 x+ 4 + 4
dx

=
7

6

∫
1

u
du− 13

3

∫
1

(x+ 2)2 + 22
dx

=
7

6

∫
1

u
du− 13

3

∫
1

v2 + 22
dv

=
7

6

∫
1

u
du− 13

3

∫
1

22 + v2
dv

=
7

6
ln |u| − 13

3
· 1
2
Arctg

(v

2

)

+ C

=
7

6
ln |u| − 13

6
Arctg

(v

2

)

+ C

=
7

6
ln
∣
∣3 x2 + 12 x+ 24

∣
∣− 13

6
Arctg

(
x+ 2

2

)

+ C , où C ∈ R .

Noter que les deux barres désignant la valeur absolue, dans le logarithme, peuvent
être ôtées ; et pour cause : l’expression 3 x2 + 12 x + 24 est strictement positive,
quel que soit x ∈ R.

3. Cherchons l’ensemble des primitives de la fonction donnée par 5x+2√
4 x2+8x+20

, dans

tout intervalle I de son domaine de définition, qui est R. À cet effet, commençons
par faire apparâıtre, au numérateur de l’expression de la fonction, la quantité
d
dx
(4 x2 + 8 x+ 20), i.e. la quantité 8 x+ 8 :

5 x+ 2√
4 x2 + 8 x+ 20

=
5

8
· 8 x+ 8√

4 x2 + 8 x+ 20
− 3 · 1√

4 x2 + 8 x+ 20
.

L’ensemble des primitives de la fonction peut alors s’écrire sous la forme :
∫

5 x+ 2√
4 x2 + 8 x+ 20

dx =
5

8

∫
8 x+ 8√

4 x2 + 8 x+ 20
dx− 3

∫
1√

4 x2 + 8 x+ 20
dx .

Dans 5
8

∫
8x+8√

4 x2+8x+20
dx, posons u = 4 x2 + 8 x+ 20 (de sorte que du

dx
= 8 x+ 8 ⇔

du = (8 x+8) dx) ; dans −3
∫

1√
4x2+8x+20

dx, mettons 4 en évidence dans la racine
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au dénominateur, complétons ensuite l’expression x2 + 2 x de façon à obtenir une
identité remarquable, et posons enfin v = x + 1 (avec dv

dx
= 1 ⇔ dv = dx). Avec

ces changements de variables, il vient :

∫
5 x+ 2√

4 x2 + 8 x+ 20
dx =

5

8

∫
8 x+ 8√

4 x2 + 8 x+ 20
dx− 3

∫
1√

4 x2 + 8 x+ 20
dx

=
5

8

∫
(8 x+ 8) dx√
4 x2 + 8 x+ 20

− 3

∫
1

√

4 (x2 + 2 x+ 5)
dx

=
5

8

∫
(8 x+ 8) dx√
4 x2 + 8 x+ 20

− 3

∫
1

2
√
x2 + 2 x+ 5

dx

=
5

8

∫
du√
u
− 3 · 1

2

∫
1√

x2 + 2 x+ 1 + 4
dx

=
5

8

∫
1√
u
du− 3

2

∫
1

√

(x+ 1)2 + 22
dx

=
5

8

∫

u−
1
2 du− 3

2

∫
1√

v2 + 22
dv

=
5

8
· 2 u 1

2 − 3

2
ln
∣
∣v +

√
v2 + 22

∣
∣+ C

=
5

4

√
u− 3

2
ln
∣
∣v +

√
v2 + 22

∣
∣+ C

=
5

4

√
4 x2 + 8 x+ 20− 3

2
ln
∣
∣x+ 1 +

√

(x+ 1)2 + 22
∣
∣+ C

=
5

4

√
4 x2 + 8 x+ 20− 3

2
ln
∣
∣x+ 1 +

√
x2 + 2 x+ 5

∣
∣ + C ,

où C ∈ R .

Noter que les deux barres désignant la valeur absolue, dans le logarithme, peuvent
être ôtées ; et pour cause : l’expression x+1+

√
x2 + 2 x+ 5 est strictement positive,

quel que soit x ∈ R.

4.5.8 Exemples : Les deux situations suivantes présentent les techniques grâce aux-
quelles il est possible de déterminer relativement aisément les expressions des primitives
des fonctions f de la forme f(x) =

(
cos(x)

)m(
sin(x)

)n
( = cosm(x) sinn(x)), où m,n ∈ N.

1. Cherchons l’ensemble des primitives de la fonction donnée par cos3(x) sin5(x). À
cet effet, commençons par transformer l’expression cos3(x) comme suit :

cos3(x) = cos(x) cos2(x) = cos(x)
(
1− sin2(x)

)
;

l’identité cos2(x) + sin2(x) = 1 a été utilisée pour écrire cos2(x) sous la forme
1− sin2(x). Posons ensuite u = sin(x) (avec du

dx
= cos(x) ⇔ du = cos(x) dx), puis
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appliquons la formule d’intégration par changement de variable :
∫

cos3(x) sin5(x) dx =

∫

cos(x)
(
1− sin2(x)

)
sin5(x) dx

=

∫
(
sin5(x)− sin7(x)

)
cos(x) dx

=

∫

(u5 − u7) du =
1

6
u6 − 1

8
u8 + C

=
1

6
sin6(x)− 1

8
sin8(x) + C , où C ∈ R .

Noter que le calcul aurait pu aussi être effectué en laissant cos3(x) tel quel et en
transformant l’expression sin5(x) de la manière suivante :

sin5(x) = sin(x) sin2(x) sin2(x) = sin(x)
(
1− cos2(x)

)(
1− cos2(x)

)

= sin(x)
(
1− 2 cos2(x) + cos4(x)

)
.

Le raisonnement mené dans le présent exemple s’applique à toute fonction f de la
forme f(x) = cosm(x) sinn(x), où l’un des deux entiers naturels m et n, au moins,
est impair.

2. Cherchons l’ensemble des primitives de la fonction donnée par cos2(x) sin2(x). Pour
cela, utilisons les identités trigonométriques suivantes :

cos2(x) =
1

2

(
1 + cos(2 x)

)
et sin2(x) =

1

2

(
1− cos(2 x)

)
,

afin de récrire le produit cos2(x) sin2(x) comme suit :

cos2(x) sin2(x) =
1

2

(
1 + cos(2 x)

) 1

2

(
1− cos(2 x)

)

=
1

4

(
1− cos2(2 x)

)
=

1

4

(

1− 1

2

(
1 + cos(4 x)

)
)

=
1

4
− 1

8

(
1 + cos(4 x)

)
=

1

8
− 1

8
cos(4 x) ;

noter que l’identité trigonométrique cos2(α) = 1
2

(
1+cos(2α)

)
a été réutilisée pour

transformer cos2(2 x) en 1
2

(
1 + cos(4 x)

)
. Ainsi :

∫

cos2(x) sin2(x) dx =

∫ (
1

8
− 1

8
cos(4 x)

)

dx

=
1

8
x− 1

32
sin(4 x) + C , où C ∈ R .

La marche à suivre donnée ici s’applique à toute fonction f de la forme f(x) =
cosm(x) sinn(x), où les entiers naturels m et n sont tous les deux pairs. Noter que
plus m et/ou n sont grands, plus le nombre d’étapes est important.
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Si les méthodes présentées dans ces deux exemples s’appliquent bien aux fonctions de
type x 7→ cosm(x) sinn(x), et plus généralement aux classes de fonctions données par
cosm(a x) sinn(a x), où m,n ∈ N et a ∈ R∗, elles se montrent, en revanche, inefficaces
dans le cas des fonctions de type x 7→ cosm(a x) sinn(b x), où a et b sont deux nombres
réels tels que a 6= b. Pour de telles fonctions, il convient plutôt de recourir à l’une ou à
plusieurs des identités trigonométriques suivantes :

cos(a x) cos(b x) =
1

2

(

cos
(
(a+ b) x

)
+ cos

(
(a− b) x

))

,

sin(a x) cos(b x) =
1

2

(

sin
(
(a+ b) x

)
+ sin

(
(a− b) x

))

,

sin(a x) sin(b x) =
1

2

(

−cos
(
(a+ b) x

)
+ cos

(
(a− b) x

))

.

4.5.9 Illustration : Dans les ouvrages consacrés à l’étude de l’électricité, on tombe par-
fois sur l’expression valeur efficace. Ce que l’on entend par valeur efficace d’un courant
électrique variable, dans une période donnée, c’est la valeur d’un courant électrique
constant qui, lorsqu’il traverse une résistance électrique, produit une énergie (se dis-
sipant sous forme de chaleur) égale à celle que produit le courant électrique variable,
traversant la même résistance, durant la même période. Concrètement, en notant :

⋄ I(t) le courant variant au cours du temps,

⋄ R la résistance électrique considérée,

⋄ T la période considérée,

⋄ Ieff la valeur efficace du courant variable dans la période T ,

il vient :

R Ieff
2 T =

∫ t0+T

t0

R
(
I(t)

)2
dt ,

où t0 est l’instant qui marque le début de la période T . Une telle relation peut être
déduite de ce que l’on appelle l’effet Joule VII. Selon cet effet,

• la puissance dissipée dans la résistance R, lorsque elle est traversée par le courant
électrique constant Ieff, vaut R Ieff

2 ;

• la puissance dissipée dans la résistance R, lorsque elle est traversée par le courant

électrique variable I(t), vaut R
(
I(t)

)2
.

Ainsi, dans un intervalle de temps infinitésimal dt :

• l’énergie dissipée dans la résistance R, lorsque elle est traversée par le courant
électrique constant Ieff, vaut R Ieff

2 dt ;

• l’énergie dissipée dans la résistance R, lorsque elle est traversée par le courant

électrique variable I(t), vaut R
(
I(t)

)2
dt.

VII. L’effet Joule est le phénomène qui se manifeste par le réchauffement d’un corps conducteur lorsque
celui-ci est traversé par un courant électrique. Il a été découvert en 1840 par le physicien anglais James
Prescott Joule, né en 1818 à Salford, près de Manchester, et mort en 1889 à Sale.
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En sommant, i.e. en intégrant chacune de ces énergies sur la période T et en égalant les
résultats obtenus, il ressort que :

∫ t0+T

t0

RIeff
2 dt =

∫ t0+T

t0

R
(
I(t)

)2
dt .

Or, l’intégrale de gauche n’est autre que R Ieff
2 T , vu que Ieff et R sont constants.

Considérons le cas où le courant I(t) est sinusöıdal : I(t) = I0 sin(ω t+ϕ), où I0 et ω
sont deux paramètres fixes strictement positifs et ϕ un paramètre réel. I est alors une
fonction périodique du temps, de période T = 2π

ω
. Dans une période, la valeur efficace

d’un tel courant est :

Ieff =
I0√
2
.

En effet :

R Ieff
2 T =

∫ t0+T

t0

R
(
I(t)

)2
dt ⇔ RIeff

2 2 π

ω
= R

∫ t0+T

t0

(
I(t)

)2
dt

⇔ Ieff
2 =

ω

2 π

∫ t0+
2π
ω

t0

(
I(t)

)2
dt .

Or :
∫ t0+

2π
ω

t0

(
I(t)

)2
dt =

∫ t0+
2π
ω

t0

I0
2 sin2(ω t + ϕ) dt

= I0
2

∫ t0+
2π
ω

t0

1

2

(
1− cos(2ω t+ 2ϕ)

)
dt

=
1

2
I0

2

[

t− 1

2ω
sin(2ω t+ 2ϕ)

]t0+
2π
ω

t0

=
1

2
I0

2

[(

t0 +
2 π

ω

)

− 1

2ω
sin

(

2ω
(

t0 +
2 π

ω

)

+ 2ϕ

)]

−1

2
I0

2

[

t0 −
1

2ω
sin(2ω t0 + 2ϕ)

]

=
1

2
I0

2

(

t0 +
2 π

ω
− 1

2ω
sin(2ω t0 + 2 π + 2ϕ)

)

−1

2
I0

2

(

t0 −
1

2ω
sin(2ω t0 + 2ϕ)

)

=
1

2
I0

2

(

t0 +
2 π

ω
− 1

2ω
sin(2ω t0 + 2ϕ)

)

−1

2
I0

2

(

t0 −
1

2ω
sin(2ω t0 + 2ϕ)

)

=
1

2
I0

2

(

t0 +
2 π

ω
− t0

)

=
1

2
I0

2 2 π

ω
.
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Donc Ieff
2 = ω

2π
· 1
2
I0

2 · 2π
ω

= 1
2
I0

2, d’où le résultat. Noter que le calcul de l’intégrale a
été effectué en utilisant l’identité trigonométrique sin2(α) = 1

2

(
1−cos(α)

)
. La puissance

du sinus étant paire, il n’est pas possible d’utiliser ici la technique présentée dans le
premier des exemples 4.5.8.

4.5.10 Remarque : La formule d’intégration par changement de variable permet de
prouver certaines propriétés des intégrales, en rapport avec les fonctions paires, impaires
et périodiques.

• Soit f : D → R une fonction réelle paire, définie et
continue dans un intervalle fermé [−a; a], où a est un
nombre réel strictement positif. Alors :

∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx . x

y

−a a0

En effet, comme f est paire, alors f(−x) = f(x) pour tout x ∈ D, et donc :

∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx =

∫ 0

−a

f(−x) dx+
∫ a

0

f(x) dx

=

∫ 0

a

f(x̃) (−dx̃) +

∫ a

0

f(x) dx = −
∫ 0

a

f(x̃) dx̃+

∫ a

0

f(x) dx

=

∫ a

0

f(x̃) dx̃+

∫ a

0

f(x) dx = 2

∫ a

0

f(x) dx ;

l’intégrale
∫ 0

−a
f(x) dx a pu être transformée en l’intégrale

∫ 0

a
f(x̃) dx̃ grâce au

changement de variable x̃ = −x, pour lequel dx̃
dx

= −1 ⇔ dx̃ = −dx, avec les
bornes d’intégration qui passent de −a à −(−a) = a et de 0 à −0 = 0.

• Soit f : D → R une fonction réelle impaire, définie et
continue dans un intervalle fermé [−a; a], où a est un
nombre réel strictement positif. Alors :

∫ a

−a

f(x) dx = 0 .

x

y

−a

a
0

Très similaire à la précédente (dans le cas où f est paire), la preuve de ce résultat
est laissée en exercice.

• Soit f : D → R (où D ⊂ R) une fonction réelle périodique, de période T (où T
est un nombre réel strictement positif), définie et conti-
nue dans un intervalle fermé [a; b], a et b étant deux
nombres réels tels que a < b. Alors :

∫ b+T

a+T

f(x) dx =

∫ b

a

f(x) dx .

x

y

T
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En effet, comme f est périodique de période T , alors f(x+nT ) = f(x) pour tout
x ∈ D, quel que soit n ∈ Z ; en particulier f(x− T ) = f(x) pour tout x ∈ D ; et
donc :

∫ b+T

a+T

f(x) dx =

∫ b+T

a+T

f(x− T ) dx =

∫ b

a

f(x̃) dx̃

=

∫ b

a

f(x) dx ;

l’intégrale
∫ b+T

a+T
f(x− T ) dx a pu être transformée en l’intégrale

∫ b

a
f(x̃) dx̃ grâce

au changement de variable x̃ = x − T , pour lequel dx̃
dx

= 1 ⇔ dx̃ = dx, avec les
bornes d’intégration qui passent de a+T à a+T−T = a et de b+T à b+T−T = b.
Noter que f est définie et continue dans [a+T ; b+T ], vu qu’elle l’est dans [a; b]

et qu’elle est périodique ; l’intégrale
∫ b+T

a+T
f(x) dx est donc bien définie. Remarquer

aussi que si
∫ b+T

a+T
f(x) dx =

∫ b

a
f(x) dx, alors

∫ b+nT

a+nT
f(x) dx =

∫ b

a
f(x) dx, pour tout

n ∈ Z.

4.5.3 Intégration des fonctions rationnelles

Toute fonction rationnelle R s’écrit, rappelons-le (cf. sous-section C.2 de l’annexe C) :

R(x) =
P (x)

Q(x)
,

où P (x) et Q(x) sont deux polynômes en la variable x. S’il est vrai que R admet des
primitives dans tout intervalle où elle est continue, il est également vrai que ces primitives
ne peuvent être, en général, exprimées de manière simple et concrète ; du moins pas
lorsque R est présentée en l’état, sous la forme R(x) = P (x)

Q(x)
(à moins que P (x) =

(Q(x))nQ′(x) pour tout x dans le domaine de définition de R, n étant un nombre
entier).

Selon les propos tenus dans la sous-section 1.5.3, toute expression R(x) = P (x)
Q(x)

peut

s’écrire comme la somme d’un polynôme S(x) et d’un certain nombre d’éléments simples.
S(x) est :

• un polynôme de degré m− n si m > n,
• le polynôme nul si m < n,

oùm est le degré de P (x) et n le degré de Q(x). Quant aux éléments simples, ils s’écrivent
sous la forme de fractions, dont le dénominateur est un polynôme de degré un ou deux,
élevé à une certaine puissance, et le numérateur un polynôme de degré 0 ou 1, selon les
circonstances ; ils peuvent être classés, rappelons-le, en quatre catégories.

Si les primitives de R ne peuvent être exprimées de façon concrète lorsque R est
sous la forme R(x) = P (x)

Q(x)
, peut-être peuvent-elles l’être dans le cas où R est écrit

sous la forme de somme d’une fonction polynomiale et d’éléments simples. On sait
écrire concrètement les primitives d’une fonction polynomiale ; reste alors à voir s’il est
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possible de trouver des expressions concrètes des primitives des différents types d’élé-
ments simples.

• Éléments simples de première espèce :
De tels éléments sont de la forme A

x−a
, où a est un nombre réel et A un coefficient

réel. Dans tout intervalle I dans lequel x− a 6= 0, leurs primitives s’écrivent :

∫
A

x− a
dx = A ln

∣
∣x− a

∣
∣+ C , où C ∈ R .

En effet :

d

dx

(
A ln |x− a|+ C

)
= A

1

x− a
+ 0

=
A

x− a
.

• Éléments simples de deuxième espèce :
De tels éléments ont la forme d’une somme de fractions Ak

(x−a)k
, où a est un nombre

réel, Ak un coefficient réel et k = 1, . . . , n, où n est un nombre entier supérieur
où égal à 2. Dans tout intervalle I dans lequel x− a 6= 0, les primitives de Ak

(x−a)k

s’écrivent :

∫
Ak

(x− a)k
dx =

Ak

(1− k) (x− a)k−1
+ C , où C ∈ R et k ∈ Nr{0; 1} .

En effet, pour tout k > 2 :

d

dx

(
Ak

(1− k) (x− a)k−1
+ C

)

=
d

dx

(
Ak

1− k
(x− a)−(k−1) + C

)

=
Ak

1− k

(
−(k − 1)

)
(x− a)−(k−1)−1 + 0

=
Ak

1− k
(1− k)(x− a)−k

=
Ak

(x− a)k
.

Dans le cas où k = 1, la fraction A1

(x−a)1
est un élément simple de première espèce ;

ses primitives s’écrivent donc A1 ln |x− a|+ C, où C ∈ R.

• Éléments simples de troisième espèce :
De tels éléments sont de la forme Ax+B

ax2+b x+c
, où a, b et c sont des nombres réels

tels que b2−4 a c < 0, A et B des coefficients réels. Les primitives de ces éléments
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s’obtiennent en appliquant les techniques développées dans les deux premiers
exemples 4.5.7 :

∫
Ax+B

ax2 + b x+ c
dx =

=
A

2 a
ln
∣
∣a x2 + b x+ c

∣
∣+

2 aB −Ab

a
√
4 a c− b2

Arctg

(
2 a x+ b√
4 a c− b2

)

+ C

,

où C ∈ R .

En effet :

d

dx

(
A

2 a
ln
∣
∣a x2 + b x+ c

∣
∣+

2 aB − Ab

a
√
4 a c− b2

Arctg

(
2 a x+ b√
4 a c− b2

)

+ C

)

=

=
A

2 a

2 a x+ b

a x2 + b x+ c
+

2 aB − Ab

a
√
4 a c− b2

1

1 +
(

2 a x+b√
4 a c−b2

)2

2 a√
4 a c− b2

+ 0

=
A

2 a

2 a x+ b

a x2 + b x+ c
+

2 (2 aB −Ab)

4 a c− b2
1

1 + 4 a2 x2+4 a b+b2

4 a c−b2

=
A

2 a

2 a x+ b

a x2 + b x+ c
+

2 (2 aB −Ab)

4 a c− b2
1

4 a c−b2+4 a2 x2+4 a b+b2

4 a c−b2

=
A

2 a

2 a x+ b

a x2 + b x+ c
+

2 (2 aB − Ab)

4 a c− b2 + 4 a2 x2 + 4 a b+ b2

=
A

2 a

2 a x+ b

a x2 + b x+ c
+

2 (2 aB − Ab)

4 a (a x2 + b+ c)
=

1

2 a

A (2 a x+ b) + 2 aB − Ab

a x2 + b x+ c

=
Ax+B

ax2 + b x+ c
.

• Éléments simples de quatrième espèce :
De tels éléments ont la forme d’une somme de fractions Ak x+Bk

(ax2+b x+c)k
, où a, b et c

sont des nombres réels tels que b2 − 4 a c < 0, Ak et Bk des coefficients réels, et
k = 1, . . . , n, où n est un nombre entier supérieur ou égal à 2. Les primitives de

Ak x+Bk

(a x2+b x+c)k
peuvent s’écrire sous la forme :

∫
Ak x+Bk

(a x2 + b x+ c)k
dx =

=
Ak

2 a

1

(1− k)(a x2 + b x+ c)k−1
+

2 aBk − Ak b

2 a

∫
1

(a x2 + b x+ c)k
dx
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En effet :

d

dx

(
Ak

2 a

1

(1− k)(a x2 + b x+ c)k−1
+

2 aBk − Ak b

2 a

∫
1

(a x2 + b x+ c)k
dx

)

=

=
d

dx

(
Ak

2 a

1

1− k
(a x2 + b x+ c)−(k−1) +

2 aBk − Ak b

2 a

∫
1

(a x2 + b x+ c)k
dx

)

=
Ak

2 a

1

1− k

(
−(k − 1)

)
(a x2 + b x+ c)−(k−1)−1 (2 a x+ b)

+
2 aBk − Ak b

2 a

1

(a x2 + b x+ c)k

=
Ak

2 a

2 a x+ b

(a x2 + b x+ c)k
+

2 aBk −Ak b

2 a

1

(a x2 + b x+ c)k

=
1

(a x2 + b x+ c)k
1

2 a

(
Ak (2 a x+ b) + 2 aBk −Ak b

)

=
Ak x+Bk

(a x2 + b x+ c)k
.

Arrêtons-nous à présent sur
∫

1
(a x2+b x+c)k

dx. Cette quantité peut être récrite
comme suit :

∫
1

(a x2 + b x+ c)k
dx =

∫
1

[
a
(
x2 + b

a
x+ c

a

)]k
dx

=

∫
1

ak
1

(
x2 + 2 b

2 a
x+ b2

4 a2
− b2

4 a2
+ c

a

)k
dx

=
1

ak

∫
1

(
x2 + 2 b

2 a
x+ b2

4 a2
+ 1

4 a2
(4 a c− b2)

)k
dx

=
1

ak

∫
1

[(
x+ b

2 a

)2
+
(

1
2 a

√
4 a c− b2

)2]k
dx .

Or, la dernière expression obtenue peut être ramenée à une expression de la
forme : ∫

1

(u2 + r2)k
du ;

pour le voir, il suffit de poser r = 1
2 a

√
4 a c− b2 et u = x + b

2 a
(avec du

dx
= 1 ⇔

du = dx). Notons alors :

Ik(u) =

∫
1

(u2 + r2)k
du et Ik+1(u) =

∫
1

(u2 + r2)k+1
du .

Ainsi :
Ik(u) =

u
(
u2 + r2

)k
+ 2 k Ik(u)− 2 k r2 Ik+1(u) .
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En effet, en procédant à une intégration par partie de Ik (avec f(u) = (u2+r2)−k,
ce qui implique f ′(u) = −k (u2 + r2)−k−1 2 u, et g′(u) = 1, ce qui implique,
g(u) = u, par exemple) :

∫
1

(
u2 + r2

)k
dx =

∫
(
u2 + r2

)−k · 1 · du

=
(
u2 + r2

)−k · u−
∫

−k
(
u2 + r2

)−k−1
2 u · u · du

=
u

(
u2 + r2

)k
+ k

∫
2 u2

(
u2 + r2

)k+1
du

=
u

(
u2 + r2

)k
+ 2 k

∫
u2 + r2 − r2
(
u2 + r2

)k+1
du

=
u

(
u2 + r2

)k
+ 2 k

∫
(

u2 + r2
(
u2 + r2

)k+1
− r2
(
u2 + r2

)k+1

)

du

=
u

(
u2 + r2

)k
+ 2 k

∫
u2 + r2

(
u2 + r2

)k+1
du− 2 k

∫
r2

(
u2 + r2

)k+1
du

=
u

(
u2 + r2

)k
+ 2 k

∫
1

(
u2 + r2

)k
du− 2 k r2

∫
1

(
u2 + r2

)k+1
du .

En isolant Ik+1(u), il vient alors :

Ik+1(u) =
1

2 k r2
u

(
u2 + r2

)2 +
2 k − 1

2 k r2
Ik(u) .

Grâce à cette formule, il est possible d’exprimer Ik+1(u) à partir de Ik(u). Par
conséquent, à partir de I1(u), qui est donnée par :

I1(u) =

∫
1

(
u2 + r2

)1 du =

∫
1

u2 + r2
du =

1

r
Arctg

(u

r

)

+ C , où C ∈ R ,

il est possible d’obtenir l’expression de I2(u), de laquelle il est possible de trouver
l’expression de I3(u), etc.

En résumé, quel que soit l’élément simple considéré, ses primitives peuvent être
exprimées de façon concrète. Ainsi, dès lors qu’une fonction rationnelle est écrite sous
la forme d’une somme d’un polynôme et d’éléments simples, ses primitives peuvent être
formulées explicitement.

4.5.11 Exemple : Cherchons l’ensemble des primitives de la fonction réelle f donnée par
f(x) = 3x3+2

x3+x
, dans tout intervalle I de son domaine de définition, qui est R∗. À cet
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effet, écrivons f(x) sous la forme d’une somme d’un polynôme et d’éléments simples :

f(x) =
3 x3 + 2

x3 + x
=

3 x3 + 3 x− 3 x+ 2

x3 + x
=

3 x3 + 3 x

x3 + x
+

−3 x+ 2

x3 + x

=
3 (x3 + x)

x3 + x
+

−3 x+ 2

x3 + x
= 3 +

−3 x+ 2

x3 + x
= 3 +

−3 x+ 2

x (x2 + 1)

= 3 +
A

x
+
B x+ C

x2 + 1
,

où A, B et C sont des coefficients réels à déterminer. Ceux-ci s’obtiennent en mettant
au même dénominateur les deux fractions dans lesquelles ils apparaissent :

A

x
+
B x+ C

x2 + 1
=

A (x2 + 1) + (B x+ C) x

x (x2 + 1)
=

Ax2 + A+B x2 + C x

x3 + x

=
(A+B) x2 + C x+ A

x3 + x
,

et en comparant le numérateur de la fraction trouvée avec le numérateur de la frac-
tion −3x+2

x3+x
:







A+B = 0

C = −3

A = 2

⇔







B = −2

C = −3

A = 2

.

Ainsi :

f(x) = 3 +
2

x
+

−2 x− 3

x2 + 1
.

La fraction 2
x
est un élément simple de première espèce ; et la fraction −2x+3

x2+1
un élément

simple de troisième espèce. En se référant aux résultats obtenus dans la présente sous-
section, il vient :
∫

f(x) dx =

∫
3 x3 + 2

x3 + x
dx =

∫ (

3 +
2

x
+

−2 x− 3

x2 + 1

)

dx

=

∫

3 dx+

∫
2

x
dx+

∫ −2 x− 3

x2 + 1
dx

=

∫

3 dx+

∫
2

x
dx+

∫ ( −2 x

x2 + 1
+

−3

x2 + 1

)

dx

= 3

∫

dx+ 2

∫
1

x
dx−

∫
2 x

x2 + 1
dx− 3

∫
1

x2 + 1
dx

= 3 x+ 2 ln |x| − ln
∣
∣x2 + 1

∣
∣− 3Arctg(x) + C ,

où C ∈ R. Noter que les deux barres désignant la valeur absolue, dans l’expression
ln
∣
∣x2 + 1

∣
∣, peuvent être ôtées, vu que x2 + 1 > 0 quel que soit x ∈ Df = R∗.
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4.5.4 Intégration de certaines classes de fonctions

L’intérêt d’étudier en détail les primitives des fonctions rationnelles réside dans le fait que
nombre de problèmes d’intégration peuvent être ramenés à l’intégration d’une fonction
rationnelle. Diverses situations sont présentées dans la liste non exhaustive qui suit.

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

α
(
exp(x)

)k(
cosh(x)

)m(
sinh(x)

)n
, où k,m, n ∈ N et α ∈ R .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce au changement de variable :

x = ln(t) , avec t ∈ R∗
+ ,

une intégration de Ψ (dans I) se ramène à une intégration d’une fonction ration-
nelle R. Pour s’en convaincre, il suffit de noter que :

dx

dt
=

1

t
⇔ dx =

1

t
dt ,

exp(x) = exp
(
ln(t)

)
= t ,

et aussi que :

cosh(x) =
1

2

(
exp(x) + exp(−x)

)
=

1

2

(

exp(x) +
1

exp(x)

)

=
1

2

(

t +
1

t

)

=
t2 + 1

2 t
,

sinh(x) =
1

2

(
exp(x)− exp(−x)

)
=

1

2

(

exp(x)− 1

exp(x)

)

=
1

2

(

t− 1

t

)

=
t2 − 1

2 t
.

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

αxm
(√

a2 x2 + b2
)n
, où m,n ∈ N, a, b ∈ R∗

+ et α ∈ R .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce au changement de variable :

x =
b

a
sinh(t) , avec t ∈ R ,

une intégration de Ψ (dans I) se ramène à une intégration d’une fonction comme
celle donnée au point précédent, et donc en définitive à une intégration d’une
fonction rationnelle R. Pour s’en convaincre, il suffit de noter que :

dx

dt
=

b

a
cosh(t) ⇔ dx =

b

a
cosh(t) dt
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et, en tenant compte du fait que cosh2(t)− sinh2(t) = 1 :

√
a2 x2 + b2 =

√

a2
b2

a2
sinh2(t) + b2 =

√

b2 sinh2(t) + b2

=
√

b2
(
sinh2(t) + 1

)
=

√

b2 cosh2(t) = b cosh(t) .

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

αxm
(√

a2 x2 − b2
)n
, où m,n ∈ N, a, b ∈ R∗

+ et α ∈ R .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce à l’un ou l’autre des changements de variables suivants :

x =
b

a
cosh(t) ou x = − b

a
cosh(t) , avec t ∈ R ,

une intégration de Ψ (dans I) se ramène à une intégration d’une fonction comme
celle donnée au premier point, et donc en définitive à une intégration d’une fonc-
tion rationnelle R. Si x est positif (et supérieur à b

a
, de sorte que la racine soit

bien définie), c’est x = b
a
cosh(t) qu’il convient de considérer ; si x est négatif (et

inférieur à − b
a
, de sorte que la racine soit bien définie), c’est x = − b

a
cosh(t) qu’il

convient d’appliquer.

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

α
(
cos(x)

)m(
sin(x)

)n
, où m,n ∈ N et α ∈ R .

Grâce au changement de variable suivant, qui s’applique pour autant que les
bornes d’intégration soient comprises strictement entre −π et π :

x = 2Arctg(t) , avec t ∈ R ,

une intégration de Ψ se ramène à une intégration d’une fonction rationnelle R.
Pour s’en convaincre, il suffit de remarquer que :

dx

dt
=

2

1 + t2
⇔ dx =

2

1 + t2
dt ,

cos(x) =
1− tg2

(
x
2

)

1 + tg2
(
x
2

) =
1− tg2

(
Arctg(t)

)

1 + tg2
(
Arctg(t)

) =
1− t2

1 + t2
,

sin(x) =
2 tg
(
x
2

)

1 + tg2
(
x
2

) =
2 tg
(
Arctg(t)

)

1 + tg2
(
Arctg(t)

) =
2 t

1 + t2
.
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Noter que la relation entre cos(x) et tg
(
x
2

)
se déduit des identités trigonométriques

cos(x1 + x2) = cos(x1) cos(x2)− sin(x1) sin(x2) et cos
2(x1) + sin2(x1) = 1 :

cos(x) = cos
(x

2
+
x

2

)

= cos2
(x

2

)

− sin2
(x

2

)

= 2 cos2
(x

2

)

− 1

=
2
1

cos2(x
2
)

− 1 =
2

cos2(x
2
)+sin2(x

2
)

cos2(x
2
)

− 1 =
2

1 + tg2
(
x
2

) − 1

=
2−

[
1 + tg2

(
x
2

)]

1 + tg2
(
x
2

) =
1− tg2

(
x
2

)

1 + tg2
(
x
2

) ;

quant à la relation entre sin(x) et tg
(
x
2

)
, elle se déduit des identités sin(x1+x2) =

sin(x1) cos(x2) + cos(x1) sin(x2) et cos
2(x1) + sin2(x2) = 1 :

sin(x) = sin
(x

2
+
x

2

)

= sin
(x

2

)

cos
(x

2

)

+ cos
(x

2

)

sin
(x

2

)

= 2 sin
(x

2

)

cos
(x

2

)

= 2 tg
(x

2

)

cos2
(x

2

)

=
2 tg
(
x
2

)

1
cos2(x

2
)

=
2 tg
(
x
2

)

1 + tg2
(
x
2

) .

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

αxm
(√

b2 − a2 x2
)n
, où m,n ∈ N, a, b ∈ R∗

+ et α ∈ R .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce au changement de variable :

x =
b

a
sin(t)

(

ou également x =
b

a
cos(t)

)

, avec t ∈ R ,

une intégration de Ψ (dans I) se ramène à une intégration d’une fonction comme
celle donnée au point précédent, et donc en définitive à une intégration d’une
fonction rationnelle R. Pour s’en convaincre, il suffit de noter (dans le cas où
x = b

a
sin(t), par exemple) que :

dx

dt
=

b

a
cos(t) ⇔ dx =

b

a
cos(t) dt ,

et, en tenant compte de l’identité cos2(t) + sin2(t) = 1 :
√
b2 − a2 x2 =

√

b2 − a2
b2

a2
sin2(t) =

√

b2 − b2 sin2(t)

=
√

b2
(
1− sin2(t)

)
=
√

b2 cos2(t) = b cos(t) .

Noter que la racine n’est définie que si x est compris entre − b
a
et b

a
.
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• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

α
(
cos(x)

)2m(
sin(x)

)2n
,

i.e. de la forme :

α
(
cos2(x)

)m(
sin2(x)

)n
, où m,n ∈ N et α ∈ R .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce au changement de variable suivant, qui s’applique pour
autant que les bornes d’intégration soient comprises strictement entre −π

2
et π

2
:

x = Arctg(t) , avec t ∈ R ,

une intégration de Ψ (dans I) se ramène à une intégration d’une fonction ration-
nelle R. Pour s’en convaincre, il suffit de remarquer que :

dx

dt
=

1

1 + t2
⇔ dx =

1

1 + t2
dt ,

cos2(x) =
1

1 + tg2(x)
=

1

1 + t2
,

sin2(x) =
tg2(x)

1 + tg2(x)
=

t2

1 + t2
.

Noter que la relation entre cos2(x) et tg2(x) se déduit de l’identité trigonométrique
cos2(x) + sin2(x) = 1 :

cos2(x) =
1
1

cos2(x)

=
1

cos2(x)+sin2(x)
cos2(x)

=
1

1 + tg2(x)
;

il en est de même pour la relation entre sin2(x) et tg2(x) :

sin2(x) =
2
tg(x) cos2(x) =

2
tg(x)

1
1

cos2(x)

=
tg2(x)

1 + tg2(x)
.

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

αxk
(

µ
√
x
)m( ν

√
x
)n
, où k,m, n ∈ N, µ, ν ∈ Nr{0; 1} et α ∈ R .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce au changement de variable :

x = tκ , avec t ∈ R ,
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où κ est le plus petit multiple commun de µ et ν, une intégration de Ψ (dans I)
se ramène à une intégration d’une fonction rationnelle R. Pour s’en convaincre,
il suffit de remarquer que :

dx

dt
= κ tκ−1 ⇔ dx = κ tκ−1 dt ,

µ
√
x =

µ
√
tκ = t

κ
µ ,

ν
√
x =

ν
√
tκ = t

κ
ν .

Noter que la présente situation se généralise sans problème aux cas où il y a plus
de deux racines différentes.

• Soit Ψ (x) = Φ(x)
Λ(x)

, où Φ(x) et Λ(x) sont des expressions qui peuvent s’écrire
chacune comme une somme non nulle de termes de la forme :

αxk

(

µ

√

a x+ b

c x+ d

)m

, où k,m ∈ N, µ ∈ Nr{0; 1}, α ∈ R et a d− b c 6= 0 .

Dans tout intervalle I dans lequel Λ ne s’annule pas, Ψ est continue et par consé-
quent intégrable. Grâce au changement de variable :

x =
−d tµ + b

c tµ − a
, avec t ∈ R ,

une intégration de Ψ (dans I) se ramène à une intégration d’une fonction ration-
nelle R. La personne qui lit ces lignes peut s’en convaincre par elle-même, en
effectuant des calculs similaires à ceux présentés dans les points précédents.

4.5.12 Exemples : 1. Cherchons l’ensemble des primitives de la fonction donnée par
exp(x)

1+cosh(x)
, dans tout intervalle I de son domaine de définition, qui est R. À cet

effet, considérons le changement de variable x = ln(t), pour lequel exp(x) = t,
cosh(x) = t2+1

2 t
et dx = 1

t
dt. Avec un tel changement de variable, il vient :

∫
exp(x)

1 + cosh(x)
dx =

∫
t

1 + t2+1
2 t

1

t
dt =

∫
1

2 t+t2+1
2 t

dt =

∫
2 t

(t+ 1)2
dt

= 2

∫
t

(t + 1)2
dt = 2

∫
t + 1− 1

(t+ 1)2
dt

= 2

∫ (
t + 1

(t+ 1)2
− 1

(t+ 1)2

)

dt = 2

∫ (
1

t+ 1
− 1

(t+ 1)2

)

dt

= 2

∫
1

t + 1
dt + 2

∫

− 1

(t + 1)2
dt = 2 ln |t+ 1|+ 2 · 1

t+ 1
+ C

= 2 ln
∣
∣exp(x) + 1

∣
∣+

2

exp(x) + 1
+ C , où C ∈ R .
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Noter que les deux barres désignant la valeur absolue, dans le logarithme, peuvent
être ôtées ; et pour cause : l’expression exp(x) + 1 est strictement positive, quel
que soit x ∈ R.

2. Cherchons l’ensemble des primitives de la fonction cosécante (csc) dans tout inter-
valle I de son domaine de définition, qui est Rr{k π | k ∈ Z}. Comme csc(x) = 1

sin(x)
,

il convient d’appliquer le changement de variable x = 2Arctg(t), pour lequel
sin(x) = 2 t

1+t2
et dx = 2

1+t2
dt. Avec un tel changement de variable, il vient :

∫

csc(x) dx =

∫
1

sin(x)
dx =

∫
1
2 t

1+t2

2

1 + t2
dt =

∫
1

t
dt

= ln |t|+ C = ln
∣
∣
∣tg
(x

2

)∣
∣
∣+ C , où C ∈ R .

4.6 Intégrales généralisées

Jusqu’à présent, l’intégrale d’une fonction a été systématiquement considérée sur des
intervalles fermés et bornés. La présente section a pour objectif de généraliser le concept
d’intégrale à d’autres types d’intervalles : intervalles semi-ouverts, ouverts, bornés ou
non... Tous ces intervalles ont un point commun en matière d’intégration : ils donnent
lieu à un calcul de limite.

4.6.1 Intégrales généralisées sur un intervalle borné

Un intervalle borné, rappelons-le, est un intervalle de la forme [a; b], [a; b[ , ]a; b] ou
]a; b[ , a et b étant deux nombres réels tels que a < b.

4.6.1 Définition : • Soit f : D → R une fonction réelle, définie et continue dans un
intervalle semi-ouvert et borné [a; b[ , où a et b sont deux nombres réels tels que
a < b. On appelle intégrale généralisée de f entre a et b (ou intégrale généralisée
de f sur [a; b[ ) la quantité :

∫ b

a

f(x) dx = lim
s→b
s<b

∫ s

a

f(x) dx .

Si la limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale géné-
ralisée converge (ou est convergente) ; si la limite de l’intégrale n’existe pas ou
si elle est égale à ∞ ou à −∞, on dit que l’intégrale généralisée diverge (ou est
divergente).

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle semi-
ouvert et borné ]a; b], où a et b sont deux nombres réels tels que a < b. On
appelle intégrale généralisée de f entre a et b (ou intégrale généralisée de f sur
]a; b]) la quantité :

∫ b

a

f(x) dx = lim
r→a
r>a

∫ b

r

f(x) dx .
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Si la limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale géné-
ralisée converge (ou est convergente) ; si la limite de l’intégrale n’existe pas ou
si elle est égale à ∞ ou à −∞, on dit que l’intégrale généralisée diverge (ou est
divergente).

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle ouvert
et borné ]a; b[ , où a et b sont deux nombres réels tels que a < b. On appelle
intégrale généralisée de f entre a et b (ou intégrale généralisée de f sur ]a; b[ )
la quantité :

∫ b

a

f(x) dx = lim
r→a
r>a

lim
s→b
s<b

∫ s

r

f(x) dx .

Si la double limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale
généralisée converge (ou est convergente) ; si la double limite de l’intégrale n’existe
pas ou si elle est égale à ∞ ou à −∞, on dit que l’intégrale généralisée diverge
(ou est divergente).

4.6.2 Notation : Une intégrale généralisée sur un intervalle [a; b[ , ]a; b] ou ]a; b[ se note
de la même manière qu’une intégrale habituelle sur un intervalle [a; b] (a et b étant deux
nombres réels tels que a < b).

4.6.3 Propriétés : • Soit f : D → R une fonction réelle, définie et continue dans un
intervalle semi-ouvert et borné [a; b[ (respectivement ]a; b]), où a et b sont deux
nombres réels tels que a < b. Supposons que l’intégrale généralisée de f entre a
et b converge. Alors, quel que soit le nombre réel c ∈ [a; b[ (respectivement
c ∈ ]a; b]), l’intégrale généralisée de f entre c et b (respectivement entre a et c)
converge ; de plus :

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .

Prouvons ce résultat dans le cas de l’intervalle semi-ouvert et borné [a; b[ ; le cas
de l’intervalle semi-ouvert et borné ]a; b] se montrant de façon similaire. Pour
tout s ∈ [a; b[ :

∫ s

c

f(x) dx =

∫ s

a

f(x) dx−
∫ c

a

f(x) dx

ainsi, en passant à la limite :

lim
s→b
s<b

∫ s

c

f(x) dx = lim
s→b
s<b

(∫ s

a

f(x) dx−
∫ c

a

f(x) dx

)

= lim
s→b
s<b

∫ s

a

f(x) dx−
∫ c

a

f(x) dx ;
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Autrement écrit :
∫ b

c

f(x) dx =

∫ b

a

f(x) dx−
∫ c

a

f(x) dx ,

d’où le résultat.

• Dans la définition précédente, l’intégrale généralisée sur l’intervalle ouvert ]a; b[
(cf. troisième point de la définition 4.6.1) peut être redéfinie comme suit :

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

= lim
r→a
r>a

∫ c

r

f(x) dx+ lim
s→b
s<b

∫ s

c

f(x) dx ,

quel que soit c ∈ ]a; b[ . Cette écriture fait sens, dans la mesure où
∫ b

a
f(x) dx ne

dépend pas du nombre c ∈ ]a; b[ . Pour s’en convaincre, il suffit de prendre un

autre nombre réel d ∈ ]a; b[ et de développer l’expression
∫ b

a
f(x) dx, en tenant

compte du résultat établi au point précédent :

∫ b

a

f(x) dx = lim
r→a
r>a

∫ d

r

f(x) dx+ lim
s→b
s<b

∫ s

d

f(x) dx

= lim
r→a
r>a

∫ d

r

f(x) dx+

∫ c

d

f(x) dx+

∫ d

c

f(x) dx+ lim
s→b
s<b

∫ s

d

f(x) dx

= lim
r→a
r>a

∫ c

r

f(x) dx+ lim
s→b
s<b

∫ s

c

f(x) dx

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .

L’intégrale généralisée sur un intervalle ouvert et borné peut donc être vue comme
la somme de deux intégrales généralisées sur des intervalles semi-ouverts et bor-
nés. Toutes les propriétés des intégrales généralisées sur des intervalles ouverts
peuvent ainsi être déduites des propriétés des intégrales généralisées sur des in-
tervalles semi-ouverts et bornés.

• Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les deux définies et
continues dans un intervalle semi-ouvert [a; b[ (respectivement ]a; b]), où a et b
sont deux nombres réels tels que a < b. Supposons que l’intégrale généralisée de f
entre a et b converge, que l’intégrale généralisée de g entre a et b converge aussi,
et que f(x) 6 g(x) pour tout x ∈ [a; b[ (respectivement pour tout x ∈ ]a; b]).
Alors : ∫ b

a

f(x) dx 6

∫ b

a

g(x) dx .
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Ce résultat est une conséquence directe des propriétés de l’intégrale de Riemann
(cf. propriétés 4.3.5) et des propriétés de la limite d’une fonction.

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle semi-
ouvert et borné [a; b[ (respectivement ]a; b]), où a et b sont deux nombres réels
tels que a < b. Supposons que f(t) > 0 pour tout t ∈ [a; b[ (respectivement
t ∈ ]a; b]). Alors l’intégrale généralisée de f entre a et b converge si et seulement
si, pour tout x ∈ [a; b[ (respectivement x ∈ ]a; b]), il existe un nombre réelM > 0
tel que :

∫ x

a

f(t) dt 6 M

(

respectivement

∫ b

x

f(t) dt 6 M

)

.

Pour s’en convaincre, il suffit de traiter le cas où f : [a; b[ → R (le cas f :
]a; b] → R se prouvant de manière similaire). Soit F : [a; b[ → R la fonction
réelle donnée par F (x) =

∫ x

a
f(t) dt. La quantité f(t) étant supposée positive

pour tout t ∈ [a; b[ , la fonction F est croissante dans [a; b[ ; en effet, quels que
soient x1, x2 ∈ [a; b[ tels que x1 < x2 :

F (x1) =

∫ x1

a

f(t) dt 6

∫ x1

a

f(t) dt+

∫ x2

x1

f(t) dt =

∫ x2

a

f(t) dt = F (x2) ,

du fait que
∫ x2

x1
f(t) dt > 0. Supposons à présent qu’il existe, pour tout x ∈ [a; b[ ,

un nombre réel M > 0 tel que F (x) =
∫ x

a
f(t) dt 6 M . Une telle hypothèse

implique qu’il existe un plus petit nombre réel ℓ > 0 tel que
∫ x

a
f(t) dt 6 ℓ,

quel que soit x ∈ [a; b[ . Or, ce nombre ℓ n’est rien d’autre que la limite de F
lorsque x tend vers b par valeurs plus petites ; en effet, par définition même
de ℓ, il existe, pour tout nombre réel ε > 0, un nombre réel c ∈ [a; b[ tel que
ℓ−ε 6 F (c) 6 ℓ ; et comme F est croissante dans [a; b[ , et donc dans [c; b[ , alors
ℓ − ε 6 F (x) 6 ℓ pour tout x ∈ [c; b[ . L’intégrale généralisée de f entre a et b
converge donc. Supposons maintenant qu’il n’existe aucun nombre réel M > 0
tel que F (x) =

∫ x

a
f(t) dt 6 M , quel que soit x ∈ [a; b[ . Une telle hypothèse

implique qu’il existe, pour tout nombre réel υ > 0, un nombre réel c ∈ [a; b[ tel
que F (c) > υ. Et comme F est croissante dans [a; b[ , et donc dans [c; b[ , alors
F (x) > υ pour tout x ∈ [c; b[ . L’intégrale généralisée de f entre a et b diverge
donc.

• Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les deux définies
et continues dans un intervalle semi-ouvert [a; b[ (respectivement ]a; b]), où a
et b sont deux nombres réels tels que a < b. Supposons que l’intégrale généralisée
de f entre a et b converge et que l’intégrale généralisée de g entre a et b converge
aussi. Alors :

⋄ quel que soit le nombre réel α, l’intégrale généralisée de la fonction αf entre a
et b converge, et :

∫ b

a

(
αf
)
(x) dx =

∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx ;
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⋄ l’intégrale généralisée de la fonction f + g entre a et b converge, et :

∫ b

a

(
f + g

)
(x) dx =

∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx .

Ces résultats sont des conséquences directes des propriétés de l’intégrale de Rie-
mann (cf. propriétés 4.3.5) et des propriétés de la limite d’une fonction. En vertu
de ce qui a été établi dans les points précédents, ils sont également valables dans
le cas d’intégrales généralisées sur un intervalle ouvert ]a; b[ .

4.6.4 Remarque : Lors du calcul de l’intégrale généralisée entre a et b d’une fonction
f : D → R définie et continue dans l’intervalle semi-ouvert [a; b[ (respectivement dans
]a; b]), où a et b sont deux nombres réels tels que a < b, trois scénarios peuvent survenir :

• la limite de f lorsque x tend vers b par valeurs plus petites (respectivement
lorsque x tend vers a par valeurs plus grandes) existe et est égale à un nombre
réel ℓ ;

• la limite de f lorsque x tend vers b par valeurs plus petites (respectivement
lorsque x tend vers a par valeurs plus grandes) vaut ∞ ou −∞ ;

• la limite de f lorsque x tend vers b par valeurs plus petites (respectivement
lorsque x tend vers a par valeurs plus grandes) n’existe pas.

Si l’intégrale généralisée converge systématiquement dans la première situation (cela sera
prouvé par la suite), elle peut aussi bien converger que diverger dans les deux autres
situations ; cela dépend du type de fonction à intégrer.

4.6.5 Exemples : 1. L’intégrale généralisée entre 0 et 1 de la fonction
f : Rr{1} → R, donnée par f(x) = x2−1

x−1
, converge ; en effet :

∫ 1

0

x2 − 1

x− 1
dx = lim

s→1
s<1

∫ s

0

x2 − 1

x− 1
dx = lim

s→1
s<1

∫ s

0

(x− 1)(x+ 1)

x− 1
dx

= lim
s→1
s<1

∫ s

0

(x+ 1) dx = lim
s→1
s<1

[
1

2
x2 + x

]s

0

= lim
s→1
s<1

[(
1

2
s2 + s

)

−
(
1

2
· 02 + 0

)]

=
3

2
.

1
x

y

0

1

Noter que la fonction f tend vers 2 lorsque x tend vers 1 par valeurs plus petites.
Il n’est donc pas étonnant que l’intégrale généralisée converge.

2. L’intégrale généralisée entre 0 et 4 de la fonction f : R∗
+ → R, donnée par f(x) =

1√
x
, converge ; en effet :

∫ 4

0

1√
x
dx = lim

r→0
r>0

∫ 4

r

1√
x
dx = lim

r→0
r>0

2
√
x
∣
∣
∣

4

r
= lim

r→0
r>0

(

2
√
4− 2

√
r
)

= 4 .
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La valeur obtenue correspond à l’aire de la surface S,
dans le plan euclidien R2 (muni de son système de coor-
données cartésiennes canonique Oxy), délimitée par la
courbe d’équation y = f(x), la droite horizontale d’équa-
tion y = 0 et les deux droites verticales d’équations x = 0
et x = 4. Le fait que f possède une asymptote verticale 1 4

x

y

0

1

d’équation x = 0 montre que S s’étend jusqu’à l’infini. Cela étant, son aire n’est
pas infinie. Le présent exemple montre donc qu’une surface s’étendant à l’infini
peut avoir une aire finie.

3. L’intégrale généralisée entre −1 et 2 de la fonction f : Rr{2} → R, donnée par
f(x) = 1

(x−2)2
, diverge ; en effet :

∫ 2

−1

1

(x− 2)2
dx = lim

s→2
s<2

∫ s

−1

1

(x− 2)2
dx = lim

s→2
s<2

[

− 1

x− 2

]s

−1

= lim
s→2
s<2

[(

− 1

s− 2

)

−
(

− 1

−1− 2

)]

= − lim
s→2
s<2

1

s− 2
− 1

3
= ∞ .

Cette intégrale généralisée correspond à l’aire de la sur-
face S, dans le plan euclidien R2 (muni de son système de
coordonnées cartésiennes canonique Oxy), délimitée par la
courbe d’équation y = f(x), la droite horizontale d’équation
y = 0 et les deux droites verticales d’équations x = −1 et −1 1 2

x

y

0

1

x = 2. Le fait que f possède une asymptote verticale d’équation x = 2 montre
que S s’étend jusqu’à l’infini ; et son aire n’est pas finie. Le présent exemple montre
donc qu’une surface s’étendant à l’infini peut avoir une aire infinie.

4. L’intégrale généralisée entre 0 et 2
π
de la fonction f : R∗ → R, donnée par f(x) =

2 x sin
(
1
x

)
− cos

(
1
x

)
(cf. deuxième point des remarques 3.2.11), converge ; en effet :

∫ 2
π

0

[

2 x sin

(
1

x

)

− cos

(
1

x

)]

dx = lim
r→0
r>0

∫ 2
π

r

[

2 x sin

(
1

x

)

− cos

(
1

x

)]

dx

= lim
r→0
r>0

[

x2 sin

(
1

x

)]2
π

r

= lim
r→0
r>0

[(
2

π

)2

sin
(π

2

)

− r2 sin

(
1

r

)]

=

(
2

π

)2

− 0 =
4

π2
,
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du fait que −r2 6 r2 sin
(
1
r

)
6 r2, et que −r2 et r2 tendent tous les deux vers 0

lorsque r tend vers 0 par valeurs plus grandes (cf. théorème des deux gendarmes).
Noter que f(x) ne tend vers aucun nombre réel lorsque x
tend vers 0 par valeurs plus grandes. Cet exemple
montre donc que l’intégrale généralisée entre a et b
d’une fonction f définie et continue dans [a; b[ (res-
pectivement ]a; b]), a et b étant deux nombres réels tels
que a < b, peut converger quand bien même f n’ad-
met aucune limite à droite en a (respectivement aucune
limite à gauche en b).

2
π

x

y

1

1

−1

−1

5. L’intégrale généralisée entre − 1
π
et 0 de la fonction f : R∗ → R, donnée par f(x) =

1
x2 sin

(
1
x

)
diverge ; en effet :

∫ 0

− 1
π

1

x2
sin

(
1

x

)

dx = lim
s→0
s<0

∫ s

− 1
π

1

x2
sin

(
1

x

)

dx = lim
s→0
s<0

cos

(
1

x

)∣
∣
∣
∣

s

− 1
π

= lim
s→0
s<0

[

cos

(
1

s

)

− cos(−π)
]

= lim
s→0
s<0

cos

(
1

s

)

+ 1 ;

or, cos
(
1
s

)
n’admet aucune limite lorsque s tend vers 0 par valeurs plus petites.

Noter que f(x) ne tend vers aucun nombre réel lorsque x tend vers 0 par valeurs
plus petites. Cet exemple montre donc que l’intégrale généralisée entre a et b d’une
fonction f définie et continue dans l’intervalle semi-ouvert [a; b[ (respectivement
]a; b]), a et b étant deux nombres réels tels que a < b, peut diverger lorsque f
n’admet aucune limite à droite en a (respectivement aucune limite à gauche en b).

Dans la précédente section, consacrée aux méthodes d’intégration, on a pu se rendre
compte de la difficulté qu’il peut y avoir à exhiber concrètement une primitive d’une
fonction donnée. Le proposition qui suit montre qu’il est possible, dans certaines situa-
tions, de dire si une intégrale généralisée converge ou non, sans devoir expliciter une
primitive de la fonction dont on cherche l’intégrale.

4.6.6 Proposition : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies et continues dans un intervalle semi-ouvert [a; b[ (respectivement ]a; b]),
où a et b sont deux nombres réels tels que a < b. Supposons qu’il existe un nombre
réel c ∈ [a; b[ (respectivement c ∈ ]a; b]) tel que 0 6 f(x) 6 g(x) pour tout x ∈ [c; b[
(respectivement x ∈ ]a; c]).

• Si l’intégrale généralisée de g entre a et b converge, alors
l’intégrale généralisée de f entre a et b converge.

• Si l’intégrale généralisée de f entre a et b diverge, alors
l’intégrale généralisée de g entre a et b diverge.

x

y

O a b

g

f

c

Ce résultat est connu sous le nom de critère de comparaison

relatif aux intégrales généralisées sur un intervalle semi-ouvert et
borné.
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Preuve : Soient f et g deux fonctions réelles, définies et continues dans un intervalle
semi-ouvert [a; b[ , a et b étant deux nombres réels tels que a < b. Supposons qu’il existe
un nombre réel c ∈ [a; b[ (respectivement c ∈ ]a; b]) tel que 0 6 f(x) 6 g(x) pour tout
x ∈ [c; b[ .

• Si l’intégrale généralisée de g entre a et b converge, alors l’intégrale généralisée
de g entre c et b converge, vu que

∫ b

a
g(t) dt =

∫ c

a
g(t) dt +

∫ b

c
g(t) dt. Selon le

quatrième point des propriétés 4.6.3, il existe donc un nombre réel M > 0 tel
que

∫ x

c
g(t) dt 6M pour tout x ∈ [c; b[ . Ainsi, comme 0 6 f(t) 6 g(t) pour tout

t ∈ [c; b[ , alors, pour tout x ∈ [c; b[ :

∫ x

c

f(t) dt 6

∫ x

c

g(t) dt 6 M .

L’intégrale généralisée de f entre c et b converge donc. Et comme :

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt ,

alors l’intégrale généralisée de f entre a et b converge également.

• Si l’intégrale généralisée de f entre a et b diverge, alors l’intégrale généralisée
de f entre c et b diverge, vu que

∫ b

a
f(t) dt =

∫ c

a
f(t) dt +

∫ b

c
f(t) dt. Selon le

quatrième point des propriétés 4.6.3, il existe donc, pour tout nombre réel υ > 0,
un nombre réel c̃ ∈ [c; b[ tel que

∫ x

c
f(t) dt > υ pour tout x ∈ [c̃; b[ . Ainsi, comme

0 6 f(t) 6 g(t) pour tout t ∈ [c; b[ , alors, pour tout x ∈ [c̃; b[ :

∫ x

c

g(t) dt >

∫ x

c

f(t) dt > υ .

L’intégrale généralisée de g entre c et b diverge donc. Et comme :

∫ b

a

g(t) dt =

∫ c

a

g(t) dt+

∫ b

c

g(t) dt ,

alors l’intégrale généralisée de g entre a et b diverge également.

Un raisonnement similaire s’applique dans le cas où f et g sont définies et continues
dans un intervalle semi-ouvert ]a; b]. �

4.6.7 Exemples : 1. L’intégrale généralisée entre 0 et 4 de la fonction f : R∗
+ → R,

donnée par :

f(x) =
cos(x)√

x
,

converge. Pour s’en convaincre, il suffit de remarquer que l’intégrale généralisée
entre 0 et 4 de la fonction g : R∗

+ → R, donnée par g(x) = 1√
x
, converge, et que

0 6 f(x) 6 g(x) pour tout x ∈
]
0 ; π

2

]
. Le critère de comparaison permet alors de

conclure.
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2. L’intégrale généralisée entre 0 et 2 de la fonction g : Rr{2} → R, donnée par :

g(x) =
exp(x)

(x− 2)2
,

diverge. Pour s’en convaincre, il suffit de remarquer que l’intégrale généralisée
entre 0 et 2 de la fonction f : Rr {2} → R, donnée par f(x) = 1

(x−2)2
, diverge, et

que 0 6 f(x) 6 g(x) pour tout x ∈ [0; 2[ . Le critère de comparaison permet alors
de conclure.

4.6.8 Remarques : • Les conclusions du critère de comparaison, évoqué précédem-
ment, demeurent valables si, dans l’énoncé, la condition 0 6 f(x) 6 g(x) pour
tout x ∈ [c; b[ (respectivement x ∈ ]a; c]) est remplacée par l’hypothèse 0 >
f(x) > g(x) pour tout x ∈ [c; b[ (respectivement x ∈ ]a; c]). Pour s’en convaincre,
il suffit de multiplier la double inéquation 0 > f(x) > g(x) par −1, de manière
à obtenir 0 6 −f(x) 6 −g(x), puis de reprendre la preuve du critère avec les
fonctions −f et −g.

• Du critère de comparaison, évoqué précédemment, peut être déduit un autre
critère de convergence dont l’énoncé est donné dans le corollaire suivant.

4.6.9 Corollaire : Soit f : D → R une fonction réelle, définie et continue dans un inter-
valle semi-ouvert et borné [a; b[ (respectivement ]a; b]), où a et b sont deux nombres
réels tels que a < b. Supposons qu’il existe un nombre réel α pour lequel :

lim
x→b
x<b

(b− x)αf(x) = ℓ 6= 0

(

respectivement lim
x→a
x>a

(x− a)αf(x) = ℓ 6= 0

)

,

où ℓ est un nombre réel non nul. Alors l’intégrale généralisée de f entre a et b :

• converge si α < 1,

• diverge si α > 1.

Preuve : Traitons le cas d’une fonction réelle f définie et continue dans un intervalle
[a; b[ , a et b étant deux nombres réels tels que a < b, pour laquelle :

lim
x→b
x<b

(b− x)αf(x) = ℓ > 0

(les autres cas se traitant de manière similaire). Dire que (b − x)αf(x) tend vers un
nombre réel ℓ > 0 lorsque x tend vers b par valeurs plus petites revient à dire qu’il
existe, pour tout nombre réel ε > 0, un nombre réel c ∈ [a; b[ tel que :

∣
∣(b− x)αf(x)− ℓ

∣
∣ 6 ε ⇔ ℓ− ε 6 (b− x)αf(x) 6 ℓ+ ε

pour tout x ∈ [c; b[ . En particulier, pour tout nombre réel ε̃ tel que 0 < ε̃ < ℓ, il existe
c̃ ∈ [a; b[ tel que :

ℓ− ε̃ 6 (b− x)αf(x) 6 ℓ+ ε̃
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pour tout x ∈ [c̃; b[ . Par conséquent :

0 6
ℓ− ε̃

(b− x)α
6 f(x) 6

ℓ+ ε̃

(b− x)α

pour tout x ∈ [c̃; b[ . Or, l’intégrale généralisée entre a et b de la fonction donnée par
ℓ−ε̃

(b−x)α
converge si α < 1 et diverge si α > 1 ; en effet, pour tout α ∈ Rr {1} :

∫ b

a

ℓ− ε̃

(b− x)α
dx = lim

s→b
s<b

∫ s

a

ℓ− ε̃

(b− x)α
dx = lim

s→b
s<b

∫ s

a

(ℓ− ε̃)(b− x)−α dx

= lim
s→b
s<b

(ℓ− ε̃)
(b− x)1−α

1− α

∣
∣
∣
∣

s

a

= lim
s→b
s<b

ℓ− ε̃

1− α

(
(b− s)1−α − (b− a)1−α

)

converge si α < 1 et diverge si α > 1 ; et lorsque α = 1 :

∫ b

a

ℓ− ε̃

b− x
dx = lim

s→b
s<b

∫ s

a

ℓ− ε̃

b− x
dx = lim

s→b
s<b

[

−(ℓ− ε̃) ln |b− x|
]s

a

= lim
s→b
s<b

(ℓ− ε̃)
(
ln(b− a)− ln(b− s)

)

diverge. Il en est de même pour la fonction donnée par ℓ+ε̃
(b−x)α

. Donc, selon le critère de
comparaison, l’intégrale généralisée de f entre a et b converge si α < 1 et diverge si
α > 1. �

Le premier des exemples 4.6.5 a mis en évidence une fonction définie dans Rr{1},
qui admet une limite lorsque x tend vers 1, et dont l’intégrale généralisée entre 0 et 1
converge. Le fait que l’intégrale converge n’est pas un hasard ; il est une conséquence
directe du fait que la fonction admet pour limite un certain nombre réel lorsque x tend
vers 1 par valeurs plus petites. Le résultat qui suit le montre.

4.6.10 Lemme : Soit f : D → R une fonction réelle, définie et continue dans un intervalle
semi-ouvert et borné [a; b[ (respectivement ]a; b]), où a et b sont deux nombres réels
tels que a < b. Supposons que :

lim
x→b
x<b

f(x) = ℓ

(

respectivement lim
x→a
x>a

f(x) = ℓ

)

,

où ℓ est un nombre réel. Alors l’intégrale généralisée de f entre a et b converge. De plus :

∫ b

a

f(x) dx =

∫ b

a

f̄(x) dx ,
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où f̄ : [a; b] → R est la fonction donnée par :

f̄(x) =

{

f(x) si x ∈ [a; b[

lim
u→b
u<b

f(u) si x = b



respectivement f̄(x) =







lim
u→a
u>a

f(u) si x = a

f(x) si x ∈ ]a; b]



 .

Preuve : Soit f une fonction réelle, définie et continue dans un intervalle semi-ouvert
et borné [a; b[ , a et b étant deux nombres réels tels que a < b, qui admet pour limite
un certain nombre réel ℓ lorsque x tend vers b par valeurs plus petites. Soit aussi f̄ la
fonction donnée par :

f̄(x) =







f(x) si x ∈ [a; b[

lim
u→b
u<b

f(u) si x = b

Alors, pour tout s ∈ [a; b[ :

0 =

∫ s

a

(
f̄ − f

)
(x) dx =

∫ s

a

(
f̄(x)− f(x)

)
dx =

∫ s

a

f̄(x) dx−
∫ s

a

f(x) dx .

Ainsi, en passant à la limite :

0 = lim
s→b
s<b

∫ s

a

(
f̄ − f

)
(x) dx = lim

s→b
s<b

∫ s

a

(
f̄(x)− f(x)

)
dx

= lim
s→b
s<b

∫ s

a

f̄(x) dx− lim
s→b
s<b

∫ s

a

f(x) dx ,

d’où :

lim
s→b
s<b

∫ s

a

f̄(x) dx = lim
s→b
s<b

∫ s

a

f(x) dx ;

autrement écrit : ∫ b

a

f̄(x) dx =

∫ b

a

f(x) dx ;

l’intégrale généralisée de f entre a et b converge donc. Un raisonnement similaire s’ap-
plique dans le cas d’une fonction f définie et continue dans un intervalle ]a; b], qui
admet pour limite un certain nombre réel ℓ lorsque x tend vers a par valeurs plus
grandes. �

4.6.2 Intégrales de fonctions continues par morceaux

4.6.11 Définition : Soient f : D → R une fonction réelle et [a; b] un intervalle fermé,
a et b étant deux nombres réels tels que a < b. La fonction f est dite continue par
morceaux dans [a; b] s’il existe un nombre fini n+1 d’éléments a0, a1, . . . , an dans [a; b],
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satisfaisant les conditions suivantes :

• a0 = a, an = b et ak−1 < ak pour tout k = 1, . . . , n,

• f est définie et continue dans chaque intervalle
ouvert ]ak−1 ; ak[ , k = 1, . . . , n ; en outre :

lim
x→ak−1
x>ak−1

f(x) = ℓ1,k et lim
x→ak
x<ak

f(x) = ℓ2,k ,

où ℓ1,k et ℓ2,k sont des nombres réels, quel que
soit k = 1, . . . , n.

x

y

O a a1 an−1 b

4.6.12 Remarques : • Dire qu’une fonction réelle f est continue par morceaux dans
un intervalle [a; b] revient à dire que f possède un nombre fini de discontinuités
dans [a; b] et que ces discontinuités ne peuvent être que de types trou, trou-saut
ou saut.

• La remarque précédente met en évidence le fait qu’une fonction réelle, continue
par morceaux dans un intervalle [a; b], peut très bien ne pas être définie en l’un
ou l’autre point de [a; b] ; par exemple, si f possède une discontinuité de type
trou en un certain point c ∈ [a; b], alors f n’est pas définie en c.

• Toute fonction réelle, continue dans un intervalle [a; b], où a et b sont deux
nombres réels tels que a < b, est continue par morceaux dans [a; b]. La réci-
proque n’est évidemment pas nécessairement vraie.

4.6.13 Définition : Soit f : D → R une fonction réelle, continue par morceaux dans un
intervalle fermé [a; b], où a et b sont deux nombres réels tels que a < b. On appelle
intégrale (de Riemann) de f entre a et b la somme :

n∑

k=1

∫ ak

ak−1

f(x) dx ,

où : ∫ ak

ak−1

f(x) dx = lim
rk−1→ak−1
rk−1>ak−1

lim
sk→ak
sk<ak

∫ sk

rk−1

f(x) dx ,

pour tout k = 1, . . . , n. On note cette intégrale
∫ b

a
f(x) dx, de la même manière que

l’intégrale d’une fonction continue dans [a; b]. Ainsi :

∫ b

a

f(x) dx =

n∑

k=1

∫ ak

ak−1

f(x) dx .

4.6.14 Remarques : • Le dernier lemme énoncé dans la sous-section précédente
garantit que l’intégrale généralisée de f entre ak−1 et ak, donnée dans la définition
précédente, existe quel que soit k = 1, . . . , n. La définition précédente fait donc
pleinement sens.
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• On vérifie sans peine que les propriétés 4.1.10 et 4.3.5, relatives aux fonctions
continues dans un intervalle [a; b], demeurent valables dans le cas de fonctions
continues par morceaux dans [a; b].

4.6.15 Exemple : Calculons l’intégrale entre 0 et 3 de la fonction
partie entière E : R → R. À cet effet, commençons par rappeler
la définition de cette fonction : E(x) = n, où n est le nombre
entier tel que x − 1 < n 6 x. Notons alors que E est continue
par morceaux dans tout intervalle fermé [a; b] ⊂ R, où a et b sont
deux nombres réels tels que a < b. Ainsi :

1 2 3
x

y

0

1

2

3

∫ 3

0

E(x) dx =

∫ 1

0

E(x) dx+

∫ 2

1

E(x) dx+

∫ 3

2

E(x) dx

= lim
r0→0
r0>0

lim
s1→1
s1<1

∫ s1

r0

0 dx+ lim
r1→1
r1>1

lim
s2→2
s2<2

∫ s2

r1

1 dx+ lim
r2→2
r2>2

lim
s3→3
s3<3

∫ s3

r2

2 dx

= lim
r0→0
r0>0

lim
s1→1
s1<1

0
∣
∣
∣

s1

r0
+ lim

r1→1
r1>1

lim
s2→2
s2<2

x
∣
∣
∣

s2

r1
+ lim

r2→2
r2>2

lim
s3→3
s3<3

2 x
∣
∣
∣

s3

r2

= lim
r0→0
r0>0

lim
s1→1
s1<1

0 + lim
r1→1
r1>1

lim
s2→2
s2<2

(s2 − r1) + lim
r2→2
r2>2

lim
s3→3
s3<3

2 (s3 − r2)

= 0 + (2− 1) + 2 (3− 2) = 0 + 1 + 2 = 3 .

4.6.16 Remarque : Soit f : D → R (où D ⊂ R) une fonction réelle, définie et continue
dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels que a < b.

• Quelle que soit la subdivision σn = (a0; a1; . . . ; an) de [a; b] (où a0 = a et
an = b), la somme de Darboux inférieure Sσn de f associée à σn peut être vue
comme l’intégrale entre a et b d’une fonction g1, qui est continue par morceaux
dans [a; b] et qui a la propriété d’être constante dans chaque intervalle ]ak−1 ; ak[ ,
où k = 1, . . . , n. Par définition de Sσn , g1(x) 6 f(x) pour tout x ∈ [a; b]. Par
conséquent :

Sσn =

∫ b

a

g1(x) dx 6

∫ b

a

f(x) dx .

• Quelle que soit la subdivision σn = (a0; a1; . . . ; an) de [a; b] (où a0 = a et
an = b), la somme de Darboux supérieure Sσn de f associée à σn peut être vue
comme l’intégrale entre a et b d’une fonction g2, qui est continue par morceaux
dans [a; b] et qui a la propriété d’être constante dans chaque intervalle ]ak−1 ; ak[ ,
où k = 1, . . . , n. Par définition de Sσn , g2(x) > f(x) pour tout x ∈ [a; b]. Par
conséquent :

Sσn =

∫ b

a

g2(x) dx >

∫ b

a

f(x) dx .
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4.6.17 Proposition : Soit f : D → R (où D ⊂ R) une fonction réelle, continue par
morceaux dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels que
a < b.

• La grandeur A, donnée par :

A(x) =

∫ x

a

f(t) dt ,

est une fonction à valeurs réelles, définie dans l’intervalle [a; b].

• La fonction A : [a; b] → R, définie au point précédent, est continue dans [a; b].
De plus, A est dérivable en tout élément x0 ∈ ]a; b[ où f est continue ; en outre,
en un tel élément x0, A

′(x0) = f(x0).

Preuve : Soit f : D → R (où D ⊂ R) une fonction réelle, continue par morceaux dans
un intervalle fermé [a; b], où a et b sont deux nombres réels tels que a < b. Soit aussi la
grandeur A, donnée par :

A(x) =

∫ x

a

f(t) dt .

Le fait que f est continue par morceaux dans [a; b] implique l’existence d’un nombre
fini n + 1 d’éléments a0, a1, . . . , an dans [a; b], satisfaisant a0 = a, an = b et ak−1 < ak
pour tout k = 1, . . . , n, tels que f est définie et continue dans ]ak−1 ; ak[ , k = 1, . . . , n.
Pour tout x ∈ [a; b], il existe donc un nombre entier m tel que 1 6 m 6 n − 1, pour
lequel :

A(x) =

m−1∑

k=1

∫ ak

ak−1

f(t) dt+

∫ x

am−1

f(t) dt .

• De la propriété d’unicité de la limite d’une fonction, ainsi que de la définition
même de l’intégrale généralisée d’une fonction sur un intervalle semi-ouvert et
borné, ou ouvert et borné, on déduit que, pour chaque x ∈ [a; b], A prend une
et une unique valeur réelle. A peut donc être vue comme une fonction à valeurs
réelles ; elle est définie dans [a; b], vu que A(x) existe pour tout x ∈ [a; b].

• Considérons la dernière expression de A(x) obtenue ci-dessus. En se référant à
la proposition 4.2.6 et au lemme 4.6.10, et en se souvenant que la dérivée d’une
constante est nulle, on peut écrire, pour tout x ∈ ]am−1 ; am[ :

A′(x) =
d

dx

[
m−1∑

k=1

∫ ak

ak−1

f(t) dt+

∫ x

am−1

f(t) dt

]

=
d

dx

m−1∑

k=1

∫ ak

ak−1

f(t) dt+
d

dx

∫ x

am−1

f(t) dt

= 0 + f(x) .

Le fait que le calcul est valable pour tout m = 1, . . . , n−1 permet d’affirmer que
A′(x0) = f(x0) pour tout x0 ∈ ]a; b[ où f est continue. A est donc dérivable en
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tout x0 ∈ ]a; b[ où f est continue. Par conséquent, A est continue en tout x0 ∈
]a; b[ où f est continue. Montrons, pour terminer, que A est continue également
en tout x0 ∈ {a0; a1; . . . ; an}. À cet effet, considérons x0 = am, où m est un
certain nombre entier compris entre 1 et n − 1 (1 6 m 6 n − 1). En se référant
aux différentes propriétés de l’intégrale, ainsi qu’à celles de l’intégrale généralisée
sur un intervalle borné (ouvert ou semi-ouvert), on peut écrire, d’une part :

lim
x→x0
x<x0

A(x) = lim
x→x0
x<x0

[
m−1∑

k=1

∫ ak

ak−1

f(t) dt+

∫ x

am−1

f(t) dt

]

=

m−1∑

k=1

∫ ak

ak−1

f(t) dt+

∫ am

am−1

f(t) dt =

m∑

k=1

∫ ak

ak−1

f(t) dt ,

et d’autre part :

lim
x→x0
x>x0

A(x) = lim
x→x0
x>x0

[
m∑

k=1

∫ ak

ak−1

f(t) dt+

∫ x

am

f(t) dt

]

=

m∑

k=1

∫ ak

ak−1

f(t) dt+

∫ am

am

f(t) dt =

m∑

k=1

∫ ak

ak−1

f(t) dt+ 0 .

Les deux limites sont égales ; en outre, elles existent et ne sont pas infinies, vu
que f est continue par morceaux dans [a; b]. A est donc continue en x0 = am.
Le fait que le raisonnement est valable pour tout m = 1, . . . , n− 1 permet alors
d’affirmer que A est continue en tout x0 ∈ {a1; . . . ; an−1}. Noter enfin que A
est évidemment continue à droite en a0 = a et continue à gauche en an = b (cf.
proposition 4.2.6). En résumé, A est continue dans [a; b]. �

4.6.3 Intégrales généralisées sur un intervalle non borné

4.6.18 Définition : • Soit f : D → R une fonction réelle, définie et continue dans
un intervalle fermé et non borné [a; ∞[ , où a est un nombre réel. On appelle
intégrale généralisée de f entre a et ∞ (ou intégrale généralisée de f sur [a; ∞[ )
la quantité :

∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx .

Si la limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale géné-
ralisée converge (ou est convergente) ; si la limite de l’intégrale n’existe pas ou
si elle est égale à ∞, ou à −∞, on dit que l’intégrale généralisée diverge (ou est
divergente).

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle fermé
et non borné ]−∞; b], où b est un nombre réel. On appelle intégrale généralisée
de f entre −∞ et b (ou intégrale généralisée de f sur ]−∞; b]) la quantité :

∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx .
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Si la limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale géné-
ralisée converge (ou est convergente) ; si la limite de l’intégrale n’existe pas ou
si elle est égale à ∞, ou à −∞, on dit que l’intégrale généralisée diverge (ou est
divergente).

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle ouvert
et non borné ]a; ∞[ , où a est un nombre réel. On appelle intégrale généralisée
de f entre a et ∞ (ou intégrale généralisée de f sur ]a; ∞[ ) la quantité :

∫ ∞

a

f(x) dx = lim
r→a
r>a

lim
b→∞

∫ b

r

f(x) dx .

Si la double limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale
généralisée converge (ou est convergente) ; si la double limite de l’intégrale n’existe
pas ou si elle est égale à ∞, ou à −∞, on dit que l’intégrale généralisée diverge
(ou est divergente).

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle ouvert
et non borné ]−∞; b[ , où b est un nombre réel. On appelle intégrale généralisée
de f entre −∞ et b (ou intégrale généralisée de f sur ]−∞; b[ ) la quantité :

∫ b

−∞
f(x) dx = lim

a→−∞
lim
s→b
s<b

∫ s

a

f(x) dx .

Si la double limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale
généralisée converge (ou est convergente) ; si la double limite de l’intégrale n’existe
pas ou si elle est égale à ∞, ou à −∞, on dit que l’intégrale généralisée diverge
(ou est divergente).

• Soit f : R → R une fonction continue dans tout R. On appelle intégrale généralisée
de f entre −∞ et ∞ (ou intégrale généralisée de f sur ]−∞; ∞[ ou encore
intégrale généralisée de f sur R) la quantité :

∫ ∞

−∞
f(x) dx = lim

a→−∞
lim
b→∞

∫ b

a

f(x) dx .

Si la double limite de l’intégrale est égale à un nombre réel, on dit que l’intégrale
généralisée converge (ou est convergente) ; si la double limite de l’intégrale n’existe
pas ou si elle est égale à ∞, ou à −∞, on dit que l’intégrale généralisée diverge
(ou est divergente).

4.6.19 Notation : L’intégrale généralisée de f entre −∞ et∞, évoquée dans la définition
précédente, peut aussi se noter : ∫

R

f(x) dx .

4.6.20 Propriétés : Les intégrales généralisées sur un intervalle non borné possèdent des
propriétés similaires à celles des intégrales généralisées sur un intervalle borné. Ces pro-
priétés ne sont pas exposées ici, car elles sont, en fait, données implicitement dans les
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propriétés 4.6.3 : si l’on remplace b par ∞ (respectivement a par −∞) dans les proprié-
tés 4.6.3, on obtient, en effet, les propriétés relatives aux intégrales généralisées sur un
intervalle non borné. Relevons simplement que les trois dernières intégrales généralisées
de la définition précédente peuvent être récrites comme suit :

∫ ∞

a

f(x) dx = lim
r→a
r>a

∫ c

r

f(x) dx+ lim
b→∞

∫ b

c

f(x) dx ,

où c ∈ ]a; ∞[ ,

∫ b

−∞
f(x) dx = lim

a→−∞

∫ c

a

f(x) dx+ lim
s→b
s<b

∫ s

c

f(x) dx ,

où c ∈ ]−∞; b[ ,

∫ ∞

−∞
f(x) dx = lim

a→−∞

∫ c

a

f(x) dx+ lim
b→∞

∫ b

c

f(x) dx ,

où c est un nombre réel.

4.6.21 Exemple : L’intégrale généralisée entre 1 et ∞ de la fonction f : R∗
+ → R, donnée

par f(x) = 1√
x
, diverge ; en effet :

∫ ∞

1

1√
x
dx = lim

b→∞

∫ b

1

1√
x
dx = lim

b→∞
2
√
x
∣
∣
∣

b

1

= lim
b→∞

(

2
√
b− 2

√
1
)

= ∞ . 1
x

y

0

1

4.6.22 Illustration : Considérons la planète Terre. Représentons-la par une sphère de
centre C et de rayon RT ≈ 6,37 · 106m. Plaçons un axe Or dont l’origine O cöıncide
avec C. Selon la loi de la gravitation de Newton, un objet de masse m
situé sur Or à une distance r > RT du centre C (et donc de l’origine O)

subit une force de gravitation ~FG donnée par :

~FG = −G MTm

r2
~ur ,

où G ≈ 6,67·10−11Nm2 kg−2 est la constante de gravitation universelle,
MT ≈ 5,97 · 1024 kg la masse de la Terre et ~ur un vecteur unitaire (i.e.
un vecteur de norme égale à 1) ayant la même direction et le même
sens que l’axe Or. Par définition de la notion de travail d’une force, le

O

r

∞

RT
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travail de la force de gravitation ~FG, donnée ci-dessus, entre RT et l’infini est :

W~FG
=

∫ ∞

RT

~FG · d~r =

∫ ∞

RT

(

−G MTm

r2
~ur

)

·
(
~ur dr

)
=

∫ ∞

RT

−G MTm

r2
dr

= −GMTm

∫ ∞

RT

1

r2
dr = −GMTm lim

b→∞

∫ b

RT

1

r2
dr

= −GMTm lim
b→∞

[

−1

r

]b

RT

= GMTm lim
b→∞

[
1

r

]b

RT

= GMTm lim
b→∞

(
1

b
− 1

RT

)

= −GMTm

RT
.

Pour amener un objet de massem de la surface de la Terre à l’infini, il est alors nécessaire
d’appliquer une force opposée à ~FG, dont le travail entre RT et ∞ est au moins égal à
l’opposé de W~FG

. Comme |W~FG
| n’est pas infini, le travail de la force à appliquer n’a pas

besoin d’être infini. En résumé, il n’est pas nécessaire de fournir une énergie infinie pour
amener un objet de masse m (finie) de la surface de la Terre à un point infiniment loin
de la Terre.

4.6.23 Proposition : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies et continues dans un intervalle fermé et non borné [a; ∞[ (respectivement
]−∞; b]), où a (respectivement b) est un nombre réel. Supposons qu’il existe un nombre
réel c ∈ [a; ∞[ (respectivement c ∈ ]−∞; b]) tel que 0 6 f(x) 6 g(x) pour tout
x ∈ [c; ∞[ (respectivement x ∈ ]−∞; c]).

• Si l’intégrale généralisée de g entre a et∞ (respectivement
entre −∞ et b) converge, alors l’intégrale généralisée de f
entre a et ∞ (respectivement entre −∞ et b) converge.

• Si l’intégrale généralisée de f entre a et∞ (respectivement
entre −∞ et b) diverge, alors l’intégrale généralisée de g
entre a et ∞ (respectivement entre −∞ et b) diverge.

x

y

O a

g

f

c

Ce résultat est connu sous le nom de critère de comparaison relatif aux intégrales
généralisées sur un intervalle fermé et non borné.

Preuve : Pour démontrer ce résultat, il suffit de reprendre la preuve de la proposition 4.6.6
et de remplacer b par ∞. �

4.6.24 Remarques : • Les conclusions de la proposition précédente demeurent va-
lables si, dans l’énoncé, la condition 0 6 f(x) 6 g(x) pour tout x ∈ [c; ∞[
(respectivement x ∈ ]−∞; c]) est remplacée par l’hypothèse 0 > f(x) > g(x)
pour tout x ∈ [c; ∞[ (respectivement x ∈ ]−∞; c]).

• Les conclusions de la proposition précédente, tout comme celles de la proposi-
tion 4.6.6, du reste, demeurent valables si f ou g, ou encore f et g sont continues
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par morceaux dans les intervalles mentionnés. Noter qu’une fonction est considé-
rée comme continue par morceaux :

⋄ dans un intervalle de la forme [a; b[ (respectivement ]a; b], ]a; b[ ), a et b étant
deux nombres réels tels que a < b, si elle est continue par morceaux dans
n’importe quel intervalle fermé et borné contenu dans [a; b[ (respectivement
]a; b], ]a; b[ ) ;

⋄ dans un intervalle de la forme [a; ∞[ (respectivement ]a; ∞[ , ]−∞; b] ou
]−∞; b[ ), a (respectivement b) étant un nombre réel, si elle est continue par
morceaux dans n’importe quel intervalle fermé et borné contenu dans [a; ∞[
(respectivement ]a; ∞[ , ]−∞; b] ou ]−∞; b[ ).

4.6.25 Exemple : Montrons que la série numérique
∑∞

n=1
1
n3 converge. À cet effet, consi-

dérons la fonction partie entière E ; rappelons que E(x) est le nombre entier tel que
x− 1 < E(x) 6 x. Pour tout x > 1 :

x− 1 < E(x) ⇔ (x− 1)3 <
(
E(x)

)3 ⇔ 1
(
E(x)

)3 <
1

(x− 1)3
.

Or, l’intégrale généralisée entre 2 et ∞ de la fonction donnée par 1
(x−1)3

converge :

∫ ∞

2

1

(x− 1)3
dx = lim

b→∞

∫ b

2

1

(x− 1)3
dx = lim

b→∞

[

− 1

2 (x− 1)2

]b

2

= lim
b→∞

[

− 1

2 (b− 1)2
+

1

2 (2− 1)2

]

= 0 +
1

2
=

1

2
.

Le critère de comparaison relatif aux intégrales généralisées
sur un intervalle non borné, ainsi que le deuxième point
de la remarque précédente, permettent donc d’affirmer que
l’intégrale généralisée entre 2 et ∞ de la fonction donnée par x

y

0 1 2 3 4 5

1

1
(E(x))3

converge. Par ailleurs :

∫ ∞

2

1
(
E(x)

)3 dx =
1

23
· 1 + 1

33
· 1 + 1

43
· 1 + . . . =

1

23
+

1

33
+

1

43
+ . . .

=

∞∑

n=2

1

n3
=

( ∞∑

n=1

1

n3

)

− 1 .

Ainsi : ∞∑

n=1

1

n3
= 1 +

∫ ∞

2

1
(
E(x)

)3 dx .

En résumé, la série
∑∞

n=1
1
n3 converge.

4.6.26 Remarque : Du critère de comparaison relatif aux intégrales généralisées sur un
intervalle non borné peut être déduit un autre critère de convergence, dont l’énoncé est
donné dans le corollaire suivant.
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4.6.27 Corollaire : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé et non borné [a; ∞[ , où a est un nombre réel. Supposons qu’il existe un
nombre réel β pour lequel :

lim
x→∞

xβf(x) = ℓ 6= 0 ,

où ℓ est un nombre réel non nul. Alors l’intégrale généralisée de f entre a et b :

• converge si β > 1,

• diverge si β 6 1.

Preuve : Pour démontrer ce résultat, il suffit de reprendre la preuve du corollaire 4.6.9
et d’observer que l’intégrale généralisée entre 0 et ∞ de la fonction x 7→ 1

xβ converge si
β > 1 et diverge si β 6 1. �

4.6.4 Test de l’intégrale

Le raisonnement mené dans le dernier exemple de la sous-section précédente n’est pas
spécifique à la série numérique

∑∞
n=1

1
n3 ; il peut être généralisé à toute série dont les

termes forment une suite décroissante de nombres positifs.

4.6.28 Proposition : Soit (un)n∈N∗ une suite de nombres réels telle que un > 0 pour tout
n ∈ N∗ (i.e. tous les termes de la suite sont positifs), et telle que u1 > u2 > u3 > u4 > . . .
(i.e. la suite est décroissante). Supposons qu’il existe une fonction réelle f : D → R,
définie, continue et décroissante dans l’intervalle [1; ∞[ , et telle que f(n) = un pour
tout n ∈ N∗. Alors :

• si l’intégrale généralisée

∫ ∞

1

f(x) dx converge, la série

∞∑

n=1

un converge aussi ;

• si l’intégrale généralisée

∫ ∞

1

f(x) dx diverge, la série
∞∑

n=1

un diverge aussi.

Ce résultat est connu sous le nom de test de l’intégrale.

Preuve : Soient (un)n∈N∗ une suite de nombres réels positifs, décroissante, et f une fonc-
tion réelle définie, continue et décroissante dans l’intervalle [1; ∞[ , et telle que f(n) = un
pour tout n ∈ N∗. Considérons la fonction partie entière E ; rappelons que E(x) est le
nombre entier satisfaisant la double inégalité x− 1 < E(x) 6 x, quel que soit x ∈ R. De
fait, d’une part f(x − 1) > f

(
E(x)

)
pour tout x ∈ [2; ∞[ (vu que x − 1 < E(x) pour

tout x ∈ R et donc pour tout x ∈ [2; ∞[ ), et d’autre part f
(
E(x)

)
> f(x) pour tout

x ∈ [1; ∞[ (vu que E(x) 6 x pour tout x ∈ R et donc pour tout x ∈ [1; ∞[ ). Étudions
séparément les conséquences de chacune de ces deux inégalités.

• Pour tout x ∈ [1; ∞[ , f(x) 6 f
(
E(x)

)
. Ainsi :

∫ ∞

1

f(x) dx 6

∫ ∞

1

f
(
E(x)

)
dx .
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Or :
∫ ∞

1

f
(
E(x)

)
dx =

∫ 2

1

f
(
E(x)

)
dx+

∫ 3

2

f
(
E(x)

)
dx+

∫ 4

3

f
(
E(x)

)
dx+ . . .

=

∞∑

n=1

∫ n+1

n

f
(
E(x)

)
dx =

∞∑

n=1

∫ n+1

n

f(n) dx

=
∞∑

n=1

f(n) · 1 =
∞∑

n=1

f(n) =
∞∑

n=1

un ,

vu que f(n) = un pour tout n ∈ N∗. Donc :

∫ ∞

1

f(x) dx 6

∞∑

n=1

un .

• Pour tout x ∈ [2; ∞[ , f
(
E(x)

)
6 f(x− 1). Ainsi :

∫ ∞

2

f
(
E(x)

)
dx 6

∫ ∞

2

f(x− 1) dx .

Or, d’une part (selon ce qui a été établi au point précédent) :

∫ ∞

2

f
(
E(x)

)
dx =

∞∑

n=2

un =

∞∑

n=1

un − u1 ,

d’autre part, en appliquant le changement de variable x̃ = x − 1, pour lequel
dx̃
dx

= 1 ⇔ dx̃ = dx :

∫ ∞

2

f(x− 1) dx =

∫ ∞

1

f(x̃) dx̃ .

Donc :

∞∑

n=1

un − u1 6

∫ ∞

1

f(x̃) dx̃ ⇔
∞∑

n=1

un 6 u1 +

∫ ∞

1

f(x̃) dx̃ ;

autrement écrit (en rebaptisant x̃ par x) :

∞∑

n=1

un 6 u1 +

∫ ∞

1

f(x) dx .

En résumé :
∫ ∞

1

f(x) dx 6

∞∑

n=1

un 6 u1 +

∫ ∞

1

f(x) dx .
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où
∑∞

n=1 un =
∫∞
1
f(E(x)) dx. Ainsi, selon le critère de comparaison relatif aux intégrales

généralisées sur un intervalle non borné, et selon la remarque 4.6.24 :

• la série
∑∞

n=1 un diverge si l’intégrale généralisée
∫∞
1
f(x) dx diverge ;

• la série
∑∞

n=1 un converge si l’intégrale généralisée
∫∞
1
f(x) dx converge. �

4.6.29 Remarque : Lorsqu’il est applicable, le test de l’intégrale permet de dire si une
série numérique converge ou diverge ; il ne permet cependant pas, en général, de trouver
la valeur de la série.

4.6.30 Exemples : 1. La série harmonique, i.e. la série numérique
∑∞

n=1
1
n
(cf. pre-

mier des exemples 1.6.30, sous-section 1.6.4 du chapitre 1), diverge ; en effet :

∫ ∞

1

1

x
dx 6

∞∑

n=1

1

n

et :

∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
ln
∣
∣x
∣
∣
b

1
= lim

b→∞
ln |b| − ln |1|

= lim
b→∞

ln(b)− ln(1) = lim
b→∞

ln(b)− 0 = ∞ .

2. La série numérique
∑∞

n=1
1
n2 (cf. troisième des exemples 1.6.30, sous-section 1.6.4

du chapitre 1) converge ; en effet :

∞∑

n=1

1

n2
6

1

12
+

∫ ∞

1

1

x2
dx = 1 +

∫ ∞

1

1

x2
dx

et :
∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞
−1

x

∣
∣
∣
∣

b

1

= lim
b→∞

−1

b
+

1

1
= 1 .



Chapitre 5

Développements limités et illimités

Les fonctions usuelles (cf. annexe C) ne se manient pas toutes avec la même aisance ;
certaines sont plus difficiles à traiter que d’autres, notamment lorsqu’elles sont combinées
(i.e. multipliées, divisées, composées, etc.) entre elles. Les plus faciles d’utilisation sont
indéniablement les polynômes ; et pour cause :

• la somme, la différence et le produit de plusieurs polynômes donnent un poly-
nôme ; le quotient de deux polynômes peut être décomposé en une somme d’élé-
ments simples ;

• grâce aux techniques de factorisation et de mise en évidence, le calcul de limites
des fonctions polynomiales et rationnelles est particulièrement simple ;

• que ce soit le calcul de dérivation ou d’intégration, aucun ne présente une difficulté
particulière dans le cas des fonctions polynomiales.

Les fonctions polynomiales présentent tellement d’avantages qu’il serait tentant d’essayer
d’écrire d’autres fonctions, telles que exp, log, sin, cos, etc. sous la forme de polynômes.
N’y aurait-il pas moyen d’y parvenir, d’une quelconque manière ?

5.1 Point de contact

Dans la section 3.8.1 du chapitre 3, il a été vu que toute fonction réelle f : D → R définie
dans un voisinage d’un point x0 ∈ D et dérivable en x0, peut s’écrire sous la forme :

f(x) = f(x0) + f ′(x0)(x− x0) +R(x) ,

où R est une fonction de x satisfaisant la propriété suivante :

lim
x→x0

R(x)

x− x0
= 0 .

Dans le cas où x est «suffisamment proche» de x0 pour que R(x) puisse être négligé,
l’égalité ci-dessus peut être récrite sous la forme d’une égalité approximative :

f(x) ≈ f(x0) + f ′(x0)(x− x0) ,
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ou, en écrivant a à la place de x0, afin d’alléger quelque peu la notation :

f(x) ≈ f(a) + f ′(a)(x− a) .

Une telle relation est appelée approximation linéaire ; le qualificatif linéaire vient du
fait que la quantité f(a) + f ′(a)(x − a) est l’expression d’une fonction polynomiale de
degré 1, dont le graphe, dans R2, est une droite. Cette fonction polynomiale, que l’on
notera P a

1 , a comme particularité de prendre la même valeur que la fonction f en a et
d’avoir une dérivée égale à celle de f en a.

5.1.1 Définition : Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les
deux définies dans un certain intervalle ouvert I. Soit a un élément de I. On dit que a
est un point contact d’ordre p de f et g si :

f (k)(a) = g(k)(a) , pour tout k = 0, 1, . . . , p ,

où f (k) et g(k) sont les dérivées d’ordre k de f et g respectivement ; par convention
f (0) = f et g(0) = g.

Dans l’approximation linéaire, évoquée précédemment, le point a est un point de
contact d’ordre 1 (au moins) des fonctions f et P a

1 , vu que :

P a
1 (a) = f(a) et P a ′

1 (a) =
dP a

1

dx
(a) = f ′(a) .

5.2 Développements de Taylor et de MacLaurin

Reprenons les fonctions f et P a
1 , introduites dans la sous-section précédente. Comme P a

1

est une fonction polynomiale de degré 1, elle admet pour seconde dérivée la fonction
identiquement nulle. De fait, P a ′′(a) 6= f ′′(a), à moins que la seconde dérivée de f
s’annule en a (à supposer qu’elle existe en a) ; ce qui n’est en général pas le cas. Le
point a ne peut donc, en général, pas être un point de contact d’ordre supérieur à 1.
Pour qu’il puisse l’être, il est nécessaire d’augmenter le degré du polynôme donné : afin
que a soit un point de contact d’ordre 2 au moins, il est nécessaire d’avoir un polynôme
de degré 2 au moins ; et plus généralement, pour que a soit un point de contact d’ordre n
au moins, il est nécessaire d’avoir un polynôme de degré n.

Soit P a
n une fonction polynomiale de degré n. Notons-la sous la forme :

P a
n (x) = b0 + b1 (x− a) + b2 (x− a)2 + . . .+ bn (x− a)n ,

où b0, b1, . . . , bn sont des coefficients réels et bn 6= 0. Une telle expression est bien un
polynôme de degré n ; en effet, si l’on développe les parenthèses et que l’on regroupe de
manière judicieuse les différents termes, on obtient P a

n (x) = c0 + c1 x + . . . + cn x
n, où

c0, c1, . . . , cn sont des coefficients réels et cn 6= 0. Supposons que f est n fois dérivable
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en a et que a est un point de contact d’ordre n de f et P a
n . Alors f

(k)(a) = P
a (k)
n (a)

pour tout k = 0, 1, . . . , n. Or :

P a ′
n (x) = b1 + 2 b2 (x− a) + . . .+ bn n (x− a)n−1 ,

P a ′′
n (x) = 2 b2 + 3 · 2 b3 (x− a) + . . .+ bn n (n− 1)(x− a)n−2 ,

P a ′′′
n (x) = 3 · 2 b3 + 4 · 3 · 2 b4 (x− a) + . . .+ bn n (n− 1)(n− 2)(x− a)n−3 ,

...
...

...

P a (n)
n (x) = n (n− 1)(n− 2) . . . 3 · 2 bn .

Donc :

f(a) = P a
n (a) = b0 ,

f ′(a) = P a ′
n (a) = b1 ,

f ′′(a) = P a ′′
n (a) = 2 b2 ,

f ′′′(a) = P a ′′′
n (a) = 3 · 2 b3 ,

...
...

...

f (n)(a) = P a (n)
n (a) = n (n− 1)(n− 2) . . . 3 · 2 bn ,

d’où, en introduisant la notation k! = k (k − 1)(k − 2) . . . 3 · 2 · 1, où k est un nombre
naturel (k! se lisant k factorielle) :

b0 = f(a) ,

b1 = f ′(a) =
f ′(a)

1!
,

b2 =
f ′′(a)

2
=

f ′′(a)

2!
,

b3 =
f ′′′(a)

6
=

f ′′′(a)

3!
,

...
...

...

bn =
f (n)(a)

n!
.

5.2.1 Définition : Soit f : D → R une fonction réelle, définie et n fois dérivable dans
un intervalle ouvert I ⊂ D ; soit aussi a un élément de I. On appelle développement de
Taylor I d’ordre n de f autour de a le polynôme P a

n donné par :

P a
n (x) = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n .

I. Brook Taylor était un mathématicien anglais, né en 1685 à Edmonton (qui est aujourd’hui un
quartier de Londres) et mort en 1731 à Londres.
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Dans le cas où a = 0, on parle de développement de MacLaurin II d’ordre n :

P 0
n(x) = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn .

On le note volontiers Pn(x), au lieu de P 0
n(x).

5.2.2 Remarques : Reprenons les notations de la définition précédente.

• Les développements de Taylor et de MacLaurin peuvent être écrits de manière
compacte, à l’aide du signe

∑
:

P a
n (x) =

n∑

k=0

f (k)(a)

k!
(x− a)k ,

avec, par convention, f (0)(a) = f(a) et 0! = 1.

• Par définition de P a
n , le point a ∈ I est un point de contact d’ordre n de f et P a

n .
De fait, plus l’ordre du développement de Taylor de la fonction f est élevé, plus
l’ordre de a est grand.

⋄ Si n = 0, a est un point de contact d’ordre 0 ; la fonction f et le polynôme P a
0

ont alors la même valeur en x = a, mais pas nécessairement la même direction.

⋄ Si n = 1, a est un point de contact d’ordre 1 ; la fonction f et le polynôme P a
1

ont alors non seulement la même valeur en x = a, mais également la même
direction (grandeur définie par la dérivée en a).

⋄ Si n = 2, a est un point de contact d’ordre 2 ; la fonction f et le polynôme P a
2

ont alors non seulement la même valeur et la même direction en x = a, mais
également la même courbure (grandeur définie à partir des dérivées première
et seconde en a).

⋄ Etc.

Les quatre diagrammes ci-dessous illustrent la situation dans le cas où f = exp
et a = 0. En plus du graphe de f , on trouve le graphe de P0 dans le premier
diagramme depuis la gauche, celui de P1 dans le deuxième, celui de P2 dans le
troisième et enfin celui de P3 dans le dernier.

P0

x
−1 10

y

1
P1

x
−1 10

y

1
P2

x
−1 10

y

1

P3
x

−1 10

y

1

II. Colin MacLaurin était un mathématicien écossais, né en 1698 à Kilmodan (dans la région de

l’Argyll, en Écosse) et mort en 1746 à Edimbourg. Taylor et MacLaurin ont tous les deux cherché à écrire
les fonctions sous forme de polynômes ; alors que MacLaurin ne considérait que des développements
autour de 0, Taylor s’intéressait à des développements autour d’un nombre réel a quelconque.
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5.2.3 Définition : Soit f : D → R une fonction réelle, définie et n fois dérivable dans
un intervalle ouvert I ⊂ D. Soient aussi a un élément de I et P a

n le développement de
Taylor d’ordre n de f autour de a. On appelle reste d’ordre n associé à P a

n la quantité Ra
n

telle que :

f(x) = P a
n (x) +Ra

n(x) ⇔ Ra
n(x) = f(x)− P a

n (x) , où x ∈ I .

Dans le cas où a = 0, on note volontiers Rn, au lieu de R0
n.

5.2.4 Proposition : Soit f : D → R une fonction réelle, définie et n + 1 fois dérivable
dans un intervalle ouvert I ⊂ D. Soient aussi a un élément de I et P a

n le développement
de Taylor d’ordre n de f autour de a. Alors, à tout élément x ∈ I peut être associé un
nombre réel λ ∈ ]0; 1[ pour lequel :

f(x) = P a
n (x) +Ra

n(x) , avec : Ra
n(x) =

f (n+1)
(
a+ λ (x− a)

)

(n+ 1)!
(x− a)n+1 ,

c’est-à-dire :

f(x) = f(a) + f ′(a) (x− a) + . . .+
f (n)(a)

n!
(x− a)n +

f (n+1)
(
a + λ (x− a)

)

(n+ 1)!
(x− a)n+1 .

Le reste Ra
n, tel qu’exprimé ici, est appelé reste de Lagrange (d’ordre n) associé à P a

n .

Preuve : Soit f une fonction réelle, définie et n + 1 fois dérivable dans un intervalle
ouvert I ; soient aussi a un élément de I et Pa le développement de Taylor d’ordre n
de f autour de a. Deux situations peuvent être distinguées.

• x = a : dans ce cas, P a
n (a) = f(a) et donc Ra

n(a) = 0. Par ailleurs, quel que soit
le nombre réel λ ∈ ]0; 1[ :

f (n+1)
(
a + λ (a− a)

)

(n + 1)!
(a− a)n+1 = 0 .

Il existe donc bien un nombre réel λ ∈ ]0; 1[ (ce nombre peut être n’importe quel
élément de l’intervalle) pour lequel :

Ra
n(a) =

f (n+1)
(
a+ λ (a− a)

)

(n+ 1)!
(a− a)n+1 = 0 .

• x ∈ Ir{a} : dans ce cas, P a
n (x) n’est en général pas égal à f(x). Soit alors la

fonction g : I → R donnée par :

g(u) = f(u)− P a
n (u) +

P a
n (x)− f(x)

(x− a)n+1
(u− a)n+1 .

De par sa construction, g est une fonction n+ 1 fois dérivable dans I. De plus :

g(a) = g′(a) = g′′(a) = . . . = g(n)(a) = 0 = g(x) .
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En effet :

g(a) = f(a)− P a
n (a) +

P a
n (x)− f(x)

(x− a)n+1
(a− a)n+1 = f(a)− P a

n (a) = 0 ,

vu que P a
n (a) = f(a). Aussi :

g′(u) = f ′(u)− P a ′
n (u) +

P a
n (x)− f(x)

(x− a)n+1
(n + 1)(u− a)n ;

d’où :

g′(a) = f ′(a)− P a ′
n (a) +

P a
n (x)− f(x)

(x− a)n+1
(n + 1)(a− a)n = 0 ,

vu que P a ′
n (a) = f ′(a).

⋄ La fonction g satisfait les hypothèses du théorème de Rolle dans l’intervalle
fermé délimité par a et x ; en effet, g étant n+1 fois dérivable dans I, elle est
continue dans l’intervalle fermé délimité par a et x et dérivable dans l’intervalle
ouvert délimité a et x ; de plus, g(a) = g(x) = 0. Selon le théorème, il existe
donc un nombre réel c1 compris strictement entre a et x tel que g′(c1) = 0.

⋄ La fonction g′ satisfait les hypothèses du théorème de Rolle dans l’intervalle
fermé délimité par a et c1 ; en effet, g étant n + 1 fois dérivable dans I, g′

est continue dans l’intervalle fermé délimité par a et c1 et dérivable dans
l’intervalle ouvert délimité par a et c1 ; de plus, g′(a) = g′(c1) = 0. Selon le
théorème, il existe donc un nombre réel c2 compris strictement entre a et c1,
et donc compris strictement entre a et x, tel que g′′(c2) = (g′)′(c2) = 0.

...

⋄ La fonction g(n) satisfait les hypothèses du théorème de Rolle dans l’intervalle
fermé délimité par a et cn, où cn est un nombre réel compris strictement
entre a et x ; en effet, g étant n + 1 fois dérivable dans I, g(n) est continue
dans l’intervalle fermé délimité par a et cn et dérivable dans l’intervalle ouvert
délimité par a et cn ; de plus, g

(n)(a) = g(n)(cn) = 0. Selon le théorème, il existe
donc un nombre réel ξ compris strictement entre a et cn, et donc compris
strictement entre a et x, tel que g(n+1)(ξ) = (g(n))′(ξ) = 0. Or :

g(n+1)(u) = f (n+1)(u) +
P a
n (x)− f(x)

(x− a)n+1
(n+ 1)! ,

du fait que que P
a (n+1)
n (u) = 0 (vu que P a

n est une fonction polynomiale de
degré n), et que la (n+ 1)-ième dérivée de (u− a)n+1 est :

dn+1

dun+1

(
(u− a)n+1

)
= (n+ 1)n (n− 1)(n− 2) . . . 3 · 2 · 1 = (n+ 1)! .

Donc :

g(n+1)(ξ) = f (n+1)(ξ) +
P a
n (x)− f(x)

(x− a)n+1
(n+ 1)! = 0 ,
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En résumé, il existe un nombre réel compris strictement entre a et x pour lequel :

f (n+1)(ξ) =
f(x)− P a

n (x)

(x− a)n+1
(n + 1)! ,

i.e. pour lequel :

f(x) = P a
n (x) +

f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 .

Et comme ξ est compris strictement entre a et x, il peut s’écrire ξ = a+λ (x−a),
avec λ ∈ ]0; 1[ . �

5.2.5 Exemples : 1. Écrivons le développement de Taylor P 1
4 d’ordre 4, autour de 1,

de la fonction f : R+ → R, donnée par f(x) =
√
x . À cet effet, écrivons les

expressions des dérivées d’ordre 0, 1, 2, 3 et 4 de f et évaluons-les en x = 1 :

f(x) =
√
x = x

1
2 ⇒ f(1) = 1

1
2 = 1 ,

f ′(x) =
1

2
x−

1
2 ⇒ f ′(1) =

1

2
· 1− 1

2 =
1

2
,

f ′′(x) = −1

4
x−

3
2 ⇒ f ′′(1) = −1

4
· 1− 3

2 = −1

4
,

f ′′′(x) =
3

8
x−

5
2 ⇒ f ′′′(1) =

3

8
· 1− 5

2 =
3

8
,

f (4)(x) = −15

16
x−

7
2 ⇒ f (4)(1) = −15

16
· 1− 7

2 = −15

16
.

Ainsi :

P 1
4 (x) = 1 +

1
2
(x− 1)

1!
+

−1
4
(x− 1)2

2!
+

3
8
(x− 1)3

3!
+

−15
16
(x− 1)4

4!

= 1 +
x− 1

2
− (x− 1)2

8
+

(x− 1)3

16
− 5 (x− 1)4

128
.

Écrivons également le reste de Lagrange R1
4 associé à P 1

4 . Pour cela, calculons la
dérivée d’ordre 5 de f :

f (5)(x) =
105

32
x−

9
2 =

105

32
√
x9

.

Ainsi :

R1
4(x) =

105

32
√

ξ9
(x− 1)5

5!
=

7 (x− 1)5

256
√

ξ9
,

où ξ est un nombre réel compris strictement entre 1 et x ; il peut s’écrire ξ =
1 + λ (x− 1), où λ ∈ ]0; 1[ .
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2. Écrivons le développement de MacLaurin P5 d’ordre 5 de la fonction f : R → R,
donnée par f(x) = exp(x). À cet effet, considérons les dérivées d’ordre 0, 1, 2, 3, 4
et 5 de f :

f(x) = f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = f (5)(x) = exp(x) ,

et évaluons-les en 0 :

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = f (5)(0) = 1 .

Ainsi :

P5(x) = 1 +
1 (x− 0)

1!
+

1 (x− 0)2

2!
+

1 (x− 0)3

3!
+

1 (x− 0)4

4!
+

1 (x− 0)5

5!

= 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
.

Écrivons également le reste de Lagrange R5 associé à P5. À cet effet, remarquons
que f (6)(x) = exp(x). Ainsi :

R5(x) =
exp(ξ) (x− 0)6

6!
=

exp(ξ) x6

720
,

où ξ est un nombre réel compris strictement entre 0 et x ; il peut s’écrire :

ξ = 0 + λ (x− 0) = λ x , où λ ∈ ]0; 1[ .

5.2.6 Remarques : • Pour ne pas alourdir l’écriture, le reste de Lagrange, évoqué
dans la proposition précédente, est souvent noté comme dans les deux exemples
qui viennent d’être traités, i.e. sous la forme :

Ra
n(x) =

f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 ,

où ξ est un nombre réel compris strictement entre a et x.

• Le nombre réel ξ, mentionné au point précédent, n’est souvent pas du tout évident
à trouver. De fait, il est difficile d’estimer le reste Ra

n(x) en un x donné. Il est
néanmoins possible de donner, dans un intervalle J fixé qui contient a, une valeur
que la différence

∣
∣f(x)−P a

n (x)
∣
∣ ne dépasse jamais. Appelée erreur maximale com-

mise, et notée Emax, cette valeur s’obtient en prenant les x et ξ dans l’intervalle J̄
qui maximisent |Ra

n|, J̄ étant le plus petit intervalle fermé contenant J :

Emax = max
x, ξ∈J̄

∣
∣
∣
∣

f (n+1)(ξ)

(n + 1)!
(x− a)n+1

∣
∣
∣
∣
= max

x∈J̄

|x− a|n+1

(n+ 1)!
max
ξ∈J̄

∣
∣f (n+1)(ξ)

∣
∣ .

Certes, le nombre réel ξ ne peut pas prendre toutes les valeurs possibles de J̄ , vu
qu’il est compris strictement entre a et x ; s’il est considéré ici comme indépendant
de x, c’est dans le but de s’assurer que Emax est bien une valeur qui n’est jamais
dépassée. Noter que l’existence de Emax n’est garantie que si f (n+1) est continue
dans J̄ (de sorte que f (n+1) atteigne une valeur maximale dans J̄).
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5.2.7 Exemple : Reprenons la fonction f : R → R donnée par f(x) = exp(x), et considé-
rons son développement de MacLaurin P5 d’ordre 5, ainsi que son reste de Lagrange R5

d’ordre 5 (cf. deuxième des exemples 5.2.5) :

P5(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
et R5(x) =

exp(ξ) x6

720
.

Dans l’intervalle I = ]−1; 1[ , l’erreur maximale commise, lorsque f est remplacée par P5,
est :

Emax = max
x∈[−1; 1]

|x|6
720

max
ξ∈[−1; 1]

∣
∣exp(ξ)

∣
∣ =

16

720
exp(1) =

e

720
≈ 0,004 .

5.3 Développements limités

5.3.1 Définition : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel a (i.e. dans un intervalle contenant un intervalle de la forme ]a− γ ; a+ γ[ ,
où γ > 0 est un nombre réel), sauf éventuellement en a. On dit que f admet un déve-
loppement limité d’ordre n autour de a s’il existe un polynôme en x− a, de degré n au
plus, noté P a

n , et une fonction réelle Ra
n : D → R telles que, pour tout x ∈ Dr{a} :

f(x) = P a
n (x) +Ra

n(x)

et :

lim
x→a

Ra
n(x)

(x− a)n
= 0 .

L’égalité f(x) = P a
n (x) + Ra

n(x) porte le nom de développement limité d’ordre n de f
autour de a ; le polynôme P a

n (x) est appelé partie principale du développement limité et
Ra

n(x) le reste ; sous sa forme développée, P a
n (x) s’écrit P

a
n (x) = b0 + b1 (x− a) + . . . +

bn(x− a)n, b0, b1, . . . , bn étant n + 1 coefficients réels.

5.3.2 Propriétés : Soit f : D → R une fonction réelle définie dans un voisinage d’un
nombre réel a, sauf éventuellement en a.

• Si f admet un développement limité d’ordre n autour de a, alors nécessairement f
admet un développement limité d’ordre m autour de a, où m = 0, 1, . . . , n− 1.

• Si f admet un développement limité d’ordre n autour de a, ce développement
limité est unique.

• Si f admet un développement limité d’ordre n autour de 0, i.e. si f peut s’écrire,
pour tout x ∈ Dr{0} :

f(x) = b0 + b1 (x− 0) + b2 (x− 0)2 + . . .+ bn (x− 0)n +R0
n(x)

= b0 + b1 x+ b2 x
2 + . . .+ bn x

n +R0
n(x) ,

où b0, b1, b2, . . . , bn sont n+1 coefficients réels et R0
n : D → R une fonction réelle

telle que :

lim
x→a

R0
n(x)

(x− 0)n
= lim

x→a

R0
n(x)

xn
= 0 ,
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alors :

⋄ tous les coefficients d’indice impair (b1, b3, b5, . . .) sont nuls si f est paire ;
⋄ tous les coefficients d’indice pair (b0, b2, b4, . . .) sont nuls si f est impaire.

Tous ces résultats découlent de la définition même du concept de développement limité.
Le détail des raisonnements est présenté à la fin du présent ouvrage, dans l’annexe E.

5.3.3 Remarques : • Dans la définition du développement limité d’une fonction
(cf. définition 5.3.1), rien n’indique que f doit nécessairement être définie en a ;
selon la définition, f peut très bien admettre un développement limité d’ordre n
autour de a sans pour autant être définie en a. Cela étant, si f(a) existe, alors il
est admis que f(a) = b0.

• Dire qu’une fonction f est définie en a ∈ R et admet un développement limité
d’ordre 1 autour de a revient à dire que f est différentiable en a.

5.3.4 Proposition : Soit f : D → R une fonction réelle, définie et n + 1 fois dérivable
dans un intervalle ouvert I ⊂ D ; soit aussi a un point dans I. Alors f admet un
développement limité d’ordre n autour de a dans I ; ce développement limité s’écrit
f(x) = P a

n (x) +Ra
n(x) pour tout x ∈ I, où P a

n est le développement de Taylor d’ordre n
de f autour de a et Ra

n le reste de Lagrange associé.

Preuve : Ce résultat est une conséquence, d’une part, du fait que le reste de Lagrange Ra
n,

associé au développement de Taylor P a
n d’ordre n d’une fonction f autour d’un point a,

satisfait la condition :

lim
x→a

Ra
n(x)

(x− a)n
= 0 ,

et d’autre part, du fait que le développement limité d’ordre n d’une fonction f autour
d’un point a, s’il existe, est unique. �

5.3.5 Remarque : La même notation P a
n (x) a été utilisée pour désigner d’une part le

développement de Taylor d’ordre n (où n est un nombre naturel) d’une fonction f
autour d’un point a de l’axe x, et d’autre part la partie principale d’un développement
limité d’ordre n autour de a de f . Une telle confusion n’est pas si grave, vu que les deux
objets en question n’en sont qu’un seul et même, dès lors que f est n fois dérivable en a.

5.4 Opérations entre développements limités

Tout comme on peut additionner, soustraire, multiplier, diviser ou composer deux fonc-
tions données, on peut envisager les mêmes opérations avec leurs développements limités
respectifs. Afin que les résultats aient du sens, il convient d’observer une certaine cohé-
rence quant aux points autour desquels les développements limités sont effectués.

5.4.1 Proposition : Soient f : D1 → R et g : D2 → R deux fonctions réelles, définies
toutes les deux dans un voisinage d’un nombre réel a, sauf éventuellement en a. Sup-
posons que f et g admettent toutes les deux un développement limité d’ordre n autour



5.4 Opérations entre développements limités 269

de a. Notons :

f(x) = P a
f,n(x) +Ra

f,n(x) (x ∈ D1) et g(x) = P a
g,n(x) +Ra

g,n(x) (x ∈ D2)

les développements limités d’ordre n autour de a de f et g, respectivement, P a
f,n(x) et

P a
g,n(x) étant les parties principales, R

a
f,n(x) et R

a
g,n(x) les restes associés. Alors :

• la fonction α f+β g, où α et β sont deux nombres réels, admet un développement
limité d’ordre n autour de a, défini en tout x ∈ D1∩D2, dont la partie principale,
notée P a

αf+βg,n, est donnée par :

P a
αf+βg,n(x) = αP a

f,n(x) + β P a
g,n(x) ;

• la fonction fg admet un développement limité d’ordre n autour de a, défini en
tout x ∈ D1 ∩D2, dont la partie principale, notée P a

fg,n, s’obtient en effectuant le
produit :

P a
f,n(x)P

a
g,n(x)

et en ne gardant que les termes qui contiennent x− a à une puissance inférieure
ou égale à n ;

• si c0 6= 0, où c0 est le terme constant dans P a
g,n(x) (i.e. c0 = limx→a P

a
g,n(x)), la

fonction f
g
admet un développement limité d’ordre n autour de a, défini en tout

x ∈ D1 ∩ D2 tel que g(x) 6= 0, dont la partie principale s’obtient en effectuant
une division euclidienne de P a

f,n(x) par P
a
g,n(x) selon les puissances croissantes, et

en ne gardant que les termes qui contiennent x− a à une puissance inférieure ou
égale à n.

Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage du nombre réel b0, sauf
éventuellement en b0, où b0 est le terme constant dans P a

f,n(x) (i.e. b0 = limx→a P
a
f,n(x)).

Supposons que g admet un développement limité d’ordre n autour de b0. Notons :

g(x) = P b0
g,n(x) +Rb0

g,n(x) (x ∈ D2)

le développement limité d’ordre n de g autour de b0, P
b0
g,n(x) étant la partie principale et

Rb0
g,n le reste associé. Alors :

• la fonction g ◦ f admet un développement limité d’ordre n autour de a, défini en
tout x ∈ D1 tel que f(x) ∈ D2, dont la partie principale s’obtient en composant
P a
f,n(x) et P b0

g,n(x), et en ne gardant que les termes qui contiennent x − a à une
puissance inférieure ou égale à n.

Preuve : Ces résultats découlent de la définition même du concept de développement
limité d’une part, et d’autre part du fait que si une fonction admet un développement
limité d’ordre n autour d’un point a, le développement en question est unique. Le détail
des raisonnements est présenté à la fin du présent ouvrage, dans l’annexe E.

5.4.2 Remarque : La proposition précédente s’adapte sans problème à toute situation
dans laquelle le développement limité de f et le développement limité de g ne sont pas
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du même ordre. Noter alors que, si n est l’ordre du développement de f et m l’ordre du
développement de g, les résultats sont des développements limités d’ordre p, où p est le
plus petit des deux nombres n et m.

5.4.3 Exemples : 1. Soient f : R → R et g : R → R les deux fonctions données par
f(x) = exp(x) et g(x) = x2 + 1. Cherchons la partie principale du développement
limité d’ordre 3 de la fonction f

g
autour de 0. À cet effet, écrivons les développe-

ments limités d’ordre 3 de f et de g autour de 0 :

f(x) = 1 + x+
1

2
x2 +

1

6
x3 +Rf,3(x) ,

g(x) = 1 + 0 · x+ x2 + 0 · x3 +Rg,3(x) = 1 + x2 ;

effectivement, Rg,3(x) = 0 pour tout x ∈ R. Effectuons alors la division euclidienne
du polynôme 1+x+ 1

2
x2+ 1

6
x3 par le polynôme 1+x2 suivant l’ordre des puissances

croissantes, et arrêtons-nous lorsque le résultat est un polynôme de degré 3 :

1 + x +1
2
x2 +1

6
x3 1 + x2

−(1 + x2) 1 + x− 1
2
x2 − 5

6
x3

x −1
2
x2 +1

6
x3

−(x + x3)

−1
2
x2 −5

6
x3

−(−1
2
x2 −1

2
x4)

−5
6
x3 +1

2
x4

−( −5
6
x3 −5

6
x5)

+1
2
x4 +5

6
x5

Ainsi, la partie principale Pf/g,3 du développement limité d’ordre 3 de la fonction f
g

autour de 0 s’écrit :

Pf/g,3(x) = 1 + x− 1

2
x2 − 5

6
x3 .

2. Soient f : R → R et g : R → R les deux fonctions données par f(x) = sin(x) et
g(x) = exp(x). Cherchons la partie principale du développement limité d’ordre 3
de la fonction g ◦ f , donnée par exp

(
sin(x)

)
, autour de 0. À cet effet, écrivons les

développements limités d’ordre 3 de f et de g autour de 0 :

f(x) = f(0) +
f ′(0)

1!
(x− 0) +

f ′′(0)

2!
(x− 0)2 +

f ′′′(0)

3!
(x− 0)3 +Rf,3(x)

= x− 1

6
x3 +Rf,3(x) ,

g(x) = 1 + x+
1

2
x2 +

1

6
x3 +Rg,3(x) ;
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si g a été développée autour de 0, c’est parce que f(0) = sin(0) = 0. Explicitons
alors Pg,3

(
Pf,3(x)

)
, où Pf,3(x) et Pg,3(x) sont les parties principales des développe-

ments limités d’ordre 3 de f et de g, respectivement, autour de 0 :

Pg,3
(
Pf,3(x)

)
= 1 + Pf,3(x) +

1

2

(
Pf,3(x)

)2
+

1

6

(
Pf,3(x)

)3

= 1 +

(

x− 1

6
x3
)

+
1

2

(

x− 1

6
x3
)2

+
1

6

(

x− 1

6
x3
)3

= 1 +

(

x− 1

6
x3
)

+
1

2

(
x+ . . .

)2
+

1

6

(
x+ . . .

)3

= 1 + x− x3

6
+
x2

2
+ . . .+

x3

6
+ . . .

= 1 + x+
1

2
x2 + . . . ,

où . . . donnent lieu ou désignent une somme de termes proportionnels à xm, où
m > 4. Ainsi, la partie principale Pg◦f, 3 du développement limité d’ordre 3 de la
fonction g ◦ f autour de 0 s’écrit :

Pg◦f,3(x) = 1 + x+
1

2
x2 .

5.5 Applications des développements limités

5.5.1 Calcul de limites

Le développement limité d’une fonction est un outil qui s’avère particulièrement puissant
pour calculer des limites. Les exemples qui suivent permettent de s’en convaincre.

5.5.1 Exemples : 1. Cherchons la limite de ln(x)
x−1

lorsque x tend vers 1. À cet effet,
écrivons le développement limité d’ordre 1 de la fonction ln autour de 1 :

ln(x) = ln(1) +
ln′(1)

1!
(x− 1) +R1

1(x)

= 0 +
1
1

1!
(x− 1) +R1

1(x) = (x− 1) +R1
1(x) ,

où R1
1(x) est le reste associé à la partie principale P1(x) = (x−1) du développement

limité en question. Alors :

lim
x→1

ln(x)

x− 1
= lim

x→1

(x− 1) +R1
1(x)

x− 1
= lim

x→1

(x− 1)
(
1 +

R1
1(x)

x−1

)

x− 1

= lim
x→1

(

1 +
R1

1(x)

x− 1

)

= 1 ,
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du fait que :

lim
x→1

R1
1(x)

x− 1
= lim

x→1

ln′′(ξ)
2!

(x− 1)2

x− 1
= lim

x→1

− 1
ξ2
(x− 1)

2
= 0 ,

ξ étant un nombre réel compris strictement entre 1 et x.

2. Cherchons la limite de cosh(x)−1
x2 lorsque x tend vers 0. À cet effet, écrivons le

développement limité d’ordre 2 de la fonction cosinus hyperbolique (cosh) autour
de 0 ; comme cosh(x) = 1

2

(
exp(x)+exp(−x)

)
, alors, selon les premier et quatrième

points de la proposition 5.4.1 :

cosh(x) =
1

2

(
exp(x) + exp(−x)

)

=
1

2

(

1 + x+
1

2
x2 +Rexp,2(x) + 1 + (−x) + 1

2
(−x)2 +Rexp,2(−x)

)

=
1

2

(
2 + x2 +Rexp,2(x) +Rexp,2(−x)

)
= 1 +

1

2
x2 +Rcosh,2(x) ,

où Rcosh,2(x) =
1
2

(
Rexp,2(x) +Rexp,2(−x)

)
est le reste d’ordre 2 associé à la partie

principale Pcosh,2(x) = 1 + 1
2
x2 du développement limité d’ordre 2 de cosh autour

de 0. Alors :

lim
x→0

cosh(x)− 1

x2
= lim

x→0

1 + 1
2
x2 +Rcosh,2(x)− 1

x2
= lim

x→0

1
2
x2 +Rcosh,2(x)

x2

= lim
x→0

x2
(
1
2
+

Rcosh,2(x)

x2

)

x2
= lim

x→0

(
1

2
+
Rcosh,2(x)

x2

)

=
1

2
,

du fait que :

lim
x→0

Rcosh,2(x)

x2
= lim

x→0

cosh′′′(ξ)
3!

x3

x2
= lim

x→0

sinh(ξ) x

6
= 0 ,

ξ étant un nombre réel compris strictement entre 0 et x.

5.5.2 Remarque : Comme l’illustrent les exemples précédents, il convient, lors du calcul
d’une limite, de considérer des développements limités autour du même point a que celui
vers lequel tend x (dans la limite en question).

5.5.2 Approximations

Les développements de Taylor peuvent se révéler utiles pour calculer des valeurs nu-
mériques approchées de nombres irrationnels. Pour s’en rendre compte, considérons
un nombre irrationnel y1 et supposons qu’il puisse s’écrire sous la forme y1 = f(x1),
où f est une fonction n fois dérivable dans un intervalle ouvert I qui contient l’élé-
ment x1. S’il existe, dans I, un élément x0 pour lequel les valeurs numériques de
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f(x0), f
′(x0), f

′′(x0), . . . , f
(n)(x0) peuvent être facilement obtenues, une valeur approxi-

mative de f(x1) peut être aisément donnée, grâce au développement de Taylor P x0
n (x1)

d’ordre n de f autour de x0, évalué en x1 :

f(x1) ≈ f(x0) +
f ′(x0)

1!
(x1 − x0) +

f ′′(x0)

2!
(x1 − x0)

2 + . . .+
f (n)(x0)

n!
(x1 − x0)

n .

Le signe ≈ indique qu’il s’agit d’une approximation et non d’une égalité. Pour qu’il
puisse y avoir une égalité, il est nécessaire d’ajouter du côté droit le reste Rx0

n (x1) évalué
en x1, associé à P x0

n (x1). Dans le cas où f admet une dérivée d’ordre n + 1 dans I, ce
reste peut s’écrire :

Rx0
n (x1) =

f (n+1)(ξ)

(n + 1)!
(x1 − x0)

n+1 ,

où ξ est un nombre réel compris strictement entre x0 et x1. S’il n’est, en général, pas
évident de savoir ce que vaut concrètement Rx0

n (x1) (vu que ξ n’est en général pas facile
à déterminer), il est néanmoins possible de donner une valeur numérique que l’on est
certain de ne pas dépasser lorsque l’on considère la différence

∣
∣f(x1) − P x0

n (x1)
∣
∣. Cette

valeur, notée Gmax, s’obtient en prenant l’élément ξ ∈ J̄ qui maximise
∣
∣Rx0

n (x1)
∣
∣, où J̄

est l’intervalle fermé délimité par x0 et x1 :

Gmax = max
ξ∈J̄

∣
∣
∣
∣

f (n+1)(ξ)

(n+ 1)!
(x1 − x0)

n+1

∣
∣
∣
∣
=

|x1 − x0|n+1

(n + 1)!
max
ξ∈J̄

∣
∣f (n+1)(ξ)

∣
∣ .

Noter que l’existence de Gmax n’est garantie que si f (n+1) est continue dans J̄ (de sorte
que f (n+1) atteigne une valeur maximale dans J̄). Remarquer, en outre, que Gmax est
d’autant plus petite que x1 est proche de x0.

5.5.3 Exemple : Cherchons une valeur numérique approchée du nombre irrationnel 4
√
19 .

À cet effet, considérons la fonction f : R+ → R donnée par f(x) = 4
√
x (= x

1
4 ) et posons

x0 = 16 et x1 = 19. Écrivons alors le développement de Taylor d’ordre 3 de f autour
de x0 = 16 :

P 16
3 (x) = f(16) +

f ′(16)

1!
(x− 16) +

f ′′(16)

2!
(x− 16)2 +

f ′′′(16)

3!
(x− 16)3

= 16
1
4 +

1
4
16−

3
4

1!
(x− 16) +

− 3
16
16−

7
4

2!
(x− 16)2 +

21
64
16−

11
4

3!
(x− 16)3

= 2 +
1

32
(x− 16)− 3

4096
(x− 16)2 +

7

262 144
(x− 16)3 .

Évalué en x1 = 19, le développement en question fournit une valeur numérique approxi-
mative de f(19) = 4

√
19 :

4
√
19 ≈ 2 +

1

32
(19− 16)− 3

4096
(19− 16)2 +

7

262 144
(19− 16)3

= 2 +
3

32
− 27

4096
+

189

262 144
=

547 325

262 144
.
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Déterminons la valeur Gmax que l’on est certain de ne pas dépasser lorsque l’on considère
la différence

∣
∣f(19)− P 16

3 (19)
∣
∣ :

Gmax =
|19− 16|4

4!
max

ξ∈[16; 19]

∣
∣f (4)(ξ)

∣
∣ =

34

4!
max

ξ∈[16; 19]

∣
∣
∣
∣
−231

256
ξ−

15
4

∣
∣
∣
∣

=
81

24
max

ξ∈[16; 19]

231

256 ξ
15
4

=
27

8

231

256 · 16 15
4

=
6237

67 108 864
≈ 0,0001 .

Ce calcul montre que la valeur approximative obtenue correspond à 4
√
19 jusqu’à la

troisième décimale (comprise) au moins.

5.5.3 Calcul approximatif d’intégrales

Si les différentes techniques d’intégration, développées dans le chapitre 4, se montrent
efficaces dans de nombreuses situations, elles n’offrent cependant pas de méthode géné-
rale permettant d’expliciter les primitives de n’importe quelle fonction définie et continue
dans un intervalle donné.

Là où les procédés d’intégration habituels atteignent leurs limites, d’autres tech-
niques, basées sur des approximations, peuvent s’avérer salvatrices. Tout comme il est
employé pour donner la valeur numérique approximative d’un nombre irrationnel, le
développement de Taylor d’une fonction peut être utilisé pour déterminer approximati-
vement une intégrale. Pour le voir, considérons une fonction f , définie et continue dans
un intervalle fermé [b; c], où b et c sont deux nombres réels tels que b < c. Si f est n fois
dérivable dans un intervalle ouvert I contenant [b; c], l’intégrale de f entre b et c peut
être obtenue approximativement en calculant l’intégrale entre b et c du développement
de Taylor P a

n d’ordre n de f autour d’un point a ∈ I :

∫ c

b

f(x) dx ≈
∫ c

b

P a
n (x) dx .

Le signe ≈ indique qu’il s’agit d’une approximation et non d’une égalité pure. Pour qu’il
puisse y avoir une égalité, il est nécessaire d’ajouter du côté droit l’intégrale entre b et c
de Ra

n, où R
a
n est le reste associé à P a

n , de sorte que :

∫ c

b

P a
n (x) dx+

∫ c

b

Ra
n(x) dx =

∫ c

b

(
P a
n (x) +Ra

n(x)
)
dx =

∫ c

b

f(x) dx .

Dans le cas où f admet une dérivée d’ordre n + 1 dans I, l’intégrale du reste peut
s’écrire : ∫ c

b

Ra
n(x) dx =

∫ c

b

f (n+1)(ξ)

(n+ 1)!
(x− a)n+1 dx ,

où ξ est un nombre réel compris strictement entre a et x. S’il n’est, en général, pas évident
de savoir ce que vaut concrètement cette intégrale (vu que ξ, qui dépend de x, n’est en
général pas facile à déterminer), il est néanmoins possible, dans le cas où a ∈ [b; c],
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de donner une valeur numérique que l’on est certain de ne pas dépasser lorsque l’on
considère la différence

∣
∣
∫ c

b
f(x) dx −

∫ c

b
P a
n (x) dx

∣
∣. Notée Hmax, cette valeur s’obtient en

considérant l’élément ξ ∈ [b; c] qui maximise
∣
∣f (n+1)(ξ)

∣
∣ dans [b; c] :

∣
∣
∣
∣

∫ c

b

Ra
n(x) dx

∣
∣
∣
∣
6

∫ c

b

∣
∣Ra

n(x)
∣
∣ dx

=

∫ c

b

∣
∣f (n+1)(ξ)

∣
∣
|x− a|n+1

(n + 1)!
dx

6

∫ c

b

max
ξ∈[b; c]

∣
∣f (n+1)(ξ)

∣
∣
|x− a|n+1

(n + 1)!
dx

= max
ξ∈[b; c]

∣
∣f (n+1)(ξ)

∣
∣

(n + 1)!

∫ c

b

|x− a|n+1 dx = Hmax .

Noter que l’existence de Hmax n’est garantie que si f (n+1) est continue dans [b; c] (de
sorte que f (n+1) atteigne une valeur maximale dans [b; c]). Remarquer, en outre, que la
condition a ∈ [b; c] (évoquée plus haut) est importante ; si elle n’est pas respectée, il n’est
pas possible d’affirmer que l’élément ξ qui maximise

∣
∣f (n+1)(ξ)

∣
∣ se trouve nécessairement

dans [b; c] ; le calcul ci-dessus n’est alors plus forcément correct.

5.5.4 Exemples : 1. Soit f : R → R la fonction donnée par f(t) = exp(−t2). Il peut
être montré que l’intégrale

∫ x

0
exp(−t2) dt ne peut pas être exprimée au moyen des

fonctions usuelles (cf. annexe C) ; cela étant, elle peut être approximée par une
fonction polynomiale en x. Pour s’en convaincre, considérons le développement de
MacLaurin d’ordre 2m de la fonction f , où m ∈ N. Ce développement s’obtient en
prenant le développement de MacLaurin d’ordre m de la fonction exponentielle :

Pexp,m(u) = 1 + u+
1

2!
u2 + . . .+

1

m!
um ,

dans lequel u est remplacé par −t2 :

Pf,2m(t) = Pexp,m(−t2) = 1 +
(
−t2

)
+

1

2!

(
−t2

)2
+ . . .+

1

m!

(
−t2

)m

= 1− t2 +
1

2
t4 − . . .+

(−1)m

m!
t2m .

Alors :
∫ x

0

exp(−t2) dt ≈
∫ x

0

(

1− t2 +
1

2!
t4 − . . .+

(−1)m

m!
t2m
)

dt

=

[

t− 1

3
t3 +

1

5 · 2! t
5 − . . .+

1

(2m+ 1)m!
(−1)m t2m+1

]x

0

= x− 1

3
x3 +

1

5 · 2! x
5 − . . .+

1

(2m+ 1)m!
(−1)m x2m+1 ;

cette dernière expression est effectivement un polynôme en x.
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2. Calculons l’intégrale entre 0 et 1 de la fonction f : R+ → R donnée par f(x) =√
x exp(x). Les primitives de f n’étant pas évidentes à expliciter, déterminons

une valeur approchée de l’intégrale. À cet effet, utilisons (par exemple) le déve-
loppement limité d’ordre 3 autour de 0 de la fonction exponentielle : exp(x) =
Pexp,3(x) + Rexp,3(x), où Pexp,3(x) = 1 + x + 1

2
x2 + 1

6
x3 est le développement de

MacLaurin d’ordre 3 de l’exponentielle et Rexp,3(x) le reste associé ; exp étant
infiniment dérivable dans R, ce reste peut s’écrire sous la forme Rexp,3(x) =
1
4!
exp(4)(ξ) x4 = 1

24
exp(ξ) x4, où ξ est un nombre réel compris strictement entre 0

et x. Ainsi :
∫ 1

0

√
x exp(x) dx =

∫ 1

0

x
1
2

(

1 + x+
1

2
x2 +

1

6
x3 +

exp(ξ)

24
x4
)

dx

=

∫ 1

0

(

x
1
2 + x

3
2 +

1

2
x

5
2 +

1

6
x

7
2 +

exp(ξ)

24
x

9
2

)

dx

=

∫ 1

0

(

x
1
2 + x

3
2 +

1

2
x

5
2 +

1

6
x

7
2

)

dx+

∫ 1

0

exp(ξ)

24
x

9
2 dx

=

[
2

3
x

3
2 +

2

5
x

5
2 +

1

2
· 2
7
x

7
2 +

1

6
· 2
9
x

9
2

]1

0

+

∫ 1

0

exp(ξ)

24
x

9
2 dx

=
2

3
+

2

5
+

1

7
+

1

27
+

∫ 1

0

exp(ξ)

24
x

9
2 dx

=
1178

945
+

∫ 1

0

exp(ξ)

24
x

9
2 dx ≈ 1178

945
≈ 1,25 .

La quantité 1178
945

est le résultat du calcul approximatif de
∫ 1

0

√
x exp(x) dx. Calcu-

lons encore la valeur que l’on est certain de ne pas dépasser lorsque l’on considère la
différence

∣
∣
∫ 1

0

√
x exp(x) dx−

∫ 1

0

√
xPexp,3(x) dx

∣
∣. Cette valeur s’obtient en prenant

l’élément ξ ∈ [0; 1] qui maximise
∣
∣
∫ 1

0
1
24
exp(ξ) x

9
2 dx

∣
∣ :

∣
∣
∣
∣

∫ 1

0

exp(ξ)

24
x

9
2 dx

∣
∣
∣
∣
6

∫ 1

0

∣
∣
∣
∣

exp(ξ)

24
x

9
2

∣
∣
∣
∣
dx =

∫ 1

0

exp(ξ)

24
x

9
2 dx

=

∫ 1

0

exp(1)

24
x

9
2 dx =

e

24
· 2

11
x

11
2

∣
∣
∣

1

0
=

e

132
≈ 0,02 .

Ce calcul montre que la valeur 1,25 (obtenue un peu plus haut) correspond à la va-

leur exacte de l’intégrale
∫ 1

0

√
x exp(x) dx jusqu’à la première décimale (comprise)

au moins.

5.6 Développements illimités

Considérons une fonction réelle f : D → R, définie dans un intervalle ouvert I ⊂ D,
et a un point de I ; supposons que f est infiniment dérivable dans I. Dès lors que la
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dérivée d’ordre p de f en a est définie, quel que soit p ∈ N, f admet un développement
de Taylor P a

n d’ordre n autour de a, quel que soit n ∈ N. Selon les propos tenus dans
les remarques 5.2.2, le nombre a est un point de contact dont l’ordre est égal au degré
du polynôme P a

n (x) ; plus le degré du polynôme est élevé, plus l’ordre de a est donc
grand. Il est alors tentant de se dire que plus le degré de P a

n (x) est grand, plus P a
n se

comporte de la même manière que f dans un voisinage de a. Mais est-ce bien le cas ? Et
qu’arrive-t-il lorsque n tend vers l’infini ?

5.6.1 Définition : Soit f : D → R une fonction réelle, définie et infiniment dérivable dans
un intervalle ouvert I ⊂ D ; soit aussi a un élément de I. On appelle série de Taylor
de f en a la somme P a contenant une infinité de termes, donnée par :

P a(x) = f(a) + f ′(a) (x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (k)(a)

k!
(x− a)k + . . .

=
∞∑

k=0

f (k)(a)

k!
(x− a)k .

Dans le cas où a = 0, on parle de série de MacLaurin de f .

5.6.2 Remarques : Soit f : D → R une fonction réelle, définie et infiniment dérivable
dans un intervalle I ⊂ D ; soient aussi a un point dans I et P a la série de Taylor de f
en a.

• Si f est une fonction polynomiale de degré n, sa série de Taylor en a ne contient
qu’un nombre fini de termes non nuls. En effet, de par sa nature polynomiale,
toutes les dérivées de f d’ordre plus grand ou égal à n + 1 sont des fonctions
identiquement nulles. Seuls les n + 1 premiers termes de la série de Taylor sont
donc non tous nuls. Un calcul explicite permet de montrer que :

f(x) = P a(x) = P a
n (x) .

• Les propos tenus au point précédent ne sont en général plus valables lorsque f
n’est pas une fonction polynomiale. Dans ce cas, la série de Taylor de f peut
comporter une infinité de termes non nuls.

• En chaque point x ∈ D, l’expression P a(x) peut être vue comme une série numé-
rique de terme général uk, donné par :

uk(x) =
f (k)(a)

k!
(x− a)k ;

aussi, le développement de Taylor P a
n (x) d’ordre n de f autour de a peut être

vue comme la somme partielle d’indice n, de terme général uk. Ainsi :

P a(x) = lim
n→∞

P a
n (x) .

Se pose alors naturellement la question de savoir dans quelles circonstances P a(x)
converge.
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5.6.3 Définitions : Soit f : D → R une fonction réelle, définie et infiniment dérivable
dans un intervalle ouvert I ⊂ D ; soient aussi a un élément de I, P a

n le développement
de Taylor d’ordre n de f autour de a, et P a la série de Taylor de f en a.

• On dit que la série de Taylor P a(x) de f en a, évaluée en x ∈ D, converge s’il
existe un nombre réel ℓ tel que :

lim
n→∞

P a
n (x) = P a(x) = ℓ .

• On dit que la série de Taylor P a(x) de f en a, évaluée en x ∈ D, converge
vers f(x) si :

lim
n→∞

P a
n (x) = P a(x) = f(x) .

5.6.4 Remarque : Reprenons la fonction f de la définition précédente et P a sa série de
Taylor en a. Dès lors que P a(x) converge pour un certain x ∈ D, alors nécessairement
f (k)(a) <∞ quel que soit k ∈ N.

5.6.5 Définition : Soit f : D → R une fonction réelle, définie et infiniment dérivable dans
un intervalle ouvert I ⊂ D. On appelle domaine(s) de convergence de P a l’ensemble
Da ⊂ D, constitué de tous les nombres x ∈ D pour lesquels la série P a(x) converge :

Da =

{

x ∈ D

∣
∣
∣
∣

∞∑

k=0

f (k)(a)

k!
(x− a)k converge

}

.

5.6.6 Remarque : Dans la définition précédente, le domaine Da contient dans tous les
cas le nombre réel a, vu que f(a) = P a(a) par définition.

5.6.7 Proposition : Soit f : D → R une fonction réelle, définie et infiniment dérivable
dans un intervalle ouvert I ⊂ D ; soient aussi a un élément de I, P a

n le développement
de Taylor d’ordre n de f autour de a, Ra

n le reste associé à P a
n , et P

a la série de Taylor
de f en a. Alors la série de Taylor P a(x) de f en a, évaluée en x ∈ D, converge vers f(x)
si et seulement si le reste Ra

n(x), évalué en x, tend vers 0 lorsque n tend vers l’infini :

lim
n→∞

Ra
n(x) = 0 .

Preuve : Ce résultat est une conséquence directe de la définition du reste Ra
n associé au

développement de Taylor P a
n d’ordre n d’une fonction f autour du nombre réel a. �

5.6.8 Exemples : 1. Soit f : R → R la fonction donnée par f(x) = exp(x). Comme f
est infiniment dérivable dans tout R, elle admet une série de Taylor en tout a ∈ R.
La série de Taylor en a = 0, i.e. la série de MacLaurin de f s’écrit :

P (x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . . =

∞∑

k=0

xk

k!
.
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Quant au développement de MacLaurin d’ordre n, il est donné par :

Pn(x) = 1 +
x

1!
+
x2

2!
+ . . .+

xn

n!
=

n∑

k=0

xk

k!
.

Étudions à présent la convergence de P (x). À cet effet, considérons le reste Rn

associé à Pn. Comme f est infiniment dérivable dans R, Rn peut s’écrire sous la
forme :

Rn(x) =
exp(ξn+1)

(n + 1)!
xn+1 ,

où ξn+1 est un nombre réel compris strictement entre 0 et x. Fixons à présent
l’élément x ∈ R. Comme ξn+1 est strictement compris entre 0 et x, et ce quel que
soit n ∈ N, alors 0 < exp(ξn+1) 6 M pour tout n ∈ N, où M est un nombre réel
strictement positif. Ainsi :

∣
∣Rn(x)

∣
∣ =

∣
∣
∣
∣

exp(ξn+1)

(n+ 1)!
xn+1

∣
∣
∣
∣
=

exp(ξn+1)

(n + 1)!
|x|n+1 6

M

(n + 1)!
|x|n+1 .

Notons vn(x) = M
(n+1)!

|x|n+1. L’ensemble
(
vn(x)

)
=
(
v0(x) ; v1(x) ; v2(x) ; . . .

)

peut être alors vu comme une suite de nombres et
∑∞

n=0 vn(x) comme une sé-
rie numérique. Cette série converge ; en effet,

∑∞
n=0 vn(0) =

∑∞
n=0 0 = 0 si x = 0,

et si x 6= 0 (cf. critère de d’Alembert, proposition 1.6.33 de la sous-section 1.6.4
du chapitre 1) :

lim
n→∞

∣
∣
∣
∣

vn+1

vn

∣
∣
∣
∣
= lim

n→∞

M
((n+1)+1)!

|x|(n+1)+1

M
(n+1)!

|x|n+1
= lim

n→∞

(n + 1)!

(n + 2)!
|x|

= lim
n→∞

(n + 1)!

(n+ 2)(n+ 1)!
|x| = lim

n→∞

|x|
n + 2

= 0 < 1 .

La suite (vn) converge donc vers 0 (cf. proposition 1.6.31 de la sous-section 1.6.4
du chapitre 1), et ce quel que soit x ∈ R. Par conséquent,

∣
∣Rn(x)

∣
∣ tend vers 0

lorsque n tend vers l’infini, et ce pour tout x ∈ R ; ce qui prouve que :

lim
n→∞

Pn(x) = P (x) = exp(x) ,

pour tout x ∈ R. La série de MacLaurin de l’exponentielle converge donc vers
l’exponentielle dans tout R ; ce qui permet d’écrire :

exp(x) =
∞∑

k=0

xk

k!
, pour tout x ∈ R .

2. Soit f : R → R la fonction donnée par f(x) = sin(x). Comme f est infiniment
dérivable dans tout R, elle admet une série de Taylor en tout a ∈ R. La série de
Taylor en a = 0, i.e. la série de MacLaurin de f s’écrit :

P (x) =
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ . . . =

∞∑

k=0

(−1)k x2k+1

(2 k + 1)!
.
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Quant au développement de MacLaurin d’ordre n, il est donné par :

P2n+1(x) =
x

1!
− x3

3!
+ . . .+

(−1)n x2n+1

(2n+ 1)!
=

n∑

k=0

(−1)k x2k+1

(2 k + 1)!
.

Étudions à présent la convergence de P (x). À cet effet, considérons le reste R2n+1

associé à P2n+1. Comme f est infiniment dérivable dans R, R2n+1 peut s’écrire sous
la forme :

R2n+1(x) =
sin(2n+2)(ξ2n+2)

(2n+ 2)!
x2n+2 ,

où sin(2n+2) est la dérivée d’ordre 2n+2 du sinus et ξ2n+2 un nombre réel compris
strictement entre 0 et x. Vu que sin(2n+2)(x) = sin(x) pour tout n entier, positif
et impair et sin(2n+2)(x) = − sin(x) pour tout n entier, positif et pair, i.e. vu que
sin(2n+2)(x) = (−1)n+1 sin(x) pour tout n ∈ N, et que le sinus ne prend que des
valeurs comprises entre −1 et 1, alors :

∣
∣R2n+1(x)

∣
∣ =

∣
∣
∣
∣

sin(2n+2)(ξn+1)

(2n+ 2)!
x2n+2

∣
∣
∣
∣
=

∣
∣sin(2n+2)(ξn+1)

∣
∣

(2n+ 2)!
|x|2n+2

6
1

(2n+ 2)!
|x|2n+2 .

Or, pour tout x 6= 0 :

lim
n→∞

∣
∣
∣
∣
∣

1
(2 (n+1)+2)!

|x|2(n+1)+2

1
(2n+2)!

|x|2n+2

∣
∣
∣
∣
∣
= lim

n→∞

1
(2n+4)!

|x|2n+4

1
(2n+2)!

|x|2n+2

= lim
n→∞

(2n+ 2)!

(2n+ 4)!
|x|2

= lim
n→∞

(2n+ 2)!

(2n+ 4)(2n+ 3)(2n+ 2)!
|x|2

= lim
n→∞

x2

(2n+ 4)(2n+ 3)
= 0 < 1 .

Donc, en raisonnant de la même manière que dans l’exemple précédent (et en
remarquant que R2n+1(0) = 0 pour tout n ∈ N) :

lim
n→∞

∣
∣R2n+1(x)

∣
∣ = 0 ,

pour tout x ∈ R ; ce qui permet de conclure que :

lim
n→∞

P2n+1(x) = P (x) = sin(x) ,
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et ce pour tout x ∈ R. La série de MacLaurin du sinus converge donc vers le sinus
dans tout R ; ce qui permet d’écrire :

sin(x) =

∞∑

k=0

(−1)k x2k+1

(2 k + 1)!
, pour tout x ∈ R .

Dans le cas de la fonction cosinus, un raisonnement similaire à celui qui vient d’être
mené conduit au résultat :

cos(x) =
∞∑

k=0

(−1)k x2k

(2 k)!
, pour tout x ∈ R .

La figure ci-dessous illustre des échantillons du graphe de la fonction cosinus, ainsi
que des graphes des développements de MacLaurin P0, P2, P4 et P12 du cosinus.
Plus l’ordre du développement augmente, plus le domaine dans lequel le graphe
du développement et le graphe du cosinus se ressemblent augmente.

P0

P2

P4 P12

x

y

cos

−2π −π π 2π

−1

0

1

3. Les fonctions sinus et cosinus hyperboliques connaissent des écritures similaires à
celles du sinus et du cosinus :

sinh(x) =

∞∑

k=0

x2k+1

(2 k + 1)!
, pour tout x ∈ R ,

cosh(x) =

∞∑

k=0

x2k

(2 k)!
, pour tout x ∈ R .

Ces égalités se prouvent de façon analogue à celles établies pour le sinus et le
cosinus.

5.6.9 Remarques : • Le fait que exp(x) =
∑∞

k=0
xk

k!
, pour tout x ∈ R, permet d’af-

firmer que la fonction exponentielle est sa série de MacLaurin. En conséquence,
la série de MacLaurin de la fonction exponentielle peut servir de définition même
à cette fonction. De telles considérations s’appliquent également aux fonctions si-
nus, cosinus, sinus et cosinus hyperboliques. Dans la littérature spécifique au sujet,
il n’est, du reste, pas rare de voir les fonctions exponentielles, trigonométriques
et hyperboliques définies au moyen de leurs séries de MacLaurin respectives.
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• Comme exp(x) =
∑∞

k=0
xk

k!
pour tout x ∈ R, alors :

e = exp(1) =
∞∑

k=0

1k

k!
=

∞∑

k=0

1

k!
= 1 +

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ . . .

La somme partielle
∑n

k=0
1
k!

permet d’obtenir une valeur numérique approxima-
tive du nombre irrationnel e. Plus n est grand, meilleure est l’approximation.

5.6.10 Définition : Une fonction réelle f : D → R est dite analytique si elle peut s’écrire,
dans un voisinage de chaque point a ∈ D, sous la forme d’un polynôme en x − a, de
degré fini ou non ; autrement dit, f est analytique si en chaque point a ∈ D, il existe un
voisinage Va de a, inclus dans D, et des coefficients réels ba0, b

a
1, b

a
2, . . . tels que :

f(x) =
∞∑

k=0

bak (x− a)k , pour tout x ∈ Va .

5.6.11 Remarques : • Il peut être montré que l’expression
∑∞

k=0 b
a
k (x−a)k , donnée

dans la définition précédente, n’est rien d’autre que la série de Taylor de f en a.

• Dans la définition précédente, le voisinage Va de a n’a pas besoin d’être l’en-
semble R dans son intégralité. Par définition même de la notion de voisinage, il
ne peut, en outre, pas être réduit au point a uniquement.

• Les fonctions usuelles, i.e. les fonctions polynomiales, rationnelles, exponentielles,
logarithmes, puissances, hyperboliques, hyperboliques réciproques, trigonomé-
triques, trigonométriques réciproques, sont toutes analytiques.

• En raisonnant comme dans les exemples 5.6.8 et en utilisant le critère de conver-
gence des séries alternées (cf. proposition A.2.6, section A.2 de l’annexe A), il
peut être montré que la fonction Arctg peut s’écrire, pour tout x ∈ [−1; 1] sous
la forme :

Arctg(x) =
∞∑

k=0

(−1)k
x2k+1

2 k + 1
= x− x3

3
+
x5

5
− x7

7
+ . . .

Or, par définition de la fonction arc tangente, Arctg(1) = π
4
. Par conséquent :

π = 4Arctg(1) = 4

∞∑

k=0

(−1)k
12k+1

2 k + 1
= 4

∞∑

k=0

(−1)k
1

2 k + 1

= 4

(

1− 1

3
+

1

5
− 1

7
+ . . .

)

.

La somme partielle 4
∑n

k=0(−1)k 1
2 k+1

peut être utilisée pour donner une valeur
numérique approximative du nombre irrationnel π. Si, dans les faits, elle n’est que
peu considérée, c’est à cause de sa trop lente progression vers la valeur exacte
de π à mesure que n augmente. Noter qu’il existe une autre formule permettant
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de trouver approximativement la valeur numérique de π ; basée également sur la
série de l’arc tangente (donnée ci-dessus), elle utilise l’égalité Arctg

(
1√
3

)
= π

6
:

π = 6Arctg

(
1√
3

)

= 6

∞∑

k=0

(−1)k

2 k + 1

(
1√
3

)2k+1

= 6

∞∑

k=0

(−1)k

2 k + 1

(
1√
3

)2k
1√
3

=
6√
3

∞∑

k=0

(−1)k

2 k + 1

(
1

3

)k

= 2
√
3

∞∑

k=0

1

2 k + 1

(

−1

3

)k

= 2
√
3

(

1− 1

3 · 3 +
1

5 · 32 − 1

7 · 33 + . . .

)

.

La somme partielle 2
√
3
∑n

k=0
1

2 k+1

(
− 1

3

)k
progresse beaucoup plus rapidement

vers la valeur exacte de π (à mesure que n augmente) que celle obtenue à partir de
Arctg(1) = π

4
. Pour que cette expression soit applicable, il est toutefois nécessaire

d’avoir une bonne approximation numérique du nombre
√
3 .

• Nombre de fonctions ne sont pas analytiques. Un
exemple de fonction non analytique est la fonction
f : R → R donnée par :

f(x) =

{

exp
(
− 1

x2

)
si x ∈ R∗

0 si x = 0
. x

y

−1 0 1

1

Il peut être montré que cette fonction est infiniment dérivable dans tout R, y
compris en 0, et qu’elle et toutes ses dérivées s’annulent en x = 0 (f(0) = f ′(0) =
f ′′(0) = . . . = 0). La série de MacLaurin de cette fonction s’écrit alors :

P (x) = 0 + 0 · x+ 0 · x2 + 0 · x3 + . . . = 0 .

La série converge donc vers 0, et ce quel que soit x ∈ R. De fait, le domaine
de convergence de la série est R tout entier. Or, f ne s’annule qu’en x = 0.
La fonction f ne cöıncide donc avec P qu’en x = 0 et nulle part ailleurs. Par
conséquent, il n’existe aucun voisinage de 0 dans lequel f = P .

5.6.12 Remarque : Revenons à la définition 5.6.5. Le domaine de convergence Da de
la série de Taylor P a de f en a peut être obtenu à l’aide des critères de convergence
présentés dans la sous-section 1.6.4 du chapitre 1 (critères de d’Alembert et de la racine),
ainsi que dans la sous-section 4.6.4 du chapitre 4 (test de l’intégrale), et aussi (dans une
moindre mesure) dans la section A.2 de l’annexe A. Noter, toutefois, que la convergence
de P a dans Da n’implique pas nécessairement la convergence de P a vers f dans Da.
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5.6.13 Exemple : Soit f : Rr {1} → R la fonction donnée par f(x) = 1
1−x

. Cette
fonction étant infiniment dérivable dans un voisinage de 0, elle admet une série de
MacLaurin ; calculons-la. À cet effet, déterminons l’expression de la dérivée d’ordre k
de f et évaluons-la en x = 0 :

f(x) =
1

1− x
= (1− x)−1 ⇒ f(0) = (1− 0)−1 = 1 ,

f ′(x) = −(1− x)−2 (−1) = (1− x)−2 ⇒ f ′(0) = (1− 0)−2 = 1 ,

f ′′(x) = −2 (1− x)−3 (−1) = 2 (1− x)−3 ⇒ f ′′(0) = 2 (1− 0)−3 = 2 ,

f ′′′(x) = 2 (−3) (1− x)−4 (−1) = 6 (1− x)−4 ⇒ f ′′′(0) = 6 (1− 0)−4 = 6 = 3! ,

...
...

...
...

... =
...

f (k)(x) = −k! (1− x)−k−1 (−1) = k! (1− x)−k−1 ⇒ f (k)(0) = k! (1− 0)−k−1 = k! .

La série de MacLaurin de f s’écrit donc :

P (x) =
∞∑

k=0

f (k)(0)

k!
xk =

∞∑

k=0

k!

k!
xk =

∞∑

k=0

xk = 1 + x+ x2 + x3 + x4 + x5 + . . .

Pour chaque x, P (x) peut être vue comme une série numérique de terme général xn.
Déterminons alors les valeurs de x pour lesquelles cette série converge. Pour cela, utilisons
le critère de la racine (cf. proposition 1.6.34 de la sous-section 1.6.4 du chapitre 1) :

lim
n→∞

n
√

|x|n = lim
n→∞

|x| .

Il y a convergence si |x| < 1, i.e. si x ∈ ]−1; 1[ . Si x = 1, il ne peut pas y avoir con-
vergence vu que le nombre 1 n’est pas dans le domaine de définition de f . Aussi, il ne
peut pas y avoir convergence lorsque x = −1, vu que :

P (−1) = 1 + (−1) + (−1)2 + (−1)3 + (−1)4 + (−1)5 + . . .

= 1− 1 + 1− 1 + 1− 1 + . . .

n’admet pas de limite. En résumé, la série de MacLaurin P de f converge dans le
domaine :

Da = ]−1; 1[ .

Et ce vers quoi P converge dansDa n’est, dans le cas présent, rien d’autre que f . Pour s’en
convaincre, il suffit de remarquer que le reste Rn du développement de MacLaurin Pn de f
tend vers 0 lorsque n tend vers l’infini. On peut aussi, de manière alternative, observer
que P (x) est, pour tout x, la série associée à une suite géométrique de raison x ; or,
selon les propos tenus dans la sous-section 1.6.3, la série est égale à 1

1−x
, pour autant

que |x| < 1.



Chapitre 6

Équations différentielles

Avec l’élaboration du calcul infinitésimal dans la deuxième moitié du XVIIe siècle, une
nouvelle sorte d’équations, dans lesquelles interviennent une fonction et une ou plusieurs
de ses dérivées, a peu à peu émergé. Même si l’une ou l’autre de ces équations était déjà
présente dans certains problèmes rencontrés par les scientifiques de la première moitié
du même siècle, il n’en demeure pas moins que c’est avec le calcul différentiel et intégral
qu’il a été possible de poser une définition claire, ainsi que de fournir des méthodes de
résolution rigoureuses et appropriées pour ce type d’objets mathématiques.

6.1 Équations différentielles ordinaires

De telles équations sont fréquemment utilisées pour décrire le comportement de sys-
tèmes physiques, biologiques, etc. (tels les circuits électriques, le mouvement des objets
matériels, une population d’êtres vivants...). Parvenir à résoudre l’équation différentielle
gouvernant un système donné permet de connâıtre son évolution et ainsi de prédire son
comportement dans le futur.

6.1.1 Définition : On appelle équation différentielle ordinaire toute équation liant une
fonction réelle y de la variable réelle x, ses dérivées y′, . . . , y(n), ainsi que la variable x ;

• on dit que l’équation différentielle ordinaire en question est donnée sous forme
implicite si elle s’écrit :

G(x; y; y′; . . . ; y(n)) = 0 ,

où G est une fonction des n + 2 grandeurs x, y, y′, . . . , y(n) ;

• on dit que l’équation différentielle ordinaire en question est donnée sous forme
explicite si elle s’écrit :

y(n) = g(x; y; y′; . . . ; y(n−1)) ,

où g est une fonction des n+ 1 grandeurs x, y, y′, . . . , y(n−1).

Le nombre n (correspondant au plus grand ordre de dérivation de y apparaissant dans
l’équation) est appelé ordre de l’équation différentielle.
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6.1.2 Illustrations : 1. Modèle élémentaire de la dynamique des populations :
Soit y(t) l’effectif d’une population de bactéries au temps t. Soit dy

dt
(t) = y′(t) la

vitesse de croissance de cette population. Dans un milieu abondant en nourriture,
on observe que la vitesse de croissance de la population est, en bonne approxi-
mation, proportionnelle à la population même, i.e. au nombre d’individus qui la
constitue :

dy

dt
(t) = y′(t) = k y(t) ,

où k est une constante. Une telle expression est une équation différentielle ordinaire
du premier ordre.

2. Système prédateur-proie :
Ce modèle de croissance de populations est plus complexe que le précédent, du fait
qu’il comporte deux espèces : l’une faisant office de proies (comme par exemple
les lièvres des neiges), l’autre de prédateurs (comme par exemple les lynx). Soient
y(t) et z(t) les effectifs de proies et de prédateurs, respectivement, à l’instant t ;
soient aussi dy

dt
= y′(t) et dz

dt
= z′(t) les vitesses de croissance des proies et des

prédateurs, respectivement, au temps t. Les quatre grandeurs y, y′, z et z′ sont,
dans ce système, liées entre elles par deux équations suivantes, appelées équations
de Lotka I-Volterra II :

{

y′(t) = Ay(t)− B y(t) z(t)

z′(t) = −C z(t) +D y(t) z(t)
.

Les paramètres A, B, C et D peuvent être interprétées de la façon suivante :

⋄ A est le taux de reproduction des proies ; il est constant et indépendant du
nombre de prédateurs ;

⋄ B est le taux de mortalité des proies due aux prédateurs rencontrés ;

⋄ C est le taux de mortalité des prédateurs ; il est constant et indépendant du
nombre de proies ;

⋄ D est le taux de reproduction des prédateurs ; il dépend du nombres de proies
rencontrées et mangées.

Les équations de Lotka-Volterra constituent un système d’équations différentielles
ordinaires du premier ordre.

3. Loi d’atténuation du rayonnement électromagnétique :
Lorsqu’une onde électromagnétique traverse un milieu matériel, son intensité I(x)
diminue avec l’épaisseur x de matière traversée, selon l’équation :

−I ′(x) = −dI

dx
(x) = µ I(x) ,

I. Alfred James Lotka était un mathématicien et démographe américain, né en 1880 à Lemberg,
dans l’Empire d’Autriche-Hongrie (aujourd’hui Lviv, en Ukraine), et mort en 1949 à New York, aux

États-Unis.
II. Vito Volterra était un mathématicien italien, né en 1860 à Ancône, dans le royaume d’Italie, et

mort en 1940 à Rome.
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où I ′(x) est le taux d’atténuation de l’intensité en fonction de l’épaisseur x et µ un
coefficient, appelé coefficient d’atténuation, dépendant de l’énergie de l’onde ainsi
que du milieu en question. Connue sous le nom de loi de Beer III-Lambert IV, cette
relation est, comme celle du premier exemple ci-dessus, une équation différentielle
ordinaire du premier ordre.

4. Masse soumise à la force de rappel d’un ressort :
Soit une masse m suspendue à un ressort, qui est lui-même fixé, à l’autre extrémité,
au plafond d’une pièce. Soit un axe y, vertical et orienté vers le haut, dont l’origine
se trouve à l’emplacement de la masse m lorsqu’elle est immobile, à l’équilibre. À
un instant donné, la masse m est tirée vers le bas, puis lâchée. En tout temps, elle
subit une force verticale, appelée force de rappel, dont la composante selon y est
Fy = −k y, où k est une constante. Selon la deuxième loi de New-
ton, cette force est égale, en tout temps, au produit de m et de
l’accélération d2y

dt2
= y′′(t) que subit m selon y :

my′′(t) = −k y(t) .

Une telle expression est une équation différentielle ordinaire du
deuxième ordre.

m

y

6.1.3 Remarques : • On parle d’équations différentielles ordinaires , pour marquer
clairement la différence avec les équations aux dérivées partielles, équations dans
lesquelles interviennent des fonctions de plusieurs variables réelles, ainsi que leurs
dérivées dites partielles.

• L’équation ou les équations différentielle(s) décrivant un modèle de croissance de
population laisse(nt) supposer que le nombre d’individus d’une population est
une grandeur réelle continue ; ce qui n’est évidemment pas le cas dans la réalité.
L’équation ou les équations présentée(s) décrit ou décrivent en fait une généra-
lisation du modèle donné, dans laquelle la population étudiée est une fonction
continue, qui peut prendre des valeurs aussi bien entières que non entières. Cela
étant, chaque fois que la fonction prend des valeurs entières, elle décrit bien le
modèle donné, dans lequel la population se compte en nombre entier d’individus.

6.1.4 Définition : Soit G(x; y; y′; y′′; . . . ; y(n)) = 0 une équation différentielle ordinaire
d’ordre n ; soit aussi u : I → R une fonction n fois dérivable dans un intervalle ouvert
I ⊂ R, dont la dérivée d’ordre n est continue dans I. On dit que u est une solution de
l’équation différentielle en question si :

G
(
x ; u(x) ; u′(x) ; u′′(x) ; . . . ; u(n)(x)

)
= 0 ,

pour tout x ∈ I.

III. August Beer était un mathématicien, physicien et chimiste germanique, né le 31 juillet 1825 à
Trèves, dans la Rhénanie-Palatinat (faisant partie aujourd’hui de la République fédérale d’Allemagne),
et mort le 18 novembre 1863 à Bonn, en Rhénanie-du-Nord-Westphalie (faisant également partie au-
jourd’hui de la République fédérale d’Allemagne).
IV. Johann Heinrich Lambert était un mathématicien, physicien et philosophe, né en 1728 à Mulhouse

(rattachée à l’époque à la Confédération helvétique) et mort en 1777 à Berlin (en Prusse).
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6.1.5 Remarques : • Différentes définitions de la solution d’une équation différen-
tielle peuvent être trouvées dans la littérature, avec des hypothèses plus ou moins
fortes. Si, dans l’énoncé précédent, la condition de continuité de la n-ième dérivée
a été imposée, c’est afin de pouvoir utiliser sans restriction le calcul intégral lors
de la résolution (pour autant qu’elle soit possible) d’une équation différentielle
donnée.

• Si u : I → R, où I ⊂ R est un intervalle ouvert, est une solution de l’équation :

G(x; y; y′; y′′; . . . ; y(n)) = 0 ,

alors la restriction de u à un intervalle ouvert J ⊂ I est également solution de
cette même équation.

• Nombre d’équations différentielles ordinaires n’ont pas de solutions analytiques
(i.e. n’ont pas de solutions qui peuvent être écrites au moyen de fonctions usuelles).
Leurs résolutions ne peuvent alors être obtenues qu’avec des techniques d’approxi-
mation provenant du domaine mathématique de l’analyse numérique. Noter que,
dans le cas d’une équation différentielle du premier ordre, donnée sous forme
explicite :

y′ = g(x; y) ,

la solution approximée peut être déduite à l’aide du raisonnement géométrique
suivant :

⋄ En chaque point du plan euclidien R2, muni de son système de coordonnées
cartésiennes canonique Oxy, on trace une petite flèche de pente p = g(x; y) ;
l’ensemble de ces flèches forme ce que l’on appelle
un champ de vecteur.

⋄ On trouve une solution graphique en traçant la
courbe d’équation y = u(x), où u est une fonction
dérivable, dont la tangente en chaque point de R2

cöıncide avec le champ de vecteur (i.e. à la petite
flèche) au point en question. Une telle solution
graphique est appelée ligne de champ.

x

y

6.1.6 Exemples : 1. Soit l’équation différentielle y′(x) = a, où a est une constante
réelle. Alors, en intégrant des deux côtés, i.e. en prenant l’ensemble des primitives
des deux côtés, il vient :

y′(x) = a ⇔
∫

y′(x) dx =

∫

a dx ⇔ y(x) = a x+ C ,

où x ∈ R et C est une constante réelle. L’équation différentielle y′(x) = a admet
donc pour solution la fonction y : R → R, donnée par y(x) = a x+ C.
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2. Soit l’équation différentielle y′(x) = y(x). Si y(x) 6= 0 quel que soit x, cette équation

peut être récrite sous la forme y′(x)
y(x)

= 1. Dans ce cas :

y′(x)

y(x)
= 1 ⇔

∫
y′(x)

y(x)
dx =

∫

1 dx ⇔ ln
∣
∣y(x)

∣
∣ = x+ C

⇔
∣
∣y(x)

∣
∣ = exp(x+ C) ⇔

∣
∣y(x)

∣
∣ = exp(x) exp(C)

︸ ︷︷ ︸

=A

⇔ y(x) = ±A exp(x) ⇔ y(x) = Ã exp(x) ,

où C est une constante réelle, A = exp(C) une constante réelle strictement positive
(vu que exp(C) > 0 quelle que soit C) et Ã = ±A une constante réelle non nulle.
Noter que l’équation différentielle donnée est également satisfaite dans le cas où y
est la fonction identiquement nulle ; en effet, si y(x) = 0 pour tout x ∈ R, alors
y′(x) = 0 pour tout x ∈ R, si bien que 0 = 0. L’équation différentielle y′(x) = y(x)
admet donc pour solution la fonction y : R → R donnée par y(x) = Kexp(x), où
K est une constante réelle quelconque.

3. Soit l’équation différentielle y′(x) = x y(x). Si y(x) 6= 0 quel que soit x, cette

équation peut être récrite sous la forme y′(x)
y(x)

= x. Dans ce cas :

y′(x)

y(x)
= x ⇔

∫
y′(x)

y(x)
dx =

∫

x dx

⇔ ln
∣
∣y(x)

∣
∣ =

1

2
x2 + C

⇔
∣
∣y(x)

∣
∣ = exp

(
1

2
x2 + C

)

⇔
∣
∣y(x)

∣
∣ = exp

(
1

2
x2
)

exp(C)
︸ ︷︷ ︸

=A

⇔ y(x) = ±A exp

(
1

2
x2
)

⇔ y(x) = Ã exp

(
1

2
x2
)

,

où C est une constante réelle, A = exp(C) une constante réelle strictement positive
(vu que exp(C) > 0 quelle que soit C) et Ã = ±A une constante réelle non
nulle. Noter que l’équation différentielle donnée est également satisfaite dans le
cas où y est la fonction identiquement nulle ; en effet, si y(x) = 0 pour tout x ∈ R,
alors y′(x) = 0 pour tout x ∈ R, si bien que 0 = x 0. L’équation différentielle
y′(x) = x y(x) admet donc pour solution la fonction y : R → R donnée par
y(x) = Kexp

(
1
2
x2
)
, où K est une constante réelle quelconque.
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4. Soit l’équation différentielle y′(x) = y(x)
x

. Si y(x) 6= 0 quel que soit x, cette équation

peut être récrite sous la forme y′(x)
y(x)

= 1
x
. Dans ce cas :

y′(x)

y(x)
=

1

x
⇔

∫
y′(x)

y(x)
dx =

∫
1

x
dx

⇔ ln
∣
∣y(x)

∣
∣ = ln |x|+ C

⇔
∣
∣y(x)

∣
∣ = exp

(
ln |x|+ C

)

⇔
∣
∣y(x)

∣
∣ = exp

(
ln |x|

)

︸ ︷︷ ︸

=|x|

exp(C)
︸ ︷︷ ︸

=A

⇔ y(x) = ±A |x|

⇔ y(x) = Ã |x| ,

où C est une constante réelle, A = exp(C) une constante réelle strictement positive
(vu que exp(C) > 0 quelle que soit C) et Ã = ±A une constante réelle non nulle.
Noter que y′ n’existe pas en x = 0 (vu qu’il y a division par x dans la partie
gauche de l’équation différentielle donnée). La solution de l’équation différentielle
ne peut donc être définie que dans R∗

− ou dans R∗
+. Dans R∗

+, |x| = x ; et dans R∗
−,

|x| = −x. Mais comme la constante Ã peut être aussi bien positive que négative,
y(x) peut s’écrire dans tous les cas y(x) = B x, où B est une constante réelle
non nulle. Remarquer, en outre, que y(x) = 0 pour tout x ∈ R∗

− ou pour tout
x ∈ R∗

+ satisfait également l’équation différentielle donnée. En résumé, l’équation

y′(x) = y(x)
x

admet pour solution la fonction y : R∗
−→ R ou la fonction y : R∗

+→ R

donnée par y = K x, où K est une constante réelle quelconque.

6.1.7 Remarques : • Dans chacun des exemples ci-dessus, la solution est une fa-
mille de fonctions ; non pas une unique fonction mais une infinité, du fait de la
présence systématique d’une constante réelle. On remarque immédiatement que si
deux fonctions d’une même famille sont égales en un x donné, ces deux fonctions
sont égales en tout x ; autrement dit, elles sont identiques.

• Tout problème concret (de physique, de biologie...) est caractérisé par des données
de base indiquant, par exemple, l’état d’un système à un instant donné. Dans le
langage des équations différentielles, ces données de base sont appelées conditions
initiales . Dans le cas d’une équation différentielle ordinaire du premier ordre,
les conditions initiales, ou plutôt la condition initiale est un point du plan R2,
de coordonnées (x0; y0). Toute solution de l’équation différentielle donnée, qui
satisfait la condition initiale (x0; y0), est une fonction f qui vérifie l’équation
différentielle en question et dont le graphe passe par le point (x0; y0) (ce qui
revient à dire que f(x0) = y0).

• La famille de toutes les fonctions qui sont solutions d’une équation différentielle
ordinaire est appelée solution générale de l’équation différentielle en question.
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Dans cette famille de solutions, la (ou les) fonction(s) satisfaisant des conditions
initiales données est (sont) appelée(s) solution(s) spécifique(s) aux conditions ini-
tiales données. Typiquement, dans le deuxième des exemples qui viennent d’être
traités, la famille de fonctions donnée par y(x) = K exp(x) constitue la solution
générale de l’équation différentielle y′(x) = y(x), alors que la fonction donnée par
y(x) = κ exp(x), où κ = y0 exp(−x0), est une solution spécifique à la condition
initiale (x0; y0) (vu qu’elle satisfait y(x0) = y0).

• Aux XVIIIe et XIXe siècles, les équations différentielles ordinaires ont fait l’objet
de nombreuses études, desquelles il a été possible de tirer un certain nombre de
propriétés intéressantes. L’une de ces propriétés, connue sous théorème d’exis-
tence et d’unicité, affirme que toute équation différentielle ordinaire admet, sous
certaines hypothèses, une unique solution y (dans un intervalle donné) satisfaisant
des conditions initiales données.

• Dès lors qu’une équation différentielle donnée admet, sous des conditions ini-
tiales données, une unique solution y définie dans un intervalle J donné, il est
envisageable de rechercher la solution ŷ, définie dans le plus grand intervalle Ĵ
possible, qui satisfait les mêmes conditions initiales. Appelée solution maximale,
cette solution est la fonction la plus générale qui soit, qui satisfait l’équation dif-
férentielle donnée sous les conditions initiales données ; son intérêt réside dans le
fait que toute solution satisfaisant les mêmes conditions initiales peut être faci-
lement déduite d’elle. Typiquement, la solution y mentionnée ci-dessus s’obtient
simplement en prenant la restriction de ŷ à J .

6.1.8 Illustrations : 1. Modèle élémentaire de la dynamique des populations :
La fonction y1 : R → R , donnée par y1(t) = exp(k t), est une solution de l’équation
différentielle y′(t) = k y(t), vu que y′1(t) = k exp(k t) = k y1(t). La fonction y2 :
R → R, donnée par y2(t) = 7 exp(k t), est également une solution de cette même
équation (vu que y′2(t) = 7 k exp(k t) = k y2(t)). En procédant de la même manière
que dans le deuxième des exemples 6.1.6 :

y′(t)

y(t)
= k ⇔

∫
y′(t)

y(t)
dt =

∫

k dt ⇔ ln
∣
∣y(t)

∣
∣ = k t+ C

⇔
∣
∣y(t)

∣
∣ = exp(k t+ C) ⇔

∣
∣y(t)

∣
∣ = exp(k t) exp(C)

︸ ︷︷ ︸

=A

⇔ y(t) = ±A exp(k t) ⇔ y(t) = Ã exp(k t) ,

on arrive à la conclusion que l’équation y′(t) = k y(t) admet pour solution générale
la famille de fonctions donnée par y(t) = Kexp(k t), où K est une constante (qui
peut être positive, négative, ou même nulle, vu que la fonction identiquement nulle
satisfait aussi l’équation donnée). Pour une population comptant 1428 individus à
l’instant t = 0 (et obéissant à l’équation y′(t) = k y(t)), la fonction qui représente
son évolution s’écrit v(t) = 1428 exp(k t) (de sorte que v(0) = 1428 exp(k 0) =
1428). Cette fonction est alors la solution de l’équation différentielle donnée, spé-
cifique à la condition v(0) = 1428.
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2. Système prédateur-proie :
Le système d’équations de Lotka-Volterra
(cf. exemples 6.1.2) admet des solutions pé-
riodiques dans le temps, qui ne peuvent pas
être écrites au moyen d’expressions analy-
tiques simples. La figure du haut, ci-contre,
illustre le graphe de ces fonctions pour diffé-
rentes conditions initiales. La figure du bas
représente le nombre de prédateurs en fonc-
tion du nombre de proies pour différentes
conditions initiales. Pour chacune des condi-
tions initiales données, le graphe est une
courbe fermée (i.e. une courbe dont chaque
point peut être vu comme le point de départ
et le point d’arrivée).

temps (unité arbitraire)

p
ré
d
a
te
u
rs

p
ro
ie
s

proies

p
ré
d
a
te
u
rs

3. Loi d’atténuation du rayonnement électro-
magnétique :
L’équation différentielle −I ′(x) = µ I(x)
(cf. exemples 6.1.2), est du même type que
celle du modèle élémentaire de la dynamique
des populations. La solution générale s’écrit
I(x) = A exp(−µ x), où A est une constante.

La fonction donnée par I(x) = I0 exp(−µ x) est la solution spécifique à la condi-
tion initiale I(0) = I0. La grandeur I0 correspond à l’intensité initiale de l’onde
électromagnétique, avant qu’elle ne commence à traverser le milieu de coefficient
d’atténuation µ.

4. Masse soumise à la force de rappel d’un ressort :
La fonction y1 : R → R, donnée par :

y1(t) = cos(λ t) , où λ =

√

k

m
,

est une solution de l’équation différentielle my′′(t) = −k y(t), vu que my′′1(t) =
−mλ2 cos(λ t) = −k cos(λ t) = −k y1(t). La fonction y2 : R → R, donnée par
y2(t) = sin(λ t) est également une solution de cette même équation (vu que
my′′2(t) = −k sin(λ t) = −k y2(t)). Il sera établi par la suite que la solution gé-
nérale de l’équation my′′(t) = −k y(t) s’écrit y(t) = A cos(λ t) +B sin(λ t), où A
et B sont des constantes réelles.
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6.2 Équations différentielles à variables séparables

6.2.1 Définition : On appelle équation différentielle à variable séparable toute équation
différentielle pouvant être mise sous la forme :

f
(
y(x)

)
y′(x) = g(x) (de façon plus compacte : f(y) y′ = g ) , (6.2.1)

où f : I1 → R est une fonction continue dans un certain intervalle ouvert I1 ⊂ R,
g : I2 → R une fonction continue dans un certain intervalle ouvert I2 ⊂ R, y une
fonction et y′ sa dérivée.

6.2.2 Définition : Toute fonction y : J → I1, dérivable dans l’intervalle ouvert J ⊂ I2,
dont la dérivée y′ : I → R est continue dans J , et qui vérifie l’équation 6.2.1, est appelée
solution de cette équation.

6.2.3 Proposition : Soit f
(
y(x)

)
y′(x) = g(x) une équation différentielle à variables

séparables, où f : I1 → R est une fonction continue dans l’intervalle ouvert I1 ⊂ R et
g : I2 → R une fonction continue dans l’intervalle ouvert I2 ⊂ R. Alors, toute solution
(si elle existe) y : J → I1 de cette équation différentielle, où J ⊂ I2 est un intervalle
ouvert, s’écrit, sous forme implicite :

F
(
y(x)

)
=

∫

g(x) dx ,

où F est une primitive de f dans I1. Par définition, l’ensemble de toutes les solutions
de l’équation différentielle donnée (i.e. l’ensemble de toutes les fonctions y satisfaisant
l’équation différentielle en question) est appelé solution générale de cette équation.

Preuve : Reprenons les hypothèses de la proposition. Soit alors y : J → I1, où J ⊂ I2,
une solution de l’équation différentielle donnée (à supposer que cette solution existe).
Alors, pour tout x ∈ J :

f
(
y(x)

)
y′(x) = g(x) ⇔ F

(
y(x)

)
=

∫

g(x) dx ,

où F est une primitive de f dans I1 ; en effet, d
dx
F
(
y(x)

)
= f

(
y(x)

)
y′(x). Ainsi donc,

y : J → I1 est solution de l’équation différentielle donnée si et seulement si elle satisfait
l’égalité F

(
y(x)

)
=
∫
g(x) dx. �

6.2.4 Exemples : 1. Soit l’équation différentielle à variables séparables :

y′(x) =
x

y(x)
.

Une multiplication (des deux côtés) par y(x) permet d’écrire cette équation sous
la forme y(x) y′(x) = x, qui peut être directement intégrée :

y(x) y′(x) = x ⇔
∫

y(x) y′(x) dx =

∫

x dx ⇔ 1

2

(
y(x)

)2
=

1

2
x2 + C

⇔
(
y(x)

)2
= x2 + 2C ,
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où C est une constante réelle. Les fonctions y− et y+, données respectivement
par y−(x) = −

√
x2 + 2C et y+(x) =

√
x2 + 2C , sont donc toutes les deux des

solutions de l’équation différentielle donnée. Noter que pour chaque C, il n’y a pas
une, mais deux solution distinctes.

2. Soit l’équation différentielle à variables séparables :

y′(x) +
(
y(x)

)4
exp(2 x) = 0 .

Un réarrangement des différents éléments qui constituent cette équation permet
d’obtenir une expression qui peut être intégrée sans peine :

y′(x) +
(
y(x)

)4
exp(2 x) = 0 ⇔ y′(x) = −

(
y(x)

)4
exp(2 x)

⇔ − y′(x)
(
y(x)

)4 = exp(2 x)

⇔ 1

3
(
y(x)

)3 =
1

2
exp(2 x) + C

⇔ 1
(
y(x)

)3 = 3

(
1

2
exp(2 x) + C

)

⇔ y(x) = 3

√

1

3
(
1
2
exp(2 x) + C

) ,

où C est une constante réelle. Noter que y(x) = 0 pour tout x ∈ R est également
une solution de l’équation différentielle donnée.

3. Soit l’équation différentielle à variables séparables :

(

1 +
(
y(x)

)2
)

+ (1 + x2) y′(x) = 0 .

Un réarrangement des différents éléments qui constituent cette équation permet
d’obtenir une expression qui peut être intégrée sans peine :

(

1 +
(
y(x)

)2
)

+ (1 + x2) y′(x) = 0 ⇔ (1 + x2) y′(x) = −
(

1 +
(
y(x)

)2
)

⇔ y′(x)

1 +
(
y(x)

)2 = − 1

1 + x2

⇔ Arctg
(
y(x)

)
= −Arctg(x) + C

où C est une constante réelle. Pour obtenir y, il convient d’appliquer la tangente des
deux côtés ; reste alors à préciser les conditions sous lesquelles y est bien définie...
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6.2.5 Remarque : La proposition 6.2.3 fournit la marche à suivre permettant d’obtenir
formellement la solution générale, sous forme implicite, de l’équation différentielle à
variable séparable f

(
y(x)

)
y′(x) = g(x). Elle n’indique cependant pas les circonstances

dans lesquelles cette solution générale existe. Le théorème qui suit apporte les précisions
nécessaires.

6.2.6 Théorème : Soit l’équation différentielle à variables séparables :

f
(
y(x)

)
y′(x) = g(x) ,

où f : I1 → R est une fonction continue dans l’intervalle ouvert I1 ⊂ R et g : I2 → R

une fonction continue dans l’intervalle ouvert I2 ⊂ R. Supposons que f ne s’annule pas
dans I1. Alors, pour tout couple (x0; y0), où x0 ∈ I2 et y0 ∈ I1, il existe une unique
solution y : J → I1 de l’équation donnée, où J ⊂ I2 est un intervalle ouvert, qui vérifie la
condition initiale y(x0) = y0. Ce résultat est connu sous le nom de théorème d’exis-

tence et d’unicité locale pour les équations différentielles à variables séparables.

Preuve : Soit l’équation différentielle f
(
y(x)

)
y′(x) = g(x), où f : I1 → R est une

fonction continue ne s’annulant pas dans l’intervalle ouvert I1 et g : I2 → R une fonction
continue dans l’intervalle ouvert I2. Soit aussi le couple (x0; y0), où x0 ∈ I2 et y0 ∈ I1.
Pour montrer qu’il existe une unique fonction y : J → I1, où J ⊂ I2 est un intervalle
ouvert, qui satisfait l’équation différentielle donnée et qui remplit la condition y(x0) = y0,
il convient de procéder en deux étapes : prouver d’abord l’existence d’une telle fonction,
puis démontrer son unicité.

• Soit F la fonction donnée par :

F (y) =

∫ y

y0

f(ỹ) dỹ ,

où y ∈ I1. La fonction f étant continue dans I1, F est définie et dérivable dans I1.
En outre :

⋄ F s’annule en y0 (vu que F (y0) =
∫ y0
y0
f(ỹ) dỹ = 0),

⋄ F est strictement croissante ou strictement décroissante dans I1, vu que f ne
s’annule pas dans I1.

La fonction F : I1 → IF , où IF = F (I1) est l’image de I1 par F , est donc bijective ;
elle admet, par conséquent, une réciproque (cf. proposition 2.10.6, section 2.10
du chapitre 2). Cette réciproque, que l’on note rF , est continue dans IF , vu que F
est dérivable, et donc continue dans I1. Soit à présent l’expression :

y(x) = rF

(∫ x

x0

g(x̃) dx̃

)

,

où x ∈ I2. Le fait que rF est une fonction continue (et donc définie) dans IF ,
et que 0 ∈ IF (vu que F (y0) =

∫ y0
y0
f(ỹ) dỹ = 0 ∈ IF ) permet d’affirmer qu’il
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existe un voisinage J ⊂ I2 de x0 tel que, pour tout x ∈ J , y(x) est bien définie.
y : J → I1 est donc une fonction ; cette fonction remplit la condition y(x0) = y0 :

y(x0) = rF

(∫ x0

x0

g(x̃) dx̃

)

= rF

(

F (y0) +

∫ x0

x0

g(x̃) dx̃

)

= rF
(
F (y0) + 0

)
= rF

(
F (y0)

)
= y0 ,

et satisfait l’équation différentielle f
(
y(x)

)
y′(x) = g(x), vu que :

y(x) = rF

(∫ x

x0

g(x̃) dx̃

)

⇔ F
(
y(x)

)
=

∫ x

x0

g(x̃) dx̃

et donc :

d

dx

(

F
(
y(x)

))

=
d

dx

(∫ x

x0

g(x̃) dx̃

)

⇔ F ′(y(x)
)
y′(x) = g(x) ,

du fait que d
dx

∫ x

x0
g(x̃) dx̃ = d

dx

(
G(x) − G(x0)

)
= g(x), G étant une primitive

de g dans I2. L’équation différentielle f
(
y(x)

)
y′(x) = g(x) admet donc bien une

solution y : J → I1.

• Pour prouver que la solution obtenue au point précédent est unique, il suffit
de supposer l’existence d’une autre fonction v : J → I1 qui satisfait l’équation
différentielle donnée et qui remplit la condition v(x0) = y0, puis de se rendre
compte que v n’est autre que la fonction y obtenue précédemment. Soit donc
v : J → I1 une telle fonction. Alors, pour tout x ∈ J :

f
(
v(x)

)
v′(x) = g(x) ⇔

∫ x

x0

f
(
v(x̃)

)
v′(x̃) dx̃ =

∫ x

x0

g(x̃) dx̃

⇔ F
(
v(x̃)

)
∣
∣
∣

x

x0

=

∫ x

x0

g(x̃) dx̃

⇔ F
(
v(x)

)
− F

(
v(x0)

)
=

∫ x

x0

g(x̃) dx̃

⇔ F
(
v(x)

)
= F

(
v(x0)

)
+

∫ x

x0

g(x̃) dx̃

⇔ v(x) = rF

(

F
(
v(x0)

)
+

∫ x

x0

g(x̃) dx̃

)

,

où F est la primitive définie plus haut, dans la première partie de la preuve, et
rF sa réciproque. Or, v(x0) = y0. Par conséquent, F

(
v(x0)

)
= F (y0) = 0 et donc

v(x) = y(x) pour tout x ∈ J ; d’où la conclusion. �
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6.2.7 Remarque : Dans la proposition précédente, le nombre d’intervalles ouverts J ad-
missibles est infini. Parmi tous ces intervalles, il y en a un, noté Ĵ qui est le plus grand :
c’est celui qui est obtenu en réunissant tous les intervalles J admissibles. La fonction
y : Ĵ → I1, satisfaisant l’équation différentielle f

(
y(x)

)
y′(x) = g(x) et ayant pour

ensemble de départ l’intervalle ouvert Ĵ , constitue alors ce que l’on appelle la solution
maximale de l’équation différentielle en question.

6.3 Équations différentielles linéaires

6.3.1 Définition : Une équation différentielle ordinaire d’ordre n est dite linéaire si elle
peut s’écrire sous la forme :

an(x) y
(n)(x) + an−1(x) y

(n−1)(x) + . . .+ a2(x) y
′′(x) + a1(x) y

′(x) + a0(x) y(x) = b(x) ,

où a0, a1, . . . , an, b sont des fonctions continues dans un intervalle ouvert I donné et an
une fonction non identiquement nulle.

6.3.2 Remarques : • En la divisant des deux côtés par an(x), pour autant que
an(x) 6= 0 pour tout x ∈ I, l’expression de la définition précédente devient :

y(n)(x)+αn−1(x) y
(n−1)(x)+ . . .+α2(x) y

′′(x)+α1(x) y
′(x)+α0(x) y(x) = β(x) ,

où αk(x) =
ak(x)
an(x)

, k = 1, . . . , n− 1, et β(x) = b(x)
an(x)

. Toute équation différentielle
ordinaire linéaire d’ordre n peut donc être mise sous une forme dans laquelle le
coefficient multipliant y(n) vaut 1.

• Parmi les équations différentielles linéaires, les équations du premier et du deuxième
ordre sont celles qui se retrouvent le plus fréquemment dans les problèmes de phy-
sique, notamment ceux de mécanique et d’électromagnétisme. De fait, ce type
d’équations mérite d’être étudié dans le détail.

6.3.1 Équations différentielles linéaires du premier ordre

6.3.3 Définition : On appelle équation différentielle linéaire du premier ordre toute
équation différentielle pouvant être écrite sous la forme :

y′(x) + p(x) y(x) = q(x) (de façon plus compacte : y′ + p y = q ) , (6.3.1)

où p : I → R et q : I → R sont deux fonctions continues dans un certain intervalle
ouvert I, y une fonction et y′ sa dérivée.

6.3.4 Définition : Toute fonction y : I → R, dérivable dans l’intervalle ouvert I ⊂ R,
dont la dérivée y′ : I → R est continue dans I, et qui vérifie l’équation 6.3.1, est appelée
solution de cette même équation.
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6.3.5 Remarques : • Toute fonction y : J → R, dérivable dans un certain intervalle
ouvert J ⊂ I, dont la dérivée y′ : J → R est continue dans J , et qui satisfait
l’équation différentielle 6.3.1, peut également être appelée solution de l’équation
en question. Si ce sont les solutions y : I → R qui sont en général considérées, c’est
essentiellement pour avoir une unité dans les domaines de départ des fonctions y,
p et q. Noter que ces solutions y : I → R sont maximales, vu que l’équation 6.3.1
n’est pas définie en dehors de I.

• Il existe essentiellement deux méthodes pour résoudre les équations différentielles
linéaires du premier ordre : la méthode de la variation de la constante et celle
du facteur intégrant. Chacune d’elles a ses avantages et ses inconvénients ; raison
pour laquelle les deux vont être traitées.

Méthode de la variation de la constante

6.3.6 Définition : On appelle équation différentielle linéaire du premier ordre, homogène
toute équation différentielle de la forme :

y′(x) + p(x) y(x) = 0 ,

où p : I → R est une fonction continue dans un certain intervalle ouvert I ⊂ R.

6.3.7 Proposition : Soit l’équation différentielle linéaire du premier ordre, homogène :

y′(x) + p(x) y(x) = 0 ,

où p : I → R est une fonction continue dans un certain intervalle ouvert I ⊂ R. Toute
solution y : I → R de cette équation (dans l’intervalle I) s’écrit :

y(x) = Kexp
(
−P (x)

)
,

où P est une primitive de p dans I et K une constante réelle. Autrement dit, y : I → R,
telle que donnée ci-dessus, est la solution générale de l’équation y′(x) + p(x) y(x) = 0.

Preuve : Soit l’équation différentielle linéaire, homogène y′(x) + p(x) y(x) = 0, où
p : I → R est une fonction continue dans l’intervalle ouvert I. Cette équation peut être
récrite sous la forme y′(x) = −p(x) y(x), ou encore, si y(x) 6= 0 quel que soit x ∈ I, sous

la forme y′(x)
y(x)

= −p(x). Dans ce cas :

y′(x)

y(x)
= −p(x) ⇔

∫
y′(x)

y(x)
dx =

∫

−p(x) dx ⇔ ln
∣
∣y(x)

∣
∣ = −P (x) + C

⇔
∣
∣y(x)

∣
∣ = exp

(
−P (x) + C

)
⇔

∣
∣y(x)

∣
∣ = exp

(
−P (x)

)
exp(C)
︸ ︷︷ ︸

=A

⇔ y(x) = ±A exp
(
−P (x)

)
⇔ y(x) = Ã exp

(
−P (x)

)
,

où P est une primitive de p dans I, C une constante réelle, A = exp(C) une constante
réelle strictement positive (vu que exp(C) > 0 quelle que soit C) et Ã = ±A une
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constante réelle non nulle. Noter que l’équation différentielle donnée est également sa-
tisfaite dans le cas où y est la fonction identiquement nulle ; en effet, si y(x) = 0 pour
tout x ∈ R, alors y′(x) = 0 pour tout x ∈ R, si bien que 0 = −p(x) 0. L’équation
différentielle y′(x) + p(x) y(x) = 0 admet donc pour solution la fonction donnée par
y(x) = Kexp

(
−P (x)

)
, où K est une constante réelle quelconque et x ∈ I. Montrons

encore que cette solution est la solution générale. À cet effet, prenons une solution v
quelconque de l’équation différentielle et considérons la fonction ṽ donnée :

ṽ(x) =
v(x)

exp
(
−P (x)

) = v(x) exp
(
P (x)

)
.

Alors :

ṽ′(x) =
dṽ

dx
(x) =

dv

dx
(x) exp

(
P (x)

)
+ v(x)

d

dx
exp
(
P (x)

)

= v′(x) exp
(
P (x)

)
+ v(x) p(x) exp

(
P (x)

)

=
(
v′(x) + p(x) v(x)

)
exp
(
P (x)

)
= 0 ,

vu que, d
dx

exp
(
P (x)

)
= exp

(
P (x)

)
P ′(x) = exp

(
P (x)

)
p(x) (du fait que P est une pri-

mitive de p) et que v est une solution de l’équation y′(x)+p(x) y(x) = 0. Par conséquent,
ṽ(x) = B pour tout x ∈ I, où B est une constante réelle ; d’où :

v(x) = ṽ(x) exp
(
−P (x)

)
= B exp

(
−P (x)

)
.

La solution v a donc la même forme que la fonction y obtenue précédemment. Ainsi,
toute solution y : I → R de l’équation différentielle y′(x) + p(x) y(x) = 0 s’écrit y(x) =
Kexp

(
−P (x)

)
, où K est une constante réelle. �

6.3.8 Proposition : Soit l’équation différentielle linéaire du premier ordre :

y′(x) + p(x) y(x) = q(x) ,

où p : I → R et q : I → R sont deux fonctions continues dans un
certain intervalle ouvert I ⊂ R. Alors toute solution y : I → R

de cette équation (dans l’intervalle I) s’écrit sous la forme :

y(x) = yh(x) + yp(x) ,

yyp

yh

où :

• yh : I → R est la solution générale de l’équation homogène y′(x) + p(x) y(x) = 0
(associée à l’équation y′(x) + p(x) y(x) = q(x)),

• yp : I → R est une solution particulière de l’équation y′(x) + p(x) y(x) = q(x).

Autrement dit, y = yh+yp est la solution générale de l’équation y′(x)+p(x) y(x) = q(x).
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Preuve : Soit l’équation différentielle linéaire du premier ordre y′(x) + p(x) y(x) = q(x),
où p, q : I → R sont deux fonctions continues dans l’intervalle ouvert I. Soient yh : I → R

la solution générale de l’équation homogène y′(x) + p(x) y(x) = 0, et yp : I → R une
solution particulière de l’équation complète y′(x) + p(x) y(x) = q(x). La preuve éta-
blissant le fait que toute solution de l’équation y′(x) + p(x) y(x) = q(x) s’écrit sous la
forme y(x) = yh(x) + yp(x) s’effectue en deux étapes : la première consiste à montrer que
y = yh+yp est effectivement solution de l’équation y′(x)+p(x) y(x) = q(x) ; la deuxième
a pour objectif d’établir que toute solution de l’équation y′(x) + p(x) y(x) = q(x) est de
la forme yh + yp.

• L’expression y = yh + yp est solution de l’équation y′(x) + p(x) y(x) = q(x). En
effet :

y′(x) + p(x) y(x) = (yh + yp)
′(x) + p(x) (yh + yp)(x)

= y′h(x) + y′p(x) + p(x) yh(x) + p(x) yp(x)

= y′h(x) + p(x) yh(x)
︸ ︷︷ ︸

=0

+ y′p(x) + p(x) yp(x)
︸ ︷︷ ︸

= q(x)

= q(x) ,

du fait que yh est solution de l’équation homogène y′(x) + p(x) y(x) = 0 et yp
solution de l’équation complète y′(x) + p(x) y(x) = q(x).

• Toute solution de l’équation différentielle y′(x)+ p(x) y(x) = q(x) est de la forme
y = yh + yp. Pour s’en convaincre, on considère une autre solution de l’équation
différentielle complète y′(x) + p(x) y(x) = q(x), que l’on note w, et on s’intéresse
à la différence w− y, où y = yh + yp. En injectant w− y dans la partie de gauche
de l’équation différentielle en question, on trouve :

(w − y)′(x) + p(x) (w − y)(x) = w′(x)− y′(x) + p(x)w(x)− p(x) y(x)

=
(
w′(x) + p(x)w(x)
︸ ︷︷ ︸

= q(x)

)
−
(
y′(x) + p(x) y(x)
︸ ︷︷ ︸

= q(x)

)

= q(x)− q(x) = 0 ,

vu que w et y satisfont toutes les deux l’équation différentielle complète. Manifes-
tement donc, w− y satisfait l’équation homogène associée à l’équation complète.
Or, si w−y satisfait l’équation homogène, elle doit avoir la forme d’une solution ỹh
de l’équation homogène, w − y = ỹh. En conséquence :

w(x) = ỹh(x) + y(x) = ỹh(x) + yh(x) + yp(x) ;

mais ỹh + yh est encore la solution générale de l’équation homogène :

ỹh(x) + yh(x) = K̃exp
(
−P (x)

)
+Kexp

(
−P (x)

)

= (K̃ +K) exp
(
−P (x)

)
= B exp

(
−P (x)

)
,

où B = K̃ +K est une constante réelle quelconque. De fait, w est également de
la forme yh + yp, tout comme y. �
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Selon la proposition 6.3.8, la solution générale y de l’équation différentielle linéaire
du premier ordre y′(x)+p(x) y(x) = q(x) s’obtient donc en cherchant d’abord la solution
générale yh de l’équation homogène y′(x) + p(x) y(x) = 0, puis en trouvant une solution
particulière yp de l’équation complète y′(x)+ p(x) y(x) = q(x). La solution yh de l’équa-
tion homogène s’obtient grâce à la proposition 6.3.7. Quant à une solution particulière
de l’équation complète, elle se trouve par tâtonnement, en quelque sorte, en faisant des
essais. Une tentative particulièrement fructueuse consiste à prendre l’expression de la
solution générale yh de l’équation homogène, et à remplacer la constante K par une
fonction c de x :

yp(x) = c(x)w(x) , où : w(x) = exp
(
−P (x)

)
,

P étant une primitive de p dans l’intervalle ouvert I donné, dans lequel p est continue. En
insérant cette expression, ainsi que celle de sa dérivée, y′p(x) = c′(x)w(x) + c(x)w′(x),
dans l’équation y′(x) + p(x) y(x) = q(x), on obtient :

c′(x)w(x) + c(x)w′(x) + p(x) c(x)w(x) = q(x)

⇔ c′(x)w(x) + c(x)
(
w′(x) + p(x)w(x)
︸ ︷︷ ︸

=0

)
= q(x) ,

du fait que w satisfait l’équation homogène y′(x) + p(x) y(x) = 0. Ainsi :

c′(x)w(x) = q(x) ⇔ c′(x) =
q(x)

w(x)
⇔ c(x) =

∫
q(x)

w(x)
dx ,

d’où le résultat qui suit.

6.3.9 Proposition : Soit y′(x) + p(x) y(x) = q(x) une équation différentielle linéaire du
premier ordre, où p : I → R et q : I → R sont deux fonctions continues dans un certain
intervalle ouvert I ⊂ R. Alors toute solution y : I → R de cette équation différentielle
s’écrit :

y(x) = K w(x) + c(x)w(x) =
(
K + c(x)

)
w(x) ,

où K est une constante réelle,

w(x) = exp
(
−P (x)

)
et c(x) =

∫
q(x)

w(x)
dx ,

P étant une primitive de p dans I. Par définition, l’ensemble de toutes les solutions de
l’équation différentielle donnée (i.e. l’ensemble de toutes les fonctions de la forme de y,
donnée ci-dessus) est appelé solution générale de cette même équation. �

6.3.10 Remarque : La technique de résolution (d’une équation différentielle linéaire du
premier ordre) résumée dans la proposition précédente porte le nom de méthode de la
variation de la constante. Cette appellation vient du fait que, lors de la recherche d’une
solution particulière, la constante dans la solution générale de l’équation homogène est
remplacée par une fonction ; la constante devient en quelque sorte variable.
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Méthode du facteur intégrant

Reprenons l’expression de la solution y donnée dans la proposition 6.3.9 et divisons-la
par la fonction w ; une telle opération est légitime vu que w(x) = exp

(
−P (x)

)
6= 0, quel

que soit x ∈ R :

y(x) =
(
K + c(x)

)
w(x) ⇔ y(x)

w(x)
= K + c(x) .

Comme w(x) = exp
(
−P (x)

)
, alors 1

w(x)
= exp

(
P (x)

)
. Ainsi, la dernière expression

obtenue peut se récrire :

y(x) exp
(
P (x)

)
= K + c(x) .

En dérivant cette équation des deux côtés par rapport à x, on obtient :

d

dx

(

y(x) exp
(
P (x)

))

=
d

dx

(
K + c(x)

)

⇔ dy

dx
(x) exp

(
P (x)

)
+ y(x)

d

dx
exp
(
P (x)

)
= c′(x)

⇔ y′(x) exp
(
P (x)

)
+ y(x) p(x) exp

(
P (x)

)
=

q(x)

w(x)

⇔
(
y′(x) + p(x) y(x)

)
exp
(
P (x)

)
= q(x) exp

(
P (x)

)
;

en effet, d
dx

(
K + c(x)

)
= dK

dx
+ dc

dx
(x) = 0+ c′(x) = c′(x), avec, selon la proposition 6.3.9,

c′(x) = q(x)
w(x)

= q(x) exp
(
P (x)

)
, vu que 1

w(x)
= exp

(
P (x)

)
; aussi, d

dx
exp
(
P (x)

)
=

exp
(
P (x)

)
dP
dx
(x) = exp

(
P (x)

)
p(x), vu que P est une primitive de p. Or, la dernière

équation obtenue :

(
y′(x) + p(x) y(x)

)
exp
(
P (x)

)
= q(x) exp

(
P (x)

)
,

n’est rien d’autre que l’équation différentielle y′(x) + p(x) y(x) = q(x) multipliée par
le facteur exp

(
P (x)

)
. Ce constat permet alors d’énoncer le résultat suivant (dont les

calculs qui viennent d’être faits constituent une preuve).

6.3.11 Proposition : Soit y′(x) + p(x) y(x) = q(x) une équation différentielle linéaire du
premier ordre, où p : I → R et q : I → R sont deux fonctions continues dans un certain
intervalle ouvert I ⊂ R. Soit aussi I : I → R la fonction donnée par :

I(x) = exp
(
P (x)

)
,

où P est une primitive de p dans I. Alors :

• la fonction donnée par
(
y′(x) + p(x) y(x)

)
I(x) admet comme primitive, dans I,

la fonction donnée par y(x) I(x) ;
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• l’équation différentielle :

(
y′(x) + p(x) y(x)

)
I(x) = q(x) I(x)

est équivalente, dans I, à l’équation intégrale :

y(x) I(x) =

∫

q(x) I(x) dx ;

• la solution générale de l’équation différentielle y′(x) + p(x) y(x) = q(x) est la
fonction y : I → R donnée par :

y(x) =
1

I(x)

∫

q(x) I(x) dx . �

6.3.12 Remarques : • Le facteur I(x) = exp
(
P (x)

)
, introduit dans la proposition

précédente, est appelé facteur intégrant de l’équation différentielle linéaire du
premier ordre y′(x) + p(x) y(x) = q(x).

• Toute équation différentielle linéaire du premier ordre peut être résolue soit en
recherchant la solution générale de l’équation homogène, ainsi qu’une solution
particulière de l’équation totale (à l’aide de la méthode de la variation de la
constante), soit avec la technique faisant intervenir le facteur intégrant. Dans les
deux cas, le résultat obtenu est exactement le même.

• Si les équations différentielles du premier ordre de la forme y′(x)+p(x) y(x) = q(x)
portent le qualificatif linéaire, c’est en raison du fait que leur solution générale
s’écrit sous la forme d’une superposition de deux solutions (la solution générale de
l’équation homogène et une solution particulière de l’équation complète), comme
s’il s’agissait de la résultante de deux vecteurs (le premier vecteur étant la so-
lution générale de l’équation homogène, le deuxième une solution particulière de
l’équation complète).

6.3.13 Exemple : Soit l’équation différentielle :

y′(x)− 3 x2 y(x) = x2 .

Résolvons cette équations par la méthode de la variation de la constante, puis par la
méthode du facteur intégrant.

• Méthode de la variation de la constante :
Selon la proposition 6.3.8, la solution générale de l’équation différentielle s’écrit
y = yh + yp, où yh est la solution générale de l’équation différentielle homogène
y′(x)− 3 x2 y(x) = 0 et yp une solution particulière de l’équation différentielle
complète y′(x)− 3 x2 y(x) = x2.

⋄ Solution générale de l’équation homogène y′(x)− 3 x2 y(x) = 0 :
Cette équation peut être récrite sous la forme y′(x) = 3 x2 y(x), ou encore, si
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y(x) 6= 0 quel que soit x, sous la forme y′(x)
y(x)

= 3 x2. Dans ce cas :

y′(x)

y(x)
= 3 x2 ⇔

∫
y′(x)

y(x)
dx =

∫

3 x2 dx ⇔ ln
∣
∣y(x)

∣
∣ = x3 + C

⇔
∣
∣y(x)

∣
∣ = exp(x3 + C) ⇔

∣
∣y(x)

∣
∣ = exp(x3) exp(C)

︸ ︷︷ ︸

=A

⇔ y(x) = ±A exp(x3) ⇔ y(x) = Ã exp(x3) ,

où C est une constante réelle, A = exp(C) une constante réelle strictement
positive et Ã = ±A une constante réelle non nulle. Noter que l’équation est
également satisfaite dans le cas où y est la fonction identiquement nulle. La
solution générale de l’équation y′(x)− 3 x2 y(x) = 0 s’écrit donc :

yh(x) = Kexp(x3) ,

où K est une constante réelle quelconque.

⋄ Solution particulière de l’équation complète y′(x)− 3 x2 y(x) = x2 :
On reprend l’expression de yh et on remplace la constanteK par une fonction c
de x :

yp(x) = c(x) exp(x3) .

En injectant l’expression de yp, ainsi que celle de sa dérivée :

y′p(x) = c′(x) exp(x3) + c(x) 3 x2 exp(x3) ,

dans l’équation complète, on obtient :

c′(x) exp(x3) + c(x) 3 x2 exp(x3)− 3 x2 c(x) exp(x3) = x2

⇔ c′(x) exp(x3) = x2

⇔ c′(x) = x2 exp(−x3) .

d’où, en intégrant des deux côtés :

c(x) = −1

3
exp(−x3) .

La solution particulière s’écrit alors :

yp(x) = −1

3
exp(−x3) exp(x3) = −1

3
.

La solution générale de l’équation y′(x)− 3 x2 y(x) = x2 est donc :

y(x) = yh(x) + yp(x) = K exp(x3)− 1

3
.
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• Méthode du facteur intégrant :
Le facteur intégrant associé à l’équation différentielle y′(x)−3 x2 y(x) = x2 s’écrit :

I(x) = exp

(∫

−3 x2 dx

)

= exp(−x3) .

En multipliant alors les deux côtés y′(x) − 3 x2 y(x) = x2 par I(x), on obtient,
selon la proposition 6.3.11, une équation qui peut être directement intégrée :

y′(x)− 3 x2 y(x) = x2

⇔ y′(x) exp(−x3)− 3 x2 exp(−x3) y(x) = x2 exp(−x3)

⇔ d

dx

(
y(x) exp(−x3)

)
= x2 exp(−x3)

⇔
∫

d

dx

(
y(x) exp(−x3)

)
dx =

∫

x2 exp(−x3) dx

⇔ y(x) exp(−x3) = −1

3
exp(−x3) + C .

En multipliant cette dernière relation des deux côtés par exp(x3), on trouve la
solution générale de l’équation différentielle donnée :

y(x) =

(

−1

3
exp(−x3) + C

)

exp(x3) = C exp(x3)− 1

3
.

Cette expression est la même que celle obtenue précédemment, avec la méthode
de la variation de la constante.

L’exemple qui vient d’être traité illustre bien le fait qu’une équation différentielle linéaire
du premier ordre se résout plus rapidement par la méthode du facteur intégrant. De fait,
il est naturel de préférer cette méthode à celle de la variation de la constante.

6.3.14 Illustration : Considérons une gouttelette d’eau de brouillard, de masse m, dans
l’air, qui tombe à terre. Dans l’air, la gouttelette est soumise essentiellement à deux
forces : la force de pesanteur et une force de frottements (due aux frottements dans
l’air) ; tant que la vitesse de la goutte n’est pas trop grande, l’intensité de cette dernière
est, en tout temps, proportionnelle à la vitesse de la goutte. Noter que la goutte subit
encore une troisième force, la force d’Archimède, due à l’air environnant ; dans la situa-
tion présente, cette force a une intensité suffisamment petite pour pouvoir
être négligée. En plaçant un axe vertical y orienté vers le bas, en projetant
les deux forces sur cet axe, puis en appliquant la deuxième loi de Newton
(relative à la dynamique des corps matériels), on obtient une équation
différentielle qui décrit l’évolution de la gouttelette :

m v̇(t) = mg − β v(t) ,
y

m~g

−β ~v
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où v(t) est la vitesse selon y de la gouttelette dans l’air au temps t, v̇(t) = dv
dt
(t) son ac-

célération selon y au temps t, g la norme de l’accélération due à la pesanteur (considérée
comme constante ici) et β un facteur qui dépend du rayon r de la gouttelette, supposée
sphérique, selon la relation β = 6 π ηair r, où ηair est un paramètre appelé coefficient de
viscosité dynamique de l’air (ηair ≈ 1,8 · 10−5 kgm−1 s−1 à la température de 20 ◦C). En
ajoutant β v(t) aux deux côtés de cette relation, puis en divisant les deux côtés par m,
on obtient la forme typique d’une équation différentielle linéaire du premier ordre :

m v̇(t) + β v(t) = g ⇔ v̇(t) +
β

m
v(t) = g .

Résolvons cette équation en utilisant la méthode du facteur intégrant. Pour cela, com-
mençons par calculer le facteur intégrant I(t). Vu que β

m
t est l’expression d’une primitive

de la fonction donnée par β
m
, le facteur intégrant s’écrit :

I(t) = exp

(
β

m
t

)

.

En multipliant alors les deux côtés v̇(t) + β
m
v(t) = g par I(t), on obtient une équation

qui peut être directement intégrée :

v̇(t) +
β

m
v(t) = g

⇔ v̇(t) exp

(
β

m
t

)

+
β

m
exp

(
β

m
t

)

v(t) = g exp

(
β

m
t

)

⇔ d

dt

[

v(t) exp

(
β

m
t

)]

= g exp

(
β

m
t

)

⇔
∫

d

dt

[

v(t) exp

(
β

m
t

)]

dt =

∫

g exp

(
β

m
t

)

dt

⇔ v(t) exp

(
β

m
t

)

=
mg

β
exp

(
β

m
t

)

+ C ,

où C est une constante. En multipliant cette dernière relation des deux côtés par
exp
(
− β

m
t
)
, on trouve la solution générale de l’équation différentielle :

v(t) =
mg

β
+ C exp

(

− β

m
t

)

.

Supposons que la goutte était initialement, au temps t = 0, immobile. Mathématique-
ment, cette condition se traduit par l’expression v(0) = 0. La solution de l’équation dif-
férentielle v̇(t)+ β

m
v(t) = g qui satisfait v(0) = 0 est alors celle pour laquelle C = −mg

β
;

en effet, 0 = v(0) = mg
β

+ C exp(0) = mg
β

+ C. Cette solution s’écrit donc :

v(t) =
mg

β
− mg

β
exp

(

− β

m
t

)

=
mg

β

[

1− exp

(

− β

m
t

)]

.
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À la limite lorsque t tend vers l’infini, la vitesse de la gouttelette vaut :

lim
t→∞

v(t) = lim
t→∞

mg

β

[

1− exp

(

− β

m
t

)]

=
mg

β
(1− 0) =

mg

β
.

Pour une gouttelette de 20 µm de diamètre, mg
β

≈ 0,012m s−1 = 12mms−1 à 20 ◦C, ce
qui est suffisamment petit pour pouvoir prétendre que la force de frottement est en tout
temps t > 0 s proportionnelle à la vitesse de la gouttelette. Dans le cas d’une goutte
de pluie, par contre (dont le diamètre peut être supérieur à 2 mm), la quantité mg

β
est

suffisamment grande pour pouvoir dire qu’il existe un instant t1 > 0 s à partir duquel la
force de frottement n’est plus proportionnelle à la vitesse ; la solution v(t) obtenue ci-
dessus n’est, dans ce cas, valable que pour les instants t compris entre 0 s et l’instant t1.

Note : La solution v(t) obtenue ci-dessus est définie pour tout t ∈ R. Pourtant, la
situation physique considérée, elle, n’est spécifiée qu’à partir de t = 0 s (l’instant où la
goutte est encore juste immobile), et seulement jusqu’à l’instant t1 dans le cas de la
goutte de pluie. La solution obtenue n’est donc pas valable dans tout R, mais seulement
dans un intervalle qui commence en t = 0 s. C’est typiquement pour ce genre de situation
que le premier point de la remarque 6.3.5 a été formulé.

6.3.15 Théorème : Soit l’équation différentielle linéaire du premier ordre :

y′(x) + p(x) y(x) = q(x) ,

où p : I → R et q : I → R sont deux fonctions continues dans un certain intervalle
ouvert I ⊂ R. Alors pour tout couple (x0; y0), où x0 ∈ I et y0 ∈ R, il existe une unique
solution y : I → R de l’équation donnée, qui vérifie la condition initiale y(x0) = y0.
Ce résultat est connu sous le nom de théorème d’existence et d’unicité pour les
équations différentielles linéaires du premier ordre.

Preuve : Soit l’équation différentielle linéaire du premier ordre y′(x) + p(x) y(x) = q(x),
où p, q : I → R sont deux fonctions continues dans l’intervalle ouvert I ⊂ R. Soit
aussi le couple (x0; y0), où x0 ∈ I et y0 ∈ R. Pour montrer qu’il existe une unique
fonction y : I → R qui satisfait l’équation différentielle donnée et qui remplit la condition
y(x0) = y0, il convient de procéder en deux étapes : prouver d’abord l’existence d’une
telle fonction, puis démontrer son unicité.

• Selon le théorème 6.3.9, l’équation différentielle y′(x) + p(x) y(x) = q(x) admet
pour solution générale la fonction u : I → R donnée par :

u(x) =
(
K + c(x)

)
w(x) ,

où K est une constante réelle,

w(x) = exp
(
−P (x)

)
et c(x) =

∫
q(x)

w(x)
dx ,

P étant une primitive de p dans I. En posant :

K =
y0

w(x0)
− c(x0) ,
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il vient :

u(x0) =
(
K + c(x0)

)
w(x0) =

[(
y0

w(x0)
− c(x0)

)

+ c(x0)

]

w(x0) = y0 .

Un tel calcul montre qu’il existe une fonction qui satisfait l’équation différentielle
donnée et qui prend la valeur y0 en x0 ; cette fonction est la fonction y : I → R,
donnée par :

y(x) =

[(
y0

w(x0)
− c(x0)

)

+ c(x)

]

w(x) .

• Pour prouver que la fonction y : I → R donnée au point précédent est unique, il
suffit de remarquer toute solution de l’équation y′(x) + p(x) y(x) = q(x) est de
la forme

(
K + c(x)

)
w(x), d’une part, et d’autre part que, étant donné le couple

(x0; y0), l’expression
y0

w(x0)
− c(x0) n’est qu’un seul et même nombre réel. �

6.3.2 Équations différentielles linéaires du deuxième ordre, homogènes
et à coefficients constants

6.3.16 Définition : On appelle équation différentielle linéaire du deuxième ordre, homo-
gène et à coefficients constants toute équation différentielle pouvant être écrite sous la
forme :

a y′′(x) + b y′(x) + c y(x) = 0 (de façon plus compacte : a y′′ + b y′ + c y = 0 ) ,
(6.3.2)

où a 6= 0, b et c sont des nombres réels fixés, y une fonction, y′ et y′′ sa première et sa
seconde dérivée, respectivement.

6.3.17 Définition : Toute fonction y : R → R, deux fois dérivable dans R, dont la seconde
dérivée y′′ : I → R est continue dans I, et qui vérifie l’équation 6.3.2, est appelée solution
de cette même équation.

6.3.18 Remarque : À ce stade, il n’est pas possible de montrer que toute solution de
l’équation 6.3.2 est effectivement définie dans R tout entier ; ce résultat sera prouvé
par la suite. Il va sans dire que toute fonction y : J → R, deux fois dérivable dans un
intervalle ouvert J ⊂ R, dont la seconde dérivée y′′ : J → R est continue dans J , et qui
satisfait l’équation différentielle 6.3.2, peut également être appelée solution de l’équation
en question. Si ce sont les solutions y : R → R qui vont être en général considérées, c’est
afin de disposer du cadre d’étude le plus large possible.

6.3.19 Proposition : Soit l’équation différentielle linéaire du deuxième ordre, homogène
et à coefficients constants :

a y′′(x) + b y′(x) + c y(x) = 0 ,
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où a 6= 0, b et c sont des nombres réels fixés. Si y1 : R → R et y2 : R → R sont deux
solutions de cette équation, alors la fonction y3 : R → R, donnée par :

y3(x) = C1 y1(x) + C2 y2(x) ,

où C1 et C2 sont deux constantes réelles, est aussi une solution de cette même équation.

Preuve : Soient y1 : R → R et y2 : R → R deux solutions de l’équation différentielle
a y′′(x) + b y′(x) + c y(x) = 0 (où a 6= 0, b et c sont des nombres réels) et y3 : R → R la
fonction donnée par y3 = C1 y1+C2 y2, où C1 et C2 sont deux constantes réelles. Alors :

a y′′3(x) + b y′3(x) + c y3(x) =

= a (C1 y1 + C2 y2)
′′(x) + b (C1 y1 + C2 y2)

′(x) + c (C1 y1 + C2 y2)(x)

= C1 a y
′′
1(x) + C2 a y

′′
2(x) + C1 b y

′
1(x) + C2 b y

′
2(x) + C1 c y1(x) + C2 c y2(x)

= C1

(
a y′′1(x) + b y′1(x) + c y1(x)
︸ ︷︷ ︸

=0

)
+ C2

(
a y′′2(x) + b y′2(x) + c y2(x)
︸ ︷︷ ︸

=0

)
= 0 ,

du fait que y1 : R → R et y2 : R → R satisfont toutes les deux l’équation différentielle
a y′′(x)+ b y′(x)+ c y(x) = 0. La fonction y3 : R → R est donc bien une solution de cette
même équation. �

6.3.20 Définition : Deux fonctions y1, y2 : I → R, définies dans un certain intervalle
ouvert non vide I ⊂ R, sont dites linéairement indépendantes si l’égalité :

K1 y1(x) +K2 y2(x) = 0 , pour tout x ∈ I ,

où K1 et K2 sont des nombres réels, implique K1 = K2 = 0. Si l’égalité est vérifiée pour
tout x ∈ I, avec au moins un des deux nombres réels K1, K2 qui est non nul, les deux
fonctions sont dites linéairement dépendantes.

6.3.21 Remarque : La définition précédente peut être évidemment aussi énoncée dans
le cas de fonctions définies dans tout R.

6.3.22 Théorème : • Toute équation différentielle linéaire du deuxième ordre, ho-
mogène et à coefficients constants a y′′(x) + b y′(x) + c y(x) = 0, où a 6= 0, b et c
sont des nombres réels fixés, possède deux solutions linéairement indépendantes
y1 : R → R et y2 : R → R.

• Toute solution y : R → R de l’équation différentielle linéaire du deuxième ordre,
homogène et à coefficients constants a y′′(x) + b y′(x) + c y(x) = 0, où a 6= 0, b
et c sont trois nombres réels fixés, s’écrit :

y(x) = C1 y1(x) + C2 y2(x) ,

où y1 : R → R et y2 : R → R sont deux solutions linéairement indépendantes de
l’équation différentielle en question, C1 et C2 deux constantes réelles. Autrement
dit, la fonction y = C1 y1+C2 y2 est la solution générale de l’équation différentielle
en question.
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Preuve : Nécessitant des outils dont la complexité dépasse le cadre de la présente étude,
ce théorème ne peut pas être démontré ici. �

Selon la proposition 6.3.22, la solution générale y de l’équation différentielle linéaire
du deuxième ordre a y′′(x)+b y′(x)+c y(x) = 0 s’obtient donc en cherchant deux fonctions
linéairement indépendantes, qui satisfont toutes les deux l’équation en question. Toute
la difficulté réside dans le fait de trouver ces deux solutions ; car il n’existe pas de
méthode générale permettant de les obtenir. Il ne reste qu’à procéder par tâtonnement,
en faisant des essais. En tentant une solution y ayant la forme d’une exponentielle, on
remarque que l’équation différentielle a y′′(x) + b y′(x) + c y(x) = 0 se transforme en une
équation algébrique, facile à résoudre ; en effet, si y = exp(λ x), où λ est un nombre,
alors y′(x) = λ exp(λ x), y′′(x) = λ2 exp(λ x), si bien qu’en insérant ces expressions dans
l’équation différentielle en question, on obtient :

a y′′(x) + b y′(x) + c y(x) = 0

⇒ a λ2 exp(λ x) + b λ exp(λ x) + c exp(λ x) = 0

⇔ (a λ2 + b λ + c) exp(λ x) = 0 ;

et vu que cette relation doit être satisfaite pour tout x, alors nécessairement :

a λ2 + b λ+ c = 0 .

Cette dernière expression n’est rien d’autre qu’une équation du deuxième degré en λ.
Comme le montre le théorème qui suit, la résolution de cette équation permet d’exhiber
les deux solutions linéairement indépendantes cherchées.

6.3.23 Définition : Soit l’équation différentielle linéaire du deuxième ordre, homogène
et à coefficients constants :

a y′′(x) + b y′(x) + c y(x) = 0 ,

où a 6= 0, b et c sont des nombres réels fixés. On appelle équation caractéristique,
associée à l’équation différentielle donnée ci-dessus, l’équation du deuxième degré en la
variable λ :

a λ2 + b λ + c = 0 .

6.3.24 Proposition : Soit l’équation différentielle linéaire du deuxième ordre, homogène
et à coefficients constants :

a y′′(x) + b y′(x) + c y(x) = 0 ,

où a 6= 0, b et c sont des nombres réels fixés, et a λ2 + b λ + c = 0 son équation
caractéristique. Trois situations peuvent se présenter.

1. b2−4 a c > 0. Dans ce cas, l’équation caractéristique possède deux solutions réelles
distinctes λ1 et λ2 ; l’équation différentielle en question admet alors comme solution
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générale la fonction y : R → R donnée par :

y(x) = C1 exp(λ1 x) + C2 exp(λ2 x) ,

où C1 et C2 sont deux constantes réelles.

2. b2 − 4 a c = 0. Dans ce cas, l’équation caractéristique possède une unique solution
réelle (dite double) λ0 ; l’équation différentielle en question admet alors comme
solution générale la fonction y : R → R donnée par :

y(x) = C1 exp(λ0 x) + C2 x exp(λ0 x) ,

où C1 et C2 sont deux constantes réelles.

3. b2 − 4 a c < 0. Dans ce cas, l’équation caractéristique possède deux solutions dis-
tinctes λ1 et λ2 qui ne sont pas réelles mais complexes, et qui peuvent s’écrire
sous la forme λ1 = r − s i et λ2 = r + s i, où r = − b

2 a
et s = 1

2 a

√
4 a c− b2 sont

deux nombres réels, et i =
√
−1 par définition ; l’équation différentielle en question

admet alors comme solution générale la fonction y : R → R donnée par :

y(x) = exp(r x)
(
C1 cos(s x) + C2 sin(s x)

)
,

où C1 et C2 sont deux constantes réelles.

Preuve : Soit a y′′(x)+b y′(x)+c y(x) = 0 une équation différentielle linéaire du deuxième
ordre, homogène et à coefficients constants (où a 6= 0, b et c sont des nombres réels fixés)
et a λ2+ b λ+ c = 0 son équation caractéristique. Trois situations peuvent se présenter.

1. b2−4 a c > 0. Dans ce cas, l’équation caractéristique possède deux solutions réelles
distinctes λ1 et λ2. Selon les calculs établis plus haut (menant à l’équation carac-
téristique), les fonctions y1 : R → R et y2 : R → R, données respectivement par
y1(x) = exp(λ1 x) et y2(x) = exp(λ2 x), satisfont toutes les deux l’équation diffé-
rentielle en question. En outre, y1 et y2 sont linéairement indépendantes, vu que
l’égalité K1 exp(λ1 x) + K2 exp(λ2 x) = 0 pour tout x ∈ R (où K1 et K2 sont
deux nombres réels), implique K1 = K2 = 0. Le théorème 6.3.22 permet alors de
conclure que la fonction y : R → R, donnée par :

y(x) = C1 y1(x) + C2 y2(x) = C1 exp(λ1 x) + C2 exp(λ2 x) ,

où C1 et C2 sont deux constantes réelles, est la solution générale de l’équation
différentielle a y′′(x) + b y′(x) + c y(x) = 0 dans le cas où b2 − 4 a c > 0.

2. b2 − 4 a c = 0. Dans ce cas, l’équation caractéristique possède une unique solu-
tion, dite double, λ0. Selon les calculs établis précédemment (menant à l’équation
caractéristique), la fonction y1 : R → R, donnée par y1(x) = exp(λ0 x), satisfait
l’équation différentielle en question. Pour obtenir la solution générale de l’équa-
tion différentielle, il est nécessaire de disposer d’une deuxième solution y2 : R → R

linéairement indépendante de y1 : R → R (cf. théorème 6.3.22). On vérifie que
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cette deuxième solution est donnée par y2(x) = x exp(λ0 x) : d’une part y2 satis-
fait l’équation différentielle donnée (vérification laissée en exercice), d’autre part
l’égalité K1 exp(λ0 x) + K2 x exp(λ0 x) = 0 pour tout x ∈ R (où K1 et K2 sont
deux nombres réels) implique K1 = K2 = 0. Le théorème 6.3.22 permet alors de
conclure que la fonction y : R → R, donnée par :

y(x) = C1 y1(x) + C2 y2(x) = C1 exp(λ0 x) + C2 x exp(λ0 x) ,

où C1 et C2 sont deux constantes réelles, est la solution générale de l’équation
différentielle a y′′(x) + b y′(x) + c y(x) = 0 dans le cas où b2 − 4 a c = 0.

3. b2 − 4 a c < 0. Dans ce cas, l’équation caractéristique possède deux solutions dis-
tinctes λ1 et λ2 qui ne sont pas réelles mais complexes, qui peuvent s’écrire sous
la forme λ1 = r − s i et λ2 = r + s i, où r = − b

2 a
et s = 1

2 a

√
4 a c− b2 sont deux

nombres réels, et i =
√
−1 par définition ; en effet :

λ1, 2 =
−b±

√
b2 − 4 a c

2 a
= − b

2 a
± 1

2 a

√

−(4 a c− b2)

= − b

2 a
± 1

2 a

√
4 a c− b2

√
−1 = − b

2 a
︸ ︷︷ ︸

= r

± 1

2 a

√
4 a c− b2 i

︸ ︷︷ ︸

= s i

.

Soient à présent les fonctions ỹ1 et ỹ2, données par ỹ1(x) = exp(λ1 x) et ỹ2(x) =
exp(λ2 x). Selon les calculs établis plus haut (conduisant à l’équation caractéris-
tique), ces fonctions satisfont toutes les deux l’équation différentielle en question ;
de plus, elles semblent être linéairement indépendantes. Seulement, ces fonctions
ne sont a priori pas réelles, mais complexes. Elles sortent donc du cadre du théo-
rème 6.3.22 ; elles ne peuvent, par conséquent, pas être utilisées, du moins pas
telles quelles, pour écrire la solution générale de l’équation différentielle en ques-
tion. Posons néanmoins :

y(x) = A1 exp(λ1 x) + A2 exp(λ2 x) ,

où A1 et A2 sont deux constantes a priori complexes. Alors, en notant que :

exp(λ1, 2 x) = exp
(
(r ± s i) x

)
= exp(r x) exp(±i s x) ,
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et en appliquant la formule d’Euler (cf. sous-section C.8.10, annexe C), il vient :

y(x) = A1 exp(λ1 x) + A2 exp(λ2 x)

= A1 exp
(
(r − s i) x

)
+ A2 exp

(
(r + s i) x

)

= A1 exp(r x) exp(−s i x) + A2 exp(r x) exp(s i x)

= exp(r x)
(
A1 exp(−i s x) + A2 exp(i s x)

)

= exp(r x)
(

A1

(
cos(−s x) + i sin(−s x)

)
+ A2

(
cos(s x) + i sin(s x)

))

= exp(r x)
(

A1

(
cos(s x)− i sin(s x)

)
+ A2

(
cos(s x) + i sin(s x)

))

= exp(r x)
(
(A1 + A2)
︸ ︷︷ ︸

C1

cos(s x) + i (A2 − A1)
︸ ︷︷ ︸

C2

sin(s x)
)
,

où il a été posé C1 = A1 + A2 et C2 = i (A2 −A1). L’expression :

exp(r x)
(
C1 cos(s x) + C2 sin(s x)

)

est complètement réelle, pour autant que C1 et C2 soient réelles ; une telle condition
peut être remplie sans difficulté aucune : il suffit de poser A1 =

1
2
(C1 + C2 i) et

A2 = 1
2
(C1 − C2 i). Soient alors les fonctions y1 : R → R et y2 : R → R, données

respectivement par :

y1(x) = exp(r x) cos(s x) et y2(x) = exp(r x) sin(s x) .

Comme le montrent les calculs qui viennent d’être effectués, ces fonctions satisfont
toutes les deux l’équation différentielle en question. En outre, elles sont linéaire-
ment indépendantes, vu que l’égalitéK1 exp(r x) cos(s x)+K2 exp(r x) sin(s x) = 0
pour tout x ∈ R (où K1 et K2 sont deux nombres réels) implique K1 = K2 = 0.
Le théorème 6.3.22 permet alors de conclure que la fonction y : R → R, donnée
par :

y(x) = exp(r x)
(
C1 cos(s x) + C2 sin(s x)

)
,

où C1 et C2 sont deux constantes réelles, est la solution générale de l’équation
différentielle a y′′(x) + b y′(x) + c y(x) = 0 dans le cas où b2 − 4 a c < 0. �

6.3.25 Remarques : • Dans la dernière situation du théorème précédent, si b = 0,
alors r = 0 et donc λ1 = −s i et λ2 = s i. Dans ce cas, exp(r x) = exp(0) = 1 quel
que soit x ∈ R, et la solution générale s’écrit donc simplement :

y(x) = C1 cos(s x) + C2 sin(s x) ,

où C1 et C2 sont deux constantes réelles.
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• Toute équation différentielle linéaire du deuxième ordre, homogène et à coeffi-
cients constants a y′′(x) + b y′(x) + c y(x) = 0, où a 6= 0, b et c sont des nombres
réels fixés, peut être écrite sous la forme y′′(x) + β y′(x) + γ y(y) = 0, où β et
γ sont des nombres réels fixés. Pour cela, il suffit de diviser l’équation de départ
par a ; les coefficients β et γ valent alors respectivement β = b

a
et γ = c

a
.

• Lors de la résolution de l’équation différentielle a y′′(x) + b y′(x) + c y(x) = 0
(où a 6= 0, b et c sont trois nombres réels fixés), la donnée de conditions ini-
tiales permet de fixer la les valeurs des constantes C1 et C2. Du fait qu’il y a
deux constantes, il est nécessaire d’avoir deux conditions initiales, une sur y, par
exemple y(0) = y0, et une autre sur la dérivée y′, par exemple y′(0) = y′0. Le
théorème d’existence et d’unicité pour les équations différentielles linéaires du
deuxième ordre, à coefficients constants (cf. théorème 6.3.36), revient sur ce sujet
et le détaille.

6.3.26 Exemple : Soit l’équation différentielle y′′(x)−3 y′(x)+2 y(x) = 0. Son équation
caractéristique, λ2−3 λ+2 = 0 , admet deux solutions réelles distinctes, λ1 = 1 et λ2 = 2.
Selon la proposition 6.3.24, l’équation différentielle en question admet alors comme so-
lution générale la fonction y : R → R, donnée par y(x) = C1 exp(x) +C2 exp(2 x), où C1

et C2 sont deux constantes réelles.

6.3.27 Illustration : Un objet de masse m est suspendu au plafond d’une pièce par
l’intermédiaire d’un ressort (cf. figure ci-dessous) ; il est également lié à un piston de
masse négligeable, se mouvant dans un liquide ayant une certaine viscosité. Dans ces
circonstances, et à supposer que les frottements avec l’air sont négligeables, l’objet en
question subit trois forces : la force due à la pesanteur, une force due au ressort et une
force due au piston qui se meut dans le liquide visqueux. Soit alors un axe y, vertical et
orienté vers le haut (cf. figure ci-dessous). En projetant les différentes forces sur y, et en
appliquant la deuxième loi de Newton, il vient :

m ÿ(t) = −mg − k
(
y(t)− y0

)
− β ẏ(t) ,

où :

⋄ y(t) est la position sur l’axe y, à l’instant t, de l’extrémité
inférieure du ressort (cette position peut être assimilée à la
position sur l’axe y de l’objet de masse m) ;

⋄ ẏ(t) et ÿ(t) les dérivées première et seconde de y à l’instant t,
respectivement (correspondant à la vitesse et à l’accélération
de l’objet, selon y, à l’instant t, respectivement) ; m

y

⋄ −mg est la composante selon y de la force de pesanteur, g
étant l’accélération due à la pesanteur à la surface de la Terre
(g ≈ 9,81m s−2) ;

⋄ −k
(
y(t)− y0

)
est la composante selon y, à l’instant t, de la force due au ressort,

k étant un paramètre réel strictement positif (appelé constante du ressort) et y0
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la position de l’extrémité inférieure du ressort, lorsque celui-ci n’est ni contracté
ni étiré ;

⋄ −β ẏ(t) est la composante selon y, à l’instant t, de la force due au piston, β étant
un paramètre réel strictement positif (caractérisant la visquosité du liquide dans
le piston).

L’équation qui vient d’être exposée peut être récrite comme suit :

m ÿ(t) = −mg − k
(
y(t)− y0

)
− β ẏ(t)

⇔ m ÿ(t) + β ẏ(t) +mg + k
(
y(t)− y0

)
= 0

⇔ m ÿ(t) + β ẏ(t) + k
(
y(t)− y0 +

mg
k

)
= 0 ;

autrement écrit, en posant z(t) = y(t)− y0 +
mg
k

:

m z̈(t) + β ż(t) + k z(t) = 0 ,

où ż(t) = d
dt

(
y(t)− y0 +

mg
k

)
= ẏ(t) et z̈(t) = d2

dt2
y(t) = ÿ(t). Cette dernière expression

est une équation différentielle linéaire, du deuxième ordre, homogène et à coefficients
constants. Résolvons-là. À cet effet, écrivons son équation caractéristique :

mλ2 + β λ+ k = 0 ,

et exhibons les solutions de cette dernière :

λ1, 2 = − β

2m
± 1

2m

√

β2 − 4mk .

Trois situations peuvent alors se présenter (cf. proposition 6.3.24) :

• β2 − 4mk > 0 (amortissement fort) :
λ1 et λ2 sont distinctes, réelles et négatives
(vu que

√

β2 − 4mk <
√

β2 = β). La
solution générale de l’équation différentielle
s’écrit alors :

z(t) = C1 exp(λ1 t) + C2 exp(λ2 t) ,

où C1 et C2 sont des constantes réelles qui
sont fixées par la donnée de conditions ini-
tiales (z(0) = z0 et ż(0) = ż0).

t

z

z0

0

• β2 − 4mk = 0 (amortissement critique) :
λ1 = λ2 = − β

2m
∈ R. La solution générale de

l’équation différentielle s’écrit alors :

z(t) = (C1 + C2 t) exp(λ0 t) ,

où λ0 = λ1 = λ2, C1 et C2 des constantes
réelles qui sont fixées par la donnée de condi-
tions initiales (z(0) = z0 et ż(0) = ż0).

t

z

z0

0
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• β2 − 4mk < 0 (amortissement faible) :
λ1 et λ2 ne sont pas réelles, mais complexes,
et peuvent s’écrire sous la forme λ1 = µ− iω
et λ2 = µ + iω, où µ = − β

2m
< 0 et ω =

1
2m

√

4mk − β2 sont deux nombres réels. La
solution générale de l’équation différentielle
s’écrit alors :

z(t) = exp(µ t)
(
C1 cos(ω t) + C2 sin(ω t)

)
,

où C1 et C2 sont des constantes réelles qui
sont fixées par la donnée de conditions ini-
tiales (z(0) = z0 et ż(0) = ż0).

t

z

z0

0

Les trois graphiques ci-dessus, représentant les différentes solutions, ont été obtenus avec
les conditions initiales z(0) = z0 et ż(0) = ż0 = 0. Dans le premier cas, la force de frotte-
ment est si intense que l’objet, lorsqu’il est écarté de sa position d’équilibre, revient peut
à peu vers cette position, sans pouvoir même osciller ; on parle alors d’amortissement
fort. Dans le troisième cas, la force de frottement est suffisamment faible pour que l’ob-
jet, lorsqu’il est écarté de sa position d’équilibre, oscille tout en revenant peu à peu vers
cette position d’équilibre ; on parle alors d’amortissement faible. En comparant les trois
graphiques, on constate que c’est dans le deuxième cas que l’objet, lorsqu’il est écarté de
sa position d’équilibre, regagne le plus rapidement cette position ; dans cette situation,
on parle d’amortissement critique.

Note : Le dispositif décrit dans la présente illustration peut être vu comme un modèle
d’un système suspension-amortisseur. Pour garantir le confort du conducteur et des pas-
sagers, un constructeur automobile va opter pour des matériaux qui permettent de se
retrouver à peu près dans la deuxième situation décrite ci-dessus (amortissement cri-
tique) : après avoir roulé sur une bosse, la personne au volant de sa voiture apprécie de
retrouver l’état initial le plus rapidement possible, sans subir de mouvement oscillatoire.

6.3.3 Équations différentielles linéaires du deuxième ordre,
non homogènes et à coefficients constants

6.3.28 Définition : On appelle équation différentielle linéaire du deuxième ordre, non
homogène et à coefficients constants toute équation différentielle pouvant s’écrire sous
la forme :

a y′′(x) + b y′(x) + c y(x) = g(x) (de façon plus compacte : a y′′ + b y′ + c y = g ) ,
(6.3.3)

où a 6= 0, b et c sont des nombres réels fixés et g : I → R est une fonction continue dans
un certain intervalle ouvert I ⊂ R.
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6.3.29 Définition : Toute fonction y : I → R, deux fois dérivable dans l’intervalle ouvert
I ⊂ R et vérifiant l’équation 6.3.3, est appelée solution de cette équation.

6.3.30 Remarque : Toute fonction y : J → R, deux fois dérivable dans un intervalle
ouvert J ⊂ I et qui satisfait l’équation 6.3.3, peut également être appelée solution de
l’équation en question. En revanche, aucune fonction y : J̃ → R, où J̃ ⊃ I, ne peut être
considérée comme une solution de l’équation 6.3.3, vu que l’ensemble J̃ est plus étendu
que l’intervalle I, dans lequel l’équation en question est définie.

6.3.31 Définition : On définit l’opérateur L, agissant sur les fonctions y : I → R deux
fois dérivables dans un certain intervalle ouvert I, par :

L = a
d2

dx2
+ b

d

dx
+ c ,

de sorte que :

L[y](x) =

(

a
d2

dx2
+ b

d

dx
+ c

)
[
y
]
(x)

= a
d2y

dx2
(x) + b

dy

dx
(x) + c y(x) = a y′′(x) + b y′(x) + c y(x) ;

de manière équivalente, sous forme plus compacte :

L[y] = a y′′ + b y′ + c y .

6.3.32 Remarques : • Si L porte le nom d’opérateur, c’est parce qu’il agit sur des
fonctions (et non sur des nombres). L’argument d’un opérateur (qui est une fonc-
tion) se note entre crochets.

• Si l’opérateur L a été défini, c’est essentiellement pour rendre les calculs futurs
plus compacts.

• L’opérateur L est linéaire. La vérification de ce résultat est laissée en exercice.

6.3.33 Proposition : Soit l’équation différentielle linéaire du deuxième ordre, non homo-
gène et à coefficients constants :

L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x) ,

où a 6= 0, b et c sont des nombres réels fixés, et g : I → R une fonction continue
dans l’intervalle ouvert I ⊂ R. Alors toute solution y : I → R de cette équation (dans
l’intervalle I) s’écrit sous la forme :

y(x) = yh(x) + yp(x) ,

où :

• yh : I → R est la solution générale de l’équation L[y] = a y′′ + b y′ + c y = 0 (qui
est l’équation homogène associée à l’équation L[y] = a y′′ + b y′ + c y = g),
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• yp : I → R est une solution particulière de l’équation L[y] = a y′′ + b y′ + c y = g.

Autrement dit, y = yh + yp est la solution générale de l’équation L[y](x) = g(x).

Preuve : Soit l’équation différentielle linéaire du deuxième ordre, non homogène et à
coefficients constants L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x), où a 6= 0, b et c
sont trois nombres réels fixés, et g : I → R une fonction continue dans l’intervalle
ouvert I ⊂ R. Soient yh la solution générale de l’équation homogène L[y](x) = 0
(⇔ a y′′(x) + b y′(x) + c y(x) = 0) et yp une solution particulière de l’équation complète
L[y](x) = g(x) (⇔ a y′′(x) + b y′(x) + c y(x) = g(x)). Pour prouver le fait que toute so-
lution de l’équation L[y](x) = g(x) s’écrit sous la forme y(x) = yh(x) + yp(x), il convient
de procéder en deux étapes : montrer d’abord que y = yh + yp est solution de l’équation
L[y] = g, puis établir que toute solution de l’équation L[y] = g est de la forme yh + yp.

• L’expression y = yh + yp est solution de l’équation différentielle du deuxième
ordre L[y] = a y′′ + b y′ + c y = g. En effet :

L[y] = L[yh + yp] = L[yh] + L[yp] = 0 + g = g ,

du fait que L est un opérateur linéaire, que yh est solution de l’équation homogène
L[y] = 0 et yp solution de l’équation complète L[y] = g.

• Toute solution de l’équation différentielle L[y] = g est de la forme y = yh + yp.
Pour s’en convaincre, on considère une autre solution de l’équation différentielle
complète L[y] = g, que l’on note w, et on s’intéresse à la différence w − y, où
y = yh+yp. En injectant w−y dans la partie de gauche de l’équation différentielle
en question, il vient :

L[w − y] = L[w]− L[y] = g − g = 0 ,

du fait que w et y satisfont toutes les deux l’équation différentielle complète.
Manifestement donc, w − y satisfait l’équation homogène associée à l’équation
complète. Or, si w − y satisfait l’équation homogène, elle doit avoir la forme
d’une solution ỹh de l’équation homogène, w − y = ỹh. En conséquence :

w(x) = ỹh(x) + y(x) = ỹh(x) + yh(x) + yp(x) ;

mais ỹh + yh est encore la solution générale de l’équation homogène. En consé-
quence, w est de la forme yh + yp, tout comme y. �

Selon la proposition qui vient d’être démontrée, la solution générale y de l’équa-
tion différentielle linéaire du deuxième ordre, non homogène et à coefficients constants
a y′′(x) + b y′(x) + c y(x) = g(x) s’obtient en cherchant d’abord la solution générale yh
de l’équation homogène a y′′(x) + b y′(x) + c y(x) = 0, puis en trouvant une solution
particulière yp de l’équation complète a y′′(x) + b y′(x) + c y(x) = g(x). La solution yh
de l’équation homogène s’obtient grâce à la proposition 6.3.24. Pour ce qui est d’une
solution particulière de l’équation complète, deux méthodes existent, essentiellement,
pour la déterminer.
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Méthode de la variation des constantes

Une telle méthode est similaire à celle de la variation de la constante, dans le cas des
équations différentielles linéaires du premier ordre ; elle consiste à reprendre l’expression
de la solution générale yh de l’équation homogène (associée à l’équation complète) et à y
remplacer les deux constantes par des fonctions u et v de x.

6.3.34 Proposition : Soit l’équation différentielle du deuxième ordre, non homogène et
à coefficients constants :

L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x) ,

où a 6= 0, b et c sont des nombres réels fixés, et g : I → R une fonction continue dans
l’intervalle ouvert I ⊂ R. Soit aussi yh = C1 y1 + C2 y2 : I → R la solution générale
(dans I) de l’équation homogène L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0 (associée à
l’équation complète L[y](x) = g(x)), où y1 : I → R et y2 : I → R sont deux solutions
linéairement indépendantes de cette équation L[y](x) = 0. Alors la fonction yp : I → R,
donnée par :

yp(x) = u(x) y1(x) + v(x) y2(x) ,

où u : I → R et v : I → R sont deux fonctions, est une solution particulière de l’équation
complète L[y](x) = g(x), à condition que u et v satisfassent le système d’équations :

{

u′(x) y1(x) + v′(x) y2(x) = 0

u′(x) y′1(x) + v′(x) y′2(x) = 1
a
g(x)

,

pour tout x ∈ I. En outre, ce système d’équation possède toujours une unique solution
(en u′ et v′).

Preuve : Soit l’équation différentielle linéaire du deuxième ordre, non homogène et à
coefficients constants L[y](x) = a y′′(x)+b y′(x)+c y(x) = g(x), où a 6= 0, b et c sont des
nombres réels fixés, et g : I → R une fonction continue dans l’intervalle ouvert I ⊂ R.
Soit aussi yh = C1 y1+C2 y2 : I → R la solution générale (dans I) de l’équation homogène
L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0 (associée à l’équation complète L[y](x) = g(x)),
où y1 : I → R et y2 : I → R sont deux solutions linéairement indépendantes de cette
équation L[y](x) = 0. Posons :

yp(x) = u(x) y1(x) + v(x) y2(x) ,

où u : I → R et v : I → R sont deux fonctions dérivables dans I. Alors :

y′p(x) = u′(x) y1(x) + u(x) y′1(x) + v′(x) y2(x) + v(x) y′2(x)

=
(
u y′1 + v y′2

)
(x) +

(
u′ y1 + v′ y2

)
(x) ,

y′′p(x) = u′(x) y′1(x) + u(x) y′′1(x) + v′(x) y′2(x) + v(x) y′′2(x) +
(
u′ y1 + v′ y2

)′
(x) .
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En insérant ces expressions dans l’équation différentielle L[y] = a y′′ + b y′ + c y = g, il
vient :

a u′(x) y′1(x) + a u(x) y′′1(x) + a v′(x) y′2(x) + a v(x) y′′2(x) + a
(
u′ y1 + v′ y2

)′
(x)

+ b u(x) y′1(x) + b v(x) y′2(x) + b
(
u′ y1 + v′ y2

)
(x)

+ c u(x) y1(x) + c v(x) y2(x) = g(x) ;

autrement écrit :

u(x)
(
a y′′1(x) + b y′1(x) + c y1(x)
︸ ︷︷ ︸

=0

)
+ v(x)

(
a y′′2(x) + b y′2(x) + c y2(x)
︸ ︷︷ ︸

=0

)

+ a
(
u′ y′1 + v′ y′2

)
(x) + a

(
u′ y1 + v′ y2

)′
(x) + b

(
u′ y1 + v′ y2

)
(x) = g(x) .

Les expressions entre parenthèses (dans la première ligne de cette dernière équation)
sont nulles en raison du fait que y1 et y2 satisfont toutes les deux l’équation homogène
L[y] = 0. Pour que l’égalité obtenue soit satisfaite, il suffit de choisir u et v de sorte
que :

{

u′(x) y1(x) + v′(x) y2(x) = 0

u′(x) y′1(x) + v′(x) y′2(x) = 1
a
g(x)

,

pour tout x ∈ I, vu que, si
(
u′ y1 + v′ y2

)
(x) = 0 pour tout x ∈ I, alors nécessairement

(
u′ y1+v

′ y2
)′
(x) = 0 pour tout x ∈ I. Le fait que y1 et y2 sont des fonctions linéairement

indépendantes implique que la quantité y1(x) y
′
2(x)− y′1(x) y2(x) est non nulle, quel que

soit x ∈ I (le lecteur peut le vérifier dans chacune des trois situations présentées dans
la proposition 6.3.24) V. Selon la théorie sur la résolution des systèmes d’équations dits
linéaires, le système d’équations ci-dessus (qui est un système d’équations linéaires pour
les inconnues u′ et v′), admet exactement une solution en u′ et v′. Noter que u′ et v′

sont des fonctions bien définies et continues dans I ; en effet, le système écrit ci-dessus
admet pour solution les expressions :

u′(x) = −g(x)
a

y2(x)

y1(x) y
′
2(x)− y′1(x) y2(x)

et v′(x) =
g(x)

a

y1(x)

y1(x) y
′
2(x)− y′1(x) y2(x)

,

dans lesquelles y1(x) y
′
2(x) − y′1(x) y2(x) 6= 0 pour tout x ∈ I, et g, y1, y

′
1, y2 et y′2

sont des fonctions continues dans I. Ainsi donc, la fonction yp : I → R, donnée par
yp(x) = u(x) y1(x) + v(x) y2(x), est bien définie et constitue une solution particulière
de l’équation L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x), pour autant que les fonctions
u : I → R et v : I → R satisfassent le système d’équations noté ci-dessus. �

V. Une telle quantité porte le nom de wronskien (ou déterminant wronskien), en l’honneur de Jósef
Maria Hoëné-Wroński, philosophe et mathématicien de nationalité polonaise et française, né en 1776 à
Wolsztyn (dans la République des Deux Nations, constituée de la Pologne et de la Lituanie) et mort en
1853 à Neuilly-sur-Seine (dans le Second Empire de France).
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6.3.35 Exemple : Soit l’équation différentielle :

y′′(x)− 3 y′(x) + 2 y(x) = x .

Cette équation est une équation différentielle linéaire du deuxième ordre, non homogène
et à coefficients constants. Selon la proposition 6.3.33, sa solution générale s’écrit y =
yh+yp, où yh est la solution générale de l’équation homogène y′′(x)−3 y′(x)+2 y(x) = 0
et yp une solution particulière de l’équation complète y′′(x)− 3 y′(x) + 2 y(x) = x.

⋄ Solution générale de l’équation homogène y′′(x)− 3 y′(x) + 2 y(x) = 0 :
Cette équation homogène a été traitée dans l’exemple 6.3.26. Sa solution géné-
rale yh s’écrit :

yh(x) = C1 exp(x) + C2 exp(2 x) ,

où C1 et C2 sont des constantes réelles. Noter que yh peut se récrire sous la forme
yh(x) = C1 y1(x) + C2 y2(x), où y1(x) = exp(x) et y2(x) = exp(2 x) ; remarquer
alors que y1 et y2 sont deux solutions linéairement indépendantes de l’équation
homogène.

⋄ Solution particulière de l’équation complète y′′(x)− 3 y′(x) + 2 y(x) = x :
On reprend l’expression de yh donnée ci-dessus, et on remplace les constantes C1

et C2 par deux fonctions u et v de x :

yp(x) = u(x) y1(x) + v(x) y2(x) = u(x) exp(x) + v(x) exp(2 x) .

Selon la proposition 6.3.34, la fonction yp, donnée par son expression ci-dessus,
est une solution particulière de l’équation complète y′′(x)− 3 y′(x) + 2 y(x) = x,
pour autant que les fonctions u et v satisfassent le système :

{

u′(x) y1(x) + v′(x) y2(x) = 0

u′(x) y′1(x) + v′(x) y′2(x) = x
,

i.e. le système :
{

u′(x) exp(x) + v′(x) exp(2 x) = 0

u′(x) exp(x) + v′(x) 2 exp(2 x) = x
.

Pour résoudre ce dernier, on peut, par exemple, soustraire la première équation
de la deuxième ; on obtient :
{

u′(x) exp(x) + v′(x) exp(2 x) = 0

v′(x) exp(2 x) = x
⇔

{

u′(x) = −x exp(−x)
v′(x) = x exp(−2 x)

,

d’où, en intégrant par parties :
{

u(x) = (x+ 1) exp(−x)
v(x) = −1

4
(2 x+ 1) exp(−2 x)

.

La solution particulière s’écrit alors :

yp(x) = x+ 1− 1

4
(2 x+ 1) =

1

2
x+

3

4
.
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La solution générale de l’équation y′′(x)− 3 y′(x) + 2 y(x) est donc :

y(x) = yh(x) + yp(x) = C1 exp(x) + C2 exp(2 x) +
1

2
x+

3

4
.

Note : Comme yp est une solution particulière (et non la solution générale) de l’équation
complète, il n’est pas nécessaire d’ajouter des constantes d’intégration lors du calcul
de u et v. L’ajout de ces constantes n’est certainement pas faux, mais donne lieu à une
certaine redondance : ces constantes peuvent, en fin de compte, être combinées avec
celles présentes dans la solution générale yh de l’équation homogène, pour donner lieu à
de nouvelles constantes.

6.3.36 Théorème : Soit l’équation différentielle linéaire du deuxième ordre, non homo-
gène et à coefficients constants :

L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x) ,

où a 6= 0, b et c sont des nombres réels fixés, et g : I → R une fonction continue dans un
certain intervalle ouvert I ⊂ R. Alors pour tout triplet (x0; y0; y

′
0), où x0 ∈ I, y0 ∈ R

et y′0 ∈ R, il existe une unique solution y : I → R de l’équation donnée, qui vérifie
les conditions initiales y(x0) = y0 et y′(x0) = y′0. Ce résultat est connu sous le nom
de théorème d’existence et d’unicité pour les équations différentielles linéaires du
deuxième ordre, à coefficients constants.

Preuve : Soit l’équation différentielle L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x), où
a 6= 0, b et c sont des nombres réels fixés, et g : I → R une fonction continue dans un
certain intervalle ouvert I ⊂ R. Soit aussi le triplet (x0; y0; y

′
0), où x0 ∈ I, y0 ∈ R et

y′0 ∈ R.
Selon le théorème 6.3.22, les propositions 6.3.33 et 6.3.34, l’équation différentielle

L[y](x) = a y′′(x)+ b y′(x)+ c y(x) = g(x) a pour solution générale la fonction y : I → R

donnée par :

y(x) = C1 y1(x) + C2 y2(x) + u(x) y1(x) + v(x) y2(x)

=
(
C1 + u(x)

)
y1(x) +

(
C2 + v(x)

)
y2(x) ,

où y1 : I → R et y2 : I → R sont deux solutions linéairement indépendantes de l’équation
homogène L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0, C1 et C2 deux constantes réelles,
u : I → R et v : I → R deux fonctions qui satisfont le système :

{

u′(x) y1(x) + v′(x) y2(x) = 0

u′(x) y′1(x) + v′(x) y′2(x) = 1
a
g(x)

,

pour tout x ∈ I. Écrivons alors la dérivée de y :

y′(x) =
(
0 + u′(x)

)
y1(x) +

(
0 + v′(x)

)
y2(x) +

(
C1 + u(x)

)
y′1(x) +

(
C2 + v(x)

)
y′2(x)

= u′(x) y1(x) + v′(x) y2(x) +
(
C1 + u(x)

)
y′1(x) +

(
C2 + v(x)

)
y′2(x)

=
(
C1 + u(x)

)
y′1(x) +

(
C2 + v(x)

)
y′2(x) ;
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le passage de la deuxième à la troisième ligne de calcul se justifie par le fait que u et v
satisfont la première équation du système donné plus haut. Considérons à présent les
conditions y0 = y(x0) et y

′
0 = y′(x0). En prenant les expressions de y et y′ obtenues, et

en les évaluant en x0, il vient :
{(

C1 + u(x0)
)
y1(x0) +

(
C2 + v(x0)

)
y2(x0) = y0

(
C1 + u(x0)

)
y′1(x0) +

(
C2 + v(x0)

)
y′2(x0) = y′0

,

ou, en posant C̃1 = C1 + u(x0) et C̃2 = C2 + v(x0) :
{

C̃1 y1(x0) + C̃2 y2(x0) = y0

C̃1 y
′
1(x0) + C̃2 y

′
2(x0) = y′0

.

Ces deux équations constituent un système d’équations linéaire pour les deux gran-
deurs C̃1 et C̃2. Comme y1 et y2 sont des fonctions linéairement indépendantes, la
quantité y1(x) y

′
2(x) − y′1(x) y2(x) est non nulle, quel que soit x ∈ I ; en particulier,

y1(x0) y
′
2(x0) − y′1(x0) y2(x0) 6= 0. Selon la théorie relative à la résolution des systèmes

d’équations linéaires, le système obtenu admet exactement une unique solution ; autre-
ment dit, C̃1 et C̃2 existent et sont uniques. Et vu que chacune des expressions u(x0)
et v(x0) n’est qu’un seul et même nombre réel, les quantités C1 = C̃1 − u(x0) et
C2 = C̃2 − v(x0) sont uniques. Pour chaque triplet (x0; y0; y

′
0), où x0 ∈ I, y0 ∈ R

et y′0 ∈ R, il existe donc une unique fonction y : I → R qui satisfait l’équation différen-
tielle L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x) et qui remplit les conditions initiales
y(x0) = y0 et y′(x0) = y′0. �

Méthode de l’Ansatz

Le terme Ansatz est un nom masculin allemand qui a plusieurs significations différentes.
Il se traduit en français par différents mots, l’un d’eux étant approche. Apparu d’abord
dans les mathématiques germaniques, le mot s’est propagé par la suite, tel quel, sans
être traduit, dans les mathématiques françaises, anglo-saxonnes...

Comme son nom l’indique, la méthode de l’Ansatz est un procédé de résolution basé
sur l’idée d’approche : pour trouver une solution particulière yp de l’équation différentielle
a y′′(x) + b y′(x) + c y(x) = g(x), on cherche une expression qui a une allure similaire à
celle de g, qui s’en approche.

6.3.37 Proposition : Soit l’équation différentielle du deuxième ordre, non homogène et
à coefficients constants :

L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x) ,

où a 6= 0, b et c sont des nombres réels fixés, et g : R → R une fonction continue
dans R. Soit aussi l’équation homogène L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0, associée
à l’équation L[y](x) = g(x), et a λ2 + b λ+ c = 0 son équation caractéristique.

1. Supposons que g est de la forme g(x) = α exp(nx), où α est un nombre réel et n un
nombre réel qui n’est pas solution de l’équation caractéristique a λ2 + b λ+ c = 0.
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Alors l’équation différentielle a y′′(x)+b y′(x)+c y(x) = g(x) admet comme solution
particulière une fonction yp : R → R de la forme :

yp(x) = A exp(nx) ,

où A est un coefficient réel qui se détermine en injectant l’expression de yp, ainsi
que celles de y′p et de y

′′
p qui en découlent, dans l’équation différentielle en question.

2. Supposons que g est de la forme g(x) = (αx + β) exp(nx), où α et β sont des
nombres réels, et n est un nombre réel qui n’est pas solution de l’équation caracté-
ristique a λ2+ b λ+ c = 0. Alors l’équation différentielle a y′′(x)+ b y′(x)+ c y(x) =
g(x) admet comme solution particulière une fonction yp : R → R de la forme :

yp(x) = (Ax+B) exp(nx) ,

où A et B sont deux coefficients réels qui se déterminent en injectant l’expression
de yp, ainsi que celles de y

′
p et de y′′p qui en découlent, dans l’équation différentielle

en question.

3. Supposons que g est de la forme g(x) = α exp(p x) sin(q x) ou g(x) = α exp(p x) cos(q x),
où α est un nombre réel et p+ q i un nombre complexe qui n’est pas solution
de l’équation caractéristique a λ2 + b λ + c = 0. Alors l’équation différentielle
a y′′(x) + b y′(x) + c y(x) = g(x) admet comme solution particulière une fonction
yp : R → R de la forme :

yp(x) = exp(p x)
(
A cos(q x) +B sin(q x)

)
,

où A et B sont deux coefficients réels qui se déterminent en injectant l’expression
de yp, ainsi que celles de y

′
p et de y′′p qui en découlent, dans l’équation différentielle

en question.

Preuve : Soit l’équation différentielle linéaire du deuxième ordre, non homogène et à
coefficients constants L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x), où a 6= 0, b et c
sont des nombres réels fixés, et g : R → R une fonction continue dans R. Soit aussi
l’équation homogène L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0, associée à l’équation
complète L[y](x) = g(x), et a λ2 + b λ+ c = 0 son équation caractéristique.

Considérons le cas où g est donnée par g(x) = α exp(nx), où α est un nombre réel
et n un nombre réel qui n’est pas solution de l’équation a λ2+b λ+c = 0. Soit yp : R → R

la fonction donnée par :
yp(x) = A exp(nx) ,

où A est un coefficient réel. Alors :

y′p(x) = An exp(nx) et y′′p(x) = An2 exp(nx) .

En injectant les expressions de yp, y
′
p et y′′p dans l’équation différentielle L[y](x) = g(x),

il vient :

aAn2 exp(nx) + bAn exp(nx) + cA exp(nx) = α exp(nx)

⇔ (a n2 + b n+ c)A exp(nx) = α exp(nx) ;
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et comme cette dernière expression doit être valable pour tout x ∈ R, alors nécessaire-
ment :

(a n2 + b n + c)A = α .

Cette équation admet une solution pour autant que a n2 + b n + c 6= 0, i.e. pour au-
tant que n ne soit pas solution de l’équation caractéristique de l’équation différentielle
homogène L[y](x) = 0. Ainsi, la fonction yp : R → R, donnée par yp(x) = A exp(nx), sa-
tisfait l’équation différentielle a y′′(x) + b y′(x) + c y(x) = α exp(nx), pour autant que n
ne soit pas solution de l’équation caractéristique a λ2 + b λ + c = 0 ; autrement dit,
yp : R → R, donnée par yp(x) = A exp(nx), est une solution de l’équation différentielle
a y′′(x) + b y′(x) + c y(x) = α exp(nx), pour autant que n ne soit pas solution de l’équa-
tion caractéristique a λ2 + b λ+ c = 0. Et comme yp est une fonction et non une famille
de fonctions, elle est une solution particulière de l’équation.

Noter que si n est solution de l’équation caractéristique a λ2 + b λ + c = 0, la fonc-
tion yp, donnée par yp(x) = A exp(nx) ne peut plus être une solution de l’équation
L[y](x) = g(x), vu qu’elle est alors solution de l’équation L[y](x) = 0 ; évidemment, elle
ne peut pas être solution des deux à la fois.

Les deux autres cas de figure énoncés dans la proposition se démontrent de la même
manière que le premier. �

6.3.38 Remarques : • La méthode de l’Ansatz, telle que présentée dans la proposi-
tion 6.3.37, ne se limite pas uniquement aux trois cas énoncés dans la proposition ;
d’autres situations peuvent être envisagées (comme par exemple celle où g est de
la forme d’un polynôme de degré m ∈ N, avec m > 2, qui multiplie une exponen-
tielle). Ces autres situations ne vont pas être discutées ici.

• La situation où g est une fonction constante est un cas particulier de la première
des trois catégories de la proposition précédente ; en effet, avec n = 0 :

yp(x) = A exp(0 x) = A · 1 = A .

6.3.39 Exemple : Reprenons l’équation différentielle :

y′′(x)− 3 y′(x) + 2 y(x) = x ,

traitée dans l’exemple 6.3.35. Cette équation peut s’écrire y′′(x)−3 y′(x)+2 y(x) = g(x),
où g : R → R est la fonction donnée par g(x) = x. Vu que g(x) peut s’écrire sous la
forme :

g(x) = x = x exp(0 x) pour tout x ∈ R ,

g rentre dans la deuxième des trois catégories de fonctions mentionnées dans la proposi-
tion 6.3.37. De cette proposition, et du fait que le nombre 0 n’est pas solution de l’équa-
tion caractéristique λ2− 3 λ+2 = 0 (associée à l’équation y′′(x)− 3 y′(x) + 2 y(x) = 0),
il ressort que l’équation complète y′′(x) − 3 y′(x) + 2 y(x) = x admet comme solution
particulière la fonction yp : R → R, donnée par :

yp(x) = (A+B x) exp(0 x) = A +B x ,
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où A et B sont des coefficients réels à déterminer. Pour obtenir ces coefficients, il convient
d’injecter l’expression de yp, ainsi que celles de y′p et y′′p qui en découlent :

y′p(x) = B et y′′p(x) = 0 ,

dans l’équation complète y′′(x)− 3 y′(x) + 2 y(x) = x :

0− 3B + 2 (A+B x) = x ⇔ 2A− 3B + 2B x = 0 + 1 · x .

Comme cette dernière relation doit être valable pour tout x ∈ R, les termes constants de
gauche ne peuvent être comparés qu’aux termes constants de droite, et les termes en x
de gauche ne peuvent être comparés qu’aux termes en x de droite. De cette comparaison
résulte un système de deux équations, dont la résolution est presque immédiate :

{

2A− 3B = 0

2B = 1
⇔

{

A = 3
4

B = 1
2

.

La solution particulière yp cherchée s’écrit donc :

yp(x) =
1

2
x+

3

4
.

L’expression est identique à celle obtenue précédemment, par la méthode de la variation
des constantes.

6.3.40 Remarque : Cela a été mentionné précédemment, la méthode de l’Ansatz, telle
que présentée dans la proposition 6.3.37, ne s’applique que dans la situation où le nombre
réel n, ou le nombre complexe p + q i, n’est pas solution de l’équation caractéristique
a λ2 + b λ + c = 0. Si n ou p + q i est solution de l’équation caractéristique, il convient
de revenir à la méthode de la variation des constantes, qui est une méthode générale,
s’appliquant en toutes circonstances. Cela étant, si l’on veut s’éviter de possibles calculs
d’intégrales fastidieux, on peut également recourir au résultat qui suit. Similaire à la
proposition 6.3.37, il s’applique dans toute situation où n, ou p + q i, est solution de
l’équation caractérisitique.

6.3.41 Corollaire : Soit l’équation différentielle du deuxième ordre, non homogène et à
coefficients constants :

L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x) ,

où a 6= 0, b et c sont des nombres réels fixés, et g : R → R une fonction continue
dans R. Soit aussi l’équation homogène L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0, associée
à l’équation complète L[y](x) = g(x), et a λ2+ b λ+ c = 0 son équation caractéristique.

1. Supposons que g est de la forme g(x) = α exp(nx), où α est un nombre réel et n un
nombre réel non nul, qui est solution de l’équation caractéristique a λ2+b λ+c = 0.
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Alors :

⋄ si b2 − 4 a c 6= 0, l’équation a y′′(x) + b y′(x) + c y(x) = g(x) admet comme
solution particulière une fonction yp : R → R de la forme :

yp(x) = Ax exp(nx) ,

où A est un coefficient réel qui se détermine en injectant l’expression de yp,
ainsi que celles de y′p et de y′′p qui en découlent, dans l’équation différentielle en
question ;

⋄ si b2 − 4 a c = 0, l’équation a y′′(x) + b y′(x) + c y(x) = g(x) admet comme
solution particulière une fonction yp : R → R de la forme :

yp(x) = Ax2 exp(nx) ,

où A est un coefficient réel qui se détermine en injectant l’expression de yp,
ainsi que celles de y′p et de y′′p qui en découlent, dans l’équation différentielle en
question.

2. Supposons que g est de la forme g(x) = (αx + β) exp(nx), où α et β sont deux
nombres réels, et n est un nombre réel non nul, qui est solution de l’équation
caractéristique a λ2 + b λ+ c = 0. Alors :

⋄ si b2 − 4 a c 6= 0, l’équation a y′′(x) + b y′(x) + c y(x) = g(x) admet comme
solution particulière une fonction yp : R → R de la forme :

yp(x) = x (Ax+B) exp(nx) ,

où A et B sont deux coefficients réels qui se déterminent en injectant l’expres-
sion de yp, ainsi que celles de y′p et de y′′p qui en découlent, dans l’équation
différentielle en question ;

⋄ si b2 − 4 a c = 0, l’équation a y′′(x) + b y′(x) + c y(x) = g(x) admet comme
solution particulière une fonction yp : R → R de la forme :

yp(x) = x2 (Ax+B) exp(nx) ,

où A est un coefficient réel qui se détermine en injectant l’expression de yp,
ainsi que celles de y′p et de y′′p qui en découlent, dans l’équation différentielle en
question.

3. Supposons que g est de la forme g(x) = α exp(p x) sin(q x) ou de la forme g(x) =
α exp(p x) cos(q x), où α est un nombre réel et p+q i un nombre complexe non nul,
qui est solution de l’équation caractéristique a λ2 + b λ + c = 0. Alors, l’équation
a y′′(x) + b y′(x) + c y(x) = g(x) admet comme solution particulière une fonction
yp : R → R de la forme :

yp(x) = x exp(p x)
(
A cos(q x) +B sin(q x)

)
,

où A et B sont des coefficients réels qui se déterminent en injectant l’expression
de yp, ainsi que celles de y

′
p et de y′′p qui en découlent, dans l’équation différentielle

en question.
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Preuve : Soit l’équation différentielle linéaire du deuxième ordre, non homogène et à
coefficients constants L[y](x) = a y′′(x) + b y′(x) + c y(x) = g(x), où a 6= 0, b et c
sont des nombres réels fixés, et g : R → R une fonction continue dans R. Soit aussi
l’équation homogène L[y](x) = a y′′(x) + b y′(x) + c y(x) = 0, associée à l’équation
complète L[y](x) = g(x), et a λ2 + b λ+ c = 0 son équation caractéristique.

Considérons le cas où g est donnée par g(x) = α exp(nx), où α est un nombre réel
et n un nombre réel qui est solution de l’équation a λ2 + b λ + c = 0. Deux situations
peuvent être envisagées à ce stade. Dans la première, b2 − 4 a c 6= 0 ; dans la deuxième,
b2 − 4 a c = 0.

⋄ Supposons que b2 − 4 a c 6= 0 ; dans ce cas, n 6= − b
2 a

, vu que :

n =
−b−

√
b2 − 4 a c

2 a
ou n =

−b +
√
b2 − 4 a c

2 a
.

Soit à présent yp : R → R la fonction donnée par :

yp(x) = Ax exp(nx) ,

où A est un coefficient réel. Alors :

y′p(x) = A exp(nx) + Axn exp(nx) = A (1 + nx) exp(nx)

et :

y′′p(x) = An exp(nx) + A (1 + nx)n exp(nx) = A (2n+ n2 x) exp(nx) .

En injectant les expressions de yp, y
′
p et y′′p dans l’équation L[y](x) = g(x), il

vient :

aA (2n+ n2 x) exp(nx) + bA (1 + nx) exp(nx) + cAx exp(nx) = α exp(nx)

⇔ (a n2 x+ 2 a n+ b n x+ b+ c x)A exp(nx) = α exp(nx)

⇔ (a n2 + b n + c
︸ ︷︷ ︸

=0

) xA exp(nx) + (2 a n+ b)A exp(nx) = α exp(nx)

⇔ (2 a n+ b)A exp(nx) = α exp(nx) ,

vu que n est solution de l’équation caractéristique. La dernière égalité ci-dessus
devant être valable pour tout x ∈ R, nécessairement :

(2 a n+ b)A = α .

Cette équation admet une solution pour autant que 2 a n + b 6= 0, i.e. pour
autant que n 6= − b

2 a
, i.e. pour autant que b2 − 4 a c 6= 0, ce qui est le cas

ici. Ainsi, la fonction yp : R → R, donnée par yp(x) = Ax exp(nx), satisfait
l’équation différentielle a y′′(x) + b y′(x) + c y(x) = α exp(nx), pour autant que n
soit solution de l’équation caractéristique a λ2 + b λ+ c = 0 et que b2 − 4 a c 6= 0 ;
autrement dit, yp : R → R, donnée par yp(x) = Ax exp(nx), est une solution de
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l’équation différentielle a y′′(x) + b y′(x) + c y(x) = α exp(nx), pour autant que n
soit solution de l’équation caractéristique a λ2 + b λ+ c = 0 et que b2 − 4 a c 6= 0.
Et comme yp est une fonction et non une famille de fonctions, elle est une solution
particulière de l’équation.

⋄ Supposons que b2 − 4 a c = 0 ; dans ce cas, n = − b
2 a

, vu que :

n =
−b±

√
b2 − 4 a c

2 a
.

Soit à présent yp : R → R la fonction donnée par :

yp(x) = Ax2 exp(nx) ,

où A est un coefficient réel. Alors :

y′p(x) = 2Ax exp(nx) + Ax2 n exp(nx) = A (2 x+ nx2) exp(nx)

et :

y′′p(x) = A (2 + 2nx) exp(nx) + A (2 x+ nx2)n exp(nx)

= A (2 + 4nx+ n2 x2) exp(nx) .

En injectant les expressions de yp, y
′
p et y′′p dans l’équation L[y](x) = g(x), il

vient :

aA (2 + 4nx+ n2 x2) exp(nx)+

+bA (2 x+ nx2) exp(nx) + cAx2 exp(nx) = α exp(nx)

⇔ (a n2 x2 + 4 a n x+ 2 a+ b n x2 + 2 b x+ c x2)A exp(nx) = α exp(nx)

⇔ (

=0
︷ ︸︸ ︷

a n2 + b n+ c) x2A exp(nx)+

+2 (2 a n+ b
︸ ︷︷ ︸

=0

) xA exp(nx) + 2 aA exp(nx) = α exp(nx)

⇔ 2 aA exp(nx) = α exp(nx) ,

vu que n est solution de l’équation caractéristique et est égal à − b
2 a

. La dernière
égalité ci-dessus devant être valable pour tout x ∈ R, nécessairement :

2 aA = α .

Cette équation admet une solution pour autant que a 6= 0, ce qui est le cas
ici. Ainsi, la fonction yp : R → R, donnée par yp(x) = Ax2 exp(nx), satisfait
l’équation différentielle a y′′(x) + b y′(x) + c y(x) = α exp(nx), pour autant que n
soit solution de l’équation caractéristique a λ2 + b λ+ c = 0 et que b2 − 4 a c = 0 ;
autrement dit, yp : R → R, donnée par yp(x) = Ax exp(nx), est une solution de
l’équation différentielle a y′′(x) + b y′(x) + c y(x) = α exp(nx), pour autant que n
soit solution de l’équation caractéristique a λ2 + b λ+ c = 0 et que b2 − 4 a c = 0.
Et comme yp est une fonction et non une famille de fonctions, elle est une solution
particulière de l’équation.
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Les deux autres cas de figure énoncés dans le corollaire se démontrent de la même
manière que le premier. �

6.3.42 Illustration : Reprenons le dispositif de l’illustration 6.3.27 ; et supposons à pré-
sent que ce à quoi est fixée l’extrémité supérieure du ressort subit un mouvement oscilla-
toire vertical, décrit par une expression de la forme ys0 + α cos(̟ t),
où α et ̟ sont deux paramètres réels strictement positifs (appelés
respectivement amplitude et pulsation du mouvement), et ys0 un pa-
ramètre réel (appelé position moyenne, selon l’axe y, du mouvement).
Dans ces circonstances, l’évolution de la masse m peut être décrite
par l’équation différentielle suivante :

m ÿ(t) = −mg − k
[
y(t)−

(
yi0 + α cos(̟ t)

)]
− β ẏ(t) ,

m

y

où yi0 est un paramètre réel, qui correspond à ce que l’on appelle la position moyenne,
selon l’axe y, de l’extrémité inférieure du ressort. Noter que tous les termes, dans l’équa-
tion ci-dessus, sont identiques à ceux de l’équation donnée dans l’illustration 6.3.27 ;
à l’exception du terme correspondant à la force due au ressort, qui est ici non pas
−k
(
y(t)− y0

)
, mais −k

[
y(t)−

(
yi0+α cos(̟ t)

)]
. Si la quantité y0 a été remplacée par

l’expression yi0+α cos(̟ t), c’est en raison du mouvement oscillatoire de l’extrémité su-
périeure du ressort : dès lors que l’extrémité supérieure du ressort oscille verticalement,
selon l’expression ys0+α cos(̟ t), la position de l’extrémité inférieure du ressort, lorsque
celui-ci n’est ni étiré ni contracté, oscille aussi, verticalement, selon une expression de la
forme yi0 + α cos(̟ t). L’équation obtenue ci-dessus peut être récrite comme suit :

m ÿ(t) + β ẏ(t) +mg + k
[
y(t)−

(
yi0 + α cos(̟ t)

)]
= 0

⇔ m ÿ(t) + β ẏ(t) + k
(
y(t)− yi0 +

mg
k

)
= k α cos(̟ t) ;

autrement écrit, en posant z(t) = y(t)− yi0 +
mg
k

et F0 = k α :

m z̈(t) + β ż(t) + k z(t) = F0 cos(̟ t) .

Cette dernière expression est une équation différentielle linéaire, du deuxième ordre, non
homogène et à coefficients constants. Pour la résoudre, il convient d’établir en premier
lieu la solution générale de l’équation homogène associée, puis de trouver une solution
particulière de l’équation complete.

⋄ Solution générale de l’équation homogène m z̈(t) + β ż(t) + k z(t) = 0 :
Elle a déjà été obtenue dans l’illustration 6.3.27.

⋄ Solution particulière de l’équation complète m z̈(t)+β ż(t)+k z(t) = F0 cos(̟ t) :
Soit g la fonction réelle donnée par g(t) = F0 cos(̟ t). Remarquer que g(t) peut
être mise sous la forme g(t) = F0 exp(0 t) cos(̟ t). Dès lors que le coefficient β
est non nul, le nombre complexe 0 +̟ i (associé à l’expression de g(t)) n’est pas
solution de l’équation caractéristique mλ2+β λ+k = 0. Selon le troisième point
de la proposition 6.3.37, l’équation différentielle donnée admet comme solution
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particulière une fonction zp de la forme :

zp(t) = A cos(̟ t) +B sin(̟ t) ,

où A et B sont des coefficients réels à déterminer. Pour trouver ces coefficients,
il convient de calculer les dérivées première et seconde de zp :

żp(t) = −A̟ sin(̟ t) +B̟ cos(̟ t) ,

z̈p(t) = −A̟2 cos(̟ t)− B̟2 sin(̟ t) ,

puis d’injecter leurs expressions, ainsi que celle de zp dans l’équation donnée :

m
(
−A̟2 cos(̟ t)− B̟2 sin(̟ t)

)
+

+β
(
−A̟ sin(̟ t) +B̟ cos(̟ t)

)
+

+k
(
A cos(̟ t) +B sin(̟ t)

)
= F0 cos(̟ t)

⇔
(
−Am̟2 +B β ̟ + Ak

)
cos(̟ t)+

+
(
−Bm̟2 − Aβ ̟ +B k

)
sin(̟ t) = F0 cos(̟ t) + 0 sin(̟ t)

En comparant ce qui est comparable, il vient :
{

−Am̟2 +B β ̟ + Ak = F0

−Bm̟2 −Aβ ̟ +B k = 0
⇔

{
B k2−2 km̟2+m2 ̟4+β2 ̟2

β̟
= F0

k−m̟2

β ̟
B = A

⇔
{
B = β ̟F0

(k−m̟2)2+(β ̟)2

A = (k−m̟2)F0

(k−m̟2)2+(β ̟)2

Ainsi :

zp(t) =
(k −m̟2)F0

(k −m̟2)2 + (β ̟)2
cos(̟ t) +

β ̟F0

(k −m̟2)2 + (β ̟)2
sin(̟ t) ;

(6.3.4)

autrement écrit (en utilisant l’identité a cos(θ) + b sin(θ) =
√
a2 + b2 cos(θ + ϕ),

où tg(ϕ) = − b
a
) :

zp(t) =
F0

√

(k −m̟2)2 + (β ̟)2
cos(̟ t+ ϕ) ,

avec :

tg(ϕ) = − β ̟

k −m̟2
.

En résumé, l’équation différentielle m z̈(t) + β ż(t) + k z(t) = F0 cos(̟ t) admet pour
solution générale la fonction z donnée par :

z(t) = zh(t) + zp(t) ,

où zh est la fonction trouvée dans l’illustration 6.3.27 et zp la fonction obtenue ci-dessus.
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Notes :

• L’expression de la fonction zh dépend, rappelons-le, du signe de la quantité
β2− 4mk (cf. illustration 6.3.27). Cela étant, dans tous les cas, zh tend vers 0
lorsque t tend vers ∞. Ainsi, à mesure que t augmente, la composante zh (dans
la solution générale z = zh + zp) devient de plus en plus négligeable. À mesure
que t augmente, l’évolution de la masse m est donc de plus en plus dictée par zp,
l’influence de zh étant de plus en plus petite. Deux phases peuvent, de fait, être
mises en évidence :

⋄ une première phase, dans laquelle zh est non négligeable, appelée régime tran-
sitoire ;

⋄ une deuxième phase, dans laquelle zh devient négligeable, appelée régime per-
manent.

La figure ci-dessous illustre la situation dans le cas où β2− 4mk < 0, avec les
conditions initiales z(0) = z0, où z0 ∈ R∗

+, et ż(0) = 0.

t

z

z0

0

régime transitoire régime permanent

• Dans la formule :

zp(t) =
F0

√

(k −m̟2)2 + (β ̟)2
cos(̟ t+ ϕ) ,

la fraction devant le cosinus est, par définition, l’amplitude des oscillations de la
masse m. Cette fraction peut être vue comme l’expression d’une fonction réelle F
dépendant de la grandeur ̟ :

F (̟) =
F0

√

(k −m̟2)2 + (β ̟)2
.

En faisant appel aux techniques présentées
dans le chapitre suivant, il peut être éta-
bli que cette fonction F atteint une va-
leur maximale ̟max dans R∗

+, pour autant
que 2mk − β2 > 0 ; cette valeur maximale
s’écrit :

̟max =

√

2mk − β2

√
2m

.
̟

0

F

̟max
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Parmi toutes les valeurs positives que peut prendre ̟, il existe donc, pour autant
que 2mk − β2 > 0, une valeur pour laquelle l’objet de masse m oscille le plus
fortement ; cette valeur est ̟max.

• Dans le cas où :

β = 0 et ̟ = ω0 , où : ω0 =

√

k

m
,

la solution particulière zp de l’équation différentielle complète, m z̈(t) + k z(t) =
F0 cos(ω0 t), n’est pas de la forme zp(t) = A cos(ω0 t)+B sin(ω0 t) ; et pour cause :
le nombre complexe 0+ω0 i est solution de l’équation caractéristique mλ2+k = 0
(équation associée à l’équation homogène m z̈(t) + k z(t) = 0). Pour trouver l’ex-
pression de zp dans une telle situation, il convient d’appliquer le corollaire 6.3.41 :

zp(t) = t
(
A cos(ω0 t) +B sin(ω0 t)

)
,

où A et B sont des coefficients réels à déterminer. Pour trouver ces coefficients,
il convient de calculer la dérivée première et surtout la dérivée seconde de zp :

żp(t) = A cos(ω0 t) +B sin(ω0 t) + t
(
−Aω0 sin(ω0 t) +B ω0 cos(ω0 t)

)
,

z̈p(t) = −Aω0 sin(ω0 t) +B ω0 cos(ω0 t)

−Aω0 sin(ω0 t) +B ω0 cos(ω0 t)

+ t
(
−Aω0

2 cos(ω0 t)−B ω0
2 sin(ω0 t)

)

= −2Aω0 sin(ω0 t) + 2B ω0 cos(ω0 t)

+ t
(
−Aω0

2 cos(ω0 t)−B ω0
2 sin(ω0 t)

)
,

puis d’injecter les expressions obtenues dans l’équation différentielle (dans la-
quelle, rappelons-le, β = 0) :

m
(
−2Aω0 sin(ω0 t) + 2B ω0 cos(ω0 t)

−t Aω0
2 cos(ω0 t)− t B ω0

2 sin(ω0 t)
)

+k t
(
A cos(ω0 t) +B sin(ω0 t)

)
= F0 cos(ω0 t) .

Cette égalité peut être récrite comme suit :

−2Amω0 sin(ω0 t) + 2Bmω0 cos(ω0 t)

+A t (−mω0
2 + k

︸ ︷︷ ︸

=0

) cos(ω0 t)

+B t (−mω0
2 + k

︸ ︷︷ ︸

=0

) sin(ω0 t) = F0 cos(ω0 t)

⇔ −2Amω0 sin(ω0 t) + 2Bmω0 cos(ω0 t) = F0 cos(ω0 t) + 0 sin(ω0 t) ,
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du fait que ω0
2 = k

m
. Ainsi, en comparant ce qui est comparable, il vient :

{

−2Amω0 = 0

2Bmω0 = F0

⇔
{

A = 0

B = F0

2mω0

.

En résumé :

zp(t) =
F0

2mω0
t sin(ω0 t) .

La solution générale de l’équation m z̈(t)+k z(t) = F0 cos(ω0 t) s’écrit donc, dans
la situation présente :

z(t) = zh(t) + zp(t) = C1 cos(ω0 t) + C2 sin(ω0 t) +
F0

2mω0

t sin(ω0 t) .

La figure ci-contre illustre le graphe de la fonction z
dans le cas où les conditions initiales sont z(0) = z0,
où z0 ∈ R∗

+, et ż(0) = 0. À mesure que t augmente,
l’amplitude des oscillations de la masse m augmente,
sans atteindre un quelconque plafond.

t

z

0

z0• L’expression 6.3.5, obtenue dans le point précédent,
peut être déduite directement des calculs établis anté-
rieurement. Pour le voir, il suffit de prendre la solution
générale de l’équation différentielle m z̈(t) + k z(t) =
F0 cos(̟ t) dans le cas où ̟ 6= ω0 (ω0 étant la gran-
deur définie au point précédent), d’écrire ensuite la
solution spécifique à des conditions initiales données,
puis enfin de calculer la limite de cette solution spé-
cifique lorsque ̟ tend vers ω. Les détails sont donnés
ci-dessous.

✄ L’équation différentielle m z̈(t) + k z(t) = F0 cos(̟ t) admet comme solution
générale la fonction z donnée par :

z(t) = C1 cos(ω0 t) + C2 sin(ω0 t) +
F0

k −m̟2
cos(̟ t) ,

où C1 et C2 sont deux constantes réelles. Pour obtenir cette expression, il
suffit d’observer les deux points suivants :

⋄ l’équation différentielle homogène associée, m z̈(t) + k z(t) = 0, a pour
équation caractéristique mλ2 + k = 0, laquelle admet des solutions pure-
ment imaginaires, λ1, 2 = ±ω0 i, où ω0 =

√
km−1 ;

⋄ une solution particulière zp de l’équation complète peut être obtenue en
prenant l’expression 6.3.4 et en y posant β = 0 (ce qui est licite, vu que
̟ 6= ω0).
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Noter alors que la fonction z donnée ci-dessus peut être récrite comme suit :

z(t) = C1 cos(ω0 t) + C2 sin(ω0 t)−
F0

m (̟2 − ω0
2)

cos(̟ t) ,

vu que ω0
2 = k

m
.

✄ Soient les conditions initiales z(0) = z0 et ż(0) = ż0, où z0 et ż0 sont deux
nombres réels donnés. Alors :

{
C1 cos(ω0 · 0) + C2 sin(ω0 · 0)− F0

m (̟2−ω0
2)
cos(̟ · 0) = z0

−C1 ω0 sin(ω0 · 0) + C2 ω0 cos(ω0 · 0)− F0 ̟
m (̟2−ω0

2)
sin(̟ · 0) = ż0

⇔
{

C1 − F0

m (̟2−ω0
2)

= z0

C2 ω0 = ż0
⇔

{
C1 = z0 +

F0

m (̟2−ω0
2)

C2 = ż0
ω0

.

Ainsi :

z(t) =

(

z0 +
F0

m (̟2 − ω0
2)

)

cos(ω0 t)+
ż0
ω0

sin(ω0 t)−
F0

m (̟2 − ω0
2)

cos(̟ t) .

✄ La limite de z(t) lorsque ̟ tend vers ω0 se calcule en faisant appel à la règle
de Bernoulli-L’Hôpital (B-H). Noter que la variable par rapport à laquelle on
dérive est ̟ (et non pas t) :

lim
̟→ω0

z(t) = lim
̟→ω0

[(

z0 +
F0

m (̟2 − ω0
2)

)

cos(ω0 t) +
ż0
ω0

sin(ω0 t)

− F0

m (̟2 − ω0
2)

cos(̟ t)

]

= lim
̟→ω0

[

z0 cos(ω0 t) +
ż0
ω0

sin(ω0 t)−
F0

(
cos(̟ t)− cos(ω0 t)

)

m (̟2 − ω0
2)

]

= z0 cos(ω0 t) +
ż0
ω0

sin(ω0 t)− lim
̟→ω0

F0

(
cos(̟ t)− cos(ω0 t)

)

m (̟2 − ω0
2)

B-H
= z0 cos(ω0 t) +

ż0
ω0

sin(ω0 t)− lim
̟→ω0

F0

(
−t sin(̟ t)− 0

)

m (2̟ − 0)

= z0 cos(ω0 t) +
ż0
ω0

sin(ω0 t) +
F0

2mω0
t sin(ω0 t) .

On retrouve ici l’expression 6.3.5 obtenue au point précédent (avec C1 = z0
et C2 =

ż0
ω0
).
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• Le dispositif décrit dans la présente illustration est un exemple de ce que l’on
appelle un oscillateur harmonique forcé ;

⋄ le terme forcé vient du fait que le mouvement de la masse m est forcé par
une action extérieure ; cette action est la vibration régulière de l’extrémité
supérieure du ressort ;

⋄ l’expression oscillateur harmonique est employé pour indiquer que le mouve-
ment de la masse m est, en l’absence d’une action extérieure, et pour autant
que les frottements ne soient pas trop importants, semblable au mouvement
vibratoire d’un point quelconque d’une corde de piano, de guitare, etc.

Tout oscillateur harmonique forcé présente les caractéristiques discutées dans les
points précédents ; notamment :

✄ il existe une pulsation (de l’action extérieure) pour laquelle l’amplitude des
oscillations du système étudié atteint un maximum ; lorsque le système oscille
avec une telle pulsation (et que, par conséquent, l’amplitude de ses oscillations
est maximale), on dit que le système est dans un état de résonance ;

✄ lorsque les frottements sont négligeables, l’état de résonance se caractérise par
une amplitude des oscillations qui crôıt constamment ; cette croissance, qui
peut en théorie aller jusqu’à l’infini, s’arrête pratiquement avec la rupture du
système ou de l’un de ses composants.

• Des dispositifs tels que celui décrit dans la présente illustration, on en trouve
dans différents appareils, instruments et engins : sismographes élémentaires, au-
tomobiles, etc.

✄ Sismographe basique : La vibration de l’extrémité supérieure du ressort est
produite par les ondes sismiques. À la masse m est fixée un stylo-feutre ; lequel
marque la position sur un rouleau de papier qui se déroule régulièrement à
mesure que le temps s’écoule.

✄ Automobile : La masse m correspond à la cabine (ou à une partie de la cabine)
du véhicule ; elle est fixée non pas à l’extrémité inférieure mais à l’extrémité
supérieure du ressort. L’extrémité inférieure, elle, est fixée à une roue ; cette
extrémité se met à vibrer lorsque le véhicule roule sur une route qui présente
des creux et des bosses à intervalles réguliers.

• Les oscillateurs harmoniques forcés ne se rencontrent pas uniquement en mé-
canique. On en trouve dans d’autres contextes ; en électricité par exemple : un
circuit électrique composé d’une résistance, d’une bobine et d’un condensateur
branchés en série à une source de tension sinusöıdale en est un spécimen.



Chapitre 7

Applications du calcul différentiel

Les prémices du concept de dérivée remontent, rappelons-le, au XVIIe siècle, lorsque
Pierre de Fermat a élaboré une méthode pour déterminer les tangentes à une courbe.
S’il est vrai que la formulation algébrique de cette notion n’a que peu évolué entre les
XVIIe et XIXe siècles, il n’en demeure pas moins vrai que le champ de ses applications
s’est largement développé durant cette période. Nombre de situations en mécanique,
puis dans les phénomènes ondulatoires, ainsi qu’en électromagnétisme, ont pu, dans le
courant des XVIIIe et XIXe siècles, être abordés sous un angle nouveau et résolus grâce
à l’opération de dérivation.

La dérivée a beau s’être implantée dans quasiment tous les domaines de la physique,
toujours est-il que c’est dans la branche des mathématiques qui l’a vue nâıtre, le calcul
différentiel, qu’elle trouve son utilité première. Les pages qui suivent en témoignent...

7.1 Croissance et décroissance d’une fonction

7.1.1 Définition : Soit f : D → R une fonction réelle, définie dans
un intervalle ouvert I = ]a; b[ ⊂ D, a et b étant deux nombres réels
tels que a < b.

• f est dite (strictement) croissante dans I si f(x1) 6 f(x2)
(f(x1) < f(x2)), quels que soient x1, x2 ∈ I tels que x1 < x2 .

• f est dite (strictement) décroissante dans I si f(x1) > f(x2)
(f(x1) > f(x2)), quels que soient x1, x2 ∈ I tels que x1 < x2 .

• f est dite constante dans I si f(x1) = f(x2), quels que soient
x1, x2 ∈ I.

x

y

a bx1

f(x1)

x2

f(x2)

O

x

y

a bx1

f(x1)

x2

f(x2)

O

7.1.2 Remarque : Pour déterminer si une fonction f est croissante ou décroissante dans
un intervalle I donné, on peut étudier le signe de sa dérivée f ′ dans I, pour autant que
celle-ci existe dans I.

7.1.3 Proposition : Soit f : D → R une fonction réelle, définie et dérivable dans un
intervalle ouvert I = ]a ; b[ ⊂ D, où a et b sont deux nombres réels tels que a < b.
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Alors :

• f est croissante dans ]a ; b[ si et seulement si f ′(x) > 0 pour tout x ∈ ]a ; b[ .

• f est décroissante dans ]a ; b[ si et seulement si f ′(x) 6 0 pour tout x ∈ ]a ; b[ .

Preuve : Soit f : D → R une fonction réelle, définie et dérivable dans un intervalle
ouvert I = ]a ; b[ ⊂ D, où a et b sont deux nombres réels tels que a < b. Supposons que
f ′(x) > 0 pour tout x ∈ ]a ; b[ (le cas où f ′(x) 6 0 se démontrant de manière analogue).
La fonction f étant dérivable dans ]a; b[ , pour tous x1, x2 ∈ ]a ; b[ tels que x1 < x2,
il existe, selon le théorème des accroissements finis (cf. théorème 3.9.4, section 3.9 du
chapitre 3), un nombre réel c ∈ ]x1 ; x2[ ⊂ ]a ; b[ tel que :

f ′(c) =
f(x2)− f(x1)

x2 − x1
⇔ f(x2)− f(x1) = f ′(c) (x2 − x1) .

Comme c ∈ ]a ; b[ , alors f ′(c) > 0. Et vu que x2 − x1 > 0, alors :

f(x2)− f(x1) = f ′(c) (x2 − x1) > 0 ⇔ f(x2) > f(x1) .

La fonction est donc croissante dans ]a ; b[ .
Réciproquement, supposons que f est croissante dans l’intervalle ]a; b[ . Alors f(x2) >

f(x1) quels que soient x1, x2 ∈ ]a; b[ tels que x1 < x2. Ainsi :

f(x2)− f(x1)

x2 − x1
> 0 ,

et donc, en écrivant ∆x = x2 − x1 ⇔ x2 = x1 +∆x :

f ′(x1) = lim
∆x→0

f(x1 +∆x)− f(x1)

∆x
= lim

x2→x1

f(x2)− f(x1)

x2 − x1
> 0 .

Le fait que le raisonnement est valable pour tous x1, x2 ∈ ]a; b[ tels que x1 < x2 permet
d’affirmer que f ′(x) > 0 pour tout x ∈ ]a; b[ . �

7.1.4 Exemples : 1. Soit f : R → R la fonction donnée par f(x) = x3 + x2 − 5 x− 5.
Alors :

f ′(x) = 3 x2 + 2 x− 5 = (3 x+ 5)(x− 1) .

On constate que f ′ est définie dans tout R et que :

• f ′(x) > 0 dans
]
−∞ ; −5

3

[
∪
]
1 ; ∞

[
,

• f ′(x) < 0 dans
]
− 5

3
; 1
[
.

Ainsi, en se référant à la proposition précédente, on peut affirmer que f est crois-
sante dans tout intervalle ouvert I ⊂

]
−∞ ; −5

3

[
∪
]
1 ; ∞

[
et décroissante dans

tout intervalle ouvert I ⊂
]
− 5

3
; 1
[
.

2. Soit f : R → R la fonction donnée par f(x) = x3. Alors :

f ′(x) = 3 x2 .
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On constate que f ′ est définie dans tout R et que f ′(x) > 0 pour tout x ∈ R. Ainsi,
en se référant à la proposition précédente, on peut affirmer que f est croissante
dans tout intervalle ouvert I ⊂ R. Noter que f est même strictement croissante
dans tout R (vu que x1

3 < x2
3 quels que soient x1, x2 ∈ R tels que x1 < x2), quand

bien même la dérivée f ′ de f s’annule en x = 0. Cette observation illustre le fait
qu’il n’est pas possible d’extrapoler la proposition précédente, en disant que f
est strictement croissante (respectivement strictement décroissante) dans un inter-
valle ouvert si et seulement si sa dérivée est strictement positive (respectivement
strictement négative) dans l’intervalle ouvert en question.

7.2 Extrema d’une fonction

7.2.1 Définition : Soient f : D → R une fonction réelle et c ∈ D un nombre réel.

• On dit que f admet un minimum local en c s’il existe un
intervalle ouvert ]a; b[ ⊂ D, contenant c, où a et b sont deux
nombres réels tels que a < c < b, tel que f(x) > f(c) pour
tout x ∈ ]a; b[ . Le nombre f(c) est alors appelé minimum
local de f dans ]a; b[ .

• On dit que f admet un maximum local en c s’il existe un
intervalle ouvert ]a; b[ ⊂ D, contenant c, où a et b sont deux
nombres réels tels que a < c < b, tel que f(x) 6 f(c) pour
tout x ∈ ]a; b[ . Le nombre f(c) est alors appelé maximum
local de f dans ]a; b[ .

x

y

a bc xO

x

y

a bc xO

• On dit que f admet un extremum local en c si f possède un minimum local ou
un maximum local en c. Le nombre f(c) est alors appelé extremum local .

7.2.2 Définition : Soient f : D → R une fonction réelle et If = f(D) son image.

• Supposons qu’il existe un nombre réel m ∈ If tel que f(x) > m pour tout x ∈ D.
Le nombrem est alors appeléminimum (ou parfoisminimum global) de f dansD.
On dit que f atteint son minimum (global) en c ∈ D si f(c) = m.

• Supposons qu’il existe un nombre réel M ∈ If tel que f(x) 6 M pour tout
x ∈ D. Le nombre M est alors appelé maximum (ou parfois maximum global)
de f dans D. On dit que f atteint son maximum (global) en c ∈ D si f(c) =M .

• Les nombres m et M évoqués dans les points précédents, s’ils existent, sont ap-
pelés extrema (globaux) de f dans D. On dit que f atteint un extremum (global)
en c ∈ D si f(c) = m ∈ If ou si f(c) =M ∈ If .

7.2.3 Remarque : Une fonction réelle f : D → R peut tout à fait posséder un ou
plusieurs extrema locaux, sans pour autant atteindre son maximum ou son minimum
dans D. Pour s’en rendre compte, considérons, par exemple, la fonction :

f : ]−2; 2[ −→ R

x 7−→ f(x) = x3 + x2 − x .
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La dérivée f ′, donnée par f ′(x) = 3 x2 + 2 x− 1 = (3 x− 1)(x+ 1), est strictement posi-
tive pour tout x < −1 et pour tout x > 1

3
, et strictement négative pour tout−1 < x < 1

3
;

f admet donc un maximum local en x1 = −1 et un minimum local en x2 =
1
3
. Le mini-

mum local ne peut en aucun cas être le minimum (global) de f dans
]−2; 2[ , vu qu’il existe x ∈ ]−2; 2[ (par exemple x = −19

10
) tel que

f(x)<f
(
1
3

)
; aussi, le maximum local ne peut pas être le maximum

(global) de f , vu qu’il existe x ∈ ]−2; 2[ (par exemple x = 3
2
) tel que

f(x) > f(−1). Et comme −2 /∈ ]−2; 2[ , respectivement 2 /∈ ]−2; 2[ , il
n’est pas possible de dire que f atteint son minimum en −2, respec-
tivement son maximum en 2. La conclusion suivante s’impose alors :
f n’atteint ni son minimum, ni son maximum dans ]−2; 2[ . Noter
que si le domaine de départ était [−2; 2], alors la conclusion serait
différente : f atteindrait effectivement son minimum en −2 et son
maximum en 2 dans cet intervalle. Dès lors qu’une fonction continue
a pour domaine de départ un intervalle fermé, elle atteint nécessai-
rement son minimum ainsi que son maximum dans cet intervalle (cf.
théorème du minimum et du maximum, section 2.9 consacrée aux
théorèmes relatifs aux fonctions continues, dans le chapitre 2).

x

y

0
−2

2

−2

2

4

6
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7.2.1 Condition nécessaire pour avoir un extremum local

7.2.4 Proposition : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel c ∈ D (i.e. définie dans un sous-ensemble de R contenant un intervalle ouvert
de la forme ]c− γ ; c+ γ[ , où γ > 0 est un nombre réel). Si f admet un extremum local
(i.e. si f admet un minimum ou un maximum local) en c et si, de plus, f est dérivable
en c, alors f ′(c) = 0.

Preuve : Soit f : D → R une fonction réelle définie dans un voisinage d’un nombre
réel c ∈ D. Supposons que f est dérivable en c et qu’elle admet un maximum local en c.
Alors, en posant x = c+∆x, avec x ∈ D :

f ′(c) = lim
∆x→0

f(c+∆x)− f(c)

∆x
= lim

x→c

f(x)− f(c)

x− c
=







lim
x→c
x<c

f(x)− f(c)

x− c
> 0

lim
x→c
x>c

f(x)− f(c)

x− c
6 0

,

du fait que, par définition d’un maximum local, f(x) 6 f(c) ⇔ f(x)−f(c) 6 0. Comme
f ′(c) existe (par hypothèse), les deux limites ci-dessus existent et doivent être égales ; la
dérivée de f en c est donc nécessairement nulle : f ′(c) = 0. Un raisonnement similaire
s’applique dans le cas où f possède un minimum local en c. �

7.2.5 Définition : Soit f : D → R une fonction réelle, définie dans un voisinage d’un
nombre réel c ∈ D. On dit que c est un point stationnaire de f si f est dérivable en c et
si f ′(c) = 0.
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7.2.6 Exemples : 1. La fonction f : R → R donnée par f(x) = x2 atteint son mini-
mum en x = 0. Et en x = 0, la dérivée f ′ de f vaut effectivement f ′(0) = 0.

2. La fonction f : R → R donnée par f(x) = x3 n’admet pas d’extremum en x = 0.
Pourtant, f ′(0) = 0. La réciproque de la proposition 7.2.4 n’est donc pas vraie.
Dans le cas présent, le point de coordonnées (0; 0) est ce que l’on appelle parfois
un palier.

7.2.7 Remarques : • Soit f : D → R une fonction réelle. De la proposition 7.2.4, il
ressort que les éventuels extrema locaux de f sont à rechercher parmi les points
suivants :

✄ les points stationnaires de f dans D ;

✄ les points de D où f ′ n’est pas définie.

• Soit f : D → R une fonction réelle, définie et continue dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Selon le théorème du
minimum et du maximum (cf. théorème 2.10.3, section 2.10, chapitre 2), f atteint
nécessairement, dans [a; b], une valeur minimale (i.e. son minimum global dans
[a; b]), ainsi qu’une valeur maximale (i.e. son maximum global dans [a; b]). De la
proposition 7.2.4, il ressort que le(s) point(s) de [a; b] où f atteint, dans [a; b], sa
valeur minimale (i.e. son minimum global), respectivement sa valeur maximale
(i.e. son maximum global), ne peuvent être que parmi les points suivants :

✄ les points stationnaires de f dans [a; b] ;

✄ les points de ]a; b[ où f ′ n’est pas définie ;

✄ les bords de [a; b], i.e. les points a et b.

Noter que si a et b peuvent être des points où f atteint sa valeur minimale et/ou
sa valeur maximale dans [a; b], ils ne peuvent en aucun cas être des points où f
admet un extremum local, vu qu’ils sont sur les bords de [a; b]. En revanche, il
est possible qu’un point dans [a; b] où f atteint un extremum local soit un point
où f atteint sa valeur minimale ou sa valeur maximale dans [a; b].

7.2.2 Condition suffisante pour avoir un extremum local

7.2.8 Proposition : Soient f : D → R une fonction réelle, définie et continue dans un
intervalle ouvert I ⊂ D, et c un point dans I. Supposons, en outre, que f est dérivable
dans I, sauf éventuellement en c.

• Pour que f admette un minimum local en c, il suffit qu’il existe un intervalle
ouvert ]a; b[ ⊂ I, contenant c, tel que :

{

f ′(x) 6 0 si x ∈ ]a; c[ ,

f ′(x) > 0 si x ∈ ]c; b[ . x

y

cO
x

y

cO
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• Pour que f admette un maximum local en c, il suffit qu’il existe un intervalle
ouvert ]a; b[ ⊂ I, contenant c, tel que :

{

f ′(x) > 0 si x ∈ ]a; c[ ,

f ′(x) 6 0 si x ∈ ]c; b[ . x

y

cO
x

y

cO

Preuve : Soient f : D → R une fonction réelle, définie et continue dans un intervalle
ouvert I ⊂ D, et c un point dans I. Supposons, en outre, que f est dérivable dans I,
sauf éventuellement en c, et qu’il existe un intervalle ouvert ]a; b[ ⊂ I, contenant c, tel
que : {

f ′(x) 6 0 si x ∈ ]a; c[ ,

f ′(x) > 0 si x ∈ ]c; b[ .

Dans tout intervalle fermé compris entre c et x, où x ∈ ]a; c[ ∪ ]c; b[ , la fonction f satis-
fait les hypothèses du théorème des accroissements finis (cf. théorème 3.9.4, section 3.9
du chapitre 3) ; selon ce théorème, il existe un nombre ξ compris strictement entre c et x
tel que :

f ′(ξ) =
f(x)− f(c)

x− c
⇔ f(x)− f(c) = f ′(ξ) (x− c) ;

autrement écrit :
f(x) = f(c) + f ′(ξ) (x− c) .

Par conséquent :

• pour tout x ∈ ]a; c[ , f ′(ξ) 6 0 par hypothèse (vu que ξ ∈ ]x; c[ ⊂ ]a; c[ ) ; donc :

f(x) = f(c) + f ′(ξ)
︸︷︷︸

60

(x− c)
︸ ︷︷ ︸

<0

> f(c) ;

• pour tout x ∈ ]c; b[ , f ′(ξ) > 0 par hypothèse (vu que ξ ∈ ]c; x[ ⊂ ]c; b[ ) ; donc :

f(x) = f(c) + f ′(ξ)
︸︷︷︸

>0

(x− c)
︸ ︷︷ ︸

>0

> f(c) .

Ainsi, f(x) > f(c) pour tout x ∈ ]a; c[ ∪ ]c; b[ ; et donc f(x) > f(c) pour tout x ∈ ]a; b[ .
La fonction f admet donc un minimum local en c. Un raisonnement similaire permet de
prouver la deuxième partie de la proposition (qui est la condition suffisante pour avoir
un maximum local). �

7.2.9 Remarque : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle ouvert I. Si f est constante dans I, alors, selon la définition d’extremum local
donnée précédemment, tout point c ∈ I est
un point où f admet aussi bien un minimum
qu’un maximum local. La partie du graphe
de f qui forme un segment horizontal est ce
que l’on appelle un plateau. On dit alors que
le point de coordonnées

(
c ; f(c)

)
, où c ∈ I,

est sur un plateau.
x

y

O c
x

y

O c
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7.2.10 Exemples : 1. Soit f : [−1; 2] → R la fonction donnée par :

f(x) = (x− 2)
3
√
x2 ( = (x− 2) x

2
3 ) .

Cette fonction s’annule en x1 = 0 ∈ [−1; 2] et en x2 = 2 ∈ [−1; 2]. Comme
3
√
x2 > 0 et x − 2 6 0 quel que soit x ∈ [−1; 2], alors f(x) 6 0 quel que soit

x ∈ [−1; 2]. Cherchons à présent les extrema locaux et globaux de f . À cet effet,
calculons la dérivée f ′ de f :

f ′(x) = 1 · x 2
3 + (x− 2)

2

3
x−

1
3

=
1

3
x−

1
3

(
3 x+ 2 (x− 2)

)

=
1

3
x−

1
3 (5 x− 4)

=
5 x− 4

3 3
√
x

.

x

5 x− 4

−1

−

0

−

4
5

+

2

3 3
√
x − +

0

+0

f ′(x) + − +‖ 0

f(x) ր ց րmax min

Dans [−1; 2], f ′ n’existe pas en x3 = 0 et s’annule
en x4 = 4

5
. Le tableau des signes de f ′ représenté

ci-dessus montre que f admet un maximum local en
x3 = 0 et un minimum local en x4 =

4
5
. En x3, f vaut

f(x3) = f(0) = 0 ; en x4 =
4
5
, f vaut :

f
(
4
5

)
=
(
4
5
− 2
)

3

√
(
4
5

)2
= −6

5
3

√
16
25

≈ −1,03 .

Regardons encore ce que vaut f aux bords de l’in-
tervalle [−1; 2], i.e. en x5 = −1 et en x6 = 2 ; en x5,
f vaut f(x5) = f(−1) = (−1−2) ·1 = −3 ; en x6 = 2,

x

y

−1 1 2

−3

−2

−1

1

mg

Ml Mg

ml

Mg

f vaut f(x6) = f(2) = 0. Ainsi, la fonction f atteint son minimum global (mg)
en x5 = −1 et son maximum global (Mg) en x3 = 0 et en x6 = 2 ; f possède, en
outre, un maximum local (Ml) en x3 = 0 et un minimum local (ml) en x4 =

4
5
.

2. La technique de recherche des extrema d’une fonction f , basée sur les conditions
nécessaire et suffisante introduites dans la présente section, et illustrée dans le
précédent exemple, permet de résoudre efficacement nombre de problèmes concrets,
dans lesquels on cherche à optimiser une situation dans un cadre donné. Pour
s’en rendre compte, considérons le contexte suivant : on dis-
pose d’un grillage de longueur ℓ fixe (que l’on peut dérouler) ;
avec ce grillage, on aimerait fabriquer une clôture délimitant
un enclos rectangulaire ; afin que l’enclos puisse accueillir suffi-
samment d’ovins, ou voudrait que son aire soit la plus grande
possible.

x

y

Appelons x et y les dimensions de l’enclos rectangulaire. L’aire A de cet enclos
est alors A = x y. Or, x et y ne sont pas des grandeurs indépendantes l’une de
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l’autre ; elles sont liées par une équation : x+ y+ x+ y = ℓ ; cette égalité exprime
le fait que le pourtour de l’enclos est égal à la longueur de la clôture. La quantité y
peut donc s’écrire en fonction de la quantité x :

x+ y + x+ y = ℓ ⇔ 2 x+ 2 y = ℓ ⇔ y =
ℓ

2
− x ,

si bien que l’aire A peut être vue comme une fonction de la seule variable x :

A = A(x) = x

(
ℓ

2
− x

)

.

A(x) est définie et continue en tout x ∈ R. Les valeurs de x sont toutefois limitées à
l’intervalle

[
0 ; ℓ

2

]
, de sorte que les dimensions x et y soient des grandeurs positives.

Chercher x et y qui maximisent A revient à chercher x qui maximise la fonction
x 7→ A(x) dans l’intervalle

[
0 ; ℓ

2

]
. Selon le théorème du minimum et du maximum,

la fonction A atteint ses extrema dans cet intervalle, vu qu’il est fermé. Selon ce
qui a été vu dans la sous-section consacrée à la condition nécessaire pour avoir un
extremum local, les points où A atteint ses extrema se trouvent nécessairement
parmi les points suivants : les points stationnaires de A, les points dans

]
0 ; ℓ

2

[

où A′ n’existe pas et les bords de
[
0 ; ℓ

2

]
, i.e. 0 et ℓ

2
.

• Le maximum de A n’est certainement pas en x = 0, ni en x = ℓ
2
, vu que

A(0) = A
(
ℓ
2

)
= 0.

• Le maximum de A ne peut pas être en un point où A′ n’est pas définie, vu
qu’un tel point n’existe pas dans ce cas.

• Le fait que A n’est pas maximal sur les bords de l’intervalle
[
0 ; ℓ

2

]
, tout comme

le fait qu’il n’existe aucun point dans
]
0 ; ℓ

2

[
où A′ n’existe pas, permet de dire

que le maximum de A se trouve en un point stationnaire de A. Déterminons
ce point ; pour cela, calculons la dérivée de A :

A′(x) = 1 ·
(
ℓ

2
− x

)

+ x · (−1) =
ℓ

2
− 2 x .

A′ s’annule en un unique point, x = x1 = ℓ
4
; A n’admet donc qu’un unique

point stationnaire, x1 = ℓ
4
. Comme A′(x) > 0 lorsque x < x1 et A′(x) < 0

lorsque x > x1, on peut affirmer que ce point stationnaire est un point où A
admet un maximum local. Comme il n’y a pas d’autre point stationnaire et
comme A(0) = A

(
ℓ
2

)
= 0, on conclut que A n’admet pas d’autre maximum

local ; A atteint donc son maximum (global) en x1 =
ℓ
4
.

Les dimensions x et y qui maximisent l’aire de l’enclos sont donc :

x = x1 =
ℓ

4
et y =

(
ℓ

2
− x1

)

=
ℓ

4
;

il s’agit d’un enclos carré.
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7.2.3 Condition suffisante alternative pour avoir un extremum

Soit f : D → R une fonction réelle, définie et continue dans un intervalle ouvert I ⊂ D ;
soit aussi c un point dans I où la dérivée s’annule ou n’existe pas. Dans la sous-section
précédente, il a été vu que la nature de c pouvait être déterminée grâce à l’étude du
signe de la dérivée f ′ de f en x < c et en x > c, à supposer que celle-ci existe dans un
intervalle ouvert contenant c, sauf éventuellement en c. Dans la présente sous-section,
une autre manière de déterminer la nature de c va être présentée ; une manière basée
sur l’étude des dérivées de f d’ordre supérieur ou égal à deux, pour autant que celles-ci
existent dans I (y compris en c).

Supposons que la fonction f donnée dans le début de la présente sous-section est n
fois dérivable dans l’intervalle ouvert I, où n est un nombre entier supérieur ou égal à 2.
Dans ce cas, le développement limité d’ordre n− 1 autour de c ∈ I est égal à la somme
du développement de Taylor d’ordre n − 1 de f autour de c, et du reste de Lagrange
associé :

f(x) =
n−1∑

k=0

f (k)(c)

k!
(x− c)k +

f (n)(ξ)

n!
(x− c)n ,

où ξ est un nombre compris strictement entre x et c. Dans la situation où les dérivées
de f jusqu’à l’ordre n− 1 sont toutes nulles en c (i.e. f ′(c) = . . . = f (n−1)(c) = 0) :

f(x) = f(c) +
f (n)(ξ)

n!
(x− c)n .

Posons à présent l’hypothèse que f (n) est continue dans I et que f (n)(c) 6= 0. Alors,
pour tout x 6= c suffisamment proche de c, f (n)(ξ) est suffisamment proche de f (n)(c)
pour pouvoir affirmer que f (n)(ξ) 6= 0 et que f (n)(ξ) et f (n)(c) ont le même signe (vu
que ξ est alors suffisamment proche de c aussi). À ce stade, trois situations peuvent être
envisagées :

• n est pair et f (n)(c) < 0 ; alors il existe un intervalle ouvert ]a; b[ ⊂ I, contenant c
(où a et b sont deux nombres réels dans I tels que a < b), tel que (par continuité)
f (n)(ξ) < 0 quel que soit x ∈ ]a; b[ ; il existe donc un intervalle ouvert ]a; b[ ⊂ I
tel que, pour tout x ∈ ]a; b[ :

f(x) = f(c) +
f (n)(ξ)

n!
︸ ︷︷ ︸

< 0

(x− c)n
︸ ︷︷ ︸

> 0

6 f(c) ,

vu que n est pair. Par conséquent, f admet un maximum local en c.

• n est pair et f (n)(c) > 0 ; alors il existe un intervalle ouvert ]a; b[ ⊂ I, contenant c
(où a et b sont deux nombres réels dans I tels que a < b), tel que (par continuité)
f (n)(ξ) > 0 quel que soit x ∈ ]a; b[ ; il existe donc un intervalle ouvert ]a; b[ ⊂ I
tel que, pour tout x ∈ ]a; b[ :

f(x) = f(c) +
f (n)(ξ)

n!
︸ ︷︷ ︸

> 0

(x− c)n
︸ ︷︷ ︸

> 0

> f(c) ,

vu que n est pair. Par conséquent, f admet un minimum local en c.
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• n est impair ; dans ce cas, quel que soit l’intervalle ouvert ]a; b[ ⊂ I, contenant c
(où a et b sont deux nombres réels dans I tels que a < b), (x − c)n < 0 si
x ∈ ]a; c[ et (x − c)n > 0 si x ∈ ]c; b[ ; et comme pour tout x suffisamment
proche de c, f (n)(ξ) a (par continuité) le même signe que f (n)(c), on conclut
que f (n)(ξ)(x− c)n ne garde pas toujours le même signe dans ]a; b[ quel que soit
]a; b[⊂ I, contenant c ; f n’admet donc pas d’extremum en c lorsque n est impair.

Ces considérations peuvent être résumées comme suit.

7.2.11 Proposition : Soient f : D → R une fonction réelle, définie dans un intervalle
ouvert I ⊂ D, et c un point dans I. Supposons que f est n fois dérivable dans I, où
n > 2 est un nombre entier. Supposons de plus que f ′(c) = . . . = f (n−1)(c) = 0, que
f (n)(c) 6= 0 et que f (n) est continue dans I.

• Si n est pair et :

⋄ si f (n)(c) < 0, alors f admet un maximum local en c,
⋄ si f (n)(c) > 0, alors f admet un minimum local en c.

• Si n est impair, alors f n’admet pas d’extremum local en c.

7.2.12 Remarque : Il est important de noter que la seule condition f ′(c) = . . . =
f (n−1)(c) = 0, évoquée dans la proposition précédente, ne permet pas d’affirmer quoi
que ce soit sur la nature de c ; c’est uniquement lorsque cette condition est couplée avec
la condition f (n)(c) 6= 0 qu’il est possible de conclure. Les exemples qui suivent illustrent
bien cette réalité.

7.2.13 Exemples : 1. Soit f : R → R la fonction donnée par :

f(x) = x3 − x .

Cette fonction a pour domaine de définition Df = R. Cher-
chons ses extrema locaux ; pour cela, calculons la dérivée f ′

de f :

f ′(x) = 3 x2 − 1 =
(√

3x− 1
)(√

3 x+ 1
)
.

Manifestement, f ′ est définie en tout x ∈ R et s’annule en
x1 = −

√
3
3
et en x2 =

√
3
3
. La fonction f n’admet donc aucun

point dans Df où sa dérivée f ′ n’existe pas, et possède deux
points stationnaires, x1 et x2. Déterminons la nature de ces
points ; à cet effet, calculons la dérivée seconde de f :

f ′′(x) = 6 x .

x

y

0−2 2

−6

−4

−2

2

4

6

Le fait que :

f ′′(x1) = f ′′
(

−
√
3
3

)

= 6 ·
(

−
√
3

3

)

= −2
√
3 < 0
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et que f ′′ est une dérivée d’ordre pair permet de conclure que f admet un maximum
local en x1 = −

√
3
3
. Aussi, le fait que :

f ′′(x2) = f ′′
(√

3
3

)

= 6 ·
√
3

3
= 2

√
3 > 0

et que f ′′ est une dérivée d’ordre pair permet de conclure que f admet un minimum
local en x2 =

√
3
3
.

2. Soit f : R → R la fonction donnée par :

f(x) = x3 − 3 x2 + 3 x− 2 .

Cette fonction a pour domaine de définition Df = R. Cherchons ses extrema
locaux ; pour cela, calculons la dérivée f ′ de f :

f ′(x) = 3 x2 − 6 x+ 3 = 3 (x2 − 2 x+ 1) = 3 (x− 1)2 .

Manifestement, f ′ est définie en tout x ∈ R et s’annule en x1 = 1 uniquement.
La fonction f n’admet donc aucun point dans Df où sa dérivée f ′ n’existe pas, et
possède un unique point stationnaire, x1. Déterminons la nature de ce point ; pour
cela, calculons la dérivée seconde de f :

f ′′(x) = 6 x− 6 = 6 (x− 1) .

Comme :

f ′′(x1) = f ′′(1) = 6 (1− 1) = 0 ,

il n’est pas possible de caractériser x1 à l’aide de f ′′. Cal-
culons alors la dérivée d’ordre 3 de f :

f ′′′(x) = 6 .

Le fait que f ′′′(x1) = f ′′′(1) = 6 6= 0 et que f ′′′ est une
dérivée d’ordre impaire permet de conclure que f n’admet
pas d’extremum local en x1 ; elle possède ce que l’on appelle
parfois un palier.

x

y

0−2 2

−6

−4

−2

2

4

Note : Le développement limité d’ordre 2 de f autour de x1 = 1 s’écrit :

f(x) = f(1) +
f ′(1)

1!
(x− 1) +

f ′′(1)

2!
(x− 1)2 +

f ′′′(ξ)

3!
(x− 1)3

= −1 + 0 · (x− 1) + 0 · (x− 1)2 +
6

3!
(x− 1)3 = −1 + (x− 1)3 ,

où ξ est un nombre réel compris strictement entre 1 et x. Vu que f ′′′(ξ) = 6
demeure constante et que (x − 1)3 change de signe lorsque x passe de x < 1 à
x > 1, on déduit que f ne peut effectivement pas admettre d’extremum en 1.
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3. Soit f : R → R la fonction donnée par :

f(x) = x4 − 4 .

Cette fonction a pour domaine de définition Df = R. Cherchons ses extrema
locaux ; pour cela, calculons la dérivée f ′ de f :

f ′(x) = 4 x3 .

Manifestement, f ′ est définie en tout x ∈ R et s’annule en x1 = 0 uniquement.
La fonction f n’admet donc aucun point dans Df où sa dérivée f ′ n’existe pas, et
possède un unique point stationnaire, x1. Déterminons la nature de ce point ; pour
cela, calculons la dérivée seconde de f :

f ′′(x) = 12 x2 .

Comme f ′′(x1) = f ′′(0) = 12 · 02 = 0, il n’est pas possible
de caractériser x1 à l’aide de f ′′. Calculons alors la dérivée
d’ordre 3 de f :

f ′′′(x) = 24 x .

Comme f ′′′(x1) = f ′′′(0) = 24 · 0 = 0, il n’est pas possible
de caractériser x1 à l’aide de f ′′′. Calculons alors la dérivée
d’ordre 4 de f :

f (4)(x) = 24 .

Le fait que f (4)(x1) = f (4)(0) = 24 > 0 et que f (4) est une
dérivée d’ordre pair permet de conclure que f admet un
minimum local en x1.

x

y

0−2 2

−4

−2

2

4

Note : Le développement limité d’ordre 3 de f autour de x1 = 0 s’écrit :

f(x) = f(0) +
f ′(0)

1!
(x− 0) +

f ′′(0)

2!
(x− 0)2 +

f ′′′(0)

3!
(x− 0)3 +

f (4)(ξ)

4!
(x− 0)4

= −4 + 0 · (x− 0) + 0 · (x− 0)2 + 0 · (x− 0)3 +
24

4!
(x− 0)4 = −4 + (x− 0)4 ,

où ξ est un nombre réel compris strictement entre 0 et x. Vu que f (4)(ξ) = 24
demeure constante et que (x − 0)4 est toujours positif (que x < 0 ou x > 0), on
déduit que f admet effectivement un minimum local en x1 = 0.
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7.3 Concavité et courbure

7.3.1 Définition : Soit le plan euclidien R2 et Oxy son système de coordonnées carté-
siennes canonique. Soit aussi f : D → R une fonction réelle, définie dans un intervalle
ouvert I ⊂ D.

• f est dite convexe dans I si, pour tout couple de points A
(
a ; f(a)

)
∈ R2 et

B
(
b ; f(b)

)
∈ R2 du graphe de f , où a et b sont deux nombres réels dans I tels

que a < b, n’importe quel point P
(
x0 ; f(x0)

)
du graphe

de f , pour lequel a < x0 < b, se trouve en dessous du seg-
ment AB, i.e. se trouve en dessous du point Q(x0; y0) du
segment AB ayant pour abscisse x0 ; autrement dit, pour
tout a < x0 < b :

f(x0) 6 y0 ,

où y0 est l’ordonnée de Q.

x

y

a

A

b

B

x0

P

Q
y0

f(x0)

O

• f est dite concave dans I si, pour tout couple de points A
(
a ; f(a)

)
∈ R2 et

B
(
b ; f(b)

)
∈ R2 du graphe de f , où a et b sont deux nombres réels dans I tels

que a < b, n’importe quel point P
(
x0 ; f(x0)

)
du graphe

de f , pour lequel a < x0 < b, se trouve au-dessus du seg-
ment AB, i.e. se trouve au-dessus du point Q(x0; y0) du
segment AB ayant pour abscisse x0 ; autrement dit, pour
tout a < x0 < b :

f(x0) > y0 ,

où y0 est l’ordonnée de Q.

x

y

a

A

b

B

x0

P

Q

f(x0)
y0

O

7.3.2 Remarques : • La concavité (on peut aussi dire la convexité) est une notion
géométrique qui s’applique, entre autres, à des courbes planes. Dire qu’une fonc-
tion f est convexe (ou concave) dans un intervalle ouvert donné constitue un leger
abus de langage, puisque ce n’est pas f directement qui est convexe (ou concave),
mais son graphe (qui est une courbe plane).

• Étudier la concavité d’une fonction f : D → R revient à déterminer les intervalles
ouverts dans lesquels la fonction en question est convexe, ainsi que les intervalles
ouverts dans lesquels elle est concave.

• Toute fonction f : D → R, définie et convexe, ou concave, dans un intervalle
ouvert I ⊂ D est nécessairement continue dans I. Pour s’en convaincre, il suffit
de considérer le cas où f est convexe dans I (le cas où f est concave se traitant de
façon similaire). Soient le plan euclidien R2 et Oxy son système de coordonnées
cartésiennes canonique ; soient aussi

(
a ; f(a)

)
∈ R2 et

(
b ; f(b)

)
∈ R2 deux points

du graphe de f tels que a, b ∈ I et a < b ; soit encore x0 ∈ I tel que a < x0 < b.
Alors, pour tout x ∈ ]a; b[ tel que x 6= x0 :

f(x0)− f(a)

x0 − a
6

f(x0)− f(x)

x0 − x
=

f(x)− f(x0)

x− x0
6

f(b)− f(x0)

b− x0
.
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Pour démontrer cette double inégalité, il convient
de supposer, en premier lieu, que x < x0 ; soit
alors R(x0; y0) le point sur le segment XB d’abs-
cisse x0, où X

(
x ; f(x)

)
est le point du graphe de f

ayant pour abscisse x. Les points X , R et B étant
alignés, les segments XB, XR et RB sont tous sup-
portés par la même droite ; par conséquent :

f(b)− f(x)

b− x
=

y0 − f(x)

x0 − x
=

f(b)− y0
b− x0

.
x

y

O a

A

b

B

x0x

S

R

X

X0

Aussi, soit S(x; y) le point sur le segment AX0 d’abscisse x, où X0

(
x0 ; f(x0)

)

est le point du graphe de f d’abscisse x0. Les points A, S et X0 étant alignés,
les segments AX0, AS et SX0 sont tous supportés par la même droite ; par
conséquent :

f(x0)− f(a)

x0 − a
=

y − f(a)

x− a
=

f(x0)− y

x0 − x
.

Comme f est convexe dans I, alors f(x0) 6 y0 et f(x) 6 y. Ainsi, pour tout
x < x0, d’une part :

f(x)− f(x0)

x− x0
=

f(x0)− f(x)

x0 − x
6

y0 − f(x)

x0 − x
=

f(b)− y0
b− x0

6
f(b)− f(x0)

b− x0
,

d’autre part :

f(x)− f(x0)

x− x0
=

f(x0)− f(x)

x0 − x
>

f(x0)− y

x0 − x
=

f(x0)− f(a)

x0 − a
;

la double inégalité est ainsi prouvée dans le cas où x < x0. La preuve est similaire
dans le cas où x > x0 ; il faut simplement être attentif au fait que le point
R(x0; y0) se trouve sur le segment AX et le point S(x; y) sur le segment X0B.
Revenons maintenant à f(x) ; pour tout x ∈ I tel que x 6= x0, f(x) peut s’écrire
sous la forme :

f(x) = f(x0) +
f(x)− f(x0)

x− x0
(x− x0) .

Certes limx→x0

f(x)−f(x0)
x−x0

(x−x0) n’existe pas en général. Mais vu que f(x0)−f(a)
x0−a

6
f(x)−f(x0)

x−x0
6 f(b)−f(x0)

b−x0
pour tout x ∈ ]a; b[ tel que x 6= x0, et que :

lim
x→x0

(

f(x0) +
f(x0)− f(a)

x0 − a
(x− x0)

)

= f(x0) +
f(x0)− f(a)

x0 − a
(x0 − x0) = f(x0) ,

lim
x→x0

(

f(x0) +
f(b)− f(x0)

b− x0
(x− x0)

)

= f(x0) +
f(b)− f(x0)

b− x0
(x0 − x0) = f(x0) ,

alors, selon le théorème des deux gendarmes :

lim
x→x0

f(x) = lim
x→x0

(

f(x0) +
f(x)− f(x0)

x− x0
(x− x0)

)

= f(x0) ;
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f est donc continue en x0. Le fait que le raisonnement est valable pour tous
a, b, x0 ∈ I (où a < x0 < b) permet de conclure que f est continue dans I.

7.3.3 Proposition : Soit f : D → R une fonction réelle, définie et dérivable dans un
intervalle ouvert I ⊂ D.

• f est convexe dans I si et seulement si la dérivée f ′ de f est une fonction croissante
dans I, si et seulement si f ′′(x) > 0 pour tout x ∈ I, pour autant que f ′′ soit
définie dans I.

• f est concave dans I si et seulement si la dérivée f ′ de f est une fonction décrois-
sante dans I, si et seulement si f ′′(x) 6 0 pour tout x ∈ I, pour autant que f ′′

soit définie dans I.

Preuve : Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes
canonique. Soit aussi f : D → R une fonction définie et dérivable dans un intervalle
ouvert I ⊂ D.

Montrons d’abord que si f est convexe dans I, alors f ′ est croissante dans I. Pour
ce faire, considérons deux points quelconques A

(
a ; f(a)

)
∈ R2 et B

(
b ; f(b)

)
∈ R2 du

graphe de f , tels que a, b ∈ I et a < b. Soient x0 un point quelconque dans l’inter-
valle ]a; b[ , P

(
x0 ; f(x0)

)
le point du graphe de f d’abscisse x0, et Q(x0 ; y0) le point

sur le segment AB d’abscisse x0. Vu que Q est sur AB, son ordonnée y0 satisfait néces-
sairement les relations suivantes :

y0 − f(a)

x0 − a
=

f(b)− f(a)

b− a
=

f(b)− y0
b− x0

;

de telles égalités expriment le fait que les segments AB, AQ et QB ont la même pente.
Comme f est supposée convexe dans I, alors y0 > f(x0).
En conséquence, d’une part :

y0 − f(a)

x0 − a
>

f(x0)− f(a)

x0 − a
,

vu que y0 > f(x0) ⇔ y0 − f(a) > f(x0)− f(a), et d’autre
part :

f(b)− y0
b− x0

6
f(b)− f(x0)

b− x0
,

x

y

O a

A

b

B

x0

P

Q

vu que y0 > f(x0) ⇔ −y0 6 −f(x0) ⇔ f(b)− y0 6 f(b)− f(x0). Ainsi, en utilisant la

double égalité y0−f(a)
x0−a

= f(b)−f(a)
b−a

= f(b)−y0
b−x0

, il ressort que :

f(x0)− f(a)

x0 − a
6

f(b)− f(a)

b− a
6

f(b)− f(x0)

b− x0
.

Faisons à présent tendre successivement x0 vers a (par valeurs plus grandes), puis vers b
(par valeurs plus petites).

• Posons ∆x = x0−a. Dans ce cas, dire que x0 tend vers a par valeurs plus grandes
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revient à dire que ∆x tend vers 0 par valeurs plus grandes. Ainsi, en notant que
∆x = x0 − a ⇔ x0 = a +∆x :

lim
x0→a
x0>a

f(x0)− f(a)

x0 − a
= lim

∆x→0
∆x>0

f(a+∆x)− f(a)

∆x
.

Or, cette dernière expression n’est rien d’autre que la dérivée à droite de f en a ;
et comme f est dérivable dans I, et donc en particulier en a, la dérivée à droite
de f en a est égale à la dérivée de f en a. Donc, en tenant compte de l’inégalité
f(x0)−f(a)

x0−a
6 f(b)−f(a)

b−a
:

f ′(a) = lim
∆x→0
∆x>0

f(a+∆x)− f(a)

∆x
= lim

x0→a
x0>a

f(x0)− f(a)

x0 − a

6 lim
x0→a
x0>a

f(b)− f(a)

b− a
=

f(b)− f(a)

b− a
.

• Posons ∆x = x0 − b. Dans ce cas, dire que x0 tend vers b par valeurs plus petites
revient à dire que ∆x tend vers 0 par valeurs plus petites. Ainsi, en notant que
∆x = x0 − b ⇔ x0 = b+∆x :

lim
x0→b
x0<b

f(b)− f(x0)

b− x0
= lim

x0→b
x0<b

−
(
f(x0)− f(b)

)

−(x0 − b)
= lim

x0→b
x0<b

f(x0)− f(b)

x0 − b

= lim
∆x→0
∆x<0

f(b+∆x)− f(b)

∆x
.

Or, cette dernière expression n’est rien d’autre que la dérivée à gauche de f en b ;
et comme f est dérivable dans I, et donc en particulier en b, la dérivée à gauche
de f en b est égale à la dérivée de f en b. Donc, en tenant compte de l’inégalité
f(b)−f(a)

b−a
6 f(b)−f(x0)

b−x0
:

f ′(b) = lim
∆x→0
∆x<0

f(b+∆x)− f(a)

∆x
= lim

x0→b
x0<b

f(b)− f(x0)

b− x0

> lim
x0→b
x0<b

f(b)− f(a)

b− a
=

f(b)− f(a)

b− a
.

En résumé :

f ′(a) 6
f(b)− f(a)

b− a
6 f ′(b) ,

d’où :

f ′(a) 6 f ′(b) .
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Le fait que le résultat est valable quels que soient les points A
(
a ; f(a)

)
et B

(
b ; f(b)

)

tels que a, b ∈ I, où a < b, permet de conclure que la dérivée f ′ de f est croissante
dans I.

Réciproquement, supposons que f ′ est croissante dans I. Dans ce cas, f ′(a) 6
f ′(x0) 6 f ′(b), quels que soient a, b, x0 ∈ I tels que a < x0 < b. Considérons alors
la fonction g : I → R donnée par :

g(x) = f(x)− f(b)− f(a)

b− a
(x− a) .

De par sa construction, g satisfait g(a) = g(b) ; en effet :

g(a) = f(a)− f(b)− f(a)

b− a
(a− a) = f(a)

et :

g(b) = f(b)− f(b)− f(a)

b− a
(b− a) = f(b)−

(
f(b)− f(a)

)
= f(a) .

De plus, g est dérivable dans I, vu que f l’est ; la dérivée g′ de g s’écrit :

g′(x) = f ′(x)− f(b)− f(a)

b− a
.

En outre, g′ est croissante dans I, vu que f ′ l’est ; en effet, pour tous x1, x2 ∈ I tels que
x1 < x2 :

g′(x1) = f ′(x1)−
f(b)− f(a)

b− a
6 f ′(x2)−

f(b)− f(a)

b− a
= g′(x2) .

x

y

O a

A

b

B

P

Q

B′

P ′

x0

En résumé, g est une fonction continue dans [a; b], dérivable
dans ]a; b[ (vu que g est dérivable dans I et que a, b ∈ I) et
telle que g(a) = g(b) ; g satisfait donc les hypthèses du théo-
rème de Rolle (cf. section 3.9 du chapitre 3). De fait, selon
ce théorème, il existe (au moins) un nombre réel c ∈ ]a; b[
tel que g′(c) = 0. Comme g′ est croissante dans I, et donc
dans ]a; b[ , alors g′(x) 6 0 pour tout x ∈ ]a; c[ et g′(x) > 0
pour tout x ∈ ]c; b[ . Ainsi, selon la proposition 7.1.3, la
fonction g est décroissante dans ]a; c[ et croissante dans ]c; b[ . En conséquence (et
du fait de la continuité de g dans [a; b]), g(a) > g(x) > g(c) pour tout x ∈ [a; c] et
g(c) 6 g(x) 6 g(b) pour tout x ∈ [c; b]. Autrement écrit, et en tenant compte du fait
que g(a) = g(b) :

g(c) 6 g(x) 6 g(a) = g(b) , pour tout x ∈ [a; b] .

En particulier, en reprenant l’élément x0 ∈ ]a; b[ introduit plus haut, g(x0) 6 g(a) =

g(b). Or, g(x0) = f(x0)− f(b)−f(a)
b−a

(x0 − a) et g(a) = f(a). Donc :

f(x0)−
f(b)− f(a)

b− a
(x0 − a) = g(x0) 6 g(a) = f(a) ,
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d’où :

f(x0)− f(a) 6
f(b)− f(a)

b− a
(x0 − a) ⇔ f(x0)− f(a)

x0 − a
6

f(b)− f(a)

b− a
.

Soient à présent A
(
a ; f(a)

)
∈ R2, B

(
b ; f(b)

)
∈ R2 et P

(
x0 ; f(x0)

)
∈ R2 les points du

graphe de f d’abscisse a, b et x0, respectivement ; soit aussi Q(x0 ; y0) le point sur le
segment AB, d’abscisse x0. Alors, comme vu au début de la démonstration :

f(b)− f(a)

b− a
=

y0 − f(a)

x0 − a
.

En combinant cette égalité avec l’inégalité précédente, il vient :

f(x0)− f(a)

x0 − a
6

y0 − f(a)

x0 − a
.

Une telle inégalité est respectée si et seulement si :

f(x0) 6 y0 .

Le fait que ce résultat soit valable pour tous a, b, x0 ∈ I, tels que a < x0 < b, prouve
que f est convexe dans I.

La démonstration du fait que f est concave dans I si et seulement si f ′ est décrois-
sante dans I est en tout point similaire à celle donnée ci-dessus, établissant le fait que f
est convexe dans I si et seulement si f ′ est croissante dans I.

Enfin, pour montrer que la dérivée f ′ de f est croissante (respectivement décrois-
sante) dans I si et seulement si la dérivée seconde f ′′ de f , si elle est définie, est positive
(respectivement négative) dans I, il suffit de reprendre la preuve de la proposition 7.1.3
et d’y remplacer f par f ′. �

7.3.4 Définition : Soit f : D → R une fonction réelle, définie et deux fois dérivable dans
un intervalle ouvert I ⊂ D.

• On dit que la fonction f a une courbure (strictement) négative en x ∈ I si
f ′′(x) 6 0 (f ′′(x) < 0).

• On dit que la fonction f a une courbure (strictement) positive en x ∈ I si f ′′(x) >
0 (f ′′(x) > 0).

7.3.5 Remarques : • Dire qu’une fonction réelle f : D → R, définie et deux fois
dérivable dans un intervalle ouvert I ⊂ D, est convexe (respectivement concave)
dans I revient à dire que f a une courbure positive (respectivement négative)
dans I.

• La notion de courbure ne se limite pas au contexte des fonctions réelles d’une
variable (réelle) ; elle s’applique en général aux courbes, planes ou non, aux sur-
faces, etc. La présente étude se limite toutefois uniquement au cas des courbes
planes décrites par des fonctions (réelles).
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7.4 Points d’inflexion

7.4.1 Définition : Soient le plan euclidien R2 et Oxy son système de coordonnées carté-
siennes canonique. Soient aussi f : D → R une fonction réelle, définie et continue dans
un intervalle ouvert I ⊂ D, et c un point dans I. On dit que

(
c ; f(c)

)
∈ R2 est un point

d’inflexion du graphe de f (ou simplement de f) si la fonction f est dérivable en c (i.e.
f ′(c) ∈ R), ou si elle admet une dérivée infinie en c (i.e. f ′(c) = −∞ ou f ′(c) = ∞), et
s’il existe un intervalle ouvert ]a; b[ ⊂ I, contenant c, tel que :

{

f est concave dans ]a; c[ ,

f est convexe dans ]c; b[ ,
ou

{

f est convexe dans ]a; c[ ,

f est concave dans ]c; b[ .

Dans ces circonstances, on dit que f admet un point d’inflexion en c ; on dit aussi parfois
que f admet un point d’inflexion dans I, vu que c ∈ I.

7.4.2 Propriétés : Soient le plan euclidien R2 et Oxy son système de coordonnées car-
tésiennes canonique. Soit aussi f : D → R une fonction réelle, définie et dérivable dans
un intervalle ouvert I ⊂ D.

• Si f est convexe dans I, alors, pour tout x0 ∈ I, la tan-
gente au graphe de f en

(
x0 ; f(x0)

)
est sur ou en dessous

du graphe de f dans le domaine I × R ⊂ R2 ; plus préci-
sément, f(x) > y, quel que soit x ∈ I, où y est l’ordonnée
du point S(x; y) d’abscisse x, qui se trouve sur la tangente
au graphe de f en

(
x0 ; f(x0)

)
.

x

y

x0O x

y
f(x)

I×R

• Si f est concave dans I, alors, pour tout x0 ∈ I, la tan-
gente au graphe de f en

(
x0 ; f(x0)

)
est sur ou au-dessus

du graphe de f dans le domaine I × R ⊂ R2 ; plus préci-
sément, f(x) 6 y, quel que soit x ∈ I, où y est l’ordonnée
du point S(x; y) d’abscisse x, qui se trouve sur la tangente
au graphe de f en

(
x0 ; f(x0)

)
.

x

y

x0O x

y
f(x)

I×R

• Si f admet un unique point d’inflexion dans I, en un cer-
tain point c, alors la tangente au graphe de f en

(
c ; f(c)

)

traverse le graphe dans le domaine I×R ⊂ R2 ; plus préci-
sément, f(x) 6 y (respectivement f(x) > y) quel que soit
x ∈ I tel que x < c et f(x) > y (respectivement f(x) 6 y)
quel que soit x ∈ I tel que x > c, où y est l’ordonnée du
point S(x; y) d’abscisse x, qui se trouve sur la tangente
au graphe de f en

(
c ; f(c)

)
.

x

y

cO x2

y2
f(x2)

x1

y1
f(x1)

I×R

Démontrons la dernière propriété. Pour cela, considérons le plan euclidien R2, Oxy son
système de coordonnées cartésiennes canonique, et f : D → R une fonction réelle, définie
et dérivable dans un intervalle ouvert I ⊂ D, qui admet un unique point d’inflexion
dans I, en un certain point c ; notons C

(
c ; f(c)

)
le point d’inflexion du graphe de f

dans I × R. Les hypothèses qui viennent d’être formulées permettent d’affirmer que f
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est convexe dans I ∩ ]−∞; c[ et concave dans I ∩ ]c; ∞[ , ou concave dans I ∩ ]−∞; c[
et convexe dans I ∩ ]c; ∞[ . Envisageons le deuxième scénario (le premier se traitant
de façon similaire). Soient x1 ∈ I ∩ ]−∞; c[ et x2 ∈ I ∩ ]c; ∞[ . La fonction f étant
dérivable dans I, il existe, selon le théorème des accroissements finis, un nombre réel
ξ1 ∈ I ∩ ]−∞; c[ et un nombre réel ξ2 ∈ I ∩ ]c; ∞[ tels que :

f ′(ξ1) =
f(c)− f(x1)

c− x1
et f ′(ξ2) =

f(x2)− f(c)

x2 − c
.

Soit y1 (respectivement y2) l’ordonnée du point S1(x1; y1) (respectivement S2(x2; y2))
sur la droite tangente au graphe de f en C

(
c ; f(c)

)
, ayant pour abscisse x1 (respecti-

vement x2). Comme S1 et S2 sont sur la même tangente, alors :

f(c)− y1
c− x1

= f ′(c) =
y2 − f(c)

x2 − c
.

Et vu que f est concave dans I ∩ ]−∞; c[ et convexe dans I ∩ ]c; ∞[ , alors, selon la
proposition 7.3.3, f ′(ξ1) > f ′(c) et f ′(c) 6 f ′(ξ2). Par conséquent :

f(c)− f(x1)

c− x1
>

f(c)− y1
c− x1

et
y2 − f(c)

x2 − c
6

f(x2)− f(c)

x2 − c
,

d’où :
y1 > f(x1) et y2 6 f(x2) .

Le fait que le raisonnement soit valable pour tous x1, x2 ∈ I tels que x1 < c < x2 permet
de conclure que la tangente au graphe de f en

(
c ; f(c)

)
traverse le graphe de f dans le

domaine I ×R. Noter, pour terminer, que les deux autres propriétés évoquées (où f est
convexe dans I, concave dans I) se démontrent de manière analogue. �

7.4.3 Remarque : La définition d’un point d’inflexion peut légèrement différer d’un ou-
vrage à l’autre. Dans la présente étude, un point d’inflexion

(
c ; f(c)

)
du graphe d’une

fonction réelle f est un point où la tangente au graphe existe. Dans certains livres, la
condition d’existence de la tangente n’est pas exigée ; dans de telles circonstances, un
point d’inflexion peut alors cöıncider avec un point anguleux.

7.4.1 Condition nécessaire pour avoir un point d’inflexion

7.4.4 Proposition : Soit f : D → R une fonction réelle, définie et deux fois dérivable
dans un intervalle ouvert I ⊂ D ; soit aussi c un point dans I. Si la seconde dérivée f ′′

de f est continue en c et si f admet un point d’inflexion en c, alors f ′′(c) = 0.

Preuve : Soit f : D → R une fonction réelle, définie et deux fois dérivable dans un
intervalle ouvert I ⊂ D, et c un point dans I. Supposons que la dérivée f ′′ de f est
continue en c et que f admet un point d’inflexion en c. Alors, par définition, il existe un
intervalle ouvert ]a; b[ ⊂ I, contenant c, tel que :

{

f est concave dans ]a; c[ ,

f est convexe dans ]c; b[ ,
ou

{

f est convexe dans ]a; c[ ,

f est concave dans ]c; b[ ;
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en d’autres termes, vu que f est deux fois dérivable dans I, il existe un intervalle ouvert
]a; b[ ⊂ I, contenant c, tel que (cf. proposition 7.3.3) :
{

f ′′(x) 6 0 pour tout x ∈ ]a; c[ ,

f ′′(x) > 0 pour tout x ∈ ]c; b[ ,
ou

{

f ′′(x) > 0 pour tout x ∈ ]a; c[ ,

f ′′(x) 6 0 pour tout x ∈ ]c; b[ .

Comme f ′′ est continue en c, alors f ′′(c) = limx→c f
′′(x). Or :

lim
x→c

f ′′(x) =







lim
x→c
x<c

f ′′(x) 6 0

lim
x→c
x>c

f ′′(x) > 0
ou lim

x→c
f ′′(x) =







lim
x→c
x<c

f ′′(x) > 0

lim
x→c
x>c

f ′′(x) 6 0
.

Donc, par continuité de f ′′ en c :

f ′′(c) = lim
x→c

f ′′(x) = 0 . �

7.4.5 Remarques : • Soit f : D → R une fonction réelle, définie et continue dans un
intervalle ouvert I ⊂ D. De la proposition précédente, il ressort que si f admet
un point d’inflexion dans I, ce point ne peut se trouver que parmi les points
suivants :

✄ les points de I où la dérivée seconde f ′′ de f est définie, continue et s’annule ;

✄ les points de I où la dérivée seconde f ′′ de f est définie mais n’est pas continue ;

✄ les points de I où la dérivée seconde f ′′ de f n’est pas définie, mais où f est
dérivable ou admet une dérivée infinie.

• Dans la proposition 7.4.4, si l’on abandonne l’hypothèse de continuité de f ′′ en c,
la conclusion demeure valable : si f est deux fois dérivable dans I et admet un
point d’inflexion en c ∈ I, alors nécessairement f ′′(c) = 0. Compte tenu de ces
circonstances, le point précédent peut être reformulé comme suit : si f : D → R

admet un point d’inflexion dans un intervalle ouvert I ⊂ D, ce point se trouve
nécessairement parmi les points suivants : les points de I où la dérivée seconde f ′′

de f est définie et s’annule, les points de I où la dérivée seconde f ′′ de f n’est
pas définie mais où f est dérivable ou admet une dérivée infinie. Quelque peu
technique, la preuve de ce résultat n’est pas donnée ici.

7.4.2 Condition suffisante pour avoir un point d’inflexion

7.4.6 Proposition : Soient f : D → R une fonction réelle, définie et continue dans un
intervalle ouvert I ⊂ D, et c un point dans I. Supposons que f est deux fois déri-
vable dans I, sauf éventuellement en c ∈ I. Supposons, en outre, que f est dérivable
en c ou qu’elle admet une dérivée infinie en c. Alors, pour que f admette un point
d’inflexion en c, il suffit qu’il existe un intervalle
ouvert ]a; b[ ⊂ I, contenant c, tel que :

{

f ′′(x) 6 0 si x ∈ ]a; c[ ,

f ′′(x) > 0 si x ∈ ]c; b[ , x

y

cO
x

y

cO
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ou : {

f ′′(x) > 0 si x ∈ ]a; c[ ,

f ′′(x) 6 0 si x ∈ ]c; b[ .

x

y

cO
x

y

cO
Preuve : Ce résultat est une conséquence directe
de la proposition 7.3.3 et de la définition d’un
point d’inflexion. �

7.4.7 Corollaire : Soient f : D → R une fonction réelle, définie et continue dans un
intervalle ouvert I ⊂ D, et c un point dans I. Supposons que f est deux fois dérivable
dans I, sauf éventuellement en c ∈ I. Supposons, en outre, que f est dérivable en c ou
qu’elle admet une dérivée infinie en c. Alors, s’il existe un intervalle ouvert ]a; b[ ⊂ I,
contenant c, tel que f ′′(x) > 0 (respectivement f ′′(x) < 0) pour tout x ∈ ]a; c[ ∪ ]c; b[ ,
alors f n’admet pas de point d’inflexion en c.

Preuve : Ce résultat est également une conséquence directe de la proposition 7.3.3 et de
la définition d’un point d’inflexion. �

7.4.8 Exemples : 1. Soit f : R → R la fonction donnée par :

f(x) = exp(−x2) .

Cette fonction a pour domaine de définition Df = R. Cherchons ses points d’in-
flexion ; pour cela, calculons la dérivée seconde f ′′ de f :

f ′′(x) =
d2

dx2
exp(−x2) =

d

dx

(
d

dx
exp(−x2)

)

=
d

dx

(
−2 x exp(−x2)

)

= −2 exp(−x2)− 2 x (−2 x) exp(−x2)

= −2 exp(−x2) + 4 x2 exp(−x2)

= 2 (2 x2 − 1) exp(−x2)

= 2
(√

2x− 1
)(√

2x+ 1
)
exp(−x2) .

f ′′ est définie et continue dans tout R. De fait, quel que soit l’intervalle ouvert
I ⊂ R, si f admet un point d’inflexion en un point c ∈ I, ce point satisfait la
condition f ′′(c) = 0 (cf. remarque 7.4.5). Dans le cas présent, la dérivée seconde
s’annule en :

x1 = − 1√
2

et x2 =
1√
2

;
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en effet, la condition f ′′(x) = 0 im-
plique

(√
2 x − 1

)(√
2 x + 1

)
= 0,

vu que exp(−x2) ne s’annule jamais
dans R. Le tableau des signes présenté
ci-contre montre que f est convexe
dans tout intervalle ouvert contenu
dans ]−∞; x1[ ∪ ]x2; ∞[ et concave
dans tout intervalle ouvert contenu
dans ]x1; x2[ . f admet donc un pre-
mier point d’inflexion (PI) en x1 et un
deuxième en x2. Sur le graphe de f , les
points d’inflexion sont P1

(
x1 ; f(x1)

)
et

P2

(
x2 ; f(x2)

)
; concrètement :

P1

(
− 1√

2
; 1√

e

)
et P2

(
1√
2
; 1√

e

)
.

x − 1√
2

1√
2

√
2x+ 1 − + +0

√
2x− 1 − − +0

exp(−x2) + + +

f ′′(x) + − +0 0

f(x) ∪ ∩ ∪PI PI

x

y

−3 −2 −1 0 1 2 3

1

x1

P1

x2

P2

2. Soit f : R → R la fonction donnée par :

f(x) = 3
√
x− 2 + 1 .

Cette fonction a pour domaine de définition Df = R. Cherchons ses points d’in-

flexion. À cet effet, calculons les dérivées première et seconde de f :

f ′(x) =
d

dx

[

(x− 2)
1
3 + 1

]

=
1

3
(x− 2)−

2
3 =

1

3 3
√

(x− 2)2
,

f ′′(x) =
d

dx

[
1

3
(x− 2)−

2
3

]

= −2

9
(x− 2)−

5
3 = − 2

9 3
√

(x− 2)5
.

f ′′ est définie et continue dans Rr{2} ; en x = 2, elle n’est pas définie. De fait,
si f admet un point d’inflexion, celui-ci ne peut être qu’en x = 2. Relevons alors
les deux points suivants :

⋄ f admet une dérivée infinie en x = 2 ; en effet :

lim
x→2
x<2

1

3 3
√

(x− 2)2
= ∞ = lim

x→2
x>2

1

3 3
√

(x− 2)2
;

⋄ f ′′ est strictement positive dans tout intervalle ouvert contenu dans ]−∞; 2[
et strictement négative dans tout intervalle ouvert contenu dans ]2; ∞[ .

Ces deux éléments permettent de
conclure que f admet effectivement
un point d’inflexion en x = 2. Sur le
graphe de f , le point d’inflexion est :

P (2; 1) ;

c’est un point où la tangente au graphe
est verticale.

x

y

−1
0

1 2 3 4 5

1

2

P
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3. Soit f : R → R la fonction donnée par (cf. troisième des exemples 7.2.13) :

f(x) = x4 − 4 .

Cette fonction n’admet pas de point d’inflexion en x = 0, quand bien même la
dérivée seconde f ′′ de f , qui est donnée par f ′′(x) = 12 x2, s’annule en x = 0.
Cette réalité est due au fait que f ′′ est strictement positive dans ]−∞; 0[ , ainsi
que dans ]0; ∞[ .

7.5 Étude d’une fonction

Appliqués à une fonction réelle f donnée, les résultats présentés dans ce chapitre four-
nissent des informations essentielles sur la forme du graphe de f . Si la détermination des
extrema, points d’inflexion... est complétée par l’étude d’autres caractéristiques, telles
que les éventuels zéros, asymptotes..., il devient aisé d’esquisser le graphe de façon re-
lativement précise. Étudier complètement une fonction revient à traiter tous les points
de la liste relativement exhaustive donnée ci-dessous.

i. Domaine de définition.

ii. Parité, périodicité...

iii. Zéros et tableau des signes.

iv. Points de discontinuités et leur nature (calcul de limite) ; asymptotes.

v. Extrema ; intervalles de croissance et décroissance.

vi. Points d’inflexion ; intervalles de concavité et de convexité.

vii. Représentation graphique (i.e. esquisse du graphe).

viii. Mise en évidence d’autres symétries éventuelles.

7.5.1 Exemple : Soit f la fonction donnée par :

f(x) =
3 ln(x2)

x
.

i. Domaine de définition : Le numérateur de f(x) est défini pour tout x ∈ R∗ ; en
effet, ln(x2) existe pour tout x2 > 0 ; or, x2 > 0 quel que soit x ∈ R et x2 = 0 si
et seulement si x = 0. Quant au dénominateur, il est défini pour tout x ∈ R et ne
s’annule qu’en x = 0. Le domaine de définition de f est donc :

Df = R∗ .

ii. Parité, périodicité : La fonction f n’est pas périodique. Cela étant, elle est impaire ;
en effet, son domaine de définition est symétrique par rapport à l’origine de l’axe x
et, pour tout x ∈ R∗ :

f(−x) =
3 ln
(
(−x)2

)

−x =
3 ln(x2)

−x = −3 ln(x2)

x
= −f(x) .
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Pour connâıtre les caractéristiques essentielles de son graphe, il n’est donc pas né-
cessaire d’étudier f dans tout R∗ ; il suffit de le faire dans R∗

− ; ou dans R∗
+. Si, dans

la suite, f sera tout de même étudiée dans tout R∗, c’est parce que le travail n’en est
pas plus conséquent. Le fait de savoir que f est impaire permettra alors de vérifier,
du moins en partie, la cohérence des résultats obtenus.

iii. Zéros et tableau des signes : La fonction f s’annule en x1 = −1 et en x2 = 1 ; en
effet :

3 ln(x2)

x
= 0 ⇔ ln(x2) = 0 ⇔ x2 = 1 ⇔

{

x = −1 ou

x = 1
.

Le tableau des signes de f , établi ci-dessous, montre que f(x) < 0 pour tout x ∈
]−∞; −1[ ∪ ]0; 1[ et f(x) > 0 pour tout x ∈ ]−1; 0[ ∪ ]1; ∞[ . Les signes et les
zéros sont cohérents avec le fait que f est impaire.

x −1 0 1

3 ln(x2) + − − +0 ‖ 0

x − − + +0

f(x) − + − +0 ‖ 0

iv. Points de discontinuité et asymptotes : Les fonctions x 7→ x2, x 7→ ln(x) et x 7→ x
étant continues en tout point de leurs domaines de définition respectifs, la fonction f
est continue dans Df = R∗.

⋄ f possède une discontinuité de type asymptotique en x = 0 ; les calculs de limites
suivants le montrent :

lim
x→0
x<0

f(x) = lim
x→0
x<0

3 ln(x2)

x
= ∞

et :

lim
x→0
x>0

f(x) = lim
x→0
x>0

3 ln(x2)

x
= −∞ .

f admet donc une asymptote verticale d’équation x = 0.
⋄ f possède une même asymptote horizontale, à droite et à gauche, d’équation
y = 0 ; le calcul de limite suivant, dans lequel la règle de Bernoulli-L’Hôpital
(B-H) est appliquée, le montre :

lim
x→±∞

f(x) = lim
x→±∞

3 ln(x2)

x
B-H
= lim

x→±∞

3
x2 2 x

1
= lim

x→±∞

6

x
= 0 .

⋄ Le fait que f possède une (même) asymptote horizontale à droite et à gauche
implique que f n’admet aucune asymptote oblique.

Ces résultats sont en adéquation avec le fait que f est impaire.
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v. Extrema : Ils s’obtiennent en étudiant la dérivée f ′ de f ; cette dérivée est donnée
par :

f ′(x) =
6x
x2 · x− 3 ln(x2) · 1

x2
=

3
(
2− ln(x2)

)

x2
.

Manifestement, f ′ est définie pour tout x ∈ Df = R∗ et s’annule en x3 = −e et en
x4 = e ; en effet :

3
(
2− ln(x2)

)

x2
= 0 ⇔ ln(x2) = 2 ⇔ x2 = exp(2) = e2

⇔
{
x = −e ou

x = e
.

Ainsi, selon la proposition 7.2.4, si f admet des extrema locaux, ces extrema ne
peuvent être atteints qu’en x3 et/ou en x4. Le tableau des signes de f ′, établi ci-
dessous, montre que f admet un minimum local en x3 et un maximum local en x4.
En outre, le tableau permet d’affirmer que f est croissante dans ]−e; 0[ ainsi que
dans ]0; e[ , et décroissante dans ]−∞; −e[ ainsi que dans ]e; ∞[ .

x −e 0 e

3
(
2− ln(x2)

)
− + + −0 ‖ 0

x2 + + + +0

f ′(x) − + + −0 ‖ 0

f(x) ց ր ր ցmin ‖ max

Sur le graphe de f , le minimum local et le maximum local sont, respectivement,
E1

(
−e ; f(−e)

)
et E2

(
e ; f(e)

)
; concrètement :

E1

(
−e ; −6

e

)
et E2

(
e ; 6

e

)
.

Ces résultats sont conformes au fait que f est impaire.

vi. Points d’inflexion : Ils s’obtiennent en étudiant la dérivée seconde f ′′ de f ; cette
dérivée seconde est donnée par :

f ′′(x) =
(
f ′)′(x) = 3

−2x
x2 · x2 −

(
2− ln(x2)

)
· 2 x

x4

= 3
−2 x− 2 x

(
2− ln(x2)

)

x4
= 3

−2 − 2
(
2− ln(x2)

)

x3

= 3
2 ln(x2)− 6

x3
=

6
(
ln(x2)− 3

)

x3
.
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Manifestement, f ′′ est définie et continue en tout x ∈ Df = R∗, et s’annule en

x5 = −
√
e3 et en x6 =

√
e3 ; en effet :

6
(
ln(x2)− 3

)

x2
= 0 ⇔ ln(x2) = 3 ⇔ x2 = exp(3) = e3

⇔
{

x = −
√
e3 ou

x =
√
e3

.

Ainsi, selon la proposition 7.4.4, si f admet des points d’inflexion, ces points ne
peuvent être qu’en x5 et/ou en x6. Le tableau des signes de f ′′, établi ci-dessus,
montre que f admet effectivement des points d’inflexion en x5 et en x6. Le tableau
permet, en outre, d’affirmer que f est concave dans ]−∞ ; −

√
e3 [ ainsi que dans

]0 ;
√
e3 [ , et convexe dans ]−

√
e3 ; 0[ ainsi que dans ]

√
e3 ; ∞[ .

x −
√
e3 0

√
e3

6
(
ln(x2)− 3

)
+ − − +0 ‖ 0

x3 − − + +0

f ′′(x) − + − +0 ‖ 0

f(x) ∩ ∪ ∩ ∪PI ‖ PI

Sur le graphe de f , les deux points d’inflexion (PI) sont P1

(
−
√
e3 ; f(−

√
e3 )
)
et

P2

(√
e3 ; f(

√
e3 )
)
; concrètement :

P1

(
−
√
e3 ; − 9√

e3

)
et P2

(√
e3 ; 9√

e3

)
.

Ces résultats sont en adéquation avec le fait que f est impaire.

x

y

2 4 6 8 10 12

−2−4−6−8−10−12

2

4

6

−2

−4

−6

0

E1

E2

P1

P2
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vii. Graphe : Grâce aux informations obtenues aux points précédents, le graphe de f
peut être esquissé relativement précisément. Un échantillon est représenté au bas
de la page précédente. Illustrant le fait que f est impaire, la symétrie centrale, de
centre O, est bien visible.

viii. Autres symétries : Aucune autre symétrie n’est à relever.

7.5.2 Illustration : Le morceau de métal qu’un forgeron place au milieu du feu peut
devenir incandescent s’il reste suffisamment longtemps au milieu des flammes ; il pa-
râıt d’abord rouge foncé, puis orange, jusqu’à devenir blanc. En absorbant (une partie
de) l’énergie émise par la source de chaleur, énergie émise sous forme de rayonnement
électromagnétique, la pièce de métal se trouve dans un état de température toujours
plus élevée. Afin que sa température n’augmente pas indéfinimient, le métal émet à
son tour de l’énergie, également sous forme de rayonnement électromagnétique. Un tel
rayonnemment est dit thermique. Le morceau atteint finalement un état d’équilibre, de
température T , dans lequel il émet autant d’énergie qu’il en absorbe.

L’observation systématique du rayonnement thermique émis par les objets chauds
est survenue avec le développement de l’industrie métallurgique dans le courant du
XIXe siècle. Pour étudier théoriquement ce type de rayonnement, les physiciens de
l’époque ont introduit le concept de corps noir : un objet se comporte comme un corps
noir s’il absorbe complètement l’énergie reçue sous forme de rayonnement électromagné-
tique, sans la réfléchir, ni la transmettre. Dans la réalité, aucun objet ne se comporte
parfaitement comme un corps noir ; certains s’en approchent, comme par exemple le noir
de carbone ou les gaz de surface d’une étoile.

L’ensemble du rayonnement thermique émis par un corps noir se caractérise à l’aide
d’une grandeur physique appelée radiance spectrale ; notée RT (λ), elle exprime l’intensité
du rayonnement émis par le corps noir en question, dont la température d’équilibre est T ,
dans l’intervalle de longueurs d’onde [λ ; λ+dλ], λ étant la longueur d’onde du rayon-
nement émis et dλ un élément infinitésimal de longueur d’onde. En 1900, le physicien
allemand Max K. Planck (né le 23 avril 1858 à Kiel, dans le duché de Schleswig-Holstein,
et mort le 3 octobre 1947 à Göttingen, en Basse-Saxe, dans l’actuelle Allemagne) a éta-
bli une expression de RT (λ) concordant parfaitement avec les mesures expérimentales.
Connue sous le nom de loi de Planck, cette expression s’écrit :

RT (λ) =
2 π c2 h

λ5
(

exp
(

h c
λkB T

)
− 1
) ,

où kB et h sont deux constantes, appelées respectivement constante de Boltzmann et
constante de Planck, et c la vitesse de la lumière dans le vide.

La grandeur RT (λ) peut être vue comme une fonction de λ. On se propose ici d’étu-
dier cette fonction, afin de pouvoir esquisser au mieux son graphe.

i. Domaine de définition : Le numérateur de RT (λ) est défini en tout λ ∈ R, vu
que c’est une constante ; quant au dénominateur, il est défini en tout λ ∈ R et
s’annule uniquement en λ = 0. Le domaine de définition de RT (λ) est donc R∗. Le
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domaine d’étude de RT sera toutefois limité à R∗
+ uniquement, en raison du fait

que la grandeur λ est, par définition, une grandeur positive (une longueur d’onde
négative n’ayant pas de sens physique).

ii. Parité, périodicité : Comme les valeurs négatives de λ ne sont pas considérées, il ne
fait pas sens de parler de parité ; ni de périodicité, du reste.

iii. Zéros et tableau des signes : L’équation RT (λ) = 0 n’admet aucune solution. En
effet, RT (λ) = 0 implique 2 π c2 h = 0, ce qui n’est pas possible. Dans R∗

+, la fonction
RT est donc soit toujours positive, soit toujours négative. Comme 2 π c2 h > 0, λ5 > 0
et exp

(
h c

λ kB T

)
> 1 quel que soit λ ∈ R∗

+, alors nécessairement RT (λ) > 0 pour tout
λ ∈ R∗

+.

iv. Points de discontinuité et asymptotes : La fonction RT est une composition, un pro-
duit, une différence, un rapport de fonctions qui sont continues dans leurs domaines
de définition respectifs ; en outre, le dénominateur de l’expression de RT ne s’annule
pas dans R∗. RT est donc continue dans tout R∗

+.

⋄ RT ne possède pas d’asymptote verticale en λ = 0. Le calcul de limite qui suit
le montre ; ce qui permet de mener à terme ce calcul, c’est l’effectuation du
changement de variable s = 1

λ
⇔ λ = 1

s
, suivie de cinq applications successives

de la règle de Bernoulli-L’Hôpital (B-H) :

lim
λ→0
λ>0

RT (λ) = lim
λ→0
λ>0

2 π c2 h

λ5
(

exp
(

h c
λ kB T

)
− 1
)

λ= 1
s= lim

s→∞

2 π c2 h
(
1
s

)5
(

exp
(
h c s
kB T

)
− 1
)

= lim
s→∞

2 π c2 h s5

exp
(
h c s
kB T

)
− 1

B-H
= lim

s→∞

10 π c2 h s4

h c
kB T

exp
(
h c s
kB T

)
4 fois B-H
= . . .

= lim
s→∞

240 π c2 h
(

h c
kB T

)5

exp
(
h c s
kB T

)
= 0 .

⋄ RT possède une asymptote horizontale à droite d’équation y = 0. Le calcul de
limite qui suit le montre ; ce qui permet de mener à terme ce calcul, c’est la
réalisation du changement de variable s = 1

λ
⇔ λ = 1

s
, suivie de l’application

de la règle de Bernoulli-L’Hôpital (B-H) :

lim
λ→∞

RT (λ) = lim
λ→∞

2 π c2 h

λ5
(

exp
(

h c
λ kB T

)
− 1
)

λ= 1
s= lim

s→0
s>0

2 π c2 h s5

exp
(
h c s
kB T

)
− 1

B-H
= lim

s→0
s>0

10 π c2 h s4

h c
kB T

exp
(
h c s
kB T

) = 0 .

Comme le domaine d’étude de RT est R∗
+ uniquement, la question d’une éven-

tuelle asymptote horizontale à gauche ne se pose pas.
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⋄ Comme RT possède une asymptote horizontale à droite, elle ne peut pas avoir
une quelconque asymptote oblique à droite. Et vu que le domaine d’étude de RT

se limite à R∗
+, la question d’une éventuelle asymptote oblique à gauche ne se

pose pas.

v. Extrema : Ils s’obtiennent en étudiant la dérivée R′
T de RT ; cette dérivée est donnée

par :

R′
T (λ) = −10 π c2 h

λ6
· 1

exp
(

h c
λ kB T

)
− 1

− 2 π c2 h

λ5
·
− h c

λ2 kB T
exp
(

h c
λkB T

)

(

exp
(

h c
λ kB T

)
− 1
)2

= − 10 π c2 h

λ6
(

exp
(

h c
λ kB T

)
− 1
) +

2 π c3 h2 exp
(

h c
λ kB T

)

λ7 kB T
(

exp
(

h c
λ kB T

)
− 1
)2

=
2 π c2 h

λ6
(

exp
(

h c
λkB T

)
− 1
)




h c exp

(
h c

λ kB T

)

λ kB T
(

exp
(

h c
λ kB T

)
− 1
) − 5



 .

Manifestement, R′
T est définie en tout x ∈ R∗ (i.e. en tout x du domaine d’étude

de RT ) et s’annule en tout point satisfaisant l’équation :

h c exp
(

h c
λ kB T

)

λ kB T
(

exp
(

h c
λ kB T

)
− 1
) − 5 = 0 .

Une telle équation n’est pas soluble analytiquement. Pour trouver ses solutions éven-
tuelles, il est nécessaire de procéder par tâtonnement. Il peut ainsi être établi qu’il
n’existe qu’une seule solution, dont une expression approchée est :

λ =
h c

5 kB T
;

en effet, en évaluant la partie gauche de l’équation en h c
5 kB T

, il vient :

5 exp(5)

exp(5)− 1
− 5 ≈ 0,03 ≈ 0 .

Par affinement, il est possible d’obtenir une expression plus précise de la solution :

λ = λ0 ≈ h c

4,965 kB T
.

Selon la proposition 7.2.4, si RT admet un extremum local, cet extremum ne peut
être atteint qu’en λ0. Le fait que :

⋄ pour tout λ ∈ ]0 ; λ0[ , la dérivée R′
T est strictement positive,

⋄ pour tout λ ∈ ]λ0 ; ∞[ , la dérivée R′
T est strictement négative,
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permet de conclure que RT admet un unique extremum local, en λ0 =
h c

4,965 kB T
, et

que cet extremum est un maximum. L’élément λ0 où RT atteint un maximum local
sera noté, dans la suite, λmax (λ0 = λmax).

vi. Points d’inflexion : Au vu de la taille importante de l’expression de R′
T , on peut

s’attendre au fait que l’expression de la dérivée seconde R′′
T de RT soit encore plus

imposante ; et les zéros encore plus difficiles à déterminer. Des investigations pous-
sées permettent d’établir que RT admet deux points d’inflexion dans R∗

+, l’un dans
l’intervalle ]0 ; λmax[ , l’autre dans ]λmax ; ∞[ . Passablement fastidieuses, ces inves-
tigations ne sont pas présentées ici. En contrepartie, une étude de la dérivée R′

T

de RT va être effectuée pour des valeurs de λ positives, proches de 0. Si un tel tra-
vail ne participe pas à la détermination des points d’inflexions, il fournit un autre
élément intéressant : la forme du graphe de RT pour des valeurs de λ proches de 0.
Cherchons donc la limite de R′

T lorsque λ tend vers 0 :

lim
λ→0
λ>0

R′
T (λ) = lim

λ→0
λ>0

− 10 π c2 h

λ6
(

exp
(

h c
λ kB T

)
− 1
) + lim

λ→0
λ>0

2 π c3 h2 exp
(

h c
λ kB T

)

λ7 kB T
(

exp
(

h c
λ kB T

)
− 1
)2

= lim
s→∞

− 10 π c2 h s6

exp
(
h c s
kB T

)
− 1

+ lim
s→∞

2 π c3 h2 s7 exp
(
h c s
kB T

)

kB T
(

exp
(
h c s
kB T

)
− 1
)2 .

Six applications successives de la règle de Bernoulli-L’Hôpital (B-H) à la première
des deux limites permettent de conclure que celle-ci est nulle. Quant à la deuxième,
elle devient, après application de la même règle (B-H) :

lim
s→∞

2 π c3 h2 s7 exp
(
h c s
kB T

)

kB T
(

exp
(
h c s
kB T

)
− 1
)2

B-H
= lim

s→∞

2 π c3 h2
(
7 s6 + s7 h c

kB T

)
exp
(
h c s
kB T

)

2 kB T
(

exp
(
h c s
kB T

)
− 1
)

h c
kB T

exp
(
h c s
kB T

)

= lim
s→∞

2 π c2 h
(
7 s6 + s7 h c

kB T

)

2
(

exp
(
h c s
kB T

)
− 1
) .

Enfin, sept applications successives de la même règle (B-H) à la dernière limite
obtenue permettent de conclure que celle-ci est nulle aussi. En résumé :

lim
λ→0
λ>0

R′
T (λ) = 0 .

La tangente au graphe de RT tend donc à être horizontale lorsque λ tend vers 0 par
valeurs plus grandes.

vii. Graphe : Les résultats des points précédents, résumés dans le tableau ci-après, per-
mettent d’esquisser relativement précisément le graphe de la fonction RT . Noter
qu’une ligne du tableau a été consacrée à la dérivée seconde R′′

T (et à ses signes),
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quand bien même elle n’a pas été traitée dans le détail ; les nombres λ1 et λ2, appa-
raissant dans l’en-tête, sont les éléments où f admet des points d’inflexion.

λ 0 λ1 λmax λ2

R′
T + + 0 − −

R′′
T + 0 − − 0 +

RT ր ր max ց ց
∪ PI ∩ ∩ PI ∪ λ

RT

λmax

Rmax
T

0

Le graphe de RT (représenté ci-dessus) est appelé spectre du corps noir de température T .
La forme de ce spectre a beaucoup intéressé les physiciens de la fin du XIXe siècle et
suscité de nombreuses études de leur part.

• Le physicien germanique Wilhelm C. Wien (né le 13 janvier 1864 à Fischhausen,
en Prusse-Orientale (aujourd’hui en Pologne), et mort le 30 août 1928 à Munich,
en Bavière) a proposé en 1896 une expression empirique de la radiance spec-
trale RT en fonction de la longueur d’onde λ. Connue sous le nom de loi de Wien,
cette expression s’écrit :

RT (λ) = Aλ−5 exp

(

− B

λT

)

,

où A et B sont des constantes. En accord avec les données expérimentales dans
le domaine des petites longueurs d’onde, la loi de Wien n’est, en revanche, pas
satisfaisante pour les grandes longueurs d’onde. Cette réalité concorde avec le
fait que la loi de Wien peut être déduite de la loi de Planck dans le cas où λ est
suffisament petite : si λ est beaucoup plus petite que h c

kBT
, l’expression exp

(
h c

λ kB T

)

est beaucoup plus grande que 1, si bien que la loi de Planck peut être approximée
de la façon suivante :

RT (λ) =
2 π c2 h

λ5
(

exp
(

h c
λ kB T

)
− 1
) ≈ 2 π c2 h

λ5 exp
(

h c
λ kB T

) = 2 π c2 hλ−5 exp

(

− h c

λ kB T

)

;

cette dernière expression est bien la loi de Wien, pour autant que A = 2 π c2 h et
B = h c

kB
.

• De son côté, le physicien britannique John W. Strutt (né le 12 novembre 1842 à
Landford Grove, dans l’Essex (en Angleterre), et mort le 30 juin 1919 à Witham,
dans l’Essex), dit Lord Rayleigh, a proposé en 1900 une expression de RT en
fonction de λ qui est en bon accord avec les mesures expérimentales pour les
grandes longueurs d’onde, mais pas pour les petites. Connue sous le nom de loi de
Rayleigh-Jeans (en l’honneur également du physicien britannique James H. Jeans
(né le 11 septembre 1877 à Londres et mort le 16 septembre 1946 à Dorking, dans
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le Surrey, en Angleterre) qui a apporté quelques années plus tard une correction
à la valeur de la constante), elle s’écrit :

RT (λ) = C T λ−4 ,

où C est une constante. Une telle loi ne peut effectivement pas être satisfaisante
pour les courtes longueurs d’onde, car RT crôıt indéfiniment à mesure que λ de-
vient de plus en plus petite, ce qui ne peut pas avoir de sens physique : une
intensité ne peut en effet pas devenir infinie (d’où l’expression catastrophe de
l’ultraviolet employée par les physiciens de l’époque). Dans le cas où λ est suffi-
samment grande, la loi de Rayleigh-Jeans peut être déduite de la loi de Planck ;
en effet, si λ est beaucoup plus grande que h c

kB T
, l’expression h c

λkB T
devient très pe-

tite, si bien que l’exponentielle peut être bien approximée par son développement
de MacLaurin d’ordre 1 :

RT (λ) =
2 π c2 h

λ5
(

exp
(

h c
λ kB T

)
− 1
) ≈ 2 π c2 h

λ5
(
1 + h c

λ kB T
− 1
) = 2 π c kB T λ

−4 ;

cette dernière expression est bien la loi de Rayleigh-Jeans, pour autant que
C = 2 π c kB.

• W. Wien a également remarqué que la longueur d’onde dans laquelle un corps
noir émet avec la plus grande intensité est inversement proportionnelle à sa tem-
pérature T , selon la loi :

λmax T = 2,898 · 10−3mK .

Connue sous le nom de loi du déplacement de Wien (du fait du déplacement de
λmax en fonction de T ), cette relation se déduit également de la loi de Planck,
comme le montre le cinquième point de l’étude de la fonction RT ci-dessus :

λmax =
h c

4,965 kB T
=

2,898 · 10−3mK

T
.

• En étudiant les données expérimentales, le physicien, mathématicien et poète
slovène (citoyen alors de l’empire d’Autriche-Hongrie) Jožef Stefan (né en 1835 à
Sankt Peter, en Carinthie (dans l’Empire d’Autriche-Hongrie), et mort en 1893 à
Vienne) a établi en 1879 une loi décrivant l’intensité totale émise par un corps noir
(dans toutes les longueurs d’onde) en fonction de sa température. Connue sous le
nom de loi de Stefan-Boltzmann (en l’honneur également du physicien autrichien
Ludwig E. Boltzmann (né en 1844 à Vienne et mort en 1906 à Duino, dans la
province de Trieste, à l’époque dans l’Empire d’Autriche-Hongrie), doctorant de
Stefan, qui a fourni une justification théorique à la relation), elle s’écrit :

I = σ T 4 ,
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où σ = 5,670Wm−2K−4 est une constante, appelée constante de Stefan-Boltzmann.
Une telle expression peut encore être déduite de la loi de Planck : l’intensité to-
tale I émise par le corps noir n’est rien d’autre que la somme des radiances dans
toutes les longueurs d’onde λ ∈ ]0 ; ∞[ :

I = lim
a→0
a>0

lim
b→∞

∫ b

a

RT (λ) dλ =

∫ ∞

0

RT (λ) dλ .

Pour calculer l’intégrale, il convient d’appliquer le changement de variable :

x =
h c

λ kB T
;

sous ce changement de variable :

λ =
h c

x kB T
et

dλ

dx
= − h c

x2 kB T
.

Ainsi :

I =

∫ ∞

0

2 π c2 h

λ5
(

exp
(

h c
λ kB T

)
− 1
) dλ =

∫ 0

∞

2 π c2 h
(

h c
x kB T

)5(
exp(x)− 1

)

(

− h c

x2 kB T

)

dx

=

∫ ∞

0

2 π kB
4 T 4 x3

h3 c2
(
exp(x)− 1

) dx =
2 π kB

4 T 4

h3 c2

∫ ∞

0

x3

exp(x)− 1
dx =

2 π5 kB
4 T 4

15 h3 c2
.

I est effectivement proportionnelle à T 4. De plus, la valeur du facteur 2π5 kB
4

15h3 c2

correspond à celle de σ. Remarquer que les primitives de la fonction donnée par
x3

exp(x)−1
ne peuvent pas être exprimées à l’aide des fonctions usuelles. Pour trouver

le résultat : ∫ ∞

0

x3

exp(x)− 1
dx =

π4

15
,

il convient d’écrire l’expression x3

exp(x)−1
sous la forme x3 exp(−x)

1−exp(−x)
(qui s’obtient en

multipliant le numérateur et le dénominateur par exp(−x)), puis de constater
que 1

1−exp(−x)
est la somme des éléments d’une suite géométrique dont le terme

général est (exp(x))n (qui peut s’écrire aussi exp(nx))...



Chapitre 8

Applications du calcul intégral

Parmi les savants de l’Antiquité qui se sont penchés sur les questions d’aires et de vo-
lumes, le scientifique grec Archimède de Syracuse est sans doute le plus illustre, tant son
œuvre dans le domaine est riche et variée. Ses techniques de calcul et ses raisonnements,
il les a synthétisés dans un ouvrage qu’il a intitulé La Méthode. Comme son titre le sug-
gère, ce traité expose une marche à suivre qui peut être, en principe, appliquée à tout
problème d’aire de surface ou de volume de solide. La procédure qui y est décrite repose
sur deux points essentiels : la décomposition du corps considéré en éléments infinitési-
maux et l’application du principe des leviers à chacun de ces éléments. Si l’approche est
bien commune à tout problème, les opérations mathématiques, elles, ne proviennent pas
systématiquement d’une théorie, d’un modèle unique.

Dans les chapitres précédents, on a pu se rendre compte à quel point le calcul infini-
tésimal, lorsqu’il est présenté de manière rigoureuse et précise, est tributaire des notions
de limite et de continuité ; elles-mêmes étant dépendantes du concept de nombre réel :
sans nombres réels, pas de continuum de nombres, et donc pas de notion de limite, ni
de continuité, et par conséquent pas de calcul infinitésimal ; du moins pas dans sa forme
présentée ici.

Cela a été évoqué dans le début du premier chapitre, la difficulté qu’ont rencontrée
les mathématiciens des différentes époques (de l’Antiquité jusqu’à l’Époque moderne)
à concevoir l’idée de nombre réel a vraisemblablement joué un rôle dans le temps de
gestation d’une théorie globale des éléments infiniment petits. Les premières considéra-
tions purement arithmétiques des nombres réels remontent aux années 1860 et 1870 ; on
les doit essentiellement à Karl Weierstraß I, à Charles Méray II, à Georg Cantor III et à

I. Karl Wilheim Theodor Weierstraß était un mathématicien germanique, né en 1815 à Ostenfelde
(en Westphalie, dans l’actuelle Allemagne) et mort en 1897 à Berlin (à l’époque en Prusse). Weierstraß
est demeuré célèbre pour son arithmétisation des calculs différentiel et intégral ; on lui doit, entre autres,
la définition de la continuité avec les nombres ε et δ.

II. Charles Méray était un mathématicien français, né en 1835 à Chalon-sur-Saône (en Bourgogne,
dans le royaume de France) et mort à Dijon (en Bourgogne, dans la République française).
III. Georg Ferdinand Ludwig Philipp Cantor était un mathématicien germanique né en 1845 à Saint-

Pétersbourg (dans l’Empire russe) et mort en 1918 à Halle (aujourd’hui dans le Land de Saxe-Anhalt,
en Allemagne).
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Richard Dedekind IV. Il conviendrait de penser que de telles réflexions auraient dû être
antérieures aux travaux de Newton et Leibniz dans le domaine du calcul infinitésimal ;
alors qu’elles sont survenues en réalité deux siècles plus tard ; et quelques décennies après
les idées de Cauchy sur la notion de limite.

Même si le calcul infinitésimal a vécu des périodes de grandes incertitudes durant
le XVIIIe et une partie du XIXe siècle, il n’en demeure pas moins qu’il s’est clairement
révélé, dès son élaboration, d’une bien plus grande efficacité que les théories des infi-
niment petits qui l’ont précédé. Nombre de problèmes d’aires de surfaces, de volumes
de solides, certains datant de l’Antiquité, ont pu être traités avec succès ; de nouvelles
questions, dans le domaine de la mécanique notamment, ont pu être abordées et résolues
sans difficulté aucune. En outre, ce que la méthode d’Archimède n’est pas parvenue à
exhiber, le calcul des fluxions de Newton et le calcul des éléments infinitésimaux de
Leibniz ont pu le procurer : un procédé universel, applicable à n’importe quelle forme
géométrique.

8.1 Aires de surfaces planes non polygonales

dA

x

y

a b

C

O

Soient le plan euclidien R2 et Oxy son système de coordonnées
cartésiennes canonique (cf. remarques 2.1.2 de la première sec-
tion du chapitre 2). Selon Leibniz, rappelons-le, l’aire A d’une
surface plane finie S ⊂ R2 peut s’écrire comme une somme
(intégrale) d’aires infiniment petites, notées dA. Dans le cas
où S est délimitée d’une part par les droites verticales d’équa-
tions x = a et x = b, où a et b sont deux nombres réels tels que a < b, d’autre part
par la droite horizontale d’équation y = 0 (i.e. l’axe Ox) et une courbe C donnée par
y = f(x) (i.e. le graphe de f), où f est une fonction réelle, définie et continue dans [a; b]
au moins, et telle que f(x) > 0 pour tout x ∈ [a; b] au moins (i.e. f est positive dans
[a; b]), l’élément dA peut s’écrire dA = f(x) dx ; et ainsi :

A =

∫ b

a

f(x) dx .

Si f(x) 6 0 pour tout x ∈ [a; b], la quantité A est négative. Or, d’un point de vue
géométrique, l’aire est une grandeur positive ou nulle. A est donc, dans ce cas, égale à
l’opposé de l’aire géométrique de la surface S (cf. troisième point des remarques 4.1.4).

8.1.1 Exemples : 1. Dans le plan euclidien R2, muni de sons système de coordonnées
cartésiennes canonique Oxy, considérons la surface finie S délimitée par la droite

IV. Julius Wilhelm Richard Dedekind était un mathématicien germanique né en 1831 à Brunswick
(en Basse-Saxe, dans l’actuelle Allemagne) et mort en 1916 dans la même ville. Durant plusieurs années,

il a enseigné les calculs différentiel et intégral à l’Institut polytechnique de Zurich (aujourd’hui l’École
polytechnique fédérale de Zurich, EPFZ (Eidgenössische Technische Hochschule Zürich, ETHZ)). C’est
à cette époque qu’il a mené une réflexion conséquente sur les nombres irrationnels et réels.
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verticale d’équations x = 0, la droite horizontale d’équation y = 0 et la courbe C
donnée par y = f(x) = 4 − x2, où x > 0. L’aire A de cette
surface est :

A =

∫ 2

0

f(x) dx =

∫ 2

0

(
4− x2

)
dx =

[

4 x− 1

3
x3
]2

0

=

[(

4 · 2− 1

3
· 23
)

−
(

4 · 0− 1

3
· 03
)]

=
16

3
.

dA

C

1 2 3
x

y

0

1

4

2. Dans le plan euclidien R2, muni de son système de coordonnées cartésiennes ca-
nonique Oxy, considérons la surface finie S délimitée par les droites verticales
d’équations x = 0 et x = 3, la droite horizontale d’équation y = 0 et la courbe C
donnée par y = f(x) = 4 − x2. Comme f(x) = 4− x2 est négative entre x = 2 et
x = 3, l’aire A de S, au sens géométrique du terme, s’obtient en calculant l’inté-
grale entre 0 et 3 non pas de f , mais de sa valeur absolue :

A =

∫ 3

0

∣
∣f(x)

∣
∣ dx =

∫ 2

0

∣
∣f(x)

∣
∣ dx+

∫ 3

2

∣
∣f(x)

∣
∣ dx

=

∫ 2

0

f(x) dx+

∫ 3

2

−f(x) dx

=

∫ 2

0

(
4− x2

)
dx−

∫ 3

2

(
4− x2

)
dx

=
16

3
−
[

4 x− 1

3
x3
]3

2

=
16

3
−
[(

4 · 3− 1

3
· 33
)

−
(

4 · 2− 1

3
· 23
)]

=
23

3
.

dA

C

1

3
x

y

0

−5

1

4

Noter que la première des deux intégrales, dans le calcul qui vient d’être fait, a
déjà été calculée dans l’exemple précédent.

dA

x

y

C1
C2

a bO

Considérons à présent une surface S ⊂ R2 délimitée d’une
part par les droites verticales d’équations x = a et x = b,
où a et b sont deux nombres réels tels que a < b, d’autre part
par les deux courbes C1 et C2, données respectivement par
y = f(x) et par y = g(x) (i.e. les graphes de f et g), où f
et g sont deux fonctions définies et continues dans [a; b], et
telles que f(x) > g(x) pour tout x ∈ [a; b]. Dans ce cas, un élément infinitésimal dA
d’aire A de S peut s’écrire dA =

(
f(x)− g(x)

)
dx ; l’aire A de S est alors donnée par :

A =

∫ b

a

(
f(x)− g(x)

)
dx .
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8.1.2 Remarques : • La précédente formule se justifie par les considérations faites
sur l’intégrale de Riemann dans le chapitre 4 (cf. section 4.1). Pour le voir, consi-
dérons deux fonctions réelles f et g définies et continues dans un intervalle fermé
[a; b] (où a et b sont deux nombres réels tels que a < b), et telles que f(x) > g(x)
pour tout x ∈ [a; b]. Considérons aussi une subdivision σn = (x0; x1; . . . ; xn)
d’ordre n de [a; b], de pas δσn . L’aire A de la surface S ⊂ R2 délimitée par les
droites verticales d’équations x = a et x = b d’une part, et d’autre part par les
deux courbes C1 et C2, données respectivement par y = f(x) et y = g(x) (i.e. par
les graphes de f et g), vaut approximativement :

n∑

k=1

(
f(ξk)− g(ξk)

)
∆xk ,

où ∆xk = xk − xk−1 et ξk ∈ [xk−1; xk], pour tout k = 1, 2, . . . , n. Comme f et g
sont continues dans [a; b], alors f − g est aussi continue dans [a; b]. La somme
ci-dessus admet donc pour limite, lorsque n tend vers l’infini et δσn vers 0, un
nombre réel qui ne dépend ni du choix de la subdivision σn, ni, pour chaque
subdivision, du choix des nombres réels ξ1 ∈ [x0; x1], . . . , ξn ∈ [xn−1; xn]. Cette
limite est égale, par définition, à l’aire A de S ; elle se note :

A = lim
n→∞
δσn→0

n∑

k=1

(
f(ξk)− g(ξk)

)
∆xk =

∫ b

a

(
f(x)− g(x)

)
dx .

La première situation décrite dans la présente section correspond au cas particu-
lier où g(x) = 0 et f(x) > 0 pour tout x ∈ [a; b] :

A = lim
n→∞
δσn→0

n∑

k=1

f(ξk)∆xk =

∫ b

a

f(x) dx .

• Si, dans le point précédent, f(x) n’est pas plus grande ou égale à g(x) pour tout
x ∈ [a; b], l’aire A de S, au sens géométrique du terme, s’obtient en calculant
l’intégrale entre a et b non pas de f − g, mais de |f − g|.

• Dans le présent chapitre, tout comme dans le chapitre 4, il est question de surface
finie (on parle aussi de domaine fini). Par cette expression, il faut comprendre
une surface du plan euclidien qui ne s’étend pas jusqu’à l’infini. Dans un langage
mathématique formel, on utilise plus volontiers la formule domaine borné (à la
place de surface finie).

8.1.3 Exemples : 1. Dans le plan euclidien R2, muni de son système de coordonnées
cartésiennes canonique Oxy, considérons le cercle C de rayon R, centré sur l’ori-
gine O de Oxy. Ce cercle, dont l’équation cartésienne s’écrit x2+y2 = R2, peut être
vu comme la réunion de deux demi-cercles, le demi-cercle C1 et le demi-cercle C2
(cf. figure ci-dessous), dont les équations s’obtiennent en isolant y dans l’équation
de C :

x2 + y2 = R2 ⇔ y2 = R2 − x2 ⇔ y = ±
√
R2 − x2 .
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Les deux courbes C1 et C2 se rejoignent sur l’axe Ox, en x = −R et en x = R.
L’aire A du cercle C peut donc être obtenue en calculant l’intégrale entre −R et R
de la différence f − g, où f et g sont les fonctions données par f(x) =

√
R2 − x2

et g(x) = −
√
R2 − x2 , qui décrivent C1 et C2 respective-

ment :

A =

∫ R

−R

[√
R2 − x2 −

(
−
√
R2 − x2

)]
dx

=

∫ R

−R

2
√
R2 − x2 dx = 2

∫ R

−R

√
R2 − x2 dx .

x

y

O R

R

−R

−R

C1

C2

dA

Pour calculer cette intégrale, il convient d’effectuer le changement de variable
x = R cos(t), pour lequel dx

dt
= −R sin(t) ⇔ dx = −R sin(t) dt, avec les bornes

d’intégration qui passent de −R à π (de sorte que R cos(π) = −R) et de R à 0 (de
sorte que R cos(0) = R), puis d’appliquer successivement les identités trigonomé-
triques sin2(t) + cos2(t) = 1 et sin2(t) = 1

2

(
1− cos(2 t)

)
:

A = 2

∫ R

−R

√
R2 − x2 dx = 2

∫ 0

π

√

R2 −
(
R cos(t)

)2 (−R sin(t)
)
dt

= −2

∫ 0

π

√

R2 sin2(t)R sin(t) dt = −2

∫ 0

π

R2 sin2(t) dt

= −2R2

∫ 0

π

1

2

(
1− cos(2 t)

)
dt = −R2

[

t− 1

2
sin(2 t)

]0

π

= −R2

[(

0− 1

2
sin(0)

)

−
(

π − 1

2
sin(2 π)

)]

= π R2 .

Une telle intégrale peut, rappelons-le, être également calculée en considérant le
changement de variable x = R sin(t). Si c’est x = R cos(t) qui a été plébiscité
ici, c’est dans le but de faire le lien avec les coordonnées polaires et le cercle
trigonométrique.

2. Dans le plan R2, muni de son système de coordonnées car-
tésiennes canonique Oxy, considérons la surface finie S déli-
mitée par les courbes C1 et C2, données respectivement par
y = f(x) = x3 et y = g(x) = x. Pour trouver l’aire A
de cette surface, il convient de trouver en premier lieu les
points d’intersection de C1 et C2 ; ceux-ci s’obtiennent en ré-

x

y

−1
0

1

−1

1
dA

C1 C2

solvant l’équation f(x) = g(x) :

x3 = x ⇔ x3 − x = 0 ⇔ x (x− 1)(x+ 1) = 0 ;

cette dernière égalité est satisfaite si x = x1 = −1 (avec y1 = f(x1) = g(x1) = −1)
ou si x = x2 = 0 (avec y2 = f(x2) = g(x2) = 0), ou encore si x = x3 = 1 (avec
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y3 = f(x3) = g(x3) = 1). Noter que f(x) = x3 > x = g(x) pour tout x ∈ [−1; 0]
et g(x) = x > x3 = f(x) pour tout x ∈ [0; 1]. L’aire A de S (au sens géométrique
du terme) est, de fait, égale à l’intégrale entre −1 et 1 non pas de la différence
f − g, mais de la valeur absolue de cette différence :

A =

∫ 1

−1

∣
∣x3 − x

∣
∣ dx =

∫ 0

−1

(
x3 − x

)
dx+

∫ 1

0

(
x− x3

)
dx

=

[
1

4
x4 − 1

2
x2
]0

−1

+

[
1

2
x2 − 1

4
x4
]1

0

=

[

0−
(

−1

4

)]

+

[
1

4
− 0

]

=
1

2
.

Observer que A peut être calculée de manière plus rapide, en remarquant que la
fonction à intégrer est paire :

∣
∣(−x)3 − (−x)

∣
∣ =

∣
∣−x3 + x

∣
∣ =

∣
∣−(x3 − x)

∣
∣

= |−1| |x3 − x| = |x3 − x| , pour tout x ∈ R ,

et que l’intervalle d’intégration est symétrique par rapport à l’origine O ; ce qui
permet alors d’écrire :

A =

∫ 1

−1

∣
∣x3 − x

∣
∣ dx = 2

∫ 1

0

∣
∣x3 − x

∣
∣ dx = 2

∫ 1

0

(x− x3) dx

= 2

[
1

2
x2 − 1

4
x4
]1

0

= 2

[
1

4
− 0

]

=
1

2
.

8.1.4 Remarques : • Toutes les considérations faites jusqu’à présent s’adaptent
sans difficulté au cas où la (ou les) courbe(s) est (sont) donnée(s) non pas par
une (des) équation(s) cartésienne(s) explicite(s), de la forme y = f(x), mais par
des équations paramétriques, de la forme x = ϕ(t) et y = ψ(t), et ce pour autant
que ϕ soit une fonction injective dans le domaine dans lequel elle est définie (de
sorte que la courbe «ne revienne pas en arrière» dans le domaine considéré).
Typiquement, dans le cas d’une surface finie S délimitée par les droites verticales
d’équations x = a et x = b d’une part (où a et b sont deux nombres réels tels que
a < b), et d’autre part par la droite horizontale d’équation y = 0 et une courbe C,
donnée par les équations paramétriques x = ϕ(t) et y = ψ(t), son aire A est
donnée par :

A =

∫ b

a

y dx =

∫ tb

ta

ψ(t)ϕ′(t) dt ,

où ta et tb sont deux nombres réels tels que a = ϕ(ta) et b = ψ(tb). Une telle ex-

pression se déduit essentiellement de la formule A =
∫ b

a
f(x) dx et du changement

de variable x = ϕ(t), sous lequel :

⋄ dx s’écrit dx = ϕ′(t) dt (vu que dx
dt

= ϕ′(t)),
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⋄ f(x), qui est égal à y par définition, devient ψ(t),
⋄ les bornes d’intégration passent de a à ta et de b à tb.

Afin que A soit une aire, au sens géométrique du terme, il est nécessaire d’avoir
a < b et y > 0 pour tout x ∈ [a; b].

• Les équations paramétriques d’une courbe C ⊂ R2 se notent souvent, de manière
certes un peu abusive, x = x(t) et y = y(t). La précédente expression de A s’écrit
alors :

A =

∫ tb

ta

y(t) ẋ(t) dt ,

où ẋ(t) = dx
dt
(t).

8.1.5 Exemple : Reprenons le cercle C ⊂ R2 de rayon R et centré sur l’origine O du
système de coordonnées cartésiennes canonique Oxy du plan euclidien R2 (cf. premier
des exemples 8.1.3). Ce cercle peut être décrit par les équations paramétriques :

{

x(t) = R cos(t)

y(t) = R sin(t)
, où t ∈ R .

L’aire A de C peut alors être obtenue en effectuant le calcul suivant :

A = 2

∫ R

−R

y dx = 2

∫ 0

π

R sin(t)
(
−R sin(t)

)
dt = −2R2

∫ 0

π

sin2(t) dt = π R2 .

On retombe ici sur le calcul effectué dans le premier des exemples 8.1.3, dans lequel
le changement de variable x = R cos(t) s’est montré nécessaire pour pouvoir expliciter
l’intégrale.

8.1.6 Remarques : • Tous les résultats obtenus dans la présente section peuvent
être transposés, moyennant quelques adaptations, à la situation dans laquelle les
courbes qui délimitent les surfaces planes sont décrites par des équations polaires.
Pour s’en rendre compte, prenons le plan euclidien R2 muni de son système de
coordonnées cartésiennes canonique Oxy, et traitons l’axe Ox comme l’axe po-
laire Or des coordonnées polaires (r; θ) (cf. remarques 2.1.12 de la section 2.1
du chapitre 2). Dans R2, considérons une surface finie S délimitée d’une part par
les droites d’équations polaires θ = α et θ = β, où α et β sont deux éléments
de l’intervalle [0 ; 2 π[ tels que α < β, et d’autre part par la courbe C donnée
par l’équation polaire r = f(θ), où f est une fonction réelle, définie et continue
dans [α; β], et telle que f(θ) > 0 pour tout θ du domaine de définition de f (de
sorte que r soit une grandeur positive). Cette surface S peut être vue comme une
somme de surfaces infinitésimales qui ont ici la forme
non pas de rectangles, mais de triangles rectangles
d’aire dA = 1

2
r h, où h = r tg(dθ). Comme dθ est

infiniment petit, tg(dθ) = dθ, et ainsi :

dA =
1

2
r · r dθ =

1

2
r2 dθ =

1

2

(
f(θ)

)2
dθ ,

θ α x

y

O

β
CdA

r

h = r dθ
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L’aire A de S est donc :

A =

∫ β

α

1

2

(
f(θ)

)2
dθ .

• L’expression précédente se justifie par les concepts de subdivision et de somme
de Riemann. Les détails du raisonnement ne sont pas présentés ici.

• Si, dans les propos menant à la formule précédente, les angles α et β sont supposés
être dans l’intervalle [0 ; 2 π[ , c’est afin de ne pas compter plusieurs fois une partie
ou la totalité de la surface S donnée.

8.1.7 Exemple : Reprenons encore une fois le cercle C ⊂ R2 de rayon R et centré sur
l’origine O du système de coordonnées cartésiennes canonique Oxy du plan euclidien R2

(cf. premier des exemples 8.1.3). Ce cercle admet pour équation polaire r = f(θ) = R ;
quel que soit l’angle θ, la fonction f est constante et vaut R. L’aire A de C peut alors
être obtenue en effectuant le calcul suivant :

A =

∫ 2π

0

1

2
R2 dθ = lim

b→2π
b<2π

∫ b

0

1

2
R2 dθ = lim

b→2π
b<2π

1

2
R2 θ

∣
∣
∣

b

0

= lim
b→2π
b<2π

1

2
R2 (b− 0) = lim

b→2π
b<2π

1

2
R2 b =

1

2
R2 2 π = π R2 .

Afin qu’aucun point sur le cercle ne soit compté deux fois, l’intervalle d’intégration est
l’intervalle semi-ouvert [0 ; 2 π[ ; l’intégrale est, de fait, une intégrale généralisée.

8.2 Volumes de solides de révolution

On appelle solide de révolution tout solide engendré par la rotation d’une surface plane
finie S autour d’un axe situé dans le même plan que S, et n’ayant en commun avec S
aucun point ou uniquement des points du bord de S.

Soit l’espace euclidien R3 et Oxyz son système de coordonnées cartésiennes canonique
(cf. section 2.1 du chapitre 3). Les axes Ox et Oy génèrent un plan qui peut être
identifié au plan euclidien R2 ; les axes Ox et Oy forment alors le système de coordonnées
cartésiennes canonique Oxy de ce plan R2.

8.2.1 Corps de révolution autour d’un axe horizontal

Considérons la surface finie S ⊂ R2 délimitée d’une part par les droites verticales d’équa-
tions x = a et x = b, où a et b sont deux nombres réels tels que a < b, d’autre part par
la droite horizontale d’équation y = 0 et la courbe C donnée par y = f(x), où f est une
fonction réelle, définie et continue dans [a; b] et telle que f(x) > 0 pour tout x ∈ [a; b].
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dV

x

y

z a b
O

C

La rotation de S autour de l’axe Ox génère un solide Ω ⊂ R3

qui peut être vu comme la réunion d’une infinité de disques
infiniment fins, d’épaisseur dx, de rayons f(x), centrés en
(x; 0; 0), où x ∈ [a; b], et normaux à Ox. Le volume dV de l’un

de ces disques étant donné par dV = π
(
f(x)

)2
dx, le volume

total V de Ω s’écrit :

V =

∫ b

a

π
(
f(x)

)2
dx .

Considérons à présent une surface finie S délimitée d’une part par les droites verti-
cales d’équations x = a et x = b (où a et b sont deux nombres réels tels que a < b), et
d’autre part par les deux courbes C1 et C2, données respectivement par y = f(x) et par
y = g(x), où f et g sont deux fonctions définies et continues dans [a; b], et telles que
f(x) > g(x) > 0 pour tout x ∈ [a; b]. La rotation de S autour de l’axe Ox génère un

dV

x

y

z
O

C1

C2

solide Ω ⊂ R3 qui peut être vu comme la réunion d’une in-
finité de couronnes infiniment fines, d’épaisseur dx, de rayon
intérieur g(x), de rayon extérieur f(x), centrés en (x; 0; 0),
où x ∈ [a; b], et normaux à Ox. Le volume dV de l’un de

ces disques étant donné par dV = π
[(
f(x)

)2 −
(
g(x)

)2 ]
dx,

le volume total V de Ω s’écrit :

V =

∫ b

a

π
((
f(x)

)2 −
(
g(x)

)2
)

dx .

8.2.1 Remarque : Les deux formules précédentes se justifient par les considérations
faites sur l’intégrale de Riemann dans le chapitre 4 (cf. section 4.1). Pour le voir, consi-
dérons deux fonctions réelles f et g définies et continues dans un intervalle fermé [a; b]
(où a et b sont deux nombres réels tels que a < b), et telles que f(x) > g(x) > 0
pour tout x ∈ [a; b]. Considérons aussi une subdivision σn = (x0; x1; . . . ; xn) d’ordre n
de [a; b], de pas δσn . Pour chaque k = 1, 2, . . . , n, la rotation autour de l’axe Ox du
rectangle (dans R2) ayant pour base ∆xk = xk − xk−1 et pour hauteur f(ξk) − g(ξk),
où ξk ∈ [xk−1; xk], génère dans R3 une couronne normale à l’axe Ox, centrée sur le
point (ξk; 0; 0), d’épaisseur ∆xk, de rayon intérieur g(ξk) et de rayon extérieur f(ξk). Le
volume ∆Vk de cette couronne s’obtient en prenant la différence entre le volume d’un
disque de rayon f(ξk) et d’épaisseur ∆xk, et le volume d’un disque de rayon g(ξk) et
d’épaisseur ∆xk :

∆Vk = π
(
f(ξk)

)2
∆xk − π

(
g(ξk)

)2
∆xk = π

((
f(ξk)

)2 −
(
g(ξk)

)2
)

∆xk .

Soit à présent S la surface finie délimitée par les droites verticales d’équations x = a et
x = b d’une part, et d’autre part par les deux courbes C1 et C2, données respectivement
par y = f(x) et y = g(x). La rotation de S autour de l’axe Ox génère un solide Ω qui
peut être vu, grossièrement, comme une réunion de couronnes telles que celles décrites
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ci-dessus. Le volume de Ω s’obtient donc, approximativement, en sommant les volumes
de ces couronnes :

n∑

k=1

∆Vk =
n∑

k=1

π
((
f(ξk)

)2 −
(
g(ξk)

)2
)

∆xk .

Comme f et g sont continues dans [a; b], alors f 2 − g2 est aussi continue dans [a; b]. La
somme ci-dessus admet donc pour limite, lorsque n tend vers l’infini et δσn vers 0, un
nombre réel qui ne dépend ni du choix de la subdivision σn, ni, pour chaque subdivision,
du choix des nombres réels ξ1 ∈ [x0; x1], . . . , ξn ∈ [xn−1; xn]. Cette limite est égale, par
définition, au volume V de Ω ; elle se note :

V = lim
n→∞
δσn→0

n∑

k=1

π
((
f(ξk)

)2 −
(
g(ξk)

)2
)

∆xk

=

∫ b

a

π
((
f(x)

)2 −
(
g(x)

)2
)

dx .

8.2.2 Corps de révolution autour d’un axe vertical

Considérons la surface finie S ⊂ R2 délimitée d’une part par les droites verticales d’équa-
tions x = a et x = b, où a et b sont deux nombres réels tels que 0 6 a < b, d’autre
part par la droite horizontale d’équation y = 0 et la courbe C donnée par y = f(x),
où f est une fonction réelle, définie et continue dans [a; b], et telle que f(x) > 0
pour tout x ∈ [a; b]. La rotation de S autour de l’axe Oy génère un solide Ω ⊂ R3

qui peut être vu comme la réunion d’une infinité de cylindres creux infiniment fins,

x

y

z

a b

dV

C

d’épaisseur dx, de rayons x ∈ [a; b], de hau-
teurs f(x) et dont les axes cöıncident avec Oy.
Le volume dV de l’un de ces cylindres étant
donné par dV = 2 π x f(x) dx, le volume total V
de Ω s’écrit :

V =

∫ b

a

2 π x f(x) dx .

x

y

z

a b

dV

C1

C2

Considérons à présent une surface finie S
délimitée d’une part par les droites verticales
d’équations x = a et x = b (où a et b sont deux
nombres réels tels que 0 6 a < b), et d’autre
part par les deux courbes C1 et C2, données res-
pectivement par y = f(x) et par y = g(x),
où f et g sont deux fonctions réelles, définies et
continues dans [a; b], et telles que f(x) > g(x)
pour tout x ∈ [a; b]. La rotation de S autour de
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l’axe Oy génère un solide Ω ⊂ R3 qui peut être vu comme la réunion d’une infinité de cy-
lindres creux infiniment fins, d’épaisseur dx, de rayons x ∈ [a; b], de hauteurs f(x)−g(x)
et dont les axes cöıncident avec Oy. Le volume dV de l’un de ces cylindres étant donné
par dV = 2 π x

(
f(x)− g(x)

)
dx, le volume total V de Ω s’écrit :

V =

∫ b

a

2 π x
(
f(x)− g(x)

)
dx .

8.2.2 Remarque : Les deux formules précédentes se justifient par les considérations
faites sur l’intégrale de Riemann dans le chapitre 4 (cf. section 4.1). Pour le voir, consi-
dérons deux fonctions réelles f et g définies et continues dans un intervalle fermé [a; b],
où a et b sont deux nombres réels tels que 0 6 a < b, et telles que f(x) > g(x) pour
tout x ∈ [a; b]. Considérons aussi une subdivision σn = (x0; x1; . . . ; xn) d’ordre n de
[a; b], de pas δσn . Pour chaque k = 1, 2, . . . , n, la rotation autour de l’axe Oy du rec-
tangle (dans R2) ayant pour base ∆xk = xk − xk−1 et pour hauteur f(ξk) − g(ξk), où
ξk ∈ [xk−1; xk], génère dans R3 un cylindre creux dont l’axe cöıncide avec Oy, de hau-
teur f(ξk)− g(ξk), de rayon intérieur xk−1 et de rayon extérieur xk. Le volume ∆Vk de
ce cylindre s’obtient en prenant la différence entre le volume d’un cylindre de rayon xk
et de hauteur f(ξk) − g(ξk), et le volume d’un cylindre de rayon xk−1 et de hauteur
f(ξk)− g(ξk) :

∆Vk = π xk
2
(
f(ξk)− g(ξk)

)
− π xk−1

2
(
f(ξk)− g(ξk)

)

= π
(
xk

2 − xk−1
2
)(
f(ξk)− g(ξk)

)

= π (xk + xk−1)(xk − xk−1)
(
f(ξk)− g(ξk)

)

= 2 π
xk−1 + xk

2

(
f(ξk)− g(ξk)

)
∆xk ;

noter que
xk−1+xk

2
peut être vue comme la moyenne des rayons xk−1 et xk. Soit à présent S

la surface finie délimitée par les droites verticales d’équations x = a et x = b d’une part,
et d’autre part par les deux courbes C1 et C2, données respectivement par y = f(x) et
y = g(x). La rotation de S autour de l’axe Oy génère un solide Ω qui peut être vu,
grossièrement, comme une réunion de cylindres creux tels que ceux décrits ci-dessus.
Le volume de Ω s’obtient donc, approximativement, en sommant les volumes de ces
cylindres creux :

n∑

k=1

∆Vk =
n∑

k=1

2 π
xk−1 + xk

2

(
f(ξk)− g(ξk)

)
∆xk .

Comme f et g sont continues dans [a; b], alors f − g est aussi continue dans [a; b]. Il
peut alors être montré que, lorsque n tend vers l’infini et δσn vers 0, la somme ci-dessus
tend vers un nombre réel unique, qui ne dépend ni du choix de la subdivision σn, ni,
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pour chaque subdivision, du choix des nombres réels ξ1 ∈ [x0; x1], . . . , ξn ∈ [xn−1; xn].
Ce nombre est égal, par définition, au volume V de Ω, et s’écrit :

V = lim
n→∞
δσn→0

n∑

k=1

2 π
xk−1 + xk

2

(
f(ξk)− g(ξk)

)
∆xk

=

∫ b

a

2 π
x+ x

2

(
f(x)− g(x)

)
dx =

∫ b

a

2 π x
(
f(x)− g(x)

)
dx .

8.2.3 Exemple : Dans l’espace euclidien R3, muni de son système de coordonnées carté-
siennes canonique Oxyz, considérons la boule Ω de rayon R et centrée sur l’origine du
système Oxyz.

• La boule Ω peut être obtenue par rotation autour
de l’axe Ox du demi-disque D1, se trouvant dans
le plan euclidien R2 généré par les axes Ox et Oy,
délimité par l’axe Ox et le demi-cercle d’équation
y = f(x) =

√
R2 − x2 . La boule Ω peut alors être vue

comme la réunion d’une infinité de disques infiniment
fins, d’épaisseur dx, de rayons f(x) =

√
R2 − x2 , centrés

en (x; 0; 0), où x ∈ [−R; R], et normaux à l’axe Ox.

z
x

y

R−R

R

−R

y=f(x)

O

Le volume dV de l’un de ces disques étant donné par dV = π
(√

R2 − x2
)2
dx =

π
(
R2 − x2

)
dx, le volume V de Ω est :

V =

∫ R

−R

π
(
R2 − x2

)
dx = 2

∫ R

0

π
(
R2 − x2

)
dx = 2 π

[

R2 x− 1

3
x3
]R

0

= 2 π

[(

R2R− 1

3
R3

)

−
(

R2 · 0− 1

3
· 03
)]

= 2 π

[
2

3
R3 − 0

]

=
4

3
π R3 .

S’il a été possible d’écrire
∫ R

−R
π
(
R2 − x2

)
dx = 2

∫ R

0
π
(
R2 − x2

)
dx, c’est grâce

au fait que la fonction x 7→ π (R2 − x2) est paire.

• La boule Ω peut être obtenue par rotation autour de
l’axe Oy du demi-disque D12 qui se trouve dans le plan
euclidien R2 généré par les axes Ox et Oy, et qui est
délimité par l’axe Oy, le quart de cercle d’équation
y = f(x) =

√
R2 − x2 , allant de (R; 0) à (0; R), ainsi

que le quart de cercle d’équation y = g(x) = −
√
R2 − x2 ,

allant de (R; 0) à (0; −R). Ω peut alors être vue comme
la réunion d’une infinité de cylindres creux infiniment fins,

x

y

z R−R

R

−R

y=f(x)

y=g(x)

d’épaisseur dx, de rayons x ∈ [0; R], de hauteurs f(x) − g(x) = 2
√
R2 − x2 et

dont l’axe cöıncide avec Oy. Le volume dV de l’un de ces cylindre creux étant
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donné par dV = 2 π x · 2
√
R2 − x2 dx = 4 π x

√
R2 − x2 dx, le volume V de Ω

est :

V =

∫ R

0

4 π x
√
R2 − x2 dx = 4 π

∫ R

0

x
(
R2 − x2

)1
2 dx = −4 π

3

(
R2 − x2

)3
2

∣
∣
∣

R

0

=

(

−4 π

3

(
R2 −R2

)3
2

)

−
(

−4 π

3

(
R2 − 02

)3
2

)

= 0 +
4 π

3

(
R2
)3
2 =

4

3
π R3 .

Les deux points de vue conduisent à un seul et même résultat.

8.2.4 Remarque : Les quatre résultats encadrés, obtenus dans la section présente, se
transposent sans difficulté à toute situation dans laquelle la (ou les) courbe(s) est (sont)
donnée(s) non pas par une (des) équation(s) cartésienne(s) explicite(s), de la forme
y = f(x), mais par des équations paramétriques, de la forme x = ϕ(t) et y = ψ(t). La
manière de procéder est similaire à celle exposée dans la remarque 8.1.4.

8.3 Centre de masse

Dans l’espace euclidien R3, muni de son système de coordonnées cartésiennes cano-
nique Oxyz, considérons n corps matériels, ponctuels P1, . . . ,Pn. Pour chaque k =
1, . . . , n, notons :

⋄ mk la masse du corps Pk,

⋄ Pk(xk; yk; zk) le point de R3 où se trouve Pk (xk, yk et
zk étant ses coordonnées cartésiennes),

⋄ ~rk le vecteur position de Pk, qui est, par définition :

~rk = OPk =






xk

yk

zk




 .

y

x

z

m1

m2

mk~rk

O

On appelle centre de masse de l’ensemble des corps matériels ponctuels P1, . . . ,Pn le
point C(xC ; yC; zC), dont xC , yC et zC sont les coordonnées cartésiennes, ayant pour
vecteur position le vecteur ~rC donné par :

~rC = OC =
1

M

n∑

k=1

mk ~rk

⇔






xC

yC

zC




 =






1
M

∑n
k=1mk xk

1
M

∑n
k=1mk yk

1
M

∑n
k=1mk zk




 , où M =

n∑

k=1

mk .

Le concept de centre de masse n’est pas spécifique à un ensemble de corps ponctuels ;
on peut également parler de centre de masse d’un solide non ponctuel.
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Pour déterminer les coordonnées du centre de masse C d’un solide Ω non ponctuel,
de masseM , il convient de décomposer Ω en éléments infinitésimaux de masse dm, dont
les coordonnées cartésiennes sont xdm, ydm et zdm, et d’appliquer la définition précédente,
en ayant soin de remplacer le signe

∑
par le symbole

∫
:

~rC =
1

M

∫

Ω

~rdm dm

⇔






xC

yC

zC




 =









1
M

∫

Ω

xdm dm

1
M

∫

Ω

ydm dm

1
M

∫

Ω

zdm dm









, où M =

∫

Ω

dm,

∫

Ω
désignant ici une sommation impliquant des éléments infinitésimaux en lien avec le

solide Ω. La quantité
∫

Ω
dm exprime ainsi la somme de toutes les masses infinitésimales

de Ω ; raison pour laquelle elle est égale à la masse totale M de Ω.
Introduisons à présent la grandeur masse volumique ; par définition, la masse volu-

mique d’un corps est le rapport entre sa masse et son volume. Dans le cas d’un élément
infinitésimal de masse dm, évoqué précédemment, si ρ est sa masse volumique et dV
son volume, alors :

dm

dV
= ρ ⇔ dm = ρ dV .

Comme ρ peut varier d’un élément infinitésimal à l’autre, il convient de noter ρ =
ρ(xdm ; ydm ; zdm) et :

dm = ρ(xdm ; ydm ; zdm) dV .

y

x

z

~r
dV

O

Avec une telle écriture de dm, l’expression de ~rC donnée plus
haut devient :

~rC =
1

M

∫

Ω

~rdm ρ(xdm ; ydm ; zdm) dV ;

autrement écrit, en abandonnant la notation avec les indices :

~rC =
1

M

∫

Ω

~r ρ(x; y; z) dV .

Un solide est dit homogène si tous les éléments infinitésimaux qui le constituent
ont la même masse volumique. Supposons que le solide Ω, évoqué précédemment, est
homogène. Dans ce cas, ρ est une fonction constante de x, y et z, et alors :

~rC =
1

M

∫

Ω

~r ρ dV =

∫

Ω

~r ρ dV

∫

Ω

ρ dV
=

ρ
∫

Ω

~r dV

ρ
∫

Ω

dV
=

∫

Ω

~r dV

∫

Ω

dV
.
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Or,
∫

Ω
dV est la somme de tous les volumes infinitésimaux de Ω ; elle est donc égale,

par définition, au volume de Ω. Ainsi :

~rC =
1

V

∫

Ω

~r dV ,

c’est-à-dire :

xC =
1

V

∫

Ω

x dV , yC =
1

V

∫

Ω

y dV , zC =
1

V

∫

Ω

z dV .

8.3.1 Remarques : • Les considérations faites précédemment se justifient par les
concepts de subdivisions d’intervalles et de sommes de Riemann. Comme il est
question ici de solides quelconques, il convient de considérer des subdivisions selon
les trois axes Ox, Oy et Oz, ce qui conduit à de triples sommes de Riemann...
Un tel travail ne sera pas réalisé ici.

• Lorsqu’une force est appliquée en un point quelconque d’un solide Ω, le solide
en question s’anime, de manière générale, simultanément d’un mouvement de
translation et d’un mouvement de rotation. Pour que le solide ne subisse qu’un
mouvement de translation, la force en question doit être appliquée en un point
bien précis ; ce point est le centre de masse de Ω.

Les précédentes formules encadrées peuvent être ramenées, pour certains types de
solides, à des intégrales sur un intervalle. Pour le voir, reprenons l’espace euclidien R3,
muni de son système de coordonnées cartésiennes canonique Oxyz, et considérons le
plan euclidien R2 généré par les axes Ox et Oy du système Oxyz ; ces axes Ox et Oy
constituent alors le système de coordonnées cartésiennes canonique de R2.

8.3.1 Corps de révolution autour d’un axe horizontal

Considérons un solide homogène Ω, obtenu par rotation autour de l’axe Ox de la surface
finie S ⊂ R2 délimitée d’une part par les droites verticales d’équations x = a et x = b,
où a et b sont deux nombres réels tels que a < b, d’autre part par les deux courbes C1
et C2, données respectivement par y = f(x) et par y = g(x), où f et g sont deux
fonctions réelles, définies et continues dans [a; b], et telles que f(x) > g(x) > 0 pour
tout x ∈ [a; b]. Le solide Ω peut alors être vu comme la réunion d’une infinité de disques
creux infiniment fins, d’épaisseur dx, de rayons f(x), normaux à Ox, et dont les centres
de masse sont en (x; 0; 0). Les coordonnées du centre de masse C de Ω s’écrivent donc,
dans ce cas :

xC =
1

V

∫

Ω

x dV =
1

V

∫ b

a

x π
(

f(x)
)2 −

(
g(x)

)2
)

dx ,

yC =
1

V

∫

Ω

y dV =
1

V

∫ b

a

0 · π
(

f(x)
)2 −

(
g(x)

)2
)

dx ,
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et :

zC =
1

V

∫

Ω

z dV =
1

V

∫ b

a

0 · π
(

f(x)
)2 −

(
g(x)

)2
)

dx ,

V étant le volume de Ω et dV = π
[(
f(x)

)2 −
(
g(x)

)2 ]
dx. En résumé :

xC =
1

V

∫ b

a

x π
(

f(x)
)2 −

(
g(x)

)2
)

dx , yC = 0 , zC = 0 .

8.3.2 Corps de révolution autour d’un axe vertical

Considérons un solide homogène Ω, obtenu par rotation autour de l’axe Oy de la surface
finie S ⊂ R2 délimitée d’une part par les droites verticales d’équations x = a et x = b,
où a et b sont deux nombres réels tels que 0 6 a < b, d’autre part par les deux courbes C1
et C2, données respectivement par y = f(x) et par y = g(x), où f et g sont deux fonctions
réelles, définies et continues dans [a; b], et telles que f(x) > g(x) pour tout x ∈ [a; b]. Le
solide Ω peut alors être vu comme la réunion d’une infinité de cylindres creux infiniment
fins, d’épaisseur dx, de rayons x ∈ [a; b], de hauteurs f(x) − g(x), dont l’axe cöıncide
avec Oy et dont les centres de masse sont sur Oy, à mi-hauteur, i.e. en

(
0; ȳ; 0

)
, où

ȳ = 1
2

(
f(x) + g(x)

)
. Les coordonnées du centre de masse C de Ω s’écrivent donc, dans

ce cas :

xC =
1

V

∫

Ω

x dV =
1

V

∫ b

a

0 · 2 π x
(
f(x)− g(x)

)
dx ,

yC =
1

V

∫

Ω

y dV =
1

V

∫ b

a

ȳ · 2 π x
(
f(x)− g(x)

)
dx ,

et :

zC =
1

V

∫

Ω

z dV =
1

V

∫ b

a

0 · 2 π x
(
f(x)− g(x)

)
dx ,

V étant le volume de Ω et dV = 2 π
(
f(x)−

(
g(x)

)
dx. En résumé :

xC = 0 , yC =
1

V

∫ b

a

1

2

(
f(x) + g(x)

)
2 π x

(
f(x)− g(x)

)
dx , zC = 0 .

8.3.2 Exemple : Dans l’espace R3, muni de son système de coordonnées cartésiennes
canonique Oxyz, considérons la demi-boule de rayon R, obtenue par rotation autour de
l’axe Oy du quart de disque S situé dans le plan euclidien R2 généré par les axes Ox
et Oy, et qui est délimité par l’axe Oy, l’axe Ox, ainsi que le quart de cercle d’équation
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y = f(x) =
√
R2 − x2 , allant de (R; 0) à (0; R). Cherchons

les coordonnées xC , yC et zC du centre de masse C de cet
hémisphère. Selon les propos qui viennent d’être tenus, xC et zC

x

y

z R−R

R
y=f(x)

C
sont nulles ; quant à la coordonnée yC , elle est donnée par :

yC =
1

2
3
π R3

∫ R

0

1

2

(√
R2 − x2 + 0

)
2 π x

(√
R2 − x2 − 0

)
dx

=
1

2
3
π R3

∫ R

0

π x
(
R2 − x2

)
dx =

π
2
3
π R3

∫ R

0

(
R2 x− x3

)
dx

=
3

2R3

[
1

2
R2 x2 − 1

4
x4
]R

0

=
3

4R3

[

R2 x2 − 1

2
x4
]R

0

=
3

4R3

[(

R4 − 1

2
R4

)

− (0− 0)

]

=
3R

8
.

Noter que pour calculer yC , il est nécessaire de déterminer en premier lieu le volume V
de Ω. Ce volume, qui est V = 2

3
π R3, n’a pas fait l’objet d’un calcul explicite ici ; il a

simplement été déduit du volume d’une sphère (i.e. d’une boule) de rayon R, qui est
4
3
π R3. En résumé :

C
(
0 ; 3R

8
; 0
)
.

8.3.3 Corps ayant la forme d’une plaque d’épaisseur constante

x

y

O x̄

ȳ

Considérons un solide homogène Ω, qui a la forme d’une
plaque d’épaisseur négligeable, contenue dans le plan eu-
clidien R2. Dans ce cas, Ω peut être assimilé à une sur-
face S ⊂ R2. Supposons que S soit délimitée d’une part par
les droites d’équations x = a et x = b, où a et b sont deux
nombres réels tels que a < b, et d’autre part par les deux
courbes C1 et C2, données respectivement par y = f(x) et par y = g(x), où f et g sont
deux fonctions réelles, définies et continues dans [a; b], et telles que f(x) > g(x) pour tout
x ∈ [a; b]. Selon les considérations faites dans la première section du présent chapitre, S
peut être vue comme une réunion d’une infinité de rectangles, de base dx, de hauteurs
f(x)− g(x), dont les centres de masse sont en (x̄; ȳ), où x̄ = x et ȳ = 1

2

(
f(x) + g(x)

)
.

Les coordonnées du centre de masse C de S s’écrivent donc, dans ce cas :

xC =
1

A

∫

S

x̄ dA , yC =
1

A

∫

S

ȳ dA .

Ainsi, en notant que dA =
(
f(x)− g(x)

)
dx (cf. première section du présent chapitre) :

xC =
1

A

∫ b

a

x
(
f(x)− g(x)

)
dx , yC =

1

A

∫ b

a

1

2

(
f(x) + g(x)

)(
f(x)− g(x)

)
dx ,
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A étant l’aire de S. Noter que le signe
∫

S
désigne ici une sommation impliquant des

éléments infinitésimaux en lien avec la surface S.

8.3.3 Exemple : Dans le plan euclidien R2, muni de son système de coordonnées carté-
siennes canonique Oxy, considérons le demi-disque S de rayon R, centrée en O, délimité
par l’axe Ox, i.e. par la droite horizontale d’équation y = 0, et par la courbe C donnée
par y = f(x) =

√
R2 − x2 . Cherchons les coordonnées xC et yC

du centre de masse C de S. Selon les propos tenus ci-dessus, xC
s’écrit :

xC =
1

1
2
π R2

∫ R

−R

x
√
R2 − x2 dx = 0 ,

x

y

R−R

R
y=f(x)

O

C

du fait que la fonction donnée par x
√
R2 − x2 est impaire et que l’intégrale d’une fonc-

tion impaire sur un domaine symétrique par rapport à l’origine de l’axe x vaut 0. Quant
à la coordonnée yC , elle est donnée par :

yC =
1

1
2
π R2

∫ R

−R

1

2

(√
R2 − x2 + 0

)(√
R2 − x2 − 0

)
dx =

1

π R2

∫ R

−R

(
R2 − x2

)
dx

=
1

π R2

[

R2 x− 1

3
x3
]R

−R

=
1

π R2

[
2

3
R3 −

(

−2

3
R3

)]

=
4R

3 π
.

Noter que pour calculer yC , il est nécessaire de déterminer en premier lieu l’aire A de S.
Cette aire, qui est A = 1

2
π R2, a été simplement déduite de l’aire d’un cercle (i.e. d’un

disque) de rayon R, qui vaut π R2. En résumé :

C
(
0 ; 4R

3π

)
.

8.3.4 Remarques : • Les trois formules encadrées, données dans la section présente,
se démontrent rigoureusement en recourant aux concepts de subdivisions d’inter-
valles et de sommes de Riemann. En effet, en prenant une subdivision σn =
(x0; x1; . . . ; xn) d’ordre n de l’intervalle [a; b] donné, et en s’inspirant des consi-
dérations faites dans les remarques 8.2.1, 8.2.2 et 8.1.2, il ressort que :

⋄ pour un corps de révolution autour d’un axe horizontal :

xC =
1

V
lim
n→∞
δσn→0

n∑

k=1

xk−1 + xk
2

π
((
f(ξk)

)2 −
(
g(ξk)

)2
)

∆xk

=
1

V

∫ b

a

x+ x

2
π
((
f(x)

)2 −
(
g(x)

)2
)

dx

=
1

V

∫ b

a

x π
((
f(x)

)2 −
(
g(x)

)2
)

dx ,

où ∆xk = xk − xk−1 et ξk ∈ [xk−1; xk], k = 1, . . . , n ;
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⋄ pour un corps de révolution autour d’un axe vertical :

yC =
1

V
lim
n→∞
δσn→0

n∑

k=1

1

2

(
f(ξk) +

(
g(ξk)

)
2 π

xk−1 + xk
2

(
f(ξk)−

(
g(ξk)

)
∆xk

=
1

V

∫ b

a

1

2

(
f(x) + g(x)

)
2 π

x+ x

2

(
f(x)− g(x)

)
dx

=
1

V

∫ b

a

1

2

(
f(x) + g(x)

)
2 π x

(
f(x)− g(x)

)
dx ,

où ∆xk = xk − xk−1 et ξk ∈ [xk−1; xk], k = 1, . . . , n ;

⋄ pour un corps ayant la forme d’une plaque d’épaisseur constante :

xC =
1

A
lim
n→∞
δσn→0

n∑

k=1

xk−1 + xk
2

(
(
f(ξk)− g(ξk)

)
∆xk

=
1

A

∫ b

a

x+ x

2

(
f(x)− g(x)

)
dx =

1

A

∫ b

a

x
(
f(x)− g(x)

)
dx ,

et :

yC =
1

A
lim
n→∞
δσn→0

n∑

k=1

1

2

(
f(ξk) + g(ξk)

)(
f(ξk)− g(ξk)

)
∆xk

=
1

A

∫ b

a

1

2

(
f(x) + g(x)

)(
f(x)− g(x)

)
dx ,

où ∆xk = xk − xk−1 et ξk ∈ [xk−1; xk], k = 1, . . . , n.

• Les trois résultats encadrés, obtenus dans la section présente, se transposent sans
difficulté à toute situation dans laquelle la (ou les) courbe(s) est (sont) donnée(s)
non pas par une (des) équation(s) cartésienne(s) explicite(s), de la forme y = f(x),
mais par des équations paramétriques, de la forme x = ϕ(t) et y = ψ(t).

8.4 Longueur d’une ligne courbe

x

y

O

A

a

f(a)

b

B
f(b)

dx
dy

dℓ

C

Soit le plan euclidien R2 et Oxy son système de
coordonnées cartésiennes canonique. Considérons une
courbe C ⊂ R2 reliant deux points A et B dans R2.
Supposons que l’abscisse de A, notée a, est strictement
inférieure à l’abscisse de B, notée b. Supposons de plus
que C correspond au morceau du graphe d’une fonc-
tion f définie et dérivable dans un intervalle ouvert I
contenant l’intervalle fermé [a; b] ; supposons encore que la dérivée f ′ de f est continue
dans I. Prenons un élément infinitésimal dx selon x, compris entre a et b. À cet élément
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peut être associé un élément infinitésimal dℓ de longueur de courbe. Grâce au théorème
de Pythagore, dℓ peut s’écrire :

dℓ =
√

dx2 + dy2 ,

où dy = f ′(x) dx est l’élément infinitésimal selon y associé à dx et à f . Or :

dx2 + dy2 =
dx2 + dy2

dx2
dx2 =

(

1 +
dy2

dx2

)

dx2

=

(

1 +

(
dy

dx

)2
)

dx2 =
(

1 +
(
f ′(x)

)2
)

dx2 .

Donc :

dℓ =

√
(

1 +
(
f ′(x)

)2
)

dx2 =

√

1 +
(
f ′(x)

)2
dx .

La longueur totale L de C s’obtient alors en sommant tous les éléments infinitésimaux dℓ
constituant C ; concrètement :

L =

∫ b

a

√

1 +
(
f ′(x)

)2
dx .

8.4.1 Remarque : La formule précédente
se justifie par les considérations faites sur
l’intégrale de Riemann dans le chapitre 4.
Pour le voir, reprenons la courbe C du
début de la présente section, qui relie
les points A

(
a ; f(a)

)
et B

(
b ; f(b)

)
, où

a < b ; considérons aussi une subdivi-
sion σn = (x0; x1; . . . ; xn) d’ordre n de
l’intervalle [a; b], de pas δσn . Notons Xk le

x

y

O a=x0

A

x1 xk−1

Xk−1

xk

Xk

b=xn

B

ck

f(xk−1)
f(xk)

f(a)

f(b)

point d’abscisse xk et d’ordonnée f(xk), où k = 0, 1, . . . n ; comme x0 = a et xn = b (par
définition d’une subdivision d’ordre n de [a; b]), alors X0 cöıncide avec A et Xn avec B.
Les segments Xk−1Xk, où k = 1, . . . , n, mis bout à bout, décrivent alors grossièrement la
courbe C. La somme de leurs longueurs est donc approximativement égale à la longueur
de C. Grâce au théorème de Pythagore, la longueur du segment Xk−1Xk, notée ∆ℓk,
peut s’écrire :

∆ℓk =
√

(∆xk)2 + (∆yk)2 ,

où ∆xk = xk − xk−1 et ∆yk = f(xk) − f(xk−1). Or, f étant dérivable dans I, et donc
en particulier dans ]xk−1; xk[ , il existe, selon le théorème des accroissements finis (cf.
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théorème 3.9.4, section 3.9 du chapitre 3), un nombre ck ∈ ]xk−1; xk[ tel que ∆yk =
f ′(ck)∆xk. Donc :

∆ℓk =
√

(∆xk)2 + (∆yk)2

=

√
(
∆xk

)2
+
(
f ′(ck)∆xk

)2

=

√
(
∆xk

)2
+
(
f ′(ck)

)2(
∆xk

)2

=

√
(

1 +
(
f ′(ck)

)2
) (

∆xk
)2

=

√

1 +
(
f ′(ck)

)2
∆xk .

La longueur approximative de C s’écrit, par conséquent :

n∑

k=1

∆ℓk =
n∑

k=1

√

1 +
(
f ′(ck)

)2
∆xk .

La fonction
√

1 + (f ′)2 est continue dans [a; b], vu que f ′ l’est. La limite de la somme
ci-dessus, lorsque n tend vers l’infini et δσn vers 0, existe donc, et ne dépend ni du
choix de la subdivision σn, ni, pour chaque subdivision, du choix des nombres réels
c1 ∈ ]x0; x1[ , . . . , cn ∈ ]xn−1; xn[ (pour autant qu’il y ait le choix). Cette limite est
égale, par définition, à la longueur L de C ; elle se note :

L = lim
n→∞
δσn→0

n∑

k=1

√

1 +
(
f ′(ck)

)2
∆xk

=

∫ b

a

√

1 +
(
f ′(x)

)2
dx .

8.4.2 Exemple : Dans le plan euclidien R2, muni de son système de coordonnées carté-
siennes canonique Oxy, considérons le cercle C de rayon R et centré sur l’origine O
de Oxy. Ce cercle peut être vu comme la réunion des deux demi-cercles C1 et C2,
donnés respectivement par y = f(x) =

√
R2 − x2 et y = g(x) =

−
√
R2 − x2 . Par symétrie, la longueur L de C, i.e. le périmètre

de C, est égale à deux fois la longueur L1 du demi-cercle C1. Noter
que la fonction f décrivant C1 n’est définie que dans [−R; R] ;
et sa dérivée f ′, qui est donnée par :

f ′(x) =
1

2
√
R2 − x2

(−2 x) = − x√
R2 − x2

,

x

y

R−R

R

−R

C1

C2

O
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uniquement dans ]−R; R[ . De fait, en calculant L1, il convient d’être attentif au fait
que l’intégrale est une intégrale généralisée :

L = 2L1 = 2

∫ R

−R

√

1 +
(
f ′(x)

)2
dx = lim

a→−R
a>−R

lim
b→R
b<R

2

∫ b

a

√

1 +
(
f ′(x)

)2
dx

= lim
a→−R
a>−R

lim
b→R
b<R

2

∫ b

a

√

1 +

( −x√
R2 − x2

)2

dx = lim
a→−R
a>−R

lim
b→R
b<R

2

∫ b

a

√

1 +
x2

R2 − x2
dx

= lim
a→−R
a>−R

lim
b→R
b<R

2

∫ b

a

√

R2 − x2 + x2

R2 − x2
dx = lim

a→−R
a>−R

lim
b→R
b<R

2

∫ b

a

R√
R2 − x2

dx

= lim
a→−R
a>−R

lim
b→R
b<R

2RArcsin
( x

R

)∣
∣
∣

b

a
= lim

a→−R
a>−R

lim
b→R
b<R

[

2RArcsin

(
b

R

)

− 2RArcsin

(
a

R

)]

= 2RArcsin(1)− 2RArcsin(−1) = 2R
[π

2
−
(

−π
2

)]

= 2 π R .

8.4.3 Remarques : • Les considérations faites dans la section présente s’adaptent
sans difficulté à toute situation dans laquelle la courbe C en question est donnée
non pas par une équation cartésienne explicite, de la forme y = f(x), mais par
des équations paramétriques, de la forme x = ϕ(t) et y = ψ(t). Concrètement,
il suffit de reprendre l’élément infinitésimal dℓ =

√

dx2 + dy2 introduit en début
de section, puis d’écrire dx et dy en fonction de l’élément dt :

dℓ =
√

dx2 + dy2 =

√
(
dx2

dt2
+

dy2

dt2

)

dt2

=

√
(
dx

dt

)2

+

(
dy

dt

)2

dt

=

√
(
ϕ′(t)

)2
+
(
ψ′(t)

)2
dt ;

La longueur L de C entre deux points A
(
ϕ(ta) ; ψ(ta)

)
et B

(
ϕ(tb) ; ψ(tb)

)
sur C,

où ta et tb sont deux nombres réels tels que ta < tb, est alors donnée par :

L =

∫ tb

ta

√
(
ϕ′(t)

)2
+
(
ψ′(t)

)2
dt ,

Noter que la condition ta < tb est importante ; si elle n’est pas respectée, L n’est
plus une grandeur positive. Du reste, c’est cette même condition qui est à l’origine
du fait que l’élément dt2 sous la racine devient dt (et non −dt) en dehors de la
racine, dans le calcul de dℓ ci-dessus.
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• Les équations paramétriques d’une courbe C ⊂ R2 se notent souvent (de manière
certes un peu abusive) x = x(t) et y = y(t). La précédente expression de L s’écrit
alors, avec cette notation :

L =

∫ tb

ta

√
(
ẋ(t)

)2
+
(
ẏ(t)

)2
dt ,

où ẋ(t) = dx
dt
(t) et ẏ(t) = dy

dt
(t).

8.4.4 Exemple : Reprenons le cercle C ⊂ R2 de rayon R et centré sur l’origine O du sys-
tème de coordonnées cartésiennes canoniqueOxy du plan euclidien R2 (cf. exemple 8.4.2).
Ce cercle peut être décrit, rappelons-le, par les équations paramétriques :

{

x(t) = R cos(t)

y(t) = R sin(t)
, où t ∈ [0 ; 2 π[ .

Calculons alors son périmètre à l’aide de la formule établie au premier point des re-
marques précédentes :

L =

∫ 2π

0

√
(
ẋ(t)

)2
+
(
ẏ(t)

)2
dt = lim

b→2π
b<2π

∫ b

0

√
(
ẋ(t)

)2
+
(
ẏ(t)

)2
dt

= lim
b→2π
b<2π

∫ b

0

√
(
−R sin(t)

)2
+
(
R cos(t)

)2
dt

= lim
b→2π
b<2π

∫ b

0

√

R2 sin2(t) +R2 cos2(t) dt

= lim
b→2π
b<2π

∫ b

0

√

R2
(
sin2(t) + cos2(t)

)
dt = lim

b→2π
b<2π

∫ b

0

√
R2 dt

= lim
b→2π
b<2π

∫ b

0

R dt = lim
b→2π
b<2π

R t
∣
∣
∣

b

0
= lim

b→2π
b<2π

(R b− 0) = 2 π R .

Noter que l’intégrale est une intégrale généralisée ; ceci en raison du fait que 2 π ne fait
pas partie de l’intervalle.

8.4.5 Remarques : • Les considérations faites dans la section présente s’adaptent
également à toute situation dans laquelle la courbe C en question est donnée
non pas par une équation cartésienne explicite, de la forme y = f(x), mais par
une équation polaire explicite, de la forme r = f(θ). Concrètement, il suffit de
reprendre l’élément infinitésimal dℓ =

√

dx2 + dy2 introduit dans le premier point
des remarques précédentes, d’écrire dx = dx

dθ
dθ et dy = dy

dθ
dθ, et de tenir compte
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des égalités x = r cos(θ) et y = r sin(θ) (cf. remarques 2.1.12 de la section 2.1 du
chapitre 2), où r = f(θ) :

dℓ =
√

dx2 + dy2 =

√
(
dx

dθ
dθ

)2

+

(
dy

dθ
dθ

)2

=

√
[(

dx

dθ

)2

+

(
dy

dθ

)2 ]

dθ2

=

√
(

d

dθ

(
f(θ) cos(θ)

)
)2

+

(
d

dθ

(
f(θ) sin(θ)

)
)2

dθ

=

√
(
f ′(θ) cos(θ)− f(θ) sin(θ)

)2
+
(
f ′(θ) sin(θ) + f(θ) cos(θ)

)2
dθ

=

√
(
f ′(θ)

)2
cos2(θ) +

(
f ′(θ)

)2
sin2(θ) +

(
f(θ)

)2
sin2(θ) +

(
f(θ)

)2
cos2(θ) dθ

=

√
(
f(θ)

)2
+
(
f ′(θ)

)2
dθ ;

les produits −2 f ′(θ) cos(θ) f(θ) sin(θ) et 2 f ′(θ) sin(θ) f(θ) cos(θ) s’annulent entre
eux ; raison pour laquelle ils n’ont pas été notés dans la quatrième ligne du cal-
cul qui vient d’être fait. La longueur L de C entre deux points A

(
f(θa) ; θa

)

et B
(
f(θb) ; θb

)
sur C, où θa et θb sont deux nombres réels tels que θa < θb, est

alors donnée par :

L =

∫ θb

θa

√
(
f(θ)

)2
+
(
f ′(θ)

)2
dθ .

Ici aussi (à l’image de ce qui a été mentionné dans le premier point des re-
marques 8.4.3), il est important que θa < θb. Si cette condition n’est pas respec-
tée, L n’est plus une grandeur positive. C’est aussi grâce à cette condition que
l’élément dθ2 sous la racine devient dθ (et non −dθ) en dehors de la racine, dans
le calcul de dℓ ci-dessus.

• L’équation polaire d’une courbe C ⊂ R2 se note souvent (de manière certes un
peu abusive) r = r(θ). La précédente expression de L s’écrit alors, avec cette
notation :

L =

∫ θb

θa

√
(
r(θ)

)2
+
(
r′(θ)

)2
dθ .

8.4.6 Exemple : Reprenons encore une fois le cercle C ⊂ R2 de rayon R et centré sur
l’origine O du système de coordonnées cartésiennes canonique Oxy du plan euclidien R2

(cf. exemple 8.4.2). Ce cercle peut être décrit par l’équation polaire r = r(θ) = R, où
θ ∈ [0 ; 2 π[ . Calculons alors son périmètre L à l’aide de la formule établie au premier
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point des remarques précédentes :

L =

∫ 2π

0

√
(
r(θ)

)2
+
(
r′(θ)

)2
dθ = lim

b→2π
b<2π

∫ b

0

√
(
r(θ)

)2
+
(
r′(θ)

)2
dθ

= lim
b→2π
b<2π

∫ b

0

√
R2 + 02 dθ = lim

b→2π
b<2π

∫ b

0

R dθ

= lim
b→2π
b<2π

Rθ
∣
∣
∣

b

0
= lim

b→2π
b<2π

(R b− 0) = 2 π R .

8.5 Aires de surfaces de révolution

On appelle surface de révolution toute surface générée par la rotation d’une courbe
plane C reliant un point A à un point B, autour d’un axe situé dans le même plan que C.

Soit l’espace euclidien R3 et Oxyz son système de coordonnées cartésiennes canonique
(cf. section 2.1 du chapitre 3). Les axes Ox et Oy génèrent un plan qui peut être
identifié au plan euclidien R2 ; les axes Ox et Oy forment alors le système de coordonnées
cartésiennes canonique Oxy de ce plan R2. Considérons alors une courbe C ⊂ R2 reliant
deux points A et B dans R2. Supposons que l’abscisse de A, notée a, est strictement
inférieure à l’abscisse de B, notée b. Supposons de plus que C correspond au morceau
du graphe d’une fonction f définie et dérivable dans un intervalle ouvert I contenant
l’intervalle fermé [a; b] ; supposons encore que la dérivée f ′ de f est continue dans I.

8.5.1 Surface de révolution autour d’un axe horizontal

a b

dℓ

dA

x

y

z
O

C

La rotation de C autour de l’axe Ox génère une surface S qui
peut être vue comme la réunion d’une infinité de troncs de
cône infiniment fins, d’«épaisseur» dℓ =

√

1 + (f ′(x))2 dx, de
rayons f(x), centrés en (x; 0; 0), où x ∈ [a; b], et normaux
à Ox. L’aire dA de l’un de ces troncs étant donnée par dA =
2 π f(x)

√

1 + (f ′(x))2 dx, l’aire totale A de S s’écrit :

A =

∫ b

a

2 π f(x)

√

1 +
(
f ′(x)

)2
dx .

8.5.1 Remarque : La formule ci-dessus se justifie rigoureusement en recourant aux no-
tions de subdivisions d’intervalles et de sommes de Riemann. Pour le voir, considérons
une fonction réelle f définie et continue dans un intervalle fermé [a; b], où a et b sont deux
nombres réels tels que a < b ; considérons aussi une subdivision σn = (x0; x1; . . . ; xn)
d’ordre n de [a; b], de pas δσn . Pour chaque k = 1, 2, . . . , n, la rotation autour de l’axe Ox
du segment Xk−1Xk, où Xk−1

(
xk−1 ; f(xk−1)

)
et Xk

(
xk ; f(xk)

)
sont les points sur le

graphe de f d’abscisse xk−1 et xk respectivement, génère dans R3 un tronc de cône
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de rayon moyen égal à 1
2

(
f(xk−1) + f(xk)

)
, centré sur le point

(
1
2
(xk−1 + xk) ; 0 ; 0

)
.

L’aire ∆Ak de ce tronc de cône s’obtient en l’assimilant à un trapèze de base moyenne
égale à 2 π · 1

2

(
f(xk−1) + f(xk)

)
et de hauteur égale à ∆ℓk =

√

1 + (f ′(ck))2∆xk, où
∆xk = xk − xk−1 et ck ∈ ]xk−1; xk[ :

∆Ak = 2 π
f(xk−1) + f(xk)

2

√

1 +
(
f ′(ck)

)2
∆xk .

Soit à présent S la surface obtenue en faisant tourner autour de l’axe Ox la courbe C
donnée par y = f(x), où x ∈ [a; b]. Cette surface peut être vue, grossièrement, comme
une réunion de troncs de cône tels que ceux décrits ci-dessus. L’aire de S s’obtient donc,
approximativement, en sommant les aires de ces troncs :

n∑

k=1

∆Ak =

n∑

k=1

2 π
f(xk−1) + f(xk)

2

√

1 +
(
f ′(ck)

)2
∆xk .

Lorsque n tend vers l’infini et δ tend vers 0, la réunion des troncs de cône correspond à
la surface S. L’aire A de S s’obtient donc comme suit :

A = lim
n→∞
δσn→0

n∑

k=1

2 π
f(xk−1) + f(xk)

2

√

1 +
(
f ′(ck)

)2
∆xk

=

∫ b

a

2 π
f(x) + f(x)

2

√

1 +
(
f ′(x)

)2
dx =

∫ b

a

2 π f(x)

√

1 +
(
f ′(x)

)2
dx .

8.5.2 Surface de révolution autour d’un axe vertical

La rotation de C autour de l’axe Oy génère une surface S qui peut être vue comme
la réunion d’une infinité de troncs de cône infiniment fins, de rayons x, où x ∈ [a; b],

dℓ

x

y

z

dA
C

a b
O

d’« épaisseur» dℓ =
√

1 + (f ′(x))2 dx, centrés
en (0; f(x); 0), et normaux à Oy. L’aire dA
de l’un de ces troncs étant donnée par dA =
2 π x

√

1 + (f ′(x))2 dx, l’aire totale A de S
s’écrit :

A =

∫ b

a

2 π x

√

1 +
(
f ′(x)

)2
dx .

8.5.2 Remarque : La formule ci-dessus se justifie rigoureusement en recourant aux no-
tions de subdivisions d’intervalles et de sommes de Riemann. Le raisonnement est si-
milaire à celui de la remarque 8.5.1. La différence réside dans le fait que la rotation du
segment Xk−1Xk se fait ici autour de l’axe Oy. Le tronc de cône qui en résulte a alors un
rayon moyen égal à 1

2
(xk−1 + xk) et est centré sur le point

(
0 ; 1

2

(
f(xk−1) + f(xk)

)
; 0
)
.

Son aire ∆Ak est alors :

∆Ak = 2 π
xk−1 + xk

2

√

1 +
(
f ′(ck)

)2
∆xk ,
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où ∆xk = xk − xk−1 et ck ∈ ]xk−1; xk[ . De fait, l’aire A de la surface S, obtenue en
faisant tourner autour de l’axe Oy la courbe C donnée par y = f(x), où x ∈ [a; b], est
donnée par :

A = lim
n→∞
δσn→0

n∑

k=1

2 π
xk−1 + xk

2

√

1 +
(
f ′(ck)

)2
∆xk

=

∫ b

a

2 π
x+ x

2

√

1 +
(
f ′(x)

)2
dx =

∫ b

a

2 π x

√

1 +
(
f ′(x)

)2
dx .

8.5.3 Exemple : Dans l’espace euclidien R3, muni de son système de coordonnées car-
tésiennes canonique Oxyz, considérons la sphère S de rayon R et centrée sur l’origine
du système Oxyz. Cette sphère peut être obtenue par rotation
autour de l’axe Ox du demi-cercle d’équation y = f(x) =√
R2 − x2 , contenu dans le plan euclidien R2 généré par les

axes Ox et Oy. S peut alors être vue comme la réunion
d’une infinité de troncs de cône infiniment fins, d’« épaisseur»
√

1 + (f ′(x))2 dx, de rayons f(x), centrés en (x; 0; 0), et nor-
maux à Ox. L’aire dA de l’un de ces troncs s’écrit alors :

z
x

y

R−R

R

−R

y=f(x)

O

dA = 2 π f(x)

√

1 +
(
f ′(x)

)2
dx = 2 π

√
R2 − x2

√

1 +

( −x√
R2 − x2

)2

dx

= 2 π
√
R2 − x2

√

1 +
x2

R2 − x2
dx = 2 π

√
R2 − x2

√

R2

R2 − x2
dx

= 2 π
√
R2 − x2

√
R2

√
R2 − x2

dx = 2 π R dx ;

noter que la simplification des racines, dans le calcul ci-dessus, ne peut être effectuée
que si x2 6= R2 ⇔ x 6= ±R. De fait, x ∈ ]−R; R[ ; ce qui implique que l’aire A de S
s’obtient en calculant une intégrale généralisée :

A =

∫ R

−R

2 π f(x)

√

1 +
(
f ′(x)

)2
dx = lim

a→−R
a>−R

lim
b→R
b<R

∫ b

a

2 π f(x)

√

1 +
(
f ′(x)

)2
dx

= lim
a→−R
a>−R

lim
b→R
b<R

∫ b

a

2 π R dx = lim
a→−R
a>−R

lim
b→R
b<R

2 π Rx
∣
∣
∣

b

a
= lim

a→−R
a>−R

lim
b→R
b<R

2 π R (b− a)

= 2 πR
(
R− (−R)

)
= 4 π R2 .

Noter que la même sphère S peut être obtenue par rotation autour de l’axe Oy de deux
quarts de cercle dans R2, l’un allant de (R; 0) à (0; R) et l’autre de (R; 0) à (0; −R).
S peut alors être vue comme la réunion d’une infinité de troncs de cône infiniment fins,
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normaux à l’axe Oy. L’aire dA de l’un de ces troncs étant :

dA = 2 π x
R√

R2 − x2
dx ,

l’aire A de S est :

A = 2

∫ R

0

2 π x
R√

R2 − x2
dx = 2 lim

b→R
b<R

∫ b

0

2 π x
R√

R2 − x2
dx = 4 πR2 .

À nouveau, il s’agit d’une intégrale généralisée ; le facteur 2 devant l’intégrale vient du
fait que S est construite ici à partir de deux quarts de cercle. Le détail du raisonnement
est laissé en exercice.

8.5.4 Remarque : Les deux résultats encadrés, obtenus dans la section présente, se
transposent sans difficulté à toute situation dans laquelle la courbe en question est
donnée non pas par une fonction, mais par des équations paramétriques, de la forme
x = ϕ(t) et y = ψ(t).

Les applications du calcul intégral ne se limitent pas aux situations décrites dans
le présent chapitre. Il en existe de nombreuses autres ; en mathématique bien sûr, mais
également en physique et dans les sciences de l’ingénierie. Dans les ouvrages consacrés à
la mécanique, l’électromagnétisme ou la thermodynamique, les exemples ne manquent
pas.

Dans tout domaine de la physique, le calcul intégral, et plus généralement le calcul
infinitésimal occupe une place de choix. C’est grâce au calcul infinitésimal, entre autres,
qu’il a été possible d’élaborer des modèles théoriques qui concordent si bien avec les
observations et les mesures expérimentales.



Annexe A

Suites et séries numériques

Le présent chapitre a pour objectif de présenter et de démontrer un certain nombre
de propriétés relatives aux suites de nombres réels. Ces propriétés ont toutes leur im-
portance car elles sont fréquemment invoquées dans les preuves de certains résultats
majeurs relatifs aux séries numériques ou aux fonctions continues.

A.1 Propriétés des suites de nombres réels

Rappelons qu’une suite (illimitée) de nombres réels est une famille d’éléments pouvant
être indexée par les nombres naturels. Une suite de nombres réels se note générale-
ment (un) ; un est ce que l’on appelle le terme général de la suite.

A.1.1 Lemme : Soit (un) une suite de nombres réels. Supposons que (un) admet pour
limites les deux nombres réels L1 et L2 lorsque n tend vers l’infini. Alors nécessairement
L1 = L2. Autrement dit, si une suite de nombre réels (un) converge, elle converge vers
une seule et unique limite.

Preuve : Soient ε un nombre réel quelconque, strictement positif, et (un) une suite de
nombres réels qui admet pour limites à la fois le nombre réel L1 et le nombre réel L2.
Dire que limn→∞ un = L1 revient à dire que, pour tout nombre réel ε1 > 0, il existe
M1 ∈ N tel que |un −L1| 6 ε1 pour tout nombre entier n >M1 ; en particulier, il existe
N1 ∈ N tel que :

n ∈ N et n > N1 ⇒ |un − L1| 6
ε

2
.

Aussi, dire que limn→∞ un = L2 revient à dire que, pour tout nombre réel ε2 > 0, il
existe M2 ∈ N tel que |un −L2| 6 ε2 pour tout nombre entier n > M2 ; en particulier, il
existe N2 ∈ N tel que :

n ∈ N et n > N2 ⇒ |un − L2| 6
ε

2
.



400 A Suites et séries numériques

Par conséquent, pour tout nombre entier n > N = max{N1; N2} (i.e. N étant le plus
grand des deux nombres réels N1 et N2) :

|L1 − L2| = |L1 − un + un − L2| =
∣
∣(L1 − un) + (un − L2)

∣
∣

6 |L1 − un|+ |un − L2| = |un − L1|+ |un − L2|

6
ε

2
+
ε

2
= ε .

Or, dire que |L1 − L2| 6 ε, c’est dire que la différence entre L1 et L2 peut être aussi
petite que souhaitée ; c’est donc dire que la différence entre L1 et L2 est nulle ; ce qui
revient à dire que L1 et L2 sont égales.

A.1.2 Définition : Une suite de nombres réels (un) est dite constante si un = u0 quel
que soit le nombre n ∈ N.

A.1.3 Proposition : Toute suite de nombres réels (un) constante est convergente ; sa
limite, lorsque n tend vers l’infini, vaut u0.

Preuve : Soient (un) une suite de nombres réels constante et ε un nombre réel quelconque,
strictement positif. Dire que (un) est constante revient à dire que un = u0 pour tout
n ∈ N. Par conséquent, |un − u0| 6 ε pour tout n ∈ N ; ce qui revient à dire que (un)
converge et admet pour limite, lorsque n tend vers l’infini, le nombre réel u0. �

A.1.4 Définitions : • Une suite de nombres réels (un) est dite croissante (respec-
tivement strictement croissante) si un 6 un+1 (respectivement un < un+1) pour
tout nombre n ∈ N.

• Une suite de nombres réels (un) est dite décroissante (respectivement strictement
décroissante) si un > un+1 (respectivement un > un+1) pour tout nombre n ∈ N.

A.1.5 Proposition : Toute suite de nombres réels (un) croissante (respectivement dé-
croissante), pour laquelle il existe un nombre réel b tel que un 6 b (respectivement un
nombre réel a tel que un > a) pour tout n ∈ N, est convergente.

Preuve : Soit (un) une suite de nombres réels satisfaisant les hypothèses de la proposition.
Le fait que un 6 b (respectivement un > a) pour tout n ∈ N, implique l’existence d’un
plus petit nombre réel B (respectivement un plus grand nombre réel A) tel que un 6 B
(respectivement un > A) pour tout n ∈ N ; ce qui implique que pour tout nombre réel
ε > 0, il existe N ∈ N tel que 0 6 B − uN 6 ε (respectivement 0 6 uN − A 6 ε).
Comme la suite (un) est croissante (respectivement décroissante), alors nécessairement
0 6 B − un 6 ε (respectivement 0 6 un − A 6 ε) pour tout n > N . La définition de la
limite d’une suite permet de conclure que la suite (un) converge vers B (respectivement
vers A). �

A.1.6 Proposition : Soient (un) et (vn) deux suites de nombres réels convergentes, qui
admettent pour limites respectives, lorsque n tend vers l’infini, les nombres réels L1
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et L2. Alors :

• lim
n→∞

(αun + β vn) = αL1 + β L2 , α et β étant deux nombres réels,

• lim
n→∞

(un vn) = L1 L2 .

Si, de plus, vn 6= 0 pour tout n ∈ N et L2 6= 0, alors :

• lim
n→∞

un
vn

=
L1

L2
.

Soient à présent (un), (vn) et (wn) trois suites de nombres réels pour lesquelles il existe
N0 ∈ N tel que un 6 wn 6 vn pour tout nombre entier n > N0. Supposons, en outre,
que (un) et (vn) convergent et qu’elles admettent toutes les deux pour limite, lorsque n
tend vers l’infini, le même nombre réel L (i.e. limn→∞ un = L = limn→∞ vn). Alors :

• lim
n→∞

wn = L .

Ce résultat est connu sous le nom de théorème des deux gendarmes pour les suites.

Preuve : Soient (un) et (vn) deux suites de nombres réels convergentes, qui admettent
pour limites respectives, lorsque n tend vers l’infini, les nombres réels L1 et L2.

• Montrons que limn→∞(αun + β vn) = αL1 + β L2, où α et β sont des nombres
réels quelconques. Commençons par traiter le cas où α 6= 0 et β 6= 0. Le fait
que limn→∞ un = L1 ∈ R implique qu’il existe, pour tout nombre réel ε1 > 0,
un nombre M1 ∈ N tel que |un − L1| 6 ε1 pour tout nombre entier n > M1. En
particulier, il existe N1 ∈ N tel que :

n ∈ N et n > N1 ⇒ |un − L1| 6
ε

2 |α| (α 6= 0) ,

où ε est un nombre réel quelconque, strictement positif. Aussi, le fait que limn→∞ vn =
L2 ∈ R implique qu’il existe, pour tout nombre réel ε2 > 0, un nombre M2 ∈ N

tel que |un − L2| 6 ε2 pour tout nombre entier n > M2. En particulier, il existe
N2 ∈ N tel que :

n ∈ N et n > N2 ⇒ |vn − L2| 6
ε

2 |β| (β 6= 0) .

Par conséquent, pour tout nombre entier n > N , où N est le plus grand des deux
nombres N1 et N2 (ce qui se note N = max{N1; N2}) :

∣
∣(αun + β vn)− (αL1 + β L2)

∣
∣ =

∣
∣α un + β vn − αL1 − β L2

∣
∣

=
∣
∣α (un − L1) + β (vn − L2)

∣
∣

6
∣
∣α (un − L1)

∣
∣+
∣
∣β (vn − L2)

∣
∣

= |α| |un − ℓ1|+ |β| |vn − ℓ2|

6 |α| ε

2 |α| + |β| ε

2 |β| =
ε

2
+
ε

2
= ε ,
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ce qui établit que :

lim
n→∞

(αun + β vn) = αL1 + β L2 .

Dans le cas où α 6= 0 et β = 0, la preuve est plus immédiate ; il suffit de dire qu’il
existe N1 ∈ N tel que |un − L1| 6 ε

|α| pour tout nombre entier n > N1 ; ce qui
implique, toujours pour tout n > N1 :

|αun − αL1| =
∣
∣α (un − L1)

∣
∣ = |α| |un − L1

∣
∣ 6 |α| ε|α| = ε .

Le raisonnement est similaire dans le cas où α = 0 et β 6= 0. Enfin, dans la
situation où α = β = 0, le résultat se déduit du quatrième point de la présente
proposition (qui traite de la limite d’une suite constante), dont la preuve est
donnée plus bas.

• Montrons que limn→∞(un vn) = L1 L2 . À cet effet, commençons par nous intéres-
ser à la suite (un). Le fait que limn→∞ un = L1 ∈ R implique qu’il existe, pour
tout nombre réel ε1 > 0, un nombre M1 ∈ N tel que |un − L1| 6 ε1 pour tout
nombre entier n > M1. Or :

|un − L1| 6 ε1 ⇔ −ε1 6 un − L1 6 ε1 ⇔ L1 − ε1 6 un 6 L1 + ε1 .

Pour tout n > M1, un est donc limité inférieurement par le nombre réel L1 − ε1
et supérieurement par le nombre réel L1 + ε1. Or, u0, u1, . . . uM1−1 étant tous
des nombres réels, il est possible de trouver deux nombres réels γ1 et γ2 tels que
un est limité inférieurement par γ1 et supérieurement par γ2 (i.e. γ1 6 un 6 γ2)
pour tout n ∈ N ; pour s’en convaincre, il suffit de considérer γ1 comme étant le
plus petit des nombres u0, u1, . . . uM1−1, L1 − ε1 et γ2 le plus grand des nombres
u0, u1, . . . uM1−1, L1 + ε1. Par conséquent, il existe un nombre réel γ > 0 tel
que |un| 6 γ pour tout n ∈ N ; ce nombre γ peut être n’importe quel nombre
strictement plus grand que le plus grand des deux nombres |γ1| et |γ2|.

Vu qu’il existe, pour tout nombre réel ε1 > 0, un nombre M1 ∈ N tel que
|un − L1| 6 ε1 pour tout nombre entier n > M1, alors, en particulier, il existe
N1 ∈ N tel que :

n ∈ N et n > N1 ⇒ |un − L1| 6
ε

2
(
1 + |L2|

) ,

où ε est un nombre réel quelconque, strictement positif. Si c’est 1+ |L2| qui a été
considéré au lieu de simplement |L2|, c’est pour éviter des problèmes dans le cas
où L2 = 0.

Intéressons-nous à présent à la suite (vn). Le fait que limn→∞ vn = L2 ∈ R

implique qu’il existe, pour tout nombre réel ε2 > 0, un nombre M2 ∈ N tel que
|vn − L2| 6 ε2 pour tout nombre entier n > M2. En particulier, il existe N2 ∈ N

tel que :

n ∈ N et n > N2 ⇒ |vn − L2| 6
ε

2 γ
(où γ > 0) .
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Par conséquent, pour tout nombre entier n > N , où N est le plus grand des deux
nombres N1 et N2 (i.e. N = max{N1; N2} :

∣
∣un vn − L1 L2

∣
∣ =

∣
∣un vn − un L2 + un L2 − L1 L2

∣
∣

=
∣
∣un (vn − L2) + L2 (un − L1)

∣
∣

6
∣
∣un (vn − L2)

∣
∣ +
∣
∣L2 (un − L1)

∣
∣

= |un| |vn − L2|+ |L2| |un − L1|

6 |un| |vn − L2|+
(
1 + |L2|

)
|un − L1|

6 γ
ε

2 γ
+
(
1 + |L2|

) ε

2
(
1 + |L2|

) =
ε

2
+
ε

2
= ε ;

ce qui établit que :

lim
n→∞

un vn = L1 L2 .

• Montrons que limn→∞
un

vn
= L1

L2
, pour autant que vn 6= 0 pour tout n ∈ N et que

L2 6= 0. À cet effet, intéressons-nous plus particulièrement à la suite (vn). Le fait
que limn→∞ vn = L2 ∈ R implique qu’il existe, pour tout nombre réel ε2 > 0,
un nombre M2 ∈ N tel que |vn − L2| 6 ε2 pour tout nombre entier n > M2. En
particulier, il existe N2 ∈ N tel que :

n ∈ N et n > N2 ⇒ |vn − L2| 6
|L2|
2

.

Or :

|vn − L2| 6 |L2|
2

⇔ −|L2|
2

6 vn − L2 6 |L2|
2

⇔ L2 −
|L2|
2

6 vn 6 L2 +
|L2|
2
.

Par conséquent :
⋄ si L2 > 0, alors |L2| = L2 et la dernière double inégalité ci-dessus se récrit

L2

2
6 vn 6 3L2

2
;

⋄ si L2 < 0, alors |L2| = −L2 et la dernière double inégalité ci-dessus se récrit
3L2

2
6 vn 6 L2

2
⇔ −3L2

2
> −vn > −L2

2
.

En résumé, |vn| > |L2|
2

pour tout n > N2 ; ce qui montre que vn 6= 0 pour tout
n > N2.

Vu qu’il existe, pour tout nombre réel ε2 > 0, un nombre M2 ∈ N tel que
|vn − L2| 6 ε2 pour tout nombre entier n > M2, alors, en particulier, il existe,

pour tout nombre réel ε > 0, un nombre Ñ2 ∈ N tel que |vn − L2| 6 εL2
2

2
pour

tout nombre entier n > Ñ2. Par conséquent, pour tout nombre entier n > N ,
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où N est le plus grand des deux nombres N2 et Ñ2 (i.e. N = max{N2; Ñ2}) :
∣
∣
∣
∣

1

vn
− 1

L2

∣
∣
∣
∣
=

∣
∣
∣
∣

L2 − vn
vn L2

∣
∣
∣
∣
=

∣
∣
∣
∣

vn − L2

vn L2

∣
∣
∣
∣
=

|vn − L2|
∣
∣vn
∣
∣ |L2|

6
εL2

2

2

|vn| |L2|
6

ε L2
2

2
|L2|
2

|L2|
=

εL2
2

2
|L2|2
2

=
ε L2

2

2

L2
2

2

= ε ,

ce qui établit que :

lim
n→∞

1

vn
=

1

L2

.

Enfin, le fait que la limite du produit de deux suites convergentes est égale au
produit de leurs limites respectives (cf. point précédent) permet de conclure :

lim
n→∞

un
vn

= lim
n→∞

(

un
1

vn

)

= L1
1

L2

=
L1

L2

.

Soient à présent (un), (vn) et (wn) trois suites de nombres réels pour lesquelles il existe
N0 ∈ N tel que un 6 wn 6 vn pour tout nombre entier n > N0. Supposons, en outre,
que (un) et (vn) convergent et qu’elles admettent toutes les deux pour limite, lorsque n
tend vers l’infini, le même nombre réel L (i.e. limn→∞ un = L = limn→∞ vn).

• Montrons que limn→∞wn = L. À cet effet, considérons un nombre réel ε > 0
quelconque. Le fait que limn→∞ un = L ∈ R implique qu’il existe, pour tout
nombre réel ε1 > 0, un nombre M1 ∈ N tel que |un − L| 6 ε1 pour tout nombre
entier n >M1. En particulier, il existe N1 ∈ N tel que :

n ∈ N et n > N1 ⇒ |un − L| 6 ε ,

ou, de manière équivalente :

n ∈ N et n > N1 ⇒ −ε 6 un − L 6 ε .

Aussi, le fait que limn→∞ vn = L implique qu’il existe, pour tout nombre réel
ε2 > 0, un nombre M2 ∈ N tel que |vn − L| 6 ε2 pour tout nombre entier
n >M2. En particulier, il existe N2 ∈ N tel que :

n ∈ N et n > N2 ⇒ |vn − L| 6 ε ,

ou, de manière équivalente :

n ∈ N et n > N2 ⇒ −ε 6 vn − L 6 ε .

Or, un 6 wn 6 vn pour tout nombre entier n > N0. Donc, en posant N
comme étant le plus grand des trois nombres N0, N1 et N2 (ce qui se note
N = max{N0; N1; N2}) :

n ∈ N et n > N ⇒ −ε 6 un − L 6 wn − L 6 vn − L 6 ε .
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Ainsi :
n ∈ N et n > N ⇒ |wn − L| 6 ε ,

ce qui établit que :

lim
n→∞

wn = L . �

A.1.7 Proposition : Soient (un) et (vn) deux suites de nombres réels. Supposons que (un)
converge et admet pour limite le nombre réel L1 ; supposons aussi que (vn) converge et
admet pour limite le nombre réel L2. Supposons, en outre, qu’il existe un nombre N ∈ N

tel que un 6 vn pour tout n > N . Alors L1 6 L2.

Preuve : Soient (un) et (vn) deux suites de nombres réels qui satisfont les hypothèses
de la proposition. Supposons (par l’absurde) que L1 > L2. Soit alors ε un nombre réel
quelconque, strictement positif. Le fait que (un) converge vers L1 et que (vn) converge
vers L2 permet d’affirmer qu’il existe un nombre entier m > N tel que |um −L1| 6 ε et
|vm − L2| 6 ε. En particulier, il existe, pour ε = 1

4
(L1 − L2), un nombre entier k > N

tel que |uk − L1| 6 1
4
(L1 − L2) et |vk − L2| 6 1

4
(L1 − L2). Or :

|uk − L1| 6 1
4
(L1 − L2) ⇔ −1

4
(L1 − L2) 6 uk − L1 6 1

4
(L1 − L2)

⇔ L1 − 1
4
(L1 − L2) 6 uk 6 L1 +

1
4
(L1 − L2)

et :

|vk − L2| 6 1
4
(L1 − L2) ⇔ −1

4
(L1 − L2) 6 vk − L2 6 1

4
(L1 − L2)

⇔ L2 − 1
4
(L1 − L2) 6 vk 6 L2 +

1
4
(L1 − L2) ;

en particulier, uk > L1 − 1
4
(L1 −L2) et vk 6 L2 +

1
4
(L1 − L2). Par conséquent, vu qu’il

est supposé que L1 > L2 :

vk 6 L2 +
1
4
(L1 − L2) < L2 +

1
2
(L1 − L2)

= 1
2
(L1 + L2) = L1 − 1

2
(L1 − L2)

< L1 − 1
4
(L1 − L2) 6 uk ;

en résumé, uk > vk, ce qui est contradictoire avec l’hypothèse un 6 vn pour tout n > N .
La limite L1 ne peut donc pas être strictement plus grande que la limite L2 ; elle ne peut
être que plus petite ou égale. �

A.1.8 Lemme : Soient (un) et (vn) deux suites de nombres réels. Si (un) converge et
admet pour limite le nombre réel L, et si limn→∞(vn−un) = 0, alors (vn) converge aussi
et admet pour limite le même nombre réel L.

Preuve : Soient (un) et (vn) deux suites de nombres réels. Supposons que limn→∞ un = L,
où L est un nombre réel, et que limn→∞(vn−un) = 0. Alors, en utilisant le premier point
de la proposition A.1.6 :

lim
n→∞

vn = lim
n→∞

(
un + (vn − un)

)
= lim

n→∞
un + lim

n→∞
(vn − un) = L+ 0 = L .
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A.2 Propriétés des séries numériques

Rappelons que la série numérique associée à une suite de nombres réels (un) est la somme
∑∞

n=0 un. Pour être bref, on parle fréquemment de série numérique de terme général un.
Dire qu’une série numérique converge revient à dire que la suite des sommes partielles
(SN )N∈N converge, où SN =

∑N
n=0 un.

A.2.1 Proposition : Soient (un) et (vn) deux suites de nombres réels. Supposons qu’il
existe un nombre N ∈ N tel que 0 6 un 6 vn pour tout nombre entier n > N .

• Si la série
∑∞

n=0 vn converge, alors la série
∑∞

n=0 un converge aussi.

• Si la série
∑∞

n=0 un diverge, alors la série
∑∞

n=0 vn diverge aussi.

Un tel résultat est connu sous le nom de critère de comparaison relatif aux séries
numériques.

Preuve : Soient (un) et (vn) deux suites de nombres réels pour lesquelles il existe N ∈ N

tel que 0 6 un 6 vn pour tout nombre entier n > N . Posons :

UM =

M∑

n=0

un et VM =

M∑

n=0

vn .

(UM )M∈N et (VM)M∈N sont alors les suites des sommes partielles associées aux suites (un)
et (vn), respectivement. Écrivons, pour tout M > N :

UM =

M∑

n=0

un =

N−1∑

n=0

un +

M∑

n=N

un =

N−1∑

n=0

un +

K∑

k=0

uN+k

et :

VM =
M∑

n=0

vn =
N−1∑

n=0

vn +
M∑

n=N

vn =
N−1∑

n=0

vn +
K∑

k=0

vN+k ,

où k = n−N et K =M −N , et adoptons les notations suivantes :

ŨK =

K∑

k=0

uN+k et ṼK =

K∑

k=0

vN+k .

Les ensembles (ŨK)K∈N et (ṼK)K∈N forment des suites de nombres réels.

• Supposons que la série
∑∞

n=0 vn converge ; autrement dit, supposons que la suite
des sommes partielles (VM)M∈N converge. De :

VM =
M∑

n=0

vn =
N−1∑

n=0

vn +
M∑

n=N

vn =
N−1∑

n=0

vn +
K∑

k=0

vN+k ,

il ressort :
K∑

k=0

vN+k =

M∑

n=0

vn −
N−1∑

n=0

vn ,
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d’où :

∞∑

k=0

vN+k = lim
K→∞

K∑

k=0

vN+k = lim
M→∞

(
M∑

n=0

vn −
N−1∑

n=0

vn

)

=
∞∑

n=0

vn −
N−1∑

n=0

vn ,

vu que K → ∞ si et seulement si M → ∞. La série
∑∞

k=0 vN+k ne peut alors que
converger, vu qu’elle s’écrit comme la différence d’une série convergente et d’une
somme contenant un nombre fini de termes ; notons L le nombre réel tel que :

L =

∞∑

k=0

vN+k = lim
M→∞

M−N∑

k=0

vN+k = lim
K→∞

ṼK .

Comparons à présent ŨK et ṼK ; l’hypothèse 0 6 un 6 vn, pour tout nombre
entier n > N , implique, d’une part, que les suites (ŨK) et (ṼK) sont croissantes
(vu que un > 0 et vn > 0 pour tout entier n > N), et d’autre part que, pour tout
nombre entier K ∈ N :

0 6

K∑

k=0

uN+k 6

K∑

k=0

vN+k ⇔ 0 6 ŨK 6 ṼK .

Comme :

lim
K→∞

ṼK = lim
K→∞

K∑

k=0

vN+k = L ,

alors, pour tout K ∈ N :

ŨK 6 ṼK 6 lim
K→∞

VK = L .

En résumé, (ŨK) est une suite croissante, telle que ŨK 6 L pour tout K ∈ N.
La proposition A.1.5 permet alors d’affirmer que (ŨK) converge ; ce qui revient à
dire que la série

∑∞
k=0 uN+k converge. Enfin, le fait que :

∞∑

n=0

un =

N−1∑

n=0

un +

∞∑

n=N

un =

N−1∑

n=0

un +

∞∑

k=0

uN+k

et que
∑N−1

n=0 un soit une somme qui ne contient qu’un nombre fini de termes,
permet de conclure que la série

∑∞
n=0 un converge.

• Supposons à présent que la série
∑∞

n=0 un diverge ; autrement dit, supposons que
la suite des sommes partielles (UM)M∈N diverge. De :

UM =

M∑

n=0

un =

N−1∑

n=0

un +

M∑

n=N

un =

N−1∑

n=0

un +

K∑

k=0

uN+k ,
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il ressort :
K∑

k=0

uN+k =

M∑

n=0

un −
N−1∑

n=0

un ,

d’où :

∞∑

k=0

uN+k = lim
K→∞

K∑

k=0

uN+k = lim
M→∞

(
M∑

n=0

un −
N−1∑

n=0

un

)

=

∞∑

n=0

un −
N−1∑

n=0

un ;

vu que K → ∞ si et seulement si M → ∞. La série
∑∞

k=0 uN+k ne peut alors
que diverger, vu qu’elle s’écrit comme la différence d’une série divergente et d’une
somme contenant un nombre fini de termes. Revenons à présent aux propriétés
de ŨK et ṼK obtenues au point précédent ; à savoir que (ŨK) et (ṼK) sont des
suites croissantes, d’une part, et d’autre part que 0 6 ŨK 6 ṼK pour tout K ∈ N.
Le fait que (ŨK) est une suite croissante implique, compte tenu du fait qu’elle
diverge, que :

lim
K→∞

ŨK = lim
K→∞

K∑

k=0

uN+k = ∞ .

Ce résultat, combiné au fait que ṼK > ŨK pour tout K ∈ N, permet alors d’affir-
mer que (ṼK) diverge ; ce qui revient à dire que la série

∑∞
k=0 vN+k diverge. Enfin,

le fait que :
∞∑

n=0

vn =

N−1∑

n=0

vn +

∞∑

n=N

vn =

N−1∑

n=0

vn +

∞∑

k=0

vN+k

et que
∑N−1

n=0 vn soit une somme qui ne contient qu’un nombre fini de termes,
permet de conclure que la série

∑∞
n=0 vn diverge. �

A.2.2 Proposition : Soit (un) une suite de nombres réels. Si la série
∑∞

n=0 |un| converge,
alors la série

∑∞
n=0 un converge.

Preuve : Soit (un) une suite de nombres réels telle que
∑∞

n=0 |un| converge. Posons
wn = un + |un| pour tout n ∈ N. Comme −|un| 6 un 6 |un| pour tout n ∈ N, alors
0 6 wn 6 2 |un| pour tout n ∈ N. Dire que la série

∑∞
n=0 |un| converge revient à dire

que la suite des sommes partielles (SM)M∈N converge, où :

SM =

M∑

n=0

|un| .

En conséquence, la suite des sommes partielles (VM)M∈N, de terme général :

VM =
M∑

n=0

2 |un| = 2
M∑

n=0

|un| ,

converge (cf. premier point de la proposition A.1.6) ; autrement dit, la série
∑∞

n=0 2 |un|
converge ; notons L le nombre réel tel que L =

∑∞
n=0 2 |un|. En outre, le fait que |un| > 0
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pour tout n ∈ N implique que (VM) est une suite croissante. Soit à présent la suite des
sommes partielles (WM )M∈N, de terme général :

WM =

M∑

n=0

wn .

En vertu des propriétés de (VM), pour tout M ∈ N :

WM =
M∑

n=0

wn <
M∑

n=0

2 |un| <
∞∑

n=0

2 |un| = L .

En outre, le fait que wn > 0 pour tout n ∈ N implique que (WM) est une suite croissante.
Par conséquent, (WM) converge (cf. proposition A.1.5) ; autrement dit, la série

∑∞
n=0wn

converge. Enfin, de l’égalité un = wn − |un|, il ressort :

M∑

n=0

un =
M∑

n=0

(
wn − |un|

)
=

M∑

n=0

wn −
M∑

n=0

|un| ;

et vu que les suites des sommes partielles (SM) et (WM) convergent, alors nécessai-
rement la suite de sommes partielles

(∑M
n=0 un

)

M∈N converge (cf. premier point de la
proposition A.1.6) ; autrement dit, la série

∑∞
n=0 un converge. �

A.2.3 Remarque : Si la proposition précédente s’avère utile pour achever la preuve de
certains critères de convergence relatifs aux séries numériques (les critères de d’Alembert
et de la racine, notamment), elle ne permet toutefois pas de traiter la convergence de
n’importe quelle série numérique. Typiquement, elle se montre inefficace dans le cas de la
série harmonique alternée

∑∞
n=1(−1)n 1

n
. D’autres outils sont nécessaires pour prouver

la convergence de cette série.

A.2.4 Définition : Soit (un) une suite de nombres réels. La série
∑∞

n=0 un, associée à
la suite (un), est dite alternée si les signes des termes de la somme s’alternent, i.e. si
un un+1 6 0 pour tout n ∈ N.

A.2.5 Remarque : De la définition précédente découle immédiatement le fait que toute
série alternée peut s’écrire sous la forme :

±
∞∑

n=0

(−1)n vn ,

où vn > 0 pour tout n ∈ N.
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A.2.6 Proposition : Soit (un) une suite de nombres réels telle que :

• un un+1 6 0 pour tout n ∈ N,

• |un| > |un+1| pour tout n ∈ N,

• limn→∞ un = 0.

Alors la série
∑∞

n=0 un converge. Un tel résultat est connu sous le nom de critère des

séries alternées.

Preuve : Soit (un) une suite de nombres réels qui satisfait les hypothèses de la proposition.
Selon les propos tenus dans la remarque précédente, la série

∑∞
n=0 un peut s’écrire sous

la forme :

±
∞∑

n=0

(−1)n vn , avec vn > 0 pour tout n ∈ N ;

présentement, vn = |un| pour tout n ∈ N ; et en tenant compte des hypothèses :

• vn > vn+1 pour tout n ∈ N,

• limn→∞ vn = 0.

Prouvons la proposition dans le cas où le signe devant la somme est positif (l’autre cas,
où le signe est négatif, se traitant de façon analogue). Soit (UM )M∈N la suite des sommes
partielles, où :

UM =

M∑

n=0

un =

M∑

n=0

(−1)n vn =

M∑

n=0

(−1)n |un| .

Écrivons les premiers éléments de la suite :

U0 =
0∑

n=0

(−1)n |un| = |u0| ,

U1 =

1∑

n=0

(−1)n |un| = |u0| − |u1| ,

U2 =

2∑

n=0

(−1)n |un| = |u0| − |u1|+ |u2| ,

U3 =
3∑

n=0

(−1)n |un| = |u0| − |u1|+ |u2| − |u3| ,

U4 =

4∑

n=0

(−1)n |un| = |u0| − |u1|+ |u2| − |u3|+ |u4| ,

...
...

...
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Le fait que |un| > |un+1| pour tout n ∈ N permet alors d’écrire :

0 6 U1 6 U3 6 . . . 6 U4 6 U2 6 U0 ,

et plus généralement :
0 6 U2k+1 6 U2k 6 U0 ,

avec :
U2k+1 6 U2(k+1)+1 et U2k > U2(k+1) .

Les ensembles (U2k)k∈N et (U2k+1)k∈N peuvent être vus comme des suites de nombres
réels. Vu les inégalités obtenues ci-dessus, (U2k) est une suite décroissante, telle que
U2k > 0 pour tout k ∈ N ; et (U2k+1) est une suite croissante, telle que U2k+1 6 U0 pour
tout k ∈ N. (U2k) et (U2k+1) convergent donc (cf. proposition A.1.5). En outre :

lim
k→∞

(U2k − U2k+1) = lim
k→∞

|u2k+1| = 0 ,

vu que limn→∞ un = 0. Le lemme A.1.8 permet alors de conclure que (U2k) et (U2k+1)
admettent pour limite, lorsque k tend vers l’infini, le même nombre réel L. En consé-
quence, la suite des sommes partielles (UM) admet pour limite, lorsque M tend vers
l’infini, le nombre réel L. La suite des sommes partielles (UM ) converge donc ; ce qui
revient à dire que la série

∑∞
n=0 un converge. �

A.2.7 Exemple : La série harmonique alternée
∑∞

n=1(−1)n 1
n
converge ; en effet, la suite

(un) de terme général un = (−1)n 1
n
satisfait toutes les hypothèses de la proposition

précédente. Le fait que la somme commence avec n = 1 et non n = 0 n’a aucune
influence sur la conclusion.





Annexe B

Théorèmes relatifs aux fonctions
continues

Le concept de limite d’une fonction peut être défini non seulement avec les nombres réels
strictement positifs ε et δ, comme cela a été fait dans la section 2.6 du chapitre 2, mais
également en faisant appel aux suites de nombres. Si la définition basée sur les suites
vaut la peine d’être introduite, c’est parce qu’elle a le mérite de rendre plus abordables
les preuves de certains théorèmes relatifs aux fonctions continues (cf. section 2.10 du cha-
pitre 2). Montrer l’équivalence des deux définitions de limite requiert un certain travail ;
cela étant, l’effort investi est largement récompensé par l’obtention de raisonnements
concrets, clairs et simples.

B.1 Limite d’une fonction réelle

B.1.1 Définition : Soient a un nombre réel et f : D → E une fonction réelle (où D ⊂ R

et E ⊂ R), définie dans un voisinage de a (i.e. dans un sous-ensemble de D contenant un
intervalle ouvert de la forme ]a−γ ; a+γ[ , où γ est un nombre réel strictement positif),
sauf éventuellement en a. On dit que f admet pour limite le nombre réel ℓ lorsque x
tend vers a, et on note ℓ = limx→a f(x), si pour tout nombre réel ε > 0, il existe un
nombre réel δ > 0 tel que les relations :

0 < |x− a| 6 δ ,

où x ∈ D, impliquent :
∣
∣f(x)− ℓ

∣
∣ 6 ε .

B.1.2 Définition : Soient a un nombre réel et f : D → E une fonction réelle (où D ⊂ R

et E ⊂ R), définie dans un voisinage de a (i.e. dans un sous-ensemble de D contenant
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un intervalle ouvert de la forme ]a − γ ; a + γ[ , où γ est
un nombre réel strictement positif), sauf éventuellement
en a. On dit que f admet pour limite le nombre réel ℓ
lorsque x tend vers a, et on note ℓ = limx→a f(x), si pour
toute suite de nombres réels (un) qui converge vers a et
telle que un ∈ D quel que soit n ∈ N, la suite de nombres
(
f(un)

)
, image par f de (un), converge vers ℓ.

x

y

O a

ℓ

B.1.3 Proposition : Les définitions B.1.1 et B.1.2 sont équivalentes.

Preuve : Soient a un nombre réel et f : D → E une fonction réelle, définie dans un
voisinage de a, sauf éventuellement en a.

Montrons d’abord que la définition B.1.1 implique la définition B.1.2 ; autrement dit,
montrons que limx→a f(x) = ℓ, où ℓ ∈ R, implique que limn→∞ f(un) = ℓ, quelle que
soit la suite de nombres réels (un), dont les éléments sont dans D et qui converge vers a.
Par hypothèse, la fonction f admet pour limite le nombre réel ℓ lorsque x tend vers le
nombre a. Pour tout nombre réel ε > 0, il existe donc un nombre réel δ > 0 tel que :

0 < |x− a| 6 δ ⇒
∣
∣f(x)− ℓ

∣
∣ 6 ε .

Soit à présent une suite de nombres réels (un) telle que un ∈ D quel que soit n ∈ N, et
telle que limn→∞ un = a. Pour tout nombre réel η > 0, il existe alors M ∈ N tel que,
pour tout n > M , on a |un − a| 6 η. En particulier, il existe N ∈ N tel que, pour tout
n > N , on a |un − a| 6 δ. Par conséquent :

n > N ⇒ |un − a| 6 δ ⇒
∣
∣f(un)− ℓ

∣
∣ 6 ε ,

vu que un ∈ D quel que soit n > N . La suite (un) engendre donc une suite
(
f(un)

)
,

dont les éléments sont dans E et qui converge vers ℓ. La définition B.1.1 implique donc
la définition B.1.2, vu que la conclusion obtenue est valable pour toute suite dont les
éléments sont dans D et qui converge vers a.

Réciproquement, montrons que la définition B.1.2 implique la définition B.1.1 ; au-
trement dit, montrons que limn→∞ f(un) = ℓ, où ℓ ∈ R, quelle que soit la suite de
nombres réels (un), dont les éléments sont dans D et qui converge vers a, implique
limx→a f(x) = ℓ. Prouver cette implication revient à prouver que limx→a f(x) 6= ℓ im-
plique limn→∞ f(un) 6= ℓ pour au moins une suite de nombres réels (un), dont les éléments
sont dans D et qui converge vers a. Or, dire que ℓ n’est pas la limite de f lorsque x
tend vers a revient à dire qu’il existe un nombre réel ε > 0 pour lequel, quel que soit le
nombre réel δ > 0, il existe (au moins un) x ∈ D tel que :

0 < |x− a| 6 δ ⇒
∣
∣f(x)− ℓ

∣
∣ > ε ;

en particulier, dans le cas où δ = 1
n
, avec n ∈ N∗, il existe (au moins un) x ∈ D tel que :

0 < |x− a| 6 1

n
⇒

∣
∣f(x)− ℓ

∣
∣ > ε .
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Pour chaque n ∈ N∗, notons un l’élément (ou l’un des éléments) pour lequel l’impli-
cation ci-dessus est vérifiée. Alors l’ensemble (un)n∈N∗ forme manifestement une suite
de nombres qui converge vers a (vu que 1

n
tend vers 0 lorsque n tend vers ∞) et telle

que limn→∞ f(un) ne converge pas vers ℓ (vu que |f(un) − ℓ)| > ε, pour un certain
ε > 0). Cette conclusion permet, selon ce qui a été évoqué plus haut, d’affirmer que la
définition B.1.2 implique la définition B.1.1. �

B.1.4 Proposition : Soient a un nombre réel et f : D → E une fonction réelle, définie
dans un voisinage de a, sauf éventuellement en a. Si f admet pour limites les deux
nombres réels ℓ1 et ℓ2 lorsque x tend vers a, alors nécessairement ℓ1 = ℓ2.

Preuve : Soient a un nombre réel et f : D → E une fonction réelle, définie dans un
voisinage de a, sauf éventuellement en a. Montrons que, si f admet pour limites les
deux nombres réels ℓ1 et ℓ2 lorsque x tend vers a, alors nécessairement ℓ1 = ℓ2. À
cet effet, considérons une suite de nombres réels (un), dont les éléments sont dans D
et qui converge vers a. Comme limx→a f(x) = ℓ1, alors, selon la proposition B.1.3,
limn→∞ f(un) = ℓ1 ; ce qui revient à dire que la suite

(
f(un)

)
converge vers ℓ1. Aussi,

comme limx→a f(x) = ℓ2, alors, toujours selon la proposition B.1.3, limn→∞ f(un) = ℓ2 ;
ce qui revient à dire que la suite

(
f(un)

)
converge aussi vers ℓ2. Or, toute suite de

nombres réels, si elle converge, converge vers une seule et même limite (cf. lemme A.1.1,
section A.1 de l’annexe A). Par conséquent, ℓ1 = ℓ2. �

B.1.5 Proposition : Soient a un nombre réel ; soient aussi f : D1 → R et g : D2 → R deux
fonctions réelles, toutes les deux définies dans un voisinage de a, sauf éventuellement
en a. Supposons que limx→a f(x) = ℓ1, ainsi que limx→a g(x) = ℓ2, où ℓ1 et ℓ2 sont deux
nombres réels. Alors :

• lim
x→a

(
α f(x) + β g(x)

)
= α ℓ1 + β ℓ2 , où α et β sont deux nombres réels ;

• lim
x→a

(
f(x) g(x)

)
= ℓ1 ℓ2 ;

• lim
x→a

f(x)

g(x)
=
ℓ1
ℓ2

, pour autant que ℓ2 6= 0 ;

Si, en outre, f est une fonction constante dans V r{a}, où V est un voisinage de a, i.e.
si f(x) = c pour tout x ∈ V r{a}, où c est un nombre réel fixe, alors ℓ1 = c :

• lim
x→a

f(x) = lim
x→a

c = c .

Revenons aux hypothèses sur f : D1 → R formulées initialement ; et supposons à pré-
sent que g : D2 → R est une fonction réelle définie dans un voisinage de ℓ1, sauf éven-
tuellement en ℓ1. Supposons aussi que limx→ℓ1 g(x) = ℓ3, où ℓ3 est un nombre réel.
Faisons, en outre, l’hypothèse supplémentaire suivante au sujet de f : f(x) 6= ℓ1 quel
que soit x ∈ V r{a}, où V est un voisinage de a. Alors :

• lim
x→a

(
g ◦ f

)
(x) = lim

x→a
g
(
f(x)

)
= ℓ3 .



416 B Théorèmes relatifs aux fonctions continues

Revenons aux hypothèses sur les fonctions f : D1 → R et g : D2 → R formulées initiale-
ment.

• Si f(x) 6 g(x) pour tout x ∈ V r{a}, où V est un voisinage de a, alors :

lim
x→a

f(x) = ℓ1 6 ℓ2 = lim
x→a

g(x) .

Reprenons les fonctions f : D1 → R et g : D2 → R ; et soit h : D3 → R une troisième
fonction réelle ; supposons que f , g et h sont toutes les trois définies dans un voisinage
d’un nombre réel b, sauf éventuellement en b.

• Si f(x) 6 h(x) 6 g(x) pour tout x ∈ Ṽ r{b}, où Ṽ est un voisinage de b, et si
limx→b f(x) = ℓ = limx→b g(x), où ℓ est un nombre réel, alors :

lim
x→b

h(x) = ℓ ;

ce résultat est connu sous le nom de théorème des deux gendarmes.

Preuve : Soient a un nombre réel, f : D1 → R et g : D2 → R deux fonctions réelles,
toutes les deux définies dans un voisinage de a, sauf éventuellement en a. Supposons que
limx→a f(x) = ℓ1, ainsi que limx→a g(x) = ℓ2, où ℓ1 et ℓ2 sont deux nombres réels. Consi-
dérons alors une suite de nombres réels (un), dont les éléments sont dans D1 ∩D2 et qui
tend vers a lorsque n tend vers l’infini. Comme limx→a f(x) = ℓ1, alors, selon la proposi-
tion B.1.3, la suite

(
f(un)

)
tend vers ℓ1 lorsque n tend vers l’infini : limn→∞ f(un) = ℓ1.

Aussi, comme limx→a g(x) = ℓ2, alors, selon la proposition B.1.3, la suite
(
g(un)

)
tend

vers ℓ2 lorsque n tend vers l’infini : limn→∞ g(un) = ℓ2.

• Montrons que limx→a

(
α f(x) + β g(x)

)
= α ℓ1 + β ℓ2, où α et β sont des nombres

réels quelconques. À cet effet, raisonnons comme suit. Selon le premier point de la
proposition A.1.6 de l’annexe A, la suite

(
α f(un)+β g(un)

)
tend vers α ℓ1+β ℓ2

lorsque n tend vers l’infini :

lim
n→∞

(
α f(un) + β g(un)

)
= α ℓ1 + β ℓ2 .

Par conséquent, selon la proposition B.1.3, la fonction α f+β g admet pour limite
le nombre réel α ℓ1 + β ℓ2 lorsque la variable x tend vers a :

lim
x→a

(
α f(x) + β g(x)

)
= α ℓ1 + β ℓ2 .

• Montrons que limx→a

(
f(x) g(x)

)
= ℓ1 ℓ2. À cet effet, raisonnons comme suit. Se-

lon le deuxième point de la proposition A.1.6 de l’annexe A, la suite
(
f(un) g(un)

)

tend vers ℓ1 ℓ2 lorsque n tend vers l’infini :

lim
n→∞

(
f(un) g(un)

)
= ℓ1 ℓ2 .

Par conséquent, selon la proposition B.1.3, la fonction fg admet pour limite le
nombre réel ℓ1 ℓ2 lorsque la variable x tend vers a :

lim
x→a

(
f(x) g(x)

)
= ℓ1 ℓ2 .
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• Montrons que limx→a
f(x)
g(x)

= ℓ1
ℓ2
, pour autant que ℓ2 6= 0. À cet effet, supposons

que la suite (un) satisfait g(un) 6= 0 pour tout n ∈ N. Dans ce cas, selon le

troisième point de la proposition A.1.6 de l’annexe A, la suite
(
f(un)
g(un)

)
tend vers ℓ1

ℓ2
lorsque n tend vers l’infini :

lim
n→∞

f(un)

g(un)
=

ℓ1
ℓ2
.

Par conséquent, selon la proposition B.1.3, la fonction f
g
admet pour limite le

nombre réel ℓ1
ℓ2

lorsque la variable x tend vers a :

lim
x→a

f(x)

g(x)
=

ℓ1
ℓ2
.

• Montrons que si f est une fonction constante dans Vr{a}, où V est un voisinage
de a, i.e. si f(x) = c pour tout x ∈ V r{a}, où c est un nombre réel fixe,
alors ℓ1 = c. À cet effet, raisonnons comme suit. Selon la proposition A.1.3 de
l’annexe A, la suite

(
f(un)

)
tend vers c lorsque n tend vers l’infini :

lim
n→∞

f(un) = f(u0) = c .

Par conséquent, selon la proposition B.1.3, la fonction f admet pour limite le
nombre réel c lorsque la variable x tend vers a :

lim
x→a

f(x) = c .

La limite d’une fonction (si elle existe) étant unique, ℓ1 = c.

Revenons aux hypothèses initialement faites sur la fonction f : D1 → R ; et supposons
à présent que g : D2 → R est une fonction réelle définie dans un voisinage de ℓ1, sauf
éventuellement en ℓ1. Supposons aussi que limx→ℓ1 g(x) = ℓ3, où ℓ3 est un nombre réel.
Faisons, en outre, l’hypothèse supplémentaire suivante au sujet de f : f(x) 6= ℓ1 quel
que soit x ∈ V r{a}, où V est un voisinage de a. Alors :

• Montrons que limx→a

(
g◦f

)
(x) = limx→a g

(
f(x)

)
= ℓ3. À cet effet, commençons

par remarquer que le domaine de départ de la fonction g ◦ f est l’ensemble de
tous les x ∈ D1 tels que f(x) ∈ D2. Dans le raisonnement qui suit, il s’agira d’en
tenir compte.

Soit ε > 0 un nombre réel quelconque (strictement positif) et (un) une suite
de nombres réels qui converge vers a, telle que un ∈ D1 et f(un) ∈ D2 pour
tout n ∈ N. Comme limx→a f(x) = ℓ1, alors, limn→∞ f(un) = ℓ1 (cf. proposi-
tion B.1.3). Autrement dit, pour tout nombre réel ε1 > 0, il existeM1 ∈ N tel que
|f(un)− ℓ1| 6 ε1 pour tout nombre entier n >M1. En outre, le fait que f(x) 6= ℓ1,
quel que soit x ∈ [a−ρ ; a[ ∪ ]a ; a+ρ], implique l’existence d’un nombreM0 ∈ N

tel que f(un) 6= ℓ1 pour tout n > M0. Enfin, comme limx→ℓ1 g(x) = ℓ3, alors,
pour toute suite (vn) dont les éléments sont dans D2 et qui converge vers ℓ1,
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limn→∞ g(vn) = ℓ3 (cf. proposition B.1.3). Autrement dit, pour tout nombre réel
ε2 > 0, il existeM2 ∈ N tel que |g(vn)−ℓ3| 6 ε2 pour tout nombre entier n >M2.
Ainsi, dans le cas où (vn) est la suite

(
f(un)

)
, image par f de (un), où ε2 = ε et

où N = max{M0; M2} (i.e. le plus grand des deux nombres M0 et M2) :

n ∈ N et n > N ⇒ f(un) 6= ℓ1 et
∣
∣g
(
f(un)

)
− ℓ3

∣
∣ 6 ε .

Cette implication établit que :

lim
n→∞

g
(
f(un)

)
= ℓ3 .

Finalement, selon la proposition B.1.3 :

lim
x→a

g
(
f(x)

)
= ℓ3 .

Revenons aux hypothèses sur les fonctions f : D1 → R et g : D2 → R formulées
initialement.

• Montrons que si f(x) 6 g(x) pour tout x ∈ V r{a}, où V est un voisinage
de a, alors limx→a f(x) = ℓ1 6 ℓ2 = limx→a g(x). À cet effet, considérons
une suite de nombres réels (un), dont les éléments sont dans D1 ∩ D2 et qui
tend vers a lorsque n tend vers l’infini. Comme limx→a f(x) = ℓ1, alors, selon la
proposition B.1.3, limn→∞ f(un) = ℓ1. Aussi, comme limx→a g(x) = ℓ2, alors, selon
la proposition B.1.3, limn→∞ g(un) = ℓ2. En outre, par hypothèse, f(un) 6 g(un)
pour tout n ∈ N. Par conséquent, selon la proposition A.1.7, ℓ1 6 ℓ2.

Reprenons les fonctions f : D1 → R et g : D2 → R ; et soit h : D3 → R une troisième
fonction réelle ; supposons que f , g et h sont toutes les trois définies dans un voisinage
d’un nombre réel b, sauf éventuellement en b.

• Montrons que si f(x) 6 h(x) 6 g(x) pour tout x ∈ Ṽ r {b}, où Ṽ est un
voisinage de b, et si limx→b f(x) = ℓ = limx→b g(x), où ℓ est un nombre réel,
alors limx→b h(x) = ℓ. À cet effet, considérons une suite de nombres réels (un) qui
tend vers b lorsque n tend vers l’infini, et dont les éléments sont dans Ṽ . Comme
limx→b f(x) = ℓ, alors, la suite

(
f(un)

)
tend vers ℓ lorsque n tend vers l’infini :

limn→∞ f(un) = ℓ (cf. proposition B.1.3). Aussi, comme limx→a g(x) = ℓ, alors
la suite

(
g(un)

)
tend vers ℓ lorsque n tend vers l’infini : limn→∞ g(un) = ℓ (cf.

proposition B.1.3). Ainsi, selon le dernier point de la proposition A.1.6, la suite
(
h(un)

)
tend vers ℓ lorsque n tend vers l’infini :

lim
n→∞

h(un) = ℓ .

Par conséquent, selon la proposition B.1.3, la fonction h admet pour limite le
nombre réel ℓ lorsque la variable x tend vers b :

lim
x→b

h(x) = ℓ . �
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B.2 Propriétés des fonctions continues

B.2.1 Définition : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R), définie
dans un voisinage d’un nombre réel x0 ∈ D. On dit que f est continue en x0 ∈ D si la
limite de f lorsque x tend vers x0 existe et si :

lim
x→x0

f(x) = f(x0) ;

autrement dit, f est continue en x0 ∈ D si, pour tout nombre réel ε > 0, il existe un
nombre réel δ > 0 tel que la relation :

|x− x0| 6 δ , où x ∈ D , implique la relation :
∣
∣f(x)− f(x0)

∣
∣ 6 ε .

B.2.2 Propriétés : Soient f : D1 → R et g : D2 → R deux fonctions réelles, définies
toutes les deux dans un voisinage d’un nombre réel x0, et continues en x0. Alors :

• α f + β g est continue en x0, quels que soient les nombres réels α et β ;

• f g est continue en x0 ;

• f
g
est continue en x0, pour autant que g(x0) 6= 0.

Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage de f(x0), et continue
en f(x0). Alors :

• g ◦ f est continue en x0.

Preuve : Soient f : D1 → R et g : D2 → R deux fonctions réelles telles que D1∩D2 6= ∅.
Supposons, en outre, que f et g sont définies dans un voisinage d’un nombre réel x0 ∈
D1 ∩D2 et qu’elles sont continues en x0 ; autrement dit, supposons que :

lim
x→x0

f(x) = f(x0) et lim
x→x0

g(x) = g(x0) .

Alors :

• α f + β g est continue en x0, quels que soient les nombres réels α et β ; en effet,
selon la première des propriétés B.1.5, et du fait de la continuité de f et g en x0 :

lim
x→x0

(
α f(x) + β g(x)

)
=
(
α f(x0) + β g(x0)

)
;

• f g est continue en x0 ; en effet, selon la deuxième des propriétés B.1.5, et du fait
de la continuité de f et g en x0 :

lim
x→x0

(
f(x) g(x)

)
= f(x0) g(x0) ;

• f
g
est continue en x0, pour autant que g(x0) 6= 0 ; en effet, selon la troisième des

propriétés B.1.5, et du fait de la continuité de f et g en x0 :

lim
x→x0

f(x)

g(x)
=

f(x0)

g(x0)
.
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Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage de f(x0), et continue
en f(x0). Alors :

• g ◦ f est continue en x0 ; en effet :

lim
x→x0

(g ◦ f)(x) = lim
x→x0

g
(
f(x)

)
= g

(
f(x0)

)
.

Pour s’en convaincre, il suffit de reprendre la preuve de la cinquième des pro-
priétés B.1.5 et de remarquer qu’il n’est pas nécessaire ici de faire l’hypothèse
consistant à dire que f(x) 6= f(x0) pour tout x ∈ Vr{x0}, où V est un voisinage
de x0 ; la raison en est que f est définie et continue en x0. �

B.2.3 Théorème : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R), définie et
continue dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels que a < b.
Alors, f prend, dans [a; b], au moins une fois les valeurs f(a) et f(b), ainsi que toutes les
valeurs comprises entre f(a) et f(b). Ce résultat est connu sous le nom de théorème

des valeurs intermédiaires.

x

y

a b

y

a1 b2a3O

Preuve : Soit f : D → E une fonction réelle, définie et
continue dans un intervalle fermé [a; b], où a et b sont
deux nombres réels tels que a < b. Montrer que f prend,
dans [a; b], au moins une fois les valeurs f(a), f(b), ainsi
que toutes les valeurs comprises entre f(a) et f(b) revient
à prouver que, pour tout nombre réel y compris entre
f(a) et f(b), il existe au moins un nombre réel c ∈ [a; b]
pour lequel f(c) = y.

Démontrons cette dernière assertion ; pour cela, supposons que f(a) < f(b) (le cas
où f(a) > f(b) se prouvant de manière similaire, le cas f(a) = f(b) n’ayant pas besoin
d’une preuve car évident). Considérons alors un élément y ∈ [f(a) ; f(b)] et empruntons
la procédure suivante.

• On pose a0 = a et b0 = b, puis on partage l’intervalle [a0; b0] en deux intervalles
d’égales longueurs, [a0; c1] et [c1; b0], où c1 =

1
2
(a0 + b0) est le point (sur l’axe x)

tel que |b0 − c1| = |c1 − a0|.
⋄ Si f(c1) < y, on pose a1 = c1 et b1 = b0 ;
⋄ si f(c1) > y, on pose a1 = a0 et b1 = c1.
Dans les deux cas, a = a0 6 a1 6 b1 6 b0 = b et f(a1) 6 y 6 f(b1).

• On partage l’intervalle [a1; b1] en deux intervalles d’égales longueurs, [a1; c2] et
[c2; b1], où c2 =

1
2
(a1 + b1) est le point (sur l’axe x) tel que |b1 − c2| = |c2 − a1|.

⋄ Si f(c2) < y, on pose a2 = c2 et b2 = b1 ;
⋄ si f(c2) > y, on pose a2 = a1 et b2 = c2.
Dans les deux cas, a = a0 6 a1 6 a2 6 b2 6 b1 6 b0 = b et f(a2) 6 y 6 f(b2).

• On partage l’intervalle [a2; b2] en deux intervalles d’égales longueurs...
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En continuant ainsi de suite, on obtient deux suites de nombres réels, (an) et (bn) ; de
par leur construction, ces suites satisfont les conditions suivantes :

⋄ an 6 an+1 et bn > bn+1 pour tout n ∈ N (i.e. (an) est une suite croissante et (bn)
une suite décroissante),

⋄ a 6 an 6 b et a 6 bn 6 b pour tout n ∈ N,

⋄ limn→∞(bn − an) = 0 (du fait que b1 − a1 = 1
2
(b − a), b2 − a2 = 1

2
(b1 − a1) =

1
22
(b− a), . . ., bn − an = 1

2n
(b− a)).

Selon la proposition A.1.5 et le lemme A.1.8 (cf. section A.1 de l’annexe A), les suites (an)
et (bn) convergent et admettent pour limite un seul et même nombre réel ; ce nombre
réel, que l’on note c, est nécessairement dans l’intervalle [a; b], vu que a 6 an 6 bn 6 b
pour tout n ∈ N. Or, toujours par construction de (an) et (bn), f(an) 6 y 6 f(bn)
pour tout n ∈ N. En conséquence, et grâce à la propriété de continuité de la fonction f
dans [a; b] :

lim
n→∞

f(an) 6 y 6 lim
n→∞

f(bn) ⇔ f(c) 6 y 6 f(c) ,

d’où :
y = f(c) .

La fonction f atteint donc au moins une fois la valeur y ∈ [f(a) ; f(b)] dans l’inter-
valle [a; b]. �

B.2.4 Théorème : Soit f : D → E une fonction réelle (où D ⊂ R et E ⊂ R), défi-
nie et continue dans un intervalle fermé [a; b], où a et b sont deux nombres réels tels
que a < b. Alors, dans [a; b], f atteint une valeur minimale m ainsi qu’une valeur
maximale M (cf. définition 2.4.12) ; autrement dit, il existe xm ∈ [a; b] et xM ∈ [a; b]
tels que f(xm) = m, f(xM) = M , où m et M sont deux nombres réels satisfaisant
m = f(xm) 6 f(x) 6 f(xM) =M pour tout x ∈ [a; b]. En outre, f prend au moins
une fois toutes les valeurs de l’intervalle [m; M ]. Un tel résultat est connu sous le nom
de théorème du minimum et du maximum, ou sous le nom de théorème des

valeurs extrêmes.

Preuve : Soit f : D → E une fonction réelle, définie et continue dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Montrons alors que, dans
[a; b], f atteint une valeur minimale m, une valeur maximale M , et prend au moins une
fois toutes les valeurs de l’intervalle [m; M ]. À cet effet, commençons par montrer qu’il
existe deux nombres réels c et d tels que c 6 f(x) 6 d pour tout x ∈ [a; b].

Supposons (par l’absurde) qu’il n’existe aucun nombre réel d tel que f(x) 6 d quel
que soit x ∈ [a; b]. Alors, pour tout n ∈ N, il existe au moins un élément an ∈ [a; b] pour
lequel f(an) > f(a)+n. Et vu que f est continue dans [a; b], et donc en particulier dans
[a; an], il existe, selon le théorème des valeurs intermédiaires, pour tout n ∈ N, au moins
un élément ãn ∈ [a; an] ⊂ [a; b] pour lequel f(ãn) = f(a) + n.

• n = 0 : s’il existe plusieurs éléments ã0 pour lesquels f(ã0) = f(a) + 0, un seul
est retenu : l’élément u0 tel que u0 = a.
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• n = 1 : s’il existe plusieurs éléments ã1 pour lesquels f(ã1) = f(a) + 1, tous ces
éléments ont un point commun : ils ne sont pas égaux à u0 (s’ils l’étaient, f ne
satisferait pas la définition d’une fonction) ; ces éléments ne peuvent alors qu’être
strictement plus grands que u0, vu que u0 est le plus petit élément de l’intervalle
[a; b]. Parmi ces éléments (à supposer qu’il y en a plusieurs), un seul est retenu :
c’est l’élément u1, qui est le plus petit nombre réel strictement plus grand que u0,
pour lequel f(u1) = f(a) + 1 I.

• n = 2 : s’il existe plusieurs éléments ã2 pour lesquels f(ã2) = f(a) + 2, ces
éléments ne peuvent être que strictement plus grands que u1. En effet, si ce
n’était pas le cas, i.e. s’il y avait un élément ã2 compris strictement entre u0 et u1
(u0 < ã2 < u1), alors il devrait exister un élément ā1 compris strictement entre u0
et ã2 (u0 < ā1 < ã2), satisfaisant f(ā1) = f(a) + 1 (vu que, selon le théorème des
valeurs intermédiaires, f prendrait, dans l’intervalle [u0 ; ã2], toutes les valeurs de
l’intervalle [f(u0) ; f(ã2)], i.e. toutes les valeurs de l’intervalle [f(a) ; f(a)+2], en
particulier la valeur f(a)+1) ; ce qui serait en contradiction avec le fait que u1 est
le plus petit nombre strictement plus grand que u0 pour lequel f(u1) = f(a) + 1.
Parmi les éléments ã2 pour lesquels f(ã2) + 2 (à supposer qu’il y en a plusieurs),
un seul est retenu : c’est l’élément u2, qui est le plus petit nombre réel strictement
plus grand que u1

II.

• n = 3 : ...

En raisonnant ainsi de suite, on parvient à exhiber une suite (un)n∈N satisfaisant l’égalité
f(un) = f(a)+n pour tout n ∈ N, qui est strictement croissante (i.e. telle que un < un+1

pour tout n ∈ N) et dont les éléments sont tous dans l’intervalle [a; b] (i.e. a 6 un 6 b
pour tout n ∈ N). La proposition A.1.5 et le lemme A.1.8 (cf. section A.1 de l’annexe A)
permettent alors d’affirmer que la suite (un) converge ; notons u sa limite. Ainsi, en
résumé :

lim
n→∞

un = u ⇒ lim
n→∞

f(un) = lim
n→∞

(
f(a) + n

)
= ∞ ,

ce qui est contradictoire avec la propriété de continuité de f dans [a; b]. En conséquence,
il existe un nombre réel d tel que f(x) 6 d pour tout x ∈ [a; b]. Un raisonnement similaire
à celui qui vient d’être mené permet de conclure qu’il existe aussi un nombre réel c tel
que c 6 f(x) pour tout x ∈ [a; b].

Le fait qu’il existe un nombre réel c tel que c 6 f(x) pour tout x ∈ [a; b], ainsi
qu’un nombre réel d tel que f(x) 6 d pour tout x ∈ [a; b], permet de dire, plus géné-
ralement, qu’il existe des nombres réels qui sont tous plus petits ou égaux à f(x) pour
tout x ∈ [a; b], ainsi que des nombres réels qui sont tous plus grands ou égaux à f(x)

I. L’élément u1 ne peut pas être infiniment proche de u0 ; dire qu’il pourrait l’être reviendrait à
dire que f n’est pas continue en u0 (vu que f(u0) = f(a) et f(u1) = f(a) + 1). Aussi, u1 ne peut pas
être infiniment proche d’un élément ℓ 6= u0 (sur l’axe x) tel que f(ℓ) 6= f(a) + 1 ; dire qu’il pourrait
l’être reviendrait à dire que f n’est pas continue en ℓ (vu que f(ℓ) 6= f(a) + 1 = f(u1). De tels propos
montrent que le concept de plus proche élément de u0 dont l’image par f vaut f(a) + 1 est bien défini.

II. Un tel élément est bien défini ; pour s’en convaincre, il suffit de raisonner comme cela a été fait
précédemment avec l’élément u1.
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x

y

a b

v0

v1
v2
M

m

u0 u1u1 u2O

pour tout x ∈ [a; b]. Parmi les nombres réels plus pe-
tits ou égaux à f(x) pour tout x ∈ [a; b], il en existe
un, noté m, qui est le plus grand possible ; et parmi les
nombres réels plus grands ou égaux à f(x) pour tout
x ∈ [a; b], il en existe un, noté M , qui est le plus petit
possible. Par définition, m 6 M . Si m = M , la conclu-
sion du théorème est immédiate ; en effet, si m = M ,
alors nécessairement f(a) = m = M = f(b), ce qui
montre qu’il existe au moins un élément dans [a; b] où f
atteint son minimum m (respectivement son maximum M). Supposons à présent que
m < M ; montrons alors qu’il existe au moins un élément xm ∈ [a; b] tel que m = f(xm),
ainsi qu’au moins un élément xM ∈ [a; b] tel que M = f(xM).

• Au nombre réel v0 =
1
2
(m+M) peut être assigné au moins un nombre réel dans

[a; b] tel que f évaluée en ce nombre est égale à v0. S’il existe plusieurs de ces
nombres, on en choisit un et on le note u0.

• Au nombre réel v1 =
1
2
(v0 +M) peut être assigné au moins un nombre réel dans

[a; b] tel que f évaluée en ce nombre est égale à v1. S’il existe plusieurs de ces
nombres, ceux-ci ne peuvent qu’être strictement plus petits ou strictement plus
grands que u0. Parmi ces nombres, deux sont retenus :

⋄ l’élément u1, qui, s’il existe, est le plus grand nombre réel strictement plus
petit que u0, pour lequel f(u1) = v1 ;

⋄ l’élément u1, qui, s’il existe, est le plus petit nombre réel strictement plus
grand que u0, pour lequel f(u1) = v1.

Noter que u1 et u1 n’existent pas nécessairement tous les deux, mais l’un d’eux,
au moins, existe III.

• Au nombre réel v2 =
1
2
(v1 +M) peut être assigné au moins un nombre réel dans

[a; b] tel que f évaluée en ce nombre est égale à v2. S’il existe plusieurs de ces
nombres, ceux-ci ne peuvent qu’être strictement plus petits que u1 ou stricte-
ment plus grands u1. En effet, s’il y avait, par exemple, un élément ũ2 compris
strictement entre u1 et u0 (u1 < ũ2 < u0), alors il devrait exister un élément ū1
compris strictement entre ũ2 et u0 (ũ2 < ū1 < u0), satisfaisant f(ū1) = v1 (vu
que, selon le théorème des valeurs intermédiaires, f prendrait, dans l’intervalle
[ũ2 ; u0], toutes les valeurs de l’intervalle [f(u0) ; f(ũ2)], i.e. toutes les valeurs de
l’intervalle [v0 ; v2], en particulier la valeur v1) ; ce qui serait en contradiction avec
le fait que u1 est le plus grand élément strictement plus petit que u0 pour lequel
f(u1) = v1. Tout élément tel que f évaluée en cet élément est égale à v2 est
donc effectivement soit strictement plus petit que u1, soit strictement plus grand

III. L’élément u1, s’il existe, ne peut pas être infiniment proche de u0 ; dire qu’il pourrait l’être
reviendrait à dire que f n’est pas continue en u0 (vu que f(u0) = v0 et f(u1) = v1). Aussi, u1 ne
peut pas être infiniment proche d’un élément ℓ 6= u0 (sur l’axe x) tel que f(ℓ) 6= v1 ; dire qu’il pourrait
l’être reviendrait à dire que f n’est pas continue en ℓ (vu que f(ℓ) 6= v1 = f(u1). Le même type de
raisonnement s’applique à u1. De tels propos montrent que le concept de plus proche élément de u0

dont l’image par f vaut v1 est bien défini.
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que u1. Parmi ces éléments, deux sont retenus :

⋄ l’élément u2, qui, s’il existe, est le plus grand nombre réel strictement plus
petit que u1, pour lequel f(u2) = v2 ;

⋄ l’élément u2, qui, s’il existe, est le plus petit nombre réel strictement plus
grand que u1, pour lequel f(u2) = v2.

Noter que u2 et u2 n’existent pas nécessairement tous les deux, mais l’un d’eux
au moins existe IV. Typiquement, si u1 n’existe pas, u2 n’existe pas non plus ; ou
si u1 n’existe pas, u2 n’existe pas non plus.

• Au nombre réel v3 =
1
2
(v2 +M) peut être assigné au moins un nombre réel dans

[a; b] tel que f évaluée en ce nombre est égale à v3 ...

Remarquer que, pour chaque vn, où n ∈ N, il existe au moins un élément un ∈ [a; b] ;
si ce n’était pas le cas, cela impliquerait que f n’est pas continue dans [a; b], et/ou m
n’est pas le plus grand nombre réel tel que m 6 f(x) pour tout x ∈ [a; b], et/ou M
n’est pas le plus petit nombre réel tel que f(x) 6M pour tout x ∈ [a; b]. En continuant
ainsi de suite le raisonnement précédent, on arrive à exhiber au moins une suite (un)n∈N
satisfaisant l’égalité f(un) = vn pour tout n ∈ N, qui est soit strictement croissante
(i.e. telle que un < un+1 pour tout n ∈ N), soit strictement décroissante (i.e. telle que
un > un+1 pour tout n ∈ N), et dont les éléments sont tous dans l’intervalle [a; b] (i.e.
a 6 un 6 b pour tout n ∈ N). La proposition A.1.5 et le lemme A.1.8 (cf. section A.1 de
l’annexe A) permettent alors d’affirmer que la suite (un) converge ; notons xM sa limite.
Par ailleurs, comme :

v0 =
1

2
(m+M) ,

v1 =
1

2
(v0 +M) =

1

2

(
1

2
(m+M) +M

)

=
1

22
m+

(

1− 1

22

)

M ,

v2 =
1

2
(v1 +M) =

1

2

[
1

22
m+

(

1− 1

22

)

M +M

]

=
1

23
m+

(

1− 1

23

)

M ,

...
...

...

vn =
1

2n+1
m+

(

1− 1

2n+1

)

M ,

...
...

...

alors limn→∞ vn =M . Ainsi, en résumé :

lim
n→∞

un = xM ⇒ lim
n→∞

f(un) = lim
n→∞

vn = M .

Le fait que f est continue dans [a; b] permet alors de conclure qu’il existe un nombre réel
xM ∈ [a; b] tel que f(x) 6 f(xM) = M pour tout x ∈ [a; b] ; autrement dit, f atteint

IV. Un tel élément est bien défini ; pour s’en convaincre, il suffit de raisonner comme cela a été fait
précédemment avec les éléments u1 et u1.
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une valeur maximale (qui est M) dans [a; b]. Un raisonnement similaire dans le cas du
nombre m mène à la conclusion qu’il existe aussi un nombre réel xm ∈ [a; b] tel que
f(x) > f(xm) = m pour tout x ∈ [a; b] ; autrement dit, f atteint une valeur minimale
(qui est m) dans [a; b].

Enfin, le fait que f prend, dans [a; b], au moins une fois les valeurs m etM , ainsi que
toutes les valeurs comprises entre m et M est une conséquence directe du théorème des
valeurs intermédiaires : comme f est continue dans [a; b], et vu que xm, xM ∈ [a; b] (où
xm et xM sont les éléments obtenus précédemment, tels que f(xm) = m et f(xM) =M),
alors f est continue dans l’intervalle fermé délimité par xm et xM ; d’où la conclusion. �

B.2.5 Proposition : Soit f : I → J une fonction réelle, continue et strictement croissante
(respectivement strictement décroissante) dans I, où I est un intervalle ouvert dans R.
Supposons que J = f(I) ; autrement dit, supposons que J est l’ensemble image If de f .
Alors :

• f : I → J est bijective ;
• l’ensemble J = f(I) est un intervalle ouvert de R ;
• f : I → J admet une fonction réciproque rf : J → I qui est continue et strictement
croissante (respectivement strictement décroissante) dans J .

Preuve : Soit f : I → J une fonction continue et strictement croissante (respectivement
strictement décroissante) dans I, où I est un intervalle dans R. Supposons que J = f(I).

• Montrons que f : I → J est bijective ; autrement dit, montrons que f : I → J est
à la fois injective et surjective.

⋄ Soient x1, x2 ∈ I tels que x1 6= x2. Comme f est strictement croissante (res-
pectivement strictement décroissante) dans I, alors nécessairement f(x1) 6=
f(x2). En effet, soit x1 < x2 et donc f(x1) < f(x2) (respectivement f(x1) >
f(x2)), soit x2 < x1 et donc f(x2) < f(x1) (respectivement f(x2) > f(x1)) ;
dans tous les cas, f(x1) 6= f(x2) ; ce qui prouve l’injectivité de f : I → J .

⋄ La surjectivité de f : I → J est garantie par le fait que J = f(I).

• Montrons que J = f(I) est un intervalle. À cet effet, considérons deux éléments
y1, y2 ∈ J tels que y1 < y2. Le fait que f : I → J est bijective permet d’affirmer
qu’il existe un unique élément x1 ∈ I tel que y1 = f(x1) et un unique élément
x2 ∈ I tel que y2 = f(x2) ; et comme f est strictement croissante (respectivement
strictement décroissante) dans I, alors x1 < x2 (respectivement x1 > x2). En
outre :

⋄ vu que f : I → J est bijective et strictement croissante (respectivement stric-
tement décroissante) dans I, alors, à tout nombre réel x tel que x1 6 x 6 x2
(respectivement x2 6 x 6 x1) correspond un nombre réel y = f(x) tel que
y1 6 y 6 y2 ;

⋄ vu que f est continue dans I, et donc en particulier dans [x1 ; x2] (respec-
tivement dans [x2 ; x1]), alors, selon le théorème des valeurs intermédiaires,
pour tout y ∈ [y1 ; y2], il existe un élément x ∈ [x1 ; x2] (respectivement
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x ∈ [x2; x1]) tel que y = f(x) ; cet élément x est unique, vu que f : I → J est
bijective.

Les observations qui viennent d’être faites peuvent être synthétisées comme suit :
f([x1 ; x2]) = [y1 ; y2] (respectivement f([x2 ; x1]) = [y1 ; y2]) ; ce qui revient à
dire que l’image par f d’un segment de droite (d’extrémités x1 et x2), sur l’axe x,
est un segment de droite (d’extrémités y1 et y2), sur l’axe y (les axes x et y
étant ceux du système de coordonnées cartésiennes canonique Oxy du plan eucli-
dien R2). Le fait que ce résultat soit valable pour tous y1, y2 ∈ J tels que y1 < y2
permet de conclure que l’ensemble J = f(I) est un intervalle.

Montrons encore que l’intervalle J est ouvert. Pour cela, considérons un élé-
ment y0 ∈ J quelconque. Le fait que f : I → J est bijective permet d’affirmer
qu’il existe un unique élément x0 ∈ I tel que y0 = f(x0). Aussi, I étant un inter-
valle ouvert, il existe un nombre réel γ > 0 tel que [x0 − γ ; x0 + γ] ⊂ I. Notons
x1 = x0 − γ et x2 = x0 + γ ; notons aussi y1 = f(x1) et y2 = f(x2). Vu que
f : I → J est strictement croissante (respectivement strictement décroissante) et
continue dans I, alors f([x1 ; x2]) = [y1 ; y2] ⊂ J (respectivement [y2 ; y1] ⊂ J)
d’une part, et d’autre part :

lim
x→x1
x>x1

f(x) = f(x1) et lim
x→x2
x<x2

f(x) = f(x2) .

Par conséquent :

f
(
]x1 ; x2[

)
= ]f(x1) ; f(x2)[ ⊂ J .

En résumé, à tout élément y0 ∈ J , il est possible d’associer un intervalle ouvert
dans J , qui est une image par f d’un intervalle ouvert dans I. Cette conclusion
prouve que l’intervalle J est ouvert. En effet, si J n’était pas ouvert, il ne serait pas
possible d’assigner à tout élément de J un intervalle ouvert qui serait entièrement
dans J ; cela ne serait typiquement pas possible en une borne de J .

• Montrons que la fonction f : I → J admet une fonction réciproque rf : J → I qui
est continue et strictement croissante (respectivement strictement décroissante)
dans J . Pour cela, commençons par rappeler que f : I → J est bijective ; f : I → J
admet donc une réciproque rf : J → I qui est elle aussi bijective.

⋄ rf : J → I est strictement croissante (respectivement strictement décrois-
sante) dans J . Pour s’en convaincre, il convient de considérer deux éléments
y1, y2 ∈ J tels que y1 < y2. Le fait que f est bijective et strictement crois-
sante (respectivement strictement décroissante) dans I implique qu’il existe
un unique élément x1 ∈ I et un unique élément x2 ∈ I tels que y1 = f(x1),
y2 = f(x2) et x1 < x2 (respectivement x1 > x2) ; en effet, x1 ne peut en aucun
cas être égal à x2 : si c’était le cas, f ne serait alors pas une fonction ; aussi,
x1 ne peut pas être strictement plus grand (respectivement strictement plus
petit) que x2 : si c’était le cas, alors f ne serait pas strictement croissante (res-
pectivement décroissante). Or, x1 =

rf(y1) et x2 =
rf(y2). Donc, en résumé, si

y1 < y2, alors
rf(y1) <

rf(y2) (respectivement rf(y1) >
rf(y2)).
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⋄ rf : J → I est continue dans J . Pour s’en convaincre, il suffit de noter que f est
surjective et strictement croissante (respectivement strictement décroissante),
puis de reprendre le deuxième point de la preuve du corollaire qui suit et de
l’appliquer à rf . �

B.2.6 Corollaire : Soit f : I → J une fonction réelle, surjective et strictement croissante
(respectivement strictement décroissante) dans I, où I est un intervalle ouvert dans R.
Supposons que J est un intervalle dans R. Alors :

• f est continue dans I ;
• f : I → J est bijective ;
• l’intervalle J est ouvert ;
• f : I → J admet une fonction réciproque rf : J → I qui est continue et strictement
croissante (respectivement strictement décroissante) dans J .

Preuve : Soit f : I → J une fonction réelle, surjective et strictement croissante (respecti-
vement strictement décroissante) dans I, où I est un intervalle ouvert dans R. Supposons
que J est un intervalle dans R.

• Montrons que f est continue dans I. Pour cela, considérons un nombre réel ε > 0
quelconque et x0 ∈ I un élément quelconque de I. Comme I est un intervalle
ouvert, il existe un nombre réel γ > 0 tel que [x0 − γ ; x0 + γ] ⊂ I. Notons
x1 = x0 − γ et x2 = x0 + γ ; notons aussi y0 = f(x0), y1 = f(x1) et y2 =
f(x2). Comme f : I → J est surjective et strictement croissante (respectivement
strictement décroissante) dans I, et que J ⊂ R est un intervalle, alors :

[y1 ; y2] = f
(
[x1 ; x2]

)
(respectivement [y2 ; y1] = f

(
[x1 ; x2]

)
) .

En effet, comme J est un intervalle et que y1, y2 ∈ J , alors [y1 ; y2] ⊂ J (respecti-
vement [y2 ; y1] ⊂ J) ; aussi, comme f : I → J est surjective, il existe, pour tout
élément y ∈ [y1 ; y2] (respectivement pour tout élément y ∈ [y2; y1]), un élément
x ∈ I tel que y = f(x) ; et vu que f est strictement croissante (respectivement
strictement décroissante dans I), l’élément x est nécessairement dans [x1 ; x2], de
sorte que x1 6 x 6 x2 implique bien f(x1) = y1 6 f(x) = y 6 f(x2) = y2
(respectivement f(x1) = y1 > f(x) = y > f(x2) = y2). Posons à présent
ζ = min

{
|y1 − y0| ; |y2 − y0|

}
(i.e. posons ζ comme étant la plus petite des

deux distances |y1 − y0| et |y2 − y0|) ; alors [y0 − ζ ; y0 + ζ ] ⊂ [y1 ; y2] ⊂ J . Po-
sons ensuite η = min{ζ ; ε} (i.e. posons η comme étant le plus petit des deux
nombres ζ et ε). Alors [y0 − η ; y0 + η] ⊂ [y0 − ζ ; y0 + ζ ] ⊂ J ; les éléments y3
et y4, donnés respectivement par y3 = y0−η et y4 = y0+η, sont donc dans J . En
conséquence, comme f est surjective, il existe deux éléments x3, x4 ∈ I tels que
y3 = f(x3) et y4 = f(x4). Posons finalement δ = min

{
|x3 − x0| ; |x4 − x0|

}
; alors

[x0−δ ; x0+δ] ⊂ [x3 ; x4]. Et comme f est strictement croissante (respectivement
strictement décroissante) dans I, alors :

f
(
[x0 − δ ; x0 + δ]

)
⊂ [y0 − ε ; y0 + ε] .
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Ainsi, pour tout nombre réel ε > 0, il existe un nombre réel δ > 0 tel que :

x ∈ [x0 − δ ; x0 + δ] ⇒ f(x) ∈ [y0 − ε ; y0 + ε] ,

ou, de manière équivalente :

|x− x0| 6 δ ⇒
∣
∣f(x)− y0

∣
∣ =

∣
∣f(x)− f(x0)

∣
∣ 6 ε .

La fonction f : I → J est donc continue en x0 ∈ I. Le raisonnement étant valable
pour tout x0 ∈ I, la fonction f : I → J est continue dans tout l’intervalle ouvert I.

• Pour montrer que f : I → J est bijective, il suffit de raisonner comme dans le
premier point de la preuve de la proposition précédente ; noter que la surjectivité
de f : I → J n’a pas besoin d’être prouvée ici, vu qu’elle figure dans les hypothèses
du corollaire.

• Pour montrer que l’intervalle J est ouvert, il suffit de raisonner comme dans le
deuxième point de la preuve de la proposition précédente.

• Pour montrer que la fonction f : I → J admet une fonction réciproque rf :
J → I qui est continue et strictement croissante (respectivement strictement
décroissante) dans J , il suffit de raisonner comme dans le troisième point de la
preuve de la proposition précédente. �



Annexe C

Fonctions usuelles

C.1 Fonctions polynomiales

C.1.1 Expression d’une fonction polynomiale

On appelle fonction polynomiale toute fonction de la forme :

P : R −→ R

x 7−→ y = P (x) ,

où :
P (x) = an x

n + an−1 x
n−1 + . . .+ a1 x+ a0 , (C.1.1)

an, an−1, . . ., a1, a0 étant des coefficients réels et n un nombre naturel. Dans le cas où
an 6= 0, on dit que P est de degré n.

C.1.2 Domaine de définition et ensemble image

Le domaine de définition DP de la fonction P , donnée par l’expression C.1.1, est l’en-
semble R dans son intégralité. Quant à l’ensemble image, il s’agit :

• de l’ensemble R si le degré de P est impair,

• d’un intervalle de la forme [a; ∞[ ou ]−∞; b], où a et b sont des nombres réels,
si le degré de P est pair.

C.1.3 Continuité

La fonction P est continue dans R. Elle ne possède, en outre, aucune asymptote, ni
verticale, ni horizontale, ni oblique.

C.1.4 Dérivée

Pour pouvoir écrire l’expression de la dérivée d’une fonction polynomiale, il convient
d’énoncer en premier lieu le résultat suivant.



430 C Fonctions usuelles

C.1.1 Proposition : Soit la fonction :

pk : R −→ R

x 7−→ xk ,

où k est un nombre naturel non nul. Alors pk est dérivable dans tout R. En outre, la
dérivée p′k de pk s’écrit :

p′k(x) =

{

1 si k = 1

k xk−1 si k > 2
.

Preuve : Soit pk : R → R la fonction donnée par pk(x) = xk, où k ∈ N∗.

• k = 1 : dans ce cas, pk(x) = x ; et alors, pour tout x ∈ R :

p′k(x) = lim
∆x→0

pk(x+∆x)− pk(x)

∆x
= lim

∆x→0

x+∆x− x

∆x

= lim
∆x→0

∆x

∆x
= lim

∆x→0
1 = 1 .

• k > 2 : dans ce cas, en se référant au triangle de Pascal (cf. section 1.2 du
chapitre 1) :

p′k(x) = lim
∆x→0

pk(x+∆x)− pk(x)

∆x
= lim

∆x→0

(x+∆x)k − xk

∆x

= lim
∆x→0

xk + k xk−1∆x+ . . .+ k x∆xk−1 +∆xk − xk

∆x

= lim
∆x→0

k xk−1∆x+ . . .+ k x∆xk−1 +∆xk

∆x

= lim
∆x→0

(
k xk−1 + . . .+ k x∆xk−2 +∆xk−1

)
= k xk−1 ;

en effet, les termes de l’expression + . . .+ k x∆xk−2 +∆xk−1 tendent tous vers 0
lorsque ∆x tend vers 0, vu qu’ils contiennent chacun ∆x à une puissance entière,
positive et non nulle.

Les expressions obtenues ici montrent, en outre, que p′k est définie dans tout R, i.e.
que pk est dérivable dans tout R. �

C.1.2 Remarques : • On peut se demander pourquoi, dans la proposition précé-
dente, on n’a pas écrit l’expression de p′k en une seule fois (sans distinguer les cas
k = 1 et k > 2) ; car en effet, à pk(x) = x correspond p′k(x) = 1, ce qui peut a
priori s’écrire p′k(x) = 1 = x0 = 1 · x1−1. On peut aussi se demander pourquoi le
cas k = 0 n’est pas inclus ; car en effet, à pk(x) = 1, qui peut se noter a priori
pk(x) = 1 = x0, correspond p′k(x) = 0 · x−1 = 0, ce qui est en accord avec le
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fait que la dérivée d’une fonction constante dans R est la fonction qui vaut zéro
dans tout R. La réponse à ces questions se trouve dans le fait que l’expression x0

n’est pas définie en x = 0 (00 étant une forme indéterminée), alors que la fonction
constante et égale à 1, elle, est définie dans tout R.

• Le résultat p′k(x) = k xk−1, donné dans la proposition précédente, s’applique
également dans le cas où k ∈ Z∗

− et x ∈ R∗. Pour le voir, il convient de remarquer,
en premier lieu, que pour tout k ∈ Z∗

− et tout x ∈ R∗ :

xk =
1

x|k|
.

Ainsi, en apppliquant la formule de dérivation de l’inverse d’une fonction :

d

dx

(
xk
)
=

d

dx

(
1

x|k|

)

= −|k| x|k|−1

(
x|k|
)2 = −−k x|k|−1

x2|k|

= k x|k|−1−2|k| = k x−|k|−1 = k x−(−k)−1 = k xk−1 .

La fonction polynomiale P , donnée par l’expression C.1.1, admet pour dérivée la
fonction P ′ : R → R, qui s’écrit :

P ′(x) = an nx
n−1 + an−1 (n− 1) xn−2 + . . .+ a1 .

C.1.3 Remarques : • L’expression précédente se déduit de la proposition énoncée
précédemment, ainsi que de la propriété de linéarité de l’opération de dérivation.

• La dérivée d’une fonction polynomiale de degré n est, manifestement, une fonction
polynomiale de degré n− 1.

C.1.4 Exemple : Soit f : R → R la fonction polynomiale du deuxième degré, donnée par
f(x) = 3 x2 − 5 x+ 4. Alors f admet pour dérivée la fonction f ′ : R → R donnée par :

f ′(x) = 3 · 2 x1 − 5 · 1 = 6 x− 5 .

C.2 Fonctions rationnelles

C.2.1 Expression d’une fonction rationnelle

On appelle fonction rationnelle toute fonction de la forme :

R : DR −→ R

x 7−→ y = R(x) ,

où :

R(x) =
P (x)

Q(x)
, (C.2.1)

P (x) et Q(x) étant des fonctions polynomiales.
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C.2.2 Domaine de définition et ensemble image

Le domaine de définition DR de la fonction R, donnée par l’expression C.2.1, est l’en-
semble de tous les nombres réels x qui n’annulent pas le dénominateur Q(x) :

DR =
{
x ∈ R

∣
∣Q(x) 6= 0

}
.

Pour ce qui est de l’ensemble image, sa forme dépend sensiblement des polynômes P (x)
et Q(x). Il n’est, de fait, pas envisageable d’exhiber une expression générale ici.

C.2.3 Continuité et asymptotes

La fonction R est continue en chaque point de son domaine de définition. Si elle possède
une ou plusieurs discontinuité(s), celle(s)-ci ne peu(ven)t être que de type trou ou de
type asymptotique.

La fonction R peut posséder une ou plusieurs asymptotes verticales, ainsi qu’une
asymptote horizontale ou une asymptote oblique.

⋄ Si R admet une asymptote verticale, cette asymptote passe nécessairement par
un point de l’axe x qui n’appartient pas au domaine de définition.

⋄ R admet une asymptote horizontale si et seulement si k 6 ℓ, où k est le de-
gré de P (x) et ℓ le degré de Q(x). Ce résultat découle de la définition même
d’asymptote horizontale.

⋄ R admet une asymptote oblique si et seulement si k = ℓ+1, où k est le degré de
P (x) et ℓ le degré de Q(x). Ce résultat découle de la définition même d’asymptote
oblique.

Si R admet une asymptote horizontale, cette asymptote est la même à droite et à gauche.
Il en est de même dans le cas d’une asymptote oblique.

C.2.4 Dérivée

La fonction rationnelle R, donnée par l’expression C.2.1, admet pour dérivée la fonction
R′ : DR′ → R, qui s’écrit :

R′(x) =
P ′(x)Q(x)− P (x)Q′(x)

(
Q(x)

)2 .

C.2.1 Remarques : • L’expression précédente se déduit directement de la formule
de dérivation d’un quotient de fonctions. Le fait que la dérivée d’une fonction
polynomiale est une fonction polynomiale et que le produit de deux fonctions po-
lynomiales est une fonction polynomiale permet d’affirmer que R′ est, comme R,
une fonction rationnelle.

• La fonction R et sa dérivée R′ ont le même domaine de définition. Ce résultat
s’explique par le fait que le(s) éventuel(s) nombre(s) réel(s) qui annulent

(
Q(x)

)2

dans la précédente expression sont exactement ceux qui annulent Q(x) dans l’ex-
pression C.2.1.
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C.2.2 Exemple : Soit f la fonction rationnelle donnée par :

f(x) =
2 x2 − 4 x+ 5

x− 2
.

Cette fonction admet pour dérivée la fonction f ′ qui s’écrit :

f ′(x) =
(4 x− 4)(x− 2)− (2 x2 − 4 x+ 5) · 1

(x− 2)2

=
4 x2 − 12 x+ 8− 2 x2 + 4 x− 5

(x− 2)2

=
2 x2 − 8 x+ 3

(x− 2)2
.

Noter que le domaine de définition Df ′ de f ′ est le même que le domaine de définition Df

de f :
Df = Df ′ = Rr{2} .

C.3 Fonctions logarithmes

C.3.1 Définition d’un logarithme

On appelle logarithme, et on note Log, toute fonction définie dans R∗
+ :

Log : R∗
+ −→ R

x 7−→ y = Log(x) , (C.3.1)

qui satisfait les trois conditions suivantes :

• Log n’est pas la fonction qui vaut zéro dans tout R∗
+ ,

• Log est continue dans R∗
+ ,

• Log transforme un produit en une somme :

Log(x1 x2) = Log(x1) + Log(x2) , pour tous x1, x2 ∈ R∗
+ .

C.3.2 Sens du terme logarithme

Le terme logarithme est une traduction française de l’expression latine logarithmus,
expression qui a pour origine deux mots grecs :

• λóγoς (logos), qui se traduit ici par rapport,

• αριϑµoς (arithmos), qui signifie nombre.

Les fonctions dont il est question dans la présente section sont définies non pas par une
expression qui indique comment se transforme un nombre réel, mais par la façon dont
se métamorphose un rapport, i.e. un lien entre nombres réels : un produit qui devient
une somme. Le qualificatif logarithme est donc tout à fait adapté au contexte.
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C.3.3 Aspect historique

Le concept de logarithme a vu le jour au tournant du XVIe au XVIIe siècle. Après avoir
quasiment effleuré l’esprit de Simon Stevin I, il a germé chez Jobst Bürgi II, ainsi que chez
John Napier III, et ce indépendamment, sans que ces deux hommes n’aient correspondu.
Napier ayant publié ses travaux avant Bürgi, l’invention des logarithmes a été attribuée
au premier et non au deuxième.

Que ce soit Napier ou Bürgi, tous les deux visaient le même objectif : simplifier
les calculs numériques particulièrement fastidieux. À cet effet, ils ont créé, chacun de
leur côté, une table mettant en relation les éléments d’une suite géométrique avec les
éléments d’une suite arithmétique. La correspondance entre suite géométrique et suite
arithmétique, Napier l’a baptisée logarithme.

Il est intéressant de relever que le logarithme de Napier n’est pas une fonction loga-
rithme au sens de la définition C.3.1 ; et pour cause : il ne transforme pas un produit en
une somme. D’une étude des deux conditions suivantes :

• transformation d’un produit en une somme,

• transformation d’une suite géométrique en une suite arithmétique,

il ressort que la première est plus forte que la deuxième : une correspondance qui trans-
forme une suite géométrique en une suite arithmétique ne transforme pas nécessairement
un produit en une somme ; alors que toute correspondance transformant un produit en
une somme transforme une suite géométrique en une suite arithmétique. Cette dernière
assertion se vérifie aisément en prenant le terme général un d’une suite géométrique
quelconque (un) et en lui appliquant une fonction logarithme telle que donnée dans la
définition C.3.1 ; concrètement, en écrivant :

un = u0 q
n , n ∈ N ,

q étant la raison de la suite et u0 le zéroième terme, il vient :

Log(un) = Log(u0 q
n) = Log(u0 q · . . . · q

︸ ︷︷ ︸

= qn

)

= Log(u0) + Log(q) + . . .+ Log(q)
︸ ︷︷ ︸

=nLog(q)

= Log(u0) + nLog(q) ;

I. Simon Stevin était, entre autres, un mathématicien et un ingénieur flamand, né à Bruges (à
l’époque dans les Pays-Bas espagnols, aujourd’hui en Belgique) en 1548 et mort à Leyde (à l’époque
dans les Provinces-Unies, aujourd’hui aux Pays-Bas) en 1620. Il est demeuré célèbre notamment pour
l’invention d’un système d’écriture décimale des nombres.

II. Jobst (noté parfois Joost, ou Jost) Bürgi était un horloger et mathématicien helvétique, né en 1552
à Lichtensteig (dans le Toggenburg) et mort en 1632 à Kassel, dans le Land de Hesse (dans l’actuelle
Allemagne).
III. John Napier était un mathématicien écossais, né en 1550 à Merchiston Castle (dans le manoir

familial, se trouvant près d’Edimbourg) et mort en 1617 dans le même lieu. Son nom de famille a eu,
semble-t-il, des orthographes très diverses. Si c’est l’écriture Neper qui a été retenue dans la langue
française, c’est en raison du fait que la prononciation française du mot Neper correspond au mieux à
la prononciation écossaise du nom Napier.
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or, Log(u0) + nLog(q) peut être vu comme le terme général vn d’une suite arithmé-
tique (vn) : vn = v0 + n r, où r = Log(q) est la raison de la suite et v0 = Log(u0) le
zéroième terme.

Plus explicite, la condition de transformation d’un produit en une somme s’est impo-
sée petit à petit dans la définition de logarithme, au détriment de la condition moins forte
de transformation d’une suite géométrique en une suite arithmétique ; elle est devenue
officielle, en quelque sorte, à partir du milieu du XVIIe siècle.

C.3.4 Concept de table logarithmique

Les tables construites par Napier et Bürgi sont les prototypes de ce que l’on appelle com-
munément des tables de logarithmes, ou tables logarithmiques. Avec l’apparition de telles
tables, au début du XVIIe siècle, des calculs numériques réputés jusqu’alors pénibles sont
devenus abordables, voire élémentaires. À titre d’exemple, on peut mentionner l’extrac-
tion de la racine n-ième d’un nombre : avec une table logarithmique, l’opération se réduit
à une division par n, ce qui est effectivement plus simple. Explicitons la procédure d’un
tel calcul ; à cet effet, considérons une table logarithmique formée de deux colonnes de
nombres, les nombres de la colonne de droite étant obtenus à partir des nombres de
la colonne de gauche au moyen d’un logarithme, i.e. au moyen d’une correspondance
qui transforme un produit en une somme. Pour un nombre a dont on cherche la racine
n-ième :

• dans la colonne de gauche de la table, on cherche le nombre â le plus proche de a ;

• dans la colonne de droite, on relève le nombre α̂ = Log(â) ;

• on calcule le nombre γ̂ = Log(â)
n

;

• dans la colonne de droite, on cherche le nombre γ̌ le plus proche de γ̂ ;

• dans la colonne de gauche, on relève le nombre č dont le logarithme est le nombre γ̌
dans la colonne de droite ; le nombre č est alors approximativement égal à la racine
n-ième de a.

Cette marche à suivre se justifie par le fait que si c est la racine
n-ième du nombre a, alors cn = a et donc :

Log(cn) = Log(a) ⇔ nLog(c) = Log(a) .

Noter que l’approximation č de c est d’autant meilleure que la
table est « dense », i.e. que le quotient entre deux éléments consé-
cutifs de la colonne de gauche, dans la table, est proche de 1.

x Log(x)
...

...
č Log(č)
...

...
â Log(â)
...

...

Les tables logarithmiques ont été largement utilisées jusqu’au milieu de XXe siècle ;
avec l’apparition des machines à calculer électroniques, dans la deuxième moitié du même
siècle, elles sont peu à peu tombées en désuétude.
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C.3.5 Les logarithmes dans la perception humaine

Plusieurs phénomènes physiques perçus par l’être humain ont un lien avec le concept
de logarithme. Un exemple : la hauteur d’un son. Sur le plan physique, la hauteur d’un
son est caractérisée par une grandeur appelée fréquence, notée généralement ν. Sur le
plan physiologique (i.e. sur le plan de la perception humaine), la hauteur d’un son se
mesure par rapport à un son de référence, appelé généralement fondamentale, et elle
est caractérisée par ce que l’on appelle un intervalle : une prime, une seconde, une
tierce, une quarte, une quinte, une sixte, une septième, une octave... Lorsqu’un son passe
d’une fréquence ν0 à une fréquence ν1 = 2 ν0, il est perçu, par l’être humain, comme étant
monté d’une octave ; à un rapport de fréquence égal à 2, sur le plan physique, correspond
donc, sur le plan physiologique, un intervalle d’une octave. Lorsque le son passe de la
fréquence ν1 à la fréquence ν2 = 2 ν1, il est à nouveau perçu comme étant monté d’une
octave, vu que le rapport de fréquence entre ν2 et ν1 vaut 2 également. En conséquence,
lorsque le son passe de la fréquence ν0 à la fréquence ν2, où ν2 = 2 · 2 ν0 = 4 ν0, il est
perçu comme étant monté de deux octaves. Et plus généralement, lorsque le son passe
de la fréquence ν0 à la fréquence 2n ν0, il est perçu comme étant monté de n octaves.
Les fréquences ν0, ν1 = 2 ν0, ν2 = 4 ν0 peuvent être vues comme les premiers éléments
d’une suite (νn) de terme général :

νn = ν0 · 2n ;

cette suite est manifestement géométrique. Quant aux éléments
fondamentale, fondamentale et une octave, fondamentale et
deux octaves, il peuvent être considérés comme les premiers élé-
ments d’une suite (vn) de terme général :

vn = fondamentale + n · octave ;

G ¯¯
¯ ¯

ν0

2 ν0

22 ν0

23 ν0

cette suite, elle, est arithmétique. Vu les caractères géométrique de (νn) et arithmétique
de (vn), une conclusion s’impose : la relation entre les deux suites est de nature logarith-
mique. Cette nature se retrouve jusque dans les termes utilisés : sur le plan physique,
on parle de rapport de fréquence (terme en lien avec des opérations telles que le produit
et le quotient), alors que sur le plan physiologique, on parle d’intervalle (terme en lien
avec des opérations telles que l’addition et la soustraction).

C.3.6 Propriétés générales des logarithmes

De la condition de transformation d’un produit en une somme, Log(a b) = Log(a) + Log(b),
peuvent être déduites plusieurs autres propriétés. Le fait que les nombres réels a et b
doivent être strictement positifs est justifié dans la sous-section suivante.

• De la condition Log(a b) = Log(a) + Log(b), où a et b sont deux nombres réels
strictement positifs, peut être déduite l’égalité Log(1) = 0 :

Log(a) = Log(1 · a) = Log(1) + Log(a) ⇔ Log(1) = 0 ,
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ainsi que la relation Log(an) = nLog(a), où n ∈ N :

Log(an) = Log(a · . . . · a
︸ ︷︷ ︸

=an

) = Log(a) + . . .+ Log(a)
︸ ︷︷ ︸

=nLog(a)

= nLog(a) ,

pour tout n ∈ N∗ ; et pour n = 0, Log(a0) = Log(1) = 0 = 0Log(a).

• De l’égalité Log(1) = 0, peut être déduite la relation Log
(
a
b

)
= Log(a)− Log(b),

où a et b sont deux nombres réels strictement positifs :

0 = Log(1) = Log

(
b

b

)

= Log

(

b
1

b

)

= Log(b) + Log

(
1

b

)

,

d’où :

Log

(
1

b

)

= −Log(b) ;

et ainsi :

Log
(a

b

)

= Log

(

a
1

b

)

= Log(a) + Log

(
1

b

)

= Log(a)− Log(b) .

• La relation Log(an) = nLog(a) peut être généralisée au cas où n ∈ Z ; pour
s’en convaincre, il suffit de noter que n = −|n| lorsque n ∈ Z∗

− puis d’utiliser les
relations établies dans les deux points précédents :

Log(an) = Log(a−|n|) = Log

(
1

a|n|

)

= −Log(a|n|) = −|n|Log(a)

= nLog(a) .

• La relation Log(an) = nLog(a) s’applique aussi dans le cas où n est un nombre
rationnel ; on utilise dans ce cas la lettre r plutôt que la lettre n. Pour se convaincre
de cette extension, il convient de prendre un nombre rationnel r, de l’écrire sous
la forme r = p

q
, où p ∈ Z et q ∈ N∗, puis de développer l’expression q Log(ar), et

enfin d’utiliser la relation Log(an) = nLog(a), où n ∈ Z :

q Log(ar) = Log
(
(ar)q

)
= Log(ap)

= pLog(a) = q
(
r Log(a)

)
,

vu que q et p = r q sont des nombres entiers ; d’où :

Log(ar) = r Log(a) , r ∈ Q .

• Il peut être montré que l’ensemble des nombres rationnels Q et l’ensemble des
nombres irrationnels I, en tant que sous-ensembles de l’ensemble des nombres
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réels R, possèdent la propriété importante suivante : entre deux nombres ration-
nels distincts, sur la droite réelle, se trouve au moins un nombre irrationnel ; et
entre deux nombres irrationnels distincts, sur la droite réelle, se trouve au moins
un nombre rationnel. Cette propriété a pour conséquence le résultat suivant :
tout nombre irrationnel peut être approché autant que souhaité par un nombre
rationnel. Vu cette réalité, il parâıt naturel et judicieux d’étendre la relation
Log(ar) = r Log(a) à l’ensemble des nombres réels, rationnels comme irration-
nels ; on utilise dans ce cas la lettre y plutôt que la lettre r :

Log(ay) = y Log(a) , y ∈ R .

C.3.7 Domaine de définition des fonctions logarithmes

Toute fonction Log, dès lors qu’elle doit satisfaire à la fois la propriété de continuité et
la propriété de transformation d’un produit en une somme, ne peut être définie que pour
les nombres réels x strictement positifs. En effet, si ce n’était pas le cas, i.e. :

• si x pouvait prendre des valeurs négatives, la relation Log(xy) = y Log(x), établie
au point précédent, n’aurait de sens que pour certaines valeurs de y, mais pas
pour tout y ∈ R ; typiquement, dans le cas où y = 1

2
, la relation n’aurait aucun

sens, vu que x
1
2 =

√
x , où x < 0, n’existe pas dans R ;

• si x valait 0, alors, selon la condition de transformation d’un produit en somme,
Log(0) = Log(0 · b) = Log(0) + Log(b), ce qui impliquerait que Log(b) = 0, quel
que soit le nombre b, résultat contradictoire avec la définition même de Log.

C.3.8 Ensemble image des fonctions logarithmes

Revenons à la relation Log(ay) = y Log(a) établie précédemment. Penchons-nous sur
l’expression ay, qui apparâıt dans le logarithme du côté gauche de l’égalité. Dans le cas
où y s’écrit y = p

q
, où p ∈ Z et q ∈ N∗, la quantité ay peut être interprétée comme suit :

ay =







q
√
ap si p ∈ Z∗

+ et q ∈ Nr{0; 1}

ap si p ∈ Z∗
+ et q = 1

1 si p = 0

1

a|p|
si p ∈ Z∗

− et q = 1

1
q
√
a|p|

si p ∈ Z∗
− et q ∈ Nr{0; 1}

où :

• ap désigne un produit dans lequel a apparâıt p fois, lorsque p ∈ Z∗
+,
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• a|p| désigne un produit dans lequel a apparâıt |p| fois, lorsque p ∈ Z∗
−,

• q
√

est le symbole de la racine q-ième ;

noter que la racine q-ième peut être vue comme une fonction réelle ; il s’agit de la fonction
réciproque de la fonction puissance q-ième.

Intéressons-nous à présent à la correspondance qui envoie tout y de la forme y = p
q
,

où p ∈ Z et q ∈ N∗, sur ay. Le fait :

• qu’à chaque p ∈ Z corresponde un et un unique nombre réel ap,

• qu’à chaque q ∈ Nr{0; 1} corresponde un et un unique nombre réel q
√
b , où b est

un nombre réel strictement positif (présentement b = ap si p ∈ Z∗
+ et b = a|p| si

p ∈ Z∗
−)

permet d’affirmer que la correspondance en question est une fonction réelle ; à chaque y
donné correspond donc un et un unique nombre réel ay.

Revenons maintenant à la quantité ay. Le nombre réel a, rappelons-le, ne peut être
ni nul, ni strictement négatif (cf. sous-section précédente). En tant que nombre réel
strictement positif, il peut soit être compris strictement entre 0 et 1, soit valoir 1, soit
être strictement supérieur à 1.

• a > 1. Dans ce cas, ay1 < ay2 si y1 < y2, où y1, y2 ∈ Q. Pour s’en convaincre,
il convient de prendre deux nombres rationnels y1 et y2 quelconques, tels que
y1 < y2 ; comme ils sont rationnels, ces nombres peuvent s’écrire sous la forme :

y1 =
p1
q1

et y2 =
p2
q2
,

où p1, p2 ∈ Z et q1, q2 ∈ N∗. Le fait que q1 et q2 sont des nombres entiers stric-
tement positifs permet de dire qu’il existe un nombre q ∈ N∗ tel que q = n1 q1
et q = n2 q2, où n1, n2 ∈ N∗ ; q est ce que l’on appelle un multiple commun de q1
et q2. En conséquence, les nombres y1 et y2 peuvent s’écrire, aussi :

y1 =
p̃1
q

et y2 =
p̃2
q
,

où p̃1 = n1 p1 ∈ Z et p̃2 = n2 p2 ∈ Z ; ici, q est ce que l’on appelle le dénominateur
commun de y1 et y2. Ainsi, si y1 < y2, alors nécessairement p̃1 < p̃2 ; et donc,
comme a > 1 :

ap̃1 < ap̃2 ⇒
(
ap̃1
)1
q <

(
ap̃2
)1
q ⇒ a

p̃1
q < a

p̃2
q ⇒ ay1 < ay2 .

En résumé :

y1 < y2 ⇒ ay1 < ay2 .

Remarquer qu’une telle implication établit que la fonction qui envoie y ∈ Q sur
ay est strictement croissante dans Q. Noter, en outre, que cette fonction :

⋄ tend vers 0 lorsque y tend vers −∞,

⋄ tend vers ∞ lorsque y tend vers ∞.
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Un tel résultat se déduit d’une part de la propriété de croissance stricte de la
fonction en question, et d’autre part du fait que, dans le cas où y = p

1
= p (p

étant un nombre entier) :

lim
y→−∞

ay = lim
p→−∞

ap = lim
p→−∞

1

a|p|
= 0 et lim

y→∞
ay = lim

p→∞
ap = ∞ .

• a = 1. Dans ce cas, ay = 1y = 1 quel que soit y ∈ Q.

• 0 < a < 1. Dans ce cas, des raisonnements similaires à ceux menés dans le
cas où a > 1 permettent de conclure que la fonction qui envoie y ∈ Q sur ay

est strictement décroissante dans Q, d’une part, et d’autre part que cette même
fonction :

⋄ tend vers 0 lorsque y tend vers ∞,

⋄ tend vers ∞ lorsque y tend vers −∞.

En conclusion, quel que soit le nombre a ∈ R∗
+r{1}, l’expression ay, où y ∈ Q, prend des

valeurs réparties dans tout R∗
+ et non seulement dans un intervalle de R∗

+ plus restreint.

De l’étude de l’expression ay qui vient d’être faite, ressort le résultat important
suivant.

C.3.1 Lemme : L’image de l’ensemble R∗
+, par toute fonction logarithme, est l’ensemble R

dans son intégralité.

Preuve : Toute fonction Log: R∗
+ → R étant une fonction réelle, son ensemble image est

nécessairement un sous-ensemble de R. Ce qu’il reste à montrer, c’est que cet ensemble
image est l’ensemble R dans son intégralité.

Soit a un nombre réel strictement positif et différent de 1 ; soit aussi y1 et y2 deux
nombres rationnels tels que :

• y1 > y2 si 0 < a < 1,

• y1 < y2 si a > 1.

Posons x1 = ay1 et x2 = ay2 . Selon les propos tenus précédemment au sujet de l’expres-
sion ay, les nombres x1 et x2 se trouvent dans l’ensemble R∗

+ ; en outre, x1 < x2.
La fonction Log étant continue dans R∗

+, par hypothèse, elle est continue dans l’in-
tervalle fermé [x1; x2]. Selon le théorème des valeurs intermédiaires (cf. théorème 2.10.1,
section 2.10 du chapitre 2), Log prend alors, dans [x1; x2], toutes les valeurs comprises
entre Log(x1) et Log(x2) ; i.e. toutes les valeurs comprises entre y1 Log(a) et y2 Log(a),
vu que :

Log(x1) = Log(ay1) = y1 Log(a) ,

Log(x2) = Log(ay2) = y2 Log(a) .

En conséquence, tout nombre réel u compris entre y1 Log(a) et y2 Log(a) peut être vu
comme l’image par Log d’un nombre x ∈ [x1; x2] ⊂ R∗

+. Le fait que y1 et y2 peuvent
être n’importe quels nombres rationnels tels que y1 > y2 ou y1 < y2 permet de conclure :
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tout nombre réel peut être vu comme l’image par une fonction logarithme d’un nombre
réel strictement positif ; ce qui revient à dire que l’ensemble image de toute fonction
Log: R∗

+ → R est R dans son intégralité. �

C.3.9 Base d’un logarithme

Le fait que tout nombre réel peut être vu comme l’image, par une fonction logarithme,
d’un nombre réel strictement positif (cf. lemme de la sous-section précédente) permet
d’affirmer qu’il existe un nombre a ∈ R∗

+ tel que Log(a) = 1. Appelé base du logarithme,
ce nombre a peut s’écrire à partir de n’importe quel nombre b ∈ R∗

+r{1}, comme suit :

a = b
1

Log(b) ;

pour s’en convaincre, il suffit d’observer que :

1 =
1

Log(b)
Log(b) = Log

(
b

1
Log(b)

)
.

Noter que la base d’un logarithme ne peut jamais valoir 1. Et pour cause : vu que toutes
les fonction Log satisfont Log(1) = 0, il n’est pas envisageable que l’une d’elles satisfasse
en même temps Log(1) = 0 et Log(1) = 1.

C.3.10 Logarithme de base a

Soit a un nombre réel strictement positif, différent de 1. On appelle fonction logarithme
de base a (ou simplement logarithme de base a), et on note loga, la fonction :

loga : R∗
+ −→ R

x 7−→ y = loga(x) , (C.3.2)

qui satisfait les deux conditions suivantes :

⋄ loga est continue dans R∗
+,

⋄ loga(x1 x2) = loga(x1) + loga(x2), pour tous x1, x2 ∈ R∗
+,

et qui vérifie la relation :
loga(a) = 1 .

C.3.2 Remarque : Si, dans la définition de loga, la condition «loga n’est pas la fonction
qui vaut zéro dans R∗

+» n’a pas été formulée, c’est en raison du fait qu’elle apparâıt de
manière sous-jacente dans l’expression loga(a) = 1.
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C.3.11 Propriétés de la fonction logarithme de base a

La fonction loga satisfait les relations suivantes :

• loga

(
x1
x2

)

= loga(x1)− loga(x2) , pour tous x1, x2 ∈ R∗
+ ;

• loga(b
y) = y loga(b) , pour tout b ∈ R∗

+ et tout y ∈ R ;

• loga(a
y) = y loga(a) = y , pour tout y ∈ R.

Ces relations sont des conséquences de la définition de loga ainsi que des propriétés
générales des fonctions logarithmes (cf. sous-section C.3.6).

C.3.12 Asymptotes de la fonction logarithme de base a

Reprenons les propos tenus dans la sous-section C.3.8, au sujet de l’expression ay (où
a ∈ R∗r{1} et y ∈ R).

• Cas où a > 1. Dans ce cas, rappelons-le, y1 < y2 ⇒ ay1 < ay2 , quels que soient
y1, y2 ∈ Q. Ainsi, si x1 = ay1 et x2 = ay2 , alors x1 < x2 ⇒ y1 < y2 ; en effet :

x1 < x2 ⇒ loga(x1) = loga(a
y1) = y1 < y2 = loga(a

y2) = loga(x2) .

Soit à présent x = ap, où p ∈ Z. Alors :

lim
x→0
x>0

loga(x) = lim
p→−∞

loga(a
p) = lim

p→−∞
p = −∞ .

Les raisonnements menés ici, associés au fait que les fonctions logarithmes sont
définies et continues dans R∗

+, suffisent pour conclure que la fonction loga :

⋄ est strictement croissante dans R∗
+,

⋄ admet une asymptote verticale d’équation x = 0.

• Cas où 0 < a < 1. Dans ce cas, rappelons-le, y1 < y2 ⇒ ay1 > ay2 , quels que
soient y1, y2 ∈ Q ; et donc aussi y1 > y2 ⇒ ay1 < ay2 . Ainsi, si x1 = ay1 et
x2 = ay2 , alors x1 < x2 ⇒ y1 > y2 ; en effet :

x1 < x2 ⇒ loga(x1) = loga(a
y1) = y1 > y2 = loga(a

y2) = loga(x2) .

Soit à présent x = ap, où p ∈ Z. Alors :

lim
x→0
x>0

loga(x) = lim
p→∞

loga(a
p) = lim

p→∞
p = ∞ .

Les raisonnements menés ici, associés au fait que les fonctions logarithmes sont
définies et continues dans R∗

+, suffisent pour conclure que la fonction loga :

⋄ est strictement décroissante dans R∗
+,

⋄ admet une asymptote verticale d’équation x = 0.
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Étudions à présent le comportement de loga(x) lorsque x tend vers ∞. À cet effet,
prenons un nombre réel x pouvant s’écrire sous la forme x = ap, où p est un nombre
entier, puis raisonnons comme suit.

• Si a > 1 :

lim
x→∞

loga(x) = lim
p→∞

loga(a
p) = lim

p→∞
p loga(a) = lim

p→∞
p = ∞ ,

du fait que l’expression x = ap tend vers ∞ si et seulement si p tend vers ∞ dans
le cas où a > 1.

• Si 0 < a < 1 :

lim
x→∞

loga(x) = lim
p→−∞

loga(a
p) = lim

p→−∞
p loga(a) = lim

p→−∞
p = −∞ ,

du fait que l’expression x = ap tend vers ∞ si et seulement si p tend vers −∞
dans le cas où 0 < a < 1.

Ces observations, associées au fait que les fonctions logarithmes sont continues dans
tout R∗

+, permettent de conclure que loga n’admet pas d’asymptote horizontale à droite.
Noter que loga ne possède pas d’asymptote oblique à droite non plus ; en effet, certes :

lim
x→∞

loga(x)

x
= 0 ,

ce qui se démontre à l’aide de la règle de Bernoulli-L’Hôpital (cf. section 3.9 du cha-
pitre 3), mais :

lim
x→∞

(
loga(x)− 0 x

)
= lim

x→∞
loga(x) =

{

∞ si a > 1

−∞ si 0 < a < 1
.

En résumé, la fonction loga :

• admet une asymptote verticale d’équation x = 0,

• ne possède pas d’asymptote horizontale à droite,

• n’a aucune asymptote oblique à droite.

De plus, vu qu’elle est définie dans R∗
+, loga ne peut pas :

• avoir une ou plusieurs autre(s) asymptote(s) verticale(s),

• posséder une asymptote horizontale à gauche,

• admettre une asymptote oblique à gauche.

C.3.13 Graphe de la fonction logarithme de base a

Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Grâce aux propos tenus dans la sous-section précédente, il est possible de tracer relative-
ment précisément, dans R2, le graphe de la fonction loga ; un échantillon est représenté
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ci-dessous à gauche, dans le cas où a > 1, et ci-dessous à droite dans le cas où 0 < a < 1.
Remarquer que loga(1) = 0 et loga(a) = 1 dans les deux cas.

a > 1

x

y

0 1

−1

1

a

0 < a < 1

x

y

0 1

−1

1

a

C.3.14 Bijectivité de la fonction logarithme de base a

La fonction loga : R
∗
+ → R étant définie, continue et :

• strictement croissante si a > 1,

• strictement décroissante si 0 < a < 1

dans R∗
+ (cf. sous-section C.3.12), elle est injective. Comme elle est aussi surjective (cf.

sous-section C.3.8), elle est bijective.
Dire que loga : R

∗
+ → R est bijective, c’est dire que pour tout nombre réel y, il existe

un et un unique nombre réel strictement positif x tel que y = loga(x). Or, selon les
propriétés de loga (cf. sous-section C.3.11), y = y loga(a) = loga(a

y). Donc, loga(x) =
loga(a

y) ; d’où x = ay, du fait de la bijectivité de loga : R
∗
+ → R.

En résumé, tout nombre réel x strictement positif peut s’écrire sous la forme x = ay,
où y est un nombre réel.

C.3.15 Unicité de la fonction logarithme de base a

Il existe une infinité de fonctions définies et continues dans R∗
+, qui transforment un

produit en une somme. En revanche, il n’existe qu’une seule fonction définie et continue
dans R∗

+, qui transforme un produit en une somme, et qui envoie le nombre a ∈ R∗r{1}
sur le nombre 1 ; cette fonction, c’est loga : R∗

+ → R. Pour se convaincre de cette
assertion, il suffit de supposer l’existence d’une autre fonction, que l’on notera g, définie
et continue dans R∗

+, qui transforme un produit en une somme et qui envoie a sur 1, puis
de voir que cette autre fonction n’est autre que loga. Pour cela, il convient de prendre un
nombre réel x strictement positif et de l’écrire sous la forme x = ay, où y ∈ R ; comme g
transforme un produit en une somme, elle transforme une puissance en un produit (cf.
sous-section C.3.6) ; ainsi :

g(x) = g(ay) = y g(a) = y = y loga(a) = loga(a
y) = loga(x) .

g(x) = loga(x) pour tout x ∈ R∗
+ ; g et loga ne sont donc qu’une seule et même fonction.
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C.3.16 Compatibilité entre la condition de continuité et la condition
de transformation d’un produit en une somme

Lors de la formulation de la définition de la fonction loga, la question de savoir si la
condition de continuité et la condition de transformation d’un produit en une somme
sont compatibles entre elles ne s’est jamais posée. Elle est légitime, pourtant. Existe-t-il
une fonction, au moins, qui satisfait les deux conditions à la fois ? Les outils fournis par
le calcul intégral permettent de répondre par l’affirmative à cette question ; les détails
seront discutés en temps voulu (cf. sous-section C.3.21). À ce stade, on peut formuler
le résultat intéressant suivant : toute fonction logarithme est continue dans R∗

+ si et
seulement si elle est continue en x = 1 ; en effet, en posant u = x

x0
et en notant que x

tend vers x0 si et seulement si u tend vers 1 :

lim
x→x0

loga(x) = loga(x0) ⇔ lim
x→x0

loga(x)− loga(x0) = 0

⇔ lim
x→x0

(
loga(x)− loga(x0)

)
= 0

⇔ lim
x→x0

loga

(
x

x0

)

= 0

⇔ lim
u→1

loga(u) = 0 .

En conséquence, la condition de continuité dans R∗
+ peut être remplacée, dans la défini-

tion de la fonction loga, par la condition de continuité en x = 1.
Le raisonnement qui vient d’être mené montre que les conditions de continuité et de

transformation d’un produit en somme ont un impact l’une sur l’autre ; ces conditions
ne semblent toutefois pas incompatibles entre elles.

C.3.17 Formule de changement de base

Deux fonctions logarithmes, l’une de base a et l’autre de base b, où a, b ∈ R∗
+r{1}, sont

liées entre elles par la relation suivante :

logb(x) =
loga(x)

loga(b)
, pour tout x ∈ R∗

+ .

Appelée formule de changement de base, cette expression se déduit en effectuant un
raisonnement en deux étapes, comme suit.

• Si loga (où a ∈ R∗
+r{1}) est une fonction qui transforme un produit en une

somme, alors k loga, où k ∈ R, est également une fonction qui transforme un
produit en une somme :

k loga(x1 x2) = k
(
loga(x1 x2)

)

= k
(
loga(x1) + loga(x2)

)

= k loga(x1) + k loga(x2) ;
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k loga est donc aussi une fonction logarithme. Si k 6= 1, alors k loga(a) 6= 1 et
donc k loga est un logarithme ayant pour base un nombre différent de a.

• Soit logb la fonction logarithme de base b (où b ∈ R∗
+r{1}). Supposons qu’il existe

k ∈ R tel que logb(x) = k loga(x) pour tout x ∈ R∗
+. Vu que logb est l’unique

fonction qui transforme un produit en une somme et qui vaut 1 lorsque x = b,
alors :

1 = logb(b) = k loga(b) ⇔ k =
1

loga(b)
.

k existe donc ; logb peut, de fait, s’écrire sous la forme logb = k loga.

Des relations logb = k loga et k = 1
loga(b)

découle immédiatement le résultat encadré.

C.3.18 Bases logarithmiques les plus utilisées

Ce sont les bases a = 10, a = 2 et a = e.

• a = 10 ; dans ce cas, on parle de logarithme décimal ; on le note log (l’indice
10 étant omis) ; le logarithme décimal est parfois aussi appelé logarithme de
Briggs IV ; plus rarement logarithme à base vulgaire, ou simplement logarithme
vulgaire.

• a = 2 ; dans ce cas, on parle de logarithme binaire ; ce logarithme est essentielle-
ment utilisé dans le monde de l’informatique.

• a = e, où e ≈ 2,71828..... ; dans ce cas, on parle de logarithme naturel, ou de loga-
rithme népérien (en l’honneur de John Napier, dont le nom francisé est Neper) ;
on le note ln. Le nombre e est un nombre transcendant, i.e. un nombre irration-
nel qui n’est la racine d’aucun polynôme à coefficients réels ; il est généralement
présenté comme la limite de la suite de terme général

(
1+ 1

n

)n
, où n ∈ N∗ ; parfois

aussi comme la limite de l’expression (1+u)1/u, où u ∈ R, lorsque u tend vers 0 :

e = lim
n→∞

(

1 +
1

n

)n

, e = lim
u→0

(1 + u)
1
u .

Il n’est pas rare, en outre, de le voir apparâıtre sous la forme :

e =

∞∑

n=0

1

n!
=

1

0!
+

1

1!
+

1

2!
+

1

3!
+ . . . = 1 + 1 +

1

2
+

1

6
+ . . .

où, par définition :

n! = n (n− 1)(n− 2) . . .
(
n− (n− 2)

)(
n− (n− 1)

)

= n (n− 1)(n− 2) . . . 2 · 1

IV. Henry Briggs était un mathématicien anglais, né en 1556 à Warley Wood (dans le Yorkshire)
et mort en 1630 à Oxford. Il est le premier scientifique à avoir construit une table de logarithmes de
base 10.
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et, par convention, 0! = 1 ; n! est appelé factorielle de n. Les expressions e =
limn→∞

(
1 + 1

n

)n
et e = limu→0(1 + u)

1
u seront discutées en détail plus loin, dans

la sous-section C.3.21 ; quant à la formule e =
∑∞

n=0
1
n!
, elle est prouvée dans la

section 5.6 du chapitre 5, consacrée aux développements illimités.

C.3.19 Application aux équations exponentielles

On appelle équation exponentielle toute équation dans laquelle l’inconnue est un expo-
sant. Parmi les exemples les plus simples, on peut mentionner 4y = 32, 3y = 19, ey = 7,
etc.

Certaines équations exponentielles peuvent être résolues de façon élémentaire, par
identification de facteurs communs ; c’est le cas, par exemple, de l’équation 4y = 32 :

4y = 32 ⇔
(
22
)y

= 25 ⇔ 22y = 25

⇔ 2 y = 5 ⇔ y =
5

2
.

La technique illustrée ici ne constitue toutefois pas une méthode générale de résolution,
applicable en toutes circonstances ; elle ne convient pas, en effet, à l’équation 3y = 19,
par exemple.

Là où des facteurs communs ne peuvent pas être identifiés, le concept de logarithme
révèle son utilité : en appliquant un logarithme aux deux côtés de l’équation 3y = 19,
il est possible, grâce à la propriété de transformation d’une puissance en un produit,
d’isoler la quantité y :

3y = 19 ⇔ ln(3y) = ln(19) ⇔ y ln(3) = ln(19)

⇔ y =
ln(19)

ln(3)
.

Tout autre logarithme pourrait être utilisé pour trouver y ; par exemple log3, ce qui
donnerait y = log3(19). Si le choix s’est porté sur le logarithme naturel, c’est en raison
du fait que cette fonction se trouve sur n’importe quelle machine à calculer dotée des
fonctions usuelles, même les machines les plus simples, et qu’il est, par conséquent, pos-
sible d’écrire la solution de l’équation donnée sous la forme d’un résultat numérique :
y = ln(19)

ln(3)
≈ 2,68014..... Noter qu’un tel résultat n’est qu’approximatif, vu que les ma-

chines à calculer ne fournissent qu’un nombre fini de décimales.

C.3.20 Dérivée de la fonction logarithme de base a

La fonction ln admet pour dérivée la fonction ln′ : R∗
+→ R, donnée par :

ln′(x) =
1

x
.
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En effet (en posant u = ∆x
x

et en notant que ∆x → 0 ⇔ u→ 0) :

ln′(x) = lim
∆x→0

ln(x+∆x)− ln(x)

∆x
= lim

∆x→0

1

∆x

(
ln(x+∆x)− ln(x)

)

= lim
∆x→0

1

∆x
ln

(
x+∆x

x

)

= lim
∆x→0

1

∆x
ln

(

1 +
∆x

x

)

= lim
∆x→0

1

x

x

∆x
ln

(

1 +
∆x

x

)

=
1

x
lim

∆x→0
ln

[(

1 +
∆x

x

) x
∆x

]

=
1

x
ln

[

lim
∆x→0

(

1 +
∆x

x

) x
∆x

]

u=∆x
x=

1

x
ln
[

lim
u→0

(1 + u)
1
u

]

;

l’introduction de la limite dans l’argument du logarithme se justifie par le fait que ln est
une fonction continue. Or, limu→0(1+u)

1
u = e (cf. sous-section C.3.18). En conséquence :

ln′(x) =
1

x
ln
[

lim
u→0

(1 + u)
1
u

]

=
1

x
ln(e) =

1

x
.

Connaissant la dérivée du logarithme naturel, il est aisé, grâce à la formule de chan-
gement de base, de déterminer la dérivée de la fonction loga, où a ∈ R∗r{1} ; il s’agit
de la fonction loga

′ : R∗
+→ R, donnée par :

loga
′(x) =

1

x ln(a)
.

En effet :

loga
′(x) =

d

dx
loga(x) =

d

dx

(
ln(x)

ln(a)

)

=
d

dx

(
1

ln(a)
ln(x)

)

=
1

ln(a)

d

dx
ln(x)

=
1

ln(a)

1

x
=

1

x ln(a)
.

C.3.21 Le logarithme naturel en tant que primitive de la fonction
inverse

Grâce aux travaux menés par Bonaventura Cavalieri et Evangelista Toricelli V d’une
part, et par Gilles Personne de Roberval VI, René Descartes et Pierre de Fermat d’autre

V. Evangelista Toricelli était un physicien et mathématicien né le 15 octobre 1608 à Faenza, en
Émilie-Romagne (dans l’actuelle Italie), et mort le 25 octobre 1647 à Florence, en Toscane. Il est
demeuré célèbre notamment pour son invention du baromètre.
VI. Gilles Personne de Roberval était un mathématicien français né le 10 août 1602 dans le village

de Roberval (à l’époque dans le royaume de France, aujourd’hui dans la région des Hauts-de-France)
et mort le 27 octobre 1675 à Paris.
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part, on savait, dès les années 1640, que la quadratureVII de la courbe d’équation y =
α xr, α étant un paramètre réel fixe, strictement positif, et r un nombre rationnel différent
de −1, pouvait être obtenue à partir de l’expression αxr+1

r+1
. Dès lors, on était au fait que

la quadrature de la courbe d’équation y = αx−1 constituait un cas à part, qui ne pouvait
être traité de la même manière.

Parmi les premiers mathématiciens qui ont étudié en détail le cas de la courbe d’équa-
tion y = α x−1, il convient de mentionner Grégoire de Saint-Vincent. Dans son ouvrage
intitulé Opus geometricum quadraturæ circuli et sectionum coni, publié en 1647, on
trouve un résultat fondamental en la matière, qui, dans un langage mathématique d’au-
jourd’hui, pourrait être formulé comme suit :

Soit An l’aire de la surface délimitée par la courbe d’équation y = αx−1 (où α
est un paramètre réel fixe, strictement positif), l’axe Ox et les droites verticales
d’équation x = a et x = bn, où a et bn sont deux nombres réels tels que
0 < a < bn. Si bn est le n-ième terme d’une suite géométrique, alors An est le
n-ième terme d’une suite arithmétique.

De cette assertion, il ressort que les quantités bn et An, qui y sont mentionnées, sont
liées entre elles par une relation de nature logarithmique. Se pose alors la question de la
forme précise de cette relation, ainsi que du logarithme qui y est impliqué.

Étudier l’aire sous la courbe d’équation y = αx−1, c’est étudier l’intégrale
∫ x

a
α t−1 dt,

où a et x sont des nombres strictement positifs. Dans la présente sous-section, il va
être question, non pas de

∫ x

a
α t−1 dt, mais de

∫ x

1
t−1 dt. S’il est vrai que cette dernière

expression est moins générale que la première, il n’en demeure pas moins vrai que ses
propriétés se transposent sans difficulté au cas plus général.

C.3.3 Proposition : La fonction réelle :

R∗
+ −→ R

x 7−→
∫ x

1

1

t
dt

et la fonction ln : R∗
+ → R ne sont qu’une seule et même

fonction. Autrement dit :

ln(x) =

∫ x

1

1

t
dt ,

pour tout x ∈ R∗
+. En outre, le nombre réel e, dont le loga-

rithme naturel vaut 1, peut être vu comme la limite de la
quantité (1 + u)

1
u lorsque la variable réelle u tend vers 0 :

e = lim
u→0

(1 + u)
1
u .

t

y

1 x0

1

ln(x)>0

t

y

1x0

1

ln
(x

)
<
0

VII. Ce que l’on entend par quadrature d’une courbe d’équation y = f(x), où f est une fonction de
la variable x, c’est l’aire de la surface, dans le plan euclidien R2 (muni de son système de coordonnées
cartésiennes canonique Oxy), délimitée par la courbe d’équation y = f(x), l’axe Ox et les droites
verticales d’équations x = a et x = b, où a et b sont deux nombres réels tels que a < b.
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Preuve : Soit P (x) la grandeur donnée par :

P (x) =

∫ x

1

1

t
dt .

Selon la proposition 4.2.6, énoncée dans la section 4.2 du chapitre 4, P : x 7→ P (x)
peut être vue comme une fonction réelle. Cette fonction est bien définie, à condition que
l’intervalle délimité par 1 et x soit contenu dans le domaine dans lequel la fonction t 7→ 1

t

est continue. Ce domaine étant R∗, x ne peut être qu’un élément de R∗
+. Le domaine de

définition de P est donc R∗
+. En outre, P satisfait les trois propriétés mentionnées dans

les points ci-dessous.

• P n’est pas la fonction qui vaut zéro pour tout x ∈ R∗
+. Pour s’en convaincre, il

suffit de remarquer que 1
t
> 0 pour tout t ∈ R∗

+ et d’appliquer le quatrième point
des propriétés 4.3.5, présentées dans la section 4.3 du chapitre 4.

• P est continue dans R∗
+. Pour s’en convaincre, il suffit de remarquer que P ′(x) = 1

x

pour tout x ∈ R∗
+ (cf. proposition 4.2.6, section 4.2 du chapitre 4), ce qui montre

que P ′ est définie dans tout R∗
+, puis d’appliquer la proposition 3.2.10, donnée

dans la section 3.2 du chapitre 3.

• P (x1 x2) = P (x1) + P (x2), quels que soient x1, x2 ∈ R∗
+. Cette égalité se prouve

en raisonnant comme suit.

⋄ Soit v = γ x, où γ est un nombre réel strictement positif. Alors, selon la
proposition 4.2.6 (cf. section 4.2 du chapitre 4), d’une part :

d

dx

∫ x

1

1

t
dt =

1

x
,

et d’autre part :

d

dx

∫ γx

1

1

t
dt =

(
d

dv

∫ v

1

1

t
dt

)
dv

dx
(x) =

1

v
γ =

1

γ x
γ =

1

x
.

x 7→ P (x) et x 7→ P (γ x) sont donc toutes les deux des primitives de la
fonction x 7→ 1

x
dans R∗

+. En conséquence, selon le lemme 4.2.3 (cf. section 4.2
du chapitre 4), P (γ x) = P (x) + C pour tout x ∈ R∗

+, où C est un nombre
réel.

⋄ Comme P (γ x) = P (x) +C pour tout x ∈ R∗
+, alors P (γ · 1) = P (1)+C. Or,

P (1) = 0, vu que
∫ 1

1
1
t
dt = 0. Donc :

P (γ) = P (γ · 1) = P (1) + C = C ⇔ C = P (γ) .

Ainsi :

P (γ x) = P (γ) + P (x) .

Pour obtenir le résultat cherché, il ne reste qu’à rebaptiser γ par x1 et x par x2.
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En résumé, P est une fonction réelle, définie et continue dans R∗
+, qui transforme un

produit en une somme. P est donc un logarithme.
Cherchons à présent la base du logarithme P . À cet effet, déterminons la dérivée P ′

de P . D’une part, selon la proposition 4.2.6 :

P ′(x) =
d

dx

∫ x

1

1

t
dt =

1

x
.

D’autre part, en reprenant la définition de la dérivée d’une fonction, et en tenant compte
du fait que P est un logarithme (et qu’il satisfait donc les propriétés générales des
logarithmes (cf. sous-section C.3.6) :

P ′(x) = lim
∆x→0

P (x+∆x)− P (x)

∆x
= lim

∆x→0

1

∆x

(
P (x+∆x)− P (x)

)

= lim
∆x→0

1

∆x
P

(
x+∆x

x

)

= lim
∆x→0

1

∆x
P

(

1 +
∆x

x

)

= lim
∆x→0

1

x

x

∆x
P

(

1 +
∆x

x

)

=
1

x
lim

∆x→0

x

∆x
P

(

1 +
∆x

x

)

u=∆x
x=

1

x
lim
u→0

1

u
P (1 + u) =

1

x
lim
u→0

P
(

(1 + u)
1
u

)

=
1

x
P
(

lim
u→0

(1 + u)
1
u

)

;

l’introduction de la limite dans l’argument de P se justifie par le fait que P est continue
dans R∗

+. Les deux expressions de P ′ devant être égales, nécessairement :

P
(

lim
u→0

(1 + u)
1
u

)

= 1 .

Cette égalité montre qu’il existe un nombre réel dont le logarithme P vaut 1 ; et que ce
nombre réel, noté e, est donné par :

e = lim
u→0

(1 + u)
1
u .

En résumé, P est un logarithme ; il s’agit du logarithme qui satisfait P (e) = 1. P est
donc le logarithme naturel : P = loge = ln. �

C.3.4 Remarque : La fonction P , donnée par :

P (x) =

∫ x

1

1

t
dt ,

est strictement croissante dans son domaine de définition R∗
+. En effet, comme 1

t
> 0

pour tout t ∈ R∗
+, alors

∫ x2

x1

1
t
dt > 0, quels que soient x1, x2 ∈ R∗

+ tels que x1 < x2 ; et
donc :

P (x1) =

∫ x1

1

1

t
dt <

∫ x1

1

1

t
dt +

∫ x2

x1

1

t
dt =

∫ x2

1

1

t
dt = P (x2) .
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C.3.5 Lemme : Le nombre réel e peut être vu comme la limite de la suite de terme
général

(
1 + 1

n

)n
lorsque n tend vers l’infini :

e = lim
n→∞

(

1 +
1

n

)n

.

Preuve : Selon la proposition précédente :

e = lim
u→0

(1 + u)
1
u .

En particulier :

e = lim
u→0
u>0

(1 + u)
1
u .

Ainsi, en posant s = 1
u
:

e = lim
u→0
u>0

(1 + u)
1
u

s= 1
u= lim

s→∞

(

1 +
1

s

)s

;

noter que s ∈ R, vu que u ∈ R. Or, si e est la limite de
(
1 + 1

s

)s
lorsque s tend vers

l’infini, s étant un nombre réel, alors e est aussi la limite de
(
1+ 1

n

)n
lorsque n tend vers

l’infini, n étant un nombre entier. La conclusion du lemme s’ensuit. �

C.3.6 Lemme : Le nombre réel e est strictement supérieur à 5
2
et strictement inférieur

à 3 :
5

2
< e < 3 .

Preuve : Soit rσ6 =
(
4
4
; 5

4
; 6

4
; 7

4
; 8

4
; 9

4
; 10

4

)
la subdivision régulière d’ordre 6 de l’inter-

valle
[
1; 5

2

]
. Alors, par définition de la somme de Darboux supérieure Srσ6 de la fonction

t 7→ 1
t
associée à rσ6 (cf. définition 4.1.5, section 4.1 du chapitre 4), et selon les propos

tenus dans la remarque 4.6.16 (cf.section 4.6.2 du chapitre 4) :

∫ 5
2

1

1

t
dt 6 Srσ6 .

t

y

1 5

2
0

1

Or :

Srσ6 =
1
4
4

· 1
4
+

1
5
4

· 1
4
+

1
6
4

· 1
4
+

1
7
4

· 1
4
+

1
8
4

· 1
4
+

1
9
4

· 1
4

=
1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
=

2509

2520
< 1 .

Par conséquent :

ln
(
5
2

)
=

∫ 5
2

1

1

t
dt 6 Srσ6 < 1 = ln(e) ;
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et comme la fonction logarithme naturel est strictement croissante dans R∗
+ :

5

2
< e .

Aussi, soit rσ8 =
(
4
4
; 5

4
; 6

4
; 7

4
; 8

4
; 9

4
; 10

4
; 11

4
; 12

4

)
la subdivision régulière d’ordre 8 de

l’intervalle [1; 3]. Alors, par définition de la somme de Darboux inférieure S
rσ8

de la
fonction t 7→ 1

t
associée à rσ8 (cf. définition 4.1.5, section 4.1 du chapitre 4), et selon les

propos tenus dans la remarque 4.6.16 (cf.section 4.6.2 du chapitre 4) :

∫ 3

1

1

t
dt > S

rσ8
.

Or :

S
rσ8

=
1
5
4

· 1
4
+

1
6
4

· 1
4
+

1
7
4

· 1
4
+

1
8
4

· 1
4
+

1
9
4

· 1
4
+

1
10
4

· 1
4
+

1
11
4

· 1
4
+

1
12
4

· 1
4

=
1

5
+

1

6
+

1

7
+

1

8
+

1

9
+

1

10
+

1

11
+

1

12
=

28 271

27 720
> 1 .

t

y

1 30

1

Par conséquent :

ln(3) =

∫ 3

1

1

t
dt > S

rσ8
> 1 = ln(e) ;

et comme la fonction logarithme naturel est strictement
croissante dans R∗

+ :
3 > e .

En résumé, 5
2
< e < 3. �

C.3.7 Remarques : • Dans la sous-section C.3.16, a été abordée, rappelons-le, la
question de la compatibilité entre la propriété de continuité et la propriété de
transformation d’un produit en une somme. Si l’étude qui y a été faite a révélé
une répercussion de la deuxième propriété sur la première, l’étude en question
n’a cependant pas été en mesure d’indiquer s’il y a antagonisme entre elles ou
non. Grâce aux résultats énoncés dans la présente sous-section, le sujet peut être
définitivement clos :

⋄ le fait que ln(x) peut s’écrire sous la forme ln(x) =
∫ x

1
1
t
dt, pour tout x ∈ R∗

+

(cf. proposition C.3.3), montre qu’il y a compatibilité, dans la définition du
logarithme naturel, entre la propriété de continuité dans R∗

+ et la propriété
de transformation d’un produit en une somme ;

⋄ les propos tenus dans le point précédent, associés au fait que loga(x) peut
s’écrire sous la forme loga(x) =

1
ln(a)

ln(x) pour tout x ∈ R∗
+, où a ∈ R∗

+r{1}
(cf. sous-section C.3.17), montrent qu’il y a compatibilité, dans la définition
de tout logarithme, entre la propriété de continuité dans R∗

+ et la propriété
de transformation d’un produit en une somme.
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En conclusion, la définition de logarithme, donnée au début de la présente section,
fait pleinement sens.

• Dans la sous-section C.3.12, a été discutée, rappelons-le, la propriété de crois-
sance/décroissance des fonctions logarithmes. Il est intéressant de relever que les
résultats qui y ont été obtenus peuvent être retrouvés ici en s’appuyant sur la
remarque C.3.4 et en tenant compte du fait que loga(x) = 1

ln(a)
ln(x) (cf. sous-

section C.3.17) : dès lors que ln est une fonction strictement croissante dans R∗
+,

⋄ si a > 1, loga est une fonction strictement croissante dans R∗
+ (vu que ln(a)

est strictement positif dans ce cas),

⋄ si 0 < a < 1, loga est une fonction strictement décroissante dans R∗
+ (vu que

ln(a) est strictement négatif dans ce cas).

Noter que les raisonnements présentés ici sont plus concis que ceux menés dans
la sous-section C.3.12.

• La fonction x 7→ 1
x
a pour domaine de définition l’ensemble R∗ (et non R∗

+). Si
la fonction x 7→ ln(x) constitue une primitive de x 7→ 1

x
dans tout intervalle

contenu dans R∗
+, elle ne l’est certainement pas dans un quelconque intervalle

contenu dans R∗
−, vu qu’elle n’est pas définie dans R∗

−. Une fonction qui peut
remplir le rôle de primitive de x 7→ 1

x
dans tout intervalle inclus dans R∗

− est la
fonction x 7→ ln(−x) : cette fonction est, en effet, définie dans R∗

− et elle admet
pour dérivée la fonction x 7→ 1

x
:

d

dx
ln(−x) =

1

−x (−1) =
1

x
.

Des considérations qui viennent d’être faites, il ressort que l’ensemble des primi-
tives de la fonction x 7→ 1

x
, dans tout intervalle H ⊂ R∗, peut s’écrire, en toute

généralité :
∫

1

x
dx = ln|x|+ C , où C ∈ R ;

si :
⋄ H ⊂ R∗

+, alors |x| = x et
∫

1
x
dx = ln(x) + C ;

⋄ H ⊂ R∗
−, alors |x| = −x et

∫
1
x
dx = ln(−x) + C.

Noter, pour terminer, que ln|x| + C peut être mis sous la forme ln(K|x|), où
K = exp(C) (exp étant le symbole de la fonction exponentielle de base e, cf.
section suivante) :

ln|x|+ C = ln|x|+ ln
(
exp(C)

)
= ln

(
exp(C) |x|

)
= ln(K|x|) .

C.4 Fonctions exponentielles

La fonction loga : R
∗
+ → R (où a ∈ R∗

+r{1}) étant bijective, elle admet une réciproque.
Cette réciproque est ce que l’on appelle l’exponentielle de base a.
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C.4.1 Exponentielle de base a

Soit a un nombre réel strictement positif, différent de 1. On appelle fonction exponentielle
de base a (ou simplement exponentielle de base a), et on note expa, la fonction :

expa : R −→ R∗
+

x 7−→ y = expa(x) , (C.4.1)

définie comme suit :

y = expa(x) ⇔ loga(y) = x , pour tout x ∈ R .

C.4.2 Expression alternative de l’exponentielle de base a

Rappelons que loga(a
x) = x loga(a) = x (où a ∈ R∗

+r {1}). Or, par définition de
l’exponentielle de base a, loga

(
expa(x)

)
= x. Donc, vu que loga : R

∗
+ → R est bijective,

nécessairement :

ax = expa(x) , pour tout x ∈ R .

ax et expa(x) ne sont qu’une seule et même entité ; ax peut être vue comme une écriture
alternative de expa(x).

L’expression ax, où a est un nombre réel fixe strictement positif et différent de 1,
et x une variable réelle, peut s’interpréter comme suit.

• Lorsque x est un nombre rationnel, x peut s’écrire sous la forme x = p
q
, où p ∈ Z

et q ∈ N∗. L’expression ax peut alors être considérée comme la racine q-ième de
la puissance p-ième de a : ax = a

p
q = q

√
ap.

• Lorsque x est un nombre irrationnel, x ne peut pas s’écrire sous la forme p
q
, où

p ∈ Z et q ∈ N∗ ; mais il peut ête approché autant que souhaité par une expression
de ce type. En conséquence, grâce à la continuité de la fonction exponentielle de
base a, la quantité ax peut être approchée autant que souhaité par une expression
de la forme a

p
q , où p ∈ Z et q ∈ N∗. C’est ainsi qu’il est possible de donner un

sens à ax lorsque x est irrationnel.

C.4.1 Remarques : • Comme indiqué en début de section, la base a d’une expo-
nentielle est un nombre réel strictement positif et différent de 1. Noter, cependant,
que la quantité ax fait également sens dans le cas où a = 1 ; cette quantité vaut
alors 1 pour tout x ∈ R. Si la correspondance qui envoie tout x ∈ R sur 1x (i.e.
x 7→ 1x) a la structure d’une fonction réelle, elle ne peut toutefois en aucun cas
être vue comme la réciproque d’une fonction logarithme ; et pour cause : x 7→ 1x

étant une fonction constante, elle n’est pas bijective.

• L’expression ax fait également sens dans le cas où a = 0. Mais dans ce cas,
x ∈ R∗

+ ; car la quantité 0x n’est pas définie lorsque x est négative ou nulle.
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C.4.3 Propriétés de l’exponentielle de base a

La fonction expa satisfait les relations suivantes :

• expa(x1 + x2) = expa(x1) expa(x2), pour tous x1, x2 ∈ R ;

• expa(0) = 1 ;

• expa(−x) =
1

expa(x)
, pour tout x ∈ R ;

• expa(x1 − x2) =
expa(x1)

expa(x2)
, pour tous x1, x2 ∈ R.

•
(
expa(x)

)s
= expa(s x) , pour tous x, s ∈ R.

• loga
(
expa(x)

)
= x , pour tout x ∈ R ; expa

(
loga(x)

)
= x , pour tout x ∈ R∗

+ .

Ces égalités peuvent aussi s’écrire de la manière suivante :

• ax1+x2 = ax1 ax2, pour tous x1, x2 ∈ R ;

• a0 = 1 ;

• a−x =
1

ax
, pour tout x ∈ R ;

• ax1−x2 =
ax1

ax2
, pour tous x1, x2 ∈ R.

•
(
ax
)s

= asx, pour tous x, s ∈ R.

• loga(a
x) = x , pour tout x ∈ R ; aloga(x) = x , pour tout x ∈ R∗

+ .

Les identités formulées ici découlent directement du fait expa est la fonction réciproque
de loga. Par exemple, la première identité, qui met en évidence le fait que expa transforme
une somme en un produit, découle du fait que loga transforme un produit en une somme.

C.4.4 Domaine de définition et ensemble image

La fonction expa admet pour domaine de définition l’ensemble R dans son intégralité et
pour ensemble image l’ensemble R∗

+.

C.4.5 Continuité et asymptote

La fonction expa est continue dans R. En conséquence, elle ne possède aucune asymptote
verticale.

expa admet une unique asymptote ; il s’agit d’une asymptote horizontale d’équation
y = 0 ; l’asymptote est :

• à gauche dans le cas où a > 1 ;

• à droite dans le cas où 0 < a < 1.
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C.4.6 Graphe

Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
La fonction expa étant la réciproque de loga, son graphe, dans R2, peut être déduit

de celui de loga : il suffit de prendre le graphe de loga et de lui appliquer une symétrie
axiale, dans R2, dont l’axe est la droite d’équation y = x.

x

y

0 1−1

1

a

a > 1

x

y

0 1−1

1

a

0 < a < 1

Un échantillon du graphe de expa est donné ci-dessus à gauche, dans le cas où a > 1,
et ci-dessus à droite, dans le cas où 0 < a < 1. Noter que expa est :

• strictement croissante dans R, dans le cas où a > 1,

• strictement décroissante dans R, dans le cas où 0 < a < 1.

Ces résultats sont une conséquence de la proposition 2.10.6 (cf. section 2.10 du cha-
pitre 2) et du fait que loga est strictement croissante dans R∗

+ si a > 1, strictement
décroissante dans R∗

+ si 0 < a < 1.

C.4.7 Exponentielle de base e

L’exponentielle de base e se note simplement exp ; l’indice e est omis. Pour rappel,
e = 2,71828..... (cf. sous-section C.3.18, dans la section précédente).

C.4.8 Dérivée

La fonction exp (i.e. expe) admet pour dérivée la fonction exp′ : R → R∗
+, donnée par :

exp′(x) = exp(x) ; autrement écrit :
d

dx
ex = ex .

Pour prouver cette formule, il convient de remarquer, en premier lieu, que pour tout
x ∈ R :

ln
(
exp(x)

)
= x

⇔ ln
(
exp(x)

)
− x = 0

⇔ ln(y)− x = 0 ,
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où y = exp(x). En dérivant l’expression ln(y)− x = 0 des deux côtés par rapport à x,
tout en gardant à l’esprit que y dépend de x, il vient alors :

d

dx

(
ln(y)− x

)
=

d

dx
0 ⇔ 1

y

dy

dx
− 1 = 0

⇔ 1

y

dy

dx
= 1

⇔ dy

dx
= y .

Or, y = exp(x) et dy
dx

= exp′(x). D’où le résultat.
Quant à la fonction expa, où a ∈ R∗r {1}, elle admet pour dérivée la fonction

expa
′ : R → R∗

+, donnée par :

expa
′(x) = ln(a) expa(x) ; autrement écrit :

d

dx
ax = ln(a) ax .

Pour prouver ce résultat, il convient de remarquer que expa(x) = exp
(
x ln(a)

)
:

expa(x) = exp
[
ln
(
expa(x)

)]
= exp

(
ln(ax)

)
= exp

(
x ln(a)

)
,

puis de faire appel à la règle de dérivation de la composition d’une fonction, tout en
notant que la dérivée de l’exponentielle (de base e) est l’exponentielle (de base e) :

expa
′(x) =

d

dx
expa(x) =

d

dx
exp
(
x ln(a)

)
= ln(a) exp

(
x ln(a)

)
.

C.5 Fonctions puissances

C.5.1 Expression d’une fonction puissance

On appelle fonction puissance toute fonction de la forme :

pa : R∗
+ −→ R

x 7−→ y = pa(x) ,

où :
pa(x) = xa , (C.5.1)

a étant un nombre réel fixe.
En toute généralité, l’expression xa, où a est un nombre réel fixe et x une variable

réelle strictement positive, s’interprète à l’aide des fonctions exponentielle et logarithme :

xa = exp
(
a ln(x)

)
.

En effet, comme ln(xa) = a ln(x), alors xa = exp
(
ln(xa)

)
= exp

(
a ln(x)

)
.
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C.5.1 Remarques : • Si la fonction pa a été définie comme ci-dessus, au moyen d’un
logarithme et d’une exponentielle, c’est dans le but de pouvoir donner un sens à
l’expression xa, quel que soit le nombre réel a, qu’il soit rationnel ou irrationnel.

• Lorsque a est un nombre rationnel, ou même un nombre entier, l’expression xa

peut s’interpréter non seulement à l’aide d’un logarithme et d’une exponentielle,
mais également au moyen d’une puissance entière et éventuellement d’une racine.

✄ a ∈ Z. Dans ce cas, pour tout x ∈ R∗ :

xa =







x · . . . · x
︸ ︷︷ ︸

a fois

si a ∈ Z∗
+

1 si a = 0

1

x · . . . · x
︸ ︷︷ ︸

a fois

si a ∈ Z∗
−

.

✄ a ∈ Q. Dans ce cas, a peut s’écrire sous la forme a = m
n
, où m ∈ Z et

n ∈ N∗r{1} (la situation où n = 1 se ramenant au cas où a ∈ Z) ; et alors,
pour tout x ∈ R∗

+ :

xa = x
m
n = n

√
xm =

(
n
√
x
)m

.

C.5.2 Domaine de définition et ensemble image

L’expression de la fonction pa s’interprétant en toute généralité comme l’exponentielle
d’un logarithme, son domaine de définition Dpa est celui d’un logarithme :

Dpa = R∗
+ .

C.5.2 Remarque : Lorsque a est un nombre rationnel, ou même un nombre entier, l’ex-
pression de pa peut s’interpréter non seulement à l’aide d’un logarithme et d’une ex-
ponentielle, mais également au moyen d’une puissance entière et éventuellement d’une
racine. Dans de telles circonstances, il se peut que le domaine de définition puisse être
étendu.

✄ a ∈ Z. Dans ce cas :

⋄ Dpa = R∗ si a ∈ Z− ,

⋄ Dpa = R si a ∈ Z∗
+ .

✄ a ∈ Q. Dans ce cas, a peut s’écrire sous la forme a = m
n
, oùm ∈ Z et n ∈ N∗r{1}

(la situation où n = 1 se ramenant au cas où a ∈ Z), et donc pa(x) = xa = x
m
n .

Si l’on peut écrire x
m
n = n

√
xm = ( n

√
x )m pour tout x ∈ R∗

+ (ou même pour tout
x ∈ R+ lorsque m > 1), on ne peut en revanche pas écrire, en général, de telles
égalités lorsque x ∈ R∗

−. En effet, par exemple, pour m = 2 et n = 6 :

◦ si x > 0, alors x
2
6 =

6
√
x2 = ( 6

√
x )2,

◦ si x < 0, alors
6
√
x2 est définie, alors que ( 6

√
x )2 ne l’est pas.
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Certes, il peut sembler légitime de vouloir définir des expressions telles que x
1
3

dans tout R (vu que
3
√
x1 = ( 3

√
x )1 pour tout x ∈ R). Cependant, comme 1

3
= 2

6
,

alors x
1
3 = x

2
6 , avec x

1
3 qui serait définie dans tout R et x

2
6 qui ne serait définie

que dans R+ ; ce qui ne serait pas cohérent. Un tel exemple montre qu’il n’est
pas opportun de vouloir définir l’expression x

m
n dans R∗

−. Ainsi, comme dans le
cas où a est irrationnel, lorsque a est rationnel, le domaine de définition de pa
ne peut pas contenir les nombres réels strictement négatifs. Cela étant, lorsque a
est rationnel, le domaine de définition de pa peut, dans certaines circonstances,
contenir le nombre 0. En effet, l’expression x

m
n peut être définie lorsque m > 1 ;

en effet, 0
m
n = n

√
0m = 0 = ( n

√
0 )m. En résumé :

⋄ Dpa = R∗
+ si a = m

n
, avec m ∈ Z− et n ∈ N∗r{1},

⋄ Dpa = R+ si a = m
n
, avec m ∈ Z∗

+ et n ∈ N∗r{1}.

En ce qui concerne l’ensemble image Ipa de pa, dès lors que Dpa = R∗
+, alors :

Ipa =

{

R∗
+ si a ∈ R∗

{1} si a = 0
.

Ce résultat est une conséquence directe du fait que l’ensemble image de la fonction ln
est R, que l’ensemble image de la fonction exp est R∗

+ et du fait que xa = exp
(
a ln(x)

)
.

C.5.3 Remarque : Comme mentionné dans la remarque précédente, lorsque a est un
nombre rationnel, ou même un nombre entier, le domaine de définition Dpa de pa peut
être étendu dans certaines circonstances ; or, une extension du domaine de définition
peut engendrer, dans certains cas, une extension de l’ensemble image Ipa de pa.

✄ a ∈ Z. Dans ce cas :

⋄ Ipa = R∗
+ si a est un nombre entier pair et strictement négatif,

⋄ Ipa = R∗ si a est un nombre entier impair et strictement négatif,

⋄ Ipa = {1} si a = 0,

⋄ Ipa = R+ si a est un nombre entier, pair et strictement positif,

⋄ Ipa = R si a est un nombre entier, impair et strictement positif.

✄ a ∈ Q. Dans ce cas, a peut s’écrire sous la forme a = m
n
, oùm ∈ Z et n ∈ N∗r{1}

(la situation où n = 1 se ramenant au cas où a ∈ Z), et donc pa(x) = xa = x
m
n .

Alors :

⋄ Ipa = R∗
+ si m ∈ Z− ,

⋄ Ipa = R+ si m ∈ Z∗
+ .

C.5.3 Parité

En toute généralité, la fonction pa n’est ni paire ni impaire. Et pour cause : le domaine
de définition Dpa de pa, qui est R

∗
+, n’est pas symétrique par rapport à 0.
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C.5.4 Remarques : • Comme mentionné précédemment, lorsque a est un nombre
rationnel, ou même un nombre entier, l’expression de pa peut s’interpréter égale-
ment au moyen d’une puissance entière et éventuellement d’une racine. Dans de
telles circonstances, il se peut que pa soit paire ou impaire.

✄ a ∈ Z. Dans ce cas, le domaine de définition Dpa de pa, qui est R
∗ si a ∈ Z−

et R si a ∈ Z∗
+, est symétrique par rapport à 0. En outre, pour tout x ∈ Dpa :

⋄ si a est pair, alors :

pa(−x) = (−x)a = xa = pa(x) ;

⋄ si a est impair, alors :

pa(−x) = (−x)a = −xa = −pa(x) .

En résumé, pa est paire si a est pair, et pa est impaire si a est impair.

✄ a ∈ Q. Dans ce cas, la fonction pa n’est ni paire ni impaire ; et pour cause : le
domaine de définition Dpa de pa, qui est R

∗
+ si a 6 0 et R+ si a > 0, n’est pas

symétrique par rapport à 0.

• Il pourrait être légitime de penser qu’une fonction telle que x 7→ x
1
3 est impaire ;

car, en effet, si l’on remplaçait x
1
3 par

3
√
x1 (ou, de manière équivalente, par

( 3
√
x )1), on aurait 3

√

(−x)1 = 3
√
−x1 = − 3

√
x1, pour tout x ∈ R (avec R symé-

trique par rapport à 0). Cela étant, dès lors que x
1
3 n’est définie que dans R+ (et

qu’elle ne cöıncide avec
3
√
x1 que dans R+), il n’est pas possible de conclure au-

trement qu’en disant que la fonction puissance x 7→ x
1
3 n’est ni paire ni impaire.

• Le point précédent montre que les fonctions puissances rationnelles ne peuvent
pas être identifiées à des compositions de fonctions puissances entières et ra-
cines. Certes, les compositions de puissances entières et de racines peuvent ser-
vir à donner une interprétation des fonctions puissances rationnelles dans R∗

+,
voire dans R+, mais elles ne permettent en aucun cas une identification. Voilà
qui permet de comprendre pourquoi les deux affirmations suivantes ne sont pas
contradictoires :

⋄ la fonction puissance rationnelle x 7→ x
1
3 n’est ni paire ni impaire, car définie

uniquement dans R+,

⋄ la fonction racine cubique, x 7→ 3
√
x (qui ne doit pas être identifiée à la fonction

puissance 1
3
), est impaire : elle est définie dans tout R et 3

√
−x = − 3

√
x , pour

tout x ∈ R.

C.5.4 Continuité

La fonction pa est continue en chaque point de son domaine de définition Dpa . Ce qui
permet de l’affirmer, c’est le fait que :

• les fonctions exponentielle et logarithme naturel sont toutes les deux continues
dans leurs domaines de définitions respectifs ;
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• la fonction puissance pa est prolongeable par continuité en x = 0, lorsque a > 0 ;
en effet :

lim
x→0
x>0

exp
(
a ln(x)

)
= 0 lorsque a > 0 ,

ce qui conduit à poser pa(0) = 0 lorsque a > 0.

C.5.5 Asymptotes et graphe

Dans certaines circonstances, la fonction puissance pa possède des asymptotes. Le com-
portement asymptotique dépend de la valeur que prend le nombre réel a.

• a < 0. Dans ce cas, pa admet une asymptote verticale, d’équation x = 0, ainsi
qu’une asymptote horizontale à droite, d’équation y = 0. En effet, en posant
u = ln(x), d’une part :

lim
x→0
x>0

pa(x) = lim
x→0
x>0

xa = lim
x→0
x>0

exp
(
a ln(x)

)
= lim

x→0
x>0

exp
(
−|a| ln(x)

)

= lim
u→−∞

exp
(
−|a| u

)
= ∞ ,

d’autre part :

lim
x→∞

pa(x) = lim
x→∞

xa = lim
x→∞

exp
(
a ln(x)

)
= lim

x→∞
exp
(
−|a| ln(x)

)

= lim
u→∞

exp
(
−|a| u

)
= 0 .

En outre, dans le cas où elle est définie dans R∗,
pa possède également une asymptote horizontale
à gauche, d’équation y = 0 ; ce en raison du fait
que pa est nécessairement soit paire, soit impaire
lorsqu’elle est définie dans R∗. La figure ci-contre
représente le graphe de pa, dans le plan eucli-
dien R2 (muni de son système de coordonnées
cartésiennes canonique Oxy), pour différentes va-
leurs strictement négatives de a.

x

y

0 1−1

1

−1
a = −1

a = − 2

5

a = −π

• a = 0. Dans ce cas, pa = p0, où p0(x) = x0 = 1
pour tout x ∈ R∗ ; p0 n’est pas définie en
x = 0 (vu que p0(0) = 00, qui est une forme
indéterminée). La figure ci-contre représente le
graphe de p0, dans le plan euclidien R2 (muni
de son système de coordonnées cartésiennes cano-
nique Oxy) : il s’agit d’une droite horizontale pas-
sant par le point (1; 1) et entrecoupée en (0; 1).

x

y

0 1−1

1 a = 0
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• 0 < a < 1. Dans ce cas, pa n’admet aucune
asymptote, ni verticale ni horizontale, ni oblique.
En effet, d’une part :

lim
x→0
x>0

pa(x) = lim
x→0
x>0

xa = lim
x→0
x>0

exp
(
a ln(x)

)
= 0 ,

d’autre part :

lim
x→∞

pa(x) = lim
x→∞

xa = lim
x→∞

exp
(
a ln(x)

)
= ∞ ;

a = 1

2

a = 1

π

x

y

0 1−1

1

−1

enfin, certes :

lim
x→∞

pa(x)

x
= lim

x→∞

xa

x
= lim

x→∞
xa−1 = lim

x→∞
exp
(
(a− 1)
︸ ︷︷ ︸

<1

ln(x)
)
= 0 ,

mais :
lim
x→∞

(
pa(x)− 0 x

)
= lim

x→∞
(xa − 0 x) = lim

x→∞
xa = ∞ .

Noter que lorsqu’elle est définie dans R, pa est soit paire, soit impaire ; en consé-
quence, si pa n’admet aucune asymptote horizontale ou oblique à droite, elle ne
possède aucune asymptote horizontale ou oblique à gauche non plus. La figure
ci-dessus représente le graphe de pa, dans le plan euclidien R2 (muni de son
système de coordonnées cartésiennes cano-
nique Oxy), pour différentes valeurs de a com-
prises strictement entre 0 et 1.

• a = 1. Dans ce cas, pa = p1, où p1(x) = x1 = x
pour tout x ∈ R. La figure ci-contre représente
le graphe de p1, dans le plan euclidien R2 (muni
de son système de coordonnées cartésiennes ca-
nonique Oxy) : il s’agit de la droite d’équation
y = x.

x

y

0

1−1

1

−1

a = 1

• a > 1. Dans ce cas, pa n’admet aucune asymptote,
ni verticale ni horizontale, ni oblique. Pour s’en
convaincre, il convient de mener un raisonnement
similaire à celui effectué dans le cas où 0 < a < 1 ;
le détail des calculs est laissé en exercice. La fi-
gure ci-contre représente le graphe de pa, dans le
plan euclidien R2 (muni de son système de coor-
données cartésiennes canonique Oxy), pour diffé-
rentes valeurs de a strictement supérieures à 1.

a = 3

a = 2

a = π

x

y

0 1−1

1

−1Noter que les propos tenus dans la présente sous-section,
ainsi que dans la précédente, permettent de justifier les
considérations faites dans la sous-section C.5.2, au sujet
de l’ensemble image Ipa de pa.
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C.5.6 Dérivée

La fonction pa, telle que définie en début de section, admet pour dérivée la fonction
pa

′ : R∗
+ → R donnée par :

pa
′(x) = a xa−1 .

En effet, pour tout x ∈ R∗
+ :

pa
′(x) =

d

dx
pa(x) =

d

dx
xa =

d

dx
exp
(
a ln(x)

)

= exp
(
a ln(x)

)
a
1

x
= xa

a

x
=

a xa

x
= a xa−1 .

C.5.5 Remarque : Lorsque a est un nombre rationnel, ou même un nombre entier, l’ex-
pression de pa peut, rappelons-le, s’interpréter également au moyen d’une puissance
entière et éventuellement d’une racine. Dans de telles circonstances, il se peut que la
dérivée pa

′ de pa soit définie dans un domaine plus étendu que R∗
+ .

✄ a ∈ Z. Dans ce cas, la fonction pa admet une dérivée non seulement dans R∗
+,

mais également dans R∗
− ; et même en 0 lorsque a > 1. En outre, la formule

pa
′(x) = a xa−1 s’applique à tout x ∈ R si a > 2 et à tout x ∈ R∗ si a 6 1. Aussi,

lorsque a = 1, pa
′(0) existe et vaut 1. Noter que tous ces résultats ont déjà été

prouvés dans la section C.1, consacrée aux fonctions polynomiales.

✄ a ∈ Q. Dans ce cas, la fonction pa peut, si elle est définie dans R+, admettre une
dérivée à droite en x = 0.

⋄ Si a = m
n
, avec m ∈ Z, n ∈ N∗r{1} et m > n, la dérivée à droite de pa en 0

est nulle.

⋄ Si a = m
n
, avec m ∈ Z, n ∈ N∗r{1} et 0 < m < n, la dérivée à droite de pa

en 0 est infinie.

C.6 Fonctions hyperboliques

C.6.1 Sinus, cosinus et tangente hyperboliques

x

y

0

1−1

1

−1

sinhOn appelle sinus hyperbolique la fonction :

sinh : R −→ R

x 7−→ y = sinh(x)

donnée par :

sinh(x) =
1

2

(
exp(x)− exp(−x)

)
.
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x

y

0 1−1

1
cosh

On appelle cosinus hyperbolique la fonction :

cosh : R −→ [1; ∞[

x 7−→ y = cosh(x)

donnée par :

cosh(x) =
1

2

(
exp(x) + exp(−x)

)
.

x

y

0

1−1

−1

1
tgh

On appelle tangente hyperbolique la fonction :

tgh : R −→ ]−1; 1[

x 7−→ y = tgh(x)

donnée par :

tgh(x) =
sinh(x)

cosh(x)
=

exp(x)− exp(−x)
exp(x) + exp(−x) .

C.6.2 Origine des termes

La dénomination sinus, apparaissant dans l’expression sinus hyperbolique, vient du fait
que la formulation de sinh en termes d’exponentielles est très similaire à celle de la
fonction trigonométrique portant le même nom (cf. section C.8). Il en est de même pour
les autres fonctions hyperboliques.

1−1
x

1

−1

yPour ce qui est du qualificatif hyperbolique, il vient du fait
que les équations paramétriques :

{

x(t) = cosh(t)

y(t) = sinh(t)
, t ∈ R ,

décrivent, dans le plan euclidien R2 (muni de son système de
coordonnées cartésiennes canonique Oxy), ce que l’on appelle
une branche d’hyperbole.

C.6.3 Le cosinus hyperbolique en architecture

Lorsqu’une corde, une châıne ou une châınette est suspendue par ses deux extrémités,
elle s’incurve sous son propre poids.

La forme que prend une châınette suspendue a suscité l’intérêt de plusieurs scienti-
fiques ayant vécu au XVIIe siècle.

• Galilée en parlait comme d’un morceau de parabole.

• Christiaan Huygens VIII était convaincu qu’il s’agissait d’un autre type de courbe.

VIII. Christiaan Huygens était un scientifique néerlandais, né en 1629 à La Haie (à l’époque dans
les Provinces-Unies, aujourd’hui aux Pays-Bas) et mort en 1695 dans la même ville. Il est demeuré
célèbre pour ses travaux en physique (notamment la théorie ondulatoire de la lumière) et en astronomie
(découverte de Titan, satellite de Saturne, description des anneaux de Saturne).
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La description correcte de la forme d’une châınette a été obtenue pour la première fois
vers la fin du XVIIe siècle ; on la doit à Jean Bernoulli, Gottfried Wilhelm Leibniz et
également à Christiaan Huygens. Si les trois savants ont étudié la question pratiquement
simultanément, ils l’ont résolue de façon indépendante. Tous les trois sont arrivés aux
mêmes conclusions ; conclusions qui excluent toute forme parabolique.

Pont suspendu Charles Kuonen

Vallée de Zermatt, Suisse

Le problème de la forme d’une châınette suspendue se ré-
sout en considérant un morceau de châınette de longueur in-
finiment petite et en analysant les forces qui agissent sur le
morceau en question. Toutes les forces étant contenues dans
un seul plan vertical, la châınette se trouve nécessairement
dans ce même plan. En plaçant un système de coordonnées
cartésiennes Oxy dans le plan de la châınette, de sorte que Ox
soit horizontal et Oy vertical, orienté vers le haut, puis en ef-
fectuant les calculs dans le détail, on arrive finalement à une expression du type :

y − y0 = a cosh

(
x− x0
a

)

,

où x et y désignent les coordonnées d’un point quelconque sur la châınette, x0 et y0 + a
les coordonnées du point de la châınette le plus bas ; pour ce qui est de a, il s’agit d’un
paramètre réel fixe, qui dépend de la masse de la châınette, ainsi que de la tension à
laquelle la châınette est soumise.

Lorsqu’il s’agit de construire une arche, une voûte ou une coupole, se pose la question
de la forme idéale, pour laquelle la stabilité est maximale.

• Dans la deuxième moitié du XVIIe siècle, Robert Hooke IX a apporté la solution
suivante : toute voûte doit avoir un profil identique à celui d’une châınette sus-
pendue, mais inversé.

Le résultat obtenu par Hooke fait sens : alors que dans une châınette suspendue, les forces
en jeu ne sont que des forces de traction, dans une arche en forme de châınette renversée,
les forces en jeu ne sont que des forces de compression ; or les forces de compression sont
les forces les mieux supportées par les matériaux de construction.

Nombre d’édifices voûtés ont pour forme un morceau de graphe du cosinus hyperbo-
lique ; par exemple :

• l’arc du palais Taq-e Kisra, construit en 540 à Ctésiphon, ancienne ville perse
située non loin de l’actuelle Bagdad, en Irak ;

• des couloirs de la Casa Milà, à Barcelone, en Catalogne (œuvre de l’architecte
catalan Antoni Gaudi) ;

• le Sheffield Winter Garden, à Sheffield, en Angleterre (œuvre du cabinet d’ingé-
nierie Buro Happold).

IX. Robert Hooke était un scientifique anglais, né en 1635 à Freshwater, sur l’̂ıle de Wight (en An-
gleterre), et mort en 1703 à Londres. Il a été un savant touche-à-tout, qui s’est illustré dans divers
domaines : physique, astronomie, architecture, etc.
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Palais Taq-e Kisra Casa Milà Sheffield Winter Garden

C.6.4 Relation fondamentale

Les fonctions sinus et cosinus hyperboliques satisfont la relation fondamentale :

cosh2(x)− sinh2(x) = 1 , quel que soit x ∈ R ;

en effet, pour tout x ∈ R :

cosh2(x)− sinh2(x) =
(
cosh(x)

)2 −
(
sinh(x)

)2

=

[
1

2

(
exp(x) + exp(−x)

)
]2

−
[
1

2

(
exp(x)− exp(−x)

)
]2

=
1

4

((
exp(x)

)2
+ 2 exp(x) exp(−x) +

(
exp(−x)

)2
)

+

−1

4

((
exp(x)

)2 − 2 exp(x) exp(−x) +
(
exp(−x)

)2
)

=
1

4
· 2 exp(x) exp(−x) + 1

4
· 2 exp(x) exp(−x)

= exp(x) exp(−x) =
exp(x)

exp(x)
= 1 .

C.6.5 Domaines de définition et ensembles image

Le domaine de définition de la fonction sinh est l’ensemble R dans son intégralité ; il
en est de même pour les fonctions cosh et tgh. Pour ce qui est de l’ensemble image, il
diffère d’une fonction à l’autre :

• la fonction sinh a pour ensemble image l’ensemble R dans son intégralité ;

• la fonction cosh a pour ensemble image l’intervalle [1; ∞[ ;

• la fonction tgh a pour ensemble image l’intervalle ]−1; 1[ .

Ces résultats se déduisent essentiellement des propos tenus dans la sous-sections C.6.8
ci-dessous.
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C.6.6 Parité

Les fonctions sinh et tgh sont toutes les deux impaires ; quant à la fonction cosh, elle est
paire.

• La fonction sinh est impaire. En effet, son domaine de définition, qui est R, est
symétrique par rapport à 0 ; en outre, pour tout x ∈ R :

sinh(−x) =
1

2

(
exp(−x)− exp(−(−x))

)

=
1

2

(
exp(−x)− exp(x)

)

= −1

2

(
exp(x)− exp(−x)

)

= − sinh(x) .

• La fonction cosh est paire. En effet, son domaine de définition, qui est R, est
symétrique par rapport à 0 ; en outre, pour tout x ∈ R :

cosh(−x) =
1

2

(
exp(−x) + exp(−(−x))

)

=
1

2

(
exp(−x) + exp(x)

)

=
1

2

(
exp(x)− exp(−x)

)

= cosh(x) .

• La fonction tgh est impaire. En effet, son domaine de définition, qui est R, est
symétrique par rapport à 0 ; en outre, pour tout x ∈ R :

tgh(−x) =
sinh(−x)
cosh(−x) =

− sinh(x)

cosh(x)
= − sinh(x)

cosh(x)
= − tgh(x) .

C.6.7 Zéros

Les fonctions sinh et tgh s’annulent en x = 0, et uniquement en x = 0. Quant à la
fonction cosh, elle ne s’annule jamais.

• sinh s’annule en x = 0 et uniquement en x = 0 ; en effet :

sinh(x) = 0 ⇔ 1

2

(
exp(x)− exp(−x)

)
= 0

⇔ exp(x)− exp(−x) = 0

⇔ exp(2 x)− 1 = 0

⇔ x = 0 .
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• cosh ne s’annule jamais ; en effet :

cosh(x) = 0 ⇔ 1

2

(
exp(x) + exp(−x)

)
= 0

⇔ exp(x) + exp(−x) = 0

⇔ exp(2 x) + 1 = 0

⇔ exp(2 x) = −1 ;

or, cette dernière équation ne possède aucune solution réelle.

• tgh s’annule en x = 0 et uniquement en x = 0 ; en effet :

tgh(x) = 0 ⇔ sinh(x)

cosh(x)
= 0 ⇔ sinh(x) = 0

⇔ x = 0 .

C.6.8 Continuité et asymptotes

Les fonctions sinh, cosh et tgh sont toutes continues dans R. Ces résultats se déduisent
du fait que la fonction exp est continue dans R, ainsi que du fait que :

• le sinus hyperbolique est essentiellement une différence d’exponentielles,

• le cosinus hyperbolique est essentiellement une somme d’exponentielles,

• la tangente hyperbolique est le quotient du sinus hyperbolique, qui est continu
dans R, et du cosinus hyperbolique, qui est continu et ne s’annule jamais dans R.

Les fonctions sinh, cosh, et tgh étant toutes continues dans R, aucune d’elles ne
possède une quelconque asymptote verticale.

Ni la fonction sinh, ni la fonction cosh n’admet une quelconque asymptote horizontale
ou oblique. Pour ce qui est de la fonction tgh, elle admet une asymptote horizontale à
droite d’équation y = 1, ainsi qu’une asymptote horizontale à gauche d’équation y = −1.

• La fonction sinh ne possède ni asymptote horizontale, ni asymptote oblique ; en
effet :

lim
x→∞

sinh(x) = lim
x→∞

1

2

(
exp(x)− exp(−x)

)
=

1

2
(∞− 0) = ∞

et :

lim
x→−∞

sinh(x) = lim
x→−∞

1

2

(
exp(x)− exp(−x)

)
=

1

2
(0−∞) = −∞ ;

aussi, grâce à la règle de Bernoulli-L’Hôpital (B-H) :

lim
x→∞

sinh(x)

x
= lim

x→∞

exp(x)− exp(−x)
2 x

B-H
= lim

x→∞

exp(x) + exp(−x)
2

=
∞+ 0

2
= ∞
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et :

lim
x→−∞

sinh(x)

x
= lim

x→−∞

exp(x)− exp(−x)
2 x

B-H
= lim

x→−∞

exp(x) + exp(−x)
2

=
0 +∞

2
= ∞ .

• La fonction cosh ne possède ni asymptote horizontale, ni asymptote oblique ; en
effet :

lim
x→∞

cosh(x) = ∞ et lim
x→−∞

cosh(x) = ∞ ;

aussi :

lim
x→∞

cosh(x)

x
= ∞ et lim

x→−∞
cosh(x) = ∞ .

Les calculs étant similaires à ceux du point précédent, ils ne sont pas détaillés ici.

• La fonction tgh admet une asymptote horizontale à droite d’équation y = 1, ainsi
qu’une asymptote horizontale à gauche d’équation y = −1 ; en effet :

lim
x→∞

tgh(x) = lim
x→∞

exp(x)− exp(−x)
exp(x) + exp(−x) = lim

x→∞

exp(x)
(
1− exp(−2 x)

)

exp(x)
(
1 + exp(−2 x)

)

= lim
x→∞

1− exp(−2 x)

1 + exp(−2 x)
=

1− 0

1 + 0
= 1

et :

lim
x→−∞

tgh(x) = lim
x→−∞

exp(x)− exp(−x)
exp(x) + exp(−x) = lim

x→−∞

exp(−x)
(
exp(2 x)− 1

)

exp(−x)
(
exp(2 x) + 1

)

= lim
x→−∞

exp(2 x)− 1

exp(2 x) + 1
=

0− 1

0 + 1
= −1 .

C.6.9 Dérivées

La fonction sinh admet pour dérivée la fonction cosh ; autrement dit, la fonction sinh
admet pour dérivée la fonction sinh′ : R → R, donnée par :

sinh′(x) = cosh(x) .

En effet, pour tout x ∈ R :

sinh′(x) =
d

dx
sinh(x) =

d

dx

(
1

2

(
exp(x)− exp(−x)

)
)

=
1

2

d

dx

(
exp(x)− exp(−x)

)
=

1

2

[
exp(x)−

(
−exp(−x)

)]

=
1

2

(
exp(x) + exp(−x)

)
= cosh(x) .
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La fonction cosh admet pour dérivée la fonction sinh ; autrement dit, la fonction cosh
admet pour dérivée la fonction cosh′ : R → R, donnée par :

cosh′(x) = sinh(x) .

En effet, pour tout x ∈ R :

cosh′(x) =
d

dx
cosh(x) =

d

dx

(
1

2

(
exp(x) + exp(−x)

)
)

=
1

2

d

dx

(
exp(x) + exp(−x)

)

=
1

2

(
exp(x)− exp(−x)

)
= sinh(x) .

La fonction tgh admet pour dérivée la fonction tgh′ : R → R, donnée par :

tgh′(x) =







1

cosh2(x)
ou

1− tgh2(x)

.

En effet, pour tout x ∈ R :

tgh′(x) =
d

dx
tgh(x) =

d

dx

(
sinh(x)

cosh(x)

)

=
cosh(x) cosh(x)− sinh(x) sinh(x)

(
cosh(x)

)2

=
cosh2(x)− sinh2(x)

cosh2(x)
=







1

cosh2(x)
ou

1− tgh2(x)

;

les deux expressions derrière l’accolade sont équivalentes ; ce sont deux écritures diffé-
rentes pour le même objet.

C.6.10 Bijectivité

Les fonctions sinh et tgh sont strictement croissantes dans R ; quant à la fonction cosh,
elle est strictement décroissante dans R− et strictement croissante dans R+.

Pour prouver ces assertions, il suffit de prendre deux éléments x1, x2 ∈ R tels que
x1 < x2, puis d’appliquer le théorème des accroissements finis dans l’intervalle [x1; x2]
(cf. théorème 3.9.4, section 3.9 du chapitre 3). Noter que le théorème est applicable vu
que sinh, cosh et tgh sont toutes continues et dérivables dans R.

• Dans le cas de la fonction sinh, il vient :

sinh(x2)− sinh(x1) = sinh′(c) (x2 − x1) ,
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où c est un nombre réel dans l’intervalle ]x1; x2[ . Or, sinh′(c) = cosh(c) > 0, vu
que cosh(x) > 0 pour tout x ∈ R. Donc :

sinh(x2)− sinh(x1) = cosh(c) (x2 − x1) > 0 ⇔ sinh(x1) < sinh(x2) ,

ce qui montre la croissance stricte de sinh dans R.

• Dans le cas de la fonction cosh, il vient :

cosh(x2)− cosh(x1) = cosh′(c) (x2 − x1) ,

où c est un nombre réel dans l’intervalle ]x1; x2[ . Or, cosh′(c) = sinh(c) ; et
sinh(c) < 0 si c < 0, sinh(c) > 0 si c > 0. Donc :

cosh(x2)− cosh(x1) = sinh(c) (x2 − x1)

{

< 0 si x1 < x2 6 0

> 0 si 0 6 x1 < x2

⇔
{

cosh(x1) > cosh(x2) si x1 < x2 6 0

cosh(x1) < cosh(x2) si 0 6 x1 < x2
,

ce qui montre que cosh est strictement décroissante dans R− et strictement crois-
sante dans R+.

• Dans le cas de la fonction tgh, il vient :

tgh(x2)− tgh(x1) = tgh′(c) (x2 − x1) ,

où c est un nombre réel dans l’intervalle ]x1; x2[ . Or, tgh′(c) = 1 − tgh2(c) > 0,
vu que −1 < tgh(x) < 1 pour tout x ∈ R. Donc :

tgh(x2)− tgh(x1) =
(
1− tgh2(c)

)
(x2 − x1) > 0 ⇔ tgh(x1) < tgh(x2) ,

ce qui montre la croissance stricte de tgh dans R.
Les résultats qui viennent d’être établis, associés aux propos tenus dans la sous-

section C.6.5, permettent de formuler les conclusions suivantes.

• La fonction sinh : R → R est bijective.

• La fonction :
⋄ cosh : R− → [1; ∞[ (dont le domaine de définition est restreint à R−) est
bijective,

⋄ cosh : R+ → [1; ∞[ (dont le domaine de définition est restreint à R+) est
bijective.

• La fonction tgh: R → ]−1; 1[ est bijective.

En effet, dès lors qu’une fonction réelle est strictement croissante ou strictement décrois-
sante dans un ensemble, elle est nécessairement injective dans cet ensemble ; en outre, si
elle a pour ensemble d’arrivée son ensemble image, la fonction en question est également
surjective ; elle est, par conséquent, bijective.
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C.6.11 Autres fonctions hyperboliques

À partir des fonctions sinh, cosh et tgh, il est possible de définir d’autres fonctions
hyperboliques, telles :

• la sécante hyperbolique, notée sech,

• la cosécante hyperbolique, notée csch,

• la cotangente hyperbolique, notée ctgh.

Par définition :

sech =
1

cosh
, csch =

1

sinh
, ctgh =

1

tgh
.

Les propriétés des fonctions sech, csch et ctgh se déduisent des propriétés de sinh, cosh
et tgh.

C.7 Fonctions hyperboliques réciproques

C.7.1 Arguments sinus, cosinus et tangente hyperboliques

x

y

0

1−1

1

−1

Argsinh

On appelle argument sinus hyperbolique la fonction ré-
ciproque du sinus hyperbolique, i.e. la fonction :

Argsinh : R −→ R

x 7−→ y = Argsinh(x)

donnée par :

y = Argsinh(x) ⇔ sinh(y) = x , où x ∈ R .

x

y

0 1−1

1

Argcosh

On appelle argument cosinus hyperbolique la fonc-
tion réciproque du cosinus hyperbolique ayant pour en-
semble image les nombres réels positifs ; il s’agit de la
fonction :

Argcosh : [1; ∞[ −→ R+

x 7−→ y = Argcosh(x)

donnée par :

y = Argcosh(x) ⇔ cosh(y) = x , où x ∈ [1; ∞[ .

x

y

0

1−1

1

−1

Argtgh

On appelle argument tangente hyperbolique la fonc-
tion réciproque de la tangente hyperbolique, i.e. la fonc-
tion :

Argtgh : ]−1; 1[ −→ R

x 7−→ y = Argtgh(x)
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donnée par :

y = Argtgh(x) ⇔ tgh(y) = x , où x ∈ ]−1; 1[ .

C.7.1 Remarques : • Les fonctions :

sinh : R −→ R , cosh : R+ −→ [1; ∞[ , tgh : R −→ ]−1; 1[

sont, rappelons-le, toutes bijectives. Les définitions données ci-dessus font donc
pleinement sens.

• La fonction Argsinh étant la réciproque de la fonction sinh, ses propriétés peuvent
être, pour la plupart, déduites directement des propriétés de sinh. Il en est de
même pour Argcosh et cosh, ainsi que pour Argtgh et tgh.

C.7.2 Origine des termes

Le terme argument , qui apparâıt dans les noms des fonctions hyperboliques réciproques,
trouve son origine dans la théorie générale sur les fonctions réciproques.

Si f : D → E est une fonction bijective, donnée par y = f(x), cette fonction admet
une réciproque rf : E → D, donnée par rf(y) = x. rf permet donc de retrouver, à partir
de l’élément y = f(x), l’élément x duquel dépend f . Or, cet élément x n’est autre que
ce que l’on appelle communément l’argument de f .

Par exemple, dans le cas de la fonction argument sinus hyperbolique :

y = sinh(x) ⇔ Argsinh(y) = x ,

x étant effectivement l’argument de la fonction sinh.

C.7.3 Expressions alternatives des fonctions hyperboliques réciproques

Les fonctions hyperboliques réciproques peuvent être exprimées au moyen du logarithme
naturel.

• La fonction Argsinh peut s’écrire :

Argsinh(x) = ln
(
x+

√
x2 + 1

)
.

Pour prouver cette égalité, il convient de poser l’équation x = sinh(y), puis de la
résoudre par rapport à y. Concrètement :

x = sinh(y)

⇔ x =
1

2

(
exp(y)− exp(−y)

)

⇔ 2 x exp(y) = exp(y) exp(y)− exp(−y) exp(y)

⇔ 2 x exp(y) =
(
exp(y)

)2 − 1

⇔ 0 =
(
exp(y)

)2 − 2 x exp(y)− 1 ;
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noter qu’une multiplication par 2 exp(y) a été effectuée pour passer de la deuxième
à la troisième ligne du calcul. La dernière égalité obtenue n’étant rien d’autre
qu’une équation du deuxième degré en exp(y), elle admet pour solutions :

exp(y) =
2 x±

√

(−2 x)2 − 4 · 1 · (−1)

2

=
2 x±

√
4 x2 + 4

2
=

2 x±
√

4 (x2 + 1)

2

=
2 x± 2

√
x2 + 1

2
= x±

√
x2 + 1 .

Remarquer que la solution x −
√
x2 + 1 n’est pas envisageable ; et pour cause :

x−
√
x2 + 1 < x−

√
x2 = x− |x| 6 0 quel que soit x ∈ R, alors que exp(y) > 0

pour tout y ∈ R. Ainsi, exp(y) = x+
√
x2 + 1, d’où :

y = ln
(
x+

√
x2 + 1

)
.

• La fonction Argcosh peut s’écrire :

Argcosh(x) = ln
(
x+

√
x2 − 1

)
.

Pour prouver cette égalité, il convient de poser x = cosh(y), puis de procéder
comme au point précédent. Il vient alors :

x = cosh(y) ⇔ x =
1

2

(
exp(y) + exp(−y)

)

⇔ 0 =
(
exp(y)

)2 − 2 x exp(y) + 1 ,

d’où :

exp(y) =
2 x±

√

(−2 x)2 − 4 · 1 · 1
2

=
2 x± 2

√
x2 − 1

2

=
2 x±

√
4 x2 − 4

2
= x±

√
x2 − 1 .

Or, l’expression x ±
√
x2 − 1 n’est définie que pour x ∈ ]−∞; −1] ∪ [1; ∞[ ; en

outre : {

x±
√
x2 − 1 < 0 si x ∈ ]−∞; −1]

x±
√
x2 − 1 > 0 si x ∈ [1; ∞[

.

En conséquence, l’égalité exp(y) = x ±
√
x2 − 1 n’a de sens que si x ∈ [1; ∞[ .

Aussi, pour tout x ∈ [1; ∞[ :
{

0 < x−
√
x2 − 1 6 1

1 6 x+
√
x2 − 1

⇔
{

ln
(
x−

√
x2 − 1

)
6 0

ln
(
x+

√
x2 − 1

)
> 0

.
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Or, par définition de l’argument cosinus hyperbolique, y ∈ R+. Par conséquent,
l’expression ln

(
x−

√
x2 − 1

)
doit être abandonnée ; et donc :

y = ln
(
x+

√
x2 − 1

)
.

• La fonction Argtgh(x) peut s’écrire :

Argtgh(x) =
1

2
ln

(
1 + x

1− x

)

.

Pour prouver cette égalité, il convient de poser l’équation x = sinh(y), puis de la
résoudre par rapport à y. Concrètement :

x = tgh(y)

⇔ x =
exp(y)− exp(−y)
exp(y) + exp(−y)

⇔ x exp(y) + x exp(−y) = exp(y)− exp(−y)

⇔ x exp(y) exp(y) + x exp(−y) exp(y) = exp(y) exp(y)− exp(−y) exp(y)

⇔ x exp(2 y) + x = exp(2 y)− 1

⇔ x exp(2 y)− exp(2 y) = −1 − x

⇔ (x− 1) exp(2 y) = −(1 + x)

⇔ −(1 − x) exp(2 y) = −(1 + x)

⇔ exp(2 y) =
1 + x

1− x
;

d’où :

2 y = ln

(
1 + x

1− x

)

⇔ y =
1

2
ln

(
1 + x

1− x

)

.

C.7.4 Domaines de définition et ensembles image

Les fonctions Argsinh, Argcosh et Argtgh ont des domaines de définition différents :

• le domaine de définition d’Argsinh est R ;

• le domaine de définition d’Argcosh est [1; ∞[ ;

• le domaine de définition d’Argtgh est ]−1; 1[ .

Elles n’ont, en outre, pas toutes le même ensemble image :

• l’ensemble image d’Argsinh est R ;

• l’ensemble image d’Argcosh est R+ ;

• l’ensemble image d’Argtgh est R.

Tous ces résultats découlent des définitions mêmes des fonctions Argsinh, Argcosh et
Argtgh.
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C.7.5 Parité

Les fonctions Argsinh et Argtgh sont impaires ; quant à la fonction Argcosh, elle n’est
ni paire, ni impaire.

C.7.6 Zéros

Les fonctions Argsinh et Argtgh s’annulent en x = 0, et uniquement en x = 0. Pour ce
qui est de la fonction Argcosh, elle s’annule en x = 1, et uniquement en x = 1.

C.7.7 Continuité et asymptotes

La fonction Argsinh est continue dans son domaine de définition ; il en est de même pour
les fonctions Argcosh et Argtgh.

Ni Argsinh, ni Argcosh ne possède une quelconque asymptote. Pour ce qui est
d’Argtgh, elle admet deux asymptotes verticales, l’une d’équation x = −1, l’autre
d’équation x = 1 ; ce sont les seules asymptotes qu’elle possède.

C.7.8 Dérivées

La fonction Argsinh admet pour dérivée la fonction Argsinh′ : R → R, donnée par :

Argsinh′(x) =
1√

x2 + 1
.

En effet, pour tout x ∈ R :

Argsinh′(x) =
d

dx
Argsinh(x) =

d

dx
ln
(
x+

√
x2 + 1

)

=
1

x+
√
x2 + 1

(

1 +
1

2
√
x2 + 1

2 x

)

=
1

x+
√
x2 + 1

(

1 +
x√
x2 + 1

)

=
1

x+
√
x2 + 1

(√
x2 + 1√
x2 + 1

+
x√
x2 + 1

)

=
1

x+
√
x2 + 1

√
x2 + 1 + x√
x2 + 1

=
1

x+
√
x2 + 1

x+
√
x2 + 1√

x2 + 1
=

1√
x2 + 1

.
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La fonction Argcosh admet pour dérivée la fonction Argcosh′ : ]1; ∞[ → R, donnée
par :

Argcosh′(x) =
1√

x2 − 1
.

La preuve de cette formule étant similaire à celle de la dérivée de Argsinh, elle est laissée
en exercice.

La fonction Argtgh admet pour dérivée la fonction Argtgh′ : ]−1; 1[ → R, donnée
par :

Argtgh′(x) =
1

1− x2
.

En effet, pour tout x ∈ ]−1; 1[ :

Argtgh′(x) =
d

dx
Argtgh(x) =

d

dx

[
1

2
ln

(
1 + x

1− x

)]

=
1

2

d

dx

[
ln(1 + x)− ln(1− x)

]

=
1

2

(
1

1 + x
− 1

1− x
(−1)

)

=
1

2

(
1

1 + x
+

1

1− x

)

=
1

2

(1 + x) + (1− x)

(1− x)(1 + x)
=

1

1− x2
.

C.8 Fonctions trigonométriques

C.8.1 Sinus, cosinus et tangente

ξ

υ

AB

P

x

cos(x)

si
n
(x

) tg
(x

)

O

T

Soient le plan euclidien R2 et Oξυ un système de coor-
données cartésiennes de R2, comme indiqué sur la figure
ci-contre (où l’axe Oξ est horizontal et va vers la droite,
l’axe Oυ est vertical et va vers le haut). Soit C le cercle
de rayon 1, centré en O. Ce cercle C coupe l’axe Oξ en
deux points, l’un de coordonnées (−1; 0), l’autre de coor-
données (1; 0) ; appelons A le point de coordonnées (1; 0).
Considérons un axe, (i.e. une droite réelle) et nommons-
le x. Enroulons cet axe autour du cercle C, de sorte que
l’origine de l’axe (i.e. le point de l’axe où x = 0) soit au
point A, que les x positifs soient sur C en allant, depuis A,
dans le sens contraire à celui des aiguilles d’une montre, et que les x négatifs soient sur C
en allant, depuis A, dans le sens des aiguilles d’une montre.
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Considérons un nombre réel x sur l’axe enroulé autour de C. À ce x peut être associé
un point P sur C de la manière suivante : P est l’unique point sur C pour lequel l’arc de
cercle AP vaut x ; autrement dit, P est l’unique point sur C :

• pour lequel la longueur de l’arc de cercle entre A et P vaut |x|,
• qui est atteint, depuis le point A, en allant dans le sens contraire à celui des
aiguilles d’une montre (respectivement en allant dans le sens des aiguilles d’une
montre) si x > 0 (respectivement si x < 0).

Soient ξP et υP les coordonnées de P , où ξP est un élément sur l’axe Oξ et υP un
élément sur l’axe Oυ. Il est d’usage d’appeler cosinus de x la coordonnée ξP de P
et sinus de x la coordonnée υP de P ; quant au cercle C, il est communément appelé
cercle trigonométrique. Lorsque la quantité x est considérée comme une variable qui peut
prendre a priori toutes les valeurs réelles possibles, le cosinus et le sinus peuvent être
vus comme des fonctions réelles de la variable réelle x.

x

y

−π
2

π
2 π 3π

2 2π
−1

1 sin
0

On appelle sinus la fonction :

sin : R −→ [−1; 1]

x 7−→ y = sin(x) ,

où sin(x) est la coordonnée υP de l’unique point P (ξP ; υP ) ∈ C pour lequel l’arc de
cercle AP vaut x.

x

y

−π
2

π
2 π 3π

2 2π
−1

1
cos

0

On appelle cosinus la fonction :

cos : R −→ [−1; 1]

x 7−→ y = cos(x) ,

où cos(x) est la coordonnée ξP de l’unique point P (ξP ; υP ) ∈ C pour lequel l’arc de
cercle AP vaut x.

x

y

−π
2

π
2 π 3π

2 2π
−1

1
tg

0

On appelle tangente la fonction :

tg : Rr

{π

2
+ k π

∣
∣
∣ k ∈ Z

}

−→ R

x 7−→ y = tg(x) ,

où tg(x) est définie par la relation :

tg(x) =
sin(x)

cos(x)
.

Noter que tg(x) peut être également définie comme étant la coordonnée υT du point
T (ξT ; υT ), représenté sur la première figure de la présente sous-section, résultant de
l’intersection de la droite passant par O et P et de la droite parallèle à l’axe Oυ, passant
par A. Pour s’en convaincre, il suffit de remarquer que les triangles OAT et OBP sont
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semblables X ; il vient alors :

BP

OB
=

AT

OA
⇔ sin(x)

cos(x)
=

υT
1
,

et ce quel que soit x ∈ Rr
{

π
2
+ k π

∣
∣ k ∈ Z

}
.

C.8.2 Origine des termes

On appelle trigonométrie le domaine des mathématiques qui traite des relations entre
les côtés et les angles des triangles plans. Le terme trigonométrie a pour origine deux
mots grecs :

• τρ´iιγωνoς (trigonos), qui signifie triangulaire,

• µ´eετρoν (metron), qui signifie mesure.

Les fonctions sinus, cosinus et tangente, définies dans la sous-section précédente,
sont des fonctions dites trigonométriques . Si ces fonctions portent un tel qualificatif,
c’est en raison du fait qu’elles ont un lien étroit avec la notion de triangle ; la première
figure de la sous-section précédente le met en évidence :

• sin(x) est la longueur du côté BP , dans le triangle OBP ,

• cos(x) est la longueur du côté OB, dans le triangle OBP ,

• tg(x) est la longueur du côté AT , dans le triangle OAT .

Dans ce contexte, la grandeur x peut être interprétée comme étant l’angle, ou plus
précisément une mesure de l’angle entre les côtés OB (respectivement OA) et OP (res-
pectivement OT ) du triangle OBP (respectivement OAT ).

Parfois, on parle de fonctions circulaires, au lieu de fonctions trigonométriques ; ce en
raison du fait que les fonctions sinus, cosinus et tangente ont un lien étroit non seulement
avec le concept de triangle, mais aussi avec la notion de cercle (cf. cercle trigonométrique
défini dans la sous-section précédente).

C.8.3 Les fonctions trigonométriques dans la nature

Nombre de phénomènes naturels cycliques peuvent être décrits à l’aide de fonctions
trigonométriques. Un exemple : la durée de l’ensoleillement chaque jour, en un point de
la Terre situé entre les cercles polaires arctique et antarctique.

En Suisse, en tout endroit où l’horizon est dégagé dans toutes les directions, la durée
de l’ensoleillement, notée Γ (t), mesurée en heures (h), peut être approximativement

X. Deux triangles sont dits semblables si l’un d’eux peut être obtenu à partir de l’autre par une
transformation géométrique qui conserve les angles ; de sorte que les trois angles dans l’un des triangles
se retrouvent dans l’autre. Il peut être montré que deux triangles sont semblables si α′ = α et a′

a
= b′

b
,

où a et b (respectivement a′ et b′) sont deux côtés d’un triangle (respectivement de l’autre triangle)
et α (respectivement α′) l’angle entre les côtés a et b (respectivement entre les côtés a′ et b′). Dès lors
que deux triangles sont semblables, ils ont des côtés proportionnels.
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décrite par l’expression :

Γ (t) = 12 h + (4 h) sin

(
2 π

365,24 j
(t− 81 j)

)

= 12 h + (4 h) sin

(
2 π t

365,24 j
− 1,39

)

,

où t est le temps qui s’écoule ; il se mesure en jours (jour se notant ici j). L’instant t = 1 j
correspond au 1er janvier.

• Au temps t = 81 j, la durée de l’ensoleillement est de 12 h. Appelé équinoxe
de printemps, ce temps correspond au 22 mars ; au 21 mars lors d’une année
bissextile. À cette date, le Soleil passe autant d’heures au-dessus de l’horizon
qu’en dessous.

• Au temps t = 172 j, la durée de l’ensoleillement est de 16 h. Appelé solstice d’été,
ce temps correspond au 21 juin ; au 20 juin lors d’une année bissextile. À cette
date, la durée du jour est la plus longue de toute l’année et la durée de la nuit la
plus courte.

• Au temps t = 264 j, la durée de l’ensoleillement est de 12 h. Appelé équinoxe d’au-
tomne, ce temps correspond au 21 septembre ; au 20 septembre lors d’une année
bissextile. À cette date, le Soleil passe autant d’heures au-dessus de l’horizon
qu’en dessous.

• Au temps t = 355 j, la durée de l’ensoleillement est de 8 h. Appelé solstice d’hiver,
ce temps correspond au 21 décembre ; au 20 décembre lors d’une année bissextile.
À cette date, la durée du jour est la plus courte de toute l’année et la durée de
la nuit la plus longue.

Noter que les dates données ci-dessus ne correspondent pas toutes exactement à celles
que l’on trouve dans l’éphéméride. La raison en est que l’expression de Γ (t) donnée
ci-dessus ne tient pas compte de l’ellipticité de l’orbite terrestre autour du Soleil ; ce
phénomène ayant pour corollaire la non-constance de la vitesse de la Terre le long de sa
trajectoire, ce qui a pour conséquence des périodes équinoxe-solstice et solstice-équinoxe
non égales.

C.8.4 Identités et relations trigonométriques

Les fonctions sinus et cosinus satisfont plusieurs propriétés, dont voici une liste non
exhaustive.

• Relation fondamentale :

cos2(x) + sin2(x) = 1 , quel que soit x ∈ R .

Ce résultat se déduit en appliquant le théorème de Pythagore au triangle OBP ,
présent dans la première figure de la sous-section C.8.1.
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• Relations de symétrie et de décalage :

sin(−x) = − sin(x) , cos(−x) = cos(x) ,

sin
(
π
2
− x
)

= cos(x) , cos
(
π
2
− x
)

= sin(x) ,

sin(π − x) = sin(x) , cos(π − x) = − cos(x) ,

sin
(
x+ π

2

)
= cos(x) , cos

(
x+ π

2

)
= − sin(x) ,

sin(x+ π) = − sin(x) , cos(x+ π) = − cos(x) ,

sin(x+ 2 π) = sin(x) , cos(x+ 2 π) = cos(x) ,

ξ

υ

−x

x, x+2π

π
2
−xx+ π

2

π−x

x+π
O

quel que soit x ∈ R. Ces expressions se déduisent directement de la figure ci-dessus
(dans laquelle tous les triangles rectangles en pointillé sont isométriques XI).

• Relations d’addition et de différence :

sin(x1 + x2) = sin(x1) cos(x2) + cos(x1) sin(x2) ,

cos(x1 + x2) = cos(x1) cos(x2)− sin(x1) sin(x2) ,

sin(x1 − x2) = sin(x1) cos(x2)− cos(x1) sin(x2) ,

cos(x1 − x2) = cos(x1) cos(x2) + sin(x1) sin(x2) ,

quels que soient x1, x2 ∈ R. Ces formules se déduisent en raisonnant comme suit.

✄ Sur le cercle trigonométrique, que l’on note C, on place trois points, P , Q
et R, de sorte que les arcs de cercle entre A et P , entre A et Q et entre A
et R valent respectivement x1 + x2, x1 et x1 +

π
2
(cf. figure ci-dessous).

✄ On place deux axes comme suit : l’un, noté Oξ′, passant par O et Q, l’autre,
noté Oυ′, passant par O et R (cf. figure ci-dessous). On remarque ensuite que
ces deux axes forment un système de coordon-
nées cartésiennes (vu que les deux axes sont per-
pendiculaires) ; on le note Oξ′υ′.

✄ On relève les coordonnées du point P relatives
au système de coordonnées Oξ′υ′ : P (ξ′P ; υ

′
P ), où

ξ′P = cos(x2) et υ
′
P = sin(x2).

✄ Sur l’axe Oξ′, on place le point Q′ de sorte que
l’angle entre les segments Q′O et Q′P vaille π

2

(i.e. qu’il soit droit) ; sur l’axe Oυ′, on place le
point R′ de sorte que l’angle entre les segments
R′O et R′P vaille π

2
(i.e. qu’il soit droit).

ξ′
υ′

ξ

υ

A
BB′C C′

P

Q

Q′

R
R′

O

C

✄ Sur l’axe Oξ, on place le point B (respectivement B′) de sorte que l’angle entre
les segments BO (respectivement B′O) et BQ (respectivement B′Q′) vaille π

2

(i.e. qu’il soit droit) ; sur le même axe, on place le point C (respectivement C ′)

XI. Deux triangles sont dits isométriques si l’un d’eux peut être obtenu à partir de l’autre par une
transformation géométrique qui conserve les angles et les distances ; de sorte que les trois angles dans
l’un des triangles se retrouvent dans l’autre ; et que les longueurs des côtés d’un triangle se retrouvent
dans l’autre.
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de sorte que l’angle entre les segments CO (respectivement C ′O) et CR (res-
pectivement C ′R′) vaille π

2
(i.e. qu’il soit droit).

✄ On note que les triangles OBQ et OB′Q′ sont semblables ; ce qui permet alors
d’écrire :

OB′

OB
=

OQ′

OQ
=

B′Q′

BQ
.

Or :

⋄ OB′ = ξQ′ et B′Q′ = υQ′, où ξQ′ et υQ′ sont les coordonnées de Q′ relatives
au système Oξυ ;

⋄ OB = ξQ et BQ = υQ, où ξQ et υQ sont les coordonnées de Q relatives au
système Oξυ ; ces coordonnées valent ξQ = cos(x1) et υQ = sin(x1) ;

⋄ OQ′ = ξ′P , où ξ′P est la première coordonnée de P relative au système
Oξ′υ′ ; cette coordonnée vaut ξ′P = cos(x2) ;

⋄ OQ = 1, vu que Q est sur C.
Ainsi, d’une part :

OB′

OB
=

OQ′

OQ
⇔ ξQ′

cos(x1)
=

cos(x2)

1
⇔ ξQ′ = cos(x1) cos(x2) ;

d’autre part :

B′Q′

BQ
=

OQ′

OQ
⇔ υQ′

sin(x1)
=

cos(x2)

1
⇔ υQ′ = sin(x1) cos(x2) .

✄ On remarque que les triangles OCR et OC ′R′ sont semblables ; ce qui permet
alors d’écrire :

OC ′

OC
=

OR′

OR
=

C ′R′

CR
.

Or :

⋄ OC ′ = ξR′ et C ′R′ = υR′, où ξR′ et υR′ sont les coordonnées de R′ relatives
au système Oξυ ;

⋄ OC = ξR et CR = υR, où ξR et υR sont les coordonnées de R relatives au
système Oξυ ; ces coordonnées valent ξR = cos

(
x1+

π
2

)
et υR = sin

(
x1+

π
2

)
;

⋄ OR′ = υ′P , où υ′P est la deuxième coordonnée de P relative au système
Oξ′υ′ ; cette coordonnée vaut υ′P = sin(x2) ;

⋄ OR = 1, vu que R est sur C.
Ainsi, d’une part, en notant que cos

(
x1+

π
2

)
= − sin(x1) (cf. point précédent,

consacré aux relations de symétrie et de décalage) :

OC ′

OC
=

OR′

OR
⇔ ξR′

− sin(x1)
=

sin(x2)

1
⇔ ξR′ = − sin(x1) sin(x2) ;

d’autre part, en notant que sin
(
x1 +

π
2

)
= cos(x1) :

C ′R′

CR
=

OR′

OR
⇔ υR′

cos(x1)
=

sin(x2)

1
⇔ υR′ = cos(x1) sin(x2) .
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✄ On considère les trois vecteurs OP ,OQ′ etQ′P , et on les écrit en composantes,
relativement au système Oξυ :

OP =

(

cos(x1 + x2)

sin(x1 + x2)

)

,

OQ′ =

(

cos(x1) cos(x2)

sin(x1) cos(x2)

)

,

et :

Q′P =

(

− sin(x1) sin(x2)

cos(x1) sin(x2)

)

.

On note ensuite que :

OP = OQ′ +Q′P ;

en composantes :

(

cos(x1 + x2)

sin(x1 + x2)

)

=

(

cos(x1) cos(x2)

sin(x1) cos(x2)

)

+

(

− sin(x1) sin(x2)

cos(x1) sin(x2)

)

⇔
{

cos(x1 + x2) = cos(x1) cos(x2)− sin(x1) sin(x2)

sin(x1 + x2) = sin(x1) cos(x2) + cos(x1) sin(x2)

Les deux équations du système ci-dessus ne sont rien d’autre que les deux
premières formules écrites au début du présent alinéa.

Les deux premières formules du présent alinéa sont ainsi démontrées. Pour prou-
ver les deux dernières, il suffit de reprendre les deux premières, d’y remplacer x2
par −x2, et d’utiliser les relations de symétrie et de décalage.

• Transformations de produit en somme :

sin(x1) sin(x2) =
1

2

(
cos(x1 − x2)− cos(x1 + x2)

)
,

sin(x1) cos(x2) =
1

2

(
sin(x1 + x2) + sin(x1 − x2)

)
,

cos(x1) sin(x2) =
1

2

(
sin(x1 + x2)− sin(x1 − x2)

)
,

cos(x1) cos(x2) =
1

2

(
cos(x1 + x2) + cos(x1 − x2)

)
,

quels que soient x1, x2 ∈ R. Ces expressions se déduisent des relations d’addition
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et de différence vues au point précédent ; en effet, par exemple :

1

2

(
cos(x1 − x2)− cos(x1 + x2)

)
=

1

2

(

cos(x1) cos(x2) + sin(x1) sin(x2) +

−
(
cos(x1) cos(x2)− sin(x1) sin(x2)

))

=
1

2

(

cos(x1) cos(x2) + sin(x1) sin(x2) +

− cos(x1) cos(x2) + sin(x1) sin(x2)
)

=
1

2

(
0 + 2 sin(x1) sin(x2)

)

= sin(x1) sin(x2) ;

les autres formules se démontrent de manière analogue.

• Transformations de somme en produit :

sin(x1) + sin(x2) = 2 sin

(
x1 + x2

2

)

cos

(
x1 − x2

2

)

,

sin(x1)− sin(x2) = 2 cos

(
x1 + x2

2

)

sin

(
x1 − x2

2

)

,

cos(x1) + cos(x2) = 2 cos

(
x1 + x2

2

)

cos

(
x1 − x2

2

)

,

cos(x1)− cos(x2) = −2 sin

(
x1 + x2

2

)

sin

(
x1 − x2

2

)

,

quels que soient x1, x2 ∈ R. Ces expressions s’obtiennent en faisant appel aux
formules de transformation de produit en somme et en posant :

x1 =
α+ β

2
et x2 =

α− β

2
;

par exemple :

sin(x1) sin(x2) =
1

2

(
cos(x1 − x2)− cos(x1 + x2)

)

⇔ sin

(
α + β

2

)

sin

(
α− β

2

)

=
1

2

(
cos(β)− cos(α)

)

⇔ cos(β)− cos(α) = 2 sin

(
α + β

2

)

sin

(
α− β

2

)

⇔ cos(α)− cos(β) = −2 sin

(
α + β

2

)

sin

(
α− β

2

)

,
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du fait que x1 + x2 = α+β
2

+ α−β
2

= 2α+0
2

= α et que x1 − x2 = α+β
2

− α−β
2

=
0+2β

2
= β. La dernière expression obtenue correspond bien à la quatrième formule

énoncée ci-dessus ; il convient simplement d’y rebaptiser α par x1 et β par x2.
Les autres relations se démontrent de manière analogue.

Des relations qui viennent d’être présentées peuvent être déduites d’autres égalités, im-
pliquant également la fonction tangente.

Les fonctions trigonométriques satisfont aussi un certain nombre d’inégalités. Les
deux qui sont exposées ci-dessous vont s’avérer particulièrement utiles par la suite.

• Quel que soit x ∈
]
− π

2
; π

2

[
:

∣
∣sin(x)

∣
∣ 6 |x| 6

∣
∣tg(x)

∣
∣ .

Pour prouver cette double inéquation, il convient de traiter en premier lieu le cas
où x ∈

[
0 ; π

2

[
, puis ensuite le cas où x ∈

]
− π

2
; 0
]
.

✄ Soit la figure ci-contre. Sur cette figure :

⋄ O est le centre du cercle C (le cercle trigo-
nométrique) et aussi l’origine du système de
coordonnées cartésiennes Oξυ,

⋄ A est le point sur C dont les coordonnées re-
latives au système Oξυ sont (1; 0),

⋄ P est un point sur C tel que l’arc AP est plus
grand que 0 et strictement plus petit que π

2
,

⋄ x est la longueur de l’arc AP ,

⋄ T est le point d’intersection entre la droite
verticale passant par A et la droite passant
par O et P .

ξ

υ

AB

P
x

cos(x)

si
n
(x

)

tg
(x

)

O

T

Manifestement, l’aire du secteur circulaire d’arc x est plus grande que l’aire
du triangle OAP et plus petite que l’aire du triangle OAT . En notant que :

⋄ l’aire du triangle OAP vaut 1
2
‖OA‖ ‖BP‖, i.e. 1

2
· 1 · sin(x),

⋄ l’aire du secteur circulaire d’arc x est égal à x
2π

·π (par symétrie du cercle C
et du fait que l’aire de C vaut π · 12),

⋄ l’aire du triangle OAT vaut 1
2
‖OA‖ ‖AT‖, i.e. 1

2
· 1 · tg(x),

il vient alors :

1

2
· 1 · sin(x) 6

x

2 π
· π · 12 6

1

2
· 1 · tg(x) ⇔ sin(x) 6 x 6 tg(x) ,

d’où
∣
∣sin(x)

∣
∣ 6 |x| 6

∣
∣tg(x)

∣
∣, vu que x, sin(x) et tg(x) sont toutes positives

lorsque x ∈ [0; π
2
[ .

✄ Dans le cas où x ∈
]
− π

2
; 0
]
, la double inégalité se prouve en remarquant que

−π
2
< x 6 0 ⇔ 0 6 −x < π

2
et en reprenant le résultat du point précédent :

comme 0 6 −x < π
2
, alors sin(−x) 6 −x 6 tg(−x). Or, sin(−x) = − sin(x)
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et tg(−x) = sin(−x)
cos(−x)

= − sin(x)
cos(x)

= − sin(x)
cos(x)

= − tg(x). En conséquence :

sin(−x) 6 −x 6 tg(−x) ⇔ − sin(x) 6 −x 6 − tg(x)

⇔
∣
∣sin(x)

∣
∣ 6 |x| 6

∣
∣tg(x)

∣
∣ ,

en raison du fait que x 6 0, sin(x) 6 0 et tg(x) 6 0, vu que x ∈
]
− π

2
; 0
]
.

• La première inégalité de la double inéquation exposée au point précédent ne se
limite pas à x ∈

]
− π

2
; π

2

[
; pour tout x ∈ R :

∣
∣sin(x)

∣
∣ 6 |x| .

Ce résultat se justifie par le fait que la fonction sinus ne crôıt pas indéfiniment
et que ses valeurs sont toujours comprises entre −1 et 1, quel que soit x ∈ R :

✄ pour tout x > π
2
:

sin(x) 6 1 <
π

2
6 x ⇒ sin(x) < x ⇔

∣
∣sin(x)

∣
∣ < |x| ;

✄ pour tout x 6 −π
2
:

sin(x) > −1 > −π
2

> x ⇒ sin(x) > x ⇔ − sin(x) < −x
⇔

∣
∣sin(x)

∣
∣ < |x| .

C.8.5 Domaines de définition et ensembles image

Le domaine de définition de la fonction sin est l’ensemble R dans son intégralité ; il en
est de même pour la fonctions cos. La fonction tg, elle, a pour domaine de définition
Rr

{
π
2
+ k π

∣
∣ k ∈ Z

}
.

L’ensemble image de la fonction sin est [−1; 1] ; il en est de même pour la fonction cos.
La fonction tg, elle, a pour ensemble image R dans son intégralité. Ces résultats se
déduisent essentiellement des propos tenus dans la sous-section C.8.9 ci-dessous.

C.8.6 Parité

Les fonctions sin et tg sont toutes les deux impaires ; quant à la fonction cos, elle est
paire.

• Que la fonction sin est impaire se déduit de l’une des relations de symétrie et de
décalage.

• Que la fonction cos est paire se déduit également de l’une des relations de symétrie
et de décalage.

• Que la fonction tg est impaire se déduit du fait que son domaine de définition,
Rr

{
π
2
+ k π

∣
∣ k ∈ Z

}
, est symétrique par rapport à 0, et du fait que sin est im-

paire et cos paire :

tg(−x) =
sin(−x)
cos(−x) =

− sin(x)

cos(x)
= − sin(x)

cos(x)
= − tg(x) ,

pour tout x ∈ Rr
{

π
2
+ k π

∣
∣ k ∈ Z

}
.
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C.8.7 Périodicité

Sin et cos sont des fonctions périodiques, de période 2 π toutes les deux. Quant à tg, il
s’agit d’une fonction périodique, de période π.

• Que sin et cos sont des fonctions 2π-périodiques se déduit des définitions mêmes
de ces fonctions.

• Que tg est une fonction π-périodique se déduit des relations de symétrie et de
décalage :

tg(x+ π) =
sin(x+ π)

cos(x+ π)
=

− sin(x)

− cos(x)
=

sin(x)

cos(x)
= tg(x) ,

ainsi que du fait qu’il n’existe aucun nombre T ∈ ]0; π[ pour lequel tg(x+ T ) =
tg(x).

C.8.8 Zéros

Les fonctions sin et tg s’annulent en x = k π, et uniquement en x = k π, où k ∈ Z. La
fonction cos, elle, s’annule en x = π

2
+ k π, et uniquement en x = π

2
+ k π, où k ∈ Z.

C.8.9 Continuité et asymptotes

Les fonctions sin, cos et tg sont toutes les trois continues dans leurs domaines de défini-
tion respectifs.

• La fonction sin est continue dans son domaine de définition, i.e. dans R. En effet,
pour tout nombre réel ε > 0, il existe un nombre réel δ > 0 tel que l’inégalité
|x − x0| 6 δ, où x, x0 ∈ R, implique l’inégalité

∣
∣sin(x) − sin(x0)

∣
∣ 6 ε. Pour s’en

convaincre, il suffit de voir que
∣
∣sin(x)− sin(x0)

∣
∣ 6 |x−x0|, puis de poser δ = ε :

∣
∣sin(x)− sin(x0)

∣
∣ =

∣
∣
∣
∣
2 cos

(
x+ x0

2

)

sin

(
x− x0

2

)∣
∣
∣
∣

= |2|
∣
∣
∣
∣
cos

(
x+ x0

2

)∣
∣
∣
∣

∣
∣
∣
∣
sin

(
x− x0

2

)∣
∣
∣
∣

6 2 · 1 ·
∣
∣
∣
∣

x− x0
2

∣
∣
∣
∣
= 2

|x− x0|
2

= |x− x0| .

Dans ce calcul, la première égalité n’est autre qu’une des formules de transfor-
mation de somme en produit ; pour ce qui est de l’inégalité entre la deuxième et
la troisième ligne, elle se justifie par le fait que

∣
∣cos(α)

∣
∣ 6 1 pour tout α ∈ R et

∣
∣sin(β)

∣
∣ 6 |β| pour tout β ∈ R.
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• La fonction cos est continue dans son domaine de définition, i.e. dans R. Pour
s’en convaincre, il suffit de noter que :

∣
∣cos(x)− cos(x0)

∣
∣ =

∣
∣
∣
∣
−2 sin

(
x+ x0

2

)

sin

(
x− x0

2

)∣
∣
∣
∣

= |−2|
∣
∣
∣
∣
sin

(
x+ x0

2

)∣
∣
∣
∣

∣
∣
∣
∣
sin

(
x− x0

2

)∣
∣
∣
∣

6 2 · 1 ·
∣
∣
∣
∣

x− x0
2

∣
∣
∣
∣
= 2

|x− x0|
2

= |x− x0| ,

puis de raisonner comme au point précédent.

• La fonction tg est continue dans son domaine de définition ; autrement dit, tg
est continue dans Rr

{
π
2
+ k π

∣
∣ k ∈ Z

}
. Ce résultat découle du fait que les

fonctions sin et cos sont continues dans R et que cos(x) = 0 si et seulement si
x ∈ Rr

{
π
2
+ k π

∣
∣ k ∈ Z

}
.

Les fonctions sin et cos étant définies et continues dans R, elles ne possèdent aucune
asymptote verticale. La fonction tg, elle, possède des asymptotes verticales en x =
π
2
+ k π, où k ∈ Z. En effet :

lim
x→π

2
+kπ

x<π
2
+kπ

tg(x) = lim
x→π

2
+kπ

x<π
2
+kπ

sin(x)

cos(x)
= ∞

et :

lim
x→π

2
+kπ

x>π
2
+kπ

tg(x) = lim
x→π

2
+kπ

x>π
2
+kπ

sin(x)

cos(x)
= −∞ .

En outre, aucune des fonctions sin, cos et tg n’admet une quelconque asymptote hori-
zontale ou oblique ; si elles n’en possèdent pas, c’est en raison de leur périodicité.

C.8.10 Expressions alternatives des fonctions trigonométriques

Pour tout x ∈ R :
exp(i x) = cos(x) + i sin(x) ,

où i est le nombre tel que i2 = −1. Appelée formule d’Euler XII, cette relation peut
être déduite des séries de MacLaurin de sin(x), cos(x) et exp(i x) (cf. section 5.6 du
chapitre 5).

En remplaçant x par −x dans l’égalité ci-dessus, et en tenant compte du fait que cos
est paire et sin impaire, il vient :

exp(−i x) = cos(−x) + i sin(−x) = cos(x)− i sin(x) .

XII. Leonhard Euler était un mathématicien et physicien suisse, né le 15 avril 1707 à Bâle (en Suisse)
et mort le 7 septembre 1783 à Saint-Petersbourg (dans l’Empire russe). Il est une figure incontournable
de l’histoire des mathématiques, tant son œuvre est importante, que ce soit dans le calcul différentiel
et intégral, l’algèbre, la trigonométrie, la théorie des nombres ou la géométrie.
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Ainsi :

exp(i x) + exp(−i x) = 2 cos(x) ⇔ cos(x) =
1

2

(
exp(i x) + exp(−i x)

)
,

exp(i x)− exp(−i x) = 2 i sin(x) ⇔ sin(x) =
1

2 i

(
exp(i x)− exp(−i x)

)
.

Chacune de ces expressions est aussi appelée formule d’Euler. La relation impliquant le
cosinus est très similaire à l’expression qui sert de définition au cosinus hyperbolique ; il
en est de même pour la relation impliquant le sinus et l’expression qui sert de définition
au sinus hyperbolique (cf. section C.6, consacrée aux fonctions hyperboliques). D’une
lecture attentive, il ressort que :

cosh(i x) = cos(x)

et :

sinh(i x) = i sin(x) .

C.8.11 Dérivées

La fonction sin admet pour dérivée la fonction cos ; autrement dit, la fonction sin admet
pour dérivée la fonction sin′ : R → R, donnée par :

sin′(x) = cos(x) .

En effet, pour tout x ∈ R :

sin′(x) = lim
∆x→0

sin(x+∆x)− sin(x)

∆x

= lim
∆x→0

sin(x) cos(∆x) + cos(x) sin(∆x)− sin(x)

∆x

= lim
∆x→0

sin(x) cos(∆x)− sin(x) + cos(x) sin(∆x)

∆x

= lim
∆x→0

sin(x)
(
cos(∆x)− 1

)
+ cos(x) sin(∆x)

∆x

= lim
∆x→0

(

sin(x)
cos(∆x)− 1

∆x
+ cos(x)

sin(∆x)

∆x

)

= sin(x) lim
∆x→0

cos(∆x)− 1

∆x
︸ ︷︷ ︸

=0

+cos(x) lim
∆x→0

sin(∆x)

∆x
︸ ︷︷ ︸

=1

= cos(x) .
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Pour se convaincre du fait que lim∆x→0
sin(∆x)

∆x
= 1, il convient de raisonner comme suit.

• On reprend la double inégalité
∣
∣sin(u)

∣
∣ 6 |u| 6

∣
∣tg(u)

∣
∣, valable pour tout u ∈

]
− π

2
; 0
[
∪
]
0 ; π

2

[
(cf. sous-section C.8.4), et on la transforme comme suit :

∣
∣sin(u)

∣
∣ 6 |u| 6

∣
∣tg(u)

∣
∣

⇔ 1
∣
∣sin(u)

∣
∣
>

1

|u| >
1

∣
∣tg(u)

∣
∣

⇔ 1 >

∣
∣sin(u)

∣
∣

|u| >
∣
∣cos(u)

∣
∣

⇔ 1 >

∣
∣
∣
∣

sin(u)

u

∣
∣
∣
∣
>
∣
∣cos(u)

∣
∣ ;

noter que le passage de la deuxième à la troisième ligne de calcul s’effectue en
multipliant toutes les quantités présentes dans la deuxième ligne par

∣
∣sin(u)

∣
∣ et

en remarquant que :

∣
∣tg(u)

∣
∣
∣
∣sin(u)

∣
∣ =

| cos(u)|
| sin(u)|

∣
∣sin(u)

∣
∣ =

∣
∣cos(u)

∣
∣ .

• De la dernière inégalité obtenue au point précédent, on déduit, en observant que
les expressions 1 et cos(u) tendent toutes les deux vers 1 lorsque u tend vers 1,
puis en appliquant le théorème des deux gendarmes :

lim
u→0

∣
∣
∣
∣

sin(u)

u

∣
∣
∣
∣
= 1 .

• On remarque que u et sin(u) ont le même signe quel que soit u ∈
]
− π

2
; π

2

[
; on

en déduit que sin(u)
u

> 0 quel que soit u ∈
]
− π

2
; 0
[
∪
]
0 ; π

2

[
; et donc que :

lim
u→0

∣
∣
∣
∣

sin(u)

u

∣
∣
∣
∣
= lim

u→0

sin(u)

u
= 1 .

Pour prouver que lim∆x→0
cos(∆x)−1

∆x
= 0, il convient d’effectuer le calcul suivant (dont

l’aboutissement s’appuye sur l’identité trigonométrique cos2(u) + sin2(u) = 1 ainsi que
sur le résultat qui vient d’être établi) :

lim
u→0

cos(u)− 1

u
= lim

u→0

cos(u)− 1

u

cos(u) + 1

cos(u) + 1
= lim

u→0

cos2(u)− 1

u
(
cos(u) + 1

)

= lim
u→0

− sin2(u)

u
(
cos(u) + 1

) = lim
u→0

(

−sin(u)

u

sin(u)

cos(u) + 1

)

= − lim
u→0

sin(u)

u
lim
u→0

sin(u)

cos(u) + 1
= −1 · 0

2
= 0 .
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La fonction cos admet pour dérivée la fonction − sin ; autrement dit, la fonction cos
admet pour dérivée la fonction cos′ : R → R, donnée par :

cos′(x) = − sin(x) .

En effet, pour tout x ∈ R :

cos′(x) = lim
∆x→0

cos(x+∆x)− cos(x)

∆x

= lim
∆x→0

cos(x) cos(∆x)− sin(x) sin(∆x)− cos(x)

∆x

= lim
∆x→0

cos(x) cos(∆x)− cos(x)− sin(x) sin(∆x)

∆x

= lim
∆x→0

cos(x)
(
cos(∆x)− 1

)
− sin(x) sin(∆x)

∆x

= lim
∆x→0

(

cos(x)
cos(∆x)− 1

∆x
− sin(x)

sin(∆x)

∆x

)

= cos(x) lim
∆x→0

cos(∆x)− 1

∆x
︸ ︷︷ ︸

=0

− sin(x) lim
∆x→0

sin(∆x)

∆x
︸ ︷︷ ︸

=1

= − sin(x) .

La fonction tg admet pour dérivée la fonction tg′ : Rr
{

π
2
+k π

∣
∣ k ∈ Z

}
→ R, donnée

par :

tg′(x) =







1

cos2(x)
ou

1 + tg2(x)

.

En effet, pour tout x ∈ R r
{

π
2
+ k π

∣
∣ k ∈ Z

}
:

tg′(x) =
d

dx
tg(x) =

d

dx

(
sin(x)

cos(x)

)

=
cos(x) cos(x)− sin(x)

(
−sin(x)

)

(
cos(x)

)2

=
cos2(x) + sin2(x)

cos2(x)
=







1

cos2(x)
ou

1 + tg2(x)

;

les deux expressions derrière l’accolade sont équivalentes ; ce sont deux écritures diffé-
rentes pour le même objet.

C.8.1 Remarque : La variable x apparaissant dans les fonctions trigonométriques est,
rappelons-le, une mesure d’un angle entre deux demi-droites. Les expressions des dérivées
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de sin, cos et tg, telles que données ci-dessus dans les encadrés, sont valables pour autant
que x représente la longueur d’un arc de cercle du cercle trigonométrique (i.e. un arc de
cercle de rayon 1). Si x est une autre mesure d’angle, exprimée par exemple en degrés
(où 360 degrés (noté 360◦) correspond à un tour complet du cercle trigonométrique), les
formules données ne sont plus correctes en l’état ; elles doivent être adaptées.

C.8.12 Bijectivité

La fonction sin est strictement croissante dans
[(
2 k − 1

2

)
π ;
(
2 k + 1

2

)
π
]
et strictement

décroissante dans
[(
2 k+ 1

2

)
π ;
(
2 k+ 3

2

)
π
]
, où k ∈ Z. La fonction cos, elle, est strictement

croissante dans [(2 k−1) π ; 2 k π] et strictement décroissante dans [2 k π ; (2 k+1) π], où
k ∈ Z. Quant à la fonction tg, elle est strictement croissante dans

](
k− 1

2

)
π ;
(
k+ 1

2

)
π
[
.

• Pour prouver que sin est strictement croissante dans
[(
2 k − 1

2

)
π ;
(
2 k + 1

2

)
π
]
et

strictement décroissante dans
[(
2 k + 1

2

)
π ;
(
2 k + 3

2

)
π
]
, où k ∈ Z, il convient de

considérer deux éléments x1, x2 ∈ R tels que x1 < x2, puis d’appliquer le théorème
des accroissements finis dans l’intervalle [x1; x2] (cf. théorème 3.9.4, section 3.9
du chapitre 3) ; noter que le théorème est applicable vu que sin est continue et
dérivable dans R. Selon ce théorème, il existe un nombre réel c ∈ ]x1; x2[ tel que :

sin(x2)− sin(x1) = sin′(c) (x2 − x1) .

Or, sin′(c) = cos(c) ; et cos(c) > 0 si c ∈
](
2 k − 1

2

)
π ;
(
2 k + 1

2

)
π
[
, cos(c) < 0 si

c ∈
](
2 k + 1

2

)
π ;
(
2 k + 3

2

)
π
[
, où k ∈ Z. Donc :

sin(x2)− sin(x1) = cos(c) (x2 − x1)

{

> 0 si
(
2 k − 1

2

)
π 6 x1 < x2 6

(
2 k + 1

2

)
π

< 0 si
(
2 k + 1

2

)
π 6 x1 < x2 6

(
2 k + 3

2

)
π

⇔
{

sin(x1) < sin(x2) si
(
2 k − 1

2

)
π 6 x1 < x2 6

(
2 k + 1

2

)
π

sin(x1) > sin(x2) si
(
2 k + 1

2

)
π 6 x1 < x2 6

(
2 k + 3

2

)
π

,

d’où le résultat.

• Pour prouver que cos est strictement croissante dans [(2 k − 1) π ; 2 k π] et stric-
tement décroissante dans [2 k π ; (2 k + 1) π], où k ∈ Z, il convient de raisonner
comme au point précédent. Le détail des calculs est laissé en exercice.

• Pour prouver que tg est strictement croissante dans
](
k − 1

2

)
π ;
(
k + 1

2

)
π
[
, où

k ∈ Z, il convient de considérer deux éléments x1, x2 ∈
](
k− 1

2

)
π ;
(
k+ 1

2

)
π
[
tels

que x1 < x2, puis d’appliquer le théorème des accroissements finis dans l’intervalle
[x1; x2] ; noter que le théorème est applicable vu que tg est continue et dérivable
dans

](
k − 1

2

)
π ;
(
k + 1

2

)
π
[
. Selon ce théorème, il existe un nombre réel c ∈

]x1; x2[ tel que :

tg(x2)− tg(x1) = tg′(c) (x2 − x1) .

Or, tg′(c) = 1+tg2(c) ; et 1+tg2(c) > 0 quel que soit c ∈
](
k− 1

2

)
π ;
(
k+ 1

2

)
π
[
,
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où k ∈ Z. Donc :

tg(x2)− tg(x1) =
(
1 + tg2(c)

)
(x2 − x1) > 0 ⇔ tg(x1) < tg(x2) ,

d’où le résultat.

Les résultats qui viennent d’être établis, associés aux propos tenus dans la sous-
section C.8.5, permettent de formuler les conclusions suivantes.

• La fonction :

⋄ sin :
[(
2 k − 1

2

)
π ;
(
2 k + 1

2

)
π
]
−→ [−1; 1] (dont le domaine de définition est

restreint à l’intervalle fermé délimité par (2 k − 1
2
) π et (2 k + 1

2
) π, où k ∈ Z)

est bijective,

⋄ sin :
[(
2 k + 1

2

)
π ;
(
2 k + 3

2

)
π
]
−→ [−1; 1] (dont le domaine de définition est

restreint à l’intervalle fermé délimité par (2 k + 1
2
) π et (2 k + 3

2
) π, où k ∈ Z)

est bijective.

• La fonction :

⋄ cos :
[
(2 k−1) π ; 2 k π

]
−→ [−1; 1] (dont le domaine de définition est restreint

à l’intervalle fermé délimité par (2 k − 1) π et 2 k π, où k ∈ Z) est bijective,

⋄ cos :
[
2 k π ; (2 k+1) π

]
−→ [−1; 1] (dont le domaine de définition est restreint

à l’intervalle fermé délimité par 2 k π et (2 k + 1) π, où k ∈ Z) est bijective.

• tg :
](
k − 1

2

)
π ;
(
k + 1

2

)
π
[
−→ R (dont le domaine de définition est restreint à

l’intervalle ouvert délimité par (k − 1
2
) π et (k + 1

2
) π, où k ∈ Z) est bijective.

En effet, dès lors qu’une fonction réelle est strictement croissante ou strictement décrois-
sante dans un ensemble, elle est nécessairement injective dans cet ensemble ; en outre, si
elle a pour ensemble d’arrivée son ensemble image, la fonction en question est également
surjective ; elle est, par conséquent, bijective.

C.8.13 Autres fonctions trigonométriques

À partir des fonctions sin, cos et tg, il est possible de définir d’autres fonctions trigono-
métriques, telles :

• la sécante, notée sec,

• la cosécante, notée csc,

• la cotangente, notée ctg.

Par définition :

sec =
1

cos
, csc =

1

sin
, ctg =

1

tg
.

Les propriétés des fonctions sec, csc et ctg se déduisent des propriétés de sin, cos et tg.
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C.9 Fonctions trigonométriques réciproques

C.9.1 Arc sinus, cosinus et tangente

x

y

−1 1

−π
2

π
2

0

On appelle arc sinus la fonction réciproque
du sinus ayant pour ensemble image l’intervalle
[
− π

2
; π

2

]
; il s’agit de la fonction :

Arcsin : [−1; 1] −→
[
− π

2
; π

2

]

x 7−→ y = Arcsin(x)

donnée par :

y = Arcsin(x) ⇔ sin(y) = x ,

où x ∈ [−1; 1] et y ∈
[
− π

2
; π

2

]
.

x

y

−1 1

π

π
2

0

On appelle arc cosinus la fonction réciproque
du cosinus ayant pour ensemble image l’intervalle
[0 ; π] ; il s’agit de la fonction :

Arccos : [−1; 1] −→ [0 ; π]

x 7−→ y = Arccos(x)

donnée par :

y = Arccos(x) ⇔ cos(y) = x ,

où x ∈ [−1; 1] et y ∈
[
− π

2
; π

2

]
.

x

y

−2 −1 1 2

−π
2

π
2

0

On appelle arc tangente la fonction réciproque
de la tangente ayant pour ensemble image l’inter-
valle

]
− π

2
; π

2

[
; il s’agit de la fonction :

Arctg : R −→
]
− π

2
; π

2

[

x 7−→ y = Arctg(x)

donnée par :

y = Arctg(x) ⇔ tg(y) = x ,

où x ∈ R et y ∈
]
− π

2
; π

2

[
.

C.9.1 Remarques : • Les fonctions :

sin :
[
− π

2
; π

2

]
−→ [−1; 1] , cos : [0 ; π] −→ [−1; 1] , tg :

]
− π

2
; π

2

[
−→ R

sont toutes bijectives (cf. sous-section C.8.12 de la section précédente). Les défi-
nitions données ci-dessus font donc pleinement sens.

• La fonction Arcsin étant une réciproque de la fonction sin, ses propriétés peuvent
être, pour la plupart, déduites directement des propriétés de sin. Il en est de
même pour Arccos et cos, ainsi que pour Arctg et tg.
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C.9.2 Origine des termes

Le préfixe Arc, qui apparâıt dans les noms des fonctions trigonométriques réciproques,
vient du fait que les valeurs que prennent ces fonctions peuvent être interprétées comme
étant des longueurs d’arcs de cercle ; ces arcs ne sont rien d’autre que des portions du
cercle trigonométrique (cf. sous-section C.8.1, dans la section précédente).

C.9.3 Domaines de définition et ensembles image

Les fonctions Arcsin, Arccos et Arctg n’ont pas toutes le même domaine de définition :

• le domaine de définition d’Arcsin est [−1; 1] ;

• le domaine de définition d’Arccos est [−1; 1] ;

• le domaine de définition d’Arctg est R.

Elles n’ont, en outre, pas toutes le même ensemble image :

• l’ensemble image d’Arcsin est
[
− π

2
; π

2

]
;

• l’ensemble image d’Arccos est [0 ; π] ;

• l’ensemble image d’Arctg est
]
− π

2
; π

2

[
.

Tous ces résultats découlent des définitions mêmes des fonctions Arcsin, Arccos et Arctg.

C.9.4 Parité

Les fonctions Arcsin et Arctg sont impaires ; quant à la fonction Arccos, elle n’est ni
paire, ni impaire.

C.9.5 Zéros

Les fonctions Arcsin et Arctg s’annulent en x = 0, et uniquement en x = 0. Pour ce qui
est de la fonction Arccos, elle s’annule en x = 1, et uniquement en x = 1.

C.9.6 Continuité et asymptotes

La fonction Arcsin est continue dans son domaine de définition ; il en est de même pour
les fonctions Arccos et Arctg.

Ni Arcsin, ni Arccos ne possède une quelconque asymptote. Pour ce qui est d’Arctg,
elle admet deux asymptotes horizontale, l’une à gauche, d’équation y = −π

2
, l’autre à

droite, d’équation x = π
2
; ce sont les seules asymptotes que possède cette fonction.

C.9.7 Dérivées

La fonction Arcsin admet pour dérivée la fonction Arcsin′ : ]−1; 1[ → R, donnée par :

Arcsin′(x) =
1√

1− x2
.



C.9 Fonctions trigonométriques réciproques 497

Pour prouver cette formule, il convient de remarquer, en premier lieu, que pour tout
x ∈ [−1; 1] :

sin
(
Arcsin(x)

)
= x ⇔ sin

(
Arcsin(x)

)
− x = 0 ⇔ sin(y)− x = 0 ,

où y = Arcsin(x). En dérivant l’expression sin(y) − x = 0 des deux côtés par rapport
à x, tout en gardant à l’esprit que y dépend de x, il vient alors :

d

dx

(
sin(y)− x

)
=

d

dx
0 ⇔ cos(y)

dy

dx
− 1 = 0

⇔ cos(y)
dy

dx
= 1

⇔ dy

dx
=

1

cos(y)
.

Noter que la dernière expression obtenue n’est définie que si cos(y) 6= 0. Elle n’est, de
fait, définie que pour y ∈

]
− π

2
; π

2

[
; en effet, d’une part Arcsin ne prend que les valeurs

de l’intervalle
[
−π

2
; π

2
], et d’autre part cos ne s’annule, dans

[
−π

2
; π

2
], qu’en −π

2
et en π

2
.

Ces observations, combinées au fait que cos2(y) + sin2(y) = 1, permet alors d’écrire

cos(y) =
√

1− sin2(y) =
√
1− x2 (et non −

√

1− sin2(y) , du fait que y ∈
]
− π

2
; π

2

[
et

donc que cos(y) > 0). Par conséquent :

dy

dx
=

1√
1− x2

⇔ Arcsin′(x) =
1√

1− x2
,

vu que y = Arcsin(x) et donc dy
dx

= Arcsin′(x).

La fonction Arccos admet pour dérivée la fonction Arccos′ : ]−1; 1[ → R, donnée
par :

Arccos′(x) = − 1√
1− x2

.

Pour prouver cette formule, il convient de raisonner comme précédemment, dans le cas de
la fonction Arcsin. Le détail des calculs est présenté dans le deuxième des exemples 3.6.9
(cf. section 3.6, chapitre 3).

La fonction Arctg admet pour dérivée la fonction Arctg′ : R → R, donnée par :

Arctg′(x) =
1

1 + x2
.

Le raisonnement permettant de prouver cette formule est similaire à celui exposé plus
haut, dans le cas d’Arcsin, quoique plus simple. Le détail des calculs est laissé en exercice.





Annexe D

L’intégrale de Riemann

Le théorème 4.1.8, exposé dans la section 4.1 du chapitre 4, n’a été prouvé que de manière
très lacunaire. S’il en a été ainsi, c’est en raison d’un manque de moyens mathématiques
à disposition lors de la formulation de l’énoncé.

Le présent chapitre a pour objectif de fournir les outils nécessaires à l’élaboration
d’une démonstration complète dudit théorème. Ces outils sont :

• la notion de continuité uniforme,

• le concept de suite de subdivisions.

D.1 Notion de continuité uniforme

D.1.1 Définition : Soit f : D → R une fonction réelle définie dans I, où I est :

⋄ soit un intervalle ouvert,

⋄ soit un intervalle fermé qui n’est pas réduit à un seul point.

On dit que f est uniformément continue dans I si, pour tout nombre réel ε > 0, il existe
un nombre réel δ > 0 tel que, pour tous x̂, x̌ ∈ I obéissant à l’inégalité :

|x̌− x̂| 6 δ ,

la relation suivante est satisfaite :

∣
∣f(x̌)− f(x̂)

∣
∣ 6 ε .

D.1.2 Remarques : • La définition précédente peut être reformulée comme suit :

On dit qu’une fonction réelle f , définie dans un intervalle I (non ré-
duit à un seul point), est uniformément continue dans I si, pour tout
nombre réel ε > 0, il existe un nombre réel δ > 0 tel que, pour tous
x0, x ∈ I satisfaisant |x − x0| 6 δ, la relation suivante est satisfaite :
∣
∣f(x)− f(x0)

∣
∣ 6 ε.
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Pour rappel, voici la définition de la continuité d’une fonction f dans un inter-
valle I (non réduit à un seul point) :

On dit qu’une fonction f , définie dans un intervalle I (non réduit à un
seul point), est continue dans I si, pour tout élément x0 ∈ I et tout
nombre réel ε > 0, il existe un nombre réel δ > 0 tel que |x − x0| 6 δ,
où x ∈ I, implique

∣
∣f(x)− f(x0)

∣
∣ 6 ε.

Dans cette dernière définition, le nombre δ dépend a priori (rappelons-le) non
seulement de ε, mais également du nombre x0. Alors que dans la définition de
la continuité uniforme, le nombre δ ne dépend ni de x0, ni de x, mais seulement
de ε.

• Des propos tenus au point précédent, il ressort que la notion de continuité uni-
forme est plus forte que la notion de continuité ; en ce sens que toute fonction
uniformément continue dans un intervalle est continue dans l’intervalle en ques-
tion, alors que toute fonction continue dans un intervalle n’est pas nécessairement
uniformément continue dans l’intervalle en question.

D.1.3 Exemples : 1. La fonction sin est uniformément continue dans R. En effet,
pour tout nombre réel ε > 0, il existe un nombre réel δ > 0 tel que, pour
tous x1, x2 ∈ R obéissant à l’inégalité |x2 − x1| 6 δ, la relation suivante est
satisfaite :

∣
∣sin(x2) − sin(x1)

∣
∣ 6 ε. Pour s’en convaincre, il suffit de voir que

∣
∣sin(x2)− sin(x1)

∣
∣ 6 |x2 − x1|, puis de poser δ = ε :

∣
∣sin(x2)− sin(x1)

∣
∣ =

∣
∣
∣
∣
2 cos

(
x2 + x1

2

)

sin

(
x2 − x1

2

)∣
∣
∣
∣

= |2|
∣
∣
∣
∣
cos

(
x2 + x1

2

)∣
∣
∣
∣

∣
∣
∣
∣
sin

(
x2 − x1

2

)∣
∣
∣
∣

6 2 · 1 ·
∣
∣
∣
∣

x2 − x1
2

∣
∣
∣
∣
= 2

|x2 − x1|
2

= |x2 − x1| .

2. La fonction f donnée par f(x) = x2 est continue dans tout R ; mais n’est pas
uniformément continue dans tout R. Pour s’en convaincre, il convient de poser
ε = 2, de choisir ensuite x1 =

1
δ
et x2 =

1
δ
+ δ, où δ est un nombre réel strictement

positif quelconque, puis de remarquer que :

|x2 − x1| =
∣
∣
∣
∣
δ +

1

δ
− 1

δ

∣
∣
∣
∣
= |δ| = δ 6 δ ,

alors que :

∣
∣x2

2 − x1
2
∣
∣ =

∣
∣
∣
∣
∣

(
1

δ
+ δ

)2

−
(
1

δ

)2
∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1

δ2
+ 2 + δ2 − 1

δ2

∣
∣
∣
∣

=
∣
∣2 + δ2

∣
∣ = 2 + δ2 = ε+ δ2 > ε.
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D.1.4 Remarque : Si l’assertion continuité d’une fonction f dans un intervalle I im-
plique continuité uniforme de f dans I est généralement fausse, elle devient correcte
dans le cas d’un intervalle fermé et borné, i.e. dans le cas d’un intervalle de la forme
[a; b] (où a et b sont deux nombres réels tels que a < b).

D.1.5 Théorème : Soit f : D → R une fonction réelle, définie dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Si f est continue dans
[a; b], f est uniformément continue dans [a; b]. Ce résultat est connu sous le nom de
théorème de Heine.

Preuve : Soit f : D → R une fonction réelle, définie dans un intervalle fermé [a; b] ⊂ D,
où a et b sont deux nombres réels tels que a < b. Supposons, par l’absurde, que f est
continue dans [a; b], mais pas uniformément continue dans [a; b].

Dire que f n’est pas uniformément continue dans [a; b], c’est dire qu’il existe un
nombre réel ε > 0 tel que, pour tout nombre réel δ > 0, il existe deux éléments x̂, x̌ ∈
[a; b] tels que |x̌ − x̂| 6 δ et

∣
∣f(x̌) − f(x̂)

∣
∣ > ε. Soit alors δ = 1

n
, où n ∈ N∗. Selon ce

qui vient d’être formulé, il existe, pour chaque n ∈ N∗, deux éléments x̂n, x̌n ∈ [a; b] tels
que |x̌n − x̂n| 6 δ et

∣
∣f(x̌n)− f(x̂n)

∣
∣ > ε.

Les éléments x̂1, x̂2, x̂3, . . . forment une suite de nombres réels ; notons (x̂n) cette
suite. Par construction, tous les éléments de (x̂n) sont dans [a; b].

• Posons a0 = a et b0 = b, puis partageons l’intervalle [a0; b0] en deux intervalles
d’égales longueurs, [a0; c1] et [c1; b0], où c1 =

1
2
(a0+ b0) est le point (sur l’axe x),

tel que |b0 − c1| = |c1 − a0|. Vu que les éléments de (x̂n) sont tous dans [a; b],
i.e. dans [a0; b0], alors il y a nécessairement une infinité d’éléments de (x̂n) soit
dans [a0; c1], soit dans [c1; b0], soit dans les deux intervalles [a0; c1] et [c1; b0].
Gardons alors l’intervalle qui contient une infinité d’éléments de (x̂n) (s’il n’y en
a qu’un des deux qui contient une infinité d’éléments de (x̂n)) ou un des deux
intervalles (si les deux intervalles contiennent une infinité d’éléments de (x̂n)) ;
notons [a1; b1] cet intervalle ([a1; b1] = [a0; c1] ou [a1; b1] = [c1; b0]).

• Partageons l’intervalle [a1; b1] en deux intervalles d’égales longueurs, [a1; c2] et
[c2; b1], où c2 =

1
2
(a1+b1) est le point (sur l’axe x) tel que |b1−c2| = |c2−a1|. Vu

qu’il y a une infinité d’éléments de (x̂n) dans [a1; b1], alors il y a nécessairement
une infinité d’éléments de (x̂n) soit dans [a1; c2], soit dans [c2; b1], soit dans les
deux intervalles [a1; c2] et [c2; b1]. Gardons alors l’intervalle qui contient une
infinité d’éléments de (x̂n) (s’il n’y en a qu’un des deux qui contient une infinité
d’éléments de (x̂n)) ou un des deux intervalles (si les deux intervalles contiennent
une infinité d’éléments de (x̂n)) ; notons [a2; b2] cet intervalle ([a2; b2] = [a1; c2]
ou [a2; b2] = [c2; b1]).

• Partageons l’intervalle [a2; b2] en deux intervalles d’égales longueurs . . .

En continuant ainsi de suite, on obtient deux suites de nombres réels, (an) et (bn) ; de
par leur construction, ces suites satisfont les conditions suivantes :

⋄ an 6 an+1 et bn > bn+1 pour tout n ∈ N (i.e. (an) est une suite croissante et (bn)
une suite décroissante),
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⋄ a 6 an 6 b et a 6 bn 6 b pour tout n ∈ N,

⋄ limn→∞(bn − an) = 0 (du fait que b1 − a1 = 1
2
(b − a), b2 − a2 = 1

2
(b1 − a1) =

1
22
(b− a), . . . , bn − an = 1

2n
(b− a)).

Le fait que (an) et (bn) satisfont ces propriétés permet d’affirmer, compte tenu de la
proposition A.1.5 et du lemme A.1.8 (cf. section A.1 de l’annexe A), que les suites (an)
et (bn) convergent et qu’elles admettent pour limite un seul et même nombre réel ; ce
nombre réel, que l’on note c, est nécessairement dans l’intervalle [a; b], vu que a 6 an 6
bn 6 b pour tout n ∈ N. En outre, quel que soit n ∈ N, l’intervalle [an; bn] contient une
infinité d’éléments de la suite (x̂n). Ces observations permettent de conclure qu’il existe,
dans la suite (x̂n), une infinité d’éléments qui a la structure d’une suite convergente, qui
converge vers c ; notons (ûm) cette suite convergente.

Intéressons-nous à présent aux éléments x̌1, x̌2, x̌3, . . . Ces éléments forment une suite
de nombres réels, dont tous les éléments sont dans [a; b]. Un raisonnement similaire à
celui qui a été mené ci-dessus (dans le cas de (x̂n)) permet d’affirmer qu’il existe, dans la
suite (x̌n), une infinité d’éléments qui a la structure d’une suite convergente. En outre,
le fait que |x̌n− x̂n| 6 1

n
pour tout n ∈ N∗, et donc que limn→∞ |x̌n− x̂n| = 0, permet de

déduire qu’il existe, dans la suite (x̌n), une infinité d’éléments qui a la structure d’une
suite convergente, qui converge vers le nombre réel c introduit plus haut ; notons (ǔm)
cette suite convergente.

En résumé, il existe deux suites (ûm) et (ǔm) :

⋄ dont tous les éléments sont dans [a; b],

⋄ qui convergent toutes les deux vers le nombre réel c ∈ [a; b] évoqué précédemment,

⋄ telles que
∣
∣f(ǔm)− f(ûm)

∣
∣ > ε pour tout m ∈ N∗.

De ces observations, il ressort que pour tout nombre réel δ > 0, il existe deux éléments
û, ǔ ∈ [c− δ ; c+ δ] ∩ [a; b] pour lesquels

∣
∣f(ǔ)− f(û)

∣
∣ > ε, et donc pour lesquels :

∣
∣f(û)− f(c)

∣
∣ >

ε

2
ou

∣
∣f(ǔ)− f(c)

∣
∣ >

ε

2
.

En effet, soit |f(û) − f(c)| = |f(ǔ) − f(c)|, soit |f(û) − f(c)| < |f(ǔ) − f(c)|, soit
|f(û)− f(c)| > |f(ǔ− f(c)| ; dans tous les cas, l’une des deux quantités |f(û)− f(c)| et
|f(ǔ)−f(c)|, au moins, est strictement supérieure à ε

2
, vu que la quantité |f(ǔ)−f(û)| est

strictement supérieure à ε. Or, une telle déduction est en contradiction avec l’hypothèse
de continuité de f dans [a; b]. En effet, si f est continue dans [a; b], alors, pour tout
élément x0 ∈ [a; b] et pour nombre réel ε̃ > 0 (en particulier pour ε̃ = ε

2
), il existe un

nombre réel δ > 0 tel que |x − x0| 6 δ, où x ∈ [a; b], implique
∣
∣f(x) − f(x0)

∣
∣ 6 ε̃ ; ce

qui n’est pas le cas ici.
En conclusion, il n’est pas possible que f soit continue dans [a; b] sans qu’elle n’y

soit uniformément continue ; le théorème de Heine est ainsi démontré. �

D.2 Existence de l’intégrale de Riemann

Dans la définition de l’intégrale, telle que l’a formulée Cauchy, puis Riemann, et telle
qu’exposée dans la définition 4.1.2, il est question d’une subdivision σn d’ordre n, quelconque,
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ayant la propriété suivante : lorsque n tend vers l’infini, le pas δσn de la subdivision tend
vers 0.

Dire que n tend vers l’infini, c’est dire que n prend une certaine valeur N ∈ N∗, puis
la valeur N + 1, puis N + 2, N + 3, etc. Parler d’une subdivision σn d’ordre n, avec n
qui tend vers l’infini, c’est donc, en réalité, parler d’une subdivision σN d’ordre N , puis
d’une subdivision σN+1 d’ordre N + 1, puis d’une subdivision σN+2 d’ordre N + 2, etc.
C’est donc, en fin de compte, parler d’un ensemble qui a la structure d’une suite infinie,
dont les éléments sont des subdivisions.

Vu l’analyse qui vient d’être faite, il semble judicieux de définir l’intégrale de Riemann
non pas avec une subdivision d’ordre n (dont le pas tend vers 0 lorsque n tend vers ∞),
mais avec une suite de subdivisions (dont l’« infinitième» élément est une subdivision
de pas nul). C’est avec une telle définition qu’il est possible de montrer proprement
l’existence de l’intégrale de Riemann dans le cadre des fonctions continues dans un
intervalle fermé donné.

D.2.1 Définition : Soit [a; b] un intervalle fermé dans R, où a et b sont deux nombres
réels tels que a < b. On appelle suite de subdivisions de [a; b] tout ensemble de la forme :

(
σ1; σ2; σ3; . . . ) ,

où σk est une subdivision d’ordre k de l’intervalle [a; b], k = 1, 2, 3, . . . Une suite de
subdivisions se note généralement

(
σn
)

n∈N∗ ou simplement (σn). Ainsi :
(
σn
)

n∈N∗ = (σn) = (σ1; σ2; σ3; . . . ) .

D.2.2 Remarques : • Une subdivision d’orde n d’un intervalle [a; b] ⊂ R (a et b
étant deux nombres réels tels que a < b) est, rappelons-le, une suite finie de
nombres réels σn = (x0; x1; . . . ; xn), où n ∈ N∗, telle que a = x0 < x1 < . . . <
xn = b. Le pas de σn est le nombre réel δσn donné par :

δσn = max
{
(xk − xk−1)

∣
∣ k = 1, . . . , n

}
.

où max
{
(xk − xk−1)

∣
∣ k = 1, . . . , n

}
désigne le plus grand des nombres réels

(x1 − x0), . . . , (xn − xn−1).

• Dans toute suite de subdivisions d’un intervalle fermé [a; b] (où a et b sont
deux nombres réels tels que a < b), le premier élément est une subdivision
d’ordre 1 de [a; b], le deuxième élément une subdivision d’ordre 2 de [a; b], etc.,
l’« infinitième» élément une subdivision d’ordre « infini» de [a; b]. Noter que le
pas de la subdivision d’ordre « infini» n’est pas nécessairement nul : les éléments
que compte la subdivision d’ordre « infini», bien qu’ils soient en nombre infini,
peuvent très bien être disposés dans [a; b] de sorte que l’écart entre deux de ces
éléments ne soit pas nul.

• Dans les pages qui suivent, ne seront considérées que des suites de subdivisions
(d’un intervalle fermé [a; b]) dont l’«infinitième» élément a un pas nul ; autrement
dit, ne seront considérées que les suites de subdivisions (σn) (de [a; b]) telles que
limn→∞ δσn = 0.
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• Dire qu’une suite de subdivisions (σn) d’un intervalle fermé [a; b] satisfait la condi-
tion limn→∞ δσn = 0 (où δσn est le pas de la subdivision σn), c’est dire que pour
tout nombre réel δ > 0, il existe un nombre N ∈ N∗ tel que δσn 6 δ pour tout
n > N .

D.2.3 Définition : Soit f : D → R une fonction réelle, définie et continue dans un
intervalle fermé [a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. On dit que
l’intégrale de f entre a et b existe (ou, de manière équivalente, que f est intégrable (au
sens de Riemann) dans [a; b]) si, quelle que soit la suite de subdivisions (σn) de [a; b]
satisfaisant limn→∞ δσn = 0 :

lim
n→∞

Sσn = I = lim
n→∞

Sσn ,

où I est un nombre réel qui ne dépend pas du choix de la suite de subdivisions (σn), Sσn

et Sσn sont les sommes de Darboux inférieure et supérieure, respectivement, associées
à la subdivision σn (cf. définition 4.1.5, section 4.1 du chapitre 4). I est alors appelé
l’intégrale de (Cauchy-) Riemann de f entre a et b.

D.2.4 Remarque : La définition précédente est cohérente avec la définition 4.1.2 donnée
dans la section 4.1 du chapitre 4 ; il s’agit d’une reformulation de la définition 4.1.2 qui
prend en compte le lemme 4.1.7 d’une part, et le concept de suite de subdivisions d’autre
part.

D.2.5 Proposition : Soit f : D → R une fonction réelle, définie dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b. Si f est continue dans [a; b],
alors l’intégrale de f entre a et b existe ; autrement dit, si f est continue dans [a; b],
alors f est intégrable (au sens de Riemann) dans [a; b].

Preuve : Soit f : D → R une fonction réelle, définie et continue dans un intervalle fermé
[a; b] ⊂ D, où a et b sont deux nombres réels tels que a < b.

La démonstration se fait en trois étapes. La première étape consiste à prouver la
proposition dans le cas d’une suite de subdivisions (ςn) de [a; b], satisfaisant la condi-
tion limn→∞ δςn = 0 (où δςn est le pas de la subdivision ςn) et possédant la propriété
suivante : pour tout n > 1, la subdivision ςn+1 est constituée de tous les éléments de la
subdivision ςn, et d’un élément qui n’est pas dans ςn ; avec un tel type de suite de sub-
divisions, il est possible de définir le nombre réel I mentionné dans la définition D.2.3.
La deuxième étape a pour objectif d’établir que Sσn 6 I 6 Sσn quelle que soit la sub-
division σn de [a; b] (Sσn et Sσn étant les sommes de Darboux inférieure et supérieure,
respectivement, associées à σn). Quant à la troisième étape, elle vise à prouver que,
quelle que soit la suite de subdivisions (σn) satisfaisant limn→∞ δσn = 0 (δσn 6= 0 étant le
pas de la subdivision σn), la quantité Sσn− Sσn tend vers 0 lorsque n tend vers ∞ (Sσn

et Sσn étant les sommes de Darboux inférieure et supérieure, respectivement, associées
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à σn). La combinaison des résultats obtenus dans chacune de ces étapes mène alors à la
conclusion de la proposition.

• Première étape :
Soit (ςn) une suite de subdivisions de l’intervalle fermé [a; b], satisfaisant les
propriétés suivantes :

⋄ limn→∞ δςn = 0, où δςn est le pas de la subdivision ςn ;

⋄ pour tout n > 1, la subdivision ςn+1 se compose de tous les éléments de la
subdivision ςn et d’un élément supplémentaire, qui n’est pas dans ςn.

Notons ςn = (r0; . . . ; rn) et ςn+1 = (s0; . . . ; sn+1). Alors, par définition de ςn+1 :

a = s0 = r0 , . . . , sk−1 = rk−1 , sk+1 = rk , . . . , sn+1 = rn = b .

et :
rk−1 < sk < rk ,

pour un certain k ∈ {1; . . . ; n} (cf. figure ci-
contre) ; l’élément sk est le «nouvel» élément, pré-
sent dans ςn+1 et absent dans ςn. Notons aussi :

⋄ m et M le minimum et le maximum de f ,
respectivement, dans [a; b],

⋄ mr,j et Mr,j le minimum et le maximum
de f , respectivement, dans [rj−1 ; rj ], où
j ∈ {1; . . . ; n},

⋄ ms,j et Ms,j le minimum et le maximum
de f , respectivement, dans [sj−1 ; sj], où
j ∈ {1; . . . ; n + 1}.

x
r0

a

r1 r2 r3 r4

b
x

s0 s1 s2 s3 s4 s5

a b
x

s1

r1
s2 s3

r2
s4

r3

a b
x

s1

r1
s2 s3

r2
s4

r3

Remarquer que ces nombres sont bien définis, vu que f est continue dans [a; b] et
que tous les intervalles considérés sont fermés. Par définition de ςn et ςn+1, d’une
part :

mr,1 = ms,1 , . . . , mr,k−1 = ms,k−1 , mr,k+1 = ms,k+2 , . . . , mr,n = ms,n+1

et :

mr,k = min{ms,k ; ms,k+1} ,
où min{ms,k ; ms,k+1} désigne le plus petit des deux nombres réels ms,k et ms,k+1 ;
d’autre part :

Mr,1 =Ms,1 , . . . , Mr,k−1 =Ms,k−1 , Mr,k+1 =Ms,k+2 , . . . , Mr,n =Ms,n+1

et :

Mr,k = max{Ms,k ; Ms,k+1} ,
où max{Ms,k ; Ms,k+1} désigne le plus grand des deux nombres réelsMs,k etMs,k+1.
Soient à présent Sςn et Sςn les sommes de Darboux inférieure et supérieure,
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respectivement, associées à la subdivision ςn ; soient aussi Sςn+1
et Sςn+1 les sommes

de Darboux inférieure et supérieure, respectivement, associées à la subdivision ςn+1.

✄ Sςn 6 Sςn+1
et Sςn > Sςn+1 , pour tout n ∈ N∗. En effet :

Sςn =
n∑

j=1

mr,j (rj − rj−1)

= mr,1 (r1 − r0) + . . .+mr,k (rk − rk−1) + . . .+mr,n (rn − rn−1)

= ms,1 (s1 − s0) + . . .+mr,k (sk+1 − sk−1) + . . .+ms,n+1 (sn+1 − sn)

= ms,1 (s1 − s0) + . . .+mr,k (sk − sk−1)

+mr,k (sk+1 − sk) + . . .+ms,n+1 (sn+1 − sn)

6 ms,1 (s1 − s0) + . . .+ms,k (sk − sk−1)

+ms,k+1 (sk+1 − sk) + . . .+ms,n+1 (sn+1 − sn)

=

n+1∑

j=1

ms,j (sj − sj−1) = Sςn+1
.

La deuxième égalité se démontre de manière analogue.

✄ Sςn 6 Sςn et Sςn+1
6 Sςn+1 , pour tout n ∈ N∗. En effet :

Sςn =
n∑

j=1

mr,j (rj − rj−1) 6

n∑

j=1

Mr,j (rj − rj−1) = Sςn ,

du fait que mr,j 6 Mr;j pour tout j ∈ {1; . . . ; n}. La deuxième inégalité se
démontre de manière analogue.

✄ Sςn 6 M (b− a) et Sςn > m (b− a), pour tout n ∈ N∗. En effet, par définition
du maximum M de f dans [a; b] :

Sςn =
n∑

j=1

mr,j (rj − rj−1) 6

n∑

j=1

Mr,j (rj − rj−1)

6

n∑

j=1

M (rj − rj−1) = M
n∑

j=1

(rj − rj−1)

= M
(
(r1 − r0) + (r2 − r1) + . . .+ (rn − rn−1)

)

= M (rn − r0) = M (b− a) .

L’autre inégalité se démontre de manière analogue.

✄ limn→∞
(
Sςn −Sςn

)
= 0. Pour s’en convaincre, il convient de noter, en premier

lieu, que la continuité de f dans [a; b] implique la continuité uniforme de f
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dans ce même intervalle (cf. théorème D.1.5) ; ce qui signifie que pour tout
nombre réel ε > 0, il existe un nombre réel δ > 0 tel que, pour tout x1, x2 ∈
[a; b] remplissant la condition |x2−x1| 6 δ, la relation

∣
∣f(x2)−f(x1)

∣
∣ 6 ε est

satisfaite. Remarquer ensuite que la condition limn→∞ δςn = 0 se traduit par
l’assertion suivante : pour tout nombre réel δ̃ > 0, il existe un nombre Ñς ∈ N∗

tel que la relation n > Ñς implique l’inégalité δςn 6 δ̃. De cette assertion ressort
le fait qu’il existe un nombre entier Nς ∈ N∗ tel que l’inégalité n > Nς implique
l’inégalité δςn 6 δ, où δ est le nombre réel qui vient d’être évoqué, lors de la
continuité uniforme de f dans [a; b]. Ainsi, pour tout n > Nς :

Sςn− Sςn =

n∑

j=1

Mr,j (rj − rj−1)−
n∑

j=1

mr,j (rj − rj−1)

=
n∑

j=1

(Mr,j −mr,j) (rj − rj−1)

=
n∑

j=1

(
f(xMr,j

)− f(xmr,j
)
)
(rj − rj−1)

6

n∑

j=1

ε (rj − rj−1) = ε
n∑

j=1

(rj − rj−1)

= ε (r1 − r0 + r2 − r1 + . . .+ rn − rn−1)

= ε (rn − r0) = ε (b− a) ,

où xmr,j
(respectivement xMr,j

) est l’élément (ou l’un des éléments), dans
[rj−1 ; rj], où f atteint son minimum (respectivement son maximum) dans
[rj−1 ; rj] ; comme rj − rj−1 6 δςn 6 δ, alors

∣
∣f(xMr,j

) − f(xMr,j
)
∣
∣ 6 ε. En

résumé, pour tout n > Nς :

1

b− a

(
Sςn− Sςn

)
6 ε ,

ce qui revient à noter :

lim
n→∞

1

b− a

(
Sςn− Sςn

)
= 0 .

Et vu que limn→∞
1

b−a

(
Sςn− Sςn

)
= 1

b−a
limn→∞

(
Sςn− Sςn

)
, alors :

lim
n→∞

(
Sςn− Sςn

)
= 0 .

Les ensembles (Sς1 ; Sς2 ; Sς3 ; . . . ) et (Sς1 ; Sς2 ; Sς3 ; . . . ), notés de façon com-

pacte (Sςn) et (Sςn), peuvent être vus commes des suites de nombres réels. Des
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quatre points qui viennent d’être traités, il ressort que ces suites satisfont les
conditions suivantes :

⋄ Sςn 6 Sςn+1
et Sςn > Sςn+1 pour tout n ∈ N∗ (i.e. (Sςn) est une suite croissante

et (Sςn) une suite décroissante),

⋄ Sςn 6M (b− a) et Sςn > m (b− a) pour tout n ∈ N∗,

⋄ limn→∞
(
Sςn − Sςn

)
= 0.

Selon la proposition A.1.5 et le lemme A.1.8 (cf. section A.1 de l’annexe A), les
suites (Sςn) et (Sςn) convergent et admettent pour limite un seul et même nombre
réel. Ce nombre réel va être noté I :

lim
n→∞

Sςn = I = lim
n→∞

Sςn .

• Deuxième étape :
Soit σp une subdivision d’ordre p de l’intervalle fermé [a; b]. Soit aussi ςn la subdi-
vision d’ordre n de la suite de subdivisions (ςn) introduite dans l’étape précédente.
La réunion de σp et ςn, notée σp ∪ ςn, peut être vue comme une subdivision τq.
Notons σp = (x0; x1; . . . ; xp), ςn = (r0; r1; . . . ; rn) et τq = (t0; t1; . . . ; tq). Par
définition de ςn, σp et τq :

a = r0 = x0 = t0 et b = rn = xp = tq .

Remarquer que l’ordre q de τq est un nombre entier compris entre le plus grand des
deux nombres n et p (dans le cas où tous les éléments de σp sont dans ςn ou tous
les éléments de ςn sont dans σp), et n+p−1 (dans le cas où les éléments de ςn sont
tous différents de ceux de σp, à l’exception de r0 et x0, qui sont nécessairement
égaux, tout comme rn et xp). Notons aussi :

⋄ mx,j etMx,j le minimum et le maximum de f , respectivement, dans [xj−1 ; xj ],
où j ∈ {1; . . . ; p},

⋄ mr,j et Mr,j le minimum et le maximum
de f , respectivement, dans [rj−1 ; rj], où j ∈
{1; . . . ; n},

⋄ mt,j et Mt,j le minimum et le maximum
de f , respectivement, dans [tj−1 ; tj ], où j ∈
{1; . . . ; q}.

x
r0

a

r1 r2 r3 r4

b
x

x0 x1 x2 x3 x4 x5 x6

a b
x

t0 t1t2 t3 t4 t5 t6 t7 t8

Observer que ces nombres sont bien définis, vu que f est continue dans [a; b] et que
tous les intervalles considérés sont fermés. Par définition de τq, quel que soit k ∈
{1; . . . ; q}, l’intervalle [xk−1 ; xk] peut être vu comme une réunion d’intervalles
de la forme [tα−1 ; tα] (où α ∈ {1; . . . q}) :

[xk−1 ; xk] =
κ⋃

α=ι

[tα−1 ; tα] ,

où ι et κ sont deux nombres entiers tels que 1 6 ι 6 κ 6 q. En conséquence :

mx,k = min
{
mt,ι ; . . . ; mt,κ

}
et Mx,k = max

{
Mt,ι ; . . . ; Mt,κ

}
,
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où min (respectivement max) désigne le plus petit (respectivement le plus grand)
des nombres entre accolades. Ainsi :

mx,k (xk − xk−1) = mx,k

κ∑

α=ι

(tα − tα−1)

=
κ∑

α=ι

mx,k (tα − tα−1)

6

κ∑

α=ι

mt,α (tα − tα−1)

et :

Mx,k (xk − xk−1) = Mx,k

κ∑

α=ι

(tα − tα−1)

=
κ∑

α=ι

Mx,k (tα − tα−1)

>

κ∑

α=ι

Mt,α (tα − tα−1) .

Aussi, toujours par définition de τq, quel que soit k ∈ {1; . . . ; p}, l’intervalle
[rk−1 ; rk] peut être vu comme une réunion d’intervalles de la forme [tα−1 ; tα] (où
α ∈ {1; . . . q}) :

[rk−1 ; rk] =
ν⋃

α=µ

[tα−1 ; tα] ,

où µ et ν sont deux nombres entiers tels que 1 6 µ 6 ν 6 q. En conséquence :

mr,k = min
{
mt,µ ; . . . ; mt,ν

}
et Mr,k = max

{
Mt,µ ; . . . ; Mt,ν

}
,

où min (respectivement max) désigne le plus petit (respectivement le plus grand)
des nombres entre accolades. Ainsi :

mr,k (rk − rk−1) = mr,k

ν∑

α=µ

(tα − tα−1)

=
ν∑

α=µ

mr,k (tα − tα−1)

6

ν∑

α=µ

mt,α (tα − tα−1)
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et :

Mx,k (xk − xk−1) = Mx,k

ν∑

α=µ

(tα − tα−1)

=

ν∑

α=µ

Mx,k (tα − tα−1)

>

ν∑

α=µ

Mt,α (tα − tα−1) .

Soient à présent Sσp , respectivement Sςn , Sτq la
somme de Darboux inférieure associée à la subdi-
vision σp, respectivement ςn, τq ; et Sσp , respecti-

vement Sςn , Sτq la somme de Darboux supérieure
associée à la subdivision σp, respectivement ςn, τq.
Des considérations qui viennent d’être faites, il res-
sort que :

✄ Sσp 6 Sτq et Sσp > Sτq ,

✄ Sςn 6 Sτq et Sςn > Sτq .

En outre, Sτq 6 Sτq , vu que mt,α 6 Mt,α quel que
soit α ∈ {1; . . . ; q}. Par conséquent :

Sσp 6 Sςn et Sσp > Sςn .

a b
x

t1t2 t3 t4 t5 t6 t7

Sσp
6 Sτq

a b
x

t1t2 t3 t4 t5 t6 t7

Sτq 6 Sςn

a b
x

t1t2 t3 t4 t5 t6 t7

Sσp > Sτq

a b
x

t1t2 t3 t4 t5 t6 t7

Sτq
> Sςn

Les résultats obtenus étant valables pour tout élément ςn de la suite (ςn), il vient,
par passage à la limite :

Sσp 6 lim
n→∞

Sςn et Sσp > lim
n→∞

Sςn ;

autrement écrit, avec limn→∞ Sςn = I = limn→∞ Sςn :

Sσp 6 I 6 Sσp .

• Troisième étape :
Soit (σn) une suite de subdivisions satisfaisant la condition limn→∞ δσn = 0, où δσn
est le pas de la subdivision σn. Notons σn = (x0; . . . ; xn), où x0 = a et xn = b ;
notons aussi :

⋄ mx,j etMx,j le minimum et le maximum de f , respectivement, dans [xj−1 ; xj ],
où j ∈ {1; . . . ; n},

⋄ Sσn et Sσn les sommes de Darboux inférieure et supérieure, respectivement,
associées à la subdivision σn.

La fonction f étant continue dans [a; b], elle est, rappelons-le, uniformément
continue dans ce même intervalle ; ce qui signifie que pour tout nombre réel ε > 0,
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il existe un nombre réel δ > 0 tel que, pour tout x1, x2 ∈ [a; b] remplissant la
condition |x2−x1| 6 δ, la relation

∣
∣f(x2)−f(x1)

∣
∣ 6 ε est satisfaite. En outre, vu

que limn→∞ δσn = 0, il existe un nombre Nσ ∈ N∗ pour lequel la relation n > Nσ

implique l’inégalité δςn 6 δ. Ainsi, pour tout n > Nσ :

Sσn − Sσn =

n∑

j=1

Mx,j (xj − xj−1)−
n∑

j=1

mx,j (xj − xj−1)

=

n∑

j=1

(Mx,j −mx,j) (xj − xj−1)

=

n∑

j=1

(
f(xMx,j

)− f(xmx,j)

)
(xj − xj−1)

6

n∑

j=1

ε (xj − xj−1) = ε

n∑

j=1

(xj − xj−1)

= ε (x1 − x0 + x2 − x1 + . . .+ xn − xn−1)

= ε (xn − x0) = ε (b− a) ,

où xmx,j
(respectivement xMx,j

) est l’élément (ou l’un des éléments), dans [xj−1 ; xj ],
où f atteint son minimum (respectivement son maximum) dans [xj−1 ; xj ] ; comme
xj−xj−1 6 δςn 6 δ, alors

∣
∣f(xMx,j

)−f(xMx,j
)
∣
∣ 6 ε. En résumé, pour tout n > Nσ :

1

b− a

(
Sσn − Sσn

)
6 ε ,

ce qui revient à noter :

lim
n→∞

1

b− a

(
Sσn − Sσn

)
= 0 , ou aussi : lim

n→∞

(
Sσn − Sσn

)
= 0 .

Les ensembles (Sσ1
; Sσ2

; Sσ3
; . . . ) et (Sσ1 ; Sσ2 ; Sσ3 ; . . . ), notés de façon com-

pacte (Sσn) et (Sσn), peuvent être vus comme des suites de nombres réels. Du
raisonnement qui vient d’être effectué, il ressort que ces suites satisfont la condi-
tion limn→∞

(
Sσn − Sσn

)
= 0.

Récapitulons le travail effectué. Pour toute suite de subdivisions (σn) satisfaisant la
condition limn→∞ δσn = 0 (δσn étant le pas de la subdivision σn), les suites de nombres
(Sσn) et (Sσn) (où Sσn et Sσn sont les sommes de Darboux inférieure et supérieure
associées à l’élément σn de la suite (σn)), satisfont les propriétés suivantes :

⋄ Sσn 6 I 6 Sσn pour tout n ∈ N∗, où I est le nombre réel défini dans la première
étape,

⋄ limn→∞
(
Sσn − Sσn

)
= 0.



512 D L’intégrale de Riemann

En notant alors que :

lim
n→∞

(
Sσn − Sσn

)
= lim

n→∞

(
Sσn− I + I − Sσn

)

= lim
n→∞

(
Sσn − I

)
+ lim

n→∞

(
I − Sσn

)
,

il vient :
lim
n→∞

(
Sσn − I

)
= 0 et lim

n→∞

(
I − Sσn

)
= 0 ,

du fait que Sσn − I > 0 et I − Sσn > 0 pour tout n ∈ N∗. Autrement écrit :

lim
n→∞

Sσn = I = lim
n→∞

Sσn .

Ainsi, dès lors que f est continue dans [a; b], elle est intégrable (au sens de Riemann)
dans [a; b]. �

D.2.6 Remarque : Soit f une fonction définie et continue dans un intervalle fermé [a; b],
où a et b sont deux nombres réels tels que a < b. Soit aussi (σn) une suite de subdivi-
sions satisfaisant la condition limn→∞ δσn = 0 (où δσn est le pas de la subdivision σn). Par
définition des sommes de Darboux inférieure Sσn et supérieure Sσn associées à la subdi-
vision σn, toute somme de Riemann Sσn (cf. définition 4.1.2, section 4.1 du chapitre 4)
associée à σn satisfait la condition :

Sσn 6 Sσn 6 Sσn .

Comme :
lim
n→∞

Sσn = I = lim
n→∞

Sσn ,

où I est un nombre réel, alors nécessairement :

lim
n→∞

Sσn = I .

Avec ce résultat, on retrouve les propos tenus par Cauchy, puis par Riemann, au sujet
de l’intégrabilité d’une fonction continue dans un intervalle fermé donné.



Annexe E

Propriétés des développements limités

Dans le chapitre 5, plusieurs propriétés relatives aux développements limités ont été
énoncées sans démonstration. Le présent chapitre a pour objectif de reprendre ces pro-
priétés et de les prouver en détail.

E.1 Propriétés des développements limités

E.1.1 Proposition : Soit f : D → R une fonction réelle définie dans un voisinage d’un
nombre réel a, sauf éventuellement en a.

• Si f admet un développement limité d’ordre n autour de a, alors nécessairement f
admet un développement limité d’ordre m autour de a, où m = 0, 1, . . . , n− 1.

• Si f admet un développement limité d’ordre n autour de a, ce développement
limité est unique.

• Si f admet un développement limité d’ordre n autour de 0, i.e. si f peut s’écrire,
pour tout x ∈ Dr{0} :

f(x) = b0 + b1 (x− 0) + b2 (x− 0)2 + . . .+ bn (x− 0)n +R0
n(x)

= b0 + b1 x+ b2 x
2 + . . .+ bn x

n +R0
n(x) ,

où b0, b1, b2, . . . , bn sont n+1 coefficients réels et R0
n : D → R une fonction réelle

telle que :

lim
x→a

R0
n(x)

(x− 0)n
= lim

x→a

R0
n(x)

xn
= 0 ,

alors :

⋄ tous les coefficients d’indice impair (b1, b3, b5, . . .) sont nuls si f est paire ;
⋄ tous les coefficients d’indice pair (b0, b2, b4, . . .) sont nuls si f est impaire.
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Preuve : Soit f : D → R une fonction réelle définie dans un voisinage d’un nombre réel a,
sauf éventuellement en a.

• Supposons que f admet un développement limité d’ordre n autour de a ; autre-
ment dit, supposons que f peut s’écrire, pour tout x ∈ Dr{a} :

f(x) = b0 + b1 (x− a) + b2 (x− a)2 + . . .+ bn (x− a)n +Ra
n(x) ,

où b0, b1, b2, . . . , bn sont n+1 coefficients réels et Ra
n : D → R une fonction réelle

telle que :

lim
x→a

Ra
n(x)

(x− a)n
= 0 .

Alors, pour tout x ∈ Dr{a} et pour tout m = 0, 1, . . . , n− 1 :

f(x) = b0 + b1 (x− a) + b2 (x− a)2 + . . .+ bm (x− a)m +Ra
m(x) ,

où Ra
m : D → R est la fonction réelle donnée par :

Ra
m(x) = bm+1 (x− a)m+1 + . . .+ bn (x− a)n +Ra

n(x) .

Or :

lim
x→a

Ra
m(x)

(x− a)m
= lim

x→a

bm+1 (x− a)m+1 + . . .+ bn (x− a)n +Ra
n(x)

(x− a)m

= lim
x→a

(

bm+1 (x− a) + . . .+ bn (x− a)n−m +
Ra

n(x)

(x− a)m

)

= 0 + . . .+ 0 + 0 = 0 ,

vu que 0 6 m < n. Donc, f(x) = b0+ b1(x−a)+ b2(x−a)2+ . . .+ bm (x−a)m+
Ra

m(x) est un développement limité d’ordre m de f autour de a. En conclusion,
si f admet un développement limité d’ordre n autour de a, alors nécessairement f
admet un développement limité d’ordre m autour de a, où m = 0, 1, . . . , n− 1.

• Supposons que f admet deux développements limités d’ordre n autour de a,
différents ; autrement dit, supposons que f peut s’écrire, pour tout x ∈ Dr{a},
d’une part :

f(x) = b0 + b1 (x− a) + b2 (x− a)2 + . . .+ bn (x− a)n +Ra
n(x) ,

où b0, b1, b2, . . . , bn sont n+1 coefficients réels et Ra
n : D → R une fonction réelle

telle que :

lim
x→a

Ra
n(x)

(x− a)n
= 0 ,

et d’autre part :

f(x) = c0 + c1 (x− a) + c2 (x− a)2 + . . .+ cn (x− a)n + T a
n (x) ,
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où c0, c1, c2, . . . , cn sont n + 1 coefficients réels tels que cm 6= bm pour au moins
un nombre entier m compris entre 0 et n, et T a

n : D → R une fonction réelle telle
que :

lim
x→a

T a
n (x)

(x− a)n
= 0 .

Soit k le plus petit nombre entier supérieur ou égal à 0 tel que ck 6= bk. Alors,
pour tout x ∈ Dr{a} :

f(x)− f(x) =
(
c0 + c1 (x− a) + . . .+ ck (x− a)k + . . .+ cn (x− a)n + T a

n (x)
)

−
(
b0 + b1 (x− a) + . . .+ bk (x− a)k + . . .+ bn (x− a)n +Ra

n(x)
)

= (ck − bk)(x− a)k + . . . (cn − bn)(x− a)n +
(
T a
n (x)−Ra

n(x)
)
,

vu que c0 = b0, c1 = b1, . . . , ck−1 = bk−1. Ainsi, en divisant par (x− a)k, il vient :

0 = (ck−bk)+(ck+1−bk+1)(x−a)+. . .+(cn−bn)(x−a)n−k+
T a
n (x)

(x− a)k
− Ra

n(x)

(x − a)k
;

d’où, en passant à la limite lorsque x tend vers a :

0 = (ck − bk) + 0 + . . .+ 0 + 0− 0 ,

ce qui montre que ck = bk. Or, une telle égalité est contradictoire avec le fait
que f admet deux développements limités d’ordre n autour de a, différents. En
résumé, dès lors que f admet un développement limité d’ordre n autour de a, ce
développement est unique.

• Supposons aussi que f admet un développement limité d’ordre n autour de 0 ;
autrement dit, supposons que f peut s’écrire, pour tout x ∈ Dr{0} :

f(x) = b0 + b1 (x− 0) + b2 (x− 0)2 + . . .+ bn (x− 0)n +R0
n(x)

= b0 + b1 x+ b2 x
2 + . . .+ bn x

n +R0
n(x) ,

où b0, b1, b2, . . . , bn sont n+1 coefficients réels et R0
n : D → R une fonction réelle

telle que :

lim
x→a

R0
n(x)

(x− 0)n
= lim

x→a

R0
n(x)

xn
= 0 .

Supposons, de plus, que f est paire. Dans ce cas, f(−x) = f(x) pour tout x ∈ D.
Ainsi :

b0 + b1 (−x) + b2 (−x)2 + . . .+ bn (−x)n +R0
n(−x) = f(−x)

= f(x) = b0 + b1 x+ b2 x
2 + . . .+ bn x

n +R0
n(x) ,

d’où :

b0 − b1 x+ b2 x
2 + . . .+ bn (−x)n +R0

n(−x) = f(−x)

= f(x) = b0 + b1 x+ b2 x
2 + . . .+ bn x

n +R0
n(x) .
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Or :

lim
x→0

R0
n(−x)
xn

x̃=−x
= lim

x̃→0

R0
n(x̃)

(−x̃)n = lim
x̃→0

(−1)n
R0

n(x̃)

x̃n
= (−1)n · 0 = 0 .

En conséquence, f(x) = b0−b1 x+b2 x2+. . .+bn (−x)n+R0
n(−x) est également un

développement limité d’ordre n de f autour de 0. Comme le développement limité
d’ordre n de f autour de 0, dès lors qu’il existe, est unique, alors nécessairement
b1 = b3 = . . . = 0 (de sorte que les deux écritures b0−b1 x+b2 x2+ . . .+bn (−x)n+
R0

n(−x) et b0+b1 x+b2 x2+ . . .+bn xn+R0
n(x) n’en soient qu’une seule et même).

En résumé, si f est paire et admet un développement limité d’ordre n autour de 0,
tous les coefficients d’indice impair, dans le développement limité, sont nuls. Un
raisonnement similaire à celui qui vient d’être mené permet de dire que si f
est impaire et admet un développement limité d’ordre n autour de 0, tous les
coefficients d’indice pair, dans le développement limité, sont nuls. �

E.2 Opérations entre développements limités

E.2.1 Proposition : Soient f : D1 → R et g : D2 → R deux fonctions réelles, définies
toutes les deux dans un voisinage d’un nombre réel a, sauf éventuellement en a. Sup-
posons que f et g admettent toutes les deux un développement limité d’ordre n autour
de a. Notons :

f(x) = P a
f,n(x) +Ra

f,n(x) (x ∈ D1) et g(x) = P a
g,n(x) +Ra

g,n(x) (x ∈ D2)

les développements limités d’ordre n autour de a de f et de g, respectivement, P a
f,n(x)

et P a
g,n(x) étant les parties principales, R

a
f,n(x) et R

a
g,n(x) les restes associés. Alors :

• la fonction α f+β g, où α et β sont deux nombres réels, admet un développement
limité d’ordre n autour de a, défini en tout x ∈ D1∩D2, dont la partie principale,
notée P a

αf+βg,n, est donnée par :

P a
αf+βg,n(x) = αP a

f,n(x) + β P a
g,n(x) ;

• la fonction fg admet un développement limité d’ordre n autour de a, défini en
tout x ∈ D1 ∩D2, dont la partie principale, notée P a

fg,n, s’obtient en effectuant le
produit :

P a
f,n(x)P

a
g,n(x)

et en ne gardant que les termes qui contiennent x− a à une puissance inférieure
ou égale à n ;

• si c0 6= 0, où c0 est le terme constant dans P a
g,n(x) (i.e. c0 = limx→a P

a
g,n(x)), la

fonction f
g
admet un développement limité d’ordre n autour de a, défini en tout

x ∈ D1 ∩ D2 tel que g(x) 6= 0, dont la partie principale s’obtient en effectuant
une division euclidienne de P a

f,n(x) par P
a
g,n(x) selon les puissances croissantes, et

en ne gardant que les termes qui contiennent x− a à une puissance inférieure ou
égale à n.
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Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage du nombre réel b0, sauf
éventuellement en b0, où b0 est le terme constant dans P a

f,n(x) (i.e. b0 = limx→a P
a
f,n(x)).

Supposons que g admet un développement limité d’ordre n autour de b0. Notons :

g(x) = P b0
g,n(x) +Rb0

g,n(x) (x ∈ D2)

le développement limité d’ordre n de g autour de a, P b0
g,n(x) étant la partie principale

et Rb0
g,n le reste associé. Alors :

• la fonction g ◦ f admet un développement limité d’ordre n autour de a, défini
en tout x ∈ D1 tel que f(x) ∈ D2, dont la partie principale s’obtient en compo-
sant P a

f,n(x) et P b0
g,n(x) et en ne gardant que les termes qui contiennent x − a à

une puissance inférieure ou égale à n.

Preuve : Soient f : D1 → R et g : D2 → R deux fonctions réelles, définies toutes les deux
dans un voisinage d’un nombre réel a, sauf éventuellement en a. Supposons que f et g
admettent toutes les deux un développement limité d’ordre n autour de a. Notons :

f(x) = P a
f,n(x) +Ra

f,n(x) (x ∈ D1) et g(x) = P a
g,n(x) +Ra

g,n(x) (x ∈ D2)

les développements limités d’ordre n de f et de g autour de a, respectivement, P a
f,n(x)

et P a
g,n(x) étant les parties principales, R

a
f,n(x) et R

a
g,n(x) les restes associés. Ces restes,

rappelons-le, satisfont :

lim
x→a

Ra
f,n(x)

(x− a)n
= 0 et lim

x→a

Ra
g,n(x)

(x− a)n
= 0 ;

• Soient α et β deux nombres réels. Alors, pour tout x ∈ D1 ∩D2 :
(
α f + β g

)
(x) = α f(x) + β g(x)

= α
(
P a
f,n(x) +Ra

f,n(x)
)
+ β

(
P a
g,n(x) +Ra

g,n(x)
)

=
(
αP a

f,n(x) + β P a
g,n(x)

)
+
(
αRa

f,n(x) + β Ra
g,n(x)

)
,

avec :

lim
x→a

αRa
f,n(x) + β Ra

g,n(x)

(x− a)n
= lim

x→a

(

α
Ra

f,n(x)

(x− a)n
+ β

Ra
g,n(x)

(x− a)n

)

= α · 0 + β · 0 = 0 .
(
α f + β g

)
(x) =

(
αP a

f,n(x) + β P a
g,n(x)

)
+
(
αRa

f,n(x) + β Ra
g,n(x)

)
est donc un

développement limité d’ordre n de α f + β g autour de a ; la partie principale de
ce développement est αP a

f,n(x) + β P a
g,n(x), où :

αP a
f,n(x) + β P a

g,n(x)

= α
(
b0 + b1 (x− a) + . . .+ bn (x− a)n

)

+β
(
c0 + c1 (x− a) + . . .+ cn (x− a)n

)

= (α b0 + β c0) + (α b1 + β c1) (x− a) + . . .+ (α bn + β cn) (x− a)n .
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Le fait que le développement limité d’ordre n d’une fonction autour d’un point,
dès lors qu’il existe, est unique, permet alors de conclure.

• Pour tout x ∈ D1 ∩D2 :
(
fg
)
(x) = f(x) g(x) =

(
P a
f,n(x) +Ra

f,n(x)
)(
P a
g,n(x) +Ra

g,n(x)
)

= P a
f,n(x)P

a
g,n(x) + P a

f,n(x)R
a
g,n(x) + P a

g,n(x)R
a
f,n(x) +Ra

f,n(x)R
a
g,n(x) ,

avec :

lim
x→a

P a
f,n(x)R

a
g,n(x) + P a

g,n(x)R
a
f,n(x) +Ra

f,n(x)R
a
g,n(x)

(x− a)n

= lim
x→a

(

P a
f,n(x)

Ra
g,n

(x− a)n
+ P a

g,n(x)
Ra

f,n

(x− a)n
+ (x− a)n

Ra
f,n(x)

(x− a)n
Ra

g,n(x)

(x− a)n

)

= b0 · 0 + c0 · 0 + 0 · 0 · 0 = 0 .

Par ailleurs, le produit P a
f,n(x)P

a
g,n(x) peut s’écrire sous la forme :

P a
f,n(x)P

a
g,n(x) = Sa

n(x) + T a
2n(x) ,

où Sa
n(x) est un polynôme de degré n en x − a et T a

2n(x) un polynôme en x − a
qui ne contient que des termes proportionnels à (x − a)m, où n + 1 6 m 6 2n.
En conséquence :

lim
x→a

T a
2n(x)

(x− a)n
= 0 .

Ainsi, la quantité T a
2n(x)+P

a
f,n(x)R

a
g,n(x)+P

a
g,n(x)R

a
f,n(x)+R

a
f,n(x)R

a
g,n(x) peut

être vue comme le reste d’un développement limité d’ordre n de fg autour de a,
dont la partie principale est Sa

n(x). Le fait que le développement limité d’ordre n
d’une fonction autour d’un point, dès lors qu’il existe, est unique, permet alors
de conclure.

• Soient Sa
n(x) le polynôme de degré n en x−a, résultant de la division euclidienne

de P a
f,n par P a

g,n selon les puissances croissantes, et T a
n (x) le reste associé. Alors :

P a
f,n(x)

P a
g,n(x)

= Sa
n(x) +

T a
n (x)

P a
g,n(x)

⇔ P a
f,n(x) = Sa

n(x)P
a
g,n(x) + T a

n (x) .

Noter que, la division se faisant selon les puissances croissante, T a
n (x) est un

polynôme en x− a qui ne contient que des termes proportionnels à (x− a)m, où
m > n + 1. Ainsi, pour tout x ∈ D1 ∩D2 tel que g(x) 6= 0 :
(
f

g

)

(x) =
f(x)

g(x)
=

P a
f,n(x) +Ra

f,n(x)

P a
g,n(x) +Ra

g,n(x)
=

Sa
n(x)P

a
g,n(x) + T a

n (x) +Ra
f,n(x)

P a
g,n(x) +Ra

g,n(x)

=
Sa
n(x)P

a
g,n(x) + Sa

n(x)R
a
g,n(x)− Sa

n(x)R
a
g,n(x) + T a

n (x) +Ra
f,n(x)

P a
g,n(x) +Ra

g,n(x)

= Sa
n(x) +

Ra
f,n(x) + T a

n (x)− Sa
n(x)R

a
g,n(x)

P a
g,n(x) +Ra

g,n(x)
,
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avec :

lim
x→a

Ra
f,n

(x)+Ta
n (x)−Sa

n(x)R
a
g,n(x)

P a
g,n(x)+Ra

g,n(x)

(x− a)n
=

= lim
x→a

1

(x− a)n
Ra

f,n(x) + T a
n (x)− Sa

n(x)R
a
g,n(x)

P a
g,n(x) +Ra

g,n(x)

= lim
x→a

1

P a
g,n(x) +Ra

g,n(x)

(
Ra

f,n(x)

(x− a)n
+

T a
n (x)

(x− a)n
− Sa

n(x)
Ra

g,n(x)

(x− a)n

)

=
1

c0 + 0

(

0 + 0− b0
c0

· 0
)

= 0 ,

vu que le premier terme de Sa
n(x) est b0

c0
et que tous les termes de T a

n (x) sont
proportionnels à (x− a)m, où m > n+ 1. La quantité :

Ra
f,n(x) + T a

n (x)− Sa
n(x)R

a
g,n(x)

P a
g,n(x) +Ra

g,n(x)

peut donc être vue comme l’expression du reste d’ordre n d’un développement
limité de f

g
, dont la partie principale est Sa

n(x). Le fait que le développement
limité d’ordre n d’une fonction autour d’un point, dès lors qu’il existe, est unique,
permet alors de conclure.

Gardons les hypothèses sur f : D1 → R formulées initialement ; et supposons à présent
que g : D2 → R est une fonction réelle définie dans un voisinage du nombre réel b0, sauf
éventuellement en b0, où b0 est le terme constant dans P a

f,n(x) (i.e. b0 = limx→a P
a
f,n(x)).

Supposons que g admet un développement limité d’ordre n autour de b0. Notons :

g(x) = P b0
g,n(x) +Rb0

g,n(x) (x ∈ D2)

le développement limité d’ordre n de g autour de b0, P
b0
g,n(x) étant la partie principale

et Rb0
g,n le reste associé. Ce reste, rappelons-le, satisfait :

lim
x→b0

Rb0
g,n(x)

(x− b0)n
= 0 .

• Pour tout x ∈ D1 tel que f(x) ∈ D2 :
(
g ◦ f

)
(x) = g

(
f(x)

)
= P b0

g,n

(
f(x)

)
+Rb0

g,n

(
f(x)

)

= P b0
g,n

(
P a
f,n(x) +Ra

f,n(x)
)
+Rb0

g,n

(
P a
f,n(x) +Ra

f,n(x)
)
.

Intéressons-nous d’abord à l’expression Rb0
g,n

(
P a
f,n(x) + Ra

f,n(x)
)
; étudions la li-

mite :

lim
x→a

Rb0
g,n

(
P a
f,n(x) +Ra

f,n(x)
)

(x− a)n
.



520 E Propriétés des développements limités

Deux situations peuvent se présenter, lors du calcul de cette limite.

⋄ f(x) 6= b0 lorsque x est arbitrairement proche de a (sans qu’il ne touche a) ;
dans ce cas, en écrivant concrètement P a

f,n(x) :

P a
f,n(x) = b0 + b1 (x− a) + . . .+ bn (x− a)n ,

et en posant u = f(x), il vient :

lim
x→a

Rb0
g,n

(
P a
f,n(x) +Ra

f,n(x)
)

(x− a)n
= lim

x→a

Rb0
g,n

(
f(x)

)

(x− a)n

= lim
x→a

Rb0
g,n

(
f(x)

)

(
f(x)− b0

)n

(
f(x)− b0

)n

(x− a)n

= lim
x→a

Rb0
g,n

(
f(x)

)

(
f(x)− b0

)n

(
P a
f,n(x) +Ra

f,n(x)− b0
)n

(x− a)n

= lim
x→a

Rb0
g,n

(
f(x)

)

(
f(x)− b0

)n lim
x→a

(
P a
f,n(x) +Ra

f,n(x)− b0
)n

(x− a)n

= lim
u→b0

Rb0
g,n(u)

(u− b0)n
lim
x→a

(
P a
f,n(x) +Ra

f,n(x)− b0

x− a

)n

= 0 · b1n = 0 ,

vu que u tend vers b0 lorsque x tend vers a, et vu que l’expression suivante
tend vers b1 lorsque x tend vers a :

P a
f,n(x) + Ra

f,n(x)− b0

x− a
=

=
b0 + b1 (x− a) + b2 (x− a)2 + . . .+ bn (x− a)n +Ra

f,n(x)− b0

x− a

=
b1 (x− a) + b2 (x− a)2 + . . .+ bn (x− a)n +Ra

f,n(x)

x− a

= b1 + b2 (x− a) + . . .+ bn (x− a)n−1 + (x− a)n−1
Ra

f,n(x)

(x− a)n

⋄ f(x) = b0 lorsque x est arbitrairement proche de a (sans qu’il ne touche a) ;
dans ce cas, Rb0

g,n

(
P a
f,n(x) + Ra

f,n(x)
)
= Rb0

g,n

(
f(x)

)
= Rb0

g,n(b0) = 0, ce qui
implique que :

lim
x→a

Rb0
g,n

(
P a
f,n(x) +Ra

f,n(x)
)

(x− a)n
= lim

x→a

0

(x− a)n
= lim

x→a
0 = 0 .
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Dans tous les cas :

lim
x→a

Rb0
g,n

(
P a
f,n(x) +Ra

f,n(x)
)

(x− a)n
= 0 .

Intéressons-nous à présent à la quantité P b0
g,n

(
P a
f,n(x) + Ra

f,n(x)
)
; celle-ci peut

s’écrire sous la forme :

P b0
g,n

(
P a
f,n(x) +Ra

f,n(x)
)
= Sa

n(x) + T a
n2(x) + Ua

kℓ(x) ,

où Sa
n(x) est un polynôme de degré n en x − a, T a

n2(x) un polynôme en x − a
qui ne contient que des termes proportionnels à (x − a)m, où n + 1 6 m 6 n2,
et Ua

kℓ une expression qui peut s’écrire comme une somme de termes de la forme
α (x − a)k (Ra

f,n(x))
ℓ, où α est un nombre réel, k et ℓ deux nombres entiers tels

que k > 0 et ℓ > 0. De fait :

lim
x→a

T a
n2(x) + Ua

kℓ(x)

(x− a)n
= 0 .

En résumé, la quantité T a
n2(x) + Ua

kℓ(x) + Rb0
g,n

(
P a
f,n(x) + Ra

f,n(x)
)
peut être vue

comme l’expression du reste d’ordre n d’un développement limité de g ◦ f , dont
la partie principale est donnée par Sa

n(x). Le fait que le développement limité
d’ordre n d’une fonction autour d’un point, dès lors qu’il existe, est unique, permet
alors de conclure. �





Annexe F

Formulaire

F.1 Dérivées des fonctions usuelles

f(x) f ′(x)

0 0

x 1

ln(x)
1

x

loga(x)
1

x ln(a)

sin(x) cos(x)

cos(x) − sin(x)

tg(x)
1

cos2(x)
= 1 + tg2(x)

sinh(x) cosh(x)

cosh(x) sinh(x)

tgh(x)
1

cosh2(x)
= 1− tgh2(x)

f(x) f ′(x)

c 0

xa (a ∈ R) a xa−1

exp(x) = ex exp(x) = ex

expa(x) = ax ln(a) expa(x) = ln(a) ax

Arcsin(x)
1√

1− x2

Arccos(x) − 1√
1− x2

Arctg(x)
1

1 + x2

Argsinh(x)
1√

x2 + 1

Argcosh(x)
1√

x2 − 1

Argtgh(x)
1

1− x2
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F.2 Primitives de certaines fonctions usuelles

f(x) F (x)

0 c

xa
xa+1

a+ 1
, a 6= −1

1

x
ln |x|

sin(x) − cos(x)

tg(x) − ln
∣
∣cos(x)

∣
∣

1

cos2(x)
= 1+tg2(x) tg(x)

sinh(x) cosh(x)

tgh(x) ln
∣
∣cosh(x)

∣
∣

1

cosh2(x)
= 1−tgh2(x) tgh(x)

1√
1− x2

Arcsin(x)

1

1 + x2
Arctg(x)

1√
x2 ± a2

ln
∣
∣x+

√
x2 ± a2

∣
∣

f(x) F (x)

c c x

exp(x) = ex exp(x) = ex

expa(x) = ax
expa(x)

ln(a)
=

ax

ln(a)

cos(x) sin(x)

ctg(x) ln
∣
∣sin(x)

∣
∣

1

sin2(x)
= 1+ctg2(x) − ctg(x)

cosh(x) sinh(x)

ctgh(x) ln
∣
∣sinh(x)

∣
∣

1

sinh2(x)
= ctgh2(x)−1 ctgh(x)

1√
a2 − x2

Arcsin
(x

a

)

1

a2 + x2
1

a
Arctg

(x

a

)

1

a2 − x2
1

2 a
ln

∣
∣
∣
∣

a+ x

a− x

∣
∣
∣
∣
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F.3 Développements de MacLaurin de certaines

fonctions usuelles

f(x) Développement de MacLaurin de f

exp(x) 1 + x+
x2

2!
+ . . .+

xn

n!

sin(x) x− x3

3!
+
x5

5!
+ . . .+ (−1)n

x2n+1

(2n+ 1)!

cos(x) 1− x2

2!
+
x4

4!
+ . . .+ (−1)n

x2n

(2n)!

Arcsin(x) x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+ . . .+

1 · 3 · 5 · . . . · (2n− 1)

2 · 4 · 6 · . . . · (2n)
x2n+1

2n+ 1

Arctg(x) x− x3

3
+
x5

5
+ . . .+ (−1)n

x2n+1

2n+ 1

1

1 + x
1− x+ x2 + . . .+ (−1)n xn

1

(1 + x)2
1− 2 x+ 3 x2 + . . .+ (−1)n (n+ 1) xn

√
1 + x 1 +

1

2
x− 1

2 · 4 x
2 + . . .+ (−1)n+1 1 · 3 · . . . · (2n− 3)

2 · 4 · 6 · . . . · (2n) x
n

1√
1 + x

1− 1

2
x+

1 · 3
2 · 4 x

2 + . . .+ (−1)n
1 · 3 · 5 · . . . · (2n− 1)

2 · 4 · 6 · . . . · (2n) xn

ln(1 + x) x− x2

2
+
x3

3
+ . . .+ (−1)n+1 x

n

n
∫ x

0

exp(−t2) dt x− x3

3 · 1! +
x5

5 · 2! + . . .+ (−1)n
x2n+1

(2n+ 1)n!





Exercices

Dans les pages qui suivent se trouve un recueil d’exercices I traitant de tous les thèmes
abordés dans le présent ouvrage. Ce recueil est organisé non pas selon les chapitres de
l’ouvrage, mais en séries. Voici quelques informations au sujet de ces séries :

• Il y a trente séries d’exercices.

• Chaque série traite d’un ou de deux sujets.

• Chaque série comporte la donnée d’un certain nombre d’exercices, ainsi que les
réponses correspondantes.

• Chaque série requiert, grosso modo, une quantité de travail équivalente à celle des
autres séries.

Typiquement, dans le cas où le cours traitant du calcul infinitésimal est donné durant
toute une année académique, chaque série d’exercices du recueil ci-après correspond à
une semaine de travail.

I. Ce recueil comporte des exercices conformes aux énoncés usuels utilisés par diverses sources, dont
ils sont inspirés :

• un recueil d’exercices existant à l’école HE-Arc Ingénierie, s’appuyant essentiellement sur le
livre Analyse, de E. W. Swokowski [3],

• le livre Calcul différentiel et intégral 3, de J. Douchet & B. Zwahlen [1],
• le livre Algèbre, de E. W. Swokowski & J. A. Cole [11].
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Nombres réels

Exercice 1.1

(a) Écrire concrètement les dix plus petits éléments des ensembles suivants :

• A = {x ∈ R | x = 5n+ 1, où n ∈ N∗} ;

• B =
{
x ∈ R | 2x+1

3
∈ N

}
.

(b) Soient les ensembles :

A = {x ∈ Z | x est impair} ,

B = {x ∈ N | x est un nombre premier} ,

C = {x ∈ R | x = 2n+ 3, où n ∈ N∗} .

Expliciter (en fonction de A, B et/ou C) :

• A ∩B ; • A ∪ B ; • B ∩ C .

Exercice 1.2
Soient les ensembles E = {x ∈ Z

∣
∣ |x| < 2} et F = {y ∈ Z | −1 < y 6 3}.

(a) Donner tous les éléments de E × F .

(b) Expliciter l’ensemble (E × F ) ∩ (F ×E).

Exercice 1.3

i. Écrire les sous-ensembles de R suivants en notation d’intervalles.

(a) A = {x ∈ R | −3 < x 6 2} ;

(b) B = {x ∈ R | x2 − 4 > 0} .

ii. Dans le plan euclidien R2, représenter le(s) morceau(x) de plan correspondant au
produit cartésien A× B, où A et B sont les ensembles définis au point i.
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Exercice 1.4
Calculer et simplifier les expressions suivantes :

(a)
(
2 a2 b3 c

)4
, où a, b, c ∈ R ; (b)

(
u−2 v3

)−3
, où u, v ∈ R∗ ;

(c)
8 x3 y−5

4 x−1 y2
, où x, y ∈ R∗ ; (d)

(
u2

2 v

)−3

, où u, v ∈ R∗ ;

(e) 3
√

16 x3 y8 z4 , où x, y, z ∈ R ; (f)
(
r2 s6

)1
3 , où r, s ∈ R ;

(g)
√
3 a2 b3

√
6 a5 b , où a, b ∈ R+ ; (h)

(

2 x
2
3

y
1
2

)2(

3 x−
5
6

y
1
3

)

, où x, y ∈ R∗
+ .

Exercice 1.5
Résoudre les inéquations suivantes, dans l’ensemble R ; autrement dit, pour chacune des
inéquations suivantes, déterminer tous les x ∈ R qui la satisfont.

(a) x2 − 2 x < 3 ; (b) 4 +
1

x2 − 1
>

1

x3 − x
;

(c) (x+ 1)2 6 |x+ 3| ; (d) |x+ 3| − |x− 1| < |x− 4| .

Exercice 1.6
Un réservoir sphérique contient 38 000 L d’eau (L étant le symbole du litre). Calculer
l’aire de l’enveloppe extérieure de ce réservoir.

Exercice 1.7
Soient a et b deux nombres réels satisfaisant l’égalité

√
a2 + b2 = a + b. Qu’implique

cette égalité sur a et/ou b ?

Exercice 1.8
Montrer que |a+ b| 6 |a|+ |b|, quels que soient les nombres réels a et b.
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Réponse 1.1

(a) • 6; 11; 16; 21; 26; 31; 36; 41; 46; 51.

• −1
2
; 1 ; 5

2
; 4 ; 11

2
; 7 ; 17

2
; 10 ; 23

2
; 13 .

(b) • Br{2} ; • A ∪ {2} ; • Br{2; 3} .

Réponse 1.2

(a) E × F =
{
(−1; 0) ; (−1; 1) ; (−1; 2) ; (−1; 3) ; (0; 0) ; (0; 1) ;

(0; 2) ; (0; 3) ; (1; 0) ; (1; 1) ; (1; 2) ; (1; 3)
}
.

(b) (E × F ) ∩ (F × E) = { (0; 0) ; (0; 1) ; (1; 0) ; (1; 1) } .

Réponse 1.3

i. (a) A = ]−3 ; 2] ; (b) B = ]−∞ ; −2] ∪ [2 ; +∞[ .

Réponse 1.4

(a) 16 a8 b12 c4 ; (b) u6 v−9 =
u6

v9
;

(c)
2 x4

y7
; (d)

8 v3

u6
;

(e) 2 x y2 z 3
√

2 y2 z ; (f) r
2
3 s2 = s2

3
√
r2 ;

(g) 3 a3 b2
√
2 a ; (h)

12 x
1
2

y
4
3

=
12

√
x

y 3
√
y

.

Réponse 1.5

(a) x ∈ ]−1 ; 3[ ; (b) x ∈ ]−∞ ; −1[ ∪
{
−1

2

}
∪ ]0 ; 1[ ∪ ]1 ; ∞[ .

(c) x ∈ [−2 ; 1] ; (d) x ∈ ]−∞ ; 2
3
[ ∪ ]8 ; ∞[ .

Réponse 1.6
L’aire de l’enveloppe est d’environ 54,7m2 ≈ 55m2.

Réponse 1.7
Soit a = 0 et b > 0, soit a > 0 et b = 0, ou soit a = b = 0.
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Polynômes

Exercice 2.1

i. Factoriser au maximum les polynômes suivants (jusqu’à l’obtention d’une forme ir-
réductible).

(a) 3 x2 − 12 x+ 12 ; (b) 5 x2 − 20 ;

(c) 25 x2 + 25 x− 150 ; (d) 3 x2 − 15 x+ 18 ;

(e) 3 x3 + 2 x2 − 12 x− 8 ; (f) x4 + x3 − x− 1 .

ii. Factoriser au maximum les expressions suivantes (jusqu’à l’obtention d’une forme
irréductible).

(a) 8 a3 − 27 ; (b) 81 x4 − y4 ;

(c) 16 x4 − (y − 2 z)2 ; (d) 8 c6 − 27 d 9 .

Exercice 2.2

i. Écrire chacune des expressions suivantes sous la forme d’une unique fraction poly-
nomiale (i.e. une unique fraction, avec un polynôme au numérateur et un polynôme
au dénominateur).

(a)

6 x2 − 5 x− 6

x2 − 4
2 x2 − 3 x

x+ 2

; (b)
1

x
− 2

x2 + x
− 3 x

x+ 3
;

(c)
x+ x−2

1 + x−2
; (d)

(
x−1 + 3−1

)−1
.

ii. Y a-t-il une différence entre les expressions 1
x+1

et x−1
x2−1

?

Exercice 2.3

2,00 cm

0,50 cm

0,50 cm

La vitesse à laquelle un comprimé de vitamine C se dissout
dépend de la surface qui le délimite. Une première marque de
fabrication présente des comprimés ayant la forme d’un hémi-
sphère, d’un cylindre et d’un deuxième hémisphère mis bout à
bout (cf. figure du haut, ci-contre) ; la longueur totale est de
2,00 cm et le diamètre vaut 0,50 cm. Une seconde marque pro-
duit des comprimés qui ont la forme de disques épais (cf. figure du bas, ci-contre),
d’épaisseur égale à 0,50 cm.

(a) Déterminer le diamètre d que doit avoir le comprimé en forme de disque pour que
l’aire de sa surface soit égale à celle du premier comprimé.

(b) Calculer le volume de chaque comprimé.
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Exercice 2.4 b

a

y

h

Les premières embarcations du programmeApollo (de la NASA)
avaient la forme d’un tronc de cône circulaire, comme le montre
la figure ci-contre.

(a) Exprimer y en fonction de h, a et b.

(b) Exprimer le volume V du tronc de cône en fonction de h, a
et b.

Exercice 2.5
Décomposer les fractions polynomiales suivantes en éléments simples.

(a)
x+ 34

x2 − 4 x− 12
; (b)

4 x2 − 15 x− 1

(x− 1)(x+ 2)(x− 3)
;

(c)
x2 + x− 6

(x2 + 1)(x− 1)
; (d)

9 x2 − 3 x+ 8

x3 + 2 x
;

(e)
4 x3 − x2 + 4 x+ 2

(x2 + 1)2
; (f)

2 x4 − 2 x3 + 6 x2 − 5 x+ 1

x3 − x2 + x− 1
.

Exercice 2.6

i. La méthode de Héron d’Alexandrie (datant du Ier siècle ap. J.-C.) est un procédé
illimité de calcul visant à déterminer une valeur approchée de la racine carrée d’un
nombre A donné. La procédure est la suivante : on prend un nombre quelconque a, on
calcule la moyenne arithmétique entre a et A

a
, puis on recommence cette opération

autant de fois que l’on veut avec le nouveau résultat obtenu. Dans un langage plus
formel, ce mécanisme se traduit par l’expression mathématique :

un+1 =
1

2

(

un +
A

un

)

avec u0 = a ∈ R∗
+ ,

qui lie le résultat de l’étape n à celui de l’étape n + 1. Utiliser cette méthode
pour donner une valeur approchée de

√
2 et

√
9 avec une précision de trois chiffres

significatifs. Pour ne pas multiplier les étapes, il est judicieux de choisir a proche
de A.

ii. Considérons les suites de nombres suivantes, données par leur formule de récurrence :

(a) un+1 = un + 3, avec u0 = 2 ; (b) un+1 =
un

3
, avec u0 = 2 .

Donner les cinq premiers termes de chacune de ces suites. Écrire ensuite le terme
général un de chacune d’elles. Que se passe-t-il lorsque n devient très grand, i.e.
lorsque n tend vers l’infini ?
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Réponse 2.1

i. (a) 3 (x− 2)2 ; (b) 5 (x+ 2)(x− 2) ;

(c) 25 (x+ 3)(x− 2) ; (d) 3 (x− 2)(x− 3) ;

(e) (x+ 2)(x− 2)(3 x+ 2) ; (f) (x+ 1)(x− 1)(x2 + x+ 1) .

ii. (a) (2 a− 3)(4 a2 + 6 a+ 9) ; (b) (3 x+ y)(3 x− y)(9 x2 + y2) ;

(c) (4 x2 + y − 2 z)(4 x2 − y + 2 z) ; (d) (2 c2 − 3 d 3)(4 c4 + 6 c2 d 3 + 9 d 6) .

Réponse 2.2

i. (a)
3 x+ 2

x (x− 2)
, si x /∈ {−2 ; 3

2
} ; (b)

−3 x3 − 2 x2 + 2 x− 3

x (x+ 1)(x+ 3)
;

(c)
x3 + 1

x2 + 1
, si x 6= 0 ; (d)

3 x

x+ 3
, si x 6= 0 .

ii. Les deux expressions sont égales pour tout x ∈ Rr{1}.

Réponse 2.3

(a) d = 1,0 cm.

(b) Le comprimé de la première marque a un volume V1 = 0,360 cm3 = 0,36 cm3 ;
le comprimé de la deuxième marque a un volume V2 = 0,393 cm3 ≈ 0,39 cm3 .

Réponse 2.4

(a) y =
b h

a− b
. (b) V =

π h

3
(a2 + a b+ b2) .

Réponse 2.5

(a)
5

x− 6
− 4

x+ 2
; (b)

2

x− 1
+

3

x+ 2
− 1

x− 3
;

(c)
3 x+ 4

x2 + 1
− 2

x− 1
; (d)

4

x
+

5 x− 3

x2 + 2
;

(e)
4 x− 1

x2 + 1
+

3

(x2 + 1)2
; (f) 2 x+

1

x− 1
+

3 x

x2 + 1
.
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Réponse 2.6

i. En prenant a = 2, trois étapes suffisent pour trouver
√
2 ≈ 1,41. En prenant a = 9,

quatre étapes suffisent pour trouver
√
9 ≈ 3,00.

ii. (a) Terme général : un = 2 + 3n ; un tend vers l’infini lorsque n tend vers l’infini.

(b) Terme général : un = 2
3n

; un tend vers zéro lorsque n tend vers l’infini.
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Suites de nombres

Exercice 3.1

i. Les suites de nombres réels données ci-dessous sont des suites arithmétiques. Pour
chacune d’elles, expliciter u4, u9 et un.

(a) (16; 13; 10; 7; . . . ) ; (b) (−7 ; −3,9 ; −0,8 ; 2,3 ; . . . ) .

ii. Montrer que les suites données ci-dessous par leur terme général sont des suites
arithmétiques. Calculer leur raison.

(a) (un), où un = 4n− 10 ; (b) (un), où un = 58− 5n .

Exercice 3.2

(a) D’une suite arithmétique, on donne u3 = 7 et u21 = 43. Déterminer le terme u15 .

(b) Même question pour u2 = 1, u18 = 49 et u10 .

Exercice 3.3

i. Calculer les sommes suivantes :

(a)
12∑

k=0

(7− 4 k) ; (b)
10∑

n=0

(
1

4
n+ 3

)

.

ii. Déterminer le nombre d’entiers entre 32 et 395 qui sont divisbles par 6. Calculer
leur somme.

Exercice 3.4

i. Les suites de nombres réels données ci-dessous sont des suites géométriques. Pour
chacune d’elles, expliciter u4, u9 et un.

(a) (162; −54; 18; −6; . . . ) ; (b) (1 ; −x
3
; x2

9
; −x3

27
; . . . ) .

ii. Montrer que les suites données ci-dessous par leur terme général sont des suites
géométriques. Calculer leur raison.

(a) (un), où un = 1
7
· 3n ; (b) (un), où un = 5 (−1

4
)n .
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Exercice 3.5

(a) D’une suite géométrique, on donne u4 = 4 et u7 = 12. Calculer la raison q et le
terme u10.

(b) D’une progression géométrique, on donne u3 = 4 et u7 = 1
4
. Déterminer la ou les

valeur(s) possible(s) de la raison q.

Exercice 3.6

i. Écrire les sommes suivantes à l’aide du symbole de sommation
∑

.

(a) 2 + 4 + 8 + 16 + 32 + 64 + 128 ; (b) 1
4
− 1

12
+ 1

36
− 1

108
.

ii. Calculer les sommes suivantes :

(a)

9∑

k=0

3k ; (b)

7∑

n=0

2−n .

Exercice 3.7

i. Chacune des sommes suivantes contient une infinité de termes qui appartiennent à
une suite géométrique. Calculer, si elle existe, la somme de cette infinité de termes,
dans chacun des cas.

(a) 2 + 2
3
+ 2

9
+ 2

27
+ . . . ; (b) 250− 100 + 40− 16 + . . . .

ii. Écrire les nombres suivants sous forme rationnelle.

(a) 10,5̄ ; (b) 0,071 .

Exercice 3.8

i. Soient les suites :

(a) (un), où un = 3n2 ; (b) (un), où un = 4n+5
2n+2

; (c) (un), où un = (−1)n 5n .

Pour chacune de ces suites, indiquer s’il s’agit d’une suite arithmétique, géométrique,
ou ni arithmétique, ni géométrique. Calculer ensuite la limite de chacune de ces
suites, à supposer qu’elle existe.

ii. Soit la suite (un) de terme général :

un =
n2 + 1

2n2 + 1
.

En utilisant la définition de la limite d’une suite, montrer que cette suite converge.
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Réponse 3.1

i. (a) u4 = 4, u9 = −11 et un = 16− 3n ; (b) u4 = 5,4 , u9 = 20,9 et un = −7 + 3,1n .

ii. (a) r = 4 ; (b) r = −5 .

Réponse 3.2

(a) u15 = 31 .

(b) u10 = 25 .

Réponse 3.3

i. (a)
12∑

k=0

(7− 4 k) = −221 ; (b)
10∑

n=0

(
1

4
n+ 3

)

=
187

4
.

ii. Il y a 60 entiers divisibles par 6 entre 32 et 395. Leur somme vaut 12 780.

Réponse 3.4

i. (a) u4 = 2, u9 = − 2

243
, un =

162

(−3)n
; (b) u4 =

x4

81
, u9 = − x9

19 683
, un =

(

−x
3

)n

.

ii. (a) q = 3 ; (b) q = −1

4
.

Réponse 3.5

(a) q = 3
√
3 et u10 = 36 .

(b) q peut valoir 1
2
ou −1

2
.

Réponse 3.6

i. (a)
7∑

k=1

2k ; (b)
3∑

k=0

1

4

(

−1

3

)k

.

ii. (a)

9∑

k=0

3k = 29 524 ; (b)

7∑

n=0

2−n =
255

128
.
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Réponse 3.7

i. (a)
∞∑

n=0

2

3n
= 3 ; (b)

∞∑

n=0

250

(

−2

5

)n

=
1250

7
.

ii. (a) 10,5̄ =
95

9
; (b) 0,071 =

71

990
.

Réponse 3.8

i. (a) (un) n’est ni arithmétique, ni géométrique ; lim
n→∞

un = ∞.

(b) (un) n’est ni arithmétique, ni géométrique ; lim
n→∞

un = 2.

(c) (un) est géométrique ; lim
n→∞

un n’existe pas.

ii. lim
n→∞

un =
1

2
.
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Critères de convergence relatifs aux séries numériques

Relation entre deux grandeurs réelles

Exercice 4.1
Soient les séries numériques suivantes :

(a)

∞∑

n=0

23n

32n
; (b)

∞∑

n=0

n3

5n
;

(c)
∞∑

n=0

n

n+ 1
; (d)

∞∑

n=0

2n√
2n+ 1

.

Dans chacun des cas, déterminer si la série converge ou non. Justifier la réponse par des
calculs appropriés.

Exercice 4.2
Dans les séries numériques suivantes, a est un nombre réel.

(a)

∞∑

n=0

(−1)n
a2n+1

2n+ 1
; (b)

∞∑

n=0

n

(2 a)n
.

Dans chacun des cas, utiliser le critère du quotient (i.e. de d’Alembert) ou le critère de
la racine afin de déterminer les valeurs de a pour lesquelles la série donnée converge.

Exercice 4.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Dans chacun des cas suivants, déterminer la figure dans R2 correspondant à l’expression
donnée.

(a) y + 2 > 0 ; (b) 4 x2 + y = 0 ;

(c) x2 + 4 y2 < 4 ; (d) x2 − 4 x+ y2 + 6 y = −14 .

Exercice 4.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Montrer qu’une droite de pente m et passant par le point A(x0; y0) peut être décrite
par l’équation y = m (x− x0) + y0. Pour rappel, la pente d’une droite est égale au
rapport ∆y

∆x
, où ∆y est la variation de la grandeur y lorsque la grandeur x varie

de ∆x.

(b) Prouver qu’une droite passant par les points A(x0; y0) et B(x1; y1) peut être décrite
par l’équation y = y1−y0

x1−x0
(x− x0) + y0.

(c) À l’aide d’une représentation graphique et d’un raisonnement, démontrer qu’un
cercle de rayon r et de centre C(x0; y0) peut être décrit par l’équation suivante :
(x− x0)

2 + (y − y0)
2 = r2.
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Exercice 4.5
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit C ⊂ R2 la courbe donnée par les équations paramétriques :

{

x = 4 t2 − 5

y = 2 t+ 3
.

Déterminer l’équation cartésienne de C ; esquisser ensuite C.

Exercice 4.6
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Dans les cas suivants, déterminer l’équation polaire de la courbe C ⊂ R2 décrite par
l’équation cartésienne donnée.

(a) y = 4 ; (b) (x− 1)2 + y2 − 1 = 0 ; (c) y = 8− x2 .

Exercice 4.7
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Dans les cas suivants, déterminer l’équation cartésienne de la courbe C ⊂ R2 décrite par
l’équation polaire donnée.

(a) r sin(θ) = −2 ; (b) r2
(
cos2(θ) + 4 sin2(θ)

)
= 16 ; (c) r

(
sin(θ) + r cos2(θ)

)
= 1 .

Exercice 4.8
Soit le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Montrer que la courbe donnée par l’équation polaire r = a cos(θ) + b sin(θ), où a et b
sont deux nombres réels non nuls, est un cercle. Déterminer son centre et son rayon.

Exercice 4.9
On considère une barre métallique de longueur u0 = ℓ. On la coupe en deux parties
égales. Appelons u1 la longueur de la première partie. On prend la deuxième partie et
on la coupe à son tour en deux parties égales. Appelons u2 la longueur d’une de ces
nouvelles parties. On prend l’autre de ces nouvelles parties et on la coupe à nouveau en
deux parties égales. On procède ainsi de suite, de sorte à obtenir les termes u3, u4, . . . ,
jusqu’à l’infini.

(a) Exprimer le terme général un de la suite.

(b) Montrer que (un) est une suite géométrique.

(c) Déterminer la valeur de la somme
∑∞

n=1 un sans avoir recours à la formule de somma-
tion infinie d’une suite géométrique. Expliciter le raisonnement menant au résultat.
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Réponse 4.1

(a) La série converge. (b) La série converge.

(c) La série diverge. (d) La série diverge.

Réponse 4.2

(a) Le critère du quotient ou le critère de la racine permet de conclure qu’il y a conver-
gence si −1 < a < 1.

(b) Le critère du quotient ou le critère de la racine permet de conclure qu’il y a conver-
gence si a < −1

2
ou si a > 1

2
.

Réponse 4.3

(a) Partie du plan euclidien qui se trouve au-dessus de la droite d’équation y = −2.

(b) Parabole concave (malheureuse), de sommet O(0; 0).

(c) Intérieur d’une ellipse centrée en O(0; 0), dont les axes de symétrie sont confondus
avec les axes Ox et Oy, et dont le demi-grand axe vaut 2 et le demi-petit axe 1.

(d) Ensemble vide.

Réponse 4.5
(y − 3)2 = x+ 5 .

Réponse 4.6

(a) r =
4

sin(θ)
; (b) r

(
r − 2 cos(θ)

)
= 0 ; (c) r2 cos2(θ) + r sin(θ)− 8 = 0 .

Réponse 4.7

(a) y = −2 ; (b) x2 + 4 y2 = 16 ; (c) y = 1− x2 .

Réponse 4.9

(a) un =
ℓ

2n
.
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Caractéristiques d’une fonction réelle

Exercice 5.1

(a) Soit f la fonction réelle de la variable réelle x donnée par f(x) =
x− 1

x+ 1
.

• Calculer f(0), f(1), f
(
− 1

2

)
, f(2) et f(−2).

• Montrer que f
(
1
x

)
= −f(x) et que f

(
− 1

x

)
= − 1

f(x)
,

pour autant que x /∈ {−1 ; 0 ; 1}.
(b) Dans chacun des cas suivants, transformer l’expression donnée afin d’obtenir une

forme cartésienne explicite (i.e. une expression de la forme y = f(x)).

• x5 y − 4 x+ 2 = 0 ; • x =
2 + y

2− y
; • 4 x2 − 4 x y + y2 = 0 .

Exercice 5.2
Dans les cas suivants, déterminer le domaine de définition de la fonction f donnée par
y = f(x), où f(x) est l’expression donnée.

(a) y = x2 + 4 ; (b) y =
√
x2 + 4 ; (c) y =

√
x2 − 4 ;

(d) y =
x

x+ 3
; (e) y =

2 x

x2 − x− 2
; (f) y =

1√
9− x2

;

(g) y =
x2 − 1

x2 + 1
; (h) y =

√
x

2− x
; (i) y =

3 x

x3 + x
.

Exercice 5.3
Déterminer la parité de la fonction f donnée, dans les cas suivants (f est-elle paire,
impaire, ni paire ni impaire ?).

(a) f(x) = 5 x3 + 2 x ; (b) f(x) = |x| − 3 ; (c) f(x) =
(
8 x3 − 3 x2

)3
;

(d) f(x) =
√
3 x4 + 2 x2 − 5 ; (e) f(x) = x (x− 5) ; (f) f(x) = log

(
1 + x

1− x

)

;

(g) f(x) =
1

2
(ax + a−x) , (h) f(x) =

sin(x)

x
; (i) f(x) =

1

2
(ex − e−x) ,

où a ∈ R∗
+r{1} ; où e = 2,71828.....
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Exercice 5.4
Soient f1, f2, f3 et f4 quatre fonctions réelles, données respectivement par :

f1(x) = x− 1 , f2(x) =
1

x2 + 1
, f3(x) = x3 , f4(x) = x2 − 3 x+ 2 .

(a) Pour chaque i = 1, 2, 3, 4, préciser le domaine de définition Dfi de la fonction fi ;
esquisser ensuite le graphe de fi.

(b) Pour chaque i = 1, 2, 3, 4, indiquer si la fonction fi : Dfi → R est injective, surjective,
bijective, ou ni injective ni surjective.

(c) Pour chaque i = 1, 2, 3, 4, déterminer la parité de la fonction fi.

(d) Pour chaque i = 1, 2, 3, 4, déterminer les plus grands intervalles de départ Hi et
d’arrivée Ji pour lesquels la fonction fi : Hi → Ji est bijective.

Exercice 5.5
La figure ci-contre montre le graphe, dans le plan eu-
clidien R2, d’une fonction f définie dans l’intervalle
[0; 3]. Dessiner sur la même figure le graphe de la
fonction donnée par :

(a) y = f(x+ 3) ; (b) y = f(x− 3) ;

(c) y = f(x) + 3 ; (d) y = f(x)− 3 ;

(e) y = −2 f(x) ; (f) y = −1
2
f(x) ;

(g) y = f(2 x) ; (h) y = f
(
1
2
x
)
;

(i) y = −f(x+ 2)− 3 ; (j) y = f(x− 2) + 3 .

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8
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x

y

Exercice 5.6
Dessiner le graphe de la fonction f donnée par son expression ci-dessous à gauche. Même
question avec la fonction g donnée par son expression ci-dessous à droite :

f(x) =







x+ 2 si x 6 −1

x3 si |x| < 1

−x+ 3 si x > 1

; g(x) =







x2 − 1

x+ 1
si x 6= −1

2 si x = −1

.
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Réponse 5.1

(a) f(0) = −1 , f(1) = 0 , f
(
− 1

2

)
= −3 , f(2) = 1

3
et f(−2) = 3 .

(b) (a) y =
4 x− 2

x5
; (b) y =

2 (x− 1)

x+ 1
; (c) y = 2 x .

Réponse 5.2

(a) Df = R ; (b) Df = R ; (c) Df = ]−∞; −2] ∪ [2; ∞[ ;

(d) Df = Rr {−3} ; (e) Df = Rr {−1; 2} ; (f) Df = ]−3; 3[ ;

(g) Df = R ; (h) Df = [0; 2[ ; (i) Df = R∗ .

Réponse 5.3

(a) impaire ; (b) paire ; (c) ni paire ni impaire ;

(d) paire ; (e) ni paire ni impaire ; (f) impaire ;

(g) paire ; (h) paire ; (i) impaire.

Réponse 5.4

(a) Df1 = R, Df2 = R, Df3 = R, Df4 = R.

(b) f1 : R → R est bijective,
f2 : R → R n’est ni injective ni surjective,
f3 : R → R est bijective,
f4 : R → R n’est ni injective ni surjective.

(c) f1 n’est ni paire ni impaire, f2 est paire, f3 est impaire, f4 n’est ni paire ni impaire.

(d) f1 : R → R ,
f2 : R+ → ]0; 1] ou f2 : R− → ]0; 1] ,
f3 : R → R ,
f4 :

]
−∞ ; 3

2

]
→
[
− 1

4
; ∞

[
ou f4 :

[
3
2
; ∞

[
→
[
− 1

4
; ∞

[
.
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Réponse 5.5
La figure ci-contre montre le graphe de la fonc-
tion f (définie sur l’intervalle [0; 3] ), ainsi que le
graphe des fonctions données par :

(a) y = f(x+ 3) ; (b) y = f(x− 3) ;

(c) y = f(x) + 3 ; (d) y = f(x)− 3 ;

(e) y = −2 f(x) ; (f) y = −1
2
f(x) ;

(g) y = f(2 x) ; (h) y = f
(
1
2
x
)
;

(i) y = −f(x+ 2)− 3 ; (j) y = f(x− 2) + 3 .
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Opérations entre fonctions réelles

Exercice 6.1
Soient f et g deux fonctions réelles, données respectivement par :

f(x) =
2 x

x− 4
et g(x) =

x

x+ 5
.

Expliciter
(
f + g

)
(x),

(
f − g

)
(x),

(
fg
)
(x) ainsi que

(
f
g

)
(x). Donner ensuite le domaine

de définition de chacune de ces nouvelles fonctions.

Exercice 6.2

i. Soient f et g deux fonctions réelles, données respectivement par :

f(x) = x2 − 3 x , g(x) =
√
x+ 2 .

(a) Préciser le domaine de définition de chacune de ces fonctions.

(b) Expliciter
(
f ◦ g

)
(x) et donner le domaine de définition de f ◦ g.

(c) Expliciter
(
g ◦ f

)
(x) et donner le domaine de définition de g ◦ f .

ii. Répéter l’exercice avec les fonctions réelles f et g données par :

f(x) =
x

3 x+ 2
et g(x) =

2

x
.

Exercice 6.3

i. Soit la fonction réelle :

f : R −→ R

x 7−→ |2 x+ 4| − 1

(a) Déterminer le(s) plus grand(s) intervalle(s) de départ H dans le(s)quel(s) f est
injective.

(b) Trouver l’ensemble J ⊂ R qui est l’image par f de l’intervalle H obtenu au
point précédent ; autrement dit, trouver J = f(H).

(c) Écrire la fonction réciproque rf de f qui est compatible avec les ensembles H
et J . Tracer, dans le plan euclidien R2, un échantillon des graphes de f et de rf .

Indication : Dans le plan euclidien R2, le graphe de f peut être obtenu en prenant
le graphe de la fonction v : R → R donnée par v(x) = |x|, et en lui appliquant un
certain nombre de transformations géométriques...
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ii. Répéter l’exercice avec la fonction réelle :

f : R −→ R

x 7−→ −2 x2 + 8 x− 5

Indication : Il peut être utile d’écrire f(x) sous la forme f(x) = a (x − xS)
2 + yS,

où a, xS et yS sont des nombres réels à déterminer.

Exercice 6.4
Dans chacun des cas suivants, déterminer les plus grands intervalles de départ et d’arrivée
pour lesquels la fonction f donnée est bijective ; écrire ensuite la fonction réciproque rf
de f qui est compatible avec les intervalles obtenus.

(a) f(x) = x3 − 1 ; (b) f(x) =
1

x2 + 1
;

(c) f(x) =
√
1− x2 ; (d) f(x) = 2 sin(3 x) .

Exercice 6.5
Dans les cas suivants, écrire la fonction f sous la forme d’une composition de plusieurs
fonctions.

(a) f(x) =
1

(x− 3)4
; (b) f(x) =

√
x+ 4− 2√
x+ 4 + 2

.
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Réponse 6.1

•
(
f + g

)
(x) =

3 x (x+ 2)

(x− 4)(x+ 5)
, Df+g = Rr{−5; 4} ;

•
(
f − g

)
(x) =

x (x+ 14)

(x− 4)(x+ 5)
, Df−g = Rr{−5; 4} ;

•
(
fg
)
(x) =

2 x2

(x− 4)(x+ 5)
, Dfg = Rr{−5; 4} ;

•
(
f
g

)
(x) =

2 (x+ 5)

x− 4
, Df

g
= Rr{−5; 0; 4} .

Réponse 6.2

i. (a) Df = R et Dg = [−2; ∞[ ;

(b)
(
f ◦ g)(x) = x+ 2− 3

√
x+ 2 , Df◦g = [−2; ∞[ ;

(c)
(
g ◦ f)(x) =

√
x2 − 3 x+ 2 , Dg◦f = ]−∞; 1] ∪ [2; ∞[ .

ii. (a) Df = Rr
{
− 2

3

}
et Dg = R∗ ;

(b)
(
f ◦ g)(x) =

1

x+ 3
, Df◦g = Rr{−3; 0} ;

(c)
(
g ◦ f)(x) =

2 (3 x+ 2)

x
, Dg◦f = Rr

{
− 2

3
; 0
}
.

Réponse 6.3

i. (a) ]−∞; −2] ou [−2; ∞[ ;

(b) [−1; ∞[ ;

(c) rf(x) = −x + 5

2
ou rf(x) =

x− 3

2
.

ii. (a) ]−∞; 2] ou [2; ∞[ ;

(b) ]−∞; 3] ;

(c) rf(x) = 2−
√

3− x

2
ou rf(x) = 2 +

√

3− x

2
.
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Réponse 6.4

(a) rf : R → R avec rf(x) = 3
√
x+ 1 .

(b) rf : ]0; 1] → R− avec rf(x) = −
√

1− x

x

ou bien rf : ]0; 1] → R+ avec rf(x) =

√

1− x

x
.

(c) rf : [0; 1] → [−1; 0] avec rf(x) = −
√
1− x2

ou bien rf : [0; 1] → [0; 1] avec rf(x) =
√
1− x2 .

(d) Par exemple rf : [−2; 2] →
[
− π

6
; π

6

]
avec rf(x) = 1

3
Arcsin

(
x
2

)
.

Réponse 6.5
Par exemple :

(a) f = ℓ ◦ h ◦ g, avec : g(x) = x− 3, h(x) = x4 et ℓ(x) =
1

x
;

(b) f = ℓ ◦ h ◦ g, avec : g(x) = x+ 4, h(x) =
√
x et ℓ(x) =

x− 2

x+ 2
.
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Limite d’une fonction

Exercice 7.1
Calculer les limites suivantes, à supposer qu’elles existent.

(a) lim
x→−2

(3 x− 1) ; (b) lim
x→4

x ; (c) lim
x→100

7 ;

(d) lim
x→−1

π ; (e) lim
x→−1

x+ 4

2 x+ 1
; (f) lim

x→−3

(x+ 3)(x− 4)

(x+ 3)(x+ 1)
;

(g) lim
x→−2

x2 − 4

x− 2
; (h) lim

r→1

r2 − r

2 r2 + 5 r − 7
; (i) lim

k→4

k2 − 16√
k − 2

;

(j) lim
h→0

(x+ h)2 − x2

h
; (k) lim

∆x→−2

(∆x)3 + 8

∆x+ 2
; (l) lim

x→−2

x− 4

x2 − 2 x− 8
.

Exercice 7.2
Calculer les limites suivantes, à supposer qu’elles existent.

(a) lim
x→∞

5 x2 − 3 x+ 1

2 x2 + 4 x− 7
; (b) lim

x→−∞

4− 7 x

2 + 3 x
; (c) lim

x→−∞

2 x2 − 3

4 x3 + 5 x
;

(d) lim
x→∞

−x3 + 2 x

2 x2 − 3
; (e) lim

x→−∞

2− x2

x+ 3
; (f) lim

x→∞
3

√

x2 + 8

x (x+ 1)
;

(g) lim
x→−∞

4 x− 3√
x2 + 1

; (h) lim
x→∞

sin(x) .

Exercice 7.3
Soit f la fonction donnée par :

f(x) =
x− 1

x2 − 1
.

(a) Déterminer le domaine de définition Df de f .

(b) Déterminer la parité de f .

(c) À l’aide de la définition de la notion de limite d’une fonction (avec ε et δ), montrer
que :

• lim
x→0

f(x) = 1 , • lim
x→1

f(x) =
1

2
, • lim

x→−1
f(x) n’existe pas .

Quelles différences observe-t-on entre ces trois limites ?
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(d) Établir le tableau des signes de f .

(e) À l’aide de la définition de la notion de limite à l’infini, montrer que :

• lim
x→∞

f(x) = 0 , • lim
x→−∞

f(x) = 0 .

(f) Donner l’équation des asymptotes verticale(s) et horizontale(s) de f .

Exercice 7.4
Calculer les limites suivantes, à supposer qu’elles existent.

(a) lim
x→

√
2
(x2 + 3)(x− 4) ; (b) lim

x→ 1
2

2 x2 + 5 x− 3

6 x2 − 7 x+ 2
; (c) lim

x→2

x2 − x− 2

(x− 2)2
;

(d) lim
x→−2

x3 + 8

x4 − 16
; (e) lim

x→2

1
x
− 1

2

x− 2
; (f) lim

x→1

(
x2

x− 1
− 1

x− 1

)

;

(g) lim
x→16

2
√
x+ x

3
2

4
√
x+ 5

; (h) lim
x→9

x2 − 81

3−√
x

; (i) lim
x→3

3

√

2 + 5 x− 3 x3

x2 − 1
;

(j) lim
h→0

4−
√
16 + h

h
; (k) lim

x→1

x2 + x− 2

x5 − 1
; (l) lim

x→5
x>5

(√
x2 − 25 + 3

)
;

(m) lim
x→3
x>3

√

(x− 3)2

x− 3
; (n) lim

x→3
x<3

√

(x− 3)2

x− 3
; (o) lim

x→4
x<4

4
√
x2 − 16

x+ 4
.
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Réponse 7.1

(a) −7 ; (b) 4 ; (c) 7 ; (d) π ; (e) −3 ; (f) 7
2
;

(g) 0 ; (h) 1
9
; (i) 32 ; (j) 2 x ; (k) 12 ; (l) n’existe pas.

Réponse 7.2

(a) 5
2
; (b) −7

3
; (c) 0 ; (d) −∞ ; (e) +∞ ; (f) 1 ;

(g) −4 ; (h) n’existe pas.

Réponse 7.3

(a) Df = Rr{−1; 1} .
(b) f n’est ni paire, ni impaire.

(d) Tableau des signes de f :

x −1 1

f(x) − ‖ + ‖ +

(f) x = −1 est l’équation de l’unique asymptote verticale et y = 0 est l’équation de
l’asymptote horizontale.

Réponse 7.4

(a) 5 (
√
2− 4) ; (b) −7 ; (c) n’existe pas ; (d) −3

8
; (e) −1

4
;

(f) 2 ; (g) 72
7

; (h) −108 ; (i) −2 ; (j) −1
8
;

(k) 3
5
; (l) 3 ; (m) 1 ; (n) −1 ;

(o) n’existe pas dans R .





Série 8 – Notion de continuité 557

Notion de continuité

Exercice 8.1
Dans chacun des cas suivants, expliquer, à l’aide de la notion de limite, pourquoi la
fonction réelle f donnée n’est pas continue en x0.

(a) f(x) =
3

x+ 2
, x0 = −2 ; (b) f(x) =







x2 − 9

x− 3
si x 6= 3

4 si x = 3

, x0 = 3 ;

(c) f(x) =

{

1 si x 6= 5

0 si x = 5
, x0 = 5 ; (d) f(x) =

|x− 2|
x− 2

, x0 = 2 .

Exercice 8.2
Soit f la fonction donnée par :

f(x) =
x2

1− x
.

Déterminer les équations de toutes les asymptotes de f .

Exercice 8.3
À l’aide de la définition de la continuité (avec ε et δ), montrer que la fonction réelle f
donnée est continue en x0, dans chacun des cas suivants.

(a) f(x) =
1

x4
, x0 ∈ R∗

+ ; (b) f(x) = x cos(x) , x0 ∈ R ; (c) f(x) =
x

x2 + 1
, x0 ∈ R .

Exercice 8.4
Dans chacun des cas suivants, déterminer si la fonction réelle f donnée possède une
(ou plusieurs) discontinuité(s). Dans l’affirmative, préciser si la discontinuité est de type
trou, trou-saut, saut, fluctuant ou asymptotique.

(a) f(x) =

{

x2 − 1 si x < 1

4− x si x > 1
; (b) f(x) =

{

|x+ 3| si x 6= −3

0 si x = −3
;

(c) f(x) =







x2 + 1 si x < 1

1 si x = 1

x+ 1 si x > 1

.
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Exercice 8.5
Chacune des figures ci-dessous représente un échantillon du graphe d’une fonction f .

i. Pour chacune des fonctions f données, préciser si la ou les discontinuité(s) que
possède f sont de type trou, trou-saut, saut, fluctuant ou asymptotique.

ii. En lisant les graphes, déterminer (si elles existent) les limites suivantes :

lim
x→0
x<0

f(x) ; lim
x→0
x>0

f(x) ; lim
x→0

f(x) ; lim
x→2
x<2

f(x) ; lim
x→2
x>2

f(x) ; lim
x→2

f(x) .

(a)

x

y

0−1 1

−1

1

(b)

x

y

0−1 1

−1

1

(c)

x

y

0−1 1

−1

1

(d)

x

y

0−1 1

−1

1

(e)

x

y

0
−1 1

−1

1

(f)

x

y

0−1 1

−1

1
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Exercice 8.6
Dans chacun des cas suivants, indiquer si la fonction réelle f donnée peut être prolongée
par continuité en x0 ou non. Justifier la réponse.

(a) f(x) =
x2 − x− 6

x3 + 8
, x0 = −2 ; (b) f(x) =

x2 + 9

x+ 3
, x0 = −3 .
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Réponse 8.1

(a) lim
x→−2

f(x) n’existe pas ; (b) lim
x→3

f(x) = 6 6= 4 = f(3) ;

(c) lim
x→5

f(x) = 1 6= 0 = f(5) ; (d) lim
x→2

f(x) n’existe pas.

Réponse 8.2
La fonction f admet une unique asymptote verticale, d’équation x = 1, et une unique
asymptote oblique, à droite et à gauche, d’équation y = −x− 1 .

Réponse 8.4

(a) Type saut ; (b) pas de discontinuité ; (c) type trou-saut.

Réponse 8.6

(a) f peut être prolongée par continuité ;

(b) f ne peut pas être prolongée par continuité.
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Notion de dérivée

Exercice 9.1
Un point matériel se déplace le long d’un axe gradué z. Sur cet axe, sa position en
fonction du temps t peut être décrite par l’expression z(t) = 4ms−2 t2 + 3ms−1 t. La
position se mesure en mètres et le temps en secondes.

(a) Calculer la vitesse moyenne du point matériel dans les intervalles [1,00 s ; 1,20 s],
[1,00 s ; 1,10 s] et [1,00 s ; 1,01 s].

(b) Calculer la vitesse du point matériel à l’instant t1 = 1 s.

Exercice 9.2
Un aéronaute se trouve dans la nacelle de son ballon, à 50m au-dessus du sol. À un
instant donné, il lâche un sac de sable ; au même moment, il enclenche un chronomètre.
En bonne approximation, la hauteur du sac de sable h(t) en fonction du temps t indiqué
par le chronomètre, peut être décrite, entre l’instant du lâché et l’instant d’impact avec
le sol, par l’expression h(t) = 50m − 5m s−2 t2. La hauteur se mesure en mètres et le
temps en secondes.

(a) Déterminer la vitesse du sac à l’instant t1 = 1 s.

(b) Calculer la vitesse du sac juste avant son impact avec le sol.

Exercice 9.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soient aussi f la fonction donnée par f(x) = 5 x2−4 x et P

(
2; f(2)

)
un point du graphe

de f .

(a) Calculer la pente de la tangente au graphe de f en P
(
2; f(2)

)
.

(b) Déterminer l’équation de la tangente au graphe de f en P
(
2; f(2)

)
.

Exercice 9.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soient aussi f la fonction donnée par f(x) =

√
x et P (4; 2) un point du graphe de f .

(a) Calculer la pente de la tangente au graphe de f en P (4; 2).

(b) Déterminer l’équation de la tangente au graphe de f en P (4; 2).

(c) Dessiner la courbe et la tangente au point P .
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Exercice 9.5
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soient aussi f la fonction donnée par f(x) = 2 x − 4√

x
et P (4; 6) un point du graphe

de f . Déterminer l’équation de la normale à la tangente au graphe de f en P , qui passe
par P .

Exercice 9.6
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

i. Soient f la fonction donnée par f(x) = −5 x2 + 8 x+ 2 et P (−1; −11) un point du
graphe de f .

(a) Calculer f ′(x).

(b) Déterminer le domaine de définition de f ′.

(c) Écrire l’équation de la tangente au graphe de f en P .

(d) En quel(s) éventuel(s) point(s) du graphe de f la tangente est-elle horizontale ?

ii. Mêmes questions pour la fonction g donnée par g(x) = 1
x3 et le point Q

(
2; 1

8

)
.

Exercice 9.7
Dans les cas suivants, calculer la dérivée f ′ de la fonction f donnée ; déterminer ensuite
le domaine de définition Df ′ de f ′.

(a) f(x) =
5

1 + x2
; (b) f(x) = 3 x2 − 2

√
x .
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Réponse 9.1

(a) Vitesses moyennes : 11,8m s−1 ; 11,4m s−1 ; 11,04m s−1 .

(b) Vitesse instantanée : 11m s−1 .

Réponse 9.2

(a) −10m s−1 . (b) −10
√
10 m s−1 .

Réponse 9.3

(a) m = 16 . (b) y = 16 x− 20 .

Réponse 9.4

(a) m = 1
4
. (b) y = 1

4
x+ 1 .

Réponse 9.5

y = −4
9
x+ 70

9
.

Réponse 9.6

i. (a) f ′(x) = −10 x+ 8 ; (b) Df ′ = R ; (c) y = 18 x+ 7 ; (d)
(
4
5
; 26

5

)
.

ii. (a) g′(x) = − 3
x4 ; (b) Dg′ = R∗ ; (c) y = − 3

16
x+ 1

2
; (d) Aucun.

Réponse 9.7

(a) f ′(x) = − 10 x
(
1 + x2

)2 , Df ′ = R ; (b) f ′(x) = 6 x− 1√
x
, Df ′ = R∗

+ .
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Dérivées des fonctions puissances rationnelles

Exercice 10.1
Dans chacun des cas suivants, esquisser le graphe de la dérivée f ′ à partir du graphe de
la fonction f . Indiquer les points où f n’est pas dérivable. Note : dans la figure de droite,

la partie courbée est un morceau de parabole.

(a)

x

y

−1 0 1

1

(b)

x

y

−1 0 1

1

Exercice 10.2
Dans chacun des cas suivants, calculer l’expression de la dérivée f ′ de la fonction f
donnée.

(a) f(x) = 4 x6 − 3 x4 + 12 ; (b) f(x) = (2 x2 − 4 x+ 1)(6 x− 5) ;

(c) f(ν) = ν3 (−2 ν3 + ν − 3) ; (d) f(x) = (x5 − 2 x3)(7 x2 + x− 8) ;

(e) f(z) =
8 z2 − 6 z + 11

z − 1
; (f) g(x) =

2 x

x3 − 7
;

(g) f(x) =
8 x+ 15

x2 − 2 x+ 3
; (h) p(x) = 1 +

1

x
+

1

x2
+

1

x3
;

(i) k(z) =
6

z2 + z − 1
; (j) f(s) = (3 s)4 ;

(k) f(x) = (3 x+ 1)−2 ; (l) f(x) =
4
x2

3
x
+ 2

;

(m) f(x) = 8 x
3
2 ; (n) f(t) = t4 − 4

√
t3 ;

(o) f(x) =

√
x

2 x2 − 4 x+ 8
; (p) f(x) = x

2
3 (3 x2 − 2 x+ 5) .



566 Exercices

Exercice 10.3
Dans chacun des cas suivants, déterminer le domaine dans lequel la fonction réelle f
donnée est continue ; déterminer également le domaine dans lequel la fonction dérivée f ′

de f est définie (autrement dit, donner le domaine de définition de f ′).

(a) f(x) =

{

2 x si x 6 0

x2 si x > 0
(b) f(x) =

{

−x2 si x < −1

2 x+ 3 si x > −1

Exercice 10.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi C1 ⊂ R2 la parabole d’équation y = f(x), où f une fonction quadratique, i.e.
une fonction polynomiale du second degré. Il est supposé que la parabole passe par le
point A(1; 4) et que son sommet se trouve en S(−2; 5).

(a) Déterminer l’expression de la fonction f .

(b) Soit C2 ⊂ R2 la courbe d’équation y = g(x), où g est la fonction donnée par g(x) =
λ x2 + x, λ étant un paramètre réel. Calculer la ou les valeur(s) de λ pour laquelle
ou lesquelles les courbes C1 et C2 sont tangentes.

Exercice 10.5
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi C1 ⊂ R2 la parabole d’équation y = f(x), où f une fonction quadratique.
Soit encore C2 ⊂ R2 la droite d’équation y = g(x), où g est une fonction affine, i.e. une
fonction de la forme g(x) = mx+h, où m et h sont des paramètres réels. Il est supposé
que la parabole C1 a pour sommet le point S

(
5
2
; 5

4

)
, que la pente de C2 vaut −2, et

que C1 et C2 se coupent au point A(3; 1).

(a) Faire une esquisse de la situation.

(b) Déterminer les expressions des fonctions f et g.

(c) Calculer (en degrés) l’angle aigu sous lequel le graphe de f et la graphe de g se
coupent.

Exercice 10.6
Dans chacun des cas suivants, déterminer le(s) point(s) de l’axe x où la fonction réelle f
n’est pas dérivable. Pour chaque point identifié, indiquer la raison de la non-dérivabilité
de f .

(a) f(x) =
√
x2 ; (b) f(x) = (x− 3)

3
√
x2 .
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Réponses 10.2

(a) f ′(x) = 24 x5 − 12 x3 ; (b) f ′(x) = 36 x2 − 68 x+ 26 ;

(c) f ′(ν) = −12 ν5 + 4 ν3 − 9 ν2 ; (d) f ′(x) = 49 x6 + 6 x5 − 110 x4 − 8 x3 + 48 x2 ;

(e) f ′(z) =
8 z2 − 16 z − 5

(z − 1)2
; (f) g′(x) = −4 x3 + 14

(x3 − 7)2
;

(g) f ′(x) =
−8 x2 − 30 x+ 54

(x2 − 2 x+ 3)2
; (h) p′(x) = −x

2 + 2 x+ 3

x4
;

(i) k′(z) = − 6 (2 z + 1)

(z2 + z − 1)2
; (j) f ′(s) = 324 s3 ;

(k) f ′(x) = − 6

(3 x+ 1)3
; (l) f ′(x) = − 16 x+ 12

x2 (2 x+ 3)2
;

(m) f ′(x) = 12
√
x ; (n) f ′(t) = 4 t3 − 3

4 4
√
t
;

(o) f ′(x) =
−3 x2 + 2 x+ 4√
x (2 x2 − 4 x+ 8)2

; (p) f ′(x) =
2 (12 x2 − 5 x+ 5)

3 3
√
x

.

Réponse 10.3

(a) La fonction f est continue dans tout R ; la dérivée f ′ est définie dans R∗.

(b) La fonction f est continue dans Rr{−1} ; la dérivée f ′ est définie dans Rr{−1} .

Réponse 10.4

(a) f(x) = −x2

9
− 4x

9
+ 41

9
; (b) λ = − 37

164
.

Réponse 10.5

(b) f(x) = −x2 + 5 x− 5 et g(x) = −2 x+ 7 .

(c) θ ≈ 18,4◦ ≈ 18◦ .

Réponse 10.6

(a) La dérivée de f n’est pas définie en x = 0.

(b) La dérivée de f n’est pas définie en x = 0.
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Dérivées des fonctions trigonométriques

Exercice 11.1
Dans chacun des cas suivants, déterminer l’expression de la dérivée f ′ de la fonction f
donnée.

(a) f(x) = 7 tg(x) ; (b) f(x) = 3 x sin(x) ; (c) f(x) = x2 + x sin(x) ;

(d) f(x) =
1− cos(x)

x
; (e) f(x) = x2 sec(x) ; (f) f(t) = 3 t2 sec(t)− t3 tg(t) ;

(g) f(θ) =
cos(θ)

1− sin(θ)
; (h) f(x) =

1

cos(x) ctg(x)
; (i) f(ξ) =

(
sin(ξ) + cos(ξ)

)2
;

(j) f(x) = csc(x) sin(x) ; (k) f(ϕ) =
1 + sec(ϕ)

1− sec(ϕ)
; (l) f(x) = sin(x) sec(x) .

Exercice 11.2
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi f la fonction réelle donnée par f(x) = sec(x). Déterminer les équations de la
tangente et de la normale au graphe de f au point P

(
π
4
; f(π

4
)
)
.

Exercice 11.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi f la fonction réelle donnée par f(x) = cos(x) + sin(x).

(a) Représenter le graphe de f dans la situation où x ∈ [0; 2 π]. Pour cela, il peut être
utile d’écrire f sous la forme f(x) = A sin(x+ ϕ), où A et ϕ sont des constantes à
déterminer.

(b) Déterminer les points P
(
x; f(x)

)
du graphe de f , dans la situation où x ∈ [0; 2 π],

où la tangente au graphe est horizontale.

(c) Même question que la précédente, sauf que l’intervalle dans lequel se situe x est R
dans son intégralité.

Exercice 11.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi f : R → R la fonction donnée par f(x) = 3 + 2 sin(x).

(a) Déterminer l’abscisse (i.e. la coordonnée x) de tous les points du graphe de f où la
tangente est parallèle à la droite d’équation y =

√
2x− 5.

(b) Écrire l’équation de la tangente au graphe de f au point d’abscisse π
6
.
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Exercice 11.5
Soit f la fonction réelle donnée par f(x) = cos(x).

(a) Calculer f ′(x), f ′′(x) = (f ′)′(x), f ′′′(x) = ((f ′)′)′(x), ainsi que f (4)(x) = (((f ′)′)′)′(x) .

(b) Calculer f (99)(x), où f (99) est la dérivée d’ordre 99 de f .
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Réponse 11.1

(a) f ′(x) = 7 sec2(x) ; (b) f ′(x) = 3 sin(x) + 3 x cos(x) ;

(c) f ′(x) = 2 x+ x cos(x) + sin(x) ; (d) f ′(x) =
x sin(x) + cos(x)− 1

x2
;

(e) f ′(x) = 2 x sec(x) + x2 sec(x) tg(x) ;

(f) f ′(t) = 6 t sec(t) + 3 t2 tg(t) sec(t)− 3 t2 tg(t)− t3 sec2(t) ;

(g) f ′(θ) =
1

1− sin(θ)
; (h) f ′(x) = sec(x) + 2 sec(x) tg2(x) ;

(i) f ′(ξ) = 2
(
cos2(ξ)− sin2(ξ)

)
= 2 cos(2 ξ) ; (j) f ′(x) = 0 ;

(k) f ′(ϕ) =
2 sin(ϕ)

(
cos(ϕ)− 1

)2 ; (l) f ′(x) = sec2(x) .

Réponse 11.2

Tangente : y =
√
2 x+

√
2
(
1− π

4

)
. Normale : y = − 1√

2
x+ 1√

2

(
2 + π

4

)
.

Réponse 11.3

(b) P1

(
π
4
;
√
2
)
et P2

(
5π
4
; −

√
2
)
.

(c) P1,k

(
π
4
+ 2 π k ;

√
2
)
et P2,k

(
5π
4
+ 2 π k ; −

√
2
)
, où k ∈ Z .

Réponse 11.4

(a)

{

x1,k = π
4
+ 2 π k , k ∈ Z

x2,k = −π
4
+ 2 π k , k ∈ Z

; (b) y − 4 =
√
3
(
x− π

6

)
.

Réponse 11.5

(a) f ′(x) = − sin(x), f ′′(x) = − cos(x), f ′′′(x) = f (3)(x) = sin(x) et f (4)(x) = cos(x) .

(b) f (99)(x) = sin(x) .
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Dérivées des fonctions logarithmes,

exponentielles et hyperboliques

Exercice 12.1

(a) Soit (un) la suite géométrique de terme général un = 2n, où n ∈ N ; soit aussi (vn)
la suite arithmétique de terme général vn = 2n, où n ∈ N. Trouver une fonction
continue f : R∗

+ → R qui transforme un en vn, pour tout n ∈ N.

(b) Même question que la précédente, dans le cas où un = 3 en et vn = 4n+1, où n ∈ N

et e = 2,71828.....

Exercice 12.2
Résoudre les équations et inéquation suivantes.

(a) 9x = 27 ; (b) ex = 16 ; (c) ln(x) = −1 ;

(d) ln(2 x− 1) = 3 ; (e) exp(3 x− 4) = 2 ; (f) 2x−5 = 3 ;

(g) ln(x) + ln(x− 1) = 1 ; (h) ln
(
ln(x)

)
= 1 ; (i) 2 ex + 1− 171 e−x = 0 ;

(j) ln(3− 2 x) + ln(2)− ln(2 x+ 3) = 0 ; (k) eax = c eb x, où a, b ∈ R, a 6= b, c ∈ R∗
+ ;

(l) 22x − 3 = 4 · 2−2x ; (m) 3 e2x−5 ex−1 = e2x+1 ; (n) ln
(
x (3− x)

)
6 ln(2) .

Exercice 12.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soient aussi f et g les deux fonctions réelles données par f(x) = 2 ln(x) et g(x) = cosh(x).

(a) Déterminer l’équation de la tangente au graphe de f au point P (1; 0).

(b) Déterminer les coordonnées du ou des point(s) du graphe de g où la tangente est
parallèle à la tangente au graphe de f en P .

Exercice 12.4
Dans chacun des cas suivants, esquisser le graphe de la fonction f donnée.

(a) f(x) = log(x+ 3)− 1 ; (b) f(x) = ln(−x) ; (c) f(x) = ln |x| ;

(d) f(x) = ex−3 − 2 ; (e) f(x) = −1
2
exp(−x) + 2 ; (f) f(x) = exp(x2) .
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Exercice 12.5
Dans chacun des cas suivants, déterminer l’expression de la dérivée f ′ de la fonction f
donnée.

(a) f(x) = ln(4 x3 − x2 + 2) ; (b) f(x) = ln(x4 + 1) ;

(c) f(x) = ln |4− 3 x| ; (d) f(x) = ln
(
|5 x2 − 1|3

)
;

(e) f(x) = ln
(
ln(x)

)
; (f) f(x) = ln(x3) +

(
ln(x)

)3
;

(g) f(x) = log(x4 + 3 x2 + 1) ; (h) f(x) = ln

√

4 + x2

4− x2
;

(i) f(x) = log3 |6 x− 7| ; (j) f(x) = exp(1− x3) ;

(k) f(x) = e3x ; (l) f(x) =
1

ex + 1
;

(m) f(x) = sinh(
√
x ) +

√

sinh(x) ; (n) f(x) =
x

cosh(x)
;

(o) f(x) = x exp(−x) ; (p) f(x) = xx ( = exp(x ln(x)) ) ;

(q) f(x) = ln(ex) ; (r) f(x) = ln
(
log(x)

)
;

(s) f(x) = xπ · πx ; (t) f(x) = ln
∣
∣sin(x)

∣
∣ ;

(u) f(x) = cosh
(
ln(2 x)

)
; (v) f(x) = ln

(
ctg(x2)

)
.
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Réponse 12.1

(a) f : R∗
+ → R, donnée par f(x) = 2 log2(x) .

(b) f : R∗
+ → R, donnée par f(x) = 4 ln(x) + 1− 4 ln(3) .

Réponse 12.2

(a) x = 3
2
; (b) x = ln(16) ; (c) x = 1

e
;

(d) x = 1
2
(e3 + 1) ; (e) x = 1

3

(
ln(2) + 4

)
; (f) x = ln(96)

ln(2)
;

(g) x = 1
2

(
1 +

√
1 + 4 e

)
; (h) x = ee ; (i) x = ln(9) ;

(j) x = 1
2
; (k) x = ln(c)

a−b
; (l) x = 1 ;

(m) x = ln
(

5+
√
37−4 e

2 (3−e)

)

; (n) x ∈ ]0; 1] ∪ [2; 3[ .

Réponse 12.3

(a) y = 2 x− 2 . (b) Q
(
ln
(
2 +

√
5
)
;
√
5
)
.
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Réponse 12.5

(a) f ′(x) =
12 x2 − 2 x

4 x3 − x2 + 2
; (b) f ′(x) =

4 x3

x4 + 1
;

(c) f ′(x) =
3

3 x− 4
; (d) f ′(x) =

30 x

5 x2 − 1
;

(e) f ′(x) =
1

x ln(x)
; (f) f ′(x) =

3

x

(

1 +
(
ln(x)

)2
)

;

(g) f ′(x) =
4 x3 + 6 x

(x4 + 3 x2 + 1) ln(10)
; (h) f ′(x) =

8 x

16− x4
;

(i) f ′(x) =
6

(6 x− 7) ln(3)
; (j) f ′(x) = −3 x2 exp(1− x3) ;

(k) f ′(x) = 3 e3x ; (l) f ′(x) = − ex

(ex + 1)2
;

(m) f ′(x) =
1

2

(
cosh

(√
x
)

√
x

+
cosh(x)
√

sinh(x)

)

; (n) f ′(x) =
cosh(x)− x sinh(x)

cosh2(x)
;

(o) f ′(x) = (1− x) exp(−x) ; (p) f ′(x) = xx
(
ln(x) + 1

)
;

(q) f ′(x) = 1 ; (r) f ′(x) =
1

x ln(x)
;

(s) f ′(x) = xπ−1 πx
(
π + x ln(π)

)
; (t) f ′(x) = ctg(x) ;

(u) f ′(x) =
sinh

(
ln(2 x)

)

x
; (v) f ′(x) = −2 x csc(x2) sec(x2) .
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Dérivation implicite

Exercice 13.1
Dans chacun des cas suivants, calculer dy

dx
en appliquant la technique de la dérivation

implicite.

(a) x2 − x y + y3 = 8 ; (b)
√
x+

√
y = 4 ;

(c) y5 + 3 x2 y2 + 5 x4 = 12 ; (d) cos(x− y) = x exp(x) ;

(e) x sin(y) + cos(2 y) = cos(y) ; (f) x y = ctg(x y) .

Exercice 13.2
En appliquant la technique de la dérivation implicite, déterminer la dérivée de la fonc-
tion f donnée par y = f(x), dans les cas suivants.

(a) y = f(x) = ex ; (b) y = f(x) = Arcsin(x) ; (c) y = f(x) = Argsinh(x) ;

(d) y = f(x) = Arctg(x) ; (e) y = f(x) = Arcctg(x) ; (f) y = f(x) = Argcosh(x) .

Exercice 13.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Déterminer l’équation de la tangente à la courbe d’équation y4+3 y−4 x3 = 5 x+1,
au point P (1; −2).

(b) Soit la courbe d’équation (y − 2)2 (x2 + y2) = 16 y2 ; une telle courbe est appelée
conchöıde de Nicomède. Déterminer l’équation de la tangente à cette courbe au point
P (

√
15 ; 1).

(c) Déterminer l’équation de la tangente à la courbe d’équation x2 y− y3 = 8, au point
P (−3; 1). Déterminer également l’équation de la normale à la tangente en P .

Exercice 13.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi C ⊂ R2 l’ellipse d’équation x2

a2
+ y2

b2
= 1. En se servant de la technique de la

dérivation implicite, montrer que l’équation de la tangente à C au point de coordonnées
(x0; y0) peut s’écrire

x0 x
a2

+ y0 y
b2

= 1.
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Exercice 13.5
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit aussi C ⊂ R2 la courbe d’équation y2 = 2 x+ 3.

(a) Soit f : D → E la fonction donnée par f(x) =
√
2 x+ 3 . Déterminer les plus grands

ensembles possibles D et E pour lesquels f est bijective.

(b) Donner le plus grand domaine rectangulaire A×B du plan R2 pour lequel le graphe
de f cöıncide avec C.

(c) Calculer la dérivée de f en utilisant la technique de la dérivation implicite.

(d) Calculer la dérivée de la fonction réciproque rf de f .

Exercice 13.6

(a) Soit f la fonction donnée par f(x) = 3√
4x

. Calculer f ′′(x).

(b) Soit f la fonction donnée par f(x) = −2 x4−x3+3 . Calculer f ′′′(x) ainsi que f (5)(x).
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Réponse 13.1

(a)
dy

dx
=

2 x− y

x− 3 y2
; (b)

dy

dx
= −

√
y

x
;

(c)
dy

dx
= −2 x (10 x2 + 3 y2)

y (6 x2 + 5 y3)
; (d)

dy

dx
=

(x+ 1) exp(x) + sin(x− y)

sin(x− y)
;

(e)
dy

dx
= − sin(y)

x cos(y) + sin(y)− 2 sin(2 y)
; (f)

dy

dx
= −y

x
.

Réponse 13.2

(a) y′ = ex ; (b) y′ =
1√

1− x2
; (c) y′ =

1√
x2 + 1

;

(d) y′ =
1

1 + x2
; (e) y′ = − 1

1 + x2
; (f) y′ =

1√
x2 − 1

.

Réponse 13.3

(a) Équation de la tangente : y = −17
29
x− 41

29
.

(b) Équation de la tangente : y =
√
15
31

x+ 16
31
.

(c) Équation de la tangente : y = x+ 4 ; équation de la normale : y = −x− 2 .

Réponse 13.5

(a) D =
[
− 3

2
; ∞

[
et E = R+ . (b)

[
− 3

2
; ∞

[
×
[
0 ; ∞

[
.

(c) f ′(x) =
1√

2 x+ 3
. (d) rf ′(x) = x .

Réponse 13.6

(a) f ′′(x) =
9

8
x−

5
2 =

9

8
√
x5

. (b) f ′′′(x) = −48 x− 6 et f (5)(x) = 0 .
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Tangentes à une courbe paramétrée

Approximations, calcul d’incertitudes

Exercice 14.1
Soit le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit C ⊂ R2 la courbe donnée par les équations paramétriques :

{

x(t) = t3 − 3 t

y(t) = t2 − 5 t− 1
, t ∈ R .

(a) Déterminer l’équation de la droite tangente à C au point P
(
x(2) ; y(2)

)
.

(b) En quelle(s) valeur(s) de t la tangente à C en
(
x(t); y(t)

)
est-elle horizontale ?

Exercice 14.2
Toute masse de gaz se caractérise essentiellement par sa pression p, sa température T et
le volume V qu’elle occupe.

(a) Si la température et la masse d’un gaz demeurent constantes, le produit de sa pres-
sion p et du volume V qu’il occupe demeure constant : p V = C, où C est une
constante. Une telle expression porte le nom de loi de Boyle-Mariotte.

À un instant donné, on mesure V = 1200 cm3 et p = 2400 kPa ; on relève aussi
que la pression diminue à la vitesse constante de 140 kPa par minute. Déterminer,
à l’instant en question, la vitesse à laquelle varie le volume.

(b) On appelle dilatation adiabatique d’un gaz toute variation de volume du gaz en
question qui s’effectue sans transfert de chaleur avec le milieu extérieur à celui du
gaz.

La dilatation adiabatique de l’air obéit à la loi p V 1,4 = C, où p est la pression
d’une masse d’air donnée, V le volume qu’elle occupe et C une constante. À un
instant donné, on mesure V = 400 cm3 et p = 80 kPa ; on relève aussi que la
pression décrôıt à une vitesse de 10 kPa/min. Calculer la vitesse à laquelle le volume
augmente à cet instant.

Exercice 14.3
On appelle lentille optique tout solide transparent délimité par deux surfaces, dont l’une
au moins est courbe, souvent de forme sphérique.
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Toute lentille est caractérisée par une grandeur f appelée distance focale. Les lentilles
pour lesquelles f > 0 sont dites convergentes ; les lentilles pour lesquelles f < 0 sont
dites divergentes.

Toute lentille produit, à partir d’un objet lumineux O placé devant la lentille, une
image I. Soient p et q les distances objet-lentille et lentille-image, respectivement. Si la
lentille est suffisamment mince, on peut montrer que p et q sont liées par l’expression
suivante, appelée loi des lentilles minces :

1

f
=

1

p
+

1

q
.

Considérons une lentille convergente de distance focale f = 200mm. Plaçons un objet
lumineux à une distance p > f de la lentille. Notons q la distance à laquelle l’image est
produite. À un instant donné, on mesure p = 250mm ; on relève aussi que p augmente à
la vitesse constante de 12mm/s. Déterminer alors la vitesse à laquelle varie la distance q
à cet instant.

Exercice 14.4
On tire un bateau vers les docks à l’aide d’une corde ; la corde est attachée à la proue
du bateau et passe par une poulie fixée au bord des docks, placée à 1,000m au-dessus
de la proue.

(a) Représenter la situation à l’aide d’un schéma.

(b) Si la corde est tirée à la vitesse constante de 1,000m s−1, calculer la vitesse du bateau
lorsqu’il est à 8,000m des docks.

Exercice 14.5
Soit f la fonction réelle donnée par f(x) =

√
x .

(a) Construire une fonction affine g qui soit proche de f au voisinage de x0 = 1 ;
autrement dit, construire une fonction g de la forme g(x) = mx+h (où m et h sont
des paramètres fixes) telle que g(x) soit proche de f(x) pour tout x « suffisamment »

proche de x0 = 1.

(b) Calculer la différence entre g et f en x = 2.

Exercice 14.6
Dans les cas suivants, donner une valeur approchée de f(x1) = f(x0 + ∆x), où x1 =
x0 +∆x, en effectuant une approximation linéaire.

(a) f(x) = −3 x3 + 8 x− 7 ; avec x0 = 4,00 et x1 = 3,96 .

(b) f(θ) = 2 sin(θ) + cos(θ) ; avec θ0 = 30◦ et θ1 = 27◦.

(c) f(α) = sec(α) ; avec α0 = 60◦ et α1 = 62◦.

(d) f(β) = tg(β) ; avec β0 = 30◦ et β1 = 28◦.
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Exercice 14.7

(a) Soit y = 3 x4 l’expression qui lie un grandeur y à une grandeur x. On suppose que
l’on a mesuré une valeur x0 = 2,00 avec une incertitude ∆x = 0,01. Calculer la valeur
y0 = 3 x0

4 ainsi que l’incertitude ∆y due à ∆x. Exprimer également l’incertitude
relative en pourcents.

(b) Même question dans le cas où y = 4
√
x+ 3 x, avec x0 = 4,0 et ∆x = 0,2 .

Exercice 14.8
La façade d’une maison a la forme d’un carré surmonté d’un triangle équilatéral. On
mesure la base et on obtient (15,000± 0,025)m. Avec cette information, calculer l’aire
de cette façade avec son incertitude.

Exercice 14.9
À une distance horizontale de 6,0m du pied d’un mât, on mesure l’angle d’élévation du
sommet du mât et on trouve 60◦00′ avec une incertitude de 15′. Avec cette information,
calculer la hauteur du mât et son incertitude.
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Réponse 14.1

(a) y = −1
9
x− 61

9
. (b) t = 5

2
.

Réponse 14.2

(a) dV
dt

≈ 70 cm3/min ≈ 1,2 · 10−6m3 s−1 .

(b) dV
dt

≈ 3,6 · 10−5m3/min ≈ 6,0 · 10−7m3 s−1 .

Réponse 14.3
dq
dt

≈ −192mm/s .

Réponse 14.4
vbateau ≈ 1,008m s−1 .

Réponse 14.5

(a) g(x) = 1
2
x+ 1

2
. (b) g(2)− f(2) = 3

2
−

√
2 ≈ 0,086 .

Réponse 14.6

(a) f(x1) ≈ −161,56 ≈ −162 . (b) f(x1) ≈ 1,802 ≈ 1,8 .

(c) f(x1) ≈ 2,121 ≈ 2,1 . (d) f(x1) ≈ 0,531 ≈ 0,53 .

Réponse 14.7

(a) ∆y = 0,96 et ∆y
y

= 0,02 = 2% .

(b) ∆y = 0,8 et ∆y
y

= 0,04 = 4% .

Réponse 14.8
A = (322,4± 1,1)m2 ≈ (322± 1)m2 .

Réponse 14.9
h = (10,4± 0,1)m .
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Théorèmes relatifs aux fonctions dérivables

Exercice 15.1

(a) Dans les deux cas suivants, montrer que la fonction f donnée satisfait les hypo-
thèses du théorème de Rolle dans l’intervalle fermé donné ; chercher ensuite le(s)
nombre(s) c dans l’intervalle en question, sauf sur ses bords, tel(s) que f ′(c) = 0.

• f(x) = 3 x2 − 12 x+ 11 dans l’intervalle [0; 4] ;

• f(x) = cos(2 x) + 2 cos(x) dans l’intervalle [0; 2 π] .

(b) Dans les deux cas suivants, analyser si la fonction f donnée satisfait les hypothèses
du théorème de Lagrange dans l’intervalle fermé donné ; si tel est le cas, chercher tous
les nombres c dans l’intervalle en question, sauf sur ses bords, tels que f(b)−f(a) =
f ′(c) (b− a).

• f(x) = x+3
x−2

dans l’intervalle [−2; 3] ;

• f(x) = sin(x) dans l’intervalle
[
0; π

2

]
.

(c) Soient [a; b] un intervalle fermé, où a et b sont deux nombres réels tels que a < b,
et f une fonction continue dans [a; b] et dérivable dans ]a; b[ . Supposons, en outre,
que la dérivée f ′ de f s’écrit f ′(x) = m pour tout x ∈ ]a; b[ , où m est un nombre
réel donné. Démontrer alors que f peut s’écrire sous la forme f(x) = mx+ h dans
]a; b[ , où h est un nombre réel fixe. Indication : appliquer le théorème de Lagrange à f

dans l’intervalle [a; x], où x ∈ ]a; b[ .

(d) Sur l’̂ıle de Saint-Kilda, aux large des Hébrides extérieures (archipel appartenant à
l’Écosse), la température peut parfois chuter de 20 ◦C à 2 ◦C en seulement 4 heures.
Montrer qu’il existe, dans cet intervalle de 4 heures, un instant où la vitesse de
variation dT

dt
de la température T dépasse −4 ◦C/heure.

Exercice 15.2
Soient f : D1 → R et g : D2 → R deux fonctions réelles, toutes les deux définies dans
un intervalle [a; ∞[ ⊂ D1 ∩ D2, où a est un nombre réel. Supposons que f et g sont
continues dans [a; ∞[ et dérivables dans ]a; ∞[ . Supposons, de plus, que g et g′ ne
s’annulent en aucun point de ]a; ∞[ , et que :

lim
x→∞

f(x) = 0 = lim
x→∞

g(x)

ou :
lim
x→∞

f(x) = ±∞ et lim
x→∞

g(x) = ±∞ .

Supposons, en outre, que la limite suivante existe :

lim
x→∞

f ′(x)

g′(x)
,
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i.e. supposons que cette limite vaut soit un nombre réel ℓ, soit ∞, soit encore −∞. À
l’aide de la règle de Bernoulli-L’Hôpital, montrer que :

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

Ce résultat établit que la règle de Bernoulli-L’Hôpital s’applique également dans le cas
de limites à l’infini (le cas d’une limite à −∞ se prouvant de manière similaire à celui
d’une limite à ∞).

Exercice 15.3
Calculer les limites suivantes :

(a) lim
x→0

sin(x)

2 x
; (b) lim

x→2

2 x2 − 5 x+ 2

5 x2 − 7 x− 6
; (c) lim

x→0

x− sin(x)

x3
;

(d) lim
x→π

2

x<π
2

2 + sec(x)

3 tg(x)
; (e) lim

x→0

x cos(x) + exp(−x)
x2

; (f) lim
x→∞

x ln(x)

x+ ln(x)
;

(g) lim
x→0

Arcsin(3 x)

Arcsin(x)
; (h) lim

x→−∞

3− 3x

5− 5x
; (i) lim

x→∞

x− cos(x)

x
.

Exercice 15.4

(a) Prouver que limx→∞
exp(x)
xn = ∞ quel que soit n ∈ Z. Ce résultat montre que l’expo-

nentielle gagne l’infini plus vite que n’importe quelle puissance de x.

(b) Prouver que limx→∞
ln(x)
xp = 0 quel que soit p > 0 réel. Ce résultat montre que le

logarithme gagne l’infini moins vite que n’importe quelle puissance positive de x.

Exercice 15.5
Calculer les limites suivantes :

(a) lim
x→0
x>0

x ln(x) ; (b) lim
x→∞

(x2 − 1) e−x2

; (c) lim
x→0
x>0

(
sin(x) ln(sin(x))

)
;

(d) lim
x→∞

x sin

(
1

x

)

; (e) lim
x→∞

(

1 +
1

x

)5x

; (f) lim
x→0
x>0

(ex − 1)x ;

(g) lim
x→π

2

x<π
2

(
tg(x)

)x
; (h) lim

x→∞

(
x2

x− 1
− x2

x+ 1

)

; (i) lim
x→0
x<0

(
1

x
− 1

sin(x)

)

;

(j) lim
x→1
x<1

(1− x)ln(x) ; (k) lim
x→0

(
ctg2(x)− exp(−x)

)
; (l) lim

x→π
2

x<π
2

(
1 + cos(x)

)tg(x)
.
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Note : les expressions du type « 0 · ∞ » deviennent «
0
0

» ou «
∞
∞ » en posant :

f g =
f
1
g

ou f g =
g
1
f

.

Aussi, si y = f(x)g(x), il peut être utile d’écrire y sous la forme y = exp
(
ln(y)

)
.

Exercice 15.6

∼
U

CL

Un condensateur de capacité C (où C > 0 est un paramètre
réel) et une bobine de coefficient d’auto-induction L (où L > 0
est également un paramètre réel) sont branchés en série à une
source qui délivre une tension alternative U(t) = U0 sin(ω t),
où U0 > 0 et ω > 0 sont deux paramètres réels.

SoientQ la charge portée par l’une des armatures du conden-
sateur, et I l’intensité du courant dans le circuit. Il peut être montré que, dans le cas
où :

• Q à l’instant t = 0 vaut Q0 (où Q0 est une valeur strictement positive),

• I à l’instant t = 0 vaut 0,

• ω2 6= 1
LC

,

la charge Q en fonction du temps t est donnée par l’expression (cf. exercice 28.8) :

Q(t) = Q0 cos

(
1√
LC

t

)

− C U0 ω
√
LC

1− LC ω2
sin

(
1√
LC

t

)

+
C U0

1− LC ω2
sin(ω t)

ou, de manière équivalente (et en notant Qω(t) à la place de Q(t)) :

Qω(t) = Q0 cos

(
1√
LC

t

)

− C U0

1− LC ω2

[

ω
√
LC sin

(
1√
LC

t

)

− sin(ω t)

]

.

À l’aide de la règle de Bernoulli-L’Hôpital, prouver que :

lim
ω→ 1√

LC

Qω(t) =

(

Q0 −
C U0

2
√
LC

t

)

cos

(
1√
LC

t

)

+
C U0

2
sin

(
1√
LC

t

)

.

Note : Cette limite n’est rien d’autre que l’expression de la charge Q portée par l’une
des armatures du condensateur, dans la situation où ω = 1√

LC
(cf. exercice 24.8).
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Réponse 15.1

(a) • c = 2 .

• c ∈
{

2π
3
; π ; 4π

3

}
.

(b) • Hypothèses non satisfaites.

• c = Arccos
(
2
π

)
.

Réponse 15.3

(a) 1
2
; (b) 3

13
; (c) 1

6
;

(d) 1
3
; (e) ∞ ; (f) ∞ ;

(g) 3 ; (h) 3
5
; (i) 1 .

Réponse 15.5

(a) 0 ; (b) 0 ; (c) 0 ;

(d) 1 ; (e) e5 ; (f) 1 ;

(g) ∞ ; (h) 2 ; (i) 0 ;

(j) 1 ; (k) ∞ ; (l) e .
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Concept d’intégrale

Exercice 16.1
En mathématiques, la démonstration par récurrence est un type de raisonnement utilisé
pour prouver la véracité d’une formule Fn dépendant d’un nombre naturel n arbitraire ;
le schéma d’une telle démonstration est le suivant :

• on vérifie que la formule Fn est correcte dans le cas où n = 0 (on peut aussi la
vérifier dans le cas où n = 1, n = 2, etc. si l’on en ressent le besoin ; mais ce n’est
pas une nécessité) ;

• on démontre que la formule Fn est correcte dans le cas où n = k+1, en faisant la
supposition qu’elle l’est dans le cas où n = k ; une telle supposition est appelée
hypothèse de récurrence.

En prouvant ces deux points, on montre que la formule est correcte dans le cas n = 0,
puis dans le cas n = 0 + 1 = 1, puis dans le cas n = 1 + 1 = 2 et ainsi de suite. On
montre ainsi que la formule est vraie pour tout n ∈ N.

Noter que la démonstration par récurrence permet uniquement de démontrer des
formules existentes, non de les établir.

(a) Démontrer par récurrence la formule suivante :
m∑

k=0

k2 =
m (m+ 1)(2m+ 1)

6
,

où :
m∑

k=0

k2 = 02 + 12 + 22 + . . .+m2 .

(b) Démontrer par récurrence la formule de sommation des N+1 premiers termes d’une
suite arithmétique (un) de raison r, dont le terme général un s’écrit, rappelons-le,
un = u0 + n r, u0 étant le zéroième terme de la suite :

N∑

n=0

un =
N + 1

2
(2 u0 +N r) ,

où :
N∑

n=0

un = u0 + u1 + u2 + . . .+ uN =

N∑

n=0

(u0 + n r) .



590 Exercices

Exercice 16.2
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soit f la fonction donnée par f(x) = x2.

x

y

b0

On aimerait calculer l’aire A de la surface délimitée par
l’axe Ox (d’équation y = 0), la droite verticale d’équation x = b
et le graphe de f . Pour cela, on décompose l’intervalle [0 ; b] en n
sous-intervalles de longueurs égales et valant b

n
. Dans une telle dé-

composition, le kème sous-intervalle est délimité par l’élément xk−1

à gauche et par l’élément xk à droite, où :

xk−1 =
(k − 1) b

n
et xk =

k b

n
.

L’ensemble rσn = (x0; x1; . . . ; xn) porte le nom de subdivision régulière d’ordre n de
l’intervalle [0; b].

(a) Calculer l’aire Ak du rectangle Rk ayant pour base inférieure le segment de l’axe x
délimité par xk−1 et xk, et dont la hauteur est égale à f(xk−1). En déduire l’aire
suivante :

S
rσn =

n∑

k=1

Ak .

Comme Rk a une hauteur égale à f(xk−1), sa base supérieure
se trouve complètement en dessous du graphe de f (raison
pour laquelle il est souvent appelé rectangle inférieur). De fait,
l’aire S

rσn , qui est la somme des aires des rectangles Rk, n’est
pas égale mais est inférieure à A. Cette somme est appelée
somme de Darboux inférieure de f , associée à la subdivision rσn.

x

y

b0

(b) Calculer l’aire Ak du rectangle Rk ayant pour base inférieure le segment de l’axe x
délimité par xk−1 et xk, et dont la hauteur est égale à f(xk). En déduire l’aire
suivante :

Srσn =

n∑

k=1

Ak .

Comme Rk a une hauteur égale à f(xk), sa base supérieure se
trouve complètement au-dessus du graphe de f (raison pour
laquelle il est souvent appelé rectangle supérieur). De fait,
l’aire Srσn , qui est la somme des aires des rectangles Rk, n’est pas
égale mais est supérieure à A. Cette somme est appelée somme
de Darboux supérieure de f , associée à la subdivision rσn. x

y

b0

(c) Calculer :

lim
n→∞

Sn ainsi que : lim
n→∞

Sn .

Que constate-t-on ? Que vaut finalement l’aire A ?
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Exercice 16.3
Prouver les égalités suivantes :

(a)

∫

xa dx =
xa+1

a+ 1
+ C , a ∈ Rr{−1} ; (b)

∫
1

x
dx = ln |x|+ C ;

(c)

∫

sin(x) dx = − cos(x) + C ; (d)

∫

cos(x) dx = sin(x) + C ;

(e)

∫
1

cos2(x)
dx = tg(x) + C ; (f)

∫
1

sin2(x)
dx = − ctg(x) + C ;

(g)

∫

tg(x) dx = − ln
∣
∣cos(x)

∣
∣+ C ; (h)

∫

ctg(x) dx = ln
∣
∣sin(x)

∣
∣+ C ;

(i)

∫

exp(x) dx = exp(x) + C ; (j)

∫

ax dx =
ax

ln(a)
+ C , a ∈ R∗

+r{1} ;

(k)

∫
1

1 + x2
dx = Arctg(x) + C ; (l)

∫
1

a2 + x2
dx =

1

a
Arctg

(x

a

)

+ C ;

(m)

∫
1

a2 − x2
dx =

1

2 a
ln

∣
∣
∣
∣

a + x

a− x

∣
∣
∣
∣
+ C ; (n)

∫
1√

1− x2
dx = Arcsin(x) + C ;

(o)

∫
1√

a2 − x2
dx = Arcsin

(x

a

)

+ C ; (p)

∫
1√

x2 ± a2
dx = ln

∣
∣x+

√
x2 ± a2

∣
∣ + C .

Note : Dans les points (l), (m), (o) et (p), le nombre a est supposé être réel et strictement
positif.

Exercice 16.4
Expliciter les expressions suivantes :

(a)

∫

x5 dx ; (b)

∫
(
x+

√
x
)
dx ; (c)

∫ (
3√
x
− x

√
x

4

)

dx ;

(d)

∫
x2√
x
dx ; (e)

∫
1
4
√
x
dx ; (f)

∫ (

x2 +
1
3
√
x

)2

dx .
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Réponse 16.2

(a) S
rσn =

2n2 − 3n+ 1

6n2
b3 ; (b) Srσn =

2n2 + 3n+ 1

6n2
b3 ; (c) A =

1

3
b3 .

Réponse 16.4

(a)
1

6
x6 + C ; (b)

1

2
x2 +

2
√
x3

3
+ C ; (c) 6

√
x−

√
x5

10
+ C ;

(d)
2
√
x5

5
+ C ; (e)

4
4
√
x3

3
+ C ; (f)

x5

5
+

3
3
√
x8

4
+ 3 3

√
x+ C .



Série 17 – Théorème fondamental du calcul intégral... 593

Théorème fondamental du calcul intégral

Méthode d’intégration par parties

Exercice 17.1
Calculer les intégrales suivantes :

(a)

∫ 1

0

x4 dx ; (b)

∫ 1

0

exp(x) dx ; (c)

∫ π
2

0

sin(x) dx ;

(d)

∫
√
2
2

0

1√
1− x2

dx ; (e)

∫ π
3

0

tg(x) dx ; (f)

∫ b

0

t2 dt .

Exercice 17.2
Expliciter l’ensemble des primitives dans chacun des cas suivants, en se servant de la
technique d’intégration par parties.

(a)

∫

ln(x) dx ; (b)

∫

x ln(x) dx ; (c)

∫

x sin(x) dx ;

(d)

∫

Arcsin(x) dx ; (e)

∫

ln(1− x) dx ; (f)

∫

xn ln(x) dx ;

(g)

∫

xArctg(x) dx ; (h)

∫

exp(a x) sin(b x) dx , (i)

∫

ln
(
x+

√
x2 + 1

)
dx .

où a, b ∈ R .

Exercice 17.3
Calculer les intégrales suivantes, en se servant de la technique d’intégration par parties.

(a)

∫ 0

−1

x
√
x+ 1 dx ; (b)

∫ π

0

(3 t2 − 4) cos(t) dt ;

(c)

∫ 2

0

(x− 2) e2x dx ; (d)

∫ 1

0

x (1− x)n dx .

Exercice 17.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Soient aussi f : R → R et g : R → R deux fonctions, données par f(x) = 2 x + 8 et
g(x) = x2. Trouver les coordonnées des points d’intersection des graphes de f et de g ;
calculer ensuite l’aire du domaine fini, dans R2, compris entre ces graphes.
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Exercice 17.5
Un météorologue estime que la température (en ◦C) d’une froide journée d’hiver peut
être modélisée par la fonction T du temps t, donnée par :

T (t) =
1 ◦C

36 h3
t (t− 12 h)(t− 24 h)− 18 ◦C ,

où t se mesure en heures ; t = 0h00 correspondant à minuit. À l’aide du théorème de la
valeur moyenne, calculer la température moyenne entre 6 h 00 (du matin) et 12 h 00.

Exercice 17.6
À la surface de la Terre, on place un axe z vertical et orienté vers le haut, et on fixe son
origine au niveau du sol. On lance une bille verticalement, vers le haut, depuis un point
dont la coordonnée selon z est z0 = 45,0m, avec une vitesse initiale v0 = 30,0m s−1.
L’accélération due à la pesanteur est supposée constante, verticale et orientée vers le
bas ; sa norme vaut g ≈ 9,8m s−2.

Soit z(t) la position de la bille à l’instant t. On appelle vitesse et accélération de la
bille (selon l’axe z) les grandeurs vz et az, respectivement, données par vz(t) = ż(t) =
dz
dt
(t) et az(t) = z̈(t) = d2z

dt2
(t) = dvz

dt
(t). Vu que l’accélération due à la pesanteur est

considérée comme constante, z̈(t) = −g, le signe négatif venant du fait que le vecteur
accélération est orienté vers le bas (i.e. contrairement à l’axe z).

(a) Procéder à une double intégration de la relation z̈ = −g afin d’obtenir une expression
de la position z de la pierre en fonction du temps t.

(b) Déterminer l’instant t1 où la pierre est au niveau du sol. Calculer sa vitesse v1 juste
avant qu’elle ne touche le sol.

Exercice 17.7
En mécanique des fluides, la loi de Poiseuille est une formule qui décrit l’écoulement
laminaire d’un fluide visqueux dans un tuyau cylindrique. Concrètement, elle donne le
débit volumique Q du fluide qui s’écoule dans le tuyau en question. Pour rappel, l’écou-
lement d’un fluide est dit laminaire si les particules qui constituent le fluide suivent
des lignes de courant qui ne se croisent pas. Quant au débit volumique, il est, par dé-
finition, le produit de la vitesse moyenne des particules du fluide par unité de surface
perpendiculaire.

Considérons un tuyau cylindrique de rayon R. Il peut être montré que la vitesse v
des particules qui constituent le fluide dépend de leur distance r par rapport au centre
du tuyau, selon l’expression :

v =
p1 − p2
4 η L

(R2 − r2) ,

où L est la longueur du tuyau en question, p1 − p2 la différence de pression entre ses
extrémités et η un coefficient, appelé viscosité dynamique du fluide. La vitesse v ne
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dépendant pas d’autre variable géométrique que r, elle est la même en tout point d’un
cercle de rayon r, centré sur l’axe du tuyau. Le débit de fluide dQ dans un anneau
centré sur l’axe du tuyau, et d’aire dA = 2 π r dr, où r est le rayon de l’anneau et dr
son épaisseur, est alors donné par :

dQ =
p1 − p2
4 η L

(R2 − r2) dA =
p1 − p2
4 η L

(R2 − r2) 2 π r dr .

Le débit total du fluide dans le tuyau s’obtient en sommant les débits dQ, i.e. en inté-
grant dQ entre r = 0 et r = R. Par un calcul concret, montrer que :

Q =

∫ R

0

p1 − p2
4 η L

(R2 − r2) 2 π r dr =
π (p1 − p2)R

4

8 η L
.

Ce résultat est ce que l’on appelle la formule de Poiseuille.
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Réponse 17.1

(a)
1

5
; (b) e− 1 ; (c) 1 ;

(d)
π

4
; (e) ln 2 ; (f)

b3

3
.

Réponse 17.2

(a) x
(
ln(x)− 1

)
+ C ; (b)

1

4
x2
(
2 ln(x)− 1

)
+ C ;

(c) sin(x)− x cos(x) + C ; (d) xArcsin(x) +
√
1− x2 + C ;

(e) (x− 1) ln(1− x)− x+ C ; (f)
xn+1

n+ 1
ln(x)− xn+1

(n+ 1)2
+ C ;

(g)
1

2

(
(x2 + 1)Arctg(x)− x

)
+ C ; (h)

exp(a x)

a2 + b2
(
a sin(b x)− b cos(b x)

)
+ C ;

(i) x ln
(
x+

√
x2 + 1

)
−

√
x2 + 1 + C .

Réponse 17.3

(a) − 4

15
; (b) −6 π ;

(c)
5− e4

4
; (d)

1

(n+ 1)(n+ 2)
.

Réponse 17.4
Points d’intersection : A(−2; 4) et B(4; 16) .
Aire : S = 36 .

Réponse 17.5
Tmoy = −7,5 ◦C .

Réponse 17.6

(a) x(t) = −1
2
g t2 + v0 t+ x0 , avec g ≈ 9,8m s−2, v0 = 30,0m s−1 et x0 = 45,0m .

(b) t1 ≈ 7,4 s . Aussi, v1 ≈ 42m s−1.
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Intégration par changement de variable

Exercice 18.1
Dans chacun des cas suivants, expliciter l’ensemble des primitives donné, en procédant
au besoin à un changement de variable.

(a)

∫

exp(5 x) dx ; (b)

∫

sin(a x) dx ; (c)

∫
ln(x)

x
dx ;

(d)

∫
1

cos2(7 x)
dx ; (e)

∫
1

3 x− 7
dx ; (f)

∫

tg(2 x) dx ;

(g)

∫

ctg(ex) ex dx ; (h)

∫

sin2(x) cos(x) dx ; (i)

∫
x√

2 x2 + 3
dx ;

(j)

∫
Arcsin(x)√

1− x2
dx ; (k)

∫
x+ 1

x2 + 2 x+ 3
dx ; (l)

∫
1

x ln(x)
dx .

Exercice 18.2
Dans chacun des cas suivants, calculer l’intégrale donnée, en procédant au besoin à un
changement de variable :

(a)

∫ π
4

0

tg3(x)

cos2(x)
dx ; (b)

∫ e

1

cos
(
ln(x)

)

x
dx ; (c)

∫ 0

−1

exp(x)

1 + exp(2 x)
dx ;

(d)

∫ 3
b

2
b

1√
b2 x2 − a2

dx ; (e)

∫ 1

0

x− Arctg(x)

1 + x2
dx ; (f)

∫ 2

1

ax
2

x dx ,

où a ∈ ]0; 2[ et b ∈ R∗
+ ; où a ∈ R∗

+r{1} .

Exercice 18.3
Dans chacun des cas suivants, expliciter l’ensemble des primitives donné :

(a)

∫
1

3 x2 − 2 x+ 4
dx ; (b)

∫
3 x− 2

5 x2 − 3 x+ 2
dx ;

(c)

∫
x+ 3√

4 x2 + 4 x+ 3
dx ; (d)

∫
x+ 3√

3 + 4 x− 4 x2
dx .
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Exercice 18.4
Dans chacun des cas suivants, expliciter l’ensemble des primitives donné.

(a)

∫

sin3(x) dx ; (b)

∫

sin5(x) dx ; (c)

∫

cos4(x) sin3(x) dx ;

(d)

∫

sin4(x) dx ; (e)

∫

tg3(x) dx ; (f)

∫

cos(4 x) cos(7 x) dx .

Exercice 18.5
Dans chacun des cas suivants, expliciter l’ensemble des primitives donné, en procédant
au besoin à une décomposition en éléments simples.

(a)

∫
2 x− 1

x2 − 3 x+ 2
dx ; (b)

∫
x5 + x4 − 8

x3 − 4 x
dx ; (c)

∫
1

x3 + 1
dx .
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Réponse 18.1

(a) 1
5
exp(5 x) + C ; (b) − 1

a
cos(a x) + C ; (c) 1

2
ln2(x) + C ;

(d) 1
7
tg(7 x) + C ; (e) 1

3
ln
∣
∣3 x− 7

∣
∣+ C ; (f) −1

2
ln
∣
∣cos(2 x)

∣
∣+ C ;

(g) ln
∣
∣sin(ex)

∣
∣+ C ; (h) 1

3
sin3(x) + C ; (i) 1

2

√
2 x2 + 3 + C ;

(j) 1
2
Arcsin2(x) + C ; (k) 1

2
ln
∣
∣x2 + 2 x+ 3

∣
∣+ C ; (l) ln

∣
∣ln(x)

∣
∣ + C .

Réponse 18.2

(a)
1

4
; (b) sin(1) ; (c)

π

4
−Arctg

(
1

e

)

;

(d)
1

b
ln

(
3 +

√
9− a2

2 +
√
4− a2

)

; (e)
1

2
ln(2)− π2

32
; (f)

a

2 ln(a)
(a3 − 1) .

Réponse 18.3

(a)
1√
11

Arctg

(
3 x− 1√

11

)

+ C ;

(b)
3

10
ln
∣
∣5 x2 − 3 x+ 2

∣
∣− 11

5
√
31

Arctg

(
10 x− 3√

31

)

+ C ;

(c)
1

4

√
4 x2 + 4 x+ 3 +

5

4
ln
∣
∣
∣ 2 x+ 1 +

√
4 x2 + 4 x+ 3

∣
∣
∣+ C ;

(d) −1

4

√
3 + 4 x− 4 x2 +

7

4
Arcsin

(
2 x− 1

2

)

+ C .

Réponse 18.4

(a) 1
3
cos3(x)− cos(x) + C ; (b) −1

5
cos5(x) + 2

3
cos3(x)− cos(x) + C ;

(c) 1
7
cos7(x)− 1

5
cos5(x) + C ; (d) 3

8
x− 1

4
sin(2 x) + 1

32
sin(4 x) + C ;

(e) 1
2
tg2(x) + ln

∣
∣cos(x)

∣
∣ + C ; (f) 1

22
sin(11 x) + 1

6
sin(3 x) + C .
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Réponse 18.5

(a) ln

∣
∣
∣
∣

(x− 2)3

x− 1

∣
∣
∣
∣
+ C ; (b)

1

3
x3 +

1

2
x2 + 4 x+ ln

∣
∣
∣
∣

x2 (x− 2)5

(x+ 2)3

∣
∣
∣
∣
+ C ;

(c)
1

6
ln

∣
∣
∣
∣

(x+ 1)2

x2 − x+ 1

∣
∣
∣
∣
+

1√
3
Arctg

(
2 x− 1√

3

)

+ C .
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Intégrales généralisées

Exercice 19.1

(a) Expliciter l’ensemble des primitives suivant. À cet effet, il peut être utile de poser
u =

√
x2 − 1 .

∫ √
x2 − 1

x
dx .

(b) Soit l’ensemble des primitives :

∫ √
a2 − x2

x2
dx ,

où a est un nombre réel strictement positif. Expliciter cet ensemble de primitives,
en procédant à un changement de variable faisant intervenir une fonction trigono-
métrique.

Exercice 19.2
Calculer les intégrales suivantes, en effectuant le changement de variable indiqué.

(a)

∫ π
2

0

1

3 + 2 cos(x)
dx , avec t = tg

(
x
2

)
; (b)

∫ 1

−1

1
(
1 + x2

)2 dx , avec x = tg(t) .

Exercice 19.3
Les intégrales suivantes convergent-elles ou divergent-elles ? Dans le cas où elles convergent,
calculer leur valeur.

(a)

∫ 1

0

1√
t
dt ; (b)

∫ ∞

1

1
3
√
t5

dt ; (c)

∫ ∞

1

ln(x)

x2
dx ;

(d)

∫ ∞

0

sin(x) dx ; (e)

∫ ∞

0

x exp(−x2) dx ; (f)

∫ ∞

−∞

8

x2 + 4
dx ;

(g)

∫ 1

−1

1√
1− x2

dx ; (h)

∫ 1

−2

1

x2 − 4
dx ; (i)

∫ ∞

0

exp(−a x) sin(b x) dx ,
où a ∈ R∗

+ et b ∈ R .
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Exercice 19.4
Les intégrales suivantes convergent-elles ou divergent-elles ? Justifier la réponse.

(a)

∫ 1

1
2

1

(1− t)
√
t
dt ; (b)

∫ ∞

0

exp(−x2) dx ; (c)

∫ ∞

0

x sin2(x) exp(−x) dx .

Exercice 19.5

(a) Étudier la convergence de l’intégrale
∫∞
1

1
xa dx en fonction du nombre réel a.

(b) Soient l’espace euclidien R3 et Oxyz son système de coordonnées cartésiennes cano-
nique. Plaçons un électron à l’origine O du système de coordonnées et un deuxième
électron au point P (x; 0; 0), où x > 0. Ce deuxième électron subit de la part du
premier une force électrique, appelée force de Coulomb ; cette force s’écrit :

~FE = k
e2

x2
~ux ,

où e est une constante appelée charge élémentaire, k une autre constante, appelée
constante de Coulomb, et ~ux un vecteur unitaire (i.e. un vecteur de longueur égale
à 1) ayant la même direction et le même sens que l’axe x. Calculer le travail de
cette force lorsque le deuxième électron passe de la position R sur l’axe x à l’infini ;
autrement dit, calculer W~FE

, où :

W~FE
=

∫ ∞

R

~FE · d~x =

∫ ∞

R

k
e2

x2
~ux · d~x =

∫ ∞

R

k
e2

x2
dx ;

par définition, d~x est un vecteur infinitésimal ayant la direction et le sens de l’axe x ;
de manière compacte, d~x = ~ux dx.

Exercice 19.6
Sans utiliser directement le test de l’intégrale, montrer que la série :

∞∑

n=1

1

n

diverge. Pour cela, il est utile de considérer la fonction partie entière de x, notée E(x),
et de se rendre compte que 1

E(x)
> 1

x
pour tout x > 1. À l’aide d’un calcul d’intégrale,

et en constatant que :
∫ ∞

1

1

E(x)
dx = 1 · 1

1
+ 1 · 1

2
+ 1 · 1

3
+ 1 · 1

4
+ . . . =

1

1
+

1

2
+

1

3
+

1

4
+ . . . ,

il est possible de conclure.
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Réponse 19.1

(a)
√
x2 − 1− Arctg

(√
x2 − 1

)
+ C ; (b) Arccos

(x

a

)

−
√
a2 − x2

x
+ C .

Réponse 19.2

(a)
2√
5
Arctg

(
1√
5

)

; (b)
π

4
+

1

2
.

Réponse 19.3

(a) 2 ; (b)
3

2
; (c) 1 ;

(d) divergence ; (e)
1

2
; (f) 4 π ;

(g) π ; (h) divergence ; (i)
b

a2 + b2
.

Réponse 19.4

(a) divergence ; (b) convergence ; (c) convergence .

Réponse 19.5

(a) L’intégrale converge et vaut 1
a−1

si a > 1. Si a 6 1, l’intégrale diverge.

(b) Le travail est W~FE
= k e2

R
.

Réponse 19.6
On obtient : ∞∑

n=1

1

n
>

∫ ∞

1

1

x
dx = lim

b→∞
ln(b) = ∞ .

La série diverge donc.
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Développements limités

Exercice 20.1
Dans les cas suivants, écrire le développement de MacLaurin d’ordre n de la fonction f
donnée.

(a) f(x) =
1

(1 + x)5
, avec n = 3 ; (b) f(x) = 5

√
1 + x , avec n = 3 ;

(c) f(x) = ln(1− x) , avec n = 4 ; (d) f(x) = sin(2 x) , avec n = 7 ;

(e) f(x) = exp
(
sin(x)

)
, avec n = 4 ; (f) f(x) = ln

(
1 + sin(x)

)
, avec n = 3 .

Exercice 20.2
Dans les cas suivants, écrire le développement limité P a

n + Ra
n d’ordre n, autour du

nombre a, de la fonction f donnée, où P a
n est le développement de Taylor de f d’ordre n

autour de a et Ra
n le reste de Lagrange (d’ordre n) associé à P a

n .

(a) f(x) = cos(x) , avec a = π
4
et n = 3 ; (b) f(x) = tg(x) , avec a = π

4
et n = 2 ;

(c) f(x) = x exp(x) , avec a = −1 et n = 4 ; (d) f(x) = log(x) , avec a = 10 et n = 2.

Exercice 20.3
Soient f une fonction réelle et n un nombre naturel, où :

(a) f(x) = exp(x) ; (b) f(x) = sin(x) ; (c) f(x) = cos(x) ; (d) f(x) = ln(1 + x) .

i. Dans chacun des cas, écrire le développement de MacLaurin Pn de f d’ordre n.

ii. Dans chacun des cas, considérer n = 3 et, en recourant à l’expression du reste
de Lagrange R3 d’ordre 3, déterminer l’erreur maximale commise lorsque f est
remplacée par P3 dans l’intervalle J = ]−0,1 ; 0,1[ .

Exercice 20.4
Soit f la fonction réelle donnée par f(x) = 3 x4 − 8 x3 + 5 x2 + 7 x− 12.

(a) Écrire le développement limité d’ordre 3 de f autour du nombre 2 ; en d’autres
termes, écrire f sous la forme f(x) = P 2

3 (x) +R2
3(x), où R

2
3 est le reste de Lagrange

(d’ordre 3) associé au développement de Taylor P 2
3 d’ordre 3 autour de 2.
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(b) Déterminer le plus grand intervalle ouvert J centré sur 2, dans lequel l’erreur maxi-
male commise lorsque f est remplacée par P 2

3 n’excède pas 0,1. En d’autres termes,
si J = ]2−ε ; 2+ε[ , déterminer la plus grande valeur possible de ε telle que l’er-
reur maximale commise lorsque f est remplacée par P 2

3 dans l’intervalle J n’excède
pas 0,1.

(c) Écrire le développement limité d’ordre 4 de f autour de 2. Que vaut le reste de
Lagrange R2

4 (d’ordre 4) associé à P 2
4 ? Que peut-on dire alors de P 2

4 ?

Exercice 20.5
Soient f et g les deux fonctions réelles données, respectivement, par f(x) = sin(x) et
g(x) = exp(x).

(a) Calculer la partie principale Pf+g,3 du développement limité d’ordre 3 autour de 0
de la fonction f + g.

(b) Calculer la partie principale Pfg,3 du développement limité d’ordre 3 autour de 0 de
la fonction fg.

(c) Calculer la partie principale Pf/g,3 du développement limité d’ordre 3 autour de 0 de

la fonction f
g
.

(d) Calculer la partie principale Pg◦f,3 du développement limité d’ordre 3 autour de 0
de la fonction g ◦ f .
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Réponse 20.1

(a) P3(x) = 1− 5 x+ 15 x2 − 35 x3 ; (b) P3(x) = 1 +
x

5
− 2 x2

25
+

6 x3

125
;

(c) P4(x) = −x− x2

2
− x3

3
− x4

4
; (d) P7(x) = 2 x− 4 x3

3
+

4 x5

15
− 8 x7

315
;

(e) P4(x) = 1 + x+
x2

2
− x4

8
; (f) P4(x) = x− x2

2
+
x3

6
.

Réponse 20.2

(a) P
π
4
3 (x)+R

π
4
3 (x) =

√
2

2
−
√
2

2

(

x− π

4

)

−
√
2

4

(

x− π

4

)2

+

√
2

12

(

x− π

4

)3

+
cos(ξ)

24

(

x− π

4

)4

,

où ξ est un nombre réel compris strictement entre π
4
et x ;

(b) P
π
4
2 (x)+R

π
4
2 (x) = 1+2

(

x− π

4

)

+2
(

x− π

4

)2

+
1

3

(
1+tg2(ξ)

)(
1+3 tg2(ξ)

)(

x− π

4

)3

,

où ξ est un nombre réel compris strictement entre π
4
et x ;

(c) P−1
4 (x)+R−1

4 (x) = −1

e
+

(x+ 1)2

2 e
+

(x+ 1)3

3 e
+

(x+ 1)4

8 e
+

(ξ + 5) exp(ξ) (x+ 1)5

120
,

où ξ est un nombre réel compris strictement entre −1 et x ;

(d) P 10
2 (x) +R10

2 (x) = 1 +
x− 10

10 ln(10)
− (x− 10)2

200 ln(10)
+

(x− 10)3

3 ξ3 ln(10)
,

où ξ est un nombre réel compris strictement entre 10 et x .

Réponse 20.3

(a) Pn(x) = 1 + x+
x2

2
+
x3

6
+ . . .+

xn

n!
=

n∑

k=0

xk

k!
;

si n = 3, l’erreur maximale commise dans J = ]−0,1 ; 0,1[ est Emax ≈ 4,6 · 10−6.

(b) P2m+1(x) = x− x3

6
+

x5

120
− . . .+ (−1)m

x2m+1

(2m+ 1)!
=

m∑

ℓ=0

(−1)ℓ
x2ℓ+1

(2 ℓ+ 1)!
,

où 2m+ 1 = n ;
si n = 3, l’erreur maximale commise dans J = ]−0,1 ; 0,1[ est Emax ≈ 4,2 · 10−7.

(c) P2m(x) = 1− x2

2
+
x4

24
− . . .+ (−1)m

x2m

(2m)!
=

m∑

ℓ=0

(−1)ℓ
x2ℓ

(2 ℓ)!
,

où 2m = n ;
si n = 3, l’erreur maximale commise dans J = ]−0,1 ; 0,1[ est Emax ≈ 4,2 · 10−6.
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(d) Pn(x) = x− x2

2
+
x3

3
− . . .+ (−1)n+1 x

n

n
=

n∑

k=1

(−1)k+1 x
k

k
;

si n = 3, l’erreur maximale commise dans J = ]−0,1 ; 0,1[ est Emax ≈ 3,8 · 10−5.

Réponse 20.4

(a) P 2
3 (x) +R2

3(x) = 6 + 27 (x− 2) + 29 (x− 2)2 + 16 (x− 2)3 + 3 (x− 2)4 .

(b) ε = 4

√
1
30

≈ 0,43 .

(c) P 2
4 (x) +R2

4(x) = 6 + 27 (x− 2) + 29 (x− 2)2 + 16 (x− 2)3 + 3 (x− 2)4 .

Réponse 20.5

(a) Pf+g,3(x) = 1 + 2 x+
x2

2
.

(b) Pfg,3(x) = x+ x2 +
x3

3
.

(c) Pf/g,3(x) = x− x2 +
x3

3
.

(d) Pg◦f,3(x) = 1 + x+
x2

2
.
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Applications des développements limités

Exercice 21.1
Dans chacun des cas suivants, donner une valeur approximative de l’intégrale I en ef-
fectuant, au préalable, un développement judicieux de MacLaurin. Estimer, en outre,
l’erreur maximale commise lors d’un tel calcul. Pour la fonction sinus, on prendra un
développement d’ordre 6, pour la fonction cosinus un développement d’ordre 5.

(a) I =

∫ 1

0

sin(x)

x
dx ; (b) I =

∫ 1

0

3
√
x cos(x) dx .

Exercice 21.2
À l’aide d’un développement de Taylor, donner une valeur numérique approximative de
5

√
3
2
, avec une précision à trois chiffres significatifs.

Indication : utiliser le résultat de l’exercice 20.1 (b).

Exercice 21.3
Soient f : D1 → R et g : D2 → R deux fonctions réelles (où D1, D2 ⊂ R), toutes les deux
définies dans un intervalle ouvert I ⊂ D1 ∩ D2. Supposons que I contient un nombre
réel a tel que f(a) = g(a) = 0 et f ′(a) et g′(a) sont définies. À l’aide de développements
limités d’ordre 1 de f et g autour de a, démontrer la règle de Bernoulli-L’Hôpital :

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Exercice 21.4
À l’aide de développements de Taylor (ou de MacLaurin), calculer les limites suivantes :

(a) lim
x→0

cos(x)− 1

x2
; (b) lim

x→0

exp(2 x)− 1

x
; (c) lim

x→1

x ln(x)

x2 − 1
.

Exercice 21.5
Prouver, à l’aide des séries de MacLaurin des fonctions exp, sin et cos, la formule d’Euler :

exp(i x) = cos(x) + i sin(x) .
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Exercice 21.6
Pour chacun des cas ci-dessous :

i. déterminer la série de MacLaurin de la fonction f ;

ii. calculer le domaine de convergence de la série de MacLaurin de f .

(a) f(x) = ln(1 + 2 x) ; (b) f(x) = 2x .
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Réponse 21.1

(a) I ≈ 1703
1800

≈ 0,946 111 ; erreur maximale commise : Hmax ≈ 0,000 028, soit 0,0030% .

(b) I ≈ 389
640

≈ 0,607 81 ; erreur maximale commise : Hmax ≈ 0,000 19, soit 0,031% .

Réponse 21.2
Un développement de MacLaurin d’ordre 3 de la fonction x 7→ 5

√
1 + x suffit ; on obtient

alors 5

√
3
2
≈ 1,09.

Réponse 21.4

(a) −1
2
; (b) 2 ; (c) 1

2
.

Réponse 21.6

(a) P (x) = 2 x− 2 x2 +
8 x3

3
− 16 x4

4
+ . . . =

∞∑

k=1

−(−2 x)k

k
;

domaine de convergence : D =
]
− 1

2
; 1

2

]
.

(b) P (x) = 1+
(
ln(2)

)
x+

(
ln(2)

)2
x2

2
+

(
ln(2)

)3
x3

6
+

(
ln(2)

)4
x4

24
+. . . =

∞∑

k=0

(
x ln(2)

)k

k!
;

domaine de convergence : D = R .
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Équations différentielles

Exercice 22.1
Une tasse contient du thé qui vient d’être infusé. Initialement, la température du thé
est T0 = 95 ◦C. La tasse se trouve dans une pièce dont l’air ambiant a une température
Tair = 20 ◦C.

(a) Estimer comment évolue la température du thé en fonction du temps qui s’écoule ;
esquisser un graphique. À quel instant le thé refroidit-il le plus rapidement ?

(b) Selon la loi de Newton sur le refroidissement, le taux de refroidissement est propor-
tionnel à la différence entre la température du thé et celle de l’air ambiant, pour
autant que cette différence ne soit pas trop grande. Écrire une équation (différen-
tielle) traduisant la loi de Newton dans la situation présente.

(c) Résoudre l’équation écrite au point précédent, i.e. déterminer la fonction t 7→ T (t)
satisfaisant l’équation obtenue. Représenter graphiquement cette fonction et com-
parer la figure avec l’esquisse obtenue au point (a). Commenter.

Exercice 22.2
Dans les cas suivants, montrer que l’expression de y donnée satisfait l’équation différen-
tielle correspondante ; C, C1 et C2 sont des constantes réelles.

(a) y′′ − 3 y′ + 2 y = 0 , y = C1 exp(x) + C2 exp(2 x) , x ∈ R ;

(b) 2 x y3 + 3 x2 y2 dy
dx

= 0 , y = C x−
2
3 , x ∈ R∗

+ ;

(c) x3 y′′′ + x2 y′′ − 3 x y′ − 3 y = 0 , y = C x3 , x ∈ R .

Exercice 22.3
Soient les équations différentielles suivantes :

(a) y′(x) = 3 x2 ; (b)
(
y(x)

)2 dy
dx
(x) = x3 ;

(c) y′(x)
√
4− x2 = −x ; (d) dy

dx
(x) cos

(
y(x)

)
= x .

Pour chacune de ces équations différentielles, déterminer :

i. sa solution générale ;

ii. la solution maximale satisfaisant la condition y(0) = 2.
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Exercice 22.4
Déterminer la solution générale de chacune des équations différentielles suivantes :

(a) sec(x) dy − 2 y dx = 0 ; (b) y′ = x− 1 + x y − y ;

(c) (x3 + 1) y y′ + x2 (1 + y2) = 0 ; (d) exp(y) sin(x) dx− cos2(x) dy = 0 .

Exercice 22.5
Soient les équations différentielles suivantes :

(a) y′(x) = x3 exp
(
−y(x)

)
; (b) y′(x)−

(
y(x)

)2 − 4 = 0 .

Pour chacune de ces équations différentielles, déterminer :

i. sa solution générale ;

ii. la solution maximale satisfaisant la condition y(0) = 0.
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Réponse 22.1

(a) Le thé refroidit le plus vite au début, juste après l’infusion.

(b) La température obéit à l’équation différentielle T ′(t) = −k
(
T (t)− Tair

)
, où t est le

temps qui s’écoule (t > 0) et k un paramètre réel fixe, strictement positif.

(c) Si T (0) = T0 = 95 ◦C, alors T (t) =
(
75 exp(−k t) + 20

) ◦C.

Réponse 22.3

(a) y(x) = x3 + C , y(x) = x3 + 2 , x ∈ R ;

(b) y(x) = 3

√
3
4
x4 + 3C , y(x) = 3

√
3
4
x4 + 8 , x ∈ R ;

(c) y(x) =
√
4− x2 + C , y(x) =

√
4− x2 , x ∈ ]−2; 2[ ;

(d) y(x) = Arcsin
(
x2

2
+ C

)
+ 2 π n y(x) = π − Arcsin

(
x2

2
+ sin(2)

)
,

ou x ∈
]
−
√

2− 2 sin(2) ;
√

2− 2 sin(2)
[
.

y(x) = π −Arcsin
(
x2

2
+ C

)
+ 2 π n , où n ∈ Z.

Réponse 22.4

(a) y(x) = K exp
(
2 sin(x)

)
; (b) y(x) = K exp

(
1
2
(x− 1)2

)
− 1 ;

(c) y(x) = ±
√

K
(
x3 + 1

)− 2
3 − 1 ; (d) y(x) = − ln

(
− 1

cos(x)
− C

)
.

Réponse 22.5

(a) y(x) = ln
(
1
4
x4 + C

)
, y(x) = ln

(
1
4
x4 + 1

)
, x ∈ R ;

(b) y(x) = 2 tg(2 x+ 2C) , y(x) = 2 tg(2 x+ nπ) , x ∈
]
− π

4
; π

4

[
,

n ∈ Z .
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Équations différentielles linéaires

du premier ordre

Exercice 23.1
Donner l’ordre de chacune des équations différentielles suivantes. Préciser également s’il
s’agit d’une équation différentielle linéaire ou non. Si l’équation en question est linéaire,
indiquer si les coefficients sont constants ou non.

(a) y′(x) + 7 y(x) = exp(2 x) + exp(x) ; (b) y′(x) = 3 x
(
y(x)

)4
;

(c) x3 y′′′(x) + x2 y′′(x)− 3 x y′(x)− 3 y(x) = 0 ; (d) y(98)(x) y′(x) = 3
(
y(x)

)2
;

(e) 2 y(x) y′(x) y′′′(x) = y′(x) ; (f) x2 y′′(x)− 6 y(x) = x3 ln(x) .

Exercice 23.2
Soit l’équation différentielle linéaire du premier ordre y′(x)+2 y(x) = exp(2 x). Résoudre
cette équation :

(a) en recourant à la méthode de la variation de la constante ;

(b) en recourant à la méthode du facteur intégrant.

Quelle conclusion peut-on tirer ?

Exercice 23.3
Déterminer la solution générale de chacune des équations différentielles suivantes :

(a) x y′ + y + x = exp(x) ; (b) x2 dy +
(
2 x y − exp(x)

)
dx = 0 ;

(c)
(
x2 cos(x) + y

)
dx− x dy = 0 ; (d)

y′

x
+ 2 y = 3 .

Exercice 23.4

R
+

U C

I

Un condensateur de capacité C (où C > 0 est un paramètre
réel) et une résistance R (où R > 0 est également un paramètre
réel) sont branchés en série à une source de tension U . Un in-
terrupteur permet d’enclencher ou de déclencher le circuit.

De la définition même du courant électrique, ainsi que de
celle de la capacité d’un condensateur, il ressort que la charge Q
que porte l’une des armatures du condensateur satisfait l’équation différentielle :

RC Q̇+Q = C U ,

où Q̇ = dQ
dt

.
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Initialement, l’interrupteur est ouvert et les armatures du condensateur ne sont pas
chargées. À l’instant t0, que l’on suppose être t0 = 0, le circuit est fermé. On peut donc
considérer que Q(0) = 0.

(a) Déterminer la solution de cette équation différentielle satisfaisant la condition initiale
Q(0) = 0, dans le cas où la tension U est constante dans le temps : U(t) = U0, où
U0 est un paramètre réel.

(b) Déterminer la solution de cette équation différentielle satisfaisant la condition initiale
Q(0) = 0, dans le cas où la tension U est une fonction sinusöıdale du temps :
U(t) = U0 sin(ω t), où U0 > 0 est un paramètre réel.

Exercice 23.5

(a) Un réservoir contient initialement un volume V d’eau salée ; la masse initiale de
sel dissous dans l’eau est m0. De l’eau salée, de teneur (i.e. de masse par unité de
volume) ζ , y est déversée de manière continue, avec un débit volumique δ. Par un
trou en bas du réservoir s’écoule de l’eau salée du réservoir, dont le débit volumique
vaut également δ. L’eau dans le réservoir est continuellement remuée de sorte que le
mélange soit homogène. Déterminer la masse de sel m(t) présente dans le réservoir
à l’instant t.

Indication : écrire le taux de variation de la masse dm
dt en fonction des débits de sel

massiques entrant et sortant.

(b) Supposons que le réservoir a un volume V = 5000 L , qu’il y a ζ = 0,030 kg de sel
par litre d’eau déversée dans le réservoir, que le débit d’eau salée (à l’entrée comme
à la sortie) est δ = 25L/min et qu’il y a initialement m0 = 20 kg de sel dans le
réservoir. Déterminer alors la masse de sel dans le réservoir après 30min.
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Réponse 23.1

(a) Équation différentielle du premier ordre, linéaire et à coefficients constants.

(b) Équation différentielle du premier ordre non linéaire.

(c) Équation différentielle du troisième ordre, linéaire et à coefficients non constants.

(d) Équation différentielle du nonante-huitième ordre non linéaire.

(e) Équation différentielle du troisième ordre non linéaire.

(f) Équation différentielle du deuxième ordre, linéaire et à coefficients non constants.

Réponse 23.2
La solution générale est y(x) = 1

4
exp(2 x) +C exp(−2 x), où C est une constante réelle,

quelle que soit la méthode utilisée.

Réponse 23.3

(a) y = 1
x

(
exp(x) + C

)
− 1

2
x ; (b) y = 1

x2

(
exp(x) + C

)
;

(c) y = x
(
sin(x) + C

)
; (d) y = C exp(−x2) + 3

2
.

Réponse 23.4

(a) Q(t) = C U0

[

1− exp

(

− t

RC

)]

.

(b) Q(t) =
U0

R

1
(

1
RC

)2
+ ω2

[
1

RC
sin(ω t)− ω cos(ω t) + ω exp

(

− t

RC

)]

.

Réponse 23.5

(a) m(t) = ζ V + (m0 − ζ V ) exp
(
− δ

V
t
)
.

(b) m(30min) ≈ 38 kg .





Série 24 – Équations linéaires du deuxième ordre 621

Équations différentielles linéaires

du deuxième ordre

Exercice 24.1
Déterminer la solution générale de chacune des équations différentielles suivantes :

(a) 6 y′′(x)− 7 y′(x)− 3 y(x) = 0 ; (b) y′′(x) + 4 y(x) = 0 ;

(c) 4 y′′ + 20 y′ + 25 y = 0 ; (d) d2y
dx2 + 2 dy

dx
+ 6 y = 0 .

Exercice 24.2
Soient a y′′ + b y′ + c y = 0 une équation différentielle linéaire du deuxième ordre, homo-
gène et à coefficients constants, et y1(x) = C1 exp(λ0 x) une solution de cette équation,
où C1 est une constante réelle. Montrer que l’expression y2(x) = C2 x exp(λ0 x), où C2

est une constante réelle quelconque, est également une solution de cette même équation
différentielle si et seulement si le discriminant de l’équation caractéristique associée,
a λ2 + b λ+ c = 0, est nul.

Exercice 24.3
Soit L l’opérateur donné par L = a d2

dx2 + b d
dx

+ c, dont l’action sur une fonction réelle
y : I → R (de la variable x), deux fois dérivable au moins dans un certain intervalle
ouvert I, est :

L[y] =

(

a
d2

dx2
+ b

d

dx
+ c

)

[y] = a y′′ + b y′ + c y ,

où a, b et c sont trois coefficients réels fixés. Montrer que L est linéaire, i.e. démontrer
que :

• L[C y] = C L[y],
• L[y1 ± y2] = L[y1]± L[y2],

où y, y1, y2 : I → R sont des fonctions réelles de x, deux fois dérivables (au moins) dans I,
et C une constante réelle.

Exercice 24.4
Déterminer la solution générale de chacune des équations différentielles suivantes en
utilisant la méthode de la variation des constantes :

(a) y′′(x) + y(x) = sec(x) ; (b) d2y
dx2 + 3 dy

dx
= exp(−3 x) .
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Exercice 24.5
Soit l’équation différentielle linéaire du deuxième ordre :

y′′(x)− y(x) = 3 exp(2 x) .

Résoudre cette équation différentielle :

(a) en utilisant la méthode de la variation des constantes ;

(b) en utilisant la méthode de l’Ansatz.

Quelle conclusion peut-on tirer ?

Exercice 24.6
Déterminer la solution générale de chacune des équations différentielles suivantes en
utilisant la méthode de l’Ansatz.

(a) y′′(x) + y(x) = sin(5 x) ; (b) y′′ + 6 y′ + 9 y = exp(4 x) .

Exercice 24.7
Déterminer la solution générale de chacune des équations différentielles suivantes en
utilisant la méthode de l’Ansatz.

(a) y′′(x) + 6 y′(x) + 8 y(x) = (x+ 3) exp(−2 x) ;

(b) y′′(x) + 9 y(x) = 4 cos(3 x) ;

(c) y′′ + 3 y′ − 4 y = x exp(−x) ;
(d) 2 y′′ + 8 y′ + 8 y = 12 x exp(−2 x) .

Exercice 24.8

∼
U

CL

Un condensateur de capacité C (où C > 0 est un paramètre
réel) et une bobine de coefficient d’auto-induction L (où L > 0
est également un paramètre réel) sont branchés en série à une
source qui délivre une tension alternative U(t) = U0 sin(ω t),
où U0 > 0 et ω > 0 sont deux paramètres réels.

De la loi d’induction électromagnétique, ainsi que des défini-
tions du courant électrique et de la capacité d’un condensateur, il ressort que la charge Q
que porte l’une des armatures du condensateur satisfait l’équation différentielle :

LC Q̈+Q = C U0 sin(ω t) ,

où Q̈ = d2Q
dt2

. À l’instant t0, que l’on suppose être t0 = 0, la charge Q est égale à une
certaine valeur Q0 > 0 et le courant dans le circuit est nul ; ce qui revient à écrire
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Q(0) = Q0 et I(0) = Q̇(0) = 0, où Q̇ = dQ
dt

(vu que I = dQ
dt

, par définition du courant
électrique).

(a) Déterminer la solution de cette équation différentielle qui satisfait les conditions
initiales Q(0) = Q0 et Q̇(0) = 0, dans le cas où ω 6= 1√

LC
.

(b) Déterminer la solution de cette équation différentielle qui satisfait les conditions
initiales Q(0) = Q0 et Q̇(0) = 0, dans le cas où ω = 1√

LC
.
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Réponses 24.1

(a) y(x) = C1 exp
(
− 1

3
x
)
+ C2 exp

(
3
2
x
)
;

(b) y(x) = C1 cos(2 x) + C2 sin(2 x) ;

(c) y(x) = (C1 + C2 x) exp
(
− 5

2
x
)
;

(d) y(x) = exp(−x)
(

C1 cos
(√

5x
)
+ C2 sin

(√
5x
))

.

Réponse 24.4

(a) y(x) =
(
C1 + ln |cos(x)|

)
cos(x) + (C2 + x) sin(x) ;

(b) y(x) = C1 +
(
C2 − 1

9
− 1

3
x
)
exp(−3 x) = C1 +

(

C̃2 − 1
3
x
)

exp(−3 x) .

Réponse 24.5

y(x) = C1 exp(−x) + C2 exp(x) + exp(2 x) .

Réponse 24.6

(a) y(x) = C1 cos(x) + C2 sin(x)− 1
24
sin(5 x) .

(b) y(x) = (C1 + C2 x) exp(−3 x) + 1
49
exp(4 x) .

Réponse 24.7

(a) y(x) = C1 exp(−4 x) +
(
C2 +

5
4
x+ 1

4
x2
)
exp(−2 x) ;

(b) y(x) = C1 cos(3 x) +
(
C2 +

2
3
x
)
sin(3 x) ;

(c) y(x) = C1 exp(−4 x) + C2 exp(x)− 1
36
(1 + 6 x) exp(−x) ;

(d) y(x) = (C1 + C2 x+ 2 x3) exp(−2 x) .

Réponse 24.8

(a) Q(t) = Q0 cos
(

1√
LC

t
)

− C U0 ω
√
LC

1−LC ω2 sin
(

1√
LC

t
)

+ C U0

1−LC ω2 sin(ω t) .

(b) Q(t) =
(
Q0 − C U0

2
√
LC

t
)
cos
(

1√
LC

t
)

+ C U0

2
sin
(

1√
LC

t
)

.
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Optimisation

Exercice 25.1
Dans les cas suivants, déterminer les points stationnaires de la fonction réelle f donnée.

(a) f(x) = 4 x2 − 3 x+ 2 ; (b) f(w) = w4 − 32w ;

(c) f(z) =
√
z2 − 16 ; (d) f(t) = t2 3

√
2 t− 5 ;

(e) f(x) = sec(x2 + 1) ; (f) f(x) = 8 cos3(x)− 3 sin(2 x)− 6 x .

Exercice 25.2
Soit f la fonction réelle donnée par f(x) = 3

√

(x− 1)2 − 4. Dans chacun des intervalles
suivants, déterminer l’éventuel point où f atteint son maximum, l’éventuel point où f
atteint son minimum, le(s) éventuel(s) point(s) où f possède un maximum local, ainsi
que le(s) éventuel(s) point(s) où f possède un minimum local.

(a) [0; 9] ; (b) ]1; 2] ; (c) ]−7; 2[ ; (d) [0; 1[ .

Exercice 25.3
On prend une longue bande de zinc, dont la largeur est ℓ = 32 cm,
et on la plie de sorte à former une gouttière comme représentée sur
la figure ci-contre. Déterminer la hauteur h que doivent avoir les
bords pour que la capacité de la gouttière soit maximale.

h

a

a = 32 cm− 2 h

Exercice 25.4
On projette de construire un réservoir de stockage pour du pro-
pane. Le réservoir est censé avoir la forme d’un cylindre droit
terminé à chaque extrémité par deux hémisphères. Le coût de
la construction au mètre carré est deux fois plus élevé pour les
parties sphériques que pour la partie cylindrique. Le volume
souhaité est V = π

4
m3. Déterminer alors les dimensions du réservoir qui minimisent le

coût de construction et qui donnent le volume V .

Exercice 25.5
On considère un cône droit dont la hauteur vaut 12 cm et le rayon
de la base 4 cm. Parmi tous les cylindres droits inscrits dans ce
cône et dont les axes cöıncident, trouver celui dont le volume est
maximal ; donner ses dimensions et son volume.

1
2
cm

h

r
4 cm
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Exercice 25.6

A B

CD

ℓ

A

DOn enroule un rectangle, en reliant les côtés AD et BC
(cf. figure ci-contre), de sorte à former un cylindre.
Afin de le rigidifier, on place un fil de fer de longueur ℓ
le long de la diagonale AC du rectangle. Il est supposé
que ℓ est fixe, alors que les dimensions du rectangle
peuvent varier : selon l’angle d’élévation θ = ∡BAC, le rectangle est plus ou moins long
et haut. Déterminer θ pour lequel le volume du cylindre généré est maximal.

Exercice 25.7
Deux mâts verticaux, chacun ayant une hauteur fixe, sont à une distance L l’un de
l’autre. Ils sont arrimés avec une corde unique qui va du sommet du premier mât au
sommet du deuxième, en passant par un point P situé sur le
pont, entre les mâts. Montrer que la corde est la plus courte
lorsque les angles α et β sont égaux (voir figure ci-contre).

Indication : Chercher une expression de la longueur de la corde qui

soit une fonction de la distance x entre le mât de gauche et le point P

(et non une fonction de l’angle α ou de l’angle β).
βα

P

Exercice 25.8
Dans une ville, deux rues se coupent à angle droit en un point P ;
l’une a la direction nord-sud, l’autre la direction est-ouest. Une
voiture, venant de l’ouest et ayant une vitesse constante de
20 km/h, passe en P à 10 h 00. Au même instant, une autre voi-
ture, située à 2,0 km au nord du croisement se dirige vers le sud
à la vitesse constante de 50 km/h. Déterminer l’instant où les
deux voitures sont les plus proches l’une de l’autre ; calculer la
distance séparant les deux véhicules à cet instant.

N

P
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Réponse 25.1

(a) x = 3
8
; (b) w = 2 ; (c) aucun ;

(d) t ∈
{
0 ; 15

7

}
; (e)

{
x ∈ R

∣
∣ x = 0 ou x = ±

√
k π − 1 , k ∈ N∗} ;

(f)
{
x ∈ R

∣
∣x = π

2
+ k π ou x = −π

6
+ 2 k π ou x = −5 π

6
+ 2 k π, k ∈ Z

}
.

Réponse 25.2

(a) Dans [0; 9], f atteint son maximum en x = 9 et son minimum en x = 1 ; le minimum
peut être vu comme un minimum local.

(b) Dans ]1; 2], f atteint son maximum en x = 2 et n’atteint pas de minimum.

(c) Dans ]−7; 2[ , f atteint son minimum en x = 1 ; le minimum peut être vu comme
un minimum local et n’atteint pas de maximum.

(d) Dans [0; 1[ , f atteint son maximum en x = 0 et n’atteint pas de minimum.

Réponse 25.3
h = 8 cm.

Réponse 25.4

Rayon des hémisphères : r =
3√3
4
m. Longueur du cylindre : ℓ = 3

√
3m.

Réponse 25.5
Le volume V du cylindre est maximal lorsque r = 8

3
cm. Le volume correspondant vaut

alors V = 256 π
9

cm3.

Réponse 25.6
θ ≈ 35,26◦ ≈ 35◦.

Réponse 25.8
Les deux voitures sont les plus proches 1

29
h plus tard, c’est-à-dire environ 4 secondes

après 10 h 02. La distance qui les sépare à cet instant vaut alors 0,74 km environ.
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Extrema et points d’inflexion

Exercice 26.1
Dans les cas suivants, trouver les éventuels points de l’axe x où la fonction f donnée
atteint un extremum local, en recourant aux expressions de ses dérivées première et
d’ordre supérieur.

(a) f(x) = x3 − 4 x ; (b) f(x) = 1
2
x− sin(x) ;

(c) f(x) =
1

1 + x2
; (d) f(x) = 2 tg(x)− tg2(x) ;

(e) f(x) = 2 x3 + 6 x2 + 6 x+ 16 ; (f) f(x) = x5 + 2 x4 + x3 .

Exercice 26.2
Dans les cas suivants, déterminer les éventuels extrema locaux de la fonction f donnée,
en recourant aux expressions de ses dérivées première et d’ordre supérieur. Déterminer
également les intervalles dans lesquels la fonction est concave, convexe. Calculer enfin
les abscisses des éventuels points d’inflexion, puis tracer le graphe de f .

(a) f(x) = x3 − 2 x2 + x+ 1 ; (b) f(x) =
√
x2 + 2 ;

(c) f(x) = 2 x6 − 6 x4 ; (d) f(x) = 5
√
x− 1 .

Exercice 26.3
On aimerait construire une bôıte sans couvercle, en forme de parallélépipède rectangle
à base carrée, de volume V = 4dm3. Déterminer les dimensions de cette bôıte qui mini-
misent la quantité de matériau nécessaire à sa construction.

Exercice 26.4
On fabrique un cornet en papier de forme conique en rejoignant les
bords droits d’un disque de rayon a, amputé d’un secteur circulaire.
Déterminer l’angle au centre θ du secteur circulaire découpé pour
lequel le volume du cornet obtenu est maximal.

θ

a
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Exercice 26.5
Selon le principe de Fermat, la lumière se propage d’un point à un autre en empruntant
le chemin qui requiert le moins de temps possible. Une conséquence de ce principe
est que la lumière se propage en ligne droite dans un milieu transparent, homogène et
isotrope. Dans l’air, qui est un milieu transparent, homogène et isotrope, la vitesse de la
lumière v1 est supérieure à la vitesse de la lumière v2 dans l’eau, qui est également un
milieu transparent, homogène et isotrope.

Montrer que, si la lumière se propage d’un point P dans l’air à un point Q dans
l’eau, elle suit une trajectoire constituée de deux lignes droites, telles que :

sin(θ1)

sin(θ2)
=

v1
v2
,

où θ1 et θ2 sont deux angles comme indiqué sur la figure ci-dessous ; ces angles sont
appelés angle d’incidence et angle de réfraction, respectivement. Il est supposé ici que
l’interface air-eau est plane.

Indication : Écrire les longueurs ℓ1 et ℓ2 des trajets dans les pre-

mier et deuxième milieux, respectivement, en fonction de a, b, d,

θ1 et θ2. En déduire une expression pour la durée du trajet total.

P

Q

θ1

θ2

a

b

d

air
eau
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Réponse 26.1

(a) Maximum local en x = − 2√
3
; minimum local en x = 2√

3
.

(b) Maxima locaux en x = −π
3
+ 2 π k, où k ∈ Z ; minima locaux en x = π

3
+ 2 π k,

où k ∈ Z.

(c) Maximum local en x = 0.

(d) Maxima locaux en x = π
4
+ k π, où k ∈ Z.

(e) Pas d’extremum local (en particulier, pas d’extremum en x = −1).

(f) Maximum local en x = −1 ; minimum local en x = −3
5
; pas d’extremum local en

x = 0.

Réponse 26.2

(a)
(
1
3
; 31

27

)
sont les coordonnées de l’unique maximum local de f ;

(1; 1) sont les coordonnées de l’unique minimum local de f ;

f est concave dans
]
−∞ ; 2

3

[
et convexe dans

]
2
3
; ∞

[
;

f possède un unique point d’inflexion, en x = 2
3
.

(b)
(
0 ;

√
2
)
sont les coordonnées de l’unique minimum local de f ;

f est convexe dans R et ne possède donc aucun point d’inflexion.

(c)
(
−
√
2 ; −8

)
et
(√

2 ; −8
)
sont les coordonnées des minima locaux de f ;

(0; 0) sont les coordonnées de l’unique maximum local de f ;

f est convexe dans
]

−∞ ; −
√

6
5

[

, ainsi que dans
]√

6
5
; ∞

[

; elle est concave dans
]

−
√

6
5
;
√

6
5

[

; f possède deux points d’inflexion, en x = −
√

6
5
et x =

√
6
5
.

(d) f ne possède aucun extremum local ;

f est convexe dans ]−∞; 0[ et concave dans ]0; ∞[ ;

f possède un unique point d’inflexion, en x = 0.

Réponse 26.3
La bôıte a une hauteur de 1 dm et une base carrée dont le côté vaut 2 dm .

Réponse 26.4

θ = 2 π
(

1−
√

2
3

)

.
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Étude d’une fonction

Exercice 27.1
Dans chacun des cas suivants, donner le domaine de définition et les éventuels zéros de
la fonction f donnée. Déterminer également les éventuels points de l’axe x où f admet
un extremum (minimum ou maximum) local, ainsi que l’abscisse (i.e. la coordonnée x)
des éventuels points d’inflexion du graphe de f . Écrire enfin les équations des éventuelles
asymptotes de f .

(a) f(x) =
4− x2

x+ 3
; (b) f(x) =

x+ 4√
x

;

(c) f(x) = x2 exp(−x) ; (d) f(x) =
x

ln(x)
.

Exercice 27.2
Étudier la fonction f donnée par :

f(x) =
√
x2 + 4 x+ 6 .

Exercice 27.3
Étudier la fonction f donnée par :

f(x) =
1

x2
exp

(
1

x

)

.

Exercice 27.4
Lire l’illustration 7.5.2 (cf. section 7.5, chapitre 7).
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Réponse 27.1

(a) Df = Rr{−3} ; zéros en x1 = −2 et en x2 = 2 ;

f ′(x) = −x2+6x+4
(x+3)2

; minimum local en x3 = −3−
√
5 , maximum local en x4 = −3 +

√
5 ;

f ′′(x) = − 10
(x+3)3

; aucun point d’inflexion ;

asymptote verticale d’équation x = −3 ; asymptote oblique d’équation y = −x+3.

(b) Df = R∗
+ ; aucun zéro ;

f ′(x) = x−4

2
√
x3

; minimum local en x1 = 4 ;

f ′′(x) = −x+12

4
√
x5

; point d’inflexion en x2 = 12 ;

asymptote verticale d’équation x = 0 ; pas d’asymptote horizontale ni oblique.

(c) Df = R ; zéro en x1 = 0 ;

f ′(x) = −x (x− 2) exp(−x) ; minimum local en x2 = 0, maximum local en x3 = 2 ;

f ′′(x) = (x2−4 x+2) exp(−x) ; points d’inflexion en x4 = 2−
√
2 et en x5 = 2+

√
2 ;

pas d’asymptote verticale ; asymptote horizontale à droite d’équation y = 0.

(d) Df = R+r{0; 1} ; aucun zéro ;

f ′(x) = ln(x)−1
(ln(x))2

; minimum local en x1 = e ;

f ′′(x) = 2−ln(x)
x (ln(x))3

; point d’inflexion en x2 = e2 ;

asymptote verticale d’équation x = 1 ; pas d’asymptote horizontale ni oblique.

Réponse 27.2

i. Df = R.

ii. f n’est ni paire, ni impaire, ni périodique.

iii. f n’a pas de zéro.

iv. f ne possède aucune discontinuité. Elle admet une asymptote oblique à droite
d’équation y = x+ 2 et une asymptote oblique à gauche d’équation y = −x− 2.

v. f ′(x) = x+2√
x2+4x+6

; f admet un minimum local en x1 = −2.

vi. f ′′(x) = 2√
(x2+4x+6)3

; f ne possède aucun point d’inflexion.

viii. f possède un axe de symétrie vertical d’équation x = −2.
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Réponse 27.3

i. Df = R∗.

ii. f n’est ni paire, ni impaire, ni périodique.

iii. f n’a pas de zéro.

iv. f est discontinue en x = 0 (discontinuité asymptotique). Elle admet une asymptote
verticale d’équation x = 0 et une asymptote horizontale, à droite et à gauche,
d’équation y = 0.

v. f ′(x) = −2 x+1
x4 exp

(
1
x

)
; f admet un maximum local en x1 = −1

2
.

vi. f ′′(x) = 6x2+6x+1
x6 exp

(
1
x

)
; f possède deux points d’inflexion,

en x2 =
1
6

(
−3−

√
3
)
≈ −0,79 et en x3 =

1
6

(
−3 +

√
3
)
≈ −0,21.
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Aires de surfaces planes

Exercice 28.1
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Tracer, dans R2, l’hyperbole donnée par l’équation x y = a2, où a est un paramètre
réel non nul. Déterminer ensuite l’aire A de la surface finie délimitée par cette
hyperbole, l’axe Ox et les droites d’équations x = a et x = 2 a.

(b) Calculer l’aire A du domaine fini de R2 délimité par les courbes d’équations y2 = 9 x
et y = 3 x. Au besoin, tracer, dans R2, ces deux courbes pour mieux cerner la
situation.

Exercice 28.2
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Trouver l’aire A de la surface finie de R2, délimitée par les axes Ox, Oy, la droite
d’équation x = a et la courbe d’équation :

y = f(x) où : f(x) = a cosh
(x

a

) (

=
a

2

[

exp
(x

a

)

+ exp
(

−x
a

)] )

,

a étant un paramètre réel strictement positif. Au besoin, faire un dessin illustrant
la situation.

(b) Trouver l’aire A du domaine fini de R2 compris entre les paraboles d’équations
y2 = a x et y = a x2. Au besoin, faire un dessin illustrant la situation.

Exercice 28.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Calculer l’aire du domaine fini délimité par la courbe d’équation y = exp(−a x) sin(a x),
où a est un paramètre réel strictement positif, et le segment de l’axe Ox compris
entre x0 = 0 et x1, où x1 est le plus petit nombre réel strictement positif pour lequel
exp(−a x1) sin(a x1) = 0.

(b) Calculer l’aire de la boucle générée par la courbe d’équation 9 a y2 = x (3 a − x)2,
où a est un paramètre réel strictement positif.

Exercice 28.4
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.
Calculer l’aire A du domaine fini de R2 délimité par les courbes d’équations y = 0,
x = 0, x = 7 et y = |x2 − 6 x+ 5|.
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Exercice 28.5
Soient le plan euclidien R2 et Oxy son système de coordon-
nées cartésiennes canonique. Soit C ⊂ R2 la courbe décrite
par les équations paramétriques :

{

x = a
(
t− sin(t)

)

y = a
(
1− cos(t)

) ,

a

2π a
x

y

0

où a est un paramètre réel strictement positif et t ∈ R. Une telle courbe porte le nom
de cyclöıde ; elle a la forme d’une arche qui se répète périodiquement.

(a) Calculer l’aire A du domaine fini délimité par l’axe Ox et une arche de la cyclöıde
décrite ci-dessus.

(b) À l’aide du théorème de la valeur moyenne, calculer la valeur moyenne ȳ de y sur
l’arche de cyclöıde considérée au point précédent.

Exercice 28.6
Soit le plan euclidien R2, muni d’un système de coordonnées polaires,
caractérisé par les variables r et θ. Considérons l’équation polaire r =
a
(
1 − cos(θ)

)
, où a est un paramètre réel strictement positif, et θ ∈

[0; 2 π[ . Une telle équation décrit une courbe appelée cardiöıde ; elle
délimite un domaine fini dans R2. Calculer l’aire A de ce domaine fini.

x

y

O
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Réponse 28.1

(a) A = a2 ln(2) . (b) A = 1
2
.

Réponse 28.2

(a) A = a2 sinh(1) = 1
2
a2 (e− e−1) . (b) A = 1

3
.

Réponse 28.3

(a) A = 1
2 a

(
exp(−π) + 1

)
. (b) A = 8

√
3

5
a2 .

Réponse 28.4

A = 71
3
.

Réponse 28.5

(a) A = 3 π a2 . (b) ȳ = 3
2
a .

Réponse 28.6

A = 3
2
π a2 .
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Volumes de solides de révolution

Dans les exercices qui suivent, on considère le plan euclidien R2 comme étant le plan
formé par les axes Ox et Oy appartenant au système de coordonnées cartésiennes ca-
nonique Oxyz de l’espace euclidien R3. Oxy constitue alors le système de coordonnées
cartésiennes canonique de R2.

Exercice 29.1
Soit, dans le plan euclidien R2 (muni de son système de coordonnées cartésiennes ca-

nonique Oxy), l’ellipse d’équation x2

a2
+ y2

b2
= 1, où a et b sont deux nombres réels,

strictement positifs. On appelle ellipsöıde le solide dans R3 obtenu en faisant tourner
l’ellipse donnée autour de l’axe Ox ou autour de l’axe Oy.

(a) Calculer le volume V1 de l’ellipsöıde obtenu par rotation de l’ellipse donnée autour
de l’axe Ox.

(b) Calculer le volume V2 de l’ellipsöıde obtenu par rotation de l’ellipse donnée autour
de l’axe Oy.

Exercice 29.2
Soit, dans le plan R2 (muni de son système de coordonnées cartésiennes canonique Oxy),
le segment de droite reliant l’origine O (du système de coordonnées cartésiennes cano-
nique Oxy de R2) au point P (a; b), où a et b sont deux nombres réels strictement positifs.
Calculer le volume du cône obtenu en faisant tourner ce segment de droite autour de
l’axe Oy.

Exercice 29.3
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes cano-
nique Oxy.

(a) Calculer le volume V du solide Ω ⊂ R3 engendré par la rotation autour de l’axe Ox
de la surface finie S ⊂ R2 délimitée par les courbes d’équations f(x) = −2 x2 +2 et
g(x) = −x2+1. Réaliser, au besoin, un croquis de la situation pour mieux la cerner.

(b) Calculer le volume V du solide Ω ⊂ R3 engendré par la rotation, autour de la droite
d’équation y = 2, de la surface finie S ⊂ R2 délimitée par les courbes d’équations
y =

√
x , y = 0 et x = 4. Réaliser, au besoin, un croquis de la situation pour mieux

la cerner.
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Exercice 29.4
Soit, dans le plan R2 (muni de son système de coordonnées cartésiennes canonique Oxy),
le cercle d’équation x2+(y−b)2 = a2, où a et b sont deux nombres réels tels que 0 < a < b.
Calculer le volume V du solide Ω ⊂ R3 engendré par la rotation autour de l’axe Ox
de ce cercle ; un tel solide porte le nom de tore. Réaliser, au besoin, un croquis de la
situation pour mieux la cerner.

Exercice 29.5
Soit, dans le plan euclidien R2 (muni de son système de coordonnées cartésiennes cano-
nique Oxy), la cyclöıde donnée par les équations paramétriques :

{

x = a
(
t− sin(t)

)

y = a
(
1− cos(t)

) ,

où a est un paramètre réel strictement positif et t ∈ R. Calculer le volume V du solide
engendré par la rotation autour de l’axe Ox de l’arche de cette cyclöıde délimitée par
les points O(0; 0) et P (2 π a ; 0).

Exercice 29.6
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Soit S ⊂ R2 la surface plane finie, supposée homogène, délimitée par les courbes
d’équations y2 = x et −8 y = x2. Déterminer les coordonnées du centre de masse C
de S.

(b) Soit Ω ⊂ R3 le solide supposé homogène, résultant de la rotation autour de l’axe Ox
de la surface finie S ⊂ R2 délimitée par les courbes d’équations y =

√
x , y = 0 et

x = 9. Déterminer les coordonnées du centre de masse C de ce solide.
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Réponse 29.1

(a) V =
4

3
π a b2 . (b) V =

4

3
π a2 b .

Réponse 29.2

V =
1

3
π a2 b .

Réponse 29.3

(a) V =
16

5
π . (b) V =

40 π

3
.

Réponse 29.4

V = 2 π2 a2 b .

Réponse 29.5

V = 5 π2 a3 .

Réponse 29.6

(a) C
(
9
5
; − 9

10

)
. (b) C(6; 0; 0) .
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Longueurs de courbes

Aires de surfaces de révolution

Exercice 30.1
Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes canonique.

(a) Calculer la longueur du morceau de courbe d’équation y = f(x), où f(x) = 2
√
x3,

entre les points A(1; 2) et B(2 ; 4
√
2 ).

(b) Soit la courbe d’équation y = f(x), où f(x) = a cosh
(
x
a

)
, a étant un paramètre réel

strictement positif. Calculer la longueur du morceau de cette courbe compris entre
les points A

(
−a ; a cosh(1)

)
et B

(
a ; a cosh(1)

)
.

Exercice 30.2

(a) Soient le plan euclidien R2 et Oxy son système de coordonnées cartésiennes cano-
nique. Soit aussi C la cyclöıde donnée par les équations paramétriques :

{

x(t) = a
(
t− sin(t)

)

y(t) = a
(
1− cos(t)

) ,

où a est un paramètre réel, strictement positif, et t ∈ R (cf. exercice 28.5). Calculer
la longueur d’une arche de cette cyclöıde.

(b) Soit le plan euclidien R2 (muni de son système de coordonnées cartésiennes cano-
nique Oxy) ; soit aussi le système de coordonnées polaires, caractérisé par les va-
riables r et θ. Soit encore, dans R2, la cardiöıde d’équation polaire r = a

(
1− cos(θ)

)
,

où a est un paramètre réel strictement positif et t ∈ [0; 2 π[ (cf. exercice 28.6). No-
ter que cette courbe est une ligne qui se referme sur elle-même, en ce sens que
r(0) = r(2 π). Calculer la longueur de cette ligne.

Exercice 30.3
Soient l’espace euclidien R3 et Oxyz son système de coordonnées cartésiennes canonique.
Le plan généré par les axes Ox et Oy peut être identifié au plan euclidien R2 ; Oxy
constitue alors le système de coordonnées cartésiennes canonique de ce plan R2.

(a) Soit, dans R2, le segment de droite d’équation y = 2 x, où x ∈ [0; 2]. Calculer l’aire
de la surface de révolution engendrée par la rotation de ce segment autour :

i. de l’axe Ox,

ii. de l’axe Oy.
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(b) Calculer l’aire de la surface de révolution obtenue en faisant tourner le morceau de
parabole couchée d’équation y = 2

√
a x , où x ∈ [0 ; 3 a], autour de l’axe Ox, a étant

un nombre réel strictement positif.

(c) Calculer l’aire de la surface du tore obtenu en faisant tourner autour de l’axe Ox le
cercle, dans R2, ayant pour équation x2+(y− b)2 = a2, où a et b sont deux nombres
réels tels que 0 < a < b (cf. exercice 29.4).

Exercice 30.4
Soient l’espace euclidien R3 et Oxyz son système de coordonnées cartésiennes canonique.
Le plan généré par les axes Ox et Oy peut être identifié au plan euclidien R2 ; Oxy
constitue alors le système de coordonnées cartésiennes canonique de ce plan R2. Soit
aussi, dans R2, l’arche de cyclöıde C (cf. exercice 30.2 (a)) donnée par :

{

x = a
(
t− sin(t)

)

y = a
(
1− cos(t)

) ,

où a est un paramètre réel strictement positif et t ∈ [0; 2 π]. Calculer l’aire de la surface
engendrée par la rotation de cette arche autour de la tangente à son sommet.
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Réponse 30.1

(a) ℓ = 2
27

(√
6859−

√
1000

)
.

(b) ℓ = 2 a sinh(1) .

Réponse 30.2

(a) ℓ = 8 a .

(b) ℓ = 8 a .

Réponse 30.3

(a) i. A = 8 π
√
5 , ii. A = 4 π

√
5 .

(b) A = 56
3
π a2 .

(c) A = 4 π2 a b .

Réponse 30.4

A = 32
3
π a2 .
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proques, 477
des fonctions logarithmes, 445, 453



Index 653

des fonctions polynomiales, 429
des fonctions puissances, 461
des fonctions rationnelles, 432
des fonctions trigonométriques, 488
des fonctions trigonométriques réci-
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(développement – ), 4, 5, 7

décomposition
en éléments simples, 27, 28, 226, 534,

598
décroissante(s)

(fonction(s) – ), 73, 188, 256, 337, 338,
351

(suite(s) – ), 256, 400, 421, 501, 508
définition

(domaine(s) de – ), 64, 66, 72, 77, 99,
100, 360, 545, 546, 549, 553, 633
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de la dérivée, 121, 124, 562, 566
des fonctions exponentielles, 456
des fonctions hyperboliques, 467
des fonctions hyperboliques réci-
proques, 476

des fonctions logarithmes, 438
des fonctions polynomiales, 429
des fonctions puissances, 459
des fonctions rationnelles, 432
des fonctions trigonométriques, 487
des fonctions trigonométriques réci-
proques, 496

dénombrable, 31
(ensemble – ), 31, 33

départ
(domaine(s) de – ), 68, 72, 75, 79, 297,

340, 417
(ensemble de – ), 64, 68, 296

dépendante
(variable – ), 64

dérivabilité, 149, 151
dérivable(s), 150

(fonction(s) n fois – ), 268
dans un intervalle, 261, 263, 272,
274, 287, 345, 346

(fonction(s) n+ 1 fois – )
dans un intervalle, 263, 264, 268

(fonction(s) – ), 119, 120, 122, 123,
126, 130, 131, 133, 140, 149, 158

à droite, 120
à gauche, 120
dans un ensemble, 130, 131
dans un intervalle, 120, 125, 136,
146, 159, 161, 163, 164, 212, 215,
264, 293, 295, 297, 337, 338, 341,
342, 351, 355, 357, 389, 390, 395,
585

(fonction(s) deux fois – ), 133
dans un intervalle, 308, 317, 319,
354, 356–358, 621

(infiniment – ), 131, 276–278, 283
dérivation, 130, 131, 146, 147, 185, 199,

200, 259

(formule(s) de – ), 125, 212, 213
de la composition de fonctions, 137,

458
implicite, 134, 137, 140, 142, 146, 577,

578
dérivée(s), 118, 119, 121–125, 130, 135–

138, 140–142, 148, 155, 165, 181,
200, 212, 337, 562, 565, 566, 569,
574, 577, 578, 585, 629

(fonction(s) – ), 120, 131
à droite, 120

à gauche, 120
d’ordre supérieur, 130, 629
d’ordre p, 131, 277
de la réciproque, 140, 141, 578
des fonctions exponentielles, 457, 573
des fonctions hyperboliques, 470, 573

des fonctions hyperboliques réci-
proques, 477

des fonctions logarithmes, 447, 573
des fonctions polynomiales, 429
des fonctions puissances, 464

des fonctions rationnelles, 432
des fonctions trigonométriques, 490,

569
des fonctions trigonométriques réci-

proques, 496
des fonctions usuelles, 130, 523
infinie(s), 124, 125, 355, 357, 358
première, 133, 262, 629
seconde, 131, 133, 260, 262, 308, 356,

357
(fonction(s) – – ), 131

développement(s)
de MacLaurin, 262, 284, 369, 525,

605, 609
de Taylor, 261–263, 268, 272–274,

277, 278, 345, 605, 609
décimal, 4, 5, 7
illimité(s), 276, 447

limité(s), 267–272, 345, 513–519, 521,
605, 606, 609

différentiabilité, 148, 149, 151, 155, 157,
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158
différentiable(s), 150

(fonction(s) – ), 149, 152–155, 268
différentielle(s), 148, 152–155

(équation(s) – ), 287, 288, 290, 291,
613, 614, 617

linéaire(s), 297, 617
linéaire(s) du deuxième ordre, 314,
316–319, 322–324, 326, 621, 622

linéaire(s) du deuxième ordre, ho-
mogène(s), 308–314, 317, 325, 621

linéaire(s) du premier ordre, 297,
299–303, 307, 617

linéaire(s) du premier ordre, homo-
gène(s), 298, 299

ordinaire(s), 285, 287, 288, 290, 291
à variables séparables, 293–296

discontinue(s)
(fonction(s) – ), 98

discontinuité
(point(s) de – ), 98

discontinuité(s), 98, 100, 107, 248, 360,
432, 557

de type asymptotique, 99, 100, 107,
432, 557, 558

de type fluctuant, 99, 100, 557, 558
de type saut, 99, 100, 248, 557, 558

de type trou, 98, 100, 248, 432, 557,
558

de type trou-saut, 99, 100, 248, 557,
558

divergente(s)
(intégrale(s) – ), 237, 238, 240, 243–

246, 251, 252, 254, 256, 258, 601,
602

(série(s) – ), 42–47, 256, 258
(suite(s) – ), 35, 36, 39

domaine(s)
borné(s), 374
d’arrivée, 79

de convergence, 278, 283, 610
de définition, 64, 66, 72, 77, 99, 100,

360, 545, 546, 549, 553, 633

de la dérivée, 121, 124, 562, 566
des fonctions exponentielles, 456
des fonctions hyperboliques, 467
des fonctions hyperboliques réci-
proques, 476

des fonctions logarithmes, 438
des fonctions polynomiales, 429
des fonctions puissances, 459
des fonctions rationnelles, 432
des fonctions trigonométriques, 487
des fonctions trigonométriques réci-
proques, 496

de départ, 68, 72, 75, 79, 297, 340, 417
fini(s), 374, 638

droite
(asymptote à – ), 96, 97
(dérivée à – ), 120
(fonction(s) continue(s) à – ), 98, 202,

203, 251
(limite(s) à – ), 86, 243

droite(s)
réelle(s), 5, 9, 17–19, 23, 50, 51, 53
tangente(s), 118, 120, 124, 125, 134,

142, 143, 151, 173, 181–183, 288,
337, 355, 356, 561, 562, 569, 573,
577, 581

élément(s)
d’un ensemble, 2–7, 14–16, 19, 31, 529
d’une subdivision, 503–505, 508
d’une suite, 32, 33, 41, 45, 47, 399,

410, 414–418, 422, 434, 436, 501–
503, 510, 511

infiniment petit(s), 1, 119, 148, 173,
178, 183, 184, 186, 191, 199, 371,
373, 384, 388–390, 392, 393

neutre, 2, 3
éléments simples, 27, 28, 30, 226–228,

230, 231, 259
(décomposition en – ), 27, 28, 226,

534, 598
ensemble

(élément(s) d’un – ), 2–7, 14–16, 19,
31, 529
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(notation d’un – ), 6
d’arrivée, 64, 66, 69
de départ, 64, 68, 296
des nombres complexes, 5, 6, 31
des nombres entiers relatifs, 2, 5, 6,

31, 33
des nombres irrationnels, 5, 437, 438
des nombres naturels, 2, 5, 6, 31
des nombres rationnels, 3, 5, 6, 31,

437, 438
des nombres réels, 4–7, 16, 18, 19, 31,

438
des primitives, 202, 213, 454, 593,

597, 598, 601
dénombrable, 31, 33
image, 66, 68, 69, 108, 425
des fonctions exponentielles, 456
des fonctions hyperboliques, 467
des fonctions hyperboliques réci-
proques, 476

des fonctions logarithmes, 438, 440,
441

des fonctions polynomiales, 429
des fonctions puissances, 459
des fonctions rationnelles, 432
des fonctions trigonométriques, 487
des fonctions trigonométriques réci-
proques, 496

totalement ordonné, 9
vide, 7, 54

entier(s) relatif(s)
(nombre(s) – ), 2, 7

entière
(partie – ), 5, 16, 34, 35, 69, 256, 602

équation(s)
caractéristique, 310, 323, 326
(solution de l’– – ), 310, 311, 326,
327

cartésienne(s), 56, 58, 59, 542
explicite(s), 64, 376, 383, 389, 392,
393

implicite(s), 63
différentielle(s), 287, 288, 290, 291,

613, 614, 617
(solution d’une – – ), 287, 288, 290,
293, 295–299, 301, 307–310, 317,
322

(solution générale d’une – – ), 290,
293, 294, 298–302, 309, 311, 313,
317–319

(solution maximale d’une – – ), 291,
296

(solution particulière d’une – – ),
299–301, 318, 319, 323, 324, 327

(solution spécifique d’une – – ), 291
(solutions linéairement indépen-
dantes d’une – – ), 309, 319

linéaire(s), 297, 617
linéaire(s) du deuxième ordre, 314,
316–319, 322–324, 326, 621, 622

linéaire(s) du deuxième ordre, ho-
mogène(s), 308–314, 317, 325, 621

linéaire(s) du premier ordre, 297,
299–303, 307, 617

linéaire(s) du premier ordre, homo-
gène(s), 298, 299

ordinaire(s), 285, 287, 288, 290, 291

à variables séparables, 293–296
exponentielle(s), 447

paramétrique(s), 60, 111, 376, 377,
383, 389, 392, 393, 398, 542, 581,
638, 642, 645

polaire(s), 62, 63, 377, 393, 394, 542,
638, 645

explicite(s)
(équation(s) cartésienne(s) – ), 64,

376, 383, 389, 392, 393

(forme(s) – ), 56–60, 64, 65, 135
(forme(s) cartésienne(s) – ), 64

(forme(s) polaire(s) – ), 62–64

exponentielle(s)

(fonction(s) – ), 92, 130, 278, 281, 282,
309, 325, 454

(équation(s) – ), 447
extrema, 339

extremum, 339
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local, 339–342, 346, 629, 633

fermé(s)
(intervalle(s) – et borné(s) ), 17, 501
(intervalle(s) – et non borné(s) ), 17

fini(s)
(domaine(s) – ), 374, 638

finie(s)
(surface(s) – ), 374

fonction(s), 49
n fois dérivable(s), 268
dans un intervalle, 261, 263, 272,
274, 287, 345, 346

n + 1 fois dérivable(s)
dans un intervalle, 263, 264, 268

(composition de – ), 66, 77, 78, 212,
216, 268, 550

(graphe d’une – ), 68, 72, 73, 80, 93,
94, 97, 100, 106, 107, 109, 111,
112, 120, 124, 125, 134, 137, 146,
151, 188, 290, 349, 355, 360

(limite(s) d’une – ), 81, 82, 97–100,
413–419, 553

analytique(s), 282
arc cosinus, 495
arc sinus, 495
arc tangente, 282, 283, 495
argument cosinus hyperbolique, 473,

476
argument sinus hyperbolique, 473,

474
argument tangente hyperbolique, 473
bijective(s), 69, 70, 78, 79, 81, 108,

109, 140, 295, 425–428, 546, 550,
578

concave(s), 349, 351, 354–356, 629
constante(s), 73
continue(s), 97, 105–109, 122, 123,

413, 419, 420, 428, 500, 502, 557,
566

à droite, 98, 202, 203, 251
à gauche, 98, 202, 203, 251
dans un intervalle, 98, 420, 421,
424–428

par morceaux, 247–250, 255
convexe(s), 349–351, 354–356, 629
cosinus, 75, 76, 281, 479–481, 490, 609
généralisé, 76
hyperbolique, 281, 465–467, 469,
490

croissante(s), 72, 188, 211, 240, 337,
338, 351

décroissante(s), 73, 188, 256, 337, 338,
351

dérivable(s), 119, 120, 122, 123, 126,
130, 131, 133, 140, 149, 158

à droite, 120

à gauche, 120
dans un ensemble, 130, 131
dans un intervalle, 120, 125, 136,
146, 159, 161, 163, 164, 212, 215,
264, 293, 295, 297, 337, 338, 341,
342, 351, 355, 357, 389, 390, 395,
585

dérivée(s), 120, 131
seconde, 131

deux fois dérivable(s), 133
dans un intervalle, 308, 317, 319,
354, 356–358, 621

différentiable(s), 149, 152–155, 268
discontinue(s), 98
exponentielle(s), 92, 130, 278, 281,

282, 309, 325, 454

hyperbolique(s), 130, 281, 282, 464
réciproque(s), 130, 282, 473

impaire(s), 72, 225, 268, 513, 516
injective(s), 69, 70, 109, 376, 425, 546,

549

intégrable(s), 190, 194, 504, 512
logarithme(s), 130, 282, 433
paire(s), 71, 72, 225, 268, 513, 515,

516

partie entière, 69, 256, 602
polynomiale(s), 130, 282, 429
puissance(s), 130, 282
périodique(s), 74, 225, 226
rationnelle(s), 130, 282, 431



658 Index

(intégration des – – ), 226, 232–236
réciproque, 78–80, 108, 109, 140, 295,

296, 425–428, 549, 550
sinus, 75, 91, 123, 280, 281, 479–481,

609
hyperbolique, 281, 464, 467, 469

strictement croissante(s), 72, 108–
110, 295, 337, 425–428, 439, 442,
444, 451, 453, 454, 457, 471, 472,
493, 494

strictement décroissante(s), 73, 108–
110, 295, 337, 425–428, 440, 442,
444, 454, 457, 471, 472, 493, 494

surjective(s), 69, 70, 109, 110, 425,
427, 546

tangente, 75, 112, 479, 480
hyperbolique, 465, 469

trigonométrique(s), 130, 281, 282,
478, 480

réciproque(s), 130, 212, 282, 494
uniformément continue(s), 499–501
usuelle(s), 130, 212, 259, 282, 429
(dérivées des – – ), 130, 523
(primitives des – – ), 211, 212, 524

forme(s)
cartésienne(s)
explicite(s), 64
implicite(s), 63

explicite(s), 56–60, 64, 65, 135
implicite(s), 56, 58–60, 63, 135
indéterminée(s), 92, 119, 144, 431,

462
paramétrique(s), 60
polaire(s)
explicite(s), 62–64
implicite(s), 62, 63

formule(s)
de dérivation, 125, 212, 213

gauche
(asymptote à – ), 96, 97
(dérivée à – ), 120
(fonction(s) continue(s) à – ), 98, 202,

203, 251

(limite(s) à – ), 85, 243
gendarmes

(théorème des deux – ), 90, 91, 123,
124, 171, 243, 350, 416, 491

pour les suites, 189, 194, 401
graphe

d’une fonction, 68, 72, 73, 80, 93, 94,
97, 100, 106, 107, 109, 111, 112,
120, 124, 125, 134, 137, 146, 151,
188, 290, 349, 355, 360

harmonique
(oscillateur – ), 336
(série – ), 42, 43, 258
alternée
(série – – ), 42, 409, 411

forcé
(oscillateur – – ), 336

Heine
(théorème de – ), 501

hyperbolique(s)
(fonction(s) – ), 130, 281, 282, 464
réciproque(s)
(fonction(s) – – ), 130, 282, 473

illimité(s)
(développement(s) – ), 276, 447

image
(ensemble – ), 66, 68, 69, 108, 425
des fonctions exponentielles, 456
des fonctions hyperboliques, 467
des fonctions hyperboliques réci-
proques, 476

des fonctions logarithmes, 438, 440,
441

des fonctions polynomiales, 429
des fonctions puissances, 459
des fonctions rationnelles, 432
des fonctions trigonométriques, 487
des fonctions trigonométriques réci-
proques, 496

impaire(s)
(fonction(s) – ), 72, 225, 268, 513, 516

implicite(s)
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(dérivation – ), 134, 137, 140, 142,
146, 577, 578

(équation(s) cartésienne(s) – ), 63
(forme(s) – ), 56, 58–60, 63, 135
(forme(s) cartésienne(s) – ), 63
(forme(s) polaire(s) – ), 62, 63

indépendante
(variable – ), 64

indéterminée(s)
(forme(s) – ), 92, 119, 144, 431, 462

inférieure
(borne – ), 15–18

infini
(limite(s) à l’– ), 34, 86, 91, 169, 554,

586
infinie(s)

(dérivée(s) – ), 124, 125, 357, 358
(limite(s) – ), 86, 91
limite(s), 34

infiniment
dérivable(s), 131, 276–278, 283

infiniment petit(s)
(élément(s) – ), 1, 119, 148, 173, 178,

183, 184, 186, 191, 199, 371, 373,
384, 388–390, 392, 393

infinitésimal
(accroissement – ), 119, 148, 152, 153,

182, 191
inflexion

(point d’– ), 355–358, 360, 629, 633
injective(s)

(fonction(s) – ), 69, 70, 109, 376, 425,
546, 549

intégrable(s)
(fonction(s) – ), 190, 194, 504, 512

intégrale(s), 183, 185, 196, 197, 199, 200,
202, 208, 209, 216, 226, 237, 248,
249, 251, 274, 372, 374, 504, 589,
593, 597, 601, 602, 609

(test de l’– ), 256, 283
convergente(s), 237–241, 243–247,

251, 252, 254, 256, 258, 601, 602
de Cauchy, 186, 502

de Riemann, 190–195, 202, 248, 374,
379, 381, 390, 502–504

divergente(s), 237, 238, 240, 243–246,
251, 252, 254, 256, 258, 601, 602

généralisée(s), 237–241, 243–248,
250–254, 256, 258, 601

sur un intervalle borné, 237, 252
sur un intervalle non borné, 251–
253, 255, 258

intégration, 259, 274, 594
(borne(s) d’– ), 191, 225, 226, 233,

235, 377
(méthode(s) d’– ), 212
(variable d’– ), 191
des fonctions rationnelles, 226, 232–

236
par changement de variable, 215, 216,

225, 597
par parties, 212, 213, 230, 593

intermédiaires
(théorème des valeurs – ), 106, 107,

420–423, 425
intervalle(s)

(bord(s) d’un – ), 18, 341
(borne(s) d’un – ), 18, 426
borné(s), 18, 110, 237, 251
(intégrale(s) généralisée(s) sur un –
– ), 237, 252

fermé(s)
borné(s), 17, 237, 255, 501
non borné(s), 17, 251, 254, 256

non borné(s), 18
(intégrale(s) généralisée(s) sur un –
– ), 251–253, 255, 258

ouvert(s)
borné(s), 17, 238, 239, 250
non borné(s), 18, 252

semi-ouvert(s)
borné(s), 17, 237–240, 243, 245–
247, 250

intégration
par parties, 593

irrationnel(s)
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(nombre(s) – ), 5

Lagrange
(reste de – ), 263, 266, 268, 345, 605,

606
(théorème de – ), 161, 585

Leibniz, GottfriedWilhelm, 118, 119, 183,
184, 191, 199

limite(s), 81, 115, 118–121, 124, 125, 129,
142, 148, 149, 151, 152, 165–168,
171, 185, 271, 272, 340, 360, 371,
372, 413, 553, 554, 557, 558, 585,
586, 609

à droite, 86, 243
à gauche, 85, 243
d’une fonction, 81, 82, 97–100, 413–

419, 553
d’une somme, 186, 190, 374, 380, 391
d’une suite, 33–35, 42, 44–47, 399–

402, 404, 405, 411, 421, 422, 424,
502, 508, 538

de la composition de fonctions, 91
infinie(s), 34, 86, 91
à l’infini, 34, 86, 91, 169, 554, 586

limité(s)
(développement(s) – ), 267–272, 345,

513–519, 521, 605, 606, 609
logarithme(s)

(base d’un – ), 441, 451
(fonction(s) – ), 130, 282, 433

MacLaurin
(développement(s) de – ), 262, 284,

369, 525, 605, 609
majorant(s), 14–18
majoré(s)

(sous-ensemble – ), 14, 16
maximum, 73, 74, 160, 192, 194, 197, 336,

339, 341, 423, 505–508, 510, 511,
625

local, 339, 340, 342, 345, 346, 625, 633
méthode(s)

d’intégration, 212

minimum, 73, 74, 192, 194, 197, 339, 341,
423, 505, 507, 508, 510, 511, 625

local, 339–342, 346, 625, 633
minimum et maximum

(théorème des – – – ), 107, 192, 197,
198, 340, 341, 421

minorant(s), 14–18
minoré(s)

(sous-ensemble – ), 14, 16
moyenne(s)

(position – ), 330
(théorème de la valeur – ), 197, 199,

200, 202, 203, 594, 638
(valeur – ), 197, 638
(vitesse(s) – ), 115–118, 162, 561, 594

naturel(s)
(nombre(s) – ), 2, 5, 31, 32

neutre
élément, 2, 3

Newton, Isaac, 182–184, 199, 253
nombre(s)

complexe(s)
(ensemble des – – ), 5, 6, 31

entier(s) relatif(s)
(ensemble des – – ), 2, 5, 6, 31, 33

irrationnel(s)
(ensemble des – – ), 5, 437, 438

naturel(s)
(ensemble des – – ), 2, 5, 6, 31

rationnel(s)
(ensemble des – – ), 3, 5, 6, 31, 437,
438

réel(s)
(ensemble des – – ), 4–7, 16, 18, 19,
31, 438

non borné(s)
(intervalle(s) – ), 18
(intervalle(s) fermé(s) et – ), 17, 251,

254, 256
(intervalle(s) ouvert(s) et – ), 18, 252
(sous-ensemble(s) – ), 15

ordonnée(s), 50
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(axe des – ), 50
origine, 23, 51, 53, 60, 72
oscillateur

harmonique, 336
forcé, 336

ouvert(s)
(intervalle(s) – et borné(s) ), 17
(intervalle(s) – et non borné(s) ), 18

paire(s)
(fonction(s) – ), 71, 72, 225, 268, 513,

515, 516
paramétrique(s)

(forme(s) – ), 60
(équation(s) – ), 60, 111, 376, 377,

383, 389, 392, 393, 398, 542, 581,
638, 642, 645

parité, 71, 360, 545, 546, 553
des fonctions hyperboliques, 468
des fonctions hyperboliques réci-

proques, 477
des fonctions trigonométriques, 487
des fonctions trigonométriques réci-

proques, 496
partie

entière, 5, 16, 34, 35, 69
(fonction – – ), 69, 256, 602

pas
d’une subdivision, 189–191, 193–197,

374, 379, 381, 390, 395, 503–505,
510–512

période, 74
périodicité, 74, 360

des fonctions trigonométriques, 488
périodique(s)

(fonction(s) – ), 74, 225, 226
point(s)

d’inflexion, 355–358, 360, 629, 633
de discontinuité, 98
stationnaire(s), 340, 341, 625

polaire(s)
(équation(s) – ), 62, 63, 377, 393, 394,

542, 638, 645
polynomiale(s)

(fonction(s) – ), 130, 282, 429
position

moyenne, 330
primitive(s), 199–205, 208, 209, 211–213,

215, 216, 226–228, 230, 232, 243,
274, 293, 296, 298, 299, 301, 302,
307, 450, 454

(ensemble des – ), 202, 213, 454, 593,
597, 598, 601

des fonctions usuelles, 211, 212, 524
prolongeable par continuité, 100, 559
prolongement, 76, 100

par continuité, 100
puissance(s)

(fonction(s) – ), 130, 282
croissante(s), 269, 270, 516, 518

quotient
(critère du – ), 44

racine
(critère de la – ), 46, 283, 284, 409,

541
rationnel(s)

(nombre(s) – ), 3–5
rationnelle(s)

(fonction(s) – ), 130, 282, 431
réciproque

(dérivée de la – ), 140, 141
(fonction – ), 78–80, 108, 109, 140,

295, 296, 425–428, 549, 550
réel(s)

(nombre(s) – ), 1, 4, 5, 7
réelle(s)

(droite(s) – ), 5, 9, 17–19, 23, 50, 51,
53

règle
de Bernoulli-L’Hôpital, 164, 166–168,

170, 171, 187, 335, 361, 365, 367,
443, 469, 586, 609

reste
de Lagrange, 263, 266, 268, 345, 605,

606
restriction, 76, 79, 288, 291
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Riemann
(intégrale de – ), 190–195, 202, 248,

374, 379, 381, 390, 502–504
(somme(s) de – ), 190, 378

Riemann, Georg Friedrich Bernhard, 185,
186

Rolle
(théorème de – ), 159

semi-ouvert(s)
(intervalle(s) – et borné(s) ), 17

série(s)
alternées
(critère des – – ), 282, 410

convergente(s), 42–48, 256, 258, 406–
409, 411, 541

de Taylor
convergente, 278, 283, 284

divergente(s), 42–47, 256, 258
harmonique, 42, 43, 258
alternée, 42, 409, 411

sinus, 61
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non borné(s), 15

stationnaire(s)
(point(s) – ), 340, 341, 625

strictement croissante(s)

(fonction(s) – ), 72, 108–110, 295, 337,
425–428, 439, 442, 444, 451, 453,
454, 457, 471, 472, 493, 494

(suite(s) – ), 400, 422, 424

strictement décroissante(s)
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généralisé, 163, 165–167

des deux gendarmes, 90, 91, 123, 124,
171, 243, 350, 416, 491

pour les suites, 189, 194, 401
des valeurs extrêmes, 107, 421
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bué à la publication du présent ouvrage. En particulier :

• Prof. Robert Dalang (directeur de la collection de mathématiques aux
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