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RÉFACE

Physique, une présentation systémique propose, pour les étudiants des universités et
des hautes écoles spécialisées, une approche novatrice des théories de la physique
macroscopique basée sur la physique des milieux continus et sur celle des systèmes
dynamiques uniformes. L’ouvrage propose une vue d’ensemble d’un cours destiné
aux personnes qui désirent découvrir la physique en tant que science des systèmes et
souhaitent être en mesure de l’appliquer dans leurs propres disciplines telles que scien-
ce de la terre, biologie, génie chimique et énergétique, médecine, écologie, pour ne
nommer que quelques champs possibles où les sciences physiques, une approche sys-
témique, et la modélisation, la simulation et l’analyse de systèmes dynamiques jouent
un rôle.

La conceptualisation généralisée des systèmes et processus que proposent la physique
des milieux continus et la science des systèmes d’une part, et leur application à des
situations réelles exigée par les sciences naturelles et l’ingénierie de l’autre, ont inspi-
ré la rédaction de cet ouvrage. Lors de la conception d’une usine chimique, les ingé-
nieurs créent préalablement des modèles basés sur des processus physiques,
chimiques et biochimiques; les chercheurs qui travaillent dans le domaine médical
pourraient avoir besoin de comprendre les aspects dynamiques de l’écoulement de
fluide dans le système cardiovasculaire; les écologistes doivent suivre les flux de subs-
tances, de chaleur et d’énergie dans l’environnement et prendre en compte l’interac-
tion de nombreux processus physiques et chimiques différents dans des systèmes
dynamiques complexes; et les chercheurs et praticiens travaillant dans le génie éner-
gétique adoptent une approche généralisée du rôle de l’énergie dans les systèmes
qu’ils conçoivent et réalisent.

Tout cela exige une approche des fondements des systèmes et processus physiques dif-
férente de celle qui est traditionnellement adoptée à l’université dans les cours d’intro-
duction à la physique. Plutôt que de prendre les particules et leur mouvement comme
éléments fondamentaux de la science physique, nous élaborons une conceptualisation
dans laquelle les potentiels – et les différences de potentiel comprises comme des ten-
sions –, les grandeurs semblables à des fluides qui leurs sont associées, ainsi que la
puissance et l’énergie, servent à décrire les phénomènes fondamentaux des fluides, de
l’électricité et du magnétisme, de la chaleur, des substances, de la gravité et du mou-
vement linéaire ou rotatoire. À titre d’exemples, les phénomènes thermiques sont con-
ceptualisés par une théorie dans laquelle l’entropie est la grandeur fondamentale qui
est transportée dans les processus thermiques et la température le potentiel
correspondant; le mouvement de translation est compris comme la science de la vites-
se en tant que potentiel lié au mouvement, associé au stockage et au flux de quantité
de mouvement; dans les deux phénomènes, la puissance et l’énergie assument des rô-
les parfaitement analogues. De plus, cette approche des systèmes et des processus per-
met de construire des théories constitutives importantes de matériaux simples et des
champs gravitationnel et électromagnétique.

Adopter cette voie vers une présentation unifiée de la science physique macroscopique
implique de repenser à la fois le contenu et la méthodologie. Nous commençons par
les systèmes dynamiques traitant de l’écoulement de fluides ou de l’électricité, puis
passons aux sujets relatifs à la chaleur et aux processus chimiques pour arriver à une
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RÉFACE

présentation de la mécanique en tant que théorie du mouvement des corps macrosco-
piques. Les notions de puissance et d’énergie sont considérées comme liées à ces dif-
férents phénomènes de manière fondamentalement analogue. Cela nous permet de
développer des théories constitutives de matériaux simples et des champs classiques.
Dès le début, nous traitons d’applications telles que le système cardiovasculaire, la
thermoélectricité et l’énergie solaire. La plus grande part de la présentation s’appuie
sur des modèles de systèmes dynamiques uniformes, mais avant d’aborder l’étude des
champs, nous développons une approche simplifiée des matériaux et des processus
continus.

En ce qui concerne la méthodologie, chaque sujet est développé à partir d’une présen-
tation narrative et imagée, pour être ensuite formalisé. Des idées de concepts et de re-
lations sont suggérées et introduites sur la base de descriptions et de données de
phénomènes dynamiques concrets. De plus, en montrant aux étudiants comment créer
des modèles de systèmes dynamiques, on leur permet de développer des compétences
formelles et mathématiques nécessaires aux praticiens de la science, de l’ingénierie et
de la médecine.

En bref, ce livre est destiné aux lecteurs qui veulent apprendre la science physique à
partir de la perspective de la science des systèmes en travaillant à travers des applica-
tions réalistes.
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Pour la structuration conceptuelle, la forme de présentation des thèmes de la science
physique macroscopique, ainsi que de certains sujets concrets, qui font l’objet de notre
ouvrage, nous avons grandement bénéficié du travail effectué par plusieurs collègues
au cours des dernières décennies. En particulier, nous tenons à exprimer notre grati-
tude pour l’utilisation de certains de leurs écrits.

À partir des années 1990, Friedrich Herrmann et collaborateurs ont élaboré un ouvrage
qui a fait école, le Cours de physique de Karlsruhe, qui a servi d’inspiration précoce
aux auteurs pour une manière novatrice et unifiée de conceptualiser les processus phy-
siques de base traités en physique macroscopique. Le travail sur la dynamique des pro-
cessus chimiques réalisé par Georg Job à l’Université de Hambourg a été tout aussi
important car il a permis d’intégrer les processus chimiques dans le cadre général.

En se basant sur le travail en thermodynamique des milieux continus effectué durant
la seconde moitié du XXe siècle, une théorie généralisée des processus dynamiques
uniformes dans les systèmes thermiques a été développée par Hans Fuchs. Avec
l’aimable autorisation de l’éditeur Springer, nous avons utilisé quelques parties de The
Dynamics of Heat (1996, 2010), principalement dans nos chapitres sur la thermody-
namique.

De plus, nous avons grandement profité d’une approche didactique faisant usage de la
modélisation explicite des systèmes dynamiques en science physique, développée
pour les étudiants en ingénierie à l’École d’Ingénieurs de la Haute École des Sciences
Appliquées de Zurich à Winterthur. Cette approche novatrice a débouché sur des notes
de cours rédigées par Hans Fuchs et Elisabeth Dumont (2013-2019), textes qui ont ser-
vi de source importante pour des parties de notre ouvrage.
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Les fluides, particulièrement les liquides, nous confrontent avec quelques-uns des pro-
cessus physiques les plus faciles à observer et à étudier. Ce que nous apprendrons ici
pourra être transposé dans d’autres domaines tels que l’électricité, la chaleur, les subs-
tances et réactions chimiques, et le mouvement.

Dans ce chapitre, nous allons découvrir que les phénomènes liés à la dynamique des
fluides sont la conséquence, en premier lieu, de l’accumulation et de l’écoulement de
quantités de fluides et, en second lieu, de la présence de différences de pression qui
agissent en tant que force d’entraînement de ces processus.

Ce chapitre a également pour but d’élaborer les outils qui nous permettront de modé-
liser l’évolution dynamique des systèmes physiques. Ces outils auront à la fois une
forme mathématique, dans l’énoncé des lois, et une forme graphique empruntée aux
logiciels de modélisation des systèmes dynamiques.

Lors de cette mise en place des bases sur lesquelles reposeront les développements ul-
térieurs, les mathématiques utilisées dans les premières sections seront de niveau élé-
mentaire. Dans les sections suivantes, nous utiliserons les techniques de l’analyse
standard, renonçant quelquefois à expliciter les étapes mathématiques conduisant au
résultat final, nous appuyant abondamment sur les résultats fournis par les outils de
modélisation.

 

1.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

Cette section va nous permettre de découvrir quels sont les processus fondamentaux
qui se déroulent lors de l’accumulation et de l’écoulement de fluides et d’en dégager
les grandeurs dynamiques qui serviront à leur description et à leur modélisation.

 

1.1.1 Équilibrage des niveaux de fluides

Si nous remplissons deux cuves d’eau ou d’huile à des niveaux initiaux différents et
que nous relions leur base au moyen d’un tuyau (fig. 1.1), nous observons une
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FIGURE 1.1 Écoulement entre deux cuves: (a) les fonds de deux cuves contenant de l’huile de colza sont reliés entre eux par un
tuyau; le fluide s’écoule de la cuve qui a le plus haut niveau vers celle dont le niveau est plus bas, indépendamment de la grandeur
des cuves; ce sont les niveaux qui s’équilibrent, pas les quantités de liquide; (b) évolution des niveaux d’huile dans chacune des
cuves.
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diminution du niveau le plus élevé et une augmentation de celui le plus bas, tant que
les niveaux sont inégaux. La vitesse d’écoulement diminue au fur et à mesure que les
niveaux se rapprochent.

Interprétation. Une différence de niveau est indispensable pour que les liquides puis-
sent s’écouler d’une cuve vers l’autre. Cette différence de niveau entraîne l’écoule-
ment du liquide, et la vitesse d’écoulement est d’autant plus grande que la différence
de niveau est importante. D’autre part, l’écoulement entraîne une variation de la quan-
tité de liquide accumulée dans chacune des cuves.

 

1.1.2 Équilibrage des pressions

Si l’une des cuves est remplie d’huile et l’autre d’eau, les niveaux seront différents à
la fin du processus d’équilibrage (fig. 1.2a). Dans une autre expérience, deux ballons
sont reliés par un tuyau muni d’une valve (fig. 1.2b). Ils sont remplis d’air, l’un à pres-
sion élevée, l’autre à une pression moindre. Lors de l’ouverture de la valve, l’air
s’écoule du ballon à pression élevée vers l’autre ballon.

Interprétation. Ce qui s’équilibre lors de ces expériences, ce ne sont ni les niveaux, ni
les volumes, mais la pression des fluides, ce qui est confirmé si l’on introduit des cap-
teurs de pression dans les cuves de la figure 1.1. On obtient le même résultat si on rem-
plit les deux branches d’un tube en U de liquides différents (fig. 1.2a), ou si on mesure
la pression de l’air dans les ballons (fig. 1.2c). En conséquence, nous pouvons conclu-
re que c’est la différence de pression qui est la force d’entraînement des écoulements.

1. Pourquoi le phénomène illustré par la figure 1.1 montre-t-il que ce sont
les niveaux plutôt que les quantités de liquide qui s’équilibrent dans des
vases communicants?

2. Pourquoi la photo de la figure 1.2a montrant un tube en U contenant de
l’eau dans une branche et de l’huile dans l’autre montre-t-elle que ce
sont les pressions plutôt que les niveaux de liquide qui s’équilibrent
dans les vases communicants?

3. Que nous révèle le phénomène d’équilibrage des pressions dans les ballons de la
figure 1.2b au sujet de l’agent moteur de l’écoulement de l’air?
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FIGURE 1.2 Équilibrage des pressions: (a) lorsque l’on superpose de l’eau à de l’huile dans la colonne
droite du tube en U, les niveaux ne sont plus égaux à l’équilibre. L’effet est également observable si les deux colonnes ont
des sections différentes et/ou des formes différentes; (b) lorsque de l’air peut circuler librement entre deux ballons commu-
nicants, ni les volumes, ni les niveaux ne sont les mêmes à l’équilibre; (c) évolution des pressions; la courbe supérieure in-
dique l’évolution de la pression du plus petit des deux ballons (notons que, de manière un peu surprenante, la pression est
plus élevée dans ce dernier).
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1. Si c’étaient les quantités qui s’équilibrent, le niveau final dans la cuve
de droite devrait être plus élevé que dans la cuve de gauche, vu que sa
section est plus faible.

2. Le niveau de la branche contenant de l’huile est plus élevé parce que
l’huile est moins dense que l’eau et que, de ce fait, il faut une plus
grande quantité d’huile pour équilibrer la pression au point le plus bas
du tube.

3. Il démontre que c’est également la différence de pression qui est responsable de l’écoule-
ment de l’air.
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Dans la section précédente, nous avons formulé un certain nombre d’explications qua-
litatives au sujet de la manière dont se déroulent les processus hydrauliques. Fonda-
mentalement, nous pensons que

 

1.2.1 Systèmes, systémique et dynamique des systèmes

La notion de système a déjà été utilisée plusieurs fois dans les lignes qui précèdent,
raison pour laquelle il est nécessaire de la préciser.

Une manière d’aborder les systèmes dynamiques, la systémique, s’est développée au
cours des dernières décennies. Elle consiste à étudier ou expliquer tout type de phéno-
mène comme un ensemble complexe d’interactions entre les parties, voire les sous-
systèmes d’un système plus grand.

Il existe une méthodologie, la dynamique des systèmes, qui permet de traiter de ma-
nière générale les systèmes dynamiques. Elle est issue de la cybernétique et du con-
trôle de processus et a été appliquée tout d’abord à des phénomènes sociaux et
d’organisation. Des outils graphiques simples ont été créés pour permettre à des per-
sonnes sans formation particulière en mathématique, en physique et en ingénierie, de
participer à l’effort de modélisation. Ils permettent d’exprimer graphiquement les

R

Les différences de niveau ou de pression engendrent les flux qui entraînent
les variations des quantités de fluides accumulées dans un système. Réci-
proquement, des variations des quantités accumulées produisent des va-
riations de pression.

On entend par système un ensemble d’éléments (qui eux-mêmes peuvent
être des systèmes) qui interagissent entre eux selon certaines règles. Un
système est déterminé par:

• sa frontière, limite matérielle ou imaginaire qui le sépare de son
environnement;

• les interactions avec son environnement;

• les règles qui définissent le comportement des parties du système, leur
organisation et leurs interactions. Ces règles déterminent la manière
dont évolue le système, elles sont à l’origine de sa dynamique.
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idées concernant les systèmes et les processus, pour ensuite simuler les modèles résul-
tants. Si l’on fait abstraction de certaines exigences particulières liées à la physique,
ces outils sont parfaitement adaptés à notre objectif. Il existe plusieurs logiciels de ce
type sur le marché: Dynamo (1970), Stella (1987), Berkeley Madonna (1990), Power-
sim (1993), Vensim (1992),); Simulink (1993), un outil pour ingénieurs, peut égale-
ment être utilisé dans ce but.

Nous allons, avec l’aide d’un logiciel de dynamique des systèmes1 faisant usage de
graphiques, convertir nos idées en modèles qui serviront à calculer les conséquences
des hypothèses. Puis, nous comparerons les résultats de la simulation et les données
expérimentales. Nous allons montrer que nous pouvons élaborer des modèles quanti-
tatifs à partir d’un raisonnement qualitatif.

 

1.2.2 Premier modèle de l’équilibrage des niveaux d’huile

Nous allons commencer par le processus d’équilibrage des niveaux de deux réservoirs
communicants de la figure 1.1. Pour commencer, nous admettons que les récipients
sont identiques et remplis d’une certaine sorte d’huile. Le relevé de l’évolution des ni-
veaux est donné dans la figure 1.3b.

Le contenu du récipient de gauche est plus important que celui de droite. Si la conduite
est ouverte, l’huile s’écoule de la gauche vers la droite. Cette affirmation évidente peut
être exprimée graphiquement dans le logiciel de modélisation de dynamique des sys-
tèmes en plaçant deux symboles de stockage connectés par un symbole de flux
(fig. 1.4). Les symboles de stockage ont été étiquetés Volume 1 et Volume 2, et non Ré-
servoir 1 et Réservoir 2. Les symboles représentent les quantités de liquide accumulé,
et pas les réservoirs. Nous avons décidé d’utiliser le volume d’huile pour représenter
sa quantité. Le symbole appelé Courant représente le courant de volume de liquide.

Lorsque l’on compose un diagramme tel que celui-ci, le logiciel de dynamique des
systèmes crée des équations dont le rôle est de comptabiliser les quantités de liquide
accumulées dans chacun des réservoirs. Ce que nous avons exprimé graphiquement est
un bilan, dans un cas particulier, celui de deux volumes de liquide accumulés dans des
récipients reliés par une conduite. Ce bilan exprime l’évolution des volumes respectifs
au moyen des relations suivantes:

1. Dans cet ouvrage, nous utiliserons essentiellement Stella (www.iseesystems.com) pour
créer les modèles de dynamique des systèmes.
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FIGURE 1.3 Écoulement entre deux
réservoirs: (a) dispositif expérimen-
tal ; (b) relevé des niveaux. Dans cet
exemple, les deux récipients sont
identiques. Le niveau commun final
est la moyenne arithmétique des ni-
veaux initiaux.

?

Volume 1

?

Volume 2
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Courant

FIGURE 1.4 Représentation de
l’idée qu’un fluide peut être accu-
mulé dans deux récipients (symbole
de stockage aux extrémités de la fi-
gure) et peut s’écouler d’un réser-
voir vers l’autre (double flèche). La
flèche claire représente un courant
entrant dans le récipient, la flèche
foncée un courant émergeant du ré-
cipient. L’idée exprimée est appelée
un bilan de volume.

Taux de variation du Volume 1 = – Intensité du ccourant

Taux de variation du Volume 2 = + Intenssité du courant
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Si nous désignons par V1 et V2 les volumes 1 et 2, par IV l’intensité du courant de vo-
lume qui s’écoule entre les deux récipients (le symbole I est emprunté au domaine de
l’électricité que nous traiterons au chapitre 2), et par les taux de variation res-
pectifs, les relations ci-dessus deviennent:

 

(1.1)

Ces deux équations sont des équations de bilan. La manière de noter le taux de varia-
tion sera expliquée à la section 1.3.3.

Chacun des symboles de la figure 1.4 comporte un point d’interrogation, ce qui signi-
fie que nous devons spécifier certaines quantités ou relations afin de transformer ce
diagramme en un modèle complet qui peut être simulé. Les points d’interrogation des
symboles de stockage demandent l’introduction des valeurs initiales des volumes res-
pectifs. À partir des sections identiques des réservoirs et des niveaux initiaux, on peut
déterminer les volumes initiaux, à savoir 2.04·10-3 m3 d’huile dans le réservoir de gau-
che et 5.66·10-4 m3 dans celui de droite.

Le point d’interrogation dans le symbole de la conduite n’est pas aussi simple à élimi-
ner. Procédons pas à pas. Dans un premier temps, nous pouvons admettre que le débit
entre les deux réservoirs est constant. Si nous introduisons par exemple la valeur de
0.25·10-5 m3 s-1 pour l’intensité du courant, le modèle est complet et peut être simulé,
c’est-à-dire que le logiciel effectuera, sur la base des équations, les calculs nécessaires
à la comptabilisation des quantités de fluide. Le résultat de cette opération apparaît
dans la figure 1.5. Nous n’aurions pas eu besoin d’un ordinateur pour effectuer ces cal-
culs, un courant constant ne pouvant aboutir qu’à des taux de variation constants.

Nous savons par expérience que le courant n’est pas constant, mais qu’il décroît dans
le temps. Une autre idée serait d’admettre que l’intensité du courant dépend de la dif-
férence des quantités de fluide, ce qui se révélera incorrect, mais nous testons cette hy-
pothèse. Cette méthode d’essais et d’erreurs n’est pas inutile, elle permet d’affiner nos
idées sur le fonctionnement du processus étudié. Pour introduire cette idée dans le mo-
dèle, nous devons créer une nouvelle «variable» qui calcule la différence des volumes
(fig. 1.6). La manière la plus simple d’exprimer cette nouvelle hypothèse est d’admet-
tre que l’intensité du courant est proportionnelle à la différence des volumes:

 

(1.2)

∆V = V1 - V2 représente la différence des deux volumes. Le symbole ∆ est le delta ma-
juscule grec. La grandeur k est une constante de proportionnalité, le facteur de flux.
Cette constante indique avec quelle facilité s’écoule le fluide. Sa valeur dépend de par-
ticularités du système telles que les propriétés du fluide et les dimensions de la con-
duite. L’équation (1.2) complète le modèle.

1.2.3 Simulation et comparaison avec les observations

L’objectif d’un modèle est de pouvoir effectuer une simulation, c’est-à-dire en résou-
dre les équations. Le résultat est un jeu de fonctions du temps qui représentent les con-
séquences des hypothèses introduites dans le modèle. On peut alors tester la qualité de
nos idées en comparant ces fonctions avec les données recueillies lors d’observations
ou d’expériences. Si les calculs ne correspondent pas aux données recueillies, on es-
saie d’obtenir un meilleur ajustement en changeant les paramètres du modèle. Dans
notre exemple, le premier paramètre est le facteur de flux k.
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FIGURE 1.5 Résultat de la simula-
tion du modèle utilisant une valeur
constante du courant d’huile.

Volume 1 Volume 2

Courant

delta V

k

FIGURE 1.6 Modèle dans lequel le
flux dépend de la différence des
quantités de fluide accumulées dans
les cuves. Comme cette différence
diminue, l’intensité du courant le fait
aussi.

I k VV = ⋅ ∆
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Nous calculons les niveaux à partir de la section des réservoirs et des volumes instan-
tanés. Nous pouvons alors comparer les résultats de la simulation et les données expé-
rimentales de la figure 1.3. Le paramètre k a été varié jusqu’à obtenir un accord quasi
parfait pour la valeur k = 0.0050 s-1, comme le montre la figure 1.7.

Cet exemple démontre l’utilité de la modélisation. Elle sert à tester la qualité de nos
idées, mais ne démontre pas leur justesse2, et elle permet de déterminer la valeur des
paramètres qui apparaissent dans les hypothèses, tel le paramètre k de l’équation (1.2).

Notre modèle s’adapte bien aux données de la figure 1.3, mais nous devons vérifier s’il
permet de prédire le comportement de systèmes semblables. Nous l’utilisons pour si-
muler l’évolution du système de deux réservoirs avec des sections différentes
(fig. 1.1), pour lesquels nous disposons des données expérimentales. Le résultat est
clairement incorrect (fig. 1.8). Même si notre modèle s’adapte parfaitement dans le cas
des récipients de même section, cela ne signifie pas qu’il est complètement juste; une
des idées proposées est incorrecte. C’est un exemple d’une hypothèse en sursis,
qu’une première expérience n’a pas infirmée, mais qui a été contredite par une seconde
expérience. Elle doit donc être rejetée et remplacée par une autre hypothèse.

1.2.4 Second modèle d’équilibrage des niveaux d’huile

Nous avons observé que le courant entre les récipients communicants s’interrompt
lorsque les niveaux sont égaux. Nous pouvons en déduire que le courant entre des va-
ses communicants dépend de différences de niveaux (les observations de la fig. 1.2a
révèlent que ce n’est pas toujours vrai ; mais pour l’instant, nous allons poursuivre
avec les différences de niveau). Cela signifie que nous devons modifier la relation pour
l’intensité du courant de la manière suivante:

(1.3)

où ∆h = h1 - h2 est la différence des niveaux respectifs. Le paramètre k a la même si-
gnification que dans le modèle précédent, mais pas la même valeur, vu que le courant
est exprimé au moyen de nouvelles variables. Le modèle de la figure 1.6 doit être lé-
gèrement modifié pour tenir compte du changement de variables.

2. Les sciences, en particulier la physique, ne permettent jamais de démontrer qu’une hypo-
thèse est juste, mais seulement qu’éventuellement elle n’est pas fausse. Si une hypothèse
n’est pas contredite par l’expérience, cela signifie qu’elle n’est peut-être pas fausse, mais
en aucun cas qu’elle est définitivement juste; elle est en sursis. L’affirmation que l’on
entend souvent, que tel fait a été «scientifiquement prouvé», n’a pas de sens.
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nue) et données expérimentales (cer-
cles) pour l’expérience et le modèle
de la figure 1.6.

FIGURE 1.8 Prédiction des niveaux
au moyen du modèle de la figure 1.6,
lorsque les sections des récipients
sont différentes.
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FIGURE 1.9 Modèle révisité qui utilise les différences de niveau en tant qu’entraînement des
courants: (a) nouveau modèle; (b) comparaison de la simulation (ligne continue) et des données
expérimentales (cercles).
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Le nouveau modèle et les résultats de la simulation sont présentés dans la figure 1.9.
L’ajustement est excellent et nous pouvons en conclure que l’idée exprimée par
l’équation (1.3) a porté ses fruits. Dans cet exemple, la valeur du facteur de flux est
0.50·10-4 m2 s-1.

1.2.5 Qu’est-ce qui change si c’est de l’eau?

Nous allons modifier le système une nouvelle fois en remplaçant l’huile par de l’eau.
Les données sont recueillies et le modèle de la figure 1.9 est utilisé pour la simulation.
Nous ajustons le facteur k pour obtenir le meilleur ajustement possible entre les don-
nées et la simulation. Nous nous attendons à ce que sa valeur soit plus importante que
pour de l’huile si les autres éléments du système sont restés les mêmes. Le meilleur
ajustement possible apparaît dans la figure 1.10. L’ajustement n’est pas satisfaisant, et
ce n’est pas la valeur du facteur k qui en est la cause.

Qu’est-ce qui a changé? Notre modèle contient trois relations: l’équation de bilan, le
calcul des niveaux et celle qui détermine l’intensité du courant. Les deux premières
relations ne sont pas affectées par le changement de fluide, ce qui veut dire que nous
devons reconsidérer l’équation (1.3).

Pour avoir de nouvelles idées, nous devons nous poser les questions suivantes:

• De quelles grandeurs l’intensité du courant dépend-elle?

• Comment dépend-elle de ces grandeurs?

La réponse à la première question est la même que précédemment. Le courant dépend
des différences de niveau et de certaines grandeurs qui déterminent les propriétés du
système telles que les propriétés du fluide et les dimensions de la conduite. La diffé-
rence de niveau est le seul facteur qui varie dans le temps. Tous les autres sont cons-
tants, tout au moins pour une situation donnée. En conséquence, ces derniers peuvent
être combinés en un seul facteur qui influence le courant pour une configuration expé-
rimentale donnée.

La seule différence dans notre modèle ne peut venir que d’une réponse différente à la
seconde question. Celle que nous avons donnée pour l’écoulement d’huile était la plus
simple possible: nous avons admis une proportionnalité, c’est-à-dire une relation li-
néaire, entre l’intensité du courant et la différence de niveau.

Ce qui est certain, c’est qu’une plus grande différence de niveau doit entraîner un cou-
rant plus important, ce qui, mathématiquement, peut être réalisé de différentes maniè-
res. Si l’intensité du courant doit croître plus rapidement que selon une relation
linéaire, une fonction du deuxième degré fait l’affaire:

(1.4)

ou si au contraire elle doit croître moins rapidement, alors la racine carrée des diffé-
rences de niveau peut convenir:

(1.5)

L’intégration de chacune de ces deux alternatives dans le modèle et la comparaison
avec les données révèle que seule la relation (1.5) donne un bon ajustement (fig. 1.11).

Dans les sections suivantes de ce chapitre, nous formaliserons ce que nous avons ima-
giné et énoncé dans les paragraphes précédents et étudierons plus en détail les méca-
nismes que nous avons englobés dans le facteur de flux k et, notamment, les raisons
des différences de comportement des deux fluides.

FIGURE 1.10 Résultats de la simula-
tion (ligne continue) et données ex-
périmentales (cercles) pour
l’écoulement d’eau entre deux réser-
voirs communicants, pour le modèle
utilisant la relation (1.3).
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FIGURE 1.11 Résultats de la simula-
tion (ligne continue) et données ex-
périmentales (cercles) pour
l’écoulement d’eau entre deux réser-
voirs communicants, pour le modèle
utilisant la relation (1.5).
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1.3 GRANDEURS FONDAMENTALES ET GRANDEURS DÉRIVÉES

Les exemples de la section précédente montrent que trois grandeurs sont nécessaires
pour décrire le comportement dynamique des phénomènes hydrauliques. La premiè-
re pour quantifier la quantité de fluide accumulée dans les systèmes, la deuxième
pour les écoulements, la troisième pour mesurer la pression en différents points. On
les utilise pour modéliser la dynamique des systèmes et pour définir des grandeurs
dérivées au moyen de relations mathématiques. Les particularités des systèmes étu-
diés, telles que la capacité et la résistance, sont exprimées au moyen de lois dites lois
constitutives.

1.3.1 Grandeurs primitives

Les grandeurs fondamentales ou primitives sont des grandeurs que l’on introduit sans
les définir au moyen d’autres grandeurs, mais que l’on considère comme caractéristi-
ques du domaine considéré. Elles reposent sur les images et les représentations que
l’on s’en fait à partir de son expérience quotidienne. En revanche, leurs unités dépen-
dent des conventions établies par le Système international (SI) qui a fixé une fois pour
toutes quelles sont les grandeurs fondamentales utilisées en physique.

À part le volume, il existe deux autres possibilités de mesurer la quantité de fluide con-
tenue dans un système, à savoir la quantité de matière qui est utilisée par les chimistes
et la masse qui est plutôt utilisée par les ingénieurs mécaniciens. Dans les cas les plus
simples, ces trois grandeurs sont liées entre elles par des facteurs constants, ce qui les
rend pratiquement équivalentes. C’est le cas s’il n’y a pas de réaction chimique, et si
le fluide est incompressible. Les relations entre ces grandeurs sont données par:

(1.6)

m est la masse, mesurée en kg, ρ la masse volumique du fluide, mesurée en kg m-3, et
n représente la quantité de matière dont l’unité et la mole (mol). M est la masse mo-
laire de la substance.

À côté du pascal, qui est l’unité SI de mesure de la pression3, mentionnons une unité
dérivée, le bar, qui correspond à 105 Pa et représente approximativement la pression
engendrée à la base d’une colonne d’eau de 10 m de hauteur, ou celle d’une colonne

3. Contrairement à ce qui se fait usuellement, nous représenterons la pression par la lettre
majuscule P pour éviter, lorsqu’elles apparaissent simultanément, toute confusion avec la
quantité de mouvement représentée par la même lettre minuscule.

Parmi les grandeurs qui peuvent être utilisées pour mesurer une quantité
de fluide, nous choisissons le volume V qui se mesure en m3.

Les écoulements de fluide sont mesurés au moyen du courant de volume ou
plus simplement du flux, qui décrit l’écoulement du fluide au travers de
conduites ou de canaux. Cette grandeur, représentée par le symbole IV se
mesure en m3 s-1

.

La pression mesure l’état du fluide; elle est directement responsable des
processus hydrauliques. Elle est représentée par le symbole P et se mesure
en pascal (Pa).

m V n
M

m= =ρ ,
1
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de mercure de 76 cm de hauteur, ainsi que la pression moyenne de l’atmosphère ter-
restre au niveau de la mer. Nous verrons au chapitre 2 que la pression joue en hydrau-
lique le même rôle que le potentiel en électricité. Pour cette raison, il est usuel de dire
que la pression représente le potentiel hydraulique.

1.3.2 Grandeurs extensives et grandeurs intensives

Une grandeur physique qui dépend de la taille du système, telle que le volume ou la
masse, est dite extensive. C’est le cas des grandeurs qui peuvent être accumulées dans
un système. La somme des valeurs de cette grandeur pour deux systèmes disjoints est
égale à la valeur de la grandeur pour la réunion des systèmes, raison pour laquelle,
quelquefois, les grandeurs extensives sont dites additives.

Une grandeur physique qui ne dépend pas de la taille du système (de la quantité de ma-
tière), telle que la pression, est dite intensive. Une telle grandeur qualifie généralement
l’état d’un système.

1.3.3 Volume et variation de volume

Comme nous considérons des processus dynamiques, le contenu du système évolue en
fonction du temps. La quantité de fluide contenue dans le système est exprimée au
moyen d’une fonction V(t), le volume en fonction du temps. De telles fonctions peu-
vent être présentées de diverses façons, à savoir par des équations, des tables ou des
représentations graphiques. Ces dernières donnent l’image la plus parlante de l’évolu-
tion du contenu en fonction du temps (fig. 1.12).

Variation et taux de variation. Le graphe de V(t) contient également toutes les infor-
mations importantes sur l’évolution de la quantité de fluide accumulée dans un systè-
me. Tout d’abord, nous pouvons lire le volume V(t) à n’importe quel instant. D’autre
part, nous pouvons également déterminer la variation du volume entre deux instants t1
et t2 (fig. 1.13). La variation du volume entre ces deux instants est définie par:

(1.7)

Notons qu’une variation s’obtient toujours en retranchant la valeur initiale de la valeur
finale; elle ne révèle pas ce qui est survenu dans l’intervalle entre les deux instants t1
et t2. Mais l’information la plus importante que nous donne le graphe de V(t) est de
nous indiquer à quelle vitesse le volume change à chaque instant. Cette information
nous est fournie par la pente de la courbe qui représente le volume en fonction du
temps. Plus la pente de la courbe est importante, plus la variation est rapide. Nous uti-
lisons la représentation graphique de V pour définir ce que nous entendons par la vi-
tesse de variation à un instant donné. Pour ce faire, nous traçons une tangente à la
courbe au point qui correspond à cet instant (fig. 1.14) et déterminons la pente de cette
droite. La pente de la tangente mesure le taux de variation de la grandeur V à cet ins-
tant. Pour déterminer cette pente, il suffit de considérer n’importe quel triangle rectan-
gle ayant la tangente comme hypoténuse et ses deux côtés, respectivement horizontal
et vertical. Sa valeur est simplement ∆V*/∆t*, comme le montre la figure 1.14, et ses
unités sont des m3/s. Les figures 1.14 et 1.15 montrent que la pente de la tangente, et
donc le taux de variation, est la limite vers laquelle tend la pente de la sécante lorsque
l’intervalle ∆t tend vers zéro:

(1.8)

FIGURE 1.12 Le volume d’un fluide
accumulé dans un système évolue
dans le temps à la suite de processus
dynamiques. Le graphique de la
fonction V(t) permet de visualiser
simplement ce qu’il advient de la
grandeur V.
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FIGURE 1.13 Il est possible de lire la
valeur de V pour des instants particu-
liers directement sur le graphe.
D’autre part, la variation de V, déno-
tée ∆V, peut être lue sur l’axe des
ordonnées.
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FIGURE 1.14 La grandeur qui mesu-
re à quelle vitesse le volume change
à un instant donné, le taux de varia-
tion du volume, est visualisée par la
pente de la courbe qui, elle-même,
correspond à la pente de la tangente
à la courbe à cet instant.
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Cette limite est la dérivée par rapport au temps de la fonction V(t). Cette dérivée peut
être notée de deux manières différentes, par dV/dt (lire: «dV sur dt») ou par (lire:
«V point»)4. Les règles formelles et les techniques de dérivation sont enseignées dans
le cours d’analyse mathématique. Mais il est important de maîtriser les techniques de
dérivation graphique ou numérique, car très souvent les informations sur l’évolution
d’un processus sont données sous forme graphique ou tabulaire. Dorénavant, nous uti-
liserons les deux notations, ou dV/dt pour représenter le taux de variation du volume,
mais de préférence .

Si cette fonction est donnée par un tableau de valeurs de V finement espacées dans le
temps, le taux de variation peut être approximé par le taux de variation moyen durant
l’intervalle ∆t, ce qui correspond à la pente de la sécante (fig. 1.15):

(1.9)

Quelle que soit la méthode utilisée pour le calculer, le taux de variation définit une
nouvelle fonction , que l’on peut représenter graphiquement (fig. 1.16).

Calcul du volume à partir de son taux de variation. Nous avons découvert comment
calculer les variations du volume et son taux de variation à partir des informations
contenues dans la fonction V(t). Il est également possible d’effectuer l’opération
inverse: si nous connaissons le taux de variation, nous pouvons calculer les variations
du volume et, à partir de là, la valeur du volume en fonction du temps. Nous recons-
truisons donc la fonction V(t) à partir de la fonction qui décrit son taux de
variation.

Un graphique montre de quelle manière on réalise l’opération. Considérons tout
d’abord le cas d’un taux de variation constant. Alors, la variation du volume est égale
au produit du taux de variation et de l’intervalle ∆t:

(1.10)

Graphiquement, ∆V correspond à l’aire du rectangle compris entre la droite V(t) et
l’axe du temps t, de largeur ∆t (fig. 1.17a). En général, pour une fonction arbitraire
V(t), il s’agit de déterminer l’aire entre la courbe V(t) et l’axe du temps pour l’interval-
le choisi (fig. 1.17b). Une méthode d’approximation pour l’évaluation de l’aire déli-
mitée par la courbe est discutée ci-dessous. Nous verrons ensuite comment passer de
cette approximation à la méthode exacte (pour autant que l’on connaisse la forme ana-
lytique de ).

4. Les deux notations datent de l’invention du calcul différentiel et intégral, développé simul-
tanément par Isaac NEWTON en Angleterre et Gottfried Wilhelm LEIBNIZ en Allemagne. La
première notation (réservée exclusivement à la dérivée par rapport au temps) a été intro-
duite par NEWTON dans son «calcul des fluxions» , la seconde, plus souple, utilisée de
manière générale en analyse mathématique, est due à LEIBNIZ.

�V

�V
�V

FIGURE 1.15 La pente d’une courbe
peut être approximée par celle d’une
droite reliant deux points voisins.
Plus l’intervalle ∆t est petit, meilleu-
re est l’approximation.
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FIGURE 1.16 Le taux de variation
du volume est lui-même une fonction
du temps. Il peut être déterminé gra-
phiquement à partir de la courbe V(t)
en traçant plusieurs tangentes et en
déterminant leurs pentes. Notez que
le taux de variation est négatif pour
les segments de V(t) où V est décrois-
sant, c’est-à-dire où la tangente est
descendante.
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FIGURE 1.17 Évaluation de la varia-
tion du volume à partir du graphique
de en fonction du temps: (a) pour
un taux de variation constant; (b)
pour un taux de variation
quelconque.
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1.3  GRANDEURS FONDAMENTALES ET GRANDEURS DÉRIVÉES

Nous supposons qu’un processus fournit le taux de variation du volume d’un fluide en
fonction du temps. À partir de là, nous allons déterminer l’évolution du volume en
fonction du temps, pour autant que nous connaissions le volume initial V0. La démar-
che est la suivante (fig. 1.18). Dans le graphique représentant , on choisit un (petit)

intervalle de temps ∆t et on évalue l’aire du rectangle de hauteur égale à la valeur
moyenne du taux de variation pour ce premier intervalle (fig. 1.18a). Cela représente
approximativement la variation du volume V durant l’intervalle ∆t:

(1.11)

Remarquons que cette équation ne donne la valeur correcte de ∆V que si le volume est
une fonction linéaire du temps. Dans le graphique de V(t) nous reportons V0 sur l’axe
vertical, puis nous nous déplaçons respectivement horizontalement et verticalement de
∆t et ∆V. En répétant l’opération pour des rectangles successifs dans le graphique de

, nous obtenons une représentation graphique approximative de V(t) (fig. 1.18b).

Dans tous les logiciels de dynamique des systèmes, en particulier dans Stella5, cette
opération est représentée au moyen de deux éléments: un rectangle (appelé «stock»)
qui représente le volume, et une flèche (appelée «flow») uni- ou bidirectionnelle, qui
représente ici le taux de variation du volume (fig. 1.18c). Le logiciel exécute à notre
place les opérations décrites ci-dessus, pour autant qu’on lui fournisse les informa-
tions sur le taux de variation et sur le volume initial.

Pour obtenir la valeur exacte de la variation du volume, on procède de manière analo-
gue à la méthode utilisée pour obtenir la valeur exacte du taux de variation. Pour ob-
tenir la variation du volume entre deux instants t1 et t2, on décompose cette durée en
un nombre n suffisamment grand d’intervalles de temps ∆ti sur chacun desquels on
évalue la variation du volume ∆Vi. La variation totale entre t1 et t2 est alors approxi-
mativement égale a:

(1.12)

La valeur exacte est celle que nous obtenons lorsque nous calculons la limite vers la-
quelle tend cette somme lorsque les intervalles ∆ti tendent vers zéro:

(1.13)

5. Produit par isee systems, Lebanon, New Hampshire (www.iseesystems.com). Un autre
logiciel de dynamique des systèmes, qui est présenté comme un outil d’intégration d’équa-
tions différentielles, est Berkeley Madonna (www.berkeleymadonna.com).
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∆V

Volume

Taux de variation du volume

a. b. c. FIGURE 1.18 Évaluation du volu-
me en fonction du temps par inté-
gration graphique: (a) division de
l’axe t en petits intervalles ∆t et
évaluation des variations ∆V durant
cet intervalle; (b) construction de
V(t) à partir de V0 et des accroisse-
ments ∆V; (c) les deux éléments de
Stella (un «stock» et un «flow»)
qui permettent d’effectuer l’opéra-
tion d’intégration.
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La limite que nous venons d’introduire est l’intégrale de la fonction sur l’intervalle
allant de t1 à t2. Le signe d’intégration «∫» est un S stylisé pour «somme» d’éléments
infinitésimaux6. Comme dans le cas de la dérivation, les règles formelles et les tech-
niques d’intégration sont enseignées dans le cours d’analyse mathématique. Mais ici
aussi, il est important de maîtriser les techniques d’approximation exposées en pre-
mier lieu, vu que dans les cas concrets, le taux de variation est rarement donné sous
forme analytique, mais souvent sous forme graphique ou tabulaire. Les logiciels tels
que Stella ou Berkeley Madonna procèdent à l’intégration numérique en utilisant la
procédure décrite dans la figure 1.18.

Puisque nous sommes en mesure de calculer la variation de volume entre deux instants
arbitraires, nous pouvons également déterminer l’évolution du volume en fonction du
temps, pour autant que nous connaissions le volume initial. En effet:

(1.14)

1. Quelles sont les significations des termes volume, variation du volume
et taux de variation du volume? Comment peut-on déterminer le taux
de variation à partir de V(t)?

2. Comment peut-on calculer la variation du volume pour un intervalle de
temps si le taux de variation est connu? Quelle autre valeur doit-on
connaître si l’on veut déterminer le volume en fonction du temps?

3. Quel signe devrait avoir l’aire comprise entre la courbe de dV/dt et l’axe du temps si le taux
de variation du volume a une valeur négative?

4. Y a-t-il des points pour lesquels le taux de variation du volume est égal à zéro dans la
figure 1.16? Dans l’affirmative, quelle est la signification de ces points?

1. Le volume mesure la quantité de fluide à l’intérieur d’un système; la
variation du volume est la différence entre la valeur du volume à un ins-
tant t2 et à un instant précédent t1; le taux de variation mesure à quelle
vitesse le volume évolue durant un processus. Ce dernier est égal à la
pente de la tangente à la courbe de V(t).

2. La variation du volume est égale à l’aire de la surface entre la courbe
dV/dt et l’axe du temps pour un intervalle ∆t. En plus du taux de varia-
tion en fonction du temps, il faut connaître la valeur initiale du volume.

3. Pour des valeurs négatives du taux de variation, la courbe se trouve en dessous de l’axe du
temps et la variation est négative, ce qui signifie que le volume décroît en fonction du
temps.

4. Oui, il y en a deux. Le premier correspond à un maximum momentané du volume, lorsque
le taux de variation passe de valeurs positives à des valeurs négatives. Le second point cor-
respond à un minimum momentané, pour la raison inverse.

6. Cette notation universellement utilisée aujourd’hui est également due à Gottfried Wilhelm
LEIBNIZ.
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EXEMPLE 1.1. Détermination graphique du taux de variation du volume.

L’évolution du volume d’eau contenu dans un lac est donnée sous forme graphique (fig. 1.19).
(a) Déterminez la masse d’eau à l’instant t = 6.0·104 s. (b) Déterminez graphiquement le taux
de variation du volume pour un certain nombre de points et reportez-les dans un graphique dV/dt
en fonction de t. Peut-on ajuster une fonction simple à ces points? (c) Expliquez la signification
des différents signes de dV/dt, et du minimum de la courbe V(t).

SOLUTION: (a) La masse pour un volume donné est calculée à partir de l’équation (1.6). La
masse volumique de l’eau est de 1000 kg/m3. Pour un volume de 1750 m3 nous obtenons:

(b) Tracez aussi soigneusement que possible des tangentes à la courbe (fig. 1.20a). Pour celle à
l’instant t = 0 s, la pente est déterminée de la manière suivante: pour une base ∆t = 9.0·104 s, la
variation de V est ∆V = – 500 m3, ce qui donne une valeur de – 5.5·10–3 m3 s-1. Une droite sem-
ble s’ajuster fort bien aux points de la seconde courbe (fig. 1.20b).

(c) Le volume décroît durant les premières 1.1·105 s, ce qui correspond à des valeurs négatives
du taux de variation. Ensuite, le volume augmente, ce qui signifie que le taux de variation est
positif. À l’endroit où V(t) a un minimum, le taux de variation est nul.

B

 

EXEMPLE 1.2. Détermination du volume à partir du taux de variation.

La figure 1.21 montre le taux de variation du contenu d’un lac; il croît linéairement de 0.0025
m3 s-1 à 0.0075 m3 s-1 en 1.60·105 s. Déterminez l’expression analytique du volume en fonction
du temps, sachant que la valeur initiale est V0 = 1000 m3.

SOLUTION: La solution est simple à trouver, vu que le taux de variation est une fonction linéai-
re. Nous exprimons par une équation l’aire entre la courbe dV/dt et l’axe du temps. Cette aire
représente la variation du volume entre 0 s et t. Le taux de variation en fonction du temps et
donné par:

L’aire à évaluer est celle du trapèze de base allant de 0 s à t. Le volume correspond à cette valeur
augmentée du volume initial V0:
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FIGURE 1.19 Évolution du volume
d’eau dans un lac.
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FIGURE 1.20 Détermination graphi-
que du taux de variation du volume.
(a) Évaluation graphique du taux de
variation. (b) Évolution temporelle
du taux de variation.
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Le calcul intégral permet de trouver ce résultat de manière directe:

B

1.3.4 Écoulements: courants et quantités échangés

Le volume et le taux de variation du volume sont des grandeurs qui n’ont à voir
qu’avec le contenu du système. Pour une description complète de processus dynami-
ques, nous devons être en mesure de décrire les interactions du système avec son en-
vironnement, ce qui peut être réalisé au moyen des écoulements de fluides.

Écoulements, courants, flux. Il est facile de visualiser des écoulements de fluides.
Pour savoir comment déterminer l’intensité d’un courant, il suffit de s’imaginer au
bord d’un fleuve ou d’une rivière, ou à côté d’un tuyau débouchant dans une fontaine
(fig. 1.22). La grandeur qui mesure l’intensité d’un courant de fluide est le flux volu-
mique. Elle est représentée par le symbole IV , et ses unités sont des m3 s–1. On mesure

les flux par rapport à des surfaces traversées par les courants. On donne une orientation
à cette surface au moyen d’un vecteur qui lui est perpendiculaire, et un écoulement qui
a lieu dans le sens de ce vecteur correspond à un flux positif (fig. 1.23); un écoulement
allant dans le sens opposé correspond à un flux négatif. On peut également donner une
orientation à une surface fermée entourant un corps ou une région de l’espace, soit vers
l’intérieur, soit vers l’extérieur. Il existe différentes conventions à ce sujet. Les physi-
ciens et les mathématiciens attribuent un sens positif au vecteur normal pointant vers
l’extérieur, alors que les ingénieurs font usuellement le contraire. Nous utiliserons la
dernière convention, ce qui signifie que nous attribuerons un signe positif à un flux en-
trant dans le système.

Quantité échangée par un flux. Si nous connaissons l’intensité d’un flux, nous pou-
vons calculer la quantité de fluide qui a franchi la surface de référence durant un inter-
valle donné. Lorsque l’intensité du flux IV est constante, ce calcul est particulièrement
simple. Le volume échangé (entre le système et son environnement) par l’intermédiai-
re de ce flux, que nous désignerons par Véch, est donné par:

(1.15)

Si le flux est variable, la quantité échangée est déterminée exactement de la même ma-
nière que la variation du volume à partir du taux de variation (fig. 1.17). Il suffit de tra-
cer le graphique du flux en fonction du temps et d’évaluer l’aire entre la courbe IV(t)
et l’axe du temps pour l’intervalle de temps considéré (fig. 1.24).
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FIGURE 1.22 Exemples d’évolution
de flux en fonction du temps.

FIGURE 1.23 Un flux mesure l’in-
tensité d’un écoulement à travers
une surface; le signe du flux indi-
que le sens de l’écoulement par
rapport à l’orientation de la
surface.
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1.4  ANALYSE DE SYSTÈME I: BILANS DE VOLUME

Comme dans le cas de l’évaluation de la variation du volume à partir de son taux de
variation, le volume échangé durant l’intervalle allant de t1 à t2 se calcule au moyen
d’une intégrale:

(1.16)

Les flux sont à l’origine des taux de variation qui sont positifs pour des flux entrant
dans le système, négatifs pour des flux émergents. Les aires sous la courbe d’évolution
du flux peuvent donc se situer au-dessus ou en dessous de l’axe du temps. Dans le der-
nier cas, l’aire (l’intégrale) prend une valeur négative.

Mesure des flux. Dans la pratique, il existe plusieurs méthodes pour mesurer l’inten-
sité des flux de fluides. La plus élémentaire, mais pas nécessairement la plus efficace,
consiste à recueillir et à mesurer la quantité de fluide transporté durant de brefs inter-
valles de temps. Le quotient des deux grandeurs représente la valeur moyenne de l’in-
tensité du flux (pour l’intervalle considéré). Cependant, il existe des mesures directes;
certains appareils placés dans l’écoulement peuvent mesurer directement le débit.

1.3.5 Différences de pression

La différence de pression se mesure entre deux points du fluide, indépendamment des
raisons physiques à l’origine de cette différence, sur lesquelles nous reviendrons à la
section 1.5. Usuellement, il s’agit de la valeur aval de l’écoulement moins la valeur
amont ou, dans un sens donné, de la valeur éloignée moins la valeur proche:

(1.17)

1.4 ANALYSE DE SYSTÈME I: BILANS DE VOLUME

L’objectif de cette section est de formaliser les étapes qui aboutissent à un modèle dy-
namique de l’évolution d’un système. La première étape est la formulation des équa-
tions de bilan associées au système et aux processus étudiés.

1.4.1 Établissement du bilan

1. Établir un croquis de situation. Créer un croquis du système étudié et de son en-
vironnement. Il s’agit d’un croquis semi-réaliste contenant des informations sur la
taille du système et sur ses parties (fig. 1.25).

2. Choisir les systèmes ou les éléments. Choisir un ou plusieurs systèmes, sous-
systèmes ou éléments. Un système peut être soit un objet identifiable, soit une région
de l’espace (dans ce cas, on l’appelle un volume de contrôle). Dans l’exemple étudié,
nous choisissons deux volumes de contrôle contenant les cuves de la figure 1.25.

tΔt t

IV IV

t1

t2
Véch

Véch

FIGURE 1.24 La même opération
mathématique que celle qui est uti-
lisée pour calculer les changements
de volume à partir du taux de varia-
tion permet de calculer le volume
échangé par un courant à partir de
la donnée du flux en fonction du
temps.
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FIGURE 1.25 Un croquis de situa-
tion est partiellement réaliste, par-
tiellement abstrait. Il montre le
système dans son environnement et
peut contenir des détails concernant
les tailles des systèmes, etc.
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3. Choisir les grandeurs extensives. En hydraulique, la grandeur extensive (celle qui
peut être accumulée) est la quantité de fluide, le volume V.

4. Isoler les systèmes ou éléments de leur environnement et identifier les proces-
sus. Dessiner des représentations abstraites des systèmes choisis, telles que les rectan-
gles en trait discontinu de la figure 1.26. Identifier tous les flux, étant donné qu’ils
représentent les processus; pour les découvrir, il faut demander pourquoi il y a des pro-
cessus qui se déroulent et «explorer» le système pour trouver les entrées et les sorties.
Dessiner une flèche pour chaque flux par rapport à son système. Étiqueter les flèches.
Introduire les quantités accumulées (fig. 1.26). L’étape 4 consiste en la création d’une
vue éclatée du système.

5. Formuler les équations de bilan. Pour chacun des sous-systèmes et pour chacune
des grandeurs accumulées (extensives), formuler l’équation de bilan:

Dans les diagrammes de dynamique des systèmes, les équations de bilan, dans leur
forme instantanée, sont représentées graphiquement par la combinaison d’éléments
d’accumulation (stocks) et d’écoulement (flows), comme le montre la figure 1.27.

Les deux premières équations qui figurent dans la partie droite de la figure (les
équations de bilan) sont automatiquement générées par le logiciel de dynamique
des systèmes.

6. Formuler la relation d’interaction. Dans notre exemple, il n’y a qu’une interaction:
le flux sortant de la cuve 1 est égal au flux entrant dans la cuve 2 (fig. 1.27):

(1.20)

IV1

IV4

IV2 IV3

V1

V2

FIGURE 1.26 Vue éclatée de deux
sous-systèmes. Les processus et les
grandeurs accumulées sont identifiés
pour chacun des sous-systèmes.

Sous sa forme instantanée. une équation de bilan met en relation le taux de
variation du contenu du système (représenté ici par le volume V) avec tous
les processus qui se déroulent à l’intérieur ou à l’extérieur du système:

(1.18)

Sous sa forme intégrée, l’équation de bilan met en relation la variation des
quantités accumulées et toutes les quantités échangées ou transportées
pendant une certaine période:

(1.19)
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FIGURE 1.27 Représentation de
l’équation de bilan par un diagram-
me de dynamique des systèmes. La
flèche fine indique une interaction.
Les deux premières équations de bi-
lan sont automatiquement générées
par le logiciel.
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1.4  ANALYSE DE SYSTÈME I: BILANS DE VOLUME

Il faut relever un certain nombre de points importants relatifs à un bilan tel que celui
qui est énoncé par l’équation (1.18):

• Il est impératif d’associer aux flux (et aux volumes échangés par l’intermé-
diaire de ces flux) les signes corrects: positif pour les flux entrants, négatif
pour ceux qui émergent du système.

• Une équation de bilan ne sert pas à définir l’intensité IV: dV/dt = IV n’est pas
une définition. Le membre de gauche d’une équation de bilan est lié à ce qui se
passe à l’intérieur du système, le membre de droite décrit des processus de
transport qui se déroulent à l’extérieur du système.

• Une équation de bilan peut être utilisée de deux manières. Premièrement, si
tous les flux sont connus, nous pouvons déterminer le taux de variation du con-
tenu du système. Deuxièmement, si le taux de variation du contenu du système
est connu, et si nous connaissons tous les flux sauf un, ce dernier peut être
calculé.

• À elle toute seule, l’équation de bilan n’est pas d’une grande utilité. Ce n’est
que lorsque l’on possède des informations particulières sur les flux qu’elle
peut être utilisée pour effectuer des calculs. Ces informations dépendent des
caractéristiques du système considéré. Elles doivent être formulées au moyen
de relations particulières que l’on appelle lois constitutives. Elles ont pour
objectif de décrire comment les propriétés physiques des éléments du système
étudié influencent le déroulement des processus. Dans les sections suivantes,
nous en énoncerons deux qui expliquent l’origine et l’effet des différences de
pression qui apparaissent dans le système: la loi de résistance, qui gouverne
l’intensité des flux, et la loi de capacité qui relie le contenu à la pression.

1.4.2 Visualisation du système au moyen de diagrammes

Les diagrammes constituent un instrument visuel important qui aide à créer les abs-
tractions nécessaires pour la modélisation des processus dynamiques. Rappelons de
quelle manière nous imaginons le déroulement des phénomènes naturels: l’écoule-
ment, la production et l’accumulation de certaines grandeurs facilement visualisables
sont la cause de ce que nous observons. En outre, ces grandeurs s’écoulent entre des
niveaux différents: «en descendant la pente» pour les processus spontanés, «en re-
montant la pente» pour les processus contraints. Ainsi, lorsque de l’eau s’écoule, elle
peut le faire de manière spontanée si elle passe d’un niveau élevé à un niveau bas de
la pression. En revanche, le passage d’une pression basse à une pression élevée ne sera
possible qu’avec l’aide d’une pompe; un tel processus est contraint (fig. 1.28).

À côté des diagrammes de dynamique des systèmes que nous avons déjà rencontrés
dans ce chapitre (fig. 1.27), nous allons présenter un nouveau type de diagrammes ex-
trêmement utiles lors de la construction de modèles, les diagrammes de processus.

Diagrammes de processus. Ils servent à représenter un système ou un élément d’un
système et les processus qui s’y déroulent. Considérons, à titre d’exemple, un réservoir
de fluide avec des entrées et des sorties. Un diagramme qui représente l’écoulement et
le stockage, mais pas le bilan lui-même, commence par un rectangle. Les écoulements
sont représentés par les flèches allant vers le rectangle ou en émergeant, alors que le
stockage est symbolisé par un petit réservoir à l’intérieur du rectangle (fig. 1.29).

Dans une seconde étape, nous ajoutons l’information concernant les niveaux hydrau-
liques, c’est-à-dire la pression du fluide au moment où il entre dans le système ou en
émerge (fig. 1.30). Les valeurs de la pression sont celles du fluide aux frontières du
système. À l’intérieur du système, la pression peut varier d’un endroit à l’autre.

FIGURE 1.28 Lorsqu’une grandeur
extensive s’écoule, elle le fait tou-
jours entre deux niveaux de la gran-
deur intensive associée. Un fluide
s’écoule de manière spontanée s’il
passe d’un niveau élevé à un niveau
bas de la pression. En revanche,
l’écoulement vers une pression plus
élevée ne sera possible qu’avec
l’aide d’une pompe; un tel proces-
sus est contraint.
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FIGURE 1.29 Représentation sym-
bolique de l’écoulement et de l’ac-
cumulation au moyen d’un
diagramme de processus. Le dia-
gramme suggère le bilan, mais ce
dernier est mieux représenté au
moyen d’un diagramme de dynami-
que des systèmes.
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1. Pourquoi un courant n’est-il pas un taux de variation? Pourquoi un
volume échangé n’est-il pas une variation du volume?

2. Décrivez l’écoulement dont le flux est décrit dans le second diagramme
de la figure 1.22. Quelle est la signification d’un flux négatif?

3. Si le taux de variation du volume est connu, que pouvez-vous dire au
sujet des flux?

1. Un courant est une grandeur fondamentale introduite pour décrire un
processus de transport. Un taux de variation est une grandeur qui décrit
l’évolution du contenu d’un système. On peut affirmer les mêmes cho-
ses au sujet des grandeurs intégrales.

2. Tout d’abord, l’intensité du courant est constante et positive, ce qui
implique que l’écoulement a lieu dans le sens indiqué par le vecteur
d’orientation de la surface de référence. Ensuite, l’intensité diminue
linéairement. Après son passage par zéro, le flux devient négatif, ce qui veut dire que
l’écoulement change de sens.

3. Si le taux de variation est connu, seule la somme des flux peut être déterminée à partir de
l’équation de bilan. Seules des lois particulières relatives aux écoulements peuvent nous
donner des informations sur des écoulements particuliers.

EXEMPLE 1.3. Un cas simple d’établissement d’un bilan de fluide.

Considérez un récipient d’eau avec une admission et un orifice de sortie. Le flux entrant est
constant et égal à 10 L s-1. Le volume évolue à raison de -13 L s-1. (a) Déterminez le flux volu-
mique émergent; exprimez-le en termes de flux massique.(b) Combien d’eau est échangée par
l’intermédiaire du courant émergent durant la première minute? (c) Déterminez le volume en
fonction du temps, sachant que le volume initial est de 20 m3.

SOLUTION: (a) L’équation de bilan de volume dans sa forme instantanée nous permet de dé-
terminer le flux manquant:

(b) La quantité échangée est calculée selon l’équation (1.15):

FIGURE 1.30 Adjonction de l’infor-
mation concernant les niveaux hy-
drauliques dans les diagrammes de
processus. Le niveau hydraulique
correspond à la pression du fluide. V
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1.5  ANALYSE DE SYSTÈME II : PRESSION ET FORCE D’ENTRAÎNEMENT HYDRAULIQUE

(c) La variation du volume et le volume instantané peuvent être calculés de différentes maniè-
res. La plus directe est:

B

1.5 ANALYSE DE SYSTÈME II: PRESSION ET FORCE 
D’ENTRAÎNEMENT HYDRAULIQUE

Nous savons que, dans une conduite, l’eau et l’huile ne s’écoulent pas spontanément.
Cette simple observation implique que d’autres processus sont en œuvre. Ces proces-
sus fournissent une force d’entraînement pour l’écoulement des fluides.

1.5.1 Pression dans les fluides

Pour être précis, il y a deux choses que les fluides ne font pas spontanément à la sur-
face de la Terre: sans assistance, ils ne s’écoulent pas en remontant la pente, ni hori-
zontalement à travers des conduites ou dans des canaux. Dans le cas des écoulements
horizontaux, une force d’entraînement est nécessaire à cause des frottements
(section 1.7).

Il y a plusieurs manières de forcer un fluide à s’écouler lorsque c’est nécessaire. Dans
la nature, nous observons majoritairement deux cas. Premièrement, l’eau s’écoule de
haut en bas, entraînée par la gravité. Deuxièmement, dans l’atmosphère, des zones de
haute pression se forment et l’air s’écoule alors vers des régions où la pression est plus
basse.

Dans le domaine technique, on peut utiliser des réservoirs au fond desquels la pression
est plus élevée, des réservoirs sous pression et des pompes (fig. 1.31). Ces observa-
tions suggèrent que des différences de pression sont les causes d’écoulements de flui-
des qui n’auraient pas lieu autrement. Encore une fois, l’exemple de deux réservoirs
communicants est utile pour nous convaincre de ce fait. Le fluide ne s’écoulera dans
la conduite que s’il existe une différence de niveau (de pression) entre les deux extré-
mités de la conduite. L’écoulement cesse dès que la différence de pression disparaît.

Pression dans les liquides. Si nous plongeons un capteur de pression dans un réci-
pient rempli d’eau ou d’un autre liquide, nous constatons que la pression du fluide aug-
mente linéairement au fur et à mesure que nous nous enfonçons dans le liquide. Ce
constat ne dépend ni de la taille, ni de la forme du récipient. En fait, nous mesurerions
la même relation linéaire entre la pression et la profondeur, que ce soit dans un lac,
dans un récipient étroit, voire dans l’océan (fig. 1.32a).

La pente de la droite représentant la relation entre la pression et la profondeur dépend
de la masse volumique du liquide. Dans l’eau, elle croît approximativement de 1 bar
tous les 10 m (fig. 1.32b). Dans une huile végétale, la pente est réduite d’environ 10%
(fig. 1.32c). Par contre, elle est de 13.6 bar pour 10 m de mercure.

 V t V V V V tt( ) ( )= + = + − = ⋅→0 0 0 0∆ � 20 m 13 10 m3 -3- 33 -1s ⋅ t

Réservoir sous pression

B
A

Pompe

B
AB

A

Cuve ouverte
FIGURE 1.31 Pour que le fluide
puisse s’écouler à travers la condui-
te de A à B, la pression doit être plus
élevée en A. Une cuve, un réservoir
sous pression (contenant un fluide
sous haute pression) ou une pompe
peuvent être utilisés pour engendrer
une telle différence de pression.
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C’est la pesanteur qui est à l’origine de l’apparition de la pression dans les fluides. Il
est usuel d’exprimer l’évolution de cette pression en fonction de la hauteur au-dessus
d’un niveau de référence. Ainsi, la différence de pression entre les deux extrémités de
la conduite de la figure 1.33 est donnée par

(1.21)

Cette relation n’est correcte que pour des fluides de densité constante. En revanche,
elle est indépendante du récipient dans lequel se trouve le fluide.

La variation de la pression en fonction de l’altitude est appelée gradient de pression.
La figure 1.32c révèle que ce gradient de pression dépend de la densité du liquide:

(1.22)

Le gradient est négatif, ce qui exprime le fait que la pression diminue lorsque l’on
s’élève dans le fluide. La figure 1.34 souligne la proportionnalité entre la pression spé-
cifique et la profondeur.

Pression et direction de la pression. Les fluides au repos exercent une pression sur
les surfaces des objets qui y sont plongés ou sur les parois des récipients qui les con-
tiennent. Si nous envisageons un élément de surface suffisamment petit pour qu’on
puisse admettre qu’il est plan, la direction de la force exercée par le fluide est perpen-
diculaire à cet élément de surface, quelle que soit l’orientation de la surface (fig. 1.35).

Nous en déduisons un fait important: la pression d’un fluide est un nombre simple
(une grandeur scalaire), pas une grandeur orientée (grandeur vectorielle). La pression
n’a pas de direction, il suffit d’indiquer son intensité. Ce n’est que lorsque nous intro-
duisons des objets dans le fluide que nous pouvons parler de la direction de la force
pressante sur les parois de l’objet. Si le fluide est immobile, cette direction est perpen-
diculaire à la surface considérée. Ce n’est pas le cas si le fluide s’écoule le long de la
surface; le fluide exerce une force d’entraînement dans la direction de l’écoulement à
cause du frottement.

Pression dans les gaz. Dans l’atmosphère terrestre, la décroissance de la pression
n’est pas linéaire lorsque l’on s’élève, mais la diminution de pression est d’autant plus
faible que l’altitude est importante (fig. 1.36). Ce comportement est dû au fait que l’air
n’est pas incompressible, et que sa densité diminue lorsque l’on s’élève. Si l’on admet

pa
z z = 0

B
B

B

B
B

B
B

B
B

B
B

J

J

J

J

J

J

J

J

J

J

J

H
H

H
H

H
H

H
H

H
H

H

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5

D
if

fé
re

nc
e

de
pr

es
si

on
/P

a

Profondeur / m

B Huile

J Glycérine

H Alcool

B

B
B
B
B
B
B
B
B
B

J
J
J
J
J
J
J

H

H

H

H

H

H

97000

98000

99000

100000

101000

102000

0 0.1 0.2 0.3 0.4

Pr
es

si
on

/P
a

Profondeur / m

Eau

a. b. c.
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FIGURE 1.35 Un fluide immobile
presse sur un objet immergé dans une
direction perpendiculaire à la surfa-
ce. La pression elle-même n’a pas de
direction, il suffit d’indiquer son in-
tensité.
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une atmosphère isotherme (dont la température ne varie pas en fonction de l’altitude),
alors la densité est proportionnelle à la pression, et l’intégration de l’équation différen-
tielle qui en résulte aboutit à une relation exponentielle (section 11.9.4):

(1.23)

Pour l’atmosphère terrestre, k vaut approximativement 7000 m, ce qui signifie que la
pression décroît d’un facteur e tous les 7000 m, ce qui correspond à une division par
2 tous les 5000 m.

Mesure de la pression. Une des manières les plus simples pour mesurer des pressions
est de les associer à une grandeur analogue dont elles dépendent, par exemple des
colonnes de liquide dans des tubes verticaux ou en U (fig. 1.37). Un tel système est un
baromètre; le premier fut construit en 1643 par Evangelista TORRICELLI.

On peut utiliser des colonnes de liquide dans des tubes verticaux en tant que capteurs
de pression. Considérons par exemple une conduite horizontale à travers laquelle
s’écoule un liquide, comme dans la figure 1.37. Les tubes verticaux montés sur la con-
duite horizontale indiquent de combien la pression qui règne dans l’écoulement dépas-
se celle de l’atmosphère. Nous observons que la chute de pression est linéaire le long
de la conduite et qu’il y a en outre une chute de pression à l’entrée de la conduite. Nous
reviendrons sur cette dernière particularité à la section 1.7.

1.5.2 Variation et différence de pression dans des circuits 
hydrauliques

Si nous voulons être en mesure de spécifier les conditions qui rendent possibles les
écoulements de fluides, nous devons être capables de déterminer les pressions et les
différences de pression le long des chemins empruntés par les fluides. Prenons pour
exemple le dispositif hydraulique apparaissant dans la figure 1.38.

Un fluide, tel que de l’huile, s’écoule de A vers B à travers une pompe, puis à travers
une conduite vers un récipient. En C, la conduite se ramifie en une seconde conduite
au niveau du sol.

Nous souhaitons déterminer les valeurs de la pression aux points indiqués dans la fi-
gure, qui sont des points remarquables du circuit (entrées et sorties des éléments cons-
titutifs, tels que conduites, pompes et cuves). En premier lieu, nous notons que la
pression doit être la même en A, D et D*, vu que le fluide est au contact de l’air et doit
donc avoir la même pression que l’air, à savoir Pair. En fait, nous pouvons imaginer
une boucle hydraulique fermée passant successivement par les points A, B, C, D et re-
tournant, par la voie des airs, vers le point A. Naturellement, nous devons nous retrou-
ver au même niveau hydraulique, c’est-à-dire à la même pression, lorsque nous avons
«bouclé la boucle» . Il existe également une deuxième branche de C vers D* qui est
parallèle à la branche qui va de C vers D à travers le fluide contenu dans le récipient.
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FIGURE 1.37 Mesure de la pression:
(a) baromètre au mercure consistant
en un tube en U dont une des branches
est ouverte vers l’air environnant,
l’autre fermée; (b) mesure
dynamique: de l’eau s’écoule d’une
cuve à travers un long tube horizontal.
Les colonnes de liquide dans les tubes
verticaux permettent de mesurer la
pression en différents points de la con-
duite. On notera la chute de pression à
l’entrée de la conduite (entre B et C).
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Il existe donc une deuxième boucle passant par les points A, B, C, D*, puis retournant
vers A. On peut identifier une troisième boucle fermée passant par les points C et D et
retournant à travers l’air vers D*. Ce que nous venons de constater peut être énoncé en
tant que règle importante pour les circuits hydrauliques fermés:

L’exemple de la figure 1.38 révèle une autre particularité des circuits hydrauliques. De
C à D, nous remontons dans le fluide, ce qui provoque une diminution de pression jus-
qu’à la pression atmosphérique. La même baisse de pression doit avoir lieu entre C et
D*, vu que le point D* est à la pression atmosphérique. Nous en déduisons que les dif-
férences de pression de branches parallèles sont égales.

 

Différences de pression et processus. L’exemple ci-dessus montre que les différen-
ces de pression peuvent être associées à différents types de processus et de systèmes:

 

• fluides accumulés dans des cuves, différences de niveau; il s’agit d’une diffé-
rence de pression capacitive désignée par le symbole ∆PC (section 1.6); cette
différence de pression est positive lorsque l’on s’enfonce dans le fluide, néga-
tive dans le cas contraire;

 

• fluides accumulés dans des récipients sous pression; il s’agit également d’une
différence de pression capacitive;

 

• résistance à l’écoulement; on parle de différence de pression résistive que l’on
désigne par le symbole ∆PR (section 1.7); cette différence de pression est
négative lorsque l’on traverse l’élément résistif dans le sens du courant, posi-
tive dans le cas contraire;

 

• pompes et turbines; seront également traitées à la section 1.7; si l’on parcourt
l’élément dans le sens du courant, cette différence de pression est positive pour
les pompes, négatives pour les turbines;

 

• différences de vitesse d’écoulement (en différents points de l’écoulement, à
cause de changements de section), sujet qui sera traité à la section 1.7;

 

• courants variables dans le temps; le sujet sera abordé au chapitre 4.

Nous voulons appliquer la loi des mailles au circuit de la figure 1.25 afin de pouvoir
modéliser son comportement. Nous parcourons la première maille dans le sens anti-
horaire en tenant compte des conventions de signe énoncées ci-dessus:

 

(1.25)

Si on parcourt la seconde maille également dans le sens antihoraire, on obtient:

Dans une boucle hydraulique fermée (fig. 1.39), qu’elle soit simple ou
complexe, la somme de toutes les différences de pression entre les diffé-
rents points de la boucle doit être égale à zéro:

(1.24)

Cette règle est appelée loi des mailles. Il existe une règle équivalente pour
les circuits électriques; c’est la seconde loi de KIRCHHOFF (chapitre 2).

 ∆ ∆ ∆P P PAB BC CD+ + + =… 0

FIGURE 1.39 Les différences de
pression le long d’une boucle hy-
draulique fermée ont une somme
nulle. Une flèche pointant dans le
sens de l’écoulement indique une
pression décroissante, une pointant
contre le courant indique une pres-
sion croissante.
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(1.26)

1.5.3 Modélisation de la loi des mailles

Dans le diagramme de dynamique des systèmes, ces relations sont exprimées au
moyen de cercles appelés «converters» qui servent à introduire dans le modèle les
particularités du système étudié (fig. 1.40). Le flux passant de la cuve 1 à la cuve 2
est représenté par un « flow » unique, en lieu et place des deux « flows » de la
figure 1.27.

1. Un dispositif tel que le tube en U de la figure 1.37, rempli de mercure,
est un outil simple pour mesurer la pression de l’air. Si la pression de
l’air vaut 0.90 bar (1 bar correspond à 105 Pa), de combien la colonne
de mercure de la branche gauche surmontera-t-elle celle de la branche
droite?

2. Pourquoi la courbe d’évolution de la pression atmosphérique (fig. 1.36)
n’est-elle pas linéaire? Quelle information au sujet de la densité de l’air
au niveau de la mer la tangente à l’origine de la courbe nous fournit-elle?

3. Pourquoi pouvons-nous affirmer qu’il doit y avoir une différence de pression entre les
points B et C de la figure 1.37b?

4. Quelle est la cause de la diminution de pression le long de la conduite de la figure 1.37b?
Quelle serait la variation de pression le long de la conduite si on bouchait son extrémité?

5. Que vaut la chute de pression de C à D* dans la figure 1.38? Le point D est à une hauteur h
au-dessus du sol, et la densité du fluide est ρ. Quelles sont les lois ou relations nécessaires
pour pouvoir répondre?

1. Vu que la pression est la même à des profondeurs identiques dans le
mercure, la pression à la profondeur ∆h dans la colonne de gauche doit
être égale à celle de l’air. Avec une masse volumique de13600 kg/m3 et
g = 9.81 N/kg, nous obtenons ∆h = 0.67 m.

2. Comme l’air est compressible, sa densité est plus importante aux fai-
bles altitudes et diminue lorsque l’on s’élève, ce qui explique pourquoi
la pression diminue plus rapidement lorsque l’altitude augmente. La
pente de la tangente à l’origine est: ∆P/∆h ≈ 105 Pa / 8000 m = 12.5 N m-3. Or, en vertu de
l’équation (1.21), en divisant cette valeur par celle de g, on obtient ρ = 1.27 kg m-3.

∆ ∆
∆ ∆

P P

P P
C R

R C

2 4

4 2

0+ =
= −

FIGURE 1.40 Prise en compte de la
loi des mailles pour les différences
de pression dans le circuit de la
figure 1.25.
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V1(t) = V1(t - dt) + (- I_V12) * dt

V2(t) = V2(t - dt) + (I_V12 + I_V3 - I_V4) * dt
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3. Le prolongement de la droite qui relie les sommets des colonnes de liquide au-dessus de la
conduite, et qui servent à indiquer la pression, ne rejoint pas la surface libre du liquide dans
la cuve (point A). Le pression à l’entrée de la conduite est donc inférieure à celle au fond de
la cuve. La différence de pression a servi à accélérer le liquide à l’entrée de la conduite.

4. C’est la résistance à l’écoulement qui est responsable de la diminution de pression. Si l’on
bouche l’extrémité de la conduite, il n’y a plus d’écoulement, et la pression dans la conduite
est la même qu’au fond du récipient. Le niveau des colonnes de liquide dans les tubes verti-
caux est le même que dans le récipient.

5. En vertu de la loi des mailles de l’équation (1.24), la différence de pression de C à D* doit
être la même qu’entre C et D. Finalement, avec l’équation (1.21), nous avons ∆PCD =
– ρg|∆h|. Notez que la différence est négative.

1.6 LOI DE CAPACITÉ HYDRAULIQUE

Les éléments de stockage sont responsables de la dynamique observée dans les systè-
mes hydrauliques. Nous devons donc être en mesure de donner une relation entre la
quantité de fluide accumulée et la différence de pression engendrée. Les éléments de
stockage peuvent être des cellules sous pression (telles que des accumulateurs à
diaphragme, le cœur, les yeux, le crâne, etc.) ou des récipients qui «empilent» des
fluides dans le champ de pesanteur terrestre.

1.6.1 Caractéristique capacitive

La pression dans un récipient augmente avec la quantité de fluide accumulée. La rela-
tion entre le volume stocké et la différence de pression associée, qui est appelée diffé-
rence de pression capacitive ∆PC, est elle-même appelée caractéristique capacitive.
La figure 1.41 illustre cette notion par quelques exemples.

1.6.2 Élastance et capacité hydraulique

Il est possible de donner une expression mathématique de la caractéristique, c’est la
loi de capacité.

FIGURE 1.41 Caractéristique capa-
citive de différents récipients. La ca-
pacité hydraulique d’un récipient
ouvert est proportionnelle à sa sec-
tion (variable). A(h)

V V V

V∆PC

∆PC
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L’élastance αV, qui se mesure en Pa m-3, est égale à la pente de la tangente à la courbe
représentant la caractéristique capacitive (fig. 1.42). Elle est une mesure de la tendance
qu’a un organe creux à retourner vers ses dimensions originelles après la suppression
d’une contrainte. Cela signifie que l’élastance mesure la rigidité des parois du réci-
pient dans le cas des cellules sous pression. Pour les cuves, elle est proportionnelle à
l’inverse de la section de la cuve, ce que nous pouvons déduire de l’équation (1.29).

Comme la pression dans une cuve ouverte remplie d’un liquide jusqu’à la hauteur h
est égale à P(h) = ρgh = ρgV(h)/A(h), on en déduit:

(1.29)

L’équation suggère une manière de déterminer les variations de volume à partir des
variations de pression si l’on connaît la capacité en fonction de la pression.

Pour une capacité constante (cuve à parois verticales), il suffit de multiplier la diffé-
rence de pression par la capacité, ce qui correspond géométriquement à l’aire d’un rec-
tangle. Nous pouvons en déduire que, de manière générale, la variation de volume
associée à une variation de pression est égale à l’aire entre la fonction capacité - pres-
sion et l’axe de la pression (fig. 1.43a). Si l’on inverse les variables, l’aire en question
correspond à une section verticale passant par l’axe de la cuve (fig. 1.43b et fig. 1.43c).

La loi de capacité établit le lien entre la pression dans le fluide et son vo-
lume. Ce lien peut être exprimé au moyen de l’élastance αV , qui est le fac-
teur indiquant avec quelle facilité il est possible d’augmenter la pression
avec une certaine quantité de fluide:

(1.27)

Il est également possible de définir l’inverse de l’élastance, que l’on nom-
me capacité hydraulique CV (dans le monde anglo-saxon, on la désigne
par compliance). Cette grandeur indique avec quelle facilité il est possible
d’augmenter le volume pour une augmentation de pression donnée.

(1.28)
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FIGURE 1.42 La pente de la tan-
gente à la courbe de pression en
fonction du volume accumulé est
l’élastance αV de l’élément de stoc-
kage. Généralement, l’élastance est
une fonction de la pression.
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Si le récipient sous pression est fait de caoutchouc, comme par exemple un ballon
d’enfant gonflable, la caractéristique P–V de la figure 1.44 est beaucoup plus comple-
xe que les cas traités ici, ce qui nous incite à utiliser de manière prudente les définitions
de la capacité ou de l’élastance. L’application de la définition usuelle à la partie dé-
croissante de la courbe donnerait une capacité négative, ce qui n’a pas de sens. Dans
de tels cas, on doit travailler directement avec la caractéristique P–V plutôt que d’uti-
liser les notions de capacité ou d’élastance.

1.6.3 Modélisation de la loi de capacité

La prise en compte de la capacité de chacun des deux récipients permet de calculer les
deux pressions capacitives (fig. 1.45).

Notons que ces capacités peuvent être données en tant que valeur numérique, au
moyen d’une équation telle que l’équation (1.29) pour la cuve 2, ou d’une table pour
la cuve 1.

1. Quelle est la signification de la capacité hydraulique? Expliquez la dif-
férence entre des réservoirs qui stockent le liquide verticalement et des
réservoirs sous pression pour des liquides et des gaz.

2. Pourquoi les courbes P-V du premier et du dernier récipient de la
figure 1.41 croissent-elles plus rapidement pour les grandes quantités
de volume accumulé?

3. Quel est le profil du réservoir de liquide dont la capacité est représentée par la partie droite
de la figure 1.43? Quelle est la signification de la distance horizontale entre l’axe P et la
courbe P–CV? À quoi cette grandeur est-elle proportionnelle?

4. La définition générale de la capacité met-elle en relation le volume et la pression, ou les
variations de volume et celles de la pression? Est-ce que la capacité mesure ce qu’un sys-
tème est capable de stocker?

1. La capacité hydraulique est la grandeur qui met en relation le taux de
variation de la pression et la vitesse de variation du volume. Cette
forme de la relation est également valable pour les réservoirs sous pres-
sion. Dans le cas de stockage de gaz à volume constant, il faut rempla-
cer le volume par la quantité de gaz.

2. Dans le réservoir sous pression, la densité augmente avec l’apport de
volume, ce qui fait croître la pression plus rapidement. Dans la cas du
réservoir qui se rétrécit vers le haut, les mêmes variations de volume entraînent des varia-
tions de hauteur plus importantes au fur et à mesure que le contenu augmente à cause du
rétrécissement.

V

P

FIGURE 1.44 Caractéristique d’un
ballon gonflable.

V1(t) = V1(t - dt) + (- I_V12) * dt

V2(t) = V2(t - dt) + (I_V12 + I_V3 - I_V4) * dt

delta_P_C1 = V1/CV1

delta_P_C2 = V2/CV2

delta_P_R12 = -(delta_P_C1-delta_P_C2)

delta_P_R4 = -delta_P_C2
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FIGURE 1.45 Introduction de la loi
de capacité dans le circuit de la
figure 1.25.
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3. Le réservoir devient plus étroit au sommet. La distance horizontale dans le graphique est la
capacité pour une pression donnée (du liquide au fond du réservoir). Elle est proportion-
nelle à la section du réservoir à cette hauteur.

4. Elle met en relation les variations plutôt que les grandeurs elles-mêmes. Non, ce n’est pas le
cas.

EXEMPLE 1.4. Réservoirs sous pression et écoulement.

Considérez un réservoir sous pression connecté par une conduite à une cuve à parois verticales
(fig. 1.46). Cette cuve est ouverte à l’air qui a une pression de 1.0 bar. Le système contient une
huile de masse volumique de 800 kg m-3 et de viscosité égale à 0.20 Pa s. La relation pression-
capacité pour le réservoir sous pression est donnée dans le graphique de la figure 1.47. La sec-
tion de la cuve est de 0.080 m2. La longueur et le rayon de la conduite mesurent 2.0 m et 0.020
m respectivement. (a) À un certain moment, le réservoir sous pression contient 0.15 m3 d’huile,
alors que la cuve en contient 0.20 m3. Dans quel sens l’huile s’écoule-t-elle? (b) Quel sera le
niveau final de l’huile dans la cuve?

SOLUTION: (a) À partir de la courbe pression-capacité, nous calculons d’abord la pression du
fluide dans le réservoir sous pression. Ensuite, nous déterminons le niveau et la pression de
l’huile dans la cuve. La différence de pression nous permet de calculer le flux, pour autant que
nous connaissions la résistance pour l’écoulement à travers la conduite, ce qui est le cas grâce
à la loi de HAGEN-POISEUILLE (section 1.7.2).

La pression la plus basse possible dans le réservoir sous pression est 105 Pa. Nous calculons le
volume de fluide contenu dans ce réservoir au moyen de l’aire entre la courbe pression-capacité
et l’axe vertical, commençant à Pa = 105 Pa (fig. 1.43). Vu que la capacité est donnée par une
fonction linéaire, à savoir

le calcul est simple (nous pouvons le lire dans le graphique):

Ici, Pr indique la pression dans le réservoir sous pression. La pression Pc du fluide au fond de la
cuve peut être calculée au moyen de la capacité de ce récipient:

On voit donc que l’huile doit s’écouler du réservoir sous pression vers la cuve.

(b) L’huile va s’écouler du réservoir sous pression vers la cuve jusqu’à ce que la pression du
fluide dans chacun d’eux soit la même. L’issue de ce processus peut être représentée dans le
diagramme pression-capacité. Vu que les variations de volume associées aux variations de pres-
sion apparaissent en tant qu’aires (fig. 1.48), nous voyons que la pression finale sera celle qui
rend égales les valeurs absolues des variations de volume (bilan de volume):

Ces variations peuvent maintenant être exprimées en termes de variations de pression:

où pf est la pression atteinte finalement. La résolution de l’équation donne Pf = 126 kPa, ce qui
donne une valeur finale de 0.260 m3 d’huile dans la cuve.
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FIGURE 1.46 Réservoir sous pres-
sion connecté à une cuve à parois
verticales.
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1.7 COURANTS: FORCE D’ENTRAÎNEMENT ET RÉSISTANCE

À l’intérieur d’un fluide, la pression peut varier pour plusieurs raisons; l’une d’elles
est le frottement. Lorsqu’un fluide s’écoule horizontalement, on observe une diminu-
tion de la pression dans le sens de l’écoulement (partie droite de la figure 1.37). On dit
qu’un gradient de pression s’établit à cause de la résistance lorsque l’on force un fluide
à travers une conduite.

1.7.1 Caractéristique de flux

Il existe une relation entre le flux volumique à travers la conduite et la chute de pres-
sion le long de celle-ci. Cette relation variera d’une circonstance à l’autre. Elle dépen-
dra de l’intensité du courant, des propriétés du fluide, des caractéristiques de la
conduite (dimensions, rugosité) et du type d’écoulement (laminaire ou turbulent, per-
colation). Cette relation peut être illustrée par un graphique qui exprime le flux volu-
mique en fonction de la différence de pression. Un tel diagramme est appelé
caractéristique de flux ou caractéristique courant-pression (caractéristique IV – ∆p),
ou encore caractéristique résistive.

1.7.2 Force d’entraînement et résistance hydraulique

La figure 1.49 montre deux exemples de caractéristique IV – ∆P pour des liquides
s’écoulant en régime stationnaire à travers une conduite. Il existe une description sim-
ple de la relation entre le flux et la différence de pression. Elle résulte de l’action an-
tagoniste de la force d’entraînement et de la résistance. Plus la force d’entraînement,

c’est-à-dire la différence de pression, est importante, plus le flux est important. Plus la
résistance est importante, plus le courant est faible. Nous devons fondamentalement
faire la distinction entre deux types d’écoulement: laminaire ou turbulent. Usuelle-
ment, le passage du régime laminaire au régime turbulent se produit lorsqu’une certai-
ne combinaison de la vitesse d’écoulement, de la viscosité du fluide, de sa densité et
des dimensions de la conduite, le nombre de REYNOLDS (section 9.10.2), dépasse une
valeur critique.

Écoulement laminaire. Pour un tel écoulement, la caractéristique est linéaire. Dans ce
cas, nous pouvons formuler cette relation en nous servant de la notion de conductance.
Le courant est considéré comme le résultat de l’action de la force d’entraînement et

[[[
[[[[[[[

[[[[[
[
[
[
[[[[[

[
[[[[[[[[[[[[

[[[[[[[[
[
[[[[[[[[[[[

0E+0

5E-6

1E-5

2E-5

2E-5

0 1000 2000 3000

I V
/m

3
s-

1

delta P / Pa

[[[[[[[[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[
[[[
[
[[[[
[
[
[[[[
[[[
[[[[[[[
[[[[[[[[[
[[[[[[[[
[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[[[[
[[
[[
[
[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[
[
[[[
[
[[[[
[[[[[[[[
[[[[

0E+0

1E-5

2E-5

3E-5

4E-5

5E-5

6E-5

0 1000 2000 3000

I V
/m

3
s-

1

delta P / Pa

a. b.

FIGURE 1.49 Caractéristique de
flux: (a) pour un écoulement lami-
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un écoulement turbulent (eau dans
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d’un facteur qui nous indique avec quelle facilité le fluide est transféré. Cette image
peut être exprimée comme suit:

∆PR est la chute de pression dans la direction de l’écoulement due à l’action des frot-
tements. On se rend compte que la résistance RV doit se mesurer en Pa s m-3 et que la
conductance GV doit l’être en m3 Pa-1 s-1.

Écoulement laminaire et loi de Hagen–Poiseuille. Le genre d’écoulement a une
grande influence sur la relation entre le flux et la chute de pression, comme le montre
le graphique de la fig. 1.49. Nous allons restreindre notre attention à des écoulements
à travers des conduites de diamètre constant, et à des écoulement stationnaires. Sta-
tionnaire signifie que les propriétés de l’écoulement n’évoluent pas dans le temps.
Dans une conduite, un écoulement est laminaire si sa vitesse est faible. Notons en pas-
sant que la vitesse d’écoulement moyenne pour une section A donnée, est liée à l’in-
tensité du flux IV par la relation:

(1.32)

On peut observer un écoulement laminaire dans les premiers centimètres de la colonne
de fumée qui s’élève d’une cigarette. Si nous pouvions voir les lignes de courant, nous
constaterions qu’elles sont parallèles, qu’elles ne se mélangent pas. Lorsque la vitesse
de l’écoulement augmente, il y a une brusque transition vers un mouvement chaotique,
au cours duquel le fluide est vigoureusement brassé: c’est le régime turbulent. Si tous
les autres paramètres sont maintenus constants, l’apparition de la turbulence dépend
de la viscosité du fluide: plus le fluide est visqueux, moins l’écoulement aura tendance
à basculer en régime turbulent. La viscosité de l’eau est tellement faible qu’elle
s’écoule pratiquement toujours en régime turbulent, même pour des valeurs relative-
ment faibles de la vitesse d’écoulement. Le tableau 1.1 donne la liste des valeurs de la
viscosité pour un certain nombre de fluides.

L’expérience montre qu’en régime laminaire, la relation entre le flux et la chute de
pression est linéaire, comme on le voit dans la partie gauche de la figure 1.49. On s’at-
tend à ce que la conductance dépende du rayon et de la longueur de la conduite, et de
la viscosité du fluide. Nous montrerons dans l’exemple 9.16 du chapitre 9 que la con-
ductance et la résistance sont, dans ce cas, données par la loi de HAGEN-POISEUILLE:

Lorsque les frottements dans le fluide provoquent une chute de pression
dans la direction de l’écoulement, il est possible d’exprimer le flux de flui-
de au moyen d’un terme qui exprime la force d’entraînement, à savoir la
différence de pression le long de l’écoulement, et d’un facteur appelé
conductance GV :

(1.30)

ou, de manière équivalente,

(1.31)

où RV = 1/GV est la résistance hydraulique .

I G PV V R= − ∆

I
R

PV
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R= − 1 ∆

v

 I AV = v

TABLEAU 1.1 Viscosité à 20°C.

Fluide
Viscosité 

η / Pa s

Huile de ricin 0.99

Glycérine 1.48

Huile d’olive 0.081

Mercure 0.00155

Eau 0.00100
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(1.33)

Dans ces expressions, η représente la viscosité du fluide, r, d et l sont respectivement
le rayon, le diamètre et la longueur de la conduite. Nous donnerons à la section 9.10,
exemple 9.16, une dérivation de cette relation qui montre qu’un fluide de viscosité nul-
le serait un fluide parfait.

Écoulement turbulent. Notez que l’écoulement, qui a une caractéristique linéaire
dans la figure 1.49, a une conductance (ou une résistance) constante, alors que pour
l’écoulement turbulent, la résistance varie en fonction de la différence de pression.

Lors d’un écoulement à travers une conduite, la turbulence apparaît si une certaine
combinaison de la vitesse du fluide, du diamètre de la conduite et de la viscosité du
fluide dépasse une valeur critique. Ainsi, pour une conduite et un fluide donnés, la vi-
tesse est un facteur décisif. La transition entre les deux régimes dépend elle aussi de
circonstances qui sont difficiles à saisir; pour n’en citer qu’une, la rugosité de la con-
duite intervient en tant que facteur. La différence entre le régime laminaire et le régime
turbulent peut être observée simplement dans la fumée s’élevant d’une cigarette
(fig. 1.50).

Sur les premiers centimètres au-dessus du tabac incandescent, nous observons une co-
lonne de fumée bien droite, ce qui signifie que les particules de fumée suivent des tra-
jectoires parallèles qui ne se croisent pas. Par contre, dans la zone turbulente plus haut
dans la colonne de fumée, les différentes parties de l’écoulement sont violemment mé-
langées. Nous ne voulons pas entrer en détail dans ce sujet. Signalons simplement que
ces relations sont souvent présentées sous forme graphique ou tabulaire.

Lors d’un écoulement turbulent, l’intensité du courant de volume n’est pas proportion-
nelle à la différence de pression entre les extrémités de la conduite, mais croît moins
rapidement. En première approximation, la fonction racine carrée suffit pour exprimer
la caractéristique d’un tel écoulement:

(1.34)

Le facteur k, appelé facteur d’écoulement turbulent, est semblable à une conductance.
Cependant, les termes de conductance et de résistance sont réservés à l’écoulement la-
minaire.

La figure 1.51 illustre l’influence des particularités de la conduite et du fluide sur les
écoulements au moyen de la caractéristique courant-pression. La courbe inférieure est
liée à un écoulement en régime laminaire qui se distingue par la proportionnalité entre
la différence de pression et l’intensité du flux. Les deux autres courbes sont les carac-
téristiques d’écoulements turbulents au cours desquels l’intensité du flux ne croît plus
proportionnellement à la différence de pression, mais approximativement à la racine
carrée de cette différence de pression.
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FIGURE 1.50 Colonne de fumée
s’élevant d’une cigarette. Sur les
premiers centimètres, l’écoulement
est laminaire, puis on assiste à la
transition progressive vers le régime
turbulent.

I k PV = ∆

FIGURE 1.51 Caractéristique de flux
pour différents écoulements à travers
la même conduite (longueur 10.0 m,
rayon 0.020 m): (a) huile (masse vo-
lumique 800 kg m-3, viscosité 0.20
Pa s) en régime laminaire; (b) eau
(viscosité 0.0010 Pa s) en régime tur-
bulent, conduite rugueuse; (c) con-
duite lisse.
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Modélisation de la loi de résistance. Nous pouvons maintenant compléter le dia-
gramme de dynamique des systèmes pour le circuit de la figure 1.25 en y introduisant
les résistances des conduites (que nous pouvons calculer au moyen de
l’équation (1.33), si nous admettons qu’il s’agit d’un écoulement laminaire). Finale-
ment, nous pouvons calculer les deux intensités de courant à travers les tubes 1 et 2 en
utilisant l’équation (1.31).

Pour compléter le modèle, il faut introduire les caractéristiques matérielles du systè-
me, c’est-à-dire les dimensions géométriques des récipients ainsi que la densité du
fluide pour évaluer les capacités, les paramètres des conduites et la viscosité du liquide
pour les résistances, ainsi que les valeurs initiales des volumes.

La figure 1.53 compare les résultats de la simulation pour deux situations différentes.
La première correspond aux cuves représentées dans la figure 1.25, la cuve 1 en forme
de pyramide tronquée inversée; les courbes d’évolution des niveaux sont étiquetées h1
et h2. La deuxième simulation est celle que l’on obtient avec deux réservoirs cylindri-
ques identiques; les courbes d’évolution des niveaux sont étiquetées h1* et h2*. On re-
marque que les deux niveaux se rapprochent plus rapidement l’un de l’autre dans le
premier cas. Cela est dû au fait que l’élargissement vers le haut de la cuve 1 augmente
sa capacité en vertu de l’équation (1.29) et que, par conséquent, la pression capacitive
engendrée par cette cuve décroît moins rapidement. La différence de pression à dispo-
sition pour l’entraînement du fluide vers la cuve 2 est donc plus importante, ce qui ex-
plique pourquoi les niveaux des deux cuves se rapprochent plus rapidement que dans
le cas de deux cuves à parois verticales.

Notons également que la variation du niveau de la cuve 1 s’inverse après quelques di-
zaines de secondes. C’est la conséquence du fait que la cuve 2 est alimentée par le flux
constant IV3 qui est plus important que les déperditions dues au flux IV4. Le sens de
circulation du flux IV12 entre les deux cuves s’inverse, ce qui explique l’augmentation
du niveau de la cuve 1.

1.7.3 Variation de pression liée à la variation de vitesse: effet BERNOULLI

Nous voulons expliquer la diminution de pression qui apparaît à l’entrée de la conduite
de la figure 1.37. Pour ce faire, nous mesurons les pressions aux points A et C durant
le processus de vidange de la cuve (fig. 1.54). Les hauteurs de la colonne de liquide
aux deux endroits peuvent être converties en pression. La pression au point B peut être
obtenue par extrapolation.

V1 V2

delta P C1

I V12

I V3

I V4

delta P C2

delta P R12

delta P R4

CV1

CV2 RV4

RV12

V1(t) = V1(t - dt) + (- I_V12) * dt

V2(t) = V2(t - dt) + (I_V12 + I_V3 - I_V4) * dt

I_V12 = -delta_P_R12/RV12

I_V3 = 1.5E-4

I_V4 = -delta_P_R4/RV4

delta_P_C1 = V1/CV1

delta_P_C2 = V2/CV2

delta_P_R12 = -(delta_P_C1-delta_P_C2)

delta_P_R4 = -delta_P_C2

FIGURE 1.52 Intégration de la loi de
résistance dans le modèle du système
de la figure 1.25. Le modèle est com-
plet et peut être validé, c’est-à-dire
que les résultats qu’il fournit peuvent
être comparés aux données expéri-
mentales.

FIGURE 1.53 Résultats de la simula-
tion du modèle du système de la
figure 1.25. Les courbes étiquetées
h1 et h2 correspondent aux récipients
de la figure, les courbes discontinues
étiquetées avec un astérisque à des
récipients à parois verticales.
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Comme il n’y a qu’un seul flux, son intensité peut être déterminée indirectement à par-
tir du taux de variation du volume contenu dans le récipient (courbe 1 dans le diagram-
me central de la figure 1.54). La vitesse d’écoulement se calcule à partir de la relation

(1.35)

Après lissage des données, qui sont fortement entachées de bruit à cause de la méthode
de mesure relativement imprécise, on reporte la différence de pression entre A et B en
fonction de la vitesse d’écoulement (fig. 1.55). On voit immédiatement que cette rela-
tion n’est pas linéaire et que la courbe doit passer par l’origine (pour une vitesse
d’écoulement nulle, la différence de pression entre A et B doit l’être aussi). La relation
la plus simple qui satisfait cette condition est une relation quadratique. Un ajustement
selon la méthode des moindres carrés ( ), révèle que le coefficient de propor-
tionnalité est égal à 512 Pa s2 m-3, une valeur numérique qui correspond à peu de chose
près à la moitié de celle de la densité de l’eau qui était le liquide qui s’écoulait. Nous
nous attendons donc à ce que la relation entre la variation de pression à l’entrée de la
conduite soit donnée par:

(1.36)

Ce résultat correspond à celui que nous trouverons au chapitre 8 (section 8.6,
exemple 8.6) sur la base de considérations théoriques. C’est un cas particulier d’un ré-
sultat plus général dérivé à l’origine par Daniel BERNOULLI (1700-1782), raison pour
laquelle on parle d’effet BERNOULLI.

1.7.4 Pompes

Une pompe engendre une différence de pression entre son entrée et sa sortie pour met-
tre en mouvement le fluide qui la traverse. Une pompe idéale produirait une différence
de pression constante. Mais les pompes réelles ont une caractéristique différente
(fig. 1.56), à cause de la résistance à l’écoulement. La diminution de la pression lors-
que le débit augmente s’explique par le fait que la résistance à l’écoulement augmente
avec l’intensité du flux. Une partie de la différence de pression disponible sert simple-
ment à transporter le fluide à travers la pompe.

Production de chaleur dans les écoulements avec frottement. Dans un écoule-
ment résistif, l’unique conséquence du processus est la production de chaleur. C’est
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FIGURE 1.54 Vidange d’un réservoir à travers une conduite fine: (a) mesure de la pression; (b) pression aux points A et C; (c) illustration
de l’origine de la différence de pression entre A et B: le fluide doit être mis en mouvement pour pouvoir s’écouler à travers la conduite.
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FIGURE 1.55 Différence de pression
à l’entrée de la conduite en fonction
de la vitesse d’écoulement. L’ajuste-
ment aux données d’une fonction
quadratique est quasi parfait.
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pourquoi nous pouvons dire que la résistance des fluides est associée au phénomène
de dissipation, un autre terme pour la production de chaleur (chap. 3).

Nous pouvons maintenant répondre à la question de savoir s’il existe des conditions
dans lesquelles un écoulement horizontal ne nécessite aucune différence de pression.
Nous voyons, à partir de l’équation (1.31), que la résistance hydraulique devrait être
nulle. De tels fluides n’existent pas, mais nous pouvons les imaginer. De telles abstrac-
tions sont appelées des fluides parfaits.

1.7.5 Démarrage et arrêt d’un courant de fluide

Dans tout ce qui précède, nous n’avons envisagé que des situations au cours desquelles
l’intensité du flux était dictée par trois différences de pression, la pression capacitive,
la pression résistive et la pression engendrée par une pompe. Nous avons ignoré les
processus qui se manifestent lors du démarrage d’un écoulement (ouverture d’un ro-
binet, enclenchement d’une pompe) ou lors de son interruption (fermeture d’un robi-
net). Or, l’observation révèle que lors de la mise en route d’un courant de fluide,
l’intensité du flux ne passe pas instantanément d’une valeur nulle à sa valeur station-
naire et qu’elle ne tombe pas instantanément à zéro lors de la fermeture d’un robinet.
La variation est progressive, et nous étudierons de manière détaillée au chapitre 4 le
phénomène particulier lié à ces variations d’intensité, le phénomène d’induction.

1.7.6 Diagrammes de processus

Les écoulements et les niveaux nous permettent de dessiner des diagrammes de pro-
cessus pour des dispositifs hydrauliques fondamentaux tels que des turbines et des
pompes (fig. 1.58), et des conduites (fig. 1.57) .

Les diagrammes de processus sont des instantanés: ils ne montrent pas l’évolution du
système, mais représentent plutôt les conditions qui règnent à un instant donné à un ou
plusieurs endroits d’un système ou d’un système combiné. En général, il ne sont pas
directement utilisables pour les calculs. Leur force réside dans le fait qu’ils représen-
tent de manière simple les processus les plus importants. Ils sont un instrument qui
nous permet de parler de manière cohérente du problème à résoudre en nous guidant
dans l’utilisation d’une vision systémique des processus physiques. Les diagrammes
de processus nous seront particulièrement utiles lorsque nous intégrerons l’énergie
dans la description des processus.

FIGURE 1.57 Diagramme de pro-
cessus d’un écoulement à travers une
conduite résistive. Le fluide s’écoule
d’un point de pression élevée à un
point de pression basse.
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FIGURE 1.58 Diagrammes de pro-
cessus pour une turbine et une pom-
pe. Les diagrammes montrent les
écoulements et les niveaux, et indi-
quent si l’écoulement monte ou des-
cend par rapport au niveau
hydraulique. Des écoulements qui
descendent la pente sont spontanés:
ils entraînent d’autre processus.
Ceux qui remontent la pente sont
contraints: on doit les entraîner.
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1. Des dispositifs techniques tels que des pompes ont également une
caractéristique IV – ∆p : si tous les autres facteurs sont maintenus cons-
tants, l’écoulement dépend de la différence de pression entre l’entrée et
la sortie du dispositif. Serait-il sensé d’introduire une résistance pour
décrire les phénomènes associés à de tels dispositifs?

2. Une pompe est connectée à la conduite horizontale lisse de caractéristi-
que décrite par la courbe (c) de la figure 1.51. La caractéristique IV – ∆p
de cette pompe apparaît dans la figure 1.59. Quelles valeurs prendront les différences de
pression et les flux dans le système?

3. Lors d’un écoulement laminaire, deux conduites identiques en parallèle ont-elles une résis-
tance plus faible qu’une conduite dont on a doublé la section?

1. Non, ce n’est pas sensé. On introduit une résistance pour décrire les
effets des frottements sur l’écoulement, qui entraînent une production
de chaleur. Ces phénomènes n’ont rien à voir avec ce qui se produit
dans une pompe ou une turbine.

2. La différence de pression sur la pompe doit avoir la même valeur abso-
lue que la chute de pression sur la conduite. Pour répondre aux ques-
tions, nous superposons les caractéristiques de la conduite et de la
pompe (fig. 1.60). Les valeurs cherchées se trouvent à l’intersection des deux courbes (res-
pectivement 1.2·105 Pa et 0.011 m3 s-1).

3. Selon la loi de HAGEN-POISEUILLE dans l’équation (1.33), en doublant la section, on réduit
la résistance d’un facteur quatre. Par contre, la mise en parallèle de deux conduites ne la
diminue que de moitié.

 

EXEMPLE 1.5. Pompage d’eau à travers une conduite rugueuse.

De l’eau est pompée 5 m plus haut à travers la conduite rugueuse de 10 m de longueur et de 2 cm
de rayon (fig. 1.61), don t la caractéristique est donnée par la courbe (b) de la figure 1.51. On
souhaite avoir un flux de 8 L s-1. (a) Quelle différence de pression la pompe doit-elle fournir
pour un écoulement stationnaire? (b) Calculez la conductance et la résistance. (c) Que vaut la
vitesse moyenne d’écoulement à travers une section de la conduite? d) Si l’écoulement était en-
core laminaire, le flux serait plus élevé ou moins élevé pour la différence de pression donnée?

SOLUTION: (a) Nous utilisons tout d’abord la loi des mailles énoncée dans l’équation (1.24)
pour une boucle fermée allant de A à B, puis C, et retournant à A par les airs. La pression du
fluide croît de A à B (c’est la valeur que nous devons déterminer), puis décroît à la valeur Pa
entre B et C. La chute de pression est due à deux processus: il faut surmonter la résistance à
l’écoulement et soulever le fluide dans le champ gravitationnel:

où ∆PP et ∆Ph sont les variations de pression dues respectivement à la pompe et à au soulève-
ment vertical (fig. 1.62): Pour ∆PR nous consultons la caractéristique d’écoulement (courbe (b)
de la figure 1.51). Un flux de 8 L s-1 correspond à 0.0080 m3 s-1, ce qui nous donne une valeur
de – 1.5·105 Pa pour le chute de pression due au frottement. Pour ∆Ph nous avons

La pompe doit donc élever la pression du fluide de 1.99·105 Pa =1.99 bar.

Q

FIGURE 1.59 Caractéristique d’une
pompe.
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FIGURE 1.60 Superposition des ca-
ractéristiques.

FIGURE 1.61 Pompage à travers une
conduite verticale.
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FIGURE 1.62 Évolution de la pres-
sion dans le circuit de la figure 1.61.
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(b) Nous obtenons la conductance et la résistance en utilisant les lois correspondantes énoncées
dans les équations (1.30) ou (1.31):

(c) L’équation (1.32) donne

d) Pour un écoulement laminaire, nous pouvons calculer la conductance (ou la résistance) à par-
tir de l’équation (1.33). Avec l’équation (1.30) nous obtenons

La viscosité a été tirée du tableau 1.1. La valeur du flux est approximativement 100 fois plus
grande que celle que l’on mesurerait. Nous avons sous-estimé la résistance d’un facteur 100.

B

EXEMPLE 1.6. Montage de conduites en série et en parallèle pour un écoulement laminaire.

Déterminez les relations pour la résistance hydraulique de deux conduites montées respective-
ment en parallèle ou en série (fig. 1.63), pour un écoulement laminaire. Négligez l’influence des
coudes et des raccords dans les montages de conduites.

SOLUTION: pour un montage en parallèle, ∆PR a le même valeur pour les deux conduites, alors
que le courant total est la somme des deux courants. Ainsi:

Pour obtenir la résistance équivalente du montage en parallèle de conduites, nous devons addi-
tionner les inverses des résistances individuelles, puis calculer l’inverse de la somme.

Pour des conduites montées en série, nous procédons de manière analogue. Ici, le courant est le
même pour les deux conduites, alors que la chute de pression totale est la somme des valeurs
individuelles:

La résistance totale est la somme des résistances individuelles. Notez que ces résultats sont va-
lables, sous une forme équivalente, pour un nombre quelconque de conduites.

B

1.8 MODÉLISATION DE QUELQUES PROCESSUS HYDRAULIQUES

L’objectif de cette section est d’illustrer et de mettre en pratique ce que nous avons dé-
couvert en cours de chapitre. Pour le faire, nous allons modéliser trois systèmes et pro-
cessus hydrauliques simples, la vidange d’un récipient à parois verticales, son
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en parallèle et en série.

R2

R2

R1 R1

IV1

IV2

IV
ΔP1

ΔP2

ΔP

Conduites
parallèles

Montage
en série

R
P

I

P

I I

I I

P

I
V

R

V

R

V V

V V

R

V= =
+

=
+

=
⎛
⎝
⎜

⎞
⎠
⎟

−
∆ ∆

∆ ∆1 2

1 2

1

1

PP

I

P R RR

V

R

+ = +
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

− −

2

1

1 2

1

1 1

∆

R
P

I

P P

I

P

I

P

I
R RV

R

V

R R

V

R

V

R

V

V V= =
+

= + = +
∆ ∆ ∆ ∆ ∆1 2 1 2

1 2



36 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 1   ACCUMULATION ET ÉCOULEMENT DE FLUIDES

remplissage par une pompe, le système appelé windkessel et la migration d’un fluide
à travers une chaîne de récipients.

Dans les deux premiers exemples, nous modéliserons le processus au moyen de Stella,
puis nous résoudrons le même problème au moyen des méthodes de l’analyse mathé-
matique,

1.8.1 Vidange d’un réservoir à parois verticales

Élaboration du modèle et simulation. Nous voulons modéliser l’écoulement d’une
huile visqueuse s’échappant d’une cuve à parois verticales à travers une conduite ho-
rizontale connectée au fond de la cuve, comme le montre la partie gauche de la
figure 1.64. Les caractéristiques du système (récipient, conduite, fluide) ont été mesu-
rées et une expérience a permis d’enregistrer l’évolution du processus, pour nous per-
mettre de comparer notre modèle à la réalité.

À partir des équations (1.29) et (1.33), nous pouvons calculer la capacité du récipient
et la résistance de la conduite. L’évolution de la pression est représentée graphique-
ment dans la partie de la figure 1.64. Le diagramme de dynamique des systèmes appa-
raît dans la figure 1.65.

La comparaison entre la simulation du modèle et les données expérimentales
(figure 1.66) révèle un correspondance quasi parfaite. Cela signifie que notre hypothè-
se au sujet de la proportionnalité entre le flux et la différence de pression sur la con-
duite était correcte. Cette hypothèse se serait révélée fausse si le fluide avait été de
l’eau (section 1.8.7).

Recherche de la solution analytique. Le modèle repose sur l’énoncé du bilan. Si
nous parcourons le système de A vers C, l’évolution de la pression est celle qui est
donnée dans la figure 1.64b. Le flux émerge du système, il doit donc être compté né-
gativement dans l’équation de bilan:
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Pa

A B C
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B

C

∆PR

∆PC

IV

a. b.

FIGURE 1.64 Vidange d’un réci-
pient à parois verticales; (a)
système; (b) évolution de la pression
en fonction de la position.
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delta P C
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delta P R
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A

V(t) = V(t - dt) + (- I_V) * dt

INIT V = A*h0

delta_P_C = V/CV

delta_P_R = -delta_P_C

I_V = -delta_P_R/RV

CV = A/(rho*g)

RV = 8*eta*l/(PI*r^4)

h = V/A

A = PI*0.1^2

h0 = 0.325

eta = 8.09E-2

g = 9.81

l = 1.05

r = 0.0081

rho = 915

FIGURE 1.65 Diagramme de dyna-
mique des systèmes du processus de
vidange du système de la figure 1.64.
Dans la partie droite de la figure, les
équations qui sont utilisées pour si-
muler l’évolution du processus. La
première équation est la version nu-
mérique du bilan; c’est la seule équa-
tion qui est écrite automatiquement
par le logiciel lorsque l’on dessine le
stock et le flux qui symbolisent le bi-
lan. Les autres équations décrivent
les particularités du système.

FIGURE 1.66 Résultat de la simula-
tion du modèle de la figure 1.65 (li-
gne continue) comparé aux données
expérimentales (points). L’accord est
pratiquement parfait.
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(1.37)

Les lois constitutives sont respectivement la loi de capacité:

(1.38)

et la loi de résistance:

(1.39)

Ces deux lois constitutives sont liées entre elles par la loi des mailles:

(1.40)

En combinant les équations (1.37) à (1.40), nous obtenons:

ce qui donne finalement:

(1.41)

Il s’agit d’une équation différentielle du premier ordre sans second membre (ou homo-
gène). Nous observons que la dérivée de la fonction inconnue V(t) est proportionnelle
à la fonction elle-même. Seule une exponentielle a cette particularité. Nous posons
donc en tant que fonction d’essai:

En substituant la dérivée première de cette fonction d’essai dans l’équation différen-
tielle (1.41), nous trouvons que:

À partir de la condition initiale, V(t = 0) = V0, nous trouvons que A = V0, ce qui nous
permet de conclure que:

(1.42)

La diminution du volume lors de la vidange d’un récipient à parois verticales est donc
de type exponentiel.

1.8.2 Constante de temps du processus

L’analyse dimensionnelle de l’équation différentielle (1.41) ou de l’exposant de la so-
lution (1.42) nous permet de conclure que le produit RVCV a les dimensions d’un
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temps. Pour en obtenir la signification, nous dérivons l’équation (1.42) par rapport au
temps:

À l’instant t = 0, la dérivée est égale à:

Or, la valeur de la dérivée est égale à la pente de la tangente, dans le cas particulier,
celle de la tangente à l’origine de la courbe d’évolution du processus, ce qui nous per-
met de donner une interprétation graphique de la signification du produit RVCV. Il
s’agit, sur l’axe du temps de la figure 1.67, de la base du triangle rectangle dont la tan-
gente à l’origine de la courbe est l’hypoténuse et le segment d’ordonnée de longueur
V0 est le second côté.

On appelle constante de temps résisto-capacitive du processus de vidange la
grandeur:

(1.43)

Elle caractérise la rapidité d’évolution d’un processus modélisé par une fonction ex-
ponentielle. Elle correspond à la durée du processus s’il se déroulait à régime constant,
c’est-à-dire avec un taux de variation et donc un flux de vidange constant égal à la va-
leur initiale de ces grandeurs. À l’instant t = τC, le volume restant correspond à V0/e,
soit à 37% de la valeur initiale.Un système semblable à celui qui est modélisé dans la
figure 1.65 est appelé un système RC, parce que les deux composantes qui sont respon-
sables de l’évolution observée sont respectivement un élément résistif et un élément
capacitif.

Il est assez usuel d’introduire la constante de temps dans la formulation de la solution
de l’équation différentielle et de la réécrire sous la forme:

(1.44)

1.8.3 Remplissage au moyen d’une pompe idéale

Élaboration du modèle et simulation. Nous allons modéliser le processus de rem-
plissage d’un récipient semblable à celui de la section précédente au moyen d’une
pompe qui est censée délivrer une pression constante. Comme nous admettons que la
conduite est située à la base du récipient, le flux variera en fonction du niveau du fluide
dans la cuve.
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Nous admettons qu’il s’agit de la même huile que dans l’exemple de la section précé-
dente. En outre, nous admettons également que la pompe délivre une pression cons-
tante, ce qui simplifie la modélisation. Les caractéristiques du système, capacité et
résistance, seront calculées au moyen des équations (1.29) et (1.33).

Le modèle fait apparaître une caractéristique des processus de remplissage: la crois-
sance du niveau devient de plus en plus faible. On dit que le niveau tend asymptoti-
quement vers sa valeur finale. La recherche de la solution analytique va permettre de
préciser cette notion.

Recherche de la solution analytique. Le modèle repose sur l’énoncé du bilan. Si
nous parcourons le système de A vers D, l’évolution de la pression est celle qui est
donnée par la partie droite de la figure 1.68. Le flux entre dans le système, il doit donc
être compté positivement dans l’équation de bilan:

(1.45)

La différence de pression capacitive est négative:

(1.46)

La loi des mailles nous permet de calculer la différence de pression résistive:

(1.47)

à partir de laquelle nous calculons le l’intensité du flux:
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FIGURE 1.68 Remplissage d’une
cuve au moyen d’une pompe; (a)
système; (b) répartition des pres-
sions.
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FIGURE 1.69 Modèle de remplissage d’une cuve au moyen d’une pompe idéale
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(1.48)

En combinant les équations (1.45) à (1.48), nous obtenons:

ce qui donne finalement:

(1.49)

Il s’agit d’une équation différentielle du premier ordre avec second membre. En ana-
lyse, on démontre que la solution d’une telle équation différentielle peut être écrite en
tant que superposition de la solution de l’équation homogène, qui est l’équation (1.41)
dont la solution est donnée par l’équation (1.44), et d’une solution particulière qui
prend en compte la présence du second membre. Nous écrivons donc:

Nous utilisons un argument physique pour trouver une solution particulière. Nous sa-
vons qu’au bout d’un certain temps, le volume se stabilisera à une valeur maximale
Vmax (lorsque la pression de la pompe équilibrera la pression capacitive). Alors, la va-
riation du flux dV/dt sera nulle; l’introduction de ces deux valeurs dans l’équation dif-
férentielle (1.49) donne:

(1.50)

C’est la valeur vers laquelle tend V(t) lorsque t tend vers l’infini:

Ainsi:

À partir de la condition initiale, V(t = 0) = 0, nous trouvons que A = -Vmax, ce qui nous
permet de conclure que:

(1.51)
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1.8.4 Constante de temps du processus

Vu que la partie homogène de la solution est la même que lors du processus de vidan-
ge, la constante de temps ne change pas. Pour en déterminer la signification, évaluons
le taux de variation initial de la même manière qu’à la section 1.8.1 pour obtenir:

Cette valeur est égale à la pente de la tangente à l’origine de la courbe d’évolution
du processus (fig. 1.70). Cette tangente détermine, sur l’asymptote horizontale d’or-
donnée Vmax donnée par l’équation (1.50), un segment de longueur égale à la valeur
de la constante de temps. À l’instant t = τC, le volume a atteint le 67% de la valeur
maximale.

1.8.5 Modélisation d’un windkessel

Le mot «windkessel» est d’origine allemande et signifie chambre ou réservoir à air.
C’est un système qui a été introduit au XVIIe siècle dans les pompes à bras qui ser-
vaient à combattre les incendies, afin de lisser les variations de la pression pulsée dé-
livrée par la pompe pour d’obtenir un flux émergent presque constant.

Le principe du windkessel est représenté dans la figure 1.71. Cette pompe à incendie
du début du XXe siècle est actionnée à la force des bras. Lorsque l’un des pistons des-
cend, il chasse l’eau dans le réservoir central (le windkessel) dont le niveau monte,
comprimant l’air qui s’y trouve, ce qui engendre une surpression. Une valve empêche
le reflux de l’eau. Simultanément, l’autre piston remonte, aspirant l’eau de l’extérieur
vers le cylindre. La pression dans le windkessel varie de manière beaucoup moins pro-
noncée que si le flux était uniquement entraîné par les pistons mobiles.
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FIGURE 1.70 La constante de temps
du processus correspond au segment
de l’axe du temps entre l’origine et
l’intersection de la tangente à l’origi-
ne de la courbe avec l’asymptote
d’ordonnée égale à Vmax.
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FIGURE 1.71 Windkessel: (a) pom-
pe à incendie du début du XXe siècle,
actionnée à bras; le windkessel est la
partie centrale; (b) représentation
schématique du système.
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FIGURE 1.72 Modélisation du win-
kessel.
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Le système est modélisé au moyen d’un récipient alimenté par une pompe qui délivre
une pression intermittente (fig. 1.72). L’action de la valve est représentée par une
structure if ... then ... else.

La simulation (fig. 1.73) montre que les variations de la pression et de l’intensité du
flux à la sortie du windkessel sont fortement réduites par rapport à celles que l’on ob-
serve à l’entrée du système.

 

1.8.6 Chaîne de réservoirs

Nous nous intéressons à la manière dont un fluide migre à travers une chaîne de réser-
voirs (fig. 1.74a) dont seul le premier contient initialement du liquide. Ce système il-
lustre sous une forme simplifiée, mais de manière exemplaire, un phénomène que l’on
rencontre dans de nombreux domaines, la diffusion. Citons à titre d’exemple la tendan-
ce qu’ont les substances chimiques à se répartir uniformément dans l’espace disponi-
ble (morceau de sucre qui se dissout dans un verre d’eau), le fait que la chaleur migre
des endroits chauds vers les régions froides, l’osmose qui n’est rien d’autre que le pas-
sage d’une substance à travers une membrane. Nous traiterons de manière détaillée ces
exemples et d’autres encore dans des chapitres ultérieurs.

Le modèle, qui répète une structure de base consistant en deux récipients communi-
cants (fig. 1.74b), montre comment le fluide progresse à travers le système, ainsi que
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FIGURE 1.73 Simulation du com-
portement du windkessel: (a) évolu-
tion des pressions; (b) évolution des
flux. Les pics sont les valeurs d’en-
trée (pompe), les valeurs réduites et
lissées sont celles de la sortie
(tuyau).
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FIGURE 1.74 Chaîne de récipients: (a) système; seul le premier contient du liquide; (b) le modèle est une répétition de la
même structure consistant en deux récipients communicants; (c) la simulation montre comment le liquide migre à travers la
chaîne jusqu’à l’uniformisation des niveaux.
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le délai qui s’écoule avant que les récipients successifs soient atteint par le fluide
(fig. 1.74c).

1.8.7 Écoulement turbulent

Dans tous les exemples qui précèdent, nous avons admis que le fluide s’écoulait en ré-
gime laminaire, ce qui est le cas lorsqu’il s’agit d’une huile suffisamment visqueuse,
comme dans l’exemple de la section 1.8.1 où le modèle basé sur cette hypothèse est
en adéquation quasi parfaite avec les données expérimentales (fig. 1.66).

Si en revanche nous utilisons la même hypothèse pour modéliser l’équilibrage des ni-
veaux de deux réservoirs contenant de l’eau, la divergence entre les données expéri-
mentale et le modèle apparaît dès le début du processus (courbes discontinues dans la
figure 1.75, dans laquelle les valeurs expérimentales sont représentées par des petits
cercles). L’écoulement entre les deux récipients se déroule en régime turbulent. Si

nous utilisons l’approximation proposée par l’équation (1.34), nous obtenons un ajus-
tement satisfaisant en fixant à 7.3·10-7 la valeur du facteur d’écoulement turbulent k.

EXEMPLE 1.7. Diagramme de circuit hydraulique.

Considérez un circuit hydraulique consistant en une pompe, une turbine, des conduites et une
cuve, comme le montre la figure 1.76. Admettez que le fluide doit être puisé et déversé dans un
grand bassin au niveau du sol. Tracez un diagramme de flux combinant les diagrammes de pro-
cessus pour chacun des composants importants.

SOLUTION: Plaçons le début du circuit à la pompe.
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FIGURE 1.75 Modèle de l’équilibrage des niveaux de deux récipients contenant de l’eau. On obtient un modèle correct en
admettant que l’écoulement est turbulent. Les courbes discontinues montrent quel serait le comportement du système si on
admettait un écoulement laminaire.

FIGURE 1.76 Circuit hydraulique
traité dans l’exemple 1.7.
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FIGURE 1.77 Diagramme de pro-
cessus des éléments du circuit hy-
draulique de la figure 1.76.
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La pompe, la conduite vers la cuve de stockage, les conduites allant vers la turbine, la turbine
et la conduite retournant vers la pompe forment un circuit fermé: les éléments sont connectés
en série. Le bassin ferme la boucle. La pression du fluide augmente dans la pompe, puis diminue
dans les conduites et dans la turbine. La cuve est connectée en parallèle au segment A-B-C du
circuit. Dans la colonne de fluide, la pression décroît de PC à PA. Notez que le courant se divise
au point C. En C, la somme des trois flux est égale à zéro.

B

EXEMPLE 1.8. Modèle dynamique du remplissage d’une cuve.

Considérez le système de la figure 1.78. L’écoulement obéit à la loi de HAGEN-POISEUILLE. Ad-
mettez que la conduite de la pompe vers la cuve et celle qui part de la cuve sont identiques. (a)
Jusqu’à quelle hauteur peut-on remplir la cuve? (b) Représentez les processus au moyen d’un
diagramme de dynamique des systèmes et simulez le comportement du système en admettant
que les conduites de A à B et de C à D* ont une longueur de 1.0 m, un diamètre de 1.6 cm, que
la cuve a un rayon de 0.30 m et que l’on veut la remplir d’une huile de masse volumique de 915
kg m-3 et de viscosité égale à 84·10-3 Pa s. Admettez que la pompe est une pompe idéale qui
délivre une pression constante de 2.86 bar. (c) Modifiez le modèle du point (b) en admettant
qu’il s’agit d’une pompe réelle dont la caractéristique est donnée par la figure 1.56 et comparez
les résultats avec ceux de la simulation pour une pompe idéale.

SOLUTION: (a) La hauteur maximale à laquelle la cuve peut être remplie dépend de la diffé-
rence de pression maximale atteignable pour la colonne de liquide de C à D. Comme la cuve et
la seconde conduite sont en parallèle, la différence de pression est la même que celle de C à D*.
Mais cette dernière dépend du courant de fluide à travers cette conduite. Or, au moment où le
niveau maximal est atteint, ce courant est le même qu’à travers la première conduite et la pom-
pe, puisqu’à partir de ce moment-là, aucun liquide n’entre plus dans la cuve. Le fluide s’écoule
directement de la pompe, par C vers D*. Comme les conduites sont identiques, chacune d’elles
utilise la moitié de la différence de pression fournie par la pompe. Nous avons donc

ce qui nous permet de conclure que ∆hmax = ∆Ppompe/ (2ρg).

a) Les éléments essentiels du modèle sont, tout d’abord, le bilan représenté par un stock et un
flow uniques (IV2 partant du point C vers la cuve dans la figure 1.38). Ce courant émane du
nœud au point C, nœud que l’on représente également au moyen d’un stock.

Étant donné que le nœud ne peut pas accumuler de fluide, IV2 est égal à la somme de IV1 et IV3.
IV1 et IV3 peuvent être calculés au moyen de la loi de résistance si les différences de pression
sur les conduites de B à C et de C à D* sont connues. Tout ce que nous avons à faire est de cal-
culer la pression PB à partir de la différence de pression fournie par la pompe, et PC à partir de
la loi de capacité appliquée à la cuve (fig. 1.79).

(c) Pour pouvoir intégrer la caractéristique de la pompe dans le modèle, nous devons pouvoir
disposer d’une courbe basée sur des points équidistants, ce qui n’est pas le cas des données
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FIGURE 1.78 Circuit hydraulique
traité dans l’exemple 1.8.
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I_V1 = -delta_p_R1/RV

I_V2 = I_V1-I_V3

I_V3 = -delta_p_R3/RV

delta_p_C = -V/CV

delta_p_R1 = -(delta_p_pompe+delta_p_C)

delta_p_R3 = delta_p_C

delta_p_pompe = 2.86E5

CV = A_cuve/(rho*g)

RV = 128*eta*longueur/(PI*d_conduite^4)

FIGURE 1.79 Modèle dynamique du
circuit de la figure 1.78.
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1.8  MODÉLISATION DE QUELQUES PROCESSUS HYDRAULIQUES

disponibles. À partir de celles-ci (fig. 1.56), nous ajustons une courbe du second degré au
moyen de la méthode des moindres carrés.

Les résultats de la simulation (fig. 1.80) montrent que l’évolution des valeurs du volume accu-
mulé et des intensités des courants dans les conduites est réduite par rapport aux valeurs qui sont
délivrées par la pompe idéale, ce qui s’explique par le fait que la pression à la sortie de la pompe
diminue d’autant plus que l’intensité du flux est importante; les différences entre les valeurs
idéales et les valeurs réelles sont les plus importantes au début du processus de remplissage,
lorsque les valeurs de la pression capacitive, qui s’oppose à l’arrivée du fluide, sont faibles. Le
niveau final est plus faible à cause de la pression nécessaire pour maintenir le flux dans la
conduite parallèle à la cuve.

B

Résumé du chapitre
Nous avons étudié un aspect restreint du vaste domaine qui traite de l’écoulement des
fluides, à savoir l’hydraulique. L’hydraulique étudie les fluides dans des environne-
ments contrôlés – conduites et réservoirs –, souvent dans la perspective d’applica-
tions techniques. Malgré ses limitations, elle nous apprend beaucoup sur le
comportement de la nature. Rappelons les points dont il est important de se souvenir
à propos de l’hydraulique.

Les processus hydrauliques consistent en l’écoulement et l’accumulation de quantités
de fluide. Si nous ne considérons que des fluides incompressibles tels que l’eau ou
l’huile, nous pouvons utiliser leur volume V pour en mesurer la quantité. Il s’agit de la
grandeur extensive (qui croît avec la taille du système) servant à décrire les processus
hydrauliques.

Pour des fluides incompressibles, et en l’absence de réactions chimiques, le volume de
fluide ne peut changer qu’à la suite d’afflux ou de déflux . La somme algébrique de
tous les flux volumiques, représentés par le symbole IV, nous indique à quelle vitesse
évolue le volume de fluide accumulé, ce que l’on exprime au moyen de l’équation de
bilan: , où représente le taux de variation du volume.

Les observations permettent de se rendre compte que ce sont des différences de ni-
veau ou de pression qui engendrent les flux responsables des variations des quantités
de fluides accumulées dans un système. Réciproquement, des variations des quantités
accumulées produisent des variations de pression. La pression P est la grandeur
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FIGURE 1.80 Comparaison du com-
portement du système de la
figure 1.78 avec une pompe idéale
(courbes continues) et avec une pom-
pe réelle (courbes discontinues): (a)
évolution du volume accumulé dans
la cuve; (b) évolution de l’intensité
des courants dans les conduites.
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intensive (qui ne dépend pas de la taille du système) qui sert à décrire l’état du systè-
me. C’est elle qui est responsable de l’évolution dynamique du système.

Les caractéristiques physiques des éléments du système (réservoirs et conduites) dé-
terminent de quelle manière évolue son état. Ces particularités sont exprimées au
moyen de relations que l’on appelle lois constitutives.

Dans les réservoirs de fluide, la pression du fluide est liée à la quantité stockée par l’in-
termédiaire de la loi de capacité: le taux de variation de la pression, multiplié par la
capacité CV , nous indique à quelle vitesse évolue le volume stocké: . Le lien
entre la variation du volume et celle de la pression peut également être exprimé au
moyen de l’élastance αV , qui est l’inverse de la capacité: .

Généralement, il y a toujours des frottements lors d’un écoulement à cause de la vis-
cosité. En conséquence, la pression du fluide diminue dans le sens de l’écoulement. Il
faut une différence de pression pour entraîner un fluide à travers une conduite, et cette
différence de pression est liée au flux par l’intermédiaire de la loi de résistance: le flux
est égal au quotient de la différence de pression et de la résistance hydraulique RV:
IV = –1/RV · ∆PR . La loi de résistance peut également être exprimée au moyen de la
conductance GV qui est l’inverse de la résistance: IV = – GV · ∆PR .

La combinaison de l’équation de bilan et des lois constitutives, ainsi que de la loi des
mailles (dans un circuit fermé, la somme des différences de pression est nulle) et de
celle des nœuds (en un nœud du circuit, la somme algébrique des intensités de courant
volumique est nulle), permet de construire des modèles complets de processus hydrau-
liques dynamiques.

� �V C PV C=

� �P VC V= α
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Questions
1. Quels sont les processus décrits par un bilan? Quel est le bilan

pour des quantités d’eau?

2. Peut-on dire que les écoulements d’eau sont les seuls proces-
sus qui peuvent modifier la quantité d’eau dans un système?
Sinon, quelle loi doit-on changer, et comment?

3. Pourquoi l’intensité du champ de pesanteur joue-t-elle un rôle
dans la pression d’une colonne de fluide?

4. Considérez deux lacs qui communiquent à travers un canal
unique, sans autre afflux ou déflux. Le système est-il à l’équi-
libre lorsque les deux lacs contiennent la même quantité
d’eau?

5. Quelle est la relation entre viscosité, frottement et production
de chaleur dans un écoulement de fluide? Quelles sont les
conditions pour une écoulement idéal?

6. Dans l’exemple 1.5, nous avons calculé la pression que devait
fournir une pompe pour entretenir un écoulement stationnaire.
Votre réponse est-elle la même si le fluide entrant dans la
pompe est déjà en mouvement ou s’il est immobile?

7. Dans la figure 1.81, une droite reliant l’extrémité de la con-
duite et les niveaux supérieurs des tubes de verre indiquant la
pression du fluide rejoint le niveau libre du liquide dans la
cuve (haut de la figure 1.81). Sous quelles hypothèses est-ce
le cas? En réalité, on découvre que cette droite passe par un
point en dessous du niveau libre (bas de la figure). Quelle est
la raison de ce comportement? Qu’avons-nous négligé?

8. Nous avons associé les notions de résistance et de capacité
respectivement avec l’écoulement à travers des conduites et
des réservoirs stockant des fluides. Serait-il possible qu’une
capacité soit une résistance, et vice versa?

9. Comment se présente la caractéristique d’une pompe capable
de fournir une différence de pression constante, quelle que
soit la valeur du flux de fluide?

10. Utilisez l’«analogie hydraulique» d’une cuve à parois verti-
cales contenant un fluide pour expliquer la relation entre con-
tenu, niveau et capacité. Quelle est la correspondance entre les
grandeurs géométriques et les grandeurs physiques
respectives?

FIGURE 1.81
Question 7

11. Expliquez la signification des termes processus hydrauliques
«spontanés» et «contraints» . Dans quel sens le phénomène
de l’écoulement résistif d’un flux visqueux à travers une con-
duite est-il spontané? Comment cela est-il exprimé dans un
diagramme de processus?

12. Comment se présente le diagramme de processus de la vidan-
ge d’une cuve comme dans la figure 1.31?

13. Dans la figure 1.65, le bilan (première équation de la liste) ne
doit pas être écrit explicitement avec un logiciel de dynami-
que des systèmes. Pourquoi?

14. Comment les courants à travers les deux conduites de
l’exemple 1.8 évoluent-ils dans le temps? Raisonnez qualita-
tivement.

 

Exercices
1. Une pompe propulse de l’eau à travers une longue conduite,

puis à travers une turbine. Dessinez la combinaison de dia-
grammes de processus qui représente ce système.

2. Calculez la pression qui règne au fond d’un lac de 100 m de
profondeur.

3. La pression sanguine d’un humain correspond à celle d’une
colonne de mercure de 130 mm. Que vaut cette pression?

4. On pompe de l’huile de ricin à travers une conduite de 10 m
de long et de 5.0 cm de diamètre. Calculez la résistance.

5. On pompe de l’eau à travers une conduite lisse de 10 m de
long et de 4.0 cm de diamètre. Le flux est de l0 L s-1. L’eau
s’écoule ensuite à travers une turbine, puis retourne vers la
pompe à travers une conduite identique à la première. La
pompe fournit une différence de pression de 5.0 bar. Quelle
est la différence de pression sur la turbine?

6. Déterminez la capacité hydraulique d’une piscine de 25 m de
long et de 15 m de large.

7. Deux réservoirs communicants à parois verticales de diamè-
tres 0.40 m et 0.60 m, sont remplis d’huile d’olive à des ni-
veaux respectifs de 1.0 m et 0.30 m. Quel sera le niveau final
commun de l’huile dans les réservoirs?

8. Dans le processus modélisé dans la figure 1.65, l’évolution
dans le temps du volume de fluide est donnée par la
figure 1.82. Pourquoi est-ce ainsi? Quelle est la valeur de la
pente (négative) de la courbe au début du processus?

FIGURE 1.82
Exercice 8
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Problèmes
1. Une fontaine est alimentée par deux courants. Le premier

varie son intensité linéairement de 2.0 L s-1 à 1.0 L s-1 en
l’espace de 10 s, alors que le second a une intensité constante
de 0.5 L s-1. Depuis le début de la 4e seconde jusqu’à la fin de
la 6e, le contenu de la fontaine diminue de 0.030 m3. (a)
Quelle est l’intensité du flux constant qui s’écoule de la
fontaine? (b) Quel est le volume du contenu de la fontaine
après 10 s, si on admet que le volume initial était de 200 L?

2. De l’huile, de masse volumique égale à 800 kg m-3 et de vis-
cosité égale à 0.60 Pa s, s’écoule à travers le système de la
figure 1.83. La pression en A vaut 1.40 bar, en C 1.20 bar. Le
petit diamètre est de 1.0 cm, le grand diamètre de 2.0 cm. On
peut négliger l’influence des coudes et arêtes et admettre un
régime laminaire (loi de HAGEN-POISEUILLE). (a) Quelle est
l’intensité du flux volumique à travers la conduite inférieure?
(b) Que vaut le flux volumique total à travers les conduites?
(c) Que vaut la pression en B?

3. Deux réservoirs (fig. 1.84) contiennent une huile ayant une
masse volumique de 800 kg m-3 et une viscosité de 0.20 Pa s.
Initialement, dans le réservoir de gauche, de section égale à
0.010 m2, le niveau du fluide est à 10 cm ; dans le second
réservoir, de section égale à 0.0025 m2, le niveau est de
60 cm. Le tuyau reliant les deux réservoirs a une longueur de
1.0 m et un diamètre de 1.0 cm. (a) Calculez la pression en A,
B, C et D à cet instant. (b) Esquissez le profil de la pression
(pression en fonction de la position) pour le parcours de A à
D; ajoutez un point C* à l’autre extrémité de la conduite ;
(c) Quelle est l’intensité du flux volumique immédiatement
après l’ouverture de la conduite?

4. On veut remplir un lac artificiel de grande surface et de faible
profondeur au moyen d’une conduite horizontale de 10 km
de longueur. Initialement, le lac est vide et son contenu final
doit être de 105 m3 d’eau. La résistance de la conduite est
régie par la loi de HAGEN-POISEUILLE, et la chute de pression
linéaire est de 100 Pa par mètre, pour un flux volumique de
1.0 m3 s-1. Pendant le remplissage du bassin, l’eau s’évapore
à un rythme constant de 0.10 m3 s-1. (a) Si le flux volumique
est constant et égal à 0.50 m3 s-1, quel est alors le taux de
variation du volume d’eau dans le lac? (b) Combien de temps

10.0 m

5.0 m 5.0 m

A

B

C

FIGURE 1.83
Problème 2

A

B

C

D FIGURE 1.84
Problème 3

faudra-t-il pour remplir le lac? (c) Quelle est la différence de
pression fournie par la pompe?

5. Une grande cuve est remplie d’huile à travers une conduite
raccordée au fond (comme dans la figure 1.85). L’écoulement
à travers la conduite se fait en régime laminaire. Énoncez le
flux instantané en termes de longueur et de rayon de la con-
duite, de la viscosité et de la masse volumique de l’huile, et
de la hauteur de l’huile dans la cuve.

6. Deux réservoirs (fig. 1.84) contiennent une huile ayant une
masse volumique de 800 kg m-3 et une viscosité de 0.20 Pa s.
Initialement, dans le réservoir de gauche, de section égale à
0.010 m2, le niveau du fluide est à 10 cm ; dans le second
réservoir, de section égale à 0.0025 m2, le niveau est de
60 cm. Le tuyau reliant les deux réservoirs a une longueur de
1.0 m et un diamètre de 1.0 cm. Esquissez l’évolution des
niveaux en fonction du temps.

7. Calculez la capacité hydraulique d’un tube en U utilisé en
tant que jauge de pression. Le diamètre intérieur du tube est
de 8.0 mm.

8. Calculez la capacité hydraulique d’un réservoir de fluide de
section conique en fonction de la pression du fluide au fond
du réservoir.

9. Deux réservoirs sont reliés par une conduite comme dans la
figure 1.86. Le second réservoir a une entrée et une sortie.
Supposez que l’écoulement obéit à la loi de HAGEN-
POISEUILLE. (a) Énoncez les équations de bilan de volume
pour les fluides dans les réservoirs. (b) Formulez la relation
entre le volume de fluide et la pression au fond de chaque
réservoir. (c) Énoncez les lois pour les écoulements à travers
chacune des conduites. d) Formulez les équations différen-
tielles pour le niveau de fluide dans chacun des réservoirs en
termes de capacité et de résistance des éléments du système.

10. Pour le système de cuve, conduites et pompe de la figure 1.38
dérivez (a) la différence de pression instantanée sur la pompe
et (b) le flux volumique instantané à travers la pompe. Le
fluide est de l’huile comme dans le Problème 6. Elle atteint
un niveau de 1.0 m dans la cuve dont le diamètre vaut 1.0 m.
Les conduites ont un diamètre de 5.0 cm et des longueurs res-
pectives de 2.0 m (B à C) et 3.0 m (C à D*).

P

FIGURE 1.85
Problème 5

FIGURE 1.86
Problème 9
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Les phénomènes électriques sont la conséquence de l’écoulement de l’électricité, plus
précisément de la charge électrique. Nous allons montrer que la charge électrique peut
être accumulée et peut s’écouler, deux caractéristiques qui sont identiques à celles que
nous avons attribuées au volume en hydraulique lors de l’étude de l’écoulement des
fluides. Relevons cependant que les thèmes abordés dans ce chapitre sont loin d’épui-
ser tout ce que l’on peut découvrir au sujet des phénomènes électriques (et magnéti-
ques). Nous allons mettre en évidence et utiliser la similitude entre les processus
électriques et hydrauliques pour modéliser une partie de ceux qui se déroulent dans les
circuits électriques, profiter des acquis du premier chapitre et appliquer des modèles
semblables à des processus semblables. Nous devrons tenir compte d’une différence
par rapport aux fluides, à savoir que la charge électrique peut prendre des valeurs po-
sitives et négatives. Mais nous verrons que, grâce à une convention, cette différence
n’a pratiquement pas d’influence sur les modèles que nous élaborerons.

 

2.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

Cette première section va nous permettre de découvrir les phénomènes fondamentaux
liés à l’électricité, dont une partie sont connus depuis l’Antiquité. On avait alors re-
marqué que certaines substances devenaient «électriques» par frottement. C’était en-
tre autres le cas d’une résine fossile, l’ambre, qui servait, et sert encore à faire des
bijoux. En grec, l’ambre s’appelle elektron.

Ces phénomènes fondamentaux sont liés à ce que l’on appelle l’électricité statique,
dont les effets ne sont pas facilement mesurables. Les découvertes de GALVANI et
VOLTA durant la seconde moitié du XVIIIe siècle permettront d’entretenir des flux
constants d’électricité, ce qui a rendu possible l’étude scientifique et technique de
l’électricité.

 

2.1.1 Électrisation par frottement

Nous observons quotidiennement que des objets peuvent se charger électriquement
par frottement. Ainsi, lorsque nous peignons nos cheveux fraîchement lavés et séchés,
nous avons de la peine à les coiffer et nous entendons de légers crépitements. Si nous
le faisons dans le noir, en face d’un miroir, nous pouvons même observer de petites
étincelles. Un phénomène semblable a lieu lorsque nous enlevons un vêtement qui
contient des fibres synthétiques ou lorsque nous touchons une poignée de porte après
avoir marché sur certains types de revêtement de sol. C’est l’étude et la compréhension
de ces phénomènes qui ont conduit à la maîtrise de l’électricité et qui ont donné au
monde qui nous entoure une partie importante de son aspect.

Nous mettons une sphère métallique isolée en contact avec un bâton de résine artifi-
cielle préalablement frotté: la sphère s’électrise, ce que l’on peut mettre en évidence
au moyen d’un électromètre, appareil dont le principe de fonctionnement sera expli-
qué plus bas (fig. 2.1).

FIGURE 2.1 Électrisation d’un ob-
jet par frottement et transfert de cet-
te charge sur une sphère métallique,
avec mise en évidence de l’électri-
sation au moyen d’un électromètre.
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Interprétation. L’électrisation de la sphère ne peut être comprise que si l’on admet que
le bâton frotté a amené sur elle une grandeur particulière, semblable à un fluide, que
l’on appelle la charge électrique que l’on désigne par le symbole Q. Il s’agit d’une
grandeur extensive, puisqu’elle peut être accumulée dans un système (ici, la sphère).

 

2.1.2 Transport d’électricité

Si la charge électrique est une grandeur extensive, elle doit avoir des propriétés sem-
blables à celles d’un fluide tel que l’eau. Elle doit par exemple pouvoir être transportée
d’un endroit à un autre.

Quelques observations confirment cette hypothèse. Une partie de la charge qui se trou-
ve sur une sphère métallique peut être transportée sur une autre sphère métallique au
moyen d’une troisième que l’on peut assimiler à une «cuillère électrique» (fig. 2.2a).
Ce processus ressemble à un transfert d’eau d’un réservoir à un autre. L’état de charge
de chacune des sphères est révélé par un électromètre.

C’est également possible en mettant les deux sphères en contact l’une avec l’autre ou
en les reliant au moyen d’un fil métallique (fig. 2.2b). Souvent, il suffit même de les
rapprocher suffisamment pour qu’une étincelle saute de la sphère chargée sur l’autre,
qui sera alors partiellement chargée (fig. 2.2c).

Interprétation. Tout comme un fluide, la charge électrique peut également être trans-
portée, s’écouler d’un «réservoir électrique» vers un autre. On appelle courant élec-
trique un tel flux de charges électriques. On le désigne par le symbole IQ.

 

2.1.3 Équilibrage des niveaux électriques

L’expérience révèle que le transport de charges électriques d’un objet vers un autre ne
peut pas se poursuivre indéfiniment, mais que, quelle que soit la manière dont la char-
ge est transférée d’une sphère sur l’autre, le processus s’interrompt lorsque les deux
électromètres affichent la même valeur (fig. 2.3), que l’on peut considérer comme un
«niveau électrique».

L’étude quantitative du phénomène d’équilibrage des niveaux ne peut se faire que si
l’on utilise des éléments électriques dont les caractéristiques et les modes de fonction-
nement seront expliqués dans les sections suivantes. On remplace les sphères par des
éléments capables de stocker la charge électrique, appelés condensateurs, que l’on
peut charger au moyen d’une batterie (l’équivalent moderne de la pile de VOLTA) ou
d’une alimentation (une «pompe électrique»). On remplace l’électromètre par un volt-
mètre. On relie le premier condensateur chargé à un second non chargé au moyen d’un
conducteur qui offre une certaine résistance à l’écoulement de l’électricité, raison pour
laquelle on l’appelle une résistance. Les résultats apparaissent dans le graphique de la
figure 2.4c. La charge du condensateur chargé diminue alors que celle de l’autre con-
densateur augmente. Le processus se poursuit jusqu’à ce que les deux niveaux soient
devenus égaux.

a.

b.

c.

FIGURE 2.2 Exemples de transport
d’électricité: (a) au moyen d’une
«cuillère électrostatique»; (b) par un
fil conducteur; (c) à travers l’air.

a. b.FIGURE 2.3 Lors d’un transfert
spontané de charge, le processus
s’interrompt lorsque les niveaux
électriques indiqués par les électro-
mètres sont devenus les mêmes: (a)
avant le transfert; (b) après équili-
brage des niveaux.
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Interprétation. Le phénomène observé est semblable à l’écoulement d’eau d’un réser-
voir vers un autre à travers une conduite: le processus s’interrompt lorsque le niveau
est le même dans les deux réservoirs, c’est-à-dire lorsque la pression est la même au
fond de chacun des deux réservoirs (fig. 2.5). Dans le cas du processus électrique,
l’électricité (le «fluide») ne peut s’écouler, être transportée, du «réservoir» de gauche
vers celui de droite que tant que les deux niveaux électriques sont différents. Ce niveau
électrique est appelé potentiel électrique (ou plus simplement potentiel), et les diffé-
rences de potentiel sont appelées tension électrique. Le potentiel est désigné par le
symbole ϕ et la tension par U. Dans le graphique de la figure 2.4c, l’évolution de la
charge est en fait indiquée par la tension aux bornes des condensateurs.

 

2.1.4 Deux types de charge électrique

La similitude entre les processus électriques et hydrauliques n’est pas totale. En effet,
alors qu’il n’existe qu’une seule espèce d’un liquide particulier, il n’en va pas de même
pour la charge électrique, ce que révèle l’observation qui suit (fig. 2.6).
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FIGURE 2.4 Processus d’équili-
brage des niveaux: (a) montage
expérimental; (b) schéma de
montage: condensateurs (traits pa-
rallèles) reliés au moyen d’une ré-
sistance (rectangle); les niveaux de
charge (tension UC) sont mesurés
au moyen d’un voltmètre (V encer-
clé) ; (c) évolution de l’état du sys-
tème en fonction du temps.

FIGURE 2.5 L’équilibrage des ni-
veaux électriques lors d’un transfert
de charge est comparable à celui des
niveaux dans des vases communi-
cants : (a) avant le transfert; (b) après
équilibrage des niveaux.

a. b.

FIGURE 2.6 Il existe deux types de
charge électrique: l’électricité rési-
neuse, dite positive, et l’électricité
vitreuse, dite négative.
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Nous chargeons une sphère métallique reliée à un électromètre au moyen d’un bâton
de verre frotté avec une peau de chamois. Si nous touchons cette sphère avec un bâton
de résine artificielle frottée avec un chiffon de laine, nous remarquons une diminution
de la valeur indiquée par l’électromètre: les charges du bâton de résine artificielle neu-
tralisent (au moins partiellement) celles du bâton de verre, comme le feraient deux
quantités positives et négatives.

Si nous chargeons une sphère avec le bâton de résine artificielle, une autre avec la peau
de chamois qui a servi à électriser le bâton, ces deux charges se neutralisent.

Interprétation. L’électrisation par frottement ne sert pas à produire de la charge élec-
trique, mais plutôt à séparer les charges positives et les charges négatives. Toutes les
observations confirment ce que suggère cette expérience, à savoir:

Au XVIII e siècle, lorsque l’on a découvert les deux types d’électricité, on les a quali-
fiés d’électricité vitreuse et d’électricité résineuse. C’est Benjamin FRANKLIN qui les
a rebaptisées en les appelant respectivement positive et négative. Cette correspondan-
ce est arbitraire, mais elle a été fixée une fois pour toutes.

 

2.1.5 Circuits: «pompes» et «consommateurs»

Lorsque l’on effectue des expériences avec de l’électricité statique, comme exposé ci-
dessus, les processus sont en général de faible intensité et ne peuvent pas être entrete-
nus durant un temps suffisamment long pour favoriser l’observation.

Pour entretenir un courant de charges électriques pendant un temps prolongé, il faut
tout d’abord une «pompe»: ce sont les batteries, accus et générateurs qui jouent ce rô-
le. Les premiers appareils de ce type furent des «piles de VOLTA» constituées de l’em-
pilement (d’où le nom) d’éléments galvaniques. Lorsque l’on relie les deux pôles
d’une pile au moyen d’un fil conducteur (fig. 2.7), un courant de charges s’établit dans
le fil. Celui-ci s’échauffe et des réactions chimiques ont lieu dans la pile. Usuellement,
ces fils relient entre eux des appareils électriques qu’il est usuel d’appeler des
«consommateurs». Pour que le courant puisse circuler, il faut que le circuit soit fermé.
À aucun endroit du circuit, il n’y a accumulation (ou déperdition) de charge. Le rôle
de la pile ou de tout autre dispositif est simplement de «pomper» les charges dans le
circuit, d’entretenir leur mouvement en établissant la différence de potentiel entre les
niveaux de laquelle les charges s’écouleront. Dans ce qui va suivre, nous appellerons
«source de tension», ou plus brièvement «source», ou encore «alimentation» tout ap-
pareil qui remplit ce rôle de pompe à électricité. Le courant électrique circule des lieux
de potentiel élevé vers les lieux de potentiel bas, que l’on désigne, dans une source,
par + (pôle positif) et - (pôle négatif). Une telle source (de tension continue) est sym-
bolisée par un cercle affecté du signe + pour indiquer la polarité (fig. 2.8). L’intensité
du courant électrique est mesurée au moyen d’un ampèremètre.

On ne peut ni créer, ni détruire des charges électriques; on ne peut que sé-
parer les charges positives des charges négatives. La charge électrique est
une grandeur conservée.

La charge d’un système est la somme algébrique de ses charges positives
et négatives. Lorsque cette somme est nulle, on dit que le corps en question
est électriquement neutre.

IQ

Source
(pile)

Consommateur
(lampe)

FIGURE 2.7 Circuit simple, consis-
tant en une source, la pile, qui entre-
tient le mouvement des charges dans
le circuit, et un consommateur, la
lampe, qui utilise l’énergie apportée
par la charge électrique pour produi-
re de la lumière (et de la chaleur).

FIGURE 2.8 Représentation sché-
matique du circuit de la figure 2.7.
La polarité de l’alimentation est indi-
quée au moyen du signe +. L’instru-
ment (A cerclé) qui sert à mesurer
l’intensité du courant est un ampère-
mètre ; il se branche dans le circuit
(en série).

+
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2.1.6 Analogie hydraulique des phénomènes électriques

Nous avons, dans la première partie de ce chapitre, mis en évidence un certain nombre
d’analogies entre l’hydraulique et les phénomènes électriques (nature extensive de la
charge électrique, écoulement de cette charge entre les niveaux d’une grandeur inten-
sive que nous avons appelée le potentiel électrique). Nous avons comparé le transfert
de charges d’une sphère à l’autre à l’écoulement d’un fluide entre deux réservoirs
communicants. Nous avons ainsi pu en donner une «image hydraulique» (fig. 2.5) qui
nous a permis de comprendre quand et pourquoi le processus de transfert de charge
s’interrompt. Nous voyons donc que cette analogie contribue fortement à la compré-
hension de ces nouveaux phénomènes, et nous voulons l’utiliser pour illustrer de ma-
nière imagée les processus que nous allons encore découvrir dans ce chapitre et dans
les autres domaines de la physique.

Comment tenir compte du fait qu’il existe deux types de charges électriques, la charge
positive et la charge négative? La situation est semblable à celle que l’on rencontre
dans la mesure de la température (mesurée en degrés CELSIUS) ou de l’altitude (mesu-
rée par rapport au niveau de la mer; la vallée du Jourdain et la mer Morte sont à des
altitudes négatives). Il en va de même dans le domaine financier: les dettes sont une
«fortune négative». Nous allons donc imaginer que les systèmes chargés sont des ré-
cipients plongés dans une mer dont le niveau représente le niveau zéro de la charge, la
neutralité électrique. Un système chargé positivement aura un niveau supérieur à celui
de la mer, un système chargé négativement un niveau inférieur à celui de la mer.

La figure 2.9 illustre la séparation des charges de deux objets initialement neutres, par
exemple la séparation des charges d’un bâton de verre (récipient de gauche) par frot-
tement au moyen d’un chiffon en peau de chamois (récipient de droite).

 

2.1.7 Modèle des processus de charge et décharge

Les observations des sections précédentes ont révélé la profonde analogie qui existe
entre les processus hydrauliques et électriques. Comme nous disposons d’un outil de
modélisation, nous pouvons d’ores et déjà élaborer un modèle des processus électri-
ques pour tester la validité de cette analogie.

Nous envisageons le processus de charge d’un condensateur, suivie de sa décharge. Le
montage expérimental apparaît dans la figure 2.10. Durant le processus de charge, l’in-
terrupteur est en position 1 et l’alimentation charge le condensateur. Lorsque le con-
densateur est chargé, l’interrupteur est basculé en position 2, déconnectant ainsi
l’alimentation et permettant au condensateur de se décharger.

Q1 > 0

Q2 < 0

Q1 = 0 Q2 = 0

ϕ = 0

ϕ = 0

a.

b.
ϕ1 > 0

ϕ2 < 0

FIGURE 2.9 Analogie hydraulique
de la séparation de charges: (a) avant
la séparation; (b) après la séparation.
Le signe des niveaux est le même que
celui de la charge contenue dans le
système. Le niveau zéro correspond
à la neutralité électrique.

FIGURE 2.10 Montage expérimental
pour l’étude des processus de charge
(interrupteur en position 1) et de dé-
charge (interrupteur en position 2)
d’un condensateur.
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Les résultats de l’expérience (fig. 2.11) mettent en évidence la similitude des compor-
tements hydraulique et électrique. La structure du modèle sera donc semblable à celle
des processus de remplissage au moyen d’une pompe (fig. 1.69) et de vidange
(fig. 1.65) d’un réservoir à paroi verticale. Les éléments constitutifs seront un stock re-
présentant le condensateur portant la charge Q ainsi que d’un flux représentant le cou-
rant de charge ou de décharge IQ; cette structure correspond à l’équation de bilan de
charge:

 

(2.1)

Nous associons au stock représentant le condensateur sa capacité CQ, ce qui permettra
de déterminer le niveau électrique, la tension qui règne à ses bornes en fonction de la
charge accumulée:

 

(2.2)

Le courant de charge IQ sera déterminé par la tension (pression électrique) US délivrée
par la source de tension et par la résistance RQ du circuit. Nous admettons, comme
dans le cas du régime laminaire en hydraulique la relation la plus simple possible pour
l’intensité du courant, à savoir qu’il est proportionnel à la tension et inversement pro-
portionnel à la résistance du circuit:

 

(2.3)

Finalement, nous appliquons la loi des mailles:

 

(2.4)

ce qui clôt le modèle.

La figure 2.12a montre le diagramme de dynamique des systèmes servant à modéliser
les processus envisagés. Pour passer du régime de charge à celui de décharge, il suffit,
dans le modèle, de mettre à zéro la tension de la source à l’instant t = 3.0 s. Les valeurs
des paramètres matériels ont été reprises des données des fabricants, à savoir: CQ =
470 µF et RQ = 1 kΩ. Nous reviendrons plus loin sur les unités de mesure utilisées.

L’adéquation quasi parfaite des données calculées aux données expérimentales nous
conforte dans notre hypothèse de la similitude de comportement des processus

FIGURE 2.11 Mesure de la tension
aux bornes du condensateur. Le gra-
phique révèle la similitude avec les
processus de remplissage et de vi-
dange d’un réservoir en régime
laminaire.
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FIGURE 2.12 Charge et décharge
d’un condensateur: (a) modèle de
dynamique des systèmes; (b) con-
frontation des résultats du modèle
(ligne continue) et des mesures (pe-
tits cercles). Pour alléger le graphi-
que, il n’y a qu’une mesure sur dix
qui est reprise.
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hydraulique et électrique, respectivement. Cette similitude sera exploitée dans ce cha-
pitre et dans les chapitres ultérieurs. Mais avant de passer à l’élaboration des lois cons-
titutives, nous allons ajouter quelques observations fondamentales relatives aux
processus électriques.

2.1.8 Interaction entre charges électriques

Pour aller plus avant dans la compréhension des phénomènes électriques, nous allons
réaliser un certain nombre d’expériences au cours desquelles nous ne chargerons plus
les objets au moyen de bâtons frottés, mais d’appareils qui réalisent cette séparation
des charges soit par frottement (générateur de Van de Graaff), soit par création d’une
différence de potentiel (source de haute tension). Dans l’analogie hydraulique, l’action
de ces appareils est semblable à celle d’une pompe qui acheminerait de l’eau de la mer
vers le récipient (charge positive) ou du récipient vers la mer (charge négative), ou
d’un récipient vers l’autre, comme dans la figure 2.9.

Nous disposons de deux sphères métalliques, la première fixe, l’autre mobile, suspen-
due à un fil. Nous pouvons les charger au moyen de la source de haute tension.

a) Lorsque les deux sphères portent des charges de signes opposés, nous constatons
que la sphère suspendue se rapproche de la sphère fixe.

b) Lorsque les deux sphères portent des charges de même signe, la sphère mobile
s’éloigne de la sphère fixe.

Interprétation

On tire profit du comportement observé dans les électroscopes qui servent à révéler la
présence de charges sur les objets. La figure 2.14a montre une représentation du mo-
dèle le plus ancien de cet instrument, l’électroscope à feuilles d’or (elles étaient sus-
pendues à une tige métallique dans une récipient en verre qui contenait souvent un
dessiccateur). Si nous touchons la tige métallique supportant les feuilles d’or avec un
corps électrisé, les feuilles s’écartent, étant donné que la tige a transmis la même char-
ge aux deux feuilles. Si on étalonne cet instrument, il devient un électromètre. Une
autre réalisation de cet instrument (figure 2.14b) consiste à remplacer les feuilles d’or
par une aiguille suspendue légèrement au-dessus de son centre de gravité.

Dans les deux cas, le châssis de l’électroscope est isolé du support de la partie mobile
par un bon isolant (c’est-à-dire un mauvais conducteur de l’électricité) pour éviter les
«fuites». D’autre part, il est mis à terre, c’est-à-dire mis en contact avec la terre à l’aide
d’un fil conducteur. Au cas où le châssis se chargerait accidentellement, il partagerait
immédiatement sa charge avec la terre; les parts étant proportionnelles aux aires des
deux corps, cela revient à dire que le châssis de l’électroscope reste continuellement

+ - + +

a. b.

FIGURE 2.13 Interaction entre
charges électriques: (a) les charges
de signes opposés s’attirent; (b) les
charges de même signe se repous-
sent.

Les objets chargés électriquement interagissent: ceux qui portent des
charges de même signe se repoussent, ceux qui portent des charges de si-
gnes opposés s’attirent.

Isolation

Châssis

Mise à terre

a. b.

FIGURE 2.14 Électroscopes: (a)
version récente de l’ancien élec-
troscope à feuilles d’or; (b)
l’aiguille est suspendue légèrement
au dessus de son centre de gravité
(d’après JOSEF SCHREINER, Physik
für die Oberstufe der Mittelschu-
len).
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déchargé. Dans l’analogie hydraulique, la mise à terre peut être assimilée à un trou dans
la paroi du récipient qui le ferait communiquer avec la mer de telle manière que son
niveau serait continuellement à zéro (fig. 2.15). Rappelons qu’un électromètre mesure
en fait le potentiel électrique; cette affirmation pourra être expliquée lorsque nous
aurons étudié la loi de capacité à la section 2.5.

2.1.9 Champ électrique

L’interaction entre les objets chargés se manifeste sans qu’un contact soit nécessaire.
Elle a lieu comme si l’espace autour des objets chargés était devenu «élastique». Un
objet qui porte une charge électrique est entouré de ce que l’on appelle un champ élec-
trique auquel les objets chargés sont sensibles.

La notion de champ a été introduite dans la physique par Michael FARADAY durant la
première moitié du XIXe siècle pour expliquer les phénomènes électriques et magné-
tiques. Un champ est un objet de la physique caractérisé par un certain nombre de pro-
priétés qu’il est usuel de rattacher aux entités matérielles (chapitre 13). Ce qui fait sa
particularité, c’est son caractère immatériel. La description classique des champs, due
à FARADAY, consiste à mettre en évidence la structuration de l’espace par le champ au
moyen de lignes de champ qui ont une direction et un sens qui indiquent dans quelle
direction et dans quel sens s’exercerait la force sur une charge témoin qui est positive
par convention.

Il existe dans la nature plusieurs autres types de champs. La physique moderne tente
d’ailleurs de décrire la nature uniquement au moyen de ce concept (en y ajoutant un
certain nombre d’ingrédients, tels que la physique quantique). Nous verrons, dans le
chapitre 13, que ce que nous interprétons comme une attraction entre les objets char-
gés est en fait la conséquence de l’action du champ. Lorsque les deux charges sont de
signes opposés, le champ les attire dans la région de grande intensité qui se situe entre
les deux charges, alors que lorsque celles-ci sont de même signe, le champ les attire
dans les régions de forte intensité qui se situent de part et d’autre de chacune des
charges.

Champ électrique et phénomène d’influence. Nous avons découvert qu’il était pos-
sible de charger des objets par frottement. Ce n’est pas la seule manière de procéder;
un phénomène, appelé influence électrique, permet d’obtenir le même effet.

Nous répétons l’expérience de la figure 2.13, mais en ne chargeant pas la sphère sus-
pendue. Nous constatons que, quelle que soit la charge de la sphère fixe, la sphère
mobile est attirée vers elle.

Interprétation. La seule explication possible est que le champ électrique de la sphère
A (admettons qu’elle soit chargée positivement) agit sur la charge de la sphère B de
telle façon que le côté proche de A devient majoritairement négatif à cause de l’attrac-
tion qui s’exerce entre charges de signes opposés, l’autre majoritairement positif, la
sphère B restant globalement neutre (fig. 2.16). Ce phénomène de redistribution des
charges est la polarisation. Les charges négatives de B étant plus proches des charges
positives de A que ses charges positives, l’attraction dominera.

ϕ = 0

FIGURE 2.15 Analogie hydrauli-
que de la mise à terre. Elle met en
contact le système avec une mer de
charges électriques; de ce fait, le
niveau électrique du système est
toujours nul (neutralité électrique).

Des objets chargés électriquement sont entourés d’un champ électrique.
Lorsque ces objets portent des charges de même signe, le champ électrique
les éloigne l’un de l’autre; lorsqu’ils portent des charges de signes oppo-
sés, le champ électrique les rapproche l’un de l’autre.
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A

B

FIGURE 2.16 Une manifestation
du phénomène d’influence: par
l’intermédiaire de son champ élec-
trique, la sphère A polarise la sphè-
re B qui est alors attirée dans les
régions du champ le plus intense.
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Réalisons une seconde expérience pour illustrer la séparation de charges par l’inter-
médiaire du phénomène d’influence.

Nous chargeons une sphère fixe par exemple positivement. Nous amenons deux pla-
ques métalliques neutres dans le voisinage de la sphère chargée en nous assurant
qu’elles sont en contact (fig. 2.17). Par l’intermédiaire du phénomène d’influence, le
champ de la sphère sépare les charges de telle façon que la plaque proche de la sphère
présentera une plus grande concentration de charges négatives, alors que la plaque
éloignée de la sphère présentera une plus grande concentration de charges positives.

Nous séparons les deux plaques pendant qu’elles sont encore dans le champ électrique
de la sphère chargée, puis nous les éloignons de cette dernière. En utilisant l’électros-
cope, nous pouvons vérifier qu’elles portent la même charge, mais de signes opposés.

2.1.10 Conducteurs et isolants

Si, dans l’expérience de la figure 2.17, nous avions remplacé les plaques métalliques
par des plaques en résine artificielle ou en céramique, nous n’aurions pas observé de
séparation des charges. La seule interprétation possible est d’admettre que, dans ce
type de matériau, les charges ne sont pas mobiles, qu’elles sont liées et ne peuvent pas
se déplacer. Vu qu’ils empêchent la migration des charges, ces matériaux sont dits
isolants; ceux qui permettent le mouvement des charges, tels que les métaux, sont dits
conducteurs.

Il est important de noter qu’il y a, en fonction des matériaux considérés, un passage
progressif de la qualité de conducteur vers celle d’isolant. Nous y reviendrons plus en
détail lorsque nous parlerons de la loi de résistance (sect. 2.6).

1. Considérez l’expérience décrite dans la figure 2.3. Les électromètres
mesurent-ils la quantité d’électricité (la charge) ou l’intensité électrique
(la tension)?

2. Lorsque l’on frotte un matériau isolant (plastic, gomme, verre, ambre)
avec une fourrure ou un tissu, il se charge électriquement. D’où vient la
charge? A-t-elle été produite?

3. Les générateurs, alimentations électriques et les batteries génèrent-elles de l’électricité?

4. Une balle de ping-pong métallisée, mais non chargée, est suspendue à un fil. On en appro-
che un bâton de résine artificielle frottée avec une fourrure. On observe que la balle est
d’abord attirée, puis violemment repoussée dès qu’elle touche le bâton. Expliquez ces deux
comportements opposés.

1. Les électromètres mesurent la tension. S’ils mesuraient la charge, les
indications ne seraient pas les mêmes si les sphères n’avaient pas le
même diamètre.

2. L’action de frotter deux matériaux différents l’un contre l’autre ne pro-
duit pas de charges électriques, mais en arrache de l’un des matériaux;
les charges arrachées apparaissent alors sur l’autre matériau.

3. Non, ces appareils servent à mettre en mouvement et à entretenir le mouvement des charges
électriques. Ce sont des pompes à électricité.

On appelle influence électrostatique le phénomène de séparation des char-
ges, de polarisation, par l’intermédiaire d’un champ électrique.

FIGURE 2.17 Séparation de char-
ges au moyen du phénomène d’in-
fluence. La paire de plaques
métalliques se polarise dans le
champ de la sphère. Lorsqu’on les
sépare, on obtient deux plaques
portant des charges de signes
opposés.
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4. Durant l’approche des deux objets, le bâton chargé positivement attire les charges négatives
de la couche métallique, ce qui explique l’attraction entre les deux objets; la balle de ping-
pong est encore neutre, mais ses charges sont réparties différemment à sa surface, elle est
devenue un dipôle électrique. À l’instant du contact entre les deux objets, il y a transfert de
charge; les deux objets portent maintenant des charges de même signe et se repoussent.

2.2 GRANDEURS FONDAMENTALES ET GRANDEURS DÉRIVÉES

Nous allons maintenant mettre à profit les similitudes que nous avons relevées entre
les systèmes hydrauliques et les systèmes électriques. Tout comme en hydraulique,
nous avons besoin de trois grandeurs fondamentales pour décrire et expliquer les phé-
nomènes électriques. Une première pour la quantité d’électricité accumulée dans les
systèmes, une deuxième pour les flux et une troisième pour le niveau électrique, le po-
tentiel, en différents points d’un système.

2.2.1 Grandeurs primitives

Quantité d’électricité ou charge électrique. Résumons ce que nous avons observé
dans la section précédente:

La charge électrique se mesure en coulomb (C). Comme, dans le système internatio-
nal, l’unité électrique fondamentale est celle de l’intensité du courant électrique (c’est-
à-dire du flux de charges), qui se mesure en ampère (A), la charge peut également être
exprimée en ampèreseconde: 1 C = 1 As.

Nous avons observé que la charge électrique se manifeste sous deux formes, que nous
appelons positive et négative. Un objet électriquement neutre est un objet qui contient
autant de charge positive que négative. La charge électrique d’un système peut fluc-
tuer dans le temps entre des valeurs positives et des valeurs négatives (fig. 2.18). La
charge électrique ne peut être ni créée, ni détruite; on dit que c’est une grandeur con-
servée. Elle est la source des champs électriques qui sont des systèmes immatériels
responsables, entre autres, de la transmission de l’interaction entre des objets chargés
électriquement.

Il est intéressant de noter que la charge électrique est quantifiée, ce qui veut dire
que toute charge électrique est un multiple de la charge élémentaire e, qui est la
charge portée par l’électron négatif ou le proton positif. La charge élémentaire vaut
1.6·10-19 C.

Courant électrique. Tout comme un fluide, la charge électrique peut être stockée et
peut également être transportée, s’écouler à travers des matériaux. On appelle courant
électrique un tel flux de charges électriques, et on désigne son intensité par le symbole
IQ. L’unité de l’intensité du courant électrique est l’ampère (A). L’ampère est l’une des
sept unités fondamentales du Système international.

On attribue les phénomènes électriques à la présence, sur ou dans les ob-
jets, d’une grandeur que l’on appelle la charge électrique, désignée par le
symbole Q. La charge électrique est la grandeur extensive (semblable à un
fluide) servant à la description des phénomènes électriques.

FIGURE 2.18 Évolution de la char-
ge électrique d’un système en fonc-
tion du temps. Contrairement à une
quantité de fluide, qui ne peut être
que positive, la charge peut être po-
sitive ou négative.

Q

t
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Dans les processus dynamiques, le courant électrique varie généralement en fonction
du temps (fig. 2.19). Nous avons vu qu’il existe deux sortes de charges électriques, les
charges positives et les charges négatives. Pour la modélisation et l’étude des phéno-
mènes électriques qui sont accompagnés de flux de charges, il est nécessaire de préci-
ser quelle est la charge qui s’écoule pour éviter toute ambiguïté. Ce problème est réglé
au moyen d’une convention:

Contrairement à la mesure directe de la charge, qui est difficile, la mesure de l’intensité
du courant électrique n’est pas problématique. Traditionnellement, on utilise les effets
magnétiques du courant électrique pour le faire au moyen d’un ampèremètre
(fig. 2.20). Cet instrument doit être introduit dans le flux de charges («en série»), ce
qui implique que sa résistance interne doit être aussi faible que possible pour éviter
que sa présence ne fausse trop fortement les propriétés de la branche du circuit dans
laquelle il est connecté. Les versions modernes de ces instruments de mesure sont ap-
pelées multimètres, puisqu’ils servent à mesurer à la fois l’intensité du courant (am-
pèremètre), celle de la tension (voltmètre) et celle de la résistance (ohmmètre).

Potentiel électrique.

2.2.2 Charge et variation de la charge

En vertu des similitudes entre les processus hydrauliques et les processus électriques,
nous pouvons pratiquement reprendre ce qui a été fait à la section 1.2 en remplaçant
simplement le volume par la charge et la pression par le potentiel électrique. Il y aura
quelques différences que nous relèverons quand cela se révélera nécessaire.

Variation de la charge. Elle est donnée par:

(2.5)

Taux de variation de la charge. Il indique à quelle vitesse varie la charge électrique
du système considéré (fig. 2.21). Ce taux de variation, dénoté dQ/dt ou , peut être
déterminé par dérivation si l’on connaît l’expression mathématique de son évolution,
soit graphiquement si l’on dispose d’un diagramme de son évolution temporelle.

Variation de la charge accumulée. Lorsque le taux de variation de la charge est con-
nu, la variation de la charge durant un intervalle de temps est obtenue par intégration
(fig. 2.22), comme dans le cas de l’évaluation de la charge transportée ou échangée par
l’intermédiaire d’un flux:

(2.6)

t

IQ

t

IQ

FIGURE 2.19 Évolution de l’inten-
sité du courant électrique en fonc-
tion du temps.

Lors de l’étude des phénomènes de transport de charge électrique, on ad-
met par convention que le courant électrique est toujours un flux de char-
ges positives.

a. b.

FIGURE 2.20 Ampèremètres: (a)
«ancien» ampèremètre basé sur les
effets magnétiques du courant; (b)
multimètre moderne.

La grandeur intensive qui mesure l’intensité de l’état électrique, le niveau
électrique d’un système en un point donné est le potentiel électrique dési-
gné par ϕél et mesuré en volt (V). Le potentiel électrique n’a pas de zéro
absolu, contrairement à la pression. Cette particularité implique que seu-
les les différences de potentiel sont importantes; on les appelle tension
électrique.

∆Q t t Q t Q t Q Q( , ) ( ) ( )1 2 2 1 2 1= − = −

FIGURE 2.21 Détermination gra-
phique du taux de variation de la
charge électrique.
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FIGURE 2.22 Variation de la char-
ge d’un système calculée à partir de
son taux de variation.
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Si l’on connaît la valeur initiale de la charge Q(t = 0) = Q0, il est possible de la calculer
en fonction du temps. Si le taux de variation est donné sous forme analytique, on ob-
tiendra la charge en fonction du temps par intégration:

(2.7)

Dans les autres cas, on obtiendra ce résultat graphiquement ou numériquement (avec
une feuille de calcul ou au moyen d’un outil de modélisation des systèmes dynamiques
(fig. 2.23).

2.2.3 Courants et quantités échangées

Charge transportée. Si l’on connaît l’intensité du courant en fonction du temps, com-
me c’est le cas dans la figure 2.19, on obtient la charge transportée ou échangée par
intégration:

(2.8)

Rappelons que dans les outils de dynamique des systèmes, tels que STELLA, cette in-
tégration est effectuée automatiquement si l’on représente le courant par un symbole
de «flow» connecté à un symbole de «stock» (bas de la figure 2.24). Le stock contien-
dra la quantité échangée.

2.2.4 Différence de potentiel

 
Q t Q Q t dt

t( ) = + ( )∫0 0
� �

FIGURE 2.23 Détermination de la
charge en fonction du temps à par-
tir du taux de variation et de la va-
leur initiale par intégration
numérique. À droite: intégrateur
dans un logiciel de dynamique des
systèmes.
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FIGURE 2.24 La charge transpor-
tée par un courant électrique est
calculée par intégration. Le résultat
de cette opération correspond à
l’aire comprise entre la courbe
IQ(t) et l’axe t. Dans la partie droite
de la figure, la même opération réa-
lisée au moyen des outils de dyna-
mique des systèmes.

t∆t t

IQ IQ

t1

t2
Qéch

Qéch Charge
transportée

Courant de charge

En tant que variation de la grandeur intensive, la différence de potentiel
entre deux points A et B est définie comme la différence de la valeur en B
et de la valeur en A:

(2.9)

On appelle tension électrique (ou chute de potentiel) UAB entre les points
A et B d’un système l’opposé de la différence de potentiel entre ces deux
points:

(2.10)

∆ϕ ϕ ϕAB B A= −

UAB AB B A A B= − = − − = −∆ϕ ϕ ϕ ϕ ϕ( )



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 61
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Nous montrerons (section 2.4) que la tension est positive sur une résistance dans le
sens conventionnel du courant (flux de charges positives), alors qu’elle est négative en-
tre les bornes d’une batterie dans le sens du courant.

1. Quelle est la grandeur extensive liée aux phénomènes électriques?
Quelles sont ses particularités?

2. Pourquoi a-t-on besoin d’une convention au sujet du courant électri-
que?

3. Quelle est la particularité de la tension électrique?

1. La grandeur extensive servant à décrire les phénomènes électriques est
la charge électrique. Il en existe deux sortes, dites positive et négative.
La charge électrique est quantifiée, ce qui signifie que la charge totale
d’un système est un multiple d’une charge élémentaire désignée par le
symbole e. La charge électrique est une grandeur conservée, ce qui veut
dire qu’elle ne peut être ni produite, ni détruite. La charge d’un système
est due à des courants de charge, jamais à une création ou annihilation.

2. À cause de l’existence de deux types de charges électriques. Selon cette convention, le cou-
rant électrique est un flux de charges positives.

3. La tension électrique est l’opposé de la différence de potentiel électrique. Une diminution
du potentiel correspond à une tension positive, raison pour laquelle on utilise la notion de
chute de potentiel lorsque l’on parle de la tension électrique.

EXEMPLE 2.1. Évaluation de la charge transportée par un courant.

Le courant à travers une résistance croît linéairement de 0.20 A à 1.0 A en l’espace de 100 s. (a)
Quelle quantité de charge s’est écoulée à travers une section du conducteur . (b) Établir la forme
analytique de l’évolution de la charge transportée en fonction du temps.

SOLUTION: (a) La charge transportée correspond à l’aire d’un trapèze, comme dans la partie
gauche de la figure 2.19, soit:

(b) À partir des données, on trouve que l’évolution du courant est donnée par:

Par intégration, on obtient:
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2.3 ANALYSE DE SYSTÈME I: BILANS DE CHARGE

Comme en hydraulique, il y a deux étapes principales dans la préparation de la modé-
lisation d’un système électrique. La première consiste en l’identification des courants
électriques et des bilans de charge, ce que nous allons discuter ci-dessous. La seconde
étape servira à l’identification des tensions, ce qui sera l’objet de la section 2.4.

2.3.1 Bilan

Dans le circuit de la figure 2.25, il y a deux éléments de stockage. Un courant d’inten-
sité IQ1 émerge du condensateur désigné par C1. Ce courant se ramifie au point A en
deux courants d’intensités respectives IQ2 et IQ3. Nous allons justifier le fait que:

(2.11)

Nous énonçons une équation de bilan pour chacune des quantités accumulées (usuel-
lement en forme dynamique, c’est-à-dire en forme instantanée), pour relier le taux de
variation du contenu de chaque système avec les processus qui en sont la cause:

(2.12)

Sans les relations représentant les processus, ce bilan n’est pas d’une grande utilité.
Dans un premier temps, nous allons examiner ce qui se passe au point A du circuit de
la figure 2.25.

2.3.2 Première loi de KIRCHHOFF: conservation de la charge

Au point A du circuit de la figure 2.25, que l’on appelle un nœud du circuit, le courant
se ramifie dans les deux branches qu’il rencontre. Comme il n’y a aucun élément sus-
ceptible de stocker la charge incidente, nous devons admettre que la somme des inten-
sités des courants entrant dans le nœud est égale à celle des intensités des courants
émergeant du nœud, ce qui revient à dire que la somme algébrique de toutes les inten-
sités doit être nulle (fig. 2.27).

R1

R3

IQ1

C1 C2

IQ3

IQ2

A

B

FIGURE 2.25 Schéma de montage
d’un circuit constitué de deux con-
densateurs et de deux résistances.
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Q

1 1

2 2

= −
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Q1(t) = Q1(t - dt) + (- I_Q1) * dt

Q2(t) = Q2(t - dt) + (I_Q2) * dt

Q1 Q2

I Q1 I Q2

FIGURE 2.26 Représentation des
équations de bilan des charges pour
les deux condensateurs de la
figure 2.25 au moyen de diagram-
mes de dynamique des systèmes.

Dans les ramifications d’un circuit électrique (que l’on appelle des nœuds
du circuit), la charge ne peut pas s’accumuler. Sa variation est donc nulle,
et il s’ensuit que, dans un nœud, l’équation de bilan des charges prend la
forme:

(2.13)

Cette loi est la première loi de KIRCHHOFF ou loi des nœuds.

 
I I I IQ j

j

Q Q Q,∑ = + + + =1 2 3 0…

IQ1

IQ2
IQ3

IQ4

Nœud

FIGURE 2.27 Dans un nœud du cir-
cuit, la charge ne peut s’accumuler;
la somme des intensités des courants
entrants doit être égale à celle des in-
tensités des courants sortants.



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 63
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Lors de l’application de cette loi, on associe à chaque intensité une flèche de référence
(que l’on dessine sur le conducteur) qui indique le sens du courant conventionnel et
l’on compte positivement les courants qui vont vers le nœud et négativement ceux qui
en émergent. Dans des circuits ramifiés, on ne sait pas à l’avance dans quel sens cir-
culent certains courants; on leur attribue donc un sens arbitraire. Si les calculs donnent
pour une certaine intensité une valeur négative, cela signifie que le courant en question
circule dans le sens opposé à celui que l’on a admis.

Modélisation de la loi des nœuds. Dans un diagramme de dynamique des systèmes,
un nœud du circuit sera représenté par un stock vers lequel convergent ou duquel
émergent les courants. La loi des nœuds exprimera la relation qui assurera que le con-
tenu de ce stock reste toujours nul.

Les connecteurs expriment la loi des nœuds sous la forme:

Les lois constitutives que nous énoncerons dans les sections suivantes nous permet-
tront de déterminer les intensités en fonction des particularités physiques des éléments
auxquelles elles sont associées.

L’application de la loi des nœuds au nœud B du circuit de la figure 2.25 fournit une
équation identique à l’équation (2.11), ce qui implique que ce nœud est équivalent au
nœud A.

1. Le second condensateur de la figure 2.25 reçoit, durant une certaine
période, une quantité de charge de 2.0 C venant du premier condensa-
teur. Durant la même période, il perd 3.0 C à travers la seconde résis-
tance. Quelles sont les variations de charge pour chacun des
condensateurs?

2. Les énoncés (2.11) et (2.13) de la loi des nœuds sont-ils équivalents?
Qu’est-ce qui les différencie?

1. La variation de charge du premier condensateur est de -2.0 C, celle du
second est de -1.0 C.

2. Ils sont équivalents. Dans l’énoncé (2.11), on compte positivement
dans le membre de gauche les courants qui vont vers le nœud et positi-
vement dans le membre de droite ceux qui en émanent. Dans l’énoncé
(2.13), on compte positivement les courants qui vont vers le nœud et
négativement ceux qui en émanent ; leur somme est égale à zéro (le
nœud ne peut pas accumuler de charge).

Q1 Q2

I Q1

I Q2

I Q3

Nœud A

Q1(t) = Q1(t - dt) + (- I_Q1) * dt
Q2(t) = Q2(t - dt) + (I_Q2) * dt

Nœud_A(t) = Nœud_A(t - dt) + (I_Q1 - I_Q2 - I_Q3) * dt
I_Q2 = I_Q1-I_Q3

FIGURE 2.28 Diagramme de dy-
namique des systèmes intégrant la
loi des noeuds: le noeud est repré-
senté par un stock dont le contenu
est toujours nul. La loi des noeuds
permet de calculer une intensité en
fonction des deux autres (suppo-
sées connues ou calculables).

I I IQ Q Q2 1 3= −

Q
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2.4 ANALYSE DE SYSTÈME II: POTENTIELS ET TENSIONS 

Les potentiels jouent le rôle de niveaux électriques. Les différences de potentiels, les
tensions, sont les différences de niveau qui entraînent les processus électriques. De
manière alternative, il existe des processus qui provoquent l’apparition d’une différen-
ce de potentiel.

Différences de potentiel dans des circuits fermés. L’évolution du potentiel (du ni-
veau électrique) le long des branches d’un circuit électrique peut se mesurer en bran-
chant un voltmètre en parallèle au segment du circuit entre les extrémités duquel règne
la tension que l’on veut mesurer. Comme nous le verrons plus loin, un voltmètre est
un galvanomètre à cadre mobile dont l’étalonnage a été modifié en tenant compte de
sa caractéristique U-IQ pour lui permettre d’indiquer une tension.

Dans un circuit fermé, on obtient une sorte de «paysage électrique» que l’on peut vi-
sualiser dans un diagramme où l’on reporte l’évolution du potentiel ϕ en fonction de
la position dans le circuit (c’est exactement la même chose que ce que nous faisons en
hydraulique lorsque nous reportons la pression P en fonction de la position dans le cir-
cuit hydraulique). Dans le circuit ci-dessus, nous avons admis que les fils électriques
qui relient entre eux les divers éléments n’offrent aucune résistance au passage du cou-
rant électrique et ne provoquent donc pas de chute de potentiel. L’étude d’un tel dia-
gramme révèle une particularité des circuits électriques, à savoir que lorsque l’on
retourne au point de départ, on a rencontré autant d’augmentations que de diminutions
du potentiel, ce qui implique que la somme des variations de potentiel est nulle. Ce
constat s’énonce sous forme de loi.

Comme dans une pompe hydraulique (qui sert à élever la pression), le niveau électri-
que (potentiel) s’élève dans une source. La charge est «pompée» d’un niveau électri-
que bas vers un niveau électrique élevé. La différence de niveau est alors positive, ce
qui veut dire que la tension aux bornes de la batterie est négative. Pour une source, on
dessinera donc une «flèche de référence» pour indiquer la tension ou chute de poten-
tiel dans le sens opposé à celui du courant conventionnel.

Position
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0
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+
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B

C D E
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I

J

R1

R2 R3

FIGURE 2.29 Représentation gra-
phique de l’évolution du potentiel.

Lorsque l’on parcourt un circuit (une maille) simple, la somme algébrique
des tensions est nulle:

(2.14)

Cette loi est la deuxième loi de KIRCHHOFF ou loi des mailles.
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2.4  ANALYSE DE SYSTÈME II : POTENTIELS ET TENSIONS

Pour un «consommateur» (par exemple une résistance R ou un moteur), le niveau
électrique baisse, ce qui veut dire que la tension (chute de potentiel) est positive. La
flèche de référence liée à la tension sur le consommateur aura le même sens que celui
du courant. Entre les extrémités de segments parallèles, la chute de potentiel est la
même.

Comme lors de l’application de la loi des nœuds, il est important de respecter les règles
relatives aux signes. Après avoir introduit les flèches de référence, pour chacune des
mailles, on choisit un sens de parcours et, à partir d’un point de départ, on additionne
les tensions (différences de potentiel) en les comptant positivement si l’on se déplace
dans le sens de la flèche de référence, négativement dans le cas contraire.

Différences de potentiel et processus. Les différences de potentiel, les tensions sont
associées à différents types de processus et de systèmes, dont une partie seront étudiés
dans les sections qui suivent. Ce sont:

• les charges accumulées dans des condensateurs (section 2.5);

• les résistances des conducteurs électriques (symbole: fig. 2.30), étudiées à la
section 2.6;

• les batteries, générateurs et autres alimentations (symbole: fig. 2.31), qui
seront traités à la section 2.7;

• les appareils électriques;

• les commutateurs électroniques;

• les variations des flux (seront étudiées au chapitre 4).

À chaque type d’élément utilisé dans un système, et pour chaque situation particulière,
on doit énoncer une loi particulière dite loi constitutive. Elles n’ont pas une portée gé-
nérale comme les équations de bilan, la loi des nœuds et la loi des mailles. Elles décri-
vent les particularités des processus et des objets.

Nous allons voir dans les sections suivantes qu’il existe une loi constitutive pour cha-
cune des différences de potentiel apparaissant dans un système.

L’application de la loi des mailles à chacune des deux mailles du circuit de la
figure 2.25 (en partant à chaque fois du point B et en parcourant la maille dans le sens
horaire) donne:

Modélisation de la loi des mailles. La figure 2.32 montre comment la loi des mailles
est prise en compte dans les logiciels de dynamique des systèmes.

Dans les deux cas, les tensions sur les résistances sont déterminées à partir des ten-
sions sur les condensateurs qui peuvent être calculées à partir de la loi de capacité
(section 2.5).

R
IQ

UR

FIGURE 2.30 Tension engendrée
par le passage du courant à travers
une résistance.

+

US

IQ

FIGURE 2.31 Symbole d’une sour-
ce de tension en régime continu. Le
signe + indique le pôle positif de la
source (qui peut être une pile, une
batterie, un générateur, etc.).
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Nœud A

U C1 U C2

U R1 U R3

Q1(t) = Q1(t - dt) + (- I_Q1) * dt
Q2(t) = Q2(t - dt) + (I_Q2) * dt

Nœud_A(t) = Nœud_A(t - dt) + (I_Q1 - I_Q2 - I_Q3) * dt
I_Q2 = I_Q1-I_Q3

U_R1 = U_C1-U_C2
U_R3 = U_C2

FIGURE 2.32 Diagramme de dy-
namique des systèmes modélisant
le circuit de la figure 2.25 après in-
troduction de la loi des mailles
pour les deux mailles du circuit.
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1. La partie droite de la figure 2.29 montre, entre autres, l’évolution du
potentiel dans la boucle gauche du circuit. Combien de tensions y
trouve-t-on? Comment sont-elles liées entre elles?

2. Quelle est la relation entre les tensions sur les résistances R2 et R3?
Pourquoi?

3. Un moteur électrique contient des bobines de fil métallique qui a des
propriétés résistives. La tension que l’on mesure aux bornes du moteur lorsqu’il fonctionne
correspond-elle à celle qui est responsable de l’échauffement?

1. Il y a trois tensions: la tension négative sur l’alimentation (entre A et B)
et deux tensions positives, sur les résistances R1 et R2. Leur somme est
nulle.

2. Les deux tensions sont égales, car les résistances sont montées en
parallèle. Les courants qui se ramifient au point E se rejoignent au point
H en ayant franchi la même différence de potentiel (comme un courant
d’eau qui s’écoule de part et d’autre d’une île au milieu d’un fleuve: la
différence de niveau est la même).

3. Non, cette tension a deux composantes: la plus importante est celle qui sert à entraîner le
mouvement du moteur et la moins importante, mais non négligeable, est due à la compo-
sante résistive.

EXEMPLE 2.2. Application des lois de KIRCHHOFF.

Dans le circuit de la figure 2.33 sont indiquées les valeurs de certaines tensions et de certaines
intensités. Déterminez les valeurs manquantes. Quelle est la valeur du potentiel électrique en C,
si on le fixe à zéro en A (mise à terre)?

SOLUTION: L’intensité du courant est de 1.2 A dans la branche de la source et de la résistance
R1 et de 0.5 A dans la branche de la résistance R3. Le premier de ces deux courants entre dans
le nœud B alors que le second en sort. Il s’ensuit que le courant IQ dans la branche de la résis-
tance R2 doit être égal à leur différence, à savoir 0.7 A; comme sa valeur est positive, il circule
de B vers E. L’application de la loi des mailles dans la maille 1 donne, si l’on choisit le sens de
parcours indiqué par la flèche et si l’on commence le parcours en A: - 12 V + UR1 + 4 V = 0 V.
On en déduit que UR1vaut +8 V. Dans la maille 2, les tensions entre B et E et entre C et D sont
les mêmes, vu que les deux segments sont montés en parallèle; nous avons donc UR3 = 4 V.
Mais comme il s’agit d’une chute de potentiel, et que le potentiel en D est le même qu’en A,
nous pouvons conclure que le potentiel en C vaut +4 V.

Dès que les circuits deviennent plus compliqués, on ne peut plus procéder comme ci-dessus,
mais on doit appliquer de manière systématique les deux lois de KIRCHHOFF. Dans cet exemple,
nous obtenons de cette manière:

Nœud B: 1.2 A - 0.5 A - IQ = 0 A

Maille 1: - 12 V + UR1 + 4 V = 0 V (début du parcours en A)

Maille 2: - 4 V + UR3 = 0 V (début du parcours en E)

Il est clair que la résolution de ce système (de 3 équations à 3 inconnues) donne les résultats
obtenus plus haut.

B

Q

R

+

R1

R2

A

B 0.5 A

1.2 A

C

R3

US

UR1

UR3

DE

12 V

4 V

IQ

1

2

FIGURE 2.33 Analyse d’un circuit
électrique.
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2.5 CONDENSATEURS ET LOI DE CAPACITÉ

La plupart des éléments dans une installation électrique conduisent la charge sans l’ac-
cumuler. Si l’on veut accumuler des charges, on a recours à des éléments spécialement
conçus à cet effet que l’on appelle des condensateurs. Ces éléments, avec les éléments
inductifs que nous étudierons au chapitre 4, sont à l’origine du comportement dyna-
mique des circuits électriques.

2.5.1 Stockage d’électricité: charge et tension

Les condensateurs les plus simples sont les sphères montées sur une support isolé que
nous avons chargées dans les expériences fondamentales de la section 2.1 (fig. 2.34 a).
Mais il n’est pas possible de les intégrer dans des circuits, ce qui nous oblige à déve-
lopper des condensateurs qui prennent peu de place tout en ayant une grande capacité
de stockage. Le prototype est le condensateur à plaques parallèles (fig. 2.34 b). Dans
un tel condensateur, on déplace, au moyen d’une source, des charges d’une des pla-
ques sur l’autre, ce qui veut dire qu’une des plaques porte la charge opposée à celle de
l’autre. La charge totale du condensateur est donc nulle, mais on dit que sa charge est
celle de l’une des plaques (en général la plaque positive). Nous verrons plus bas com-
ment, à partir de ce prototype historique, on conçoit des condensateurs que l’on peut
intégrer dans des circuits par réduction du volume occupé tout en augmentant les qua-
lités de stockage

Caractéristique capacitive. Lorsque l’on charge un condensateur, une tension appa-
raît entre ses bornes, tension qui croît avec la charge accumulée. Il existe donc une re-
lation entre la charge accumulée et la tension associée que l’on désigne par UC. Cette
relation est la caractéristique capacitive (fig. 2.35a). Une autre manière de représenter
cette relation est d’utiliser l’analogie hydraulique (fig. 2.35b), au moyen d’une cuve
imaginaire dont le contenu représente la charge et le niveau la tension UC. En général,
la caractéristique n’est pas linéaire. Une relation linéaire correspond à une capacité
constante ; dans ce cas, la section de la cuve imaginaire représente la capacité du
condensateur.

Or, l’analogie hydraulique d’un condensateur, que nous avons introduite et utilisée à
la section 2.1, est celle d’un récipient à parois verticales dont le contenu correspond à
la charge, le niveau à la tension (par rapport au niveau 0) et la section à la capacité, en
analogie à ce qui a été défini au chapitre 1 pour les récipients hydrauliques.

La capacité électrique CQ se mesure en farad (F). Un farad correspond à un As V-1.

La relation caractéristique peut également être exprimée au moyen de l’élastance élec-
trique αQ, qui est le facteur indiquant avec quelle facilité il est possible d’augmenter
la tension avec une certaine quantité de charge:
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a. b.

FIGURE 2.34 Condensateurs: (a)
condensateur sphérique; (b) con-
densateur à plaques parallèles.

UC = 0

Q1

-Q2CQ

Q

UC

UC1

-UC2

a.

b.

FIGURE 2.35 Condensateurs: (a)
tension en fonction de la charge
accumulée; la pente de la courbe
caractéristique est l’élastance du
condensateur; (b) analogie hydrau-
lique de condensateurs; un conden-
sateur est comme une cuve qui
stocke la charge Q, qui peut être
positive ou négative. Le niveau de
la «cuve» dépend de la quantité ac-
cumulée divisée par la section de la
cuve, qui symbolise la capacité.

La loi de capacité établit le lien entre la tension aux bornes d’un conden-
sateur et sa charge au moyen de la capacité électrique CQ qui indique
avec quelle facilité il est possible d’augmenter la tension avec une certai-
ne quantité de charge:

(2.15)
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(2.16)

αQ est égal à la pente de la tangente à la courbe caractéristique (fig. 2.35a).

Modélisation de la loi de capacité. La figure 2.36 montre comment la loi de capacité
est prise en compte dans les logiciels de dynamique des systèmes.

La tension aux bornes de chacun des condensateurs est calculée à partir de l’équation
pour une capacité constante.

2.5.2 Types de condensateurs

Comme dans le cas hydraulique, la capacité d’un condensateur dépend essentielle-
ment de sa géométrie. Les capacités des condensateurs usuels sont en général très pe-
tites (pF à mF). À défaut de mesures particulières, il n’est possible d’accumuler que
de très petites quantités de charge. Une sphère de 10 cm de rayon a une capacité d’en-
viron 10 pF (fig. 2.37), ce qui veut dire qu’elle ne pourra pas emmagasiner une charge
beaucoup plus importante que quelques mC; en effet, la tension entre sa surface et le
sol est alors de l’ordre de la centaine de kilovolts. Dans les calculs ci-contre, la
grandeur:

est la constante diélectrique ou permittivité du vide. C’est une constante de la nature
qui prend en compte les propriétés électriques du vide. On peut montrer que c’est cette
constante, liée à une constante magnétique appelée constante d’induction ou perméa-
bilité magnétique du vide, qui détermine la vitesse de la lumière dans le vide

La formule donnant la capacité d’un condensateur à plaques parallèles

(2.17)

montre comment sa géométrie influence ses propriétés de stockage. Il sera d’autant
meilleur que sa surface est grande et que la distance entre les plaques est faible. Or, on
ne peut pas diminuer arbitrairement cette distance sans courir le risque de décharge
spontanée (à travers l’espace qui sépare les deux plaques). On y remédie en intercalant
une fine couche isolante entre les deux plaques, par exemple une feuille de papier
paraffiné. On observe alors que, à charge constante, la tension entre les plaques dimi-
nue, ce qui équivaut à une augmentation de la capacité. Ce phénomène s’explique de
la manière suivante: en présence du champ électrique engendré par les charges sur les
plaques du condensateur, les molécules de l’isolant sont polarisées par le phénomène
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Q1(t) = Q1(t - dt) + (- I_Q1) * dt
Q2(t) = Q2(t - dt) + (I_Q2) * dt

Nœud_A(t) = Nœud_A(t - dt) + (I_Q1 - I_Q2 - I_Q3) * d
I_Q2 = I_Q1-I_Q3

U_R1 = U_C1-U_C2
U_R3 = U_C2

U_C1 = Q1/C_Q1
U_C2 = Q2/C_Q2

FIGURE 2.36 Diagramme de dyna-
mique des systèmes modélisant le
circuit de la figure 2.25 après intro-
duction de la loi de capacité pour
chacun des condensateurs.
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FIGURE 2.37 Évaluation de la ca-
pacité de divers condensateurs: (a)
condensateur sphérique; (b) con-
densateur à plaques parallèles.
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d’influence et s’orientent de telle manière que leur extrémité positive est dirigée vers
la plaque négative, et réciproquement. D’autre part, cette polarisation provoque l’ap-
parition d’un champ dipolaire moléculaire (section 13.6) qui est de sens opposé à celui
du condensateur et l’affaiblit, ce qui entraîne la diminution de la tension observée. On
tient compte de l’augmentation de la capacité au moyen d’un coefficient multiplicatif
εr appelé constante diélectrique ou permittivité relative du matériau.

(2.18)

Cette analyse nous permet également de comprendre pourquoi les isolants sont parfois
désignés par le terme de diélectrique, ce qui signifie en fait «transparent pour le champ
électrique», mais non conducteur du courant électrique.

Pour augmenter la surface du condensateur sans occuper trop de place, on utilise de
longues feuilles métalliques très minces entre lesquelles on intercale les feuilles iso-
lantes et l’on enroule le tout pour obtenir ainsi un condensateur enroulé (fig. 2.38). Il
existe encore d’autres types de condensateurs, dont les particularités sont adaptées aux
objectifs visés. Le principe reste le même, mais le diélectrique change; on obtient ainsi
des condensateurs à film plastique, des condensateurs céramiques (un dépôt d’argent
est déposé directement sur le support céramique), des condensateurs électrolytiques
constitués par une électrode (anode) formée d’aluminium ou de tantale, recouverte
d’une couche très fine de son oxyde; l’autre électrode (cathode) se compose du même
métal et elle est en contact avec l’électrolyte; ces derniers condensateurs sont polari-
sés.

De nombreuses applications techniques nécessitent des capacités bien plus importan-
tes que le micro- ou le millifarad. Nous reviendrons à la section 2.8 sur des systèmes
d’accumulation de charge appelés supercondensateurs.

On peut, en appliquant les lois de KIRCHHOFF, montrer que le montage de capacités
peut être remplacé par une capacité équivalente, à savoir que les capacités de conden-
sateurs montés en parallèle s’additionnent, alors que pour le montage en série, ce sont
les inverses des capacités qui s’additionnent.

1. Comment se présente la caractéristique d’un condensateur qui a une
capacité constante?

2. Expliquez la signification de la capacité électrique.

3. Quelle est la charge d’un condensateur de 100 µF de capacité si on le
branche à une source qui délivre une tension de 100 V?

1. Dans le diagramme UC-Q, c’est une droite dont la pente est l’inverse de
la capacité.

2. La capacité électrique indique avec quelle facilité il est possible d’aug-
menter la charge du condensateur pour une augmentation donnée de la
tension.

3. La charge est égale à 10 mC.

C
A

dQ = ε εr 0

Papier isolant

Feuilles d'aluminium

FIGURE 2.38 Principe du conden-
sateur enroulé.
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EXEMPLE 2.3. Associations de condensateurs.

Déterminer la capacité équivalente: (a) de condensateurs montés en parallèle (fig. 2.39a); (b)
de condensateurs montés en série (fig. 2.39b).

SOLUTION: (a) Tous les condensateurs ont en commun la même tension UC. La charge totale
du montage est égale à la somme des charges. Il s’ensuit:

Donc:

(b) Tous les condensateurs portent la même charge Q (qui est la charge du montage en série), et
les tensions s’additionnent; donc:

Ainsi:

B

2.6 LOI DE RÉSISTANCE ET MÉCANISMES DE TRANSPORT

Dans cette section, nous allons déterminer quels facteurs déterminent l’intensité
d’un courant électrique lorsqu’il franchit une différence de potentiel due à la présen-
ce d’un élément résistif. Nous serons ainsi amenés à envisager différents processus
de transport et à énoncer la loi de résistance pour le cas particulier des conducteurs
métalliques.

2.6.1 Transport de l’électricité

Il est possible de transporter des charges électriques en déplaçant un corps chargé. On
parle alors de convection (la charge est transportée avec l’objet ou la substance qui se
déplace, comme c’était le cas dans l’expérience de la figure 2.2). On rencontre ce
même phénomène de transport de l’électricité par convection par exemple dans les gaz
ionisés, ou dans le jet d’électrons d’un téléviseur de première génération.

Le cas usuel est celui où la charge s’écoule à travers un matériau sans qu’il y ait trans-
port conjoint de matière; on parle alors de conduction de la charge. Les exemples sont
nombreux: les électrolytes (liquides conducteurs), les métaux normaux (conduction
des électrons), quelques semi-conducteurs (qui peuvent présenter une conduction de
charges négatives, les électrons, ou de charges positives, les trous). Nous reviendrons
plus en détail sur ces mécanismes en fin de section.

Lorsque l’on applique une tension entre les deux extrémités d’un élément d’un circuit,
un courant apparaît, dont l’intensité dépend de la valeur de la tension. La relation entre
ces deux grandeurs varie d’un matériau à l’autre. On la représente graphiquement au
moyen d’un diagramme que l’on appelle la caractéristique résistive de l’élément en
question. Elle indique avec quelle facilité le matériau conduit l’électricité.

FIGURE 2.39 Montage de
condensateurs: (a) en parallèle; (b)
en série.
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La figure 2.40. montre quelques exemples sur lesquels nous allons revenir en cours de
chapitre. La pente de la courbe caractéristique est d’autant plus prononcée que le cou-
rant circule facilement à travers l’élément considéré.

Loi de résistance pour un conducteur métallique (loi d’OHM). Au moyen d’une
expérience simple (fig. 2.41), nous allons rechercher le lien entre l’intensité et la ten-
sion entre les extrémités d’un conducteur métallique. Nous varions la tension entre les
extrémités d’un conducteur métallique et mesurons l’intensité du courant qui le par-
court. Nous constatons que, pour autant qu’elle ne soit pas trop importante, l’intensité
est proportionnelle à la tension. À tension constante, l’intensité varie d’un matériau à
l’autre (fig. 2.40a).

La résistance électrique se mesure en ohm (Ω) et son inverse, la conductance en sie-
mens (S).

Notons que nous avons déjà rencontré l’équivalent de la loi d’OHM en hydraulique
lorsque nous avons énoncé la loi de résistance pour un écoulement en régime laminaire
(loi de HAGEN-POISEUILLE):

Nous voyons que les deux énoncés sont identiques, au signe négatif près. Cette diffé-
rence provient du fait qu’en électricité, on travaille avec les tensions qui sont des va-
riations de potentiel négatives, alors qu’en hydraulique, on travaille directement avec
les différences de pression.

Dans les deux cas, l’origine de la chute de pression ou de la chute de potentiel est due
aux « frottements » dans les conduites qui entraînent une production de chaleur
(fig. 2.42). Nous reviendrons sur ce phénomène aux chapitres 3 et 5.
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FIGURE 2.40 Caractéristique cou-
rant-tension: (a) fil de constantan;
(b) conducteur métallique; (c) fila-
ment au charbon; (d) diode semi-
conductrice.

V

A +

IQ

FIGURE 2.41 Montage expérimen-
tal pour l’établissement de la loi de
résistance.

L’intensité du courant qui s’établit dans un conducteur métallique est pro-
portionnelle à la tension entre ses deux extrémités, ce qui peut s’exprimer
de deux manières:

(2.19)

Dans ces relations, qui énoncent la loi d’OHM, RQ et GQ représentent res-
pectivement la résistance et la conductance du conducteur. La comparai-
son montre que, comme en hydraulique, chacune de ces grandeurs est
l’inverse de l’autre:

(2.20)
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FIGURE 2.42 Diagramme de pro-
cessus représentant la loi de résis-
tance. Le courant traverse la
résistance et en émerge à un poten-
tiel plus bas, une partie de l’énergie
transportée par le courant ayant
servi à produire de la chaleur (le
point entouré d’un cercle symboli-
se la production de chaleur).
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Modélisation de la loi de résistance. L’introduction, dans la figure 2.43, de la loi de
résistance complète le modèle de la dynamique du système de la figure 2.25.

Les résistances et la tension aux bornes de chacune d’elles étant connues, la loi d’OHM

(2.19) permet de calculer les intensités respectives.

La figure 2.44 montre le résultat de la simulation pour un système constitué de deux
condensateurs de capacité égale à 100 µF, connectés par la résistance R1 de 50 kΩ. La
résistance R3 vaut 300 kΩ. Au début du processus, le premier condensateur est chargé
à 10 V, le second est déchargé. On observe que le premier condensateur se décharge
au profit du second, qui lui-même se décharge à travers la résistance R3.

Notons que, dans le cas particulier, on peut éviter l’introduction du noeud A au moyen
d’un stock. La figure 2.45 montre le modèle dans sa version simplifiée. Mais s’il y
avait eu, par exemple, une résistance ou tout autre élément dans la branche du conden-
sateur C2, l’introduction du nœud A n’aurait pas pu être évitée.

Conducteurs ohmiques. La valeur de la résistance d’un élément résisitif dépend de
ses particularités. Pour déterminer quels sont ces facteurs dans le cas d’un conducteur
ohmique (caractéristique linéaire), nous effectuons une expérience en variant successi-
vement la longueur, la section et le matériau conducteur. Pour toute une catégorie de
conducteurs, on trouve que la résistance est proportionnelle à la longueur l, inversement
proportionnelle à la section A, et qu’elle change d’un matériau à l’autre (fig. 2.46).
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Nœud A

U C1 U C2

U R1 U R3
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C Q2
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Q1(t) = Q1(t - dt) + (- I_Q1) * dt
Q2(t) = Q2(t - dt) + (I_Q2) * dt

Nœud_A(t) = Nœud_A(t - dt) + (I_Q1 - I_Q2 - I_Q3) *
I_Q2 = I_Q1-I_Q3

U_R1 = U_C1-U_C2
U_R3 = U_C2

U_C1 = Q1/C_Q1
U_C2 = Q2/C_Q2

I_Q1 = U_R1/R1
I_Q3 = U_R3/R3

FIGURE 2.43 Diagramme de dyna-
mique des systèmes modélisant le
circuit de la figure 2.25 après intro-
duction de la loi de résistance. Le
modèle est complet.
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FIGURE 2.44 Simulation du com-
portement du système de la
figure 2.25.
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Q1(t) = Q1(t - dt) + (- I_Q1) * dt

Q2(t) = Q2(t - dt) + (I_Q1 - I_Q3) * dt

U_R1 = U_C1-U_C2

U_R3 = U_C2

U_C1 = Q1/C_Q1

U_C2 = Q2/C_Q2

I_Q1 = U_R1/R1

I_Q3 = U_R3/R3

FIGURE 2.45 Modèle du système
de la figure 2.25 évitant l’intro-
duction du nœud A.
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FIGURE 2.46 Caractéristiques de
quelques conducteurs ohmiques:
1: chrome, l = 1 m, r = 0.4 mm; 2:
constantan, l = 1 m, r = 0.4 mm; 3:
constantan, l = 2 m, r = 0.4 mm; 4:
constantan, l = 1 m, r = 0.2 mm.

La résistance ou la conductance d’un fil conducteur de longueur l et de
section A sont respectivement données par:

(2.21)

où ρél et σél sont respectivement la résistivité et la conductivité électrique
du matériau.
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La résistivité se mesure en Ω m alors que la conductivité s’exprime en S m-1.

Le tableau 2.1 nous indique la résistivité de quelques matériaux. Mais il met avant tout
en évidence la gigantesque variation de la résistivité (26 ordres de grandeur) entre les
conducteurs et les isolants.

Relevons une nouvelle fois la ressemblance des relations (2.21) avec la loi de HAGEN-
POISEUILLE qui exprime la résistance et la conductance d’une conduite hydraulique en
régime laminaire. Dans la loi de HAGEN-POISEUILLE, c’est le carré de la section qui
intervient; cette différence provient du fait que les mécanismes de transport ne sont
pas les mêmes.

Si nous introduisons l’équation (2.21) dans l’équation (2.19), nous obtenons
IQ = AσélUR/l. Pour un conducteur homogène, IQ/A représente la densité du courant
de charge jQ, alors que UR/l est le gradient du potentiel électrique. Cela suggère que

(2.22)

Dans cette expression, dϕél/dx est le gradient de ϕél qui mesure à quelle vitesse le po-
tentiel varie dans la direction du flux de charge. L’équation (2.22) est la formulation la
plus générale de la loi d’OHM. Comme σél peut dépendre de la température du con-
ducteur, la loi d’OHM peut déboucher sur des caractéristiques non linéaires, telles que
celle du filament d’une lampe à incandescence (fig. 2.40b). La particularité remarqua-
ble de la loi d’OHM est que le transport de charge est proportionnel au gradient du
potentiel.

2.6.2 Mécanismes de transport de la charge électrique

Il est important de noter que la loi d’OHM n’est valable que dans le cas particulier, mais
courant, des conducteurs métalliques, et pour autant que l’intensité ne soit pas trop im-
portante. Nous voulons aborder brièvement les mécanismes de conduction de la char-
ge électrique pour illustrer un certain nombre d’autres situations possibles.

Conduction dans les solides. Jusqu’à la fin du XIXe siècle, on pensait que le courant
électrique était un flux de charges positives. Après la découverte de l’électron par
J.J. Thomson en 1896, on comprit que, dans les métaux, la charge électrique était
transportée par les électrons. Comment se déroule ce processus?

Conducteurs. Les métaux se distinguent des autres solides par une structure cristalli-
ne telle que les électrons externes n’appartiennent pas à un atome particulier, mais
qu’ils sont « libres». L’explication des phénomènes sous-jacents sera donnée à la
section 3.6.2, lorsque nous aurons expliqué comment l’énergie intervient dans les

TABLEAU 2.1 Résistivité de quelques matériaux.

Matériau Résistivité / Ω m Matériau Résistivité / Ω m

Argent 1.59·10-8 Graphite 1.38·10-5

Cuivre 1.77·10-8 Silicium 1.7·104

Or 2.35·10-8 Eau 2·105

Aluminium 2.82·10-8 Verre 1012

Laiton 7.0·10-8 Ambre 1018

j
d

dxQ = −σ ϕ
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processus physiques. Lorsque l’on applique une tension à un conducteur métallique,
les électrons se mettent en mouvement, permettant ainsi le transport de l’électricité
(fig. 2.47). La résistance est due à deux phénomènes: d’une part aux collisions des
électrons avec les impuretés et les défauts du réseau cristallin; cette contribution à la
résistance est indépendante de la température. La seconde contribution est due à l’agi-
tation thermique du réseau cristallin qui, en quelque sorte, raccourcit la distance entre
deux collisions successives. Cet effet, qui croît avec la température, est prédominant
aux températures ambiantes. C’est la raison pour laquelle les métaux ont un coefficient
de température positif, dont la définition sera donnée par l’équation (2.23).

Isolants. Dans un matériau isolant, les électrons sont liés tellement fortement qu’ils
ne peuvent se libérer pour contribuer au transport de l’électricité. Si l’on parle encore
de conductivité d’un tel matériau, c’est qu’il n’est jamais pur, et les impuretés, c’est-
à-dire des atomes étrangers, contribuent à lui donner une conductivité extrêmement
réduite.

Semi-conducteurs. Il existe une catégorie de matériaux qui prennent une place inter-
médiaire entre les conducteurs et les isolants. Il s’agit de certains éléments tétravalents
(quatre électrons externes), tels que le silicium et le germanium. Comme nous le ver-
rons à la section 3.6.2, lorsque la température augmente, des électrons acquièrent as-
sez d’énergie pour se «libérer», laissant un trou positif dans le réseau. Ces électrons
et ces trous peuvent se déplacer sous l’effet d’un champ électrique: l’isolant est deve-
nu faiblement conducteur: c’est un semi-conducteur. On comprend pourquoi la résis-
tivité d’un tel matériau diminue lorsque la température augmente. Ils ont un coefficient
de température négatif.

Il existe un autre moyen d’augmenter la conductivité d’un semi-conducteur. On rem-
place par exemple une faible proportion d’atomes tétravalents du semi-conducteur par
des atomes d’arsenic, qui sont pentavalents. À température ambiante, cet électron sup-
plémentaire est disponible pour conduire l’électricité. Cette opération, appelée
«dopage» du semi-conducteur, permet d’augmenter sa conductivité de manière con-
trôlée en dosant la concentration d’atomes dopants. On peut également doper le semi-
conducteur avec des atomes trivalents, tels que le bore. Dans ce cas, l’électron man-
quant laisse un «trou». Ces trous se comportent comme des charges positives libres et
contribuent ainsi à augmenter la conductivité du matériau. Dans le premier cas, on par-
le de dopage n, vu qu’on a apporté des porteurs de charge négative, dans le second cas
de dopage p, vu que les trous représentent une charge positive.

Si l’on assemble deux semi-conducteurs dopés différemment en une jonction p-n, la
diffusion des porteurs de charge à travers l’interface établit une barrière de potentiel
qui ne peut être surmontée que si l’on applique une tension convenablement polarisée.
On appelle diode un tel assemblage qui ne laisse passer le courant que dans un seul
sens; une diode fonctionne de manière semblable à une valve, ce que nous illustrerons
à la section 2.8.3 en modélisant l’équivalent électrique du windkessel. La figure 2.48
montre le symbole utilisé dans les schémas électriques et la figure 2.49 sa caractéris-
tique. On utilise les diodes, entre autres dans les redresseurs de courant alternatif.

Conduction dans le vide. En soi, le vide est un isolant parfait. Si l’on veut transporter
de l’électricité à travers le vide, il faut, au moyen de mesures adéquates, arracher des
charges de la surface d’électrodes pour les amener dans l’espace dans lequel elles doi-
vent se déplacer. On atteint cette objectif par l’émission d’électrons (canons à élec-
trons). Le moyen le plus simple consiste à chauffer une électrode métallique, raison
pour laquelle on parle d’émission thermique (ou thermoémission). Après leur émis-
sion, les électrons sont amenés vers leur objectif au moyen de champs électriques im-
pliquant des différences de potentiel de quelques dizaines de kilovolts (tube
cathodique utilisé dans certains téléviseurs ou écrans d’ordinateur).
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FIGURE 2.47 Caractéristique d’un
conducteur métallique. Lorsque
l’intensité devient trop importante,
l’échauffement provoque une aug-
mentation de la résistance.
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FIGURE 2.48 Symbole de la diode
dans un diagramme de circuit.
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Conduction dans les gaz. Lorsque l’électricité est transportée à travers un gaz de
densité non négligeable, une quantité de nouveaux phénomènes peuvent apparaître.
Les processus de transport sont essentiellement déterminés par les chocs entre les por-
teurs de charge (généralement les électrons) et les atomes et molécules du gaz. C’est
d’une part l’énergie des porteurs de charge et, d’autre part, celle de l’ionisation du gaz
qui déterminent les phénomènes physiques qui se manifestent. Nous n’allons considé-
rer ici que le cas particulier de la lampe fluorescente.

Dans une lampe fluorescente, on revêt les parois d’une substance qui devient fluores-
cente dans le domaine visible. Cette fluorescence est excitée essentiellement par la
partie ultraviolette du spectre du gaz de remplissage, dont la pression est de l’ordre du
kPa. La décharge a lieu entre deux électrodes distantes de quelques dizaines de centi-
mètres. La caractéristique de la lampe fluorescente est facile à interpréter (fig. 2.50).
Elle montre que la résistance diminue lorsque l’intensité augmente. En effet, lorsque
l’intensité augmente, la température des électrodes augmente également, ce qui entraî-
ne une plus forte émission d’électrons, et par le fait même, une ionisation plus impor-
tante du gaz par l’intermédiaire des chocs. L’augmentation de la densité des porteurs
de charge entraîne une augmentation de la conductivité.

Conduction dans les électrolytes. Les électrolytes sont des sels fondus ou dissous,
tels que l’oxyde d’aluminium (la bauxite), le chlorure de sodium (sel de cuisine) ou
l’acétate de plomb dans de l’eau. Si l’on plonge une paire d’électrodes dans le sel fon-
du ou dans la solution et que l’on applique une tension, un courant circule et des réac-
tions chimiques ont lieu. Dans du sel de cuisine fondu, du sodium métallique se dépose
sur l’électrode négative (la cathode) et il y a dégagement de chlore à l’électrode posi-
tive (l’anode). C’est un processus identique qui permet d’obtenir de l’aluminium mé-
tallique à partir de la bauxite. Un autre exemple est la déposition de plomb sur la
cathode lors de l’électrolyse d’une solution d’acétate de plomb (fig. 2.51).

Les sels fondus ou en solution se dissocient en des ions chargés positivement (par
exemple le sodium Na+) et négativement (par exemple le chlore Cl-). Les ions de
sodium chargés positivement migrent en direction de la cathode où ils sont neutralisés
par liaison d’un électron alors que les ions du chlore, chargés négativement, abandon-
nent leur électron surnuméraire à l’anode. Il y a donc un courant de charges positives
de l’anode vers la cathode accompagné d’un flux de matière. Notons que le flux des
électrons déposés à l’anode par les ions de chlore se déplace dans le circuit dans le sens
opposé à celui du courant conventionnel (fig. 2.52).

Influence de la température sur la conductivité. On modélise la dépendance de la
température au moyen de coefficients de température de la résistivité. Le coefficient
de température linéaire αR est défini par:

(2.23)

Dans cette relation, T représente la température absolue. L’unité de mesure de ce coef-
ficient de température est le kelvin-1 (K-1). Il représente la variation relative de la
résistivité en fonction de la température. Ce coefficient peut être positif, par exemple
pour les conducteurs métalliques (PTC: Positive Temperature Coefficient) ou négatif,
par exemple pour les semi-conducteurs ou les lampes fluorescentes (NTC: Negative
Temperature Coefficient).

Dans un domaine de température limité, on peut admettre que α est constant; il est
alors possible d’approximer la variation de la résistivité par:

(2.24)
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FIGURE 2.50 Caractéristique d’une
lampe fluorescente.

FIGURE 2.51 Électrolyse d’acétate
de plomb.
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Dans cette expression, T0 représente une température de référence arbitraire, pour la-
quelle la résistivité est connue. Pour obtenir des résultats plus précis, on peut introdui-
re un coefficient de température quadratique βR ([β] = K-2). Alors:

(2.25)

On met à profit cette variation de la résistivité pour mesurer des températures (élément
de platine).

La pratique montre que la résistivité ρél de conducteurs métalliques décroît usuelle-
ment lorsque la température diminue. Pour un certain nombre de matériaux conduc-
teurs, la résistivité disparaît brutalement en dessous d’un certaine température, dite
température critique Tc: le matériau devient supraconducteur (fig. 2.53). Dans un su-
praconducteur, une fois lancé, le courant circule sans être entretenu.

1. On dit des métaux qu’ils sont des conducteurs ohmiques, c’est-à-dire
qu’ils ont une caractéristique linéaire. Le filament d’une lampe à incan-
descence est un métal, donc un conducteur ohmique. Pourquoi la carac-
téristique d’une lampe à incandescence n’est-elle pas linéaire?

2. Deux conducteurs métalliques ont la même masse, mais le second a
une longueur double de celle du premier. Comparez la résistance du
second conducteur à celle du premier.

1. La caractéristique n’est plus linéaire à cause du fort échauffement du
filament destiné à le rendre incandescent. Cet échauffement provoque
une augmentation de la résist ivi té, comme le montrent les
équations (2.24) et (2.25).

2. La résistance du second conducteur est quatre fois plus grande que
celle du premier.

2.7 SOURCES, ALIMENTATIONS, INSTRUMENTS DE MESURE

Nous savons qu’il faut des «pompes» pour entretenir un courant électrique. Ces dis-
positifs peuvent être des batteries, des cellules à combustible, des dynamos et des gé-
nérateurs. Même si leur rôle est celui d’une pompe, ils sont communément appelés
«sources» (source de tension ou source de courant) ou «alimentation».

2.7.1 Batteries et piles à combustible

Nous avons vu, lorsque nous avons parlé de l’électrolyse dans la section 2.6.2, que des
réactions chimiques peuvent être activées par des processus électriques. Mais il est
également possible que des réactions chimiques entraînent l’établissement de courants
électriques. C’est ce phénomène qui rend possible l’existence de batteries et de piles
à combustible.

En principe, une batterie (à l’origine la pile VOLTA) est une cellule électrolytique qui
fonctionne «à l’envers». Si l’on plonge une électrode de cuivre dans un bain de sulfate

ρ ρ α βél él( )T T T T T TR R= ( ) + −( ) + −( )⎡
⎣

⎤
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FIGURE 2.53 Supraconduction:
pour certains matériaux, la résistan-
ce disparaît en dessous d’une certai-
ne température critique.
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de cuivre (qui contient des ions Cu2+ et SO4
2-), une électrode de zinc dans une solution

de sulfate de zinc (contenant des ions Zn2+ et SO4
2) et que l’on sépare ces deux parties

par une paroi poreuse, on a construit une batterie (fig. 2.54). Ce système permet de fai-
re par exemple fonctionner une lampe qui serait branchée entre les deux électrodes, et
un voltmètre indique une tension d’approximativement 1.10 V. Ce voltmètre révèle
également que l’électrode de cuivre est le pôle positif de la batterie. Le courant con-
ventionnel circule donc de l’électrode en cuivre vers celle en zinc, et les électrons en
sens inverse.

Les réactions qui se déroulent dans la cellule sont les suivantes. Les électrons arrivant
à l’électrode de cuivre neutralisent les ions de cuivre Cu2+ qui sont dans la solution, et
du cuivre métallique se dépose sur l’électrode. De l’autre côté, l’électrode de zinc se
«dissout» dans la solution sous forme de ions Zn2+, qui abandonnent deux électrons
qui migrent vers l’électrode de cuivre. Au fur et à mesure que se déroule la réaction,
les ions Zn2+ s’accumulent dans la moitié de l’électrode de zinc, alors que les ions de
sulfate SO4

2- le font dans la cellule de l’électrode de cuivre. La neutralité est garantie
par la migration des ions à travers la paroi poreuse, mais la composition chimique des
solutions varie, ce qui entraîne un «épuisement» progressif de la batterie.

Il est possible, en combinant les métaux des électrodes et les électrolytes de différentes
manières, d’obtenir des batteries qui sont optimisées pour les applications auxquelles
elles sont destinées. Ainsi, il existe des batteries «réversibles», c’est-à-dire des batte-
ries dans lesquelles on peut rétablir l’état initial en inversant les réactions chimiques
en appliquant une tension à leurs bornes. Ce sont les batteries que l’on appelle
«rechargeables» (les accus).

Lorsque les substances qui sont nécessaires pour les réactions chimiques sont amenées
en continu dans la batterie, on a affaire à une pile à combustible (dont le principe a déjà
été énoncé en 1839 par William GROVE), mais dont le développement a été relancé par
la conquête spatiale américaine dans les années 1960.

2.7.2 Caractéristiques d’une source de tension

Lorsque l’on mesure la tension aux bornes d’une batterie (que nous appellerons sour-
ce), on constate qu’elle varie en fonction de l’intensité du courant qui la traverse.
D’autre part, on observe que la batterie s’échauffe, ce qui permet de supposer l’exis-
tence d’un processus dissipatif à l’intérieur de la source. Nous effectuons une expé-
rience pour en savoir plus,

Au moyen du montage de la figure 2.55a, nous varions la charge à laquelle est soumise
la pile et mesurons la tension aux bornes et l’intensité. Le report des résultats dans un
graphique (fig. 2.55b) révèle une relation linéaire entre la tension aux bornes de la
source et l’intensité qu’elle entretient dans le circuit.
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FIGURE 2.54 Batterie. Les réac-
tions entre les diverses substances
peuvent être utilisées pour entrete-
nir un courant électrique.
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Nous en concluons:

2.7.3 Instruments de mesure

Les instruments de mesure électrique peuvent être analogiques ou numériques. L’ins-
trument de base analogique est un galvanomètre à cadre mobile dont le fonctionne-
ment repose sur les propriétés magnétiques du courant électrique (fig. 2.20). Celui des
instruments numériques est généralement un voltmètre qui compare la tension à me-
surer à une tension de référence.

Comme les instruments de mesure sont introduits dans le circuit électrique, il faut les
concevoir de telle manière que leur présence n’introduise qu’une perturbation mini-
male du phénomène lors de la mesure.

L’ampèremètre est branché en série dans le circuit; la perturbation qu’il introduit sera
d’autant plus faible que sa résistance est faible. Il faudra donc tendre à la minimiser.
Le voltmètre est branché en parallèle; il dévie une partie du courant pour pouvoir ef-
fectuer la mesure de la tension. Pour que cette part du courant dévié soit minimale, il
est nécessaire que la résistance du voltmètre soit aussi grande que possible.

On peut satisfaire à ces contraintes en utilisant des résistances que l’on appelle des
shunts. Dans un ampèremètre, ce shunt est monté en parallèle à l’instrument de base
et dévie la majorité du courant (fig. 2.58). Comme la résistance de l’instrument de base
et le shunt sont montés en parallèle, la résistance globale de l’ampèremètre sera

Il existe une relation linéaire entre la tension aux bornes Ub d’une source
et l’intensité IQ débitée par cette source:

(2.26)

où U0 est la tension à vide, et RQ,int représente la résistance interne de la
source. Cette relation peut également être exprimée par:

(2.27)

où IQ,cc l’intensité du courant de court-circuit et GQ,int = 1/RQ,int est la
conductance interne de la source.

Une source réelle est généralement modélisée par le montage en série
d’une source idéale de tension à vide U0 et d’une résistance interne RQ, int
(fig. 2.56 et 2.57).
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FIGURE 2.56 Modèle d’une sour-
ce réelle consistant en un montage
en série d’une source idéale et
d’une résistance interne.
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FIGURE 2.57 Diagramme de pro-
cessus d’une source réelle.
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FIGURE 2.58 Principe du shuntage
d’un ampèremètre. G est un galva-
nomètre à cadre mobile (un mil-
liampèremètre) de résistance propre
RG. La partie la plus importante du
courant incident est déviée à travers
le shunt.
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inférieure à celle du shunt. D’autre part, en utilisant différentes valeurs de shunts, on
étend la plage d’utilisation de l’instrument. Dans un voltmètre, on place le shunt en
série avec l’instrument de base. Les deux résistances s’additionnent et celle du volt-
mètre sera supérieure à celle du shunt.

Les instruments utilisés dans la pratique sont des multimètres qui peuvent assurer plu-
sieurs fonctions. On passe d’une fonction à l’autre et d’un domaine de sensibilité à
l’autre en branchant les shunts adéquats au moyen d’un interrupteur.

EXEMPLE 2.4. Influence des instruments de mesure.

Une source a une tension à vide de 12.0 V et une résistance interne négligeable. On la branche
sur une résistance de 125 Ω. On mesure la tension sur la résistance et l’intensité du courant qui
la traverse au moyen d’un voltmètre de résistance interne égale à 1.0 kΩ et d’un ampèremètre
de résistance interne égale à 10.0 Ω (fig. 2.59). (a) Déterminer la valeur indiquée par chaque
instrument de mesure ainsi que l’intensité du courant circulant dans la résistance. (b) Détermi-
ner l’erreur relative introduite dans les mesures par la présence des instruments.

SOLUTION: (a) Nous appliquons les lois de KIRCHHOFF:

La résolution du système d’équations donne:

Les valeurs idéales sont respectivement: IQA = 96 mA et UR = 12 V, ce qui implique que les
erreurs relatives sont:

Il est clair qu’il s’agit de très mauvais instruments (dont les caractéristiques ont été choisies afin
d’exagérer les erreurs introduites par les mesures). Les instruments utilisés dans la pratique sont
conçus de manière à minimiser leur influence; ainsi, les résistances des voltmètres numériques
sont généralement de 10 MΩ.

B

1. Pourquoi le courant délivré par une batterie est-il limité, même si la
résistance de charge est très faible?

2. On forme un circuit au moyen d’une batterie, d’une résistance de
charge variable et d’un ampèremètre. En outre, on connecte un voltmè-
tre aux bornes de la batterie. Pour une première valeur de la résistance
de charge, les instruments indiquent 1.0 A et 3.80 V; pour une seconde
valeur, on obtient 6.0 A et 3.60 V. Esquisser le schéma de montage et
calculer la tension à vide et la résistance interne de la batterie.

FIGURE 2.59 Instruments de
mesure: leur résistance interne
fausse le résultat de la mesure.
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1. Parce que la batterie présente elle aussi une résistance au passage du
courant qu’elle entretient, sa résistance interne.

2. Le schéma de montage est celui de la figure 2.55a. En appliquant la loi
des mailles à chaque jeu de mesure et en résolvant le systèmes de deux
équations à deux inconnues, on obtient: U0 = 3.84 V, R0, int = 0.04 Ω.

2.8 MODÈLES DYNAMIQUES DE SYSTÈMES RC

Comme en hydraulique, où la présence de réservoirs entraîne l’apparition d’un com-
portement dynamique, c’est la présence d’accumulateurs de charge (condensateurs)
dans des circuits électriques qui détermine le comportement dynamique propre à ces
systèmes. Afin de mettre en évidence les similitudes entre les deux domaines, nous al-
lons modéliser la décharge d’un condensateur à travers une résistance, ou sa charge au
moyen d’une source.

2.8.1 Décharge d’un condensateur

Élaboration du modèle dynamique et simulation. Le schéma de montage et l’évo-
lution des tensions apparaissent dans la figure 2.60. On considère la plaque positive en
tant que système. Il est inutile de prendre en compte la plaque négative. Elle apparaît
implicitement dans la loi de capacité par l’intermédiaire de la tension qui s’établit en-
tre les deux plaques. En procédant de la sorte, on a fixé le zéro du potentiel au niveau
de la plaque négative au moyen de la mise à terre. Énonçons les relations qui vont ser-
vir à établir le modèle:

Équation de bilan des charges:

Loi de capacité:

Loi de résistance (loi d’OHM):

Loi des mailles:

Valeur initiale:

Nous introduisons ces relations dans le logiciel de modélisation dynamique. Les va-
leurs de la capacité et de la résistance sont respectivement 100 µF et 50 kΩ, et le con-
densateur est chargé à 10 V au début du processus de décharge.

R

FIGURE 2.60 Schéma du montage
pour la décharge d’un condensa-
teur à travers une résistance et re-
présentation graphique de
l’évolution du potentiel.
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La figure 2.61 illustre le fait que la décharge est un processus de décroissance expo-
nentielle, ce qui sera confirmé par la résolution analytique du problème.

Résolution analytique du modèle. Nous procédons de la même manière qu’à la
section 1.8.1, lorsque nous avons recherché la solution analytique de la vidange d’un
réservoir. Nous calculons IQ en combinant les trois lois énoncées ci-dessus:

La substitution dans l’équation de bilan des charges et le regroupement des termes
dans le membre de gauche donnent finalement

(2.28)

Cette équation est identique à l’équation différentielle (1.41) qui décrit la vidange d’un
réservoir lorsqu’on y remplace le volume V par la charge Q. Elle a donc la même
solution:

(2.29)

Le produit

(2.30)

est la constante de temps résisto-capacitive du processus de décharge. La valeur nu-
mérique que l’on obtient à partir des caractéristiques du système correspond à celle
que l’on trouve en traçant la tangente à l’origine de la courbe de décharge dans la
figure 2.61. Rappelons que la constante de temps représente le temps que mettrait le
système pour atteindre l’état final si le processus se déroulait constamment avec les
taux de variation initiaux. Notons que la courbe d’évolution de la charge (ainsi que cel-
le de l’intensité IQ ou de la tension aux bornes du condensateur UC) n’atteint pas l’axe
t, mais s’en approche arbitrairement; les mathématiciens disent que les grandeurs ten-
dent asymptotiquement vers zéro, ce qui veut dire que, théoriquement, le processus de
décharge dure infiniment longtemps. Les électrotechniciens estiment qu’après 5τ la
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FIGURE 2.61 Décharge d’un
condensateur: (a) diagramme de
dynamique des systèmes; (b) évolu-
tion de la charge (ou de la tension).
La tangente à la courbe d’évolution
de la charge détermine la constante
de temps du processus.
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décharge est pratiquement complète; la théorie montre que la charge est alors tombée
à 7 millièmes de sa valeur originelle.

2.8.2 Charge d’un condensateur

Élaboration du modèle dynamique et simulation. La figure 2.62 montre le schéma
de montage et l’évolution des tensions dans le circuit. Les relations du modèle sont:

Équation de bilan des charges:

Loi de capacité:

Loi de résistance (loi d’OHM):

Loi des mailles:

Valeur initiale:

Nous ajoutons au modèle du processus de décharge une source qui délivre une tension
de 10 V. La figure 2.63 illustre le résultat de la simulation.

La charge du condensateur tend asymptotiquement vers une valeur qui est égale au
produit de la tension de la source et de la capacité du condensateur, à savoir:

(2.31)

On s’attend naturellement à ce que la constante de temps du processus de charge soit
la même que pour la décharge, vu que l’on a simplement inversé le sens du courant par
l’intermédiaire de la source de tension, ce qui est confirmé si l’on trace la tangente à
l’origine de la courbe d’évolution de la charge. Cette tangente intercepte l’asymptote
à un instant dont la valeur est la même que la constante de temps de la décharge.

Résolution analytique du modèle. En combinant les trois lois pour trouver l’intensi-
té du courant de charge que l’on substitue dans l’équation de bilan, nous obtenons:

(2.32)

FIGURE 2.62 Schéma du montage
pour la charge d’un condensateur
au moyen d’une source et représen-
tation graphique de l’évolution du
potentiel.
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sateur : (a) diagramme de dynami-
que des systèmes; (b) évolution de
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qui se différencie de l’équation différentielle (2.28) par la présence du second membre.
Pour obtenir la solution particulière, nous recourons à l’argument de la stabilisation de
la charge à la valeur Qmax calculée par l’équation (2.31), ce qui nous permet de
conclure:

(2.33)

2.8.3 Équivalent électrique du windkessel

Nous l’avons déjà souligné, il y a de grandes similitudes entre les comportements des
systèmes hydrauliques et électriques. Nous allons l’illustrer une nouvelle fois en éla-
borant l’équivalent électrique du windkessel.

La figure 2.64 montre la correspondance entre les éléments hydrauliques et électri-
ques. À la pompe correspond une source qui délivre une tension intermittente, à la val-
ve correspond une diode, le windkessel est représenté par un condensateur et les
conduites par des résistances.

Les relations nécessaires pour la modélisation du système sont:

la loi des mailles:

la loi de capacité:

la loi de résistance:
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du windkessel.
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FIGURE 2.65 Équivalent électrique du windkessel: (a) modèle dynamique; (b) simulation.
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La présence de la diode est prise en compte au moyen d’une structure if… then… else,
la tension de seuil est de 0.7 V. La figure 2.65 permet de se rendre compte de la simi-
litude avec les résultats obtenus à la section 1.8.5.

2.8.4 Chaîne de condensateurs et supercondensateurs

Il est possible de former des chaînes de condensateurs et de résistances unidimension-
nelles, voire des réseaux bi- ou tridimensionnels. Si les tensions initiales ne sont pas
partout les mêmes, le système va évoluer dynamiquement pour tendre vers une unifor-
misation des tensions.

Illustrons le phénomène en modélisant l’équivalent électrique de la chaîne de réci-
pients que nous avons analysée à la section 1.8.6.

La figure 2.66 met en évidence la concordance des modèles et la similitude des com-
portements des systèmes hydrauliques et électriques équivalents.

Mais le modèle dynamique de cette chaîne de condensateurs va nous permettre de
comprendre une particularité de ce que l’on appelle des supercondensateurs. Ils se
distinguent des condensateurs usuels par des capacités élevées (jusqu’à quelques
dizaines de farad, alors que les capacités des condensateurs usuels vont du picofarad
à quelques dizaines de millifarad), ce qui permet d’emmagasiner de grandes quantités
d’énergie disponible quasi instantanément, contrairement à l’énergie des accumula-
teurs (chapitre 3).
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FIGURE 2.66 Migration de la charge à travers une chaîne de condensateurs: (a) dispositif expérimental; (b) modèle de dynamique des
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Lorsque l’on décharge un tel supercondensateur à travers une résistance (fig. 2.67a),
on observe une brusque chute du potentiel au début du processus de décharge. Si nous
déchargeons le système de la chaîne de condensateurs à travers une résistance après
avoir remplacé le condensateur 6 par un condensateur de capacité 30 fois plus faible,
nous observons le même comportement initial (fig. 2.67b).

La similitude entre les deux courbes (et la différence avec la courbe de décharge de la
figure 2.61) suggère que la charge d’un supercondensateur doit diffuser à travers le
matériau dont il est constitué, tout comme la charge migre à travers la chaîne de con-
densateurs et résistances. Dans un condensateur standard, la charge est accumulée à la
surface d’un film conducteur à partir duquel elle peut s’écouler sans délai, de la même
manière qu’un fluide qui s’écoule d’un réservoir à travers une conduite raccordée au
fond du réservoir.

Résumé du chapitre
Au cours de ce chapitre, nous avons pu nous familiariser avec les processus électriques
fondamentaux et également mettre en évidence les similitudes et analogies entre les
processus électriques et hydrauliques.

La description des phénomènes électriques nécessite l’introduction de deux grandeurs
fondamentales: la charge électrique Q et le potentiel électrique ϕél. Ces deux gran-
deurs correspondent respectivement au volume V et à la pression P en hydraulique.

La charge électrique Q est la grandeur extensive en électricité: elle peut être accumu-
lée, peut s’écouler entre les systèmes et ses variations dans un système sont décrites
par une équation de bilan: . La charge a une particularité: il en exis-
te deux sortes que l’on appelle positive et négative. Par convention, on admet que les
charges impliquées dans les processus d’accumulation et d’écoulement sont des char-
ges positives. De ce fait, le courant IQ est toujours un courant de charges positives. Les
charges électriques interagissent entre elles et avec l’environnement par l’intermédiai-
re du champ électrique.

La grandeur intensive est le potentiel électrique ϕél. Contrairement à la pression P qui
est une grandeur absolue (il y a un zéro de la pression et il n’existe pas de pression
négative), le potentiel électrique est une grandeur relative: le niveau zéro peut être fixé
arbitrairement (par exemple par la mise à terre). La charge électrique s’écoule toujours
entre deux niveaux du potentiel. On appelle tension U l’opposé d’une différence de
potentiel: U = – ∆ϕél. La charge s’écoule spontanément entre deux points d’un circuit
entre lesquels règne une tension positive, que l’on appelle quelquefois «chute de
potentiel».

Les «réservoirs» de charge électrique sont les condensateurs que l’on caractérise au
moyen de leur capacité CQ. Comme en hydraulique, la capacité lie entre eux le taux
de variation de la charge et celui de la tension: . Les condensateurs sont es-
sentiellement constitués de deux «feuilles» conductrices séparées par une couche iso-
lante très mince. Charger un condensateur consiste à déplacer les charges de l’une des
feuilles vers l’autre; le condensateur est électriquement neutre, mais le déséquilibre se
manifeste par l’apparition d’une tension à ses bornes.

Sauf en cas de supraconductivité, les conducteurs électriques opposent une résistance
à la circulation du courant électrique. Ce phénomène est modélisé au moyen de la loi
de résistance qui introduit les notions de conductance GQ et de résistance électrique
RQ. Il existe une catégorie particulière de conducteurs pour lesquels l’intensité du cou-
rant est proportionnelle à la tension: ce sont les conducteurs ohmiques. Toutefois, leur

� …Q I IQ Q= + +1 2

� �Q C UQ C=
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résistance dépend généralement de la température. Pour ces conducteurs, la loi de ré-
sistance s’énonce sous la forme: UR = RQIQ ou IQ = GQUR .

Le courant électrique ne peut circuler que s’il est entretenu. Pour le faire, on utilise ce
que l’on appelle des sources ou des alimentations qui sont des «pompes à électricité».
Ces appareils ne créent pas de charge électrique mais la mettent en mouvement et l’en-
tretiennent, de manière analogue à une pompe hydraulique qui entretient le mouve-
ment d’un fluide dans les conduites. Les alimentations, telles qu’une batterie,
opposent elles aussi une certaine résistance au passage du courant électrique. Elles
sont modélisées en tant que montage en série d’une source idéale et d’une résistance
interne (ces deux composants ne peuvent pas être séparés physiquement).

Les modèles réalisés dans ce chapitres ont mis en évidence les fortes analogies entre
les processus électriques et les processus hydrauliques.
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Questions
1. On arrache un ruban collant de la surface d’une sphère métal-

lique isolée. Expliquez comment il est possible de montrer
que la sphère est chargée et que le ruban porte une charge de
signe opposé.

2. Deux sphères métalliques qui se touchent sont amenées dans
le voisinage d’un générateur de Van de Graaff chargé à une
tension très élevée. Si nous séparons les deux sphères, nous
constatons que l’une est chargée positivement, l’autre négati-
vement. Que s’est-il passé? Le même phénomène est-il possi-
ble avec des sphères non conductrices?

3. Deux sphères métalliques portent des charges différentes
(éventuellement de signes opposés). On les met en contact.
Expliquez ce qui arrive lorsqu’on les met en contact. Quelle
est l’analogie avec deux réservoirs hydrauliques communi-
cants ? Quelles sont les différences éventuelles?

4. Si un courant électrique circule dans un fil de cuivre, les élec-
trons circulent dans le sens opposé. Quelle est la raison de cet-
te observation?

5. Comment branche-t-on des ampèremètres et des voltmètres
dans un circuit?

6. Pourquoi un ampèremètre doit-il avoir une faible résistance
interne? La résistance d’un voltmètre doit-elle également être
aussi faible que possible?

7. À quoi servent les shunts dans un ampèremètre?

8. Un oiseau peut se poser sans danger sur une ligne à haute ten-
sion. Pourquoi cet oiseau se mettrait-il à rôtir s’il chevauchait
une lampe allumée branchée sur cette ligne?

9. Un condensateur consiste généralement en deux conducteurs
qui se font face et qui portent des charges égales de signes op-
posés. La charge totale d’un condensateur est donc toujours
nulle. Pourquoi peut-on malgré tout parler de la charge d’un
condensateur?

10. Quelle est la signification de la constante de temps d’un sys-
tème RC?

Exercices
1. Un nœud d’un circuit est parcouru par trois courants. Deux

s’écoulent vers le nœud et valent respectivement 0.50 A et
0.35 A. Déterminez la troisième intensité.

2. Un solénoïde (une longue bobine de fil conducteur) est cons-
titué de 1000 m de fil de cuivre de diamètre égal à 0.60 mm.
Déterminez la résistance électrique du solénoïde.

3. La résistance d’un thermomètre à résistance platine Pt-100
croît de 6.0%. Déterminez la variation de température qui en
est responsable. Le coefficient de température de la résistance
du thermomètre au platine vaut 2.0·10–3 K–1.

4. À 20°C, la résistance d’un fil de tungstène vaut 500 Ω . Déter-
minez sa résistance à la température de 1500°C en utilisant

l’approximation quadratique de la variation de la résistance en
fonction de la température.

5. On mesure un courant de 0.250 A lorsqu’une lampe est ali-
mentée à 110 V. (a) Déterminez la résistance de la lampe.
(b) Vous attendez-vous à mesurer un courant de 0.50 A si vous
branchez la lampe sur 220 V?

6. On branche une résistance de 20 Ω aux bornes d’une batterie
dont la tension nominale vaut 1.50 V. Un ampèremètre de ré-
sistance interne égale à 1.0 Ω mesure une intensité de
0.060 A. Déterminez la résistance interne de la batterie.

7. Lors de la décharge d’un condensateur, l’intensité du courant
vaut, à un certain moment, 0.75 A. Quel est alors le taux de va-
riation de la charge du condensateur?

8. Un condensateur de capacité égale à 1.0 µF est chargé. À un
certain moment, sa tension varie à un taux de + 1000 V/s.
(a) Déterminez le taux de variation de sa charge. (b) Que vaut
à cet instant l’ intensité du courant par rapport au
condensateur?

9. Un circuit électrique est constitué d’un condensateur et d’une
résistance ayant respectivement une capacité et une résistance
de 0.10 µF et 100 Ω . Déterminez la constante de temps de ce
circuit.

10. Un condensateur se décharge à travers une résistance de
5000 Ω se décharge à la moitié de sa tension initiale en 3.0 s.
Déterminez la capacité de ce condensateur.

Problèmes
1. On veut réaliser un long fil de diamètre constant ayant un

coefficient de température faible à 20°C. Le fil est constitué
de petits segments alternés de fer et de carbone. Le carbone a
un coefficient de température négatif. Quel doit être le rap-
port des longueurs des segments de fer et de carbone? Les
coefficients de température de la résistance électrique de
deux matériaux sont respectivement 0.0050 K–1 et
– 0.00050 K–1. Leur résistivités valent respectivement
10·10–8 Ω·m et 3500·10–8 Ω·m.

2. Un appareil est connecté à une batterie de 12 V au moyen de
deux câbles. Les standards de sécurité de l’American Yacht
Club spécifient que la chute de potentiel le long d’un câble ne
doit pas dépasser 10% de la tension de la batterie. Admettez
que le courant qui circule à travers un câble de 6.0 m vaut
exactement 20 A. Quel doit être le diamètre minimum du
câble pour cette valeur de l’intensité?

3. Une LED (light emitting diode) fonctionne à une tension de
1.20 V. Le courant de fonctionnement maximal est de 20 mA.
La LED est branchée à une pile de 4.5 V. (a) Comment
concevez-vous le circuit électrique comprenant la pile et la
LED? Dessinez un schéma du montage. (b) Calculez toutes
les valeurs des grandeurs électriques durant le fonctionne-
ment du circuit (tensions, intensités, résistances).

4. Une lampe à incandescence est branchée dans un circuit ali-
menté à 220.0 V. Un ampèremètre, branché entre l’alimentation
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et la lampe, indique une intensité de 0.500 A. La résistance de
l’ampèremètre vaut 2.0 Ω . Un voltmètre, de résistance interne
égale à 10 kΩ, est branché aux bornes de la lampe. Que vaut la
résistance de la lampe et quelle est la tension indiquée par le
voltmètre?

5. Le montage ci-dessous est utilisé pour mesurer la valeur
inconnue Ux de la tension d’une batterie. La branche de la
batterie contient une résistance R2. Une deuxième branche
est constituée d’une batterie de tension connue U0 et d’une
résistance R1. La résistance médiane est un fil de longueur L
ayant une résistance totale R. Un contact mobile relie à la
branche de la première batterie. On déplace ce contact
jusqu’à ce que le courant à travers cette batterie s’annule ;
c’est le cas lorsque la longueur de fil, mesurée depuis le haut,
prend la valeur l. (a) Exprimez Ux au moyen des autres gran-
deurs du circuit. (b) La résistance interne de la batterie étu-
diée joue-t-elle un rôle dans cette expérience?

6. On veut mesurer les caractéristiques d’une jauge de con-
trainte au moyen d’un pont de Wheatstone (fig. 2.69). La
valeur de la résistance 1 est de 40 Ω , alors que celle de la
seconde résistance est de 100 Ω . Lorsque la jauge n’est pas
sous contrainte, la résistance ajustable Rvar doit être fixée à
300 Ω pour équilibrer le circuit (aucun courant à travers
l’ampèremètre très sensible dans la branche médiane). Nous
modélisons la jauge de contrainte en tant que fil dont le dia-
mètre diminue de 0.80% et dont la longueur croît de 2.0%
lorsqu’elle est sous contrainte. Quelle modification doit-on
apporter à la valeur de Rvar pour rééquilibrer le pont?

7. Un thermomètre à résistance de platine est branché à la place
de la jauge de contrainte dans le pont de Wheatstone de la
fig. 2.69. Le pont est équilibré (intensité nulle à travers
l’ampèremètre) lorsque le thermomètre est plongé dans de
l’eau à 20°C et que la résistance Rvar est ajustée à 10.0 kΩ .
On plonge le thermomètre dans un autre liquide. On peut réé-

+

UB

R1

R2

+

Ux

FIGURE 2.68
Problème 5

+

R1

R2
Rvar

Jauge de
contrainte

A

FIGURE 2.69
Problèmes 6
et 7

quilibrer le pont en augmentant la résistance variable de
1 kΩ. Quelle est la température du second liquide? Le coef-
ficient de température de la résistance électrique du thermo-
mètre vaut 2.0·10–3 K–1.

8. Une résistance de 120 Ω est branchée en série avec le mon-
tage en parallèle d’une capacité de 4 mF et d’une seconde
résistance de 60 Ω (fig. 2.70). Ce circuit est branché à une
source de tension de 24 V. (a) Décrivez (verbalement et au
moyen de diagrammes) l’évolution dans le temps de la ten-
sion sur la seconde résistance. (b) À un certain instant,
l’intensité à travers la première résistance vaut 150 mA. Que
vaut la charge du condensateur à cet instant ? (c) Que vaut
l’intensité dans la branche du condensateur à cet instant?

9. Le condensateur du circuit de la fig. 2.70 est déchargé. La
batterie délivre une tension de 24 V, les éléments R1 et R2 ont
des résistances respectives de 120 Ω et 60 Ω . Le condensa-
teur a une capacité de 4.0 mF. (a) Dessinez (ou esquissez) les
diagrammes de l’évolution dans le temps des tensions sur le
condensateur et sur la seconde résistance R2 après la ferme-
ture de l’interrupteur. Quelles seront les valeurs maximales
de la tension? (b) Dessinez (ou esquissez) les diagrammes de
l’évolution dans le temps de l’intensité à travers le condensa-
teur et à travers la seconde résistance. Déterminez les valeurs
maximales des intensités. (c) Quelle sera la charge du con-
densateur après un temps suffisamment long?

10. Deux condensateurs identiques, de capacités égales à 1.0 mF
sont connectés comme le montre la fig. 2.71. À un certain
moment, les tensions sont respectivement de 100 V sur le
premier condensateur et 50 V sur le second. Quels sont, à cet
instant, les taux de variation de la tension sur chacun des
condensateurs?

11. Un projectile passe à travers deux grilles formées au moyen
de fils conducteurs. Lorsqu’il passe à travers la première
grille, il déclenche la décharge d’un condensateur qui est
stoppée lorsqu’il franchit la seconde grille. La tension initiale
du condensateur est de 200 V, sa valeur finale est de 85 V. La

+

R1

R2

FIGURE 2.70
Problème 8

+

+
100 V

50 V

10 Ω

20 Ω

FIGURE 2.71
Problème 10
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capacité et la résistance des éléments du circuit sont respecti-
vement de 3.0 µF et 100 Ω . La distance entre les deux grilles
est de 10 cm. Quelle est la vitesse du projectile?

12. (a) Dessinez un système hydraulique constitué de pompes,
conduites et réservoirs, équivalent au circuit électrique de la
fig. 2.70. (b) Remplacez par un second condensateur la résis-
tance R2 dans le circuit du Problème 8. À quoi ressemble le
système hydraulique équivalent ? (c) Un réservoir déverse
son contenu dans un second réservoir à travers une conduite.
Le fluide s’échappe du second réservoir à travers une autre
conduite (fig. 1.86). Comment se présente le circuit électri-
que équivalent?

13. Un fil est utilisé en tant que jauge de résistance. Il est allongé
de 2%; on admet que le volume reste constant. Quel est le
pourcentage de variation de la résistance du fil conducteur?
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Le système cardiovasculaire humain, et de manière générale celui des mammifères, est
un exemple intéressant de système dynamique hydraulique. Dans ce premier Interlu-
de, nous allons montrer comment une partie du système peut être étudiée, autant par
l’expérience que par la modélisation dynamique. L’objectif de cet Interlude et de ceux
qui vont suivre est de permettre, sur des exemples modérément complexes, de mettre
en pratique ce que nous avons appris dans les chapitres précédents.

Les investigations expérimentales auront, dans le cas présent, une forme intéressante.
Comme nous sommes rarement en mesure d’expérimenter avec des organismes vi-
vants, nous élaborerons des circuits électriques analogues avec lesquels nous pourrons
jouer facilement. Nous créerons ensuite des modèles dynamiques mathématiques des
modèles physiques — les circuits — et comparerons les résultats des simulations aux
données obtenues dans le laboratoire. Après nous être convaincus que nous compre-
nons l’analogie électrique de certaines parties du système cardiovasculaire, nous trans-
férerons les modèles au cas hydraulique. Nous possédons un jeu de données —
pression et flux sanguin dans le ventricule gauche et l’aorte d’un mouton — que nous
pourrons comparer avec les simulations du modèle hydraulique, ce qui nous permettra
de déterminer les valeurs des paramètres importants du système réel.
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Chacun sait que les mammifères, tels que les êtres humains, ont un coeur et des vais-
seaux sanguins de taille variable qui parcourent leur corps. Le cœur sert de pompe et
les vaisseaux transportent le sang. Alors que l’interprétation en tant que système hy-
draulique semble évidente, elle est relativement récente. Le médecin arabe Ibn NAFIS

a décrit le système circulatoire au XIIe siècle, mais son œuvre a été oubliée et n’a été
redécouverte en Europe qu’en 1924. C’est la raison pour laquelle, dans le monde
scientifique, on attribue la paternité de la découverte du rôle du système cardiovascu-
laire à William HARVEY, qui en fit la description en 1628. Le révérend Stephen HALES

mesura la pression sanguine d’un cheval en 1733. Le physicien Thomas YOUNG ex-
prima, en 1809, la conviction que l’écoulement du sang faisait partie du domaine de
l’hydraulique. Le médecin et physicien Jean-Léonard POISEUILLE étudia l’écoulement
du sang et dériva la relation entre flux et différence de pression pour un écoulement
laminaire dans une conduite circulaire (chapitre 1, section 1.7.2, équation (1.33)). Fi-
nalement, vers la fin du XIXe siècle, Otto FRANK décrivit le système circulatoire en
termes de circuits électriques et démontra l’importance du modèle de type windkessel
pour comprendre l’écoulement du sang dans le corps des mammifères.

 

I.1.1 Un cœur, deux pompes, et deux parties d’un circuit

Pour faire bref, on peut dire que le circuit cardiovasculaire est constitué de deux parties
dont les deux chambres du cœur sont les centres respectifs (fig. I.1). La partie droite
du cœur pompe le sang à travers les poumon (circuit pulmonaire) où il se recharge
d’oxygène. De là, il s’écoule vers la partie gauche du cœur, tout d’abord dans l’atrium
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(anciennement oreillette), puis dans la chambre principale, le ventricule gauche. Le
sang est alors injecté dans les artères qui le distribuent dans le corps. Il existe plusieurs
branches de ce circuit corporel, appelé circuit systémique, qui traversent le torse et ses
organes, les bras, les jambes et la tête. Après avoir apporté l’oxygène, les nutriments,
l’eau et la chaleur aux différentes parties du corps et recueilli les déchets, le sang re-
tourne vers le ventricule droit à travers les veines. Entre les artères et les veines, un
système de vaisseaux très fins, les capillaires, assure la distribution fine des apports du
sang.

 

Circuit systémique. C’est à la fois le système de distribution du sang oxygéné pour
toutes les partie du corps (fig. I.1), et celui qui ramène le sang appauvri vers la partie
droite du cœur. Il commence dans le ventricule gauche, responsable de produire la
pression afin que le sang puisse circuler vers toutes les parties du corps. La conduite
qui émerge du cœur est l’aorte; elle se ramifie en artères qui, elles-mêmes, se divisent
en vaisseaux plus fins, puis en capillaires.

 

I.1.2 Évolution de la pression sanguine le long du circuit systémique

Lorsque le médecin mesure notre pression sanguine, il entoure le haut du bras d’un
brassard rempli d’air, muni d’un manomètre. Le stéthoscope intégré dans le brassard
est placé au-dessus du pli du coude, ce qui permet au médecin d’entendre le bruit du
sang qui circule dans l’artère humérale. La pression du brassard est augmentée jusqu’à
ce que le passage du sang soit bloqué, puis réduite lentement. Généralement, le méde-
cin annonce quelque chose comme «130 sur 80». La première valeur correspond à la
pression systolique (lorsque le sang recommence à circuler quand on libère le blocage)
et la seconde est la pression diastolique, détectée lorsque l’on n’entend plus le bruit de
la circulation du sang, ce qui veut dire que la pression du brassard est inférieure à celle
du sang dans l’artère (fig. I.2a).

Les valeurs de la pression annoncées par le médecin sont données en mmHg, et cor-
respondent à la pression engendrée par une colonne de mercure dont la longueur, me-
surée en millimètres, correspond à ces valeurs (chapitre 1, section 1.3.1). La pression
atmosphérique standard de 1 bar correspond à celle qui est engendrée par une colonne
de mercure de 760 mm. En outre, une valeur nulle correspondrait à la pression am-
biante, c’est-à-dire à la pression moyenne dans le corps qui, elle, correspond à la pres-
sion ambiante.

Circuit
pulmonaire

Circuit
systémique

Cœur
(droit)

Cœur
(gauche)

Capillaires

Capillaires

Artères

Veines

AorteVentricule gauche

Aorte

Cœur

Artère

Arc aortique

Artère

a. b.

c.

FIGURE I.1 Système cardiovascu-
laire : (a) torse humain montrant
quelques éléments du système car-
diovasculaire, en particulier le
cœur et une partie du circuit systé-
mique qui consiste en l’aorte, les
artères se ramifiant à partir de
l’aorte, et des vaisseaux plus petits
qui ne sont pas montrés. Après
avoir été pompé à partir du ventri-
cule gauche dans l’aorte, puis dans
les artères, pour aboutir dans les ca-
pillaires, le sang est collecté et ra-
mené à travers les veines dans le
ventricule droit. De là, il est pompé
dans le circuit pulmonaire et re-
tourne dans le ventricule gauche;
(b) en fait, ce qu’il est habituel de
désigner comme deux circuits dif-
férents est un circuit unique avec
deux stations de pompage séparées
disposées dans le circuit fermé; (c)
angiogramme de l’arc aortique.
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Pression en fonction du temps et de la position. Il est évident que la pression san-
guine dans l’artère humérale évolue en fonction du temps, comme le montre la
figure I.2a. Une autre information importante est fournie par l’évolution de la pression
sanguine le long du circuit systémique, à savoir depuis le ventricule gauche, à travers
l’aorte, les artères, les capillaires puis sur le retour à travers les veines vers la partie
droite du cœur (fig. I.3)

Les valeurs des pressions systolique et diastolique changent en fonction de l’activité,
mais elles évoluent aussi lentement à cause du vieillissement de notre organisme. Les
personnes âgées ont généralement des valeurs de pression sanguine plus élevées que
celles de jeunes personnes. Il est possible d’influencer ces valeurs par notre régime, de
l’exercice ou la prise de médicaments.

 

Rythme cardiaque et mécanismes de contrôle de la pression sanguine. Nous sa-
vons tous que notre rythme cardiaque change en fonction de notre activité. Si nous fai-
sons de l’exercice, si nous sommes excités, le rythme cardiaque augmente. On peut
percevoir que la pression augmente parallèlement. Au contraire, lorsque nous nous re-
laxons, la pression et le rythme cardiaque diminuent. Apparemment, les organismes
possèdent un système de contrôle automatique très élaboré qui prend en charge cette
tâche. Si nous souhaitons comprendre ce système, nous devons prendre en compte les
activités électrique et chimique à côté des aspects hydrauliques.
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FIGURE I.2 Mesures: (a) pression
sanguine et (b) flux sanguin mesu-
rés sur un mouton, en fonction du
temps. La courbe de pression, qui
varie approximativement entre 110
et 20 mmHg a été mesurée à l’inté-
rieur du ventricule gauche. La se-
conde courbe de pression, qui varie
entre 90 et 50 mmHg, a été mesu-
rée dans l’aorte, à proximité du
cœur. Le flux est négatif pour une
courte période, ce qui indique que
le sang reflue vers le cœur, mais
sans y retourner.

Aorte Artère

Artériole

Capillaires

Vénule

Veine

Veine cave

Atrium droit

Atrium gauche

Pression systolique

Pression
diastoliquePr

es
si

on

FIGURE I.3 Diagramme qualitatif
de l’évolution de la pression dans le
circuit systémique en fonction de la
pression, du ventricule gauche à
l’atrium droit. Dans le ventricule
gauche, dans la région occupée par
l’aorte, les artères et les artérioles,
la pression oscille dans le temps et
répercute les battements du cœur.
Il n’y a pratiquement plus de
pulsations dans les capillaires et les
veines.
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Pourquoi indique-t-on deux valeurs lors de la mesure de la pression sanguine? Pour-
quoi la seconde valeur n’est-elle pas simplement nulle ou proche de zéro, sachant que
la pression dans le ventricule gauche atteint une valeur proche de zéro à un certain mo-
ment du cycle cardiaque?

Examinons attentivement le circuit systémique. Le sang oxygéné arrivant du circuit
pulmonaire s’écoule, à une pression très basse par rapport à la pression ambiante, de
l’atrium gauche vers le ventricule gauche qui commence alors à se contracter, augmen-
tant ainsi la pression du sang. À un certain point, la valve aortique s’ouvre et le sang
contenu dans le ventricule gauche s’échappe dans l’aorte. La quantité de sang conte-
nue dans le cœur diminue, la pression également, et la valve se referme.

L’aorte et ses propriétés sont responsables pour la plus grande partie de ce qui se passe
ensuite d’un point de vue hydraulique. Contrairement aux artères, capillaires et veines,
l’aorte est un vaisseau flexible. Cela signifie qu’elle ne fonctionne pas seulement en
tant que conduite, mais également comme récipient de stockage, de manière sembla-
ble à un ballon gonflable ou un accumulateur à membrane (chapitre 1, section 1.6.1,
figure 1.41). Elle stocke le sang qui arrive du ventricule gauche pour un bref instant et
le relâche de manière relativement régulière dans les artères et les capillaires qui fonc-
tionnent comme de simples conduites qui distribuent le sang. Leur fonction peut être
décrite en disant qu’elles opposent une résistance à l’écoulement du sang qui est rela-
tivement visqueux. La pression mesurée au cabinet médical est proche de la pression
qui règne dans l’aorte. Cette grandeur varie de manière rythmique entre une valeur éle-
vée (légèrement inférieure à la pression maximale atteinte dans le cœur) et une valeur
basse. Comme il reste toujours du sang dans l’aorte, cette pression basse, la pression
diastolique, n’est jamais proche de zéro.

En résumé, le ventricule gauche est la pompe intermittente du circuit systémique,
l’aorte est un windkessel, et le reste des vaisseaux sanguins servent de réseau de dis-
tribution (fig. I.4). La valve aortique garantit que le sang ne reflue pas vers le cœur.

La figure I.5 illustre au moyen d’un diagramme de processus le rôle des différents élé-
ments de la partie considérée du système cardiovasculaire. Le ventricule gauche est
l’élément qui assure l’élévation de la pression nécessaire pour permettre la circulation
du sang. L’aorte sert à la fois de conduite et d’élément de stockage. Les vaisseaux qui
relient entre eux ces éléments et qui distribuent le sang dans le corps offrent une cer-
taine résistance à son écoulement.

Au chapitre 1, section 1.8.5, nous avons appris comment créer un modèle dynamique
d’un simple windkessel tel que celui de la figure I.4. Nous pourrions en profiter et l’ap-
pliquer directement à nos idées du fonctionnement de l’aorte branchée entre le ventri-
cule gauche et le reste du circuit systémique. Cependant, nous allons faire un détour

FIGURE I.4 Modèle de type wind-
kessel pour le circuit systémique. Il
consiste en une pompe qui prend le
liquide dans l’environnement, une
conduite courte avec une valve et
un récipient avec une longue
conduite qui restitue le liquide à
l’environnement.

Ventricule
gauche
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Valve
aortique

Artères et
capillaires
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gauche
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Pamb P2 P3 PambP3

V

Processus
électochimique
ou mécanique

FIGURE I.5 Diagramme de proces-
sus de la chaîne d’éléments consti-
tuée du ventricule gauche (en tant
que pompe en régime continu, ce
qu’elle n’est pas), de l’aorte en tant
qu’élément de stockage et des vais-
seaux du circuit systémique.
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et créer un système expérimental consistant en un circuit électrique qui, à tout point de
vue, est analogue au windkessel hydraulique (chapitre 2, section 2.8.3).
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Le système de type windkessel (fig. I.6a) peut être modélisé par un système physique
qui utilise des éléments électriques, une alimentation, des condensateurs, des résistan-
ces et une diode (fig. I.6b). En mettant le circuit sous une tension variable délivrée par
l’alimentation qui simule la pression du sang dans le ventricule gauche, on obtient sur
le condensateur une tension analogue à la pression sanguine dans l’aorte (fig. I.6c)

Il est important, lorsque l’on remplace le windkessel hydraulique par un circuit élec-
trique équivalent, de bien faire correspondre les tensions avec les différences de pres-
sion et d’appliquer correctement la loi des mailles. Dans notre modèle, nous avons
deux mailles, l’une allant de l’air ambiant à travers la pompe et la valve vers le réci-
pient pour retourner vers l’environnement, la seconde passant de l’environnement à
travers le récipient et la conduite longue vers l’air ambiant (fig. I.7). La pompe inter-
mittente est représentée par une alimentation qui fournit une tension dont la variation
dans le temps ressemble à celle de la différence de pression de la pompe.

Le diagramme de processus de la figure I.8 établit la correspondance entre les élé-
ments du circuit cardiovasculaire présentés dans la figure I.5 et leur équivalent électri-
que dans le modèle de windkessel de cette partie du circuit.
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FIGURE I.6 Modélisation électri-
que du système cardiovasculaire:
(a) modèle de type windkessel pour
le circuit systémique consistant en
une pompe qui prend le liquide
dans l’environnement, une condui-
te courte avec une valve et un réci-
pient avec une longue conduite qui
restitue le liquide à l’environne-
ment ; (b) circuit électrique analo-
gue consistant en une alimentation
avec diode pour simuler la pompe
intermittente, un condensateur
pour modéliser l’aorte et une résis-
tance qui joue le rôle des
vaisseaux; (c) réponse du système
soumis à une tension variable de
l’alimentation.
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FIGURE I.7 Le système de type
windkessel comprend deux mailles
indépendantes. Le long d’une
maille, la somme des différences de
pression est nulle.
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INTERLUDE I   SYSTÈME CARDIOVASCULAIRE EN TANT QUE SYSTÈME RC

I.3.1 Modèle de dynamique des systèmes

L’élaboration du modèle dynamique du circuit électrique — et par analogie pour les
éléments cœur–aorte–vaisseaux de la partie systémique du circuit cardiovasculaire —
est assez simple (fig. I.9a). La coïncidence entre la simulation et les données mesurées
peut être quasi parfaite pour le circuit électrique (fig. I.9b), alors que ce modèle sera
toujours trop simple pour représenter correctement un système physiologique. Il nous
fournit malgré tout une compréhension claire des processus importants qui se dérou-
lent dans le système cardiovasculaire.

Le modèle consiste en une équation de bilan unique pour la charge électrique du con-
densateur (qui correspond au volume accumulé dans le récipient). Cette charge peut
circuler à travers deux éléments résistifs (conduites), le premier associé au circuit
comprenant l’alimentation (pompe), l’autre étant associé à la seconde maille (conduite
longue). Les flux à travers ces éléments résistifs sont obtenus en tant que quotient des
tensions (différences de pression) aux bornes des éléments et de leurs résistances res-
pectives (chapitre 2, section 2.6.1, équation (2.19)). La tension aux bornes du conden-
sateur (pression du fluide dans le récipient) est calculée au moyen de la loi de capacité
(chapitre 2, section 2.5.1, équation (2.16)) en tant que quotient de la charge et de la ca-
pacité. La valve est simulée au moyen d’une diode. Finalement, les tensions sur les ré-
sistances sont obtenues à partir de la loi des mailles (chapitre 2, section 2.4,
équation (2.14)).

Les équations du modèle consistent en une équation de bilan, deux lois des mailles qui
relient les tensions et cinq relations constitutives pour les résistances, la diode, le con-
densateur et l’alimentation:

dQ / dt = IQ_1 – IQ_2 , Q(0) = 0

Condensateur Résistance

Chaleur

T

IQ1

Générateur

IQ2

IQ2

Résistance

Chaleur

ϕ1 ϕ2 ϕ3 ϕ1ϕ3

Q

Processus
mécaniqueFIGURE I.8 Diagramme de proces-

sus de la chaîne d’éléments consti-
tuée d’un générateur, d’une
résistance, d’un condensateur en
tant qu’élément de stockage et
d’une seconde résistance en paral-
lèle avec le condensateur.

FIGURE I.9 Modélisation électri-
que du windkessel: (a) diagramme
du modèle dynamique; (b) résultats
de la simulation (ligne continue) et
comparaison avec les valeurs
mesurées sur le condensateur
(points). La tension de l’alimenta-
tion (US) a été utilisée en tant que
donnée d’entrée dans le modèle.

XXX

X

X
X
X
X

X

X
X
X
X
X
X
X

X

X

X
X
X
X
X
X

X

X
X
X
X
X

XX

X
X
X
XX

-1

0

1

2

3

4

5

6

0 5 10 15 20

T
en

si
on

/V

Temps / s

a. b.

Q
IQ 1 IQ 2

UD

~
US

UC UR2UR1

R1 R2
C



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 97

I.3  WINDKESSEL ÉLECTRIQUE ET MODÈLE

UR_1 = US – UD – UC
UR_2 = UC

IQ_1 = IF (UR_1 > 0) THEN UR_1/R1 ELSE 0
IQ_2 = UR_2/R2
UC = Q/C
US = Graphical_Function(TIME)
UD = 0.82

C = 458e-6
R1 = 1.00e3
R2 = 1.0e4

I.3.2 Limitations du modèle

Le modèle électrique représentant le circuit de type windkessel donne de bons résul-
tats. Le seul défaut est la modélisation fortement simplifiée de la diode. Nous avons
admis qu’il s’agit d’une diode parfaite qui empêche la circulation du courant tant que
la tension à ses bornes est inférieure à 0.82 V; au-dessus de cette valeur, elle est un
conducteur parfait. C’est une approximation assez grossière de la réalité, mais elle
semble suffisante. La modélisation réaliste d’une diode sera traitée dans l’Interlude II.

Que devons-nous faire pour transférer ce modèle au cas physiologique? Il suffit de
changer les noms des variables, c’est-à-dire remplacer la charge par le volume, la ten-
sion par la différence de pression, la capacité électrique par la capacité hydraulique,
etc. et, naturellement, changer les valeurs numériques des paramètres.

Même sans avoir procédé à cette transformation, nous savons à quoi vont ressembler
les fonctions simulées, c’est-à-dire la pression et les flux volumiques, vu que les cas
sont analogues du point de vue mathématique (fig. I.10a).

Si nous comparons les résultats de la simulation (fig. I.10a) aux données recueillies
dans le système cardiovasculaire d’un mouton (fig. I.10b), nous détectons quatre dif-
férences bien visibles, deux pour les paires UC → ∆PA et deux pour les paires IQ1
→IV.A. UC n’augmente pas assez rapidement lorsque l’alimentation externe est enclen-
chée, et la décroissance de la tension a une forme différente de celle de ∆PA après le
passage par le maximum; il semble qu’il y a deux temps de relaxation caractéristiques
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FIGURE I.10 Modèle électrique de type windkessel : (a) résultats de la simulation; (b) données phy-
siologiques recueillies sur un mouton (voir la figure I.2 pour les détails) ; les lignes pointillées corres-
pondent respectivement à US et à ∆PVG, c’est-à-dire les données d’entrée de nos modèles dynamiques.
UC correspond à ∆PA et IQ1 à IVA. Le courant électrique correspond au flux de charge entrant dans le
condensateur.
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dans la fonction de pression, d’abord un bref, puis un plus long. De plus, on soupçonne
une oscillation dans la fonction de ∆PA.

Les différences entre IQ1 et IV.A sont encore plus frappantes. Il y a un léger délai dans
la croissance de IV.A après que la pression dans le ventricule gauche est devenue su-
périeure à celle de l’aorte. IV.A et IQ1 ne sont pas directement comparables, vu que le
flux sanguin a été mesuré dans l’aorte, à une certaine distance de la valve aortique.
Deuxièmement, et c’est beaucoup plus important, l’intensité du flux sanguin devient
légèrement négative pour une courte période du cycle cardiaque, indiquant que le
sang s’écoule vers l’arrière au point de mesure. Cela ne signifie pas que le sang re-
tourne dans le ventricule gauche, mais plutôt qu’il oscille dans l’aorte. Il n’est pas
possible d’obtenir un régime oscillatoire dans un modèle RC, qu’il soit hydraulique
ou électrique.

I.3.3 Circuit avec des condensateurs supplémentaires

Nous ne serons pas en mesure de résoudre le problème de l’apparition d’oscillations
dans cette investigation. Ce sera le cas lorsque nous aurons étudié les effets de l’inertie
sur les écoulements, ce que nous ferons lors de l’étude du phénomène d’induction au
chapitre 4. Dans l’interlude II, nous reprendrons alors le cas du système circulatoire et
étendrons nos modèles de telle manière que nous pourrons alors affirmer que nous
comprenons la nature des flux négatifs de sang et de ses oscillations dans l’aorte.

Nous allons améliorer le modèle de telle manière qu’il affichera des résultats un peu
meilleurs pour la forme de la fonction de pression, ou plutôt, si nous le faisons d’abord
pour le circuit électrique, pour la tension sur le condensateur. Représenter l’aorte lon-
gue et élastique par un seul récipient de stockage (fig. I.4) est assez sommaire. Les
conditions rencontrées par le sang diffèrent d’un point à l’autre de l’aorte et évoluent
dans le temps en chaque point de l’aorte. Les modèles que nous avons créés reprodui-
sent les variations temporelles, mais pas les variations spatiales. Nous pouvons sur-
monter le problème en divisant l’aorte en un certain nombre d’éléments, chacun
représenté par son dispositif de stockage. Ces éléments de stockage sont reliés par
l’écoulement du liquide d’un élément à l’autre. Nous imitons de cette manière un
modèle de l’aorte au moyen de la méthode des éléments finis (fig. I.11).

R3

UR3UC1

C1

US

R1

UR1

UC2

C2

R2

UR2

Aorte

Ventricule
gauche

Valve
aortique

Artères et
capillaires

a.

b.

c.

IQ1 IQ2

IQ3

UD

Q1 Q2
IQ 1 IQ 2 IQ 3

UD

~
US

UC1 UC2UR2 UR3UR1

R1 R2
R3C1

C2

FIGURE I.11 Amélioration du modèle: (a) remplacement du récipient unique par deux récipients reliés par une
courte conduite; (b) circuit électrique RC équivalent; (c) diagramme de dynamique des systèmes correspondants.
Il serait possible d’augmenter le nombre d’éléments de stockage pour affiner encore plus le modèle.



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 99

I.4  PREMIER MODÈLE HYDRAULIQUE

Si, pour le modèle à deux condensateurs, nous souhaitons utiliser les mêmes paramè-
tres que pour le modèle de la figure I.9, nous pouvons distribuer les capacités sur les
deux condensateurs de manière à ce que leur somme soit égale à 450 µF. Nous utili-
sons C1 = 50µF et C2 = 400 µF. Comme la pression aortique a été mesurée près du
ventricule gauche, il est sensé d’attribuer la valeur la plus faible au premier condensa-
teur. Si nous attribuons à la connexion entre les deux condensateurs une résistance de
2 kΩ, les résultats de la simulation pour la tension et l’intensité des courants sont ceux
de la figure I.12. L’amélioration la plus frappante apparaît dans la forme de la tension
sur le premier condensateur: elle augmente plus rapidement, atteint son maximum à
l’intérieur de la courbe en forme de cloche représentant US, et sa décroissance affiche
clairement deux constantes de temps.

Il n’y a pas de véritable amélioration dans la simulation des courants. Ils ne deviennent
pas négatifs ni ne se mettent à osciller. Cependant, IQ2 représente le flux de sang me-
suré dans l’aorte de manière plus proche de la réalité. Ce n’est ni le flux entrant, ni le
flux émergent de l’aorte, puisqu’il s’agit du courant entre les deux éléments de stoc-
kage, donc un courant à l’intérieur de l’aorte. Le courant émergent IQ3 révèle un as-
pect important du rôle de l’aorte : elle lisse fortement le variation d’intensité de
l’écoulement du sang vers les parties du corps.

I.4 PREMIER MODÈLE HYDRAULIQUE

Après ce détour par la modélisation électrique, nous sommes en mesure de créer des
modèles dynamiques hydrauliques du circuit systémique du système cardiovasculaire
des mammifères. Nous prenons pour base le modèle élaboré pour l’équivalent électri-
que du windkessel de la figure I.9 et changeons de façon approprié les noms des va-
riables (fig. I.13). Les équations restent les mêmes. Il n’y a qu’une différence
évidente: la fonction de la diode a été remplacée par une valve qui s’ouvre et se ferme
en fonction du signe de la différence de pression entre le ventricule et l’aorte. La ré-
sistance de cette valve aortique est incluse dans la résistance à l’écoulement RVA.

FIGURE I.12 Simulation du modè-
le amélioré: (a) tension UC1 et
UC2; la forme d’UC1 ressemble
beaucoup plus à celle de ∆PA
mesurée sur le mouton que dans le
modèle précédent; (b) intensité des
courants IQ1, IQ2 et IQ3 qui ne
manifeste pas de comportement
oscillatoire.0
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Comme on pouvait s’y attendre, la pression simulée ∆PA et les intensités des courants
IV,VA et IV,syst ont les mêmes formes que celles que nous avons trouvées pour UC et
les courants du modèle électrique; il suffit de comparer les figures I.14 et I.10a. Nous
pouvons reprendre l’essentiel des remarques faites au sujet des résultats fournis par le
modèle électrique le plus simple : la pression sanguine simulée est trop simple
(fig. I.14a) et l’écoulement du sang ne change pas de sens (fig. I.14b).

Détermination des paramètres. Un des objectifs de la modélisation des systèmes
cardiovasculaires est d’obtenir des valeurs utiles de la capacité de l’aorte, la résistance
à l’écoulement pour le flux du ventricule gauche dans l’aorte et la résistance des vais-
seaux (artères et capillaires) qui constituent la partie systémique du circuit. En général,
on peut essayer d’obtenir de telles valeurs en ajustant les résultats de la simulation aux
fonctions mesurées selon le temps. Comme nous avons trois paramètres inconnus, il
se pourrait que nous rencontrions des problèmes et c’est ce qui peut arriver si l’on n’est
pas attentif.

Pour commencer, nous admettons que la résistance des vaisseaux systémiques est re-
lativement élevée. Nous savons depuis le chapitre 1 que la résistance de conduites
d’un demi-mètre de longueur et de quelques millimètres de diamètre intérieur est de
l’ordre de grandeur de 108 unités SI standard. Pour la résistance qui s’offre au passage
du sang entre le ventricule gauche et l’aorte, nous pouvons admettre que sa valeur est
approximativement 10 fois plus faible. Cette valeur nous est suggérée par le rapport
des constantes de temps liées respectivement à la croissance et à la décroissance de la
pression mesurée ∆PAm (fig. I.14a); lors de la création du circuit électrique analogue,
nous avons constaté qu’un rapport R1:R2 de 1:10 donne un comportement qui n’est
pas trop éloigné de ce que nous savons du cas physiologique.

V_Aorte(t) = V_Aorte(t - dt) 
                    + (IV_VA - IV_syst) * dt
INIT V_Aorte = CV*delta_PA_init

IV_VA = IF (delta_PR_VA>0) 
             THEN delta_PR_VA/R_VA ELSE 0
IV_syst = delta_PR_V/R_syst
delta_PR_VA = PVG_m - delta_PA
delta_PR_syst = delta_PA
delta_PA = V_Aorte/CV

R_VA = 1.87e7
R_syst = 2.39e8
CV = 3.46e-9
delta_PA_init = 7500

V Aorte
IV syst

delta PA delta PR syst

IV VA

delta PVG m

CVR VA
R syst

delta PR VA

FIGURE I.13 Diagramme du mo-
dèle dynamique d’un système hy-
draulique de type windkessel. Un
élément de stockage unique reçoit
un fluide dont la pression est en-
gendrée par une pompe travaillant
de manière cyclique. La pompe
n’est pas modélisée directement,
mais la pression mesurée ∆PVG_m
est utilisée pour représenter la pres-
sion du sang dans le ventricule gau-
che. Le flux émergent est modélisé
en tant que flux laminaire, ce qui
est également le cas du flux entrant.
La relation capacitive est aussi
linéaire.
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pour le modèle de la figure I.13: (a)
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construites à partir d’un des cycles
mesurés qui est répété autant de
fois que nécessaire.
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Pour obtenir un ajustement entre ∆PA et ∆PAm qui est aussi bon que celui qu’on peut
constater dans la figure I.14a, nous cherchons une valeur convenable pour la capacité
hydraulique de l’aorte par approximations successives. Il est encore possible de faire
des ajustements fins du rapport des résistances avant d’obtenir le résultat désiré.

Que se passe-t-il si l’on prend une autre valeur de départ pour R2, par exemple une
valeur 10 fois plus faible? Nous devons également réduire la valeur de R1 d’un facteur
10 et trouver la valeur de C par approximations successives. Nous trouverons que le
nouvelle valeur de la capacité doit être 10 fois plus grande que celle de la première
tentative. Cela signifie-t-il que les paramètres du système physiologiques sont
arbitraires?

Ce n’est pas le cas. Ce que nous observons ici est un problème général qui se présente
avec un système RC simple si l’on ajuste une seule fonction mesurée, par exemple la
tension aux bornes d’un condensateur qui se décharge, et que l’on veut obtenir les va-
leurs inconnues de R et C. Nous pouvons utiliser n’importe quelle paire de valeurs tant
que le produit de R et C, c’est-à-dire RC = τ, est choisi de manière appropriée. Nous
avons appris lors de l’étude de systèmes hydrauliques et électriques simples que le
produit RC est la constante de temps liée aux processus de charge et de décharge à tra-
vers des résistances linéaires d’éléments de stockage linéaires. Comparer une fonction
simulée unique telle que la tension capacitive à la fonction mesurée correspondante ne
suffit pas si nous voulons déterminer les valeurs de R et de C.

Nous avons besoin d’une seconde observation, que nous possédons, à savoir l’intensité
du courant dans l’aorte, mesurée près de la valve aortique (fig. I.14b). Nous devons
comparer les courants simulés avec celui qui a été mesuré.

Comme nous l’avons déjà mentionné, nous n’obtiendrons pas de résultats vraiment
satisfaisants pour l’instant. Notre modèle simple de la figure I.13 nous donne le flux
entrant dans et le flux émergeant de l’aorte, mais pas le courant dans l’aorte. Même si
nous n’arrivons pas à obtenir un meilleur résultat que celui de la figure I.14b, nous
devons essayer d’ajuster la quantité totale de fluide transférée par les flux entrant IV,VA
et le flux mesuré par cycle. Nous pouvons calculer ces grandeurs dans le modèle en
intégrant les flux et en comparant les résultats. Si nous le faisons, nous obtenons un
jeu unique des paramètres C, RVA et Rsyst. Les résultats d’un tel ajustement apparais-
sent dans la table des équations du modèle de la figure I.13.

Nous n’avons pas rencontré ces problèmes lors de la modélisation électrique du wind-
kessel parce que nous pouvions admettre que les valeurs des résistances électriques
avaient été déterminées de manière indépendante. Ayant accepté ces valeurs, nous
avons pu ajuster la capacité et la valeur critique de la tension de la diode pour obtenir
sans difficulté un ajustement optimal.

Modèles non linéaires. Dans le système électrique, les résistances utilisées ont un
comportement parfaitement linéaire, et le condensateur suit une relation quasi linéaire.
Dans le cas hydraulique, nous avons une liberté supplémentaire par rapport au cas
électrique: les écoulements peuvent être turbulents et la relation capacitive peut être
non linéaire.

Est-ce que le changement apporte une amélioration? Ce n’est pas vraiment le cas. Si
nous remplaçons les deux relations pour les flux par des expressions relatives à des
écoulements turbulents, le changement n’est pas notable, sauf naturellement les
valeurs des facteurs de flux. La pression simulée ∆PA a le même aspect que celui de
la figure I.14a. Le flux entrant IV,VA est un peu plus faible mais plus large, ce qui don-
ne la même quantité de fluide transférée lors d’un cycle. Le reflux n’apparaît pas dans
la simulation.
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I.5 EXTENSION DU MODÈLE HYDRAULIQUE

Comme nous nous y attendions, le premier modèle avec un réservoir unique ne donne
rien de mieux qu’un accord semi-quantitatif avec le comportement du circuit cardio-
vasculaire. Malgré sa simplicité, il nous aide à comprendre ce système physiologique
complexe. Nous savons maintenant pourquoi la pression du sang dans l’aorte varie en-
tre les valeurs systolique et diastolique, la dernière restant bien supérieure à la pression
ambiante.

Les expériences avec des circuits électriques nous ont montré la voie vers une exten-
sion de notre premier modèle. Dans cette section et dans la section suivante, nous al-
lons élaborer deux modèles supplémentaires qui vont améliorer notre compréhension
du système cardiovasculaire et de la fonction du ventricule gauche en tant que pompe.

La première étape vers une amélioration est l’élaboration d’un modèle de type wind-
kessel dans lequel l’aorte est divisée en deux sections inégales. Notons qu’il serait pos-
sible d’augmenter le nombre de sections jusqu’à ce que ce nombre soit convenable. Le
modèle étendu est à nouveau presque parfaitement analogue au cas électrique exposé
dans la figure I.11. À l’exception du traitement de la diode, notre action consiste sim-
plement à changer les noms des variables (fig. I.15) et les valeurs des paramètres pour
lesquelles nous avons de bonnes valeurs de départ fournies par notre premier modèle.
L’adjonction principale est l’apparition d’un flux de sang IV12 dans l’aorte entre les
deux éléments de stockage, flux dont l’intensité est dépendante de la différence des
pressions entre les deux parties de l’aorte.

Si nous admettons que le premier élément de l’aorte à la sortie du ventricule gauche
est plus court que le second, nous pouvons admettre que la pression simulée pour cet
élément relativement proche de la valve aortique correspondra mieux à celle qui a été
mesurée. Ce qui nous conforte dans cette supposition est le fait qu’un élément plus
court répondra plus rapidement à l’arrivée du sang, ce qui correspond à ce qui a été
observé.

Regardons d’un peu plus près les équations et les valeurs des paramètres de ce modèle.
Il y a maintenant deux équations de bilan de volume, une pour chaque élément de
stockage avec, à chaque fois, un flux entrant et un flux émergent. Les valeurs initiales
pour les volumes sont déterminées par les valeurs initiales appropriées de la pression
capacitive et de la capacité associée. Nous admettons que les flux sont laminaires, et
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FIGURE I.15 Amélioration du modèle hydraulique: (a) remplacement du récipient unique par deux récipients
reliés par une courte conduite; (b) l’aorte est divisée en deux segments de longueurs inégales, le premier ayant
une capacité plus faible que le second; (c) modèle de dynamique des systèmes, qui comporte un flux entre les
deux éléments de l’aorte.
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leurs intensités sont déterminées par les différences de pression associées. Les lois de
capacité sont également considérées comme linéaires.

VA_1(t) = VA_1(t - dt) + (IV_VA - IV_12) * dt
INIT VA_1 = CV_1*delta_PA1_init
VA_2(t) = VA_2(t - dt) + (IV_12 - IV_syst) * dt
INIT VA_2 = CV2*delta_PA2_init
IV_VA = IF (delta_PR_VA>0) THEN delta_PR_VA/R_VA ELSE 0
IV_12 = delta_PR/R_A
IV_syst = delta_PR_syst/R_syst

delta_PA1 = VA_1/CV_1
delta_PA2 = VA_2/CV2
delta_PR_VA = LVP_m-delta_PA1
delta_PR_syst = delta_PA2
delta_PR = delta_PA1-delta_PA2

R_VA = 1.5e7
R_A = 1.8e7
R_syst = 2.10e8
CV1 = 0.38e-9
CV2 = 3.84e-9
delta_PA1_init = 6700
delta_PA2_init = 6600

Les résistances à l’écoulement à l’entrée et à la sortie de l’aorte sont pratiquement les
mêmes que celles que nous avons utilisées pour l’ajustement aux données mesurées
dans le modèle à un seul récipient (fig. I.13). Elles ont été légèrement réduites pour
prendre en compte le fait qu’une partie de la résistance se manifeste à l’intérieur de
l’aorte, ce que nous avons représenté par RA. Nous avons donné à la capacité du pre-
mier élément de stockage une valeur 10 fois inférieure à celle du second élément.
Comme nous pouvons le constater, nous obtenons une assez bonne approximation de
la croissance de la pression dans la première phase et de sa décroissance dans la
deuxième phase lors de la simulation (fig. I.16a). La seconde phase de la décroissance
de la pression ne s’ajuste pas encore de manière satisfaisante. Même si maintenant le
flux IV2 a des valeurs plus proches des valeurs mesurées (fig. I.16b), il ne manifeste
pas de comportement oscillatoire.

Nous pouvons naturellement produire bien d’autres modèles étendus de ce système
physiologique. Nous pouvons introduire des sections supplémentaires de l’aorte, uti-
liser des relations constitutives non linéaires, etc. Une extension évidente serait d’in-
clure des branchements d’artères à partir de l’aorte, comme le montre la figure I.1.
Tous ces changements amèneraient le modèle à une représentation plus proche des
détails du système réel. Cependant, deux étapes importantes de la modélisation du
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système cardiovasculaire ne serait pas incluses: la modélisation du fonctionnement du
muscle cardiaque et la compréhension de l’apparition d’oscillations dans l’aorte. Le
premier problème sera traité dans la section suivante, le second le sera dans
l’interlude II.

I.6 VENTRICULE GAUCHE EN TANT QUE POMPE INTERMITTENTE

Jusqu’ici, nous n’avons pas tenté de modéliser le cœur en tant que pompe: nous
avons utilisé la pression mesurée dans le ventricule gauche ∆PVG pour entraîner nos
modèles. Nous allons accomplir un petit pas vers une meilleure compréhension de la
manière dont fonctionne le ventricule gauche en le modélisant en tant que réservoir
qui reçoit du sang, augmente sa pression pour l’éjecter. Nous serons ainsi en mesure
de construire un diagramme important, la boucle pression-volume du ventricule gau-
che utilisée en médecine pour permettre de comprendre le cœur en tant que pompe
intermittente.

I.6.1 Circuit fermé et caractéristique PV d’une pompe

Si nous voulons comprendre les processus qui se déroulent dans le ventricule gauche,
nous devons en apprendre plus sur l’écoulement du sang vers et hors de ce ventricule.
Nous avons déjà traité le cas de l’éjection du sang dans nos modèles: lorsque la pres-
sion du sang dans le ventricule gauche dépasse celle qui règne dans l’aorte, la valve
aortique s’ouvre et le sang est injecté dans l’aorte. Mais le ventricule gauche doit être
refourni en sang. Si nous remontons le circuit cardiovasculaire, nous voyons qu’il
arrive de l’atrium gauche qui, lui-même, l’a reçu du circuit pulmonaire (fig. I.1b). Le
sang arrive dans les poumons par l’intermédiaire du ventricule droit qui reçoit le sang
veineux arrivé dans l’atrium droit (fig. I.1b).

Modélisation. Nous simplifions le circuit en laissant de côté la partie droite du cœur
et les poumons. En procédant de la sorte, nous obtenons un circuit fermé contenant les
éléments suivants: atrium gauche, ventricule gauche, aorte et vaisseaux systémiques
(artères et veines). Nous connecterons les veines directement à l’atrium gauche. Si
nous admettons que les veines sont des vaisseaux élastiques et contiennent une quan-
tité assez importante de sang, notre modèle consiste en quatre éléments de stockage
principaux: l’atrium gauche, le ventricule gauche, l’aorte et les veines (fig. I.17).
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FIGURE I.17 Modèle d’un système
cardiovasculaire fermé laissant de
côté le circuit pulmonaire: les vei-
nes, l’atrium et le ventricule gau-
ches sont ajoutés en tant
qu’éléments de stockage à notre
précédent modèle de type windkes-
sel. Le ventricule gauche n’est pas
modélisé, sa fonction est représen-
tée par la pression mesurée
∆P_VG,m.
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Nous complétons le meilleur de nos modèles précédents, celui de la figure I.15c com-
prenant deux éléments de stockage de grandeur différente pour l’aorte (branche verti-
cale droite du diagramme de la figure I.17). Nous ajoutons un réservoir pour le volume
de sang dans le ventricule gauche (V_VG). Nous n’irons pas plus loin pour l’instant
dans la modélisation de cette partie du cœur; l’information la plus importante sur son
fonctionnement sera encore représentée par la pression mesurée ∆P_VG,m.

Un réservoir supplémentaire sert à prendre en compte le volume de sang stocké dans
l’atrium gauche (V_AG) et l’écoulement de cet élément vers le ventricule gauche est
symbolisé par le flux IV_AGVG. Comme précédemment, nous rendons ce flux dépen-
dant de la différence de pression entre le sang accumulé dans l’atrium gauche et celui
du ventricule gauche; R_mitral représente la résistance à cet écoulement. Pour pouvoir
déterminer la pression dans l’atrium gauche, nous introduisons l’élastance de cet élé-
ment (chapitre 1, section 1.6.2, équation (1.27)). Nous utilisons également l’élastance
plutôt que la capacité pour qualifier les propriétés physiques des deux segments de
l’aorte, de l’atrium gauche et des veines.

Enfin, nous avons besoin du flux entrant dans l’atrium gauche provenant du sang ac-
cumulé dans les veines (rappelons que le circuit pulmonaire n’a pas été pris en comp-
te). Ce dernier élément de stockage (V_Veines) reçoit le fluide provenant du second
segment de l’aorte (IV_Artères), ce qui ferme notre circuit simplifié.

Comme dans le cas de l’atrium gauche et des segments de l’aorte, la pression du sang
dans les veines est calculée à partir du volume emmagasiné et de l’élastance des vei-
nes. L’intensité du flux de l’aorte vers les veines est dictée par la résistance systémique
utilisée précédemment, et une résistance supplémentaire est introduite pour détermi-
ner l’intensité du flux des veines vers l’atrium. Comme à chaque fois, nous admettons
que ces flux sont linéairement dépendants des différences de pression respectives.
Tous les éléments de notre modèle sont en place.

Il y a maintenant deux valves dans ce circuit fermé simple: une première entre l’atrium
gauche et le ventricule gauche, la valve mitrale, et la valve aortique entre le ventricule
gauche et l’aorte. Cela implique que les expressions pour les flux à travers ces valves
(IV_AGVG et IV_VA dans le diagramme de la figure I.17) doivent être rendus dépen-
dants de l’état de la valve : si la différence de pression (dans la direction du flux)
devient négative, le flux doit être mis à zéro.

Estimation des paramètres et simulation du modèle. La simulation d’un tel modèle
nécessite beaucoup de soin et passablement d’approximations successives. À cause de
sa taille, ce modèle introduit un assez grand nombre de paramètres et de valeurs ini-
tiales qui doivent être choisis de manière judicieuse si nous souhaitons des résultats de
simulation raisonnables (fig. I.18).
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FIGURE I.18 Quelques résultats de
la simulation du modèle de la
figure I.17: (a) la pression aortique
est modélisée presque correcte-
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Nous commençons par utiliser les valeurs des résistances pour la valve aortique, les
vaisseaux systémiques et le flux intra-aortique. Pour être proche des valeurs utilisées
dans la pratique médicale, nous mesurons le volume en mL, le temps en secondes et
la pression en mmHg. Si nous convertissons les valeurs utilisées dans la simulation de
la figure I.16, nous obtenons des valeurs d’environ 0.1, 1 et 0.2 mmHg s mL-1, pour
R_VA, R_syst et R_A respectivement. Nous avons également les valeurs des capacités
des deux segments de l’aorte que nous convertissons dans les nouvelles unités. Les
inverses de ces valeurs sont les élastances que nous estimons à approximativement 12
et 1.2 mmHg mL-1 pour alpha_A1 et alpha_A2 respectivement.

Il s’agit ensuite d’estimer les volumes de sang pour chacun des cinq éléments de stoc-
kage de notre modèle. Nous pouvons à nouveau utiliser l’expérience antérieure et es-
timer que l’aorte contiendra entre 30 et 50 mL de sang, vu qu’elle a un rayon de 1.0 à
1.5 cm et une longueur d’environ 25 cm pour un mouton adulte. En outre, nous savons
que le volume éjecté par le cœur durant un cycle doit être d’environ 20 mL. Nous pou-
vons ainsi admettre que le ventricule gauche contient entre 20 et 40 mL de sang, valeur
qui change de manière rythmique dans le temps. Le volume de sang dans l’atrium gau-
che doit être du même ordre de grandeur. Ce qui laisse le reste du sang, probablement
plus de 3 litres pour un mouton adulte, réparti dans les veines. Nous prenons 3000 mL
pour V_Veines.

Admettons maintenant que l’élément de stockage désigné par «V_Veines» divise en
deux la pression entre l’aorte et l’atrium gauche. Cela signifie que nous devons répartir
R_syst en deux parties: la première moitié R_Artères représente la résistance des vais-
seaux qui transportent le sang oxygéné vers les organes et la seconde moitié R_Veines
est la résistance des vaisseaux qui ramènent le sang pauvre en oxygène et riche en gaz
carbonique au ventricule droit. Sachant que la pression du sang dans les veines devrait
se situer entre celles de l’aorte et de l’atrium, cette dernière devant être peu supérieure
à la valeur de la pression la plus basse dans le ventricule gauche, nous pouvons estimer
une valeur pour alpha_V, située entre 0.1 et 0.15 mmHg mL-1. Nous utilisons le même
argument pour alpha_AG pour l’atrium gauche et obtenons une estimation de 1 mmHg
mL-1. La résistance pour l’écoulement de l’atrium vers le ventricule devrait être égale
ou plus petite que celle du ventricule vers l’aorte. Nous avons ainsi terminé le travail
destiné à fournir des valeurs de départ pour tous les paramètres de notre modèle.

La figure I.18a montre le résultat d’une simulation particulière. La pression aortique
s’ajuste assez bien à la courbe mesurée, mais nous devons nous souvenir que nous uti-
lisons la pression mesurée dans le ventricule gauche pour actionner le modèle, ce qui
veut dire que nous ne pouvons pas prédire cette grandeur. Comme dans les exemples
précédents, nous devons prendre soin de bien ajuster le courant dans l’aorte à la fonc-
tion mesurée, ce que nous faisons indirectement en égalant les quantités totales trans-
portées par les écoulements simulés et mesurés.

Le cœur en tant que pompe intermittente. L’information supplémentaire majeure
fournie par ce modèle est la forme de la relation entre la pression et le volume de sang
dans le ventricule gauche (fig. I.18b). Elle nous montre quelque chose de nouveau: le
fonctionnement d’une pompe intermittente plutôt que celui d’une pompe en régime
continu.

Nous pouvons maintenant visualiser les détails du cycle cardiaque. Considérons la
phase 1 de ce cycle en nous basant sur la figure I.18b. La pression sanguine dans le
ventricule gauche est presque à sa valeur minimale, et c’est également le cas du volu-
me de sang qui s’y trouve. À partir de ce point, le volume de sang augmente grâce à
l’apport venant de l’atrium gauche, ce qui implique également que la pression dans
l’atrium est plus élevée que dans le ventricule à cet instant et durant toute la phase 1.
Le ventricule se remplit de sang alors que la pression n’augmente que faiblement, ce
qui indique que la paroi du cœur est relaxée — son élastance est faible durant cette
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phase. Il est possible d’estimer une valeur de l’élastance pour la phase 1 en mesurant
la pente de la droite ajustée à la partie inférieure de la boucle PV dans le diagramme;
nous obtenons une valeur d’environ 0.4 mmHg mL-1.

Le ventricule s’est rempli et sa paroi se tend. La pression du sang augmente, la valve
mitrale se ferme et le volume reste constant alors que la tension et la pression du fluide
augmentent (phase 2). À un certain moment, la pression du sang va dépasser la valeur
dans l’aorte, la valve aortique va s’ouvrir et le volume de fluide dans le ventricule dé-
croît (phase 3). Vu que la tension du muscle commence à diminuer, la pression devient
trop faible pour que le sang puisse continuer à se déverser dans l’aorte, la valve aorti-
que se referme. Comme le muscle cardiaque se relaxe, le volume de sang reste cons-
tant (phase 4) et nous aboutissons à nouveau au point de départ de la phase 1.

Il est nécessaire de mentionner un dernier point. Il est clair que la tension de la paroi
du ventricule et de ce fait l’élastance de cet élément évoluent dans le temps. Nous pou-
vons estimer la valeur maximale de cette élastance en mesurant la pente de la seconde
droite ajustée à la boucle PV: nous obtenons une valeur d’environ 4 mmHg mL-1. Cet-
te valeur nous sera utile dans la dernière étape que nous allons maintenant aborder
dans cette étude du système cardiaque.

I.6.2 Modèle simple d’élastance variable du ventricule gauche

Après un premier pas modeste vers une modélisation de la fonction de pompe du ven-
tricule gauche, il serait souhaitable de rendre notre compréhension du fonctionnement
du cœur indépendante de la pression mesurée ∆P_VG,m.

C’est une tâche assez difficile, vu qu’elle implique de comprendre la stimulation élec-
trique du muscle cardiaque et la réponse mécanique des parois du ventricule, ce qui
n’est pas notre objectif. Nous allons contourner le problème en modélisant le ventri-
cule gauche en lui attribuant des valeurs de l’élastance variant dans le temps. À partir
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du volume déjà intégré dans le modèle et de cette élastance variable, nous pouvons
prédire la valeur de la pression ventriculaire (variable ∆P_VG dans la partie du modèle
que montre la figure I.19a). Comme nous avons admis que tous les cycles sont identi-
ques, nous ne devons construire la fonction αV,VG(t) que pour un cycle qui dure assez
précisément 0.60 s dans le cas du mouton sur lequel ont été effectuées les mesures.

Nous avons appris dans la section précédente que l’élastance varie approximativement
entre 0.4 et 4 mmHg mL-1. Partant de la phase de pression basse du cycle, nous cons-
truisons une courbe qui commence à 0.4 mmHg mL-1, augmente vers 4 mmHg mL-1

et décroît jusqu’à 0.4 mmHg mL-1 durant le cycle de 0.60 s (fig. I.19b).

La fonction phase-cycle détermine à quel instant d’un cycle se trouve le temps de si-
mulation en calculant le reste de la division entière par 0.6 du temps de simulation.
Lorsque le temps de simulation est un multiple de 0.6, le reste est nul, phase-cycle est
remis à zéro et la simulation se poursuit en repartant avec la valeur initiale de la courbe
d’élastance.

Nous sommes maintenant en présence d’un résultat complètement nouveau: nous
pouvons non seulement comparer les mesures et les simulations de la pression et du
flux aortiques, mais également celles de la pression du sang dans le ventricule gauche
du mouton (fig. I.19c). Malgré le fait que nous n’ayons pas résolu le problème des os-
cillations du sang dans l’aorte, nous pouvons être assez satisfaits du résultat obtenu.

I.7 POUR ALLER PLUS LOIN

Nos investigations nous ont permis de bien progresser mais ne sont de loin pas termi-
nées. Nous comprenons maintenant un certain nombre de choses sur le fonctionne-
ment du système cardiovasculaire des mammifères, mais nous avons également réalisé
ce que nous ne comprenons pas encore.

À côté de la nécessité de créer un meilleur modèle, il y a autre chose que nous devrions
faire: utiliser les modèles, varier les valeurs des paramètres et examiner les change-
ments dans les réponses du système lors des simulations. De cette manière, nous pou-
vons en apprendre encore plus sur les particularités du système étudié. Nous pourrions
par exemple poser des questions telles que celle de savoir comment la pression et le
flux sanguins vont réagir si nous modifions quelques propriétés du système physiolo-
gique — qu’advient-il lorsque nous vieillissons ou si la valve aortique ne fonctionne
plus comme elle le devrait, etc. Nous laissons cette partie du travail au lecteur de cette
étude de cas.



 

P

 

HYSIQUE

 

, 

 

UNE

 

 

 

PRÉSENTATION

 

 

 

SYSTÉMIQUE

 

109

 

C

 

HAPITRE 

 

3   

 

R

 

ÔLE

 

 

 

ET

 

 

 

PROPRIÉTÉS

 

 

 

DE

 

 

 

L

 

’

 

ÉNERGIE

Jusqu’à présent, nous n’avons pas fait usage d’un aspect important des processus phy-
siques. Chaque fois que quelque chose a lieu dans le monde physique, une grandeur
supplémentaire apparaît dans les phénomènes, l’énergie. Nous allons découvrir qu’el-
le joue un rôle particulier, différent des rôles que jouent d’autres grandeurs telles que
l’électricité, le mouvement ou la chaleur, avec lesquelles elle est souvent confondue.

Dans un premier temps, nous examinerons des chaînes de processus, ce qui nous ap-
prendra qu’une description qui n’utilise que des quantités de fluide ou d’électricité ne
suffit pas: il est nécessaire de disposer d’une grandeur qui quantifie le couplage des
processus; c’est l’énergie. Après cette introduction qualitative, nous définirons des
mesures quantitatives de cette nouvelle grandeur en étudiant des chutes d’eau, et des
processus hydrauliques et électriques. Enfin, nous examinerons en détail le transfert et
le stockage de l’énergie.
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Cette première section a pour but de nous faire découvrir le couplage de processus et
de nous permettre de trouver le moyen de quantifier avec quelle efficacité un processus
entraîne un processus consécutif.

 

3.1.1 Chauffage électrique d’un volume d’eau 

Nous chauffons de l’eau au moyen d’un thermoplongeur. Nous enregistrons le taux
initial d’augmentation de la température et répétons l’expérience plusieurs fois en va-
riant les valeurs de la tension et de l’intensité du courant du thermoplongeur
(figure 3.1). À chaque fois, nous utilisons la même quantité d’eau ayant la même tem-
pérature initiale. Les données expérimentales sont rassemblées dans le tableau 3.1.

 

TABLEAU 3.1

 

Chauffage d’un volume d’eau.

 

Tension Courant Tension et 
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a. Taux de variation de la température au début du processus.
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101.2 1.98 200.4 5.95·10-2 3367.7

148.7 2.01 298.9 8.93·10-2 3347.0
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FIGURE 3.1 Évolution de la tempé-
rature d’une même quantité d’eau
en fonction des différents modes
opératoires du thermoplongeur qui
sert à la chauffer.
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Interprétation. Cette expérience nous confronte avec le couplage de deux processus.
Le processus électrique entraîne le processus thermique de chauffage de l’eau. Com-
me la quantité d’eau et la température initiale sont toujours les mêmes, nous pouvons
utiliser le taux de variation de la température de l’eau pour mesurer avec quelle effica-
cité le processus électrique entraîne le processus thermique. Vu que les grandeurs élec-
triques varient d’une expérience à l’autre, il n’est pas surprenant que le taux de
variation de la température le fasse aussi. Mais on constate que ce taux de variation
évolue de manière proportionnelle au produit des deux grandeurs électriques, la ten-
sion et l’intensité du courant, ce que confirme la valeur quasi constante du quotient des
grandeurs électriques et thermiques. En conséquence, on peut admettre que le produit
de la tension et de l’intensité mesure l’efficacité du processus électrique. On utilise la
notion de puissance, désignée par le symbole

 

P, pour mesurer cette efficacité.

Les deux processus qui se déroulent dans le thermoplongeur sont de nature différente
et sont caractérisés par des grandeurs fondamentales qui n’ont rien en commun: un
processus électrique, qui consiste en la chute de la charge électrique Q entre deux
niveaux du potentiel ϕ, entraîne un processus thermique de production de chaleur, pro-
cessus que nous étudierons en détail au chapitre 5. Comme la charge électrique ne peut
pas être «transmuée» en chaleur, nous devons admettre qu’une autre grandeur assure
le couplage entre les deux processus: il s’agit de l’énergie. Nous découvrirons à la
section 3.3 que la puissance

 

P correspond au taux de libération d’énergie dans le pro-
cessus primaire et au taux d’utilisation de cette énergie dans le processus secondaire.

Les diagrammes de processus (figure 3.2) se prêtent extrêmement bien pour mettre en
évidence le couplage des deux processus au moyen de la puissance de chacun d’eux.

 

3.1.2 Chute d’eau et centrales électriques. 

Les centrales hydroélectriques mettent en évidence un autre type de couplage: la chute
de l’eau accumulée dans le bassin de retenue entraîne un processus électrique. La chu-
te de l’eau est due à la gravité, ce qui nous permet de dire que la gravité entraîne le
processus électrique qui se déroule dans les centrales électriques. Le tableau 3.2 ras-
semble les données gravitationnelles et électriques d’un certain nombre de centrales
hydroélectriques suisses.

 

TABLEAU 3.2

 

Exemples de centrales hydroélectriques. 

 

a

a. Centrales hydroélectriques avec bassins d’accumulation en Suisse.

 

Centrale 
hydroélectrique

Courant 
de masse

Différence 
d’altitude

Courant · 
différence 
d’altitude

Tension et 
courant

 

b

b. Produit de la tension et de l’intensité du courant mesurés sur le générateur.
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Bavona 18 000 890 16.0·106 137·106 8.6

Nendaz 45 000 1014 45.6·106 384·106 8.4

Handeck III 12 500 445 5.6·106 48·106 8.6

Chatelard 16 000 814 13.0·106 107·106 8.2

Tiefencastel 16 700 374 6.2·106 50·106 8.0

Thermoplongeur

PélIQ
Ptherm

2ϕ1ϕ

Chaleur

FIGURE 3.2 Diagramme de proces-
sus d’un thermoplongeur, La charge
électrique Q chute entre deux ni-
veaux du potentiel électrique ϕ. Ce
processus sert à produire de la cha-
leur (le cercle avec le point central
symbolise une source). La flèche dé-
signée par Pél représente la puissan-
ce du processus électrique consistant
en une libération d’énergie servant à
entraîner le processus de production
de chaleur.
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Interprétation. À nouveau, nous sommes en présence du couplage de deux processus
de nature complètement différente qui se déroulent dans la centrale et constatons que
le produit de la tension et de l’intensité (grandeurs de sortie de la centrale) est propor-
tionnel au produit de la différence de niveau (hauteur de chute) et du flux mesuré en
courant de masse (grandeurs d’entrée). Le quotient des deux produits est pratiquement
constant, ce qui nous conforte dans l’hypothèse que le produit de la différence de ni-
veau et du courant de masse mesure l’efficacité, c’est-à-dire la puissance P du proces-
sus gravitationnel. La figure 3.3 illustre le couplage au moyen d’un diagramme de
processus; notons qu’un certain nombre de processus intermédiaires se déroulent en-
tre l’entrée de l’eau dans la turbine et la circulation du courant électrique dans le
générateur; ils n’ont pas été pris en compte dans cette analyse, mais seront traités au
fur et à mesure de la nécessité dans ce chapitre et dans des chapitres ultérieurs.

3.1.3 Turbine, générateur et puissance hydraulique 

Une petite turbine est actionnée par un courant d’eau émanant d’un robinet
(figure 3.4). On mesure la différence de pression entre l’entrée et la sortie de la turbine
ainsi que l’intensité du flux volumique traversant le système. La turbine entraîne un
générateur auquel on a branché une ampoule. On varie la différence de pression et le
flux volumique de telle manière que l’intensité lumineuse soit toujours la même, ce
qui consiste à veiller à ce que la tension aux bornes de la lampe ne varie pas. On cons-
tate que le produit de la différence de pression et de l’intensité du courant volumique
est pratiquement inchangé à chaque nouvelle expérience (tab. 3.3).

Interprétation. Dans cette expérience, le système couple un processus hydraulique à
un processus électrique (figure 3.5). Si nous considérons la luminosité comme mesure
de la puissance du processus final dans la chaîne allant de l’eau à la lumière, nous
constatons que la puissance est la même chaque fois que le produit de la différence de
pression et du flux volumique est le même. Cela suggère que le produit de ces deux
grandeurs fondamentales de l’hydraulique peut être utilisée pour quantifier la puissan-
ce des processus hydrauliques. C’est le troisième exemple de processus dont la puis-
sance est mesurée par le produit d’une différence de niveau de la grandeur intensive
caractéristique et de l’intensité du flux de la grandeur extensive associée.

3.2 ÉNERGIE ET COUPLAGE DANS LES CHAÎNES DE PROCESSUS

Les exemples de la section 3.1 nous ont permis d’illustrer le couplage de processus
physiques de nature différente à l’intérieur d’un système. Un processus en entraîne un

TABLEAU 3.3 Couplage turbine-générateur.

Différence de pression

∆∆∆∆P / Pa

Courant volumique

IV / m3 s-1 ∆∆∆∆PIV / Pa m3 s-1

0.66·105 0.25·10–3 16.5

0.72·105 0.22·10–3 15.8

0.82·105 0.18·10–3 14.8

0.92·105 0.18·10–3 16.6

Données recueillies par Michele d’Anna.

Centrale

PgravIm
Pél

G1ϕ

IQ

2ϕ1ϕG2ϕ

FIGURE 3.3 Diagramme de proces-
sus d’une centrale hydroélectrique
idéale. Le couplage entre les deux
processus est visualisé au moyen
des puissances des processus gravi-
tationnel et électrique. La grandeur
ϕG symbolise le potentiel gravita-
tionnel. Notons que cette figure
ignore toute une série de processus
intermédiaires.

FIGURE 3.4 Couplage turbine-
générateur.

Turbine-générateur

PhydrIV
Pél IQ

2ϕ1ϕ2P1P

FIGURE 3.5 Diagramme de proces-
sus du système turbine-générateur.
L’énergie libérée par le processus hy-
draulique, représentée par la puissan-
ce Phydr, entraîne le processus
électrique final.
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autre, et ainsi de suite, ce qui peut donner naissance à des chaînes extrêmement lon-
gues. Cette observation nous a amenés à admettre l’existence d’une grandeur physique
qui lie un processus au suivant, les processus spontanés aux processus contraints. Cet-
te grandeur est l’énergie.

3.2.1 Libération et liaison d’énergie

À côté de ceux que nous avons découverts à la section 3.1, nous pouvons étendre la
liste de processus couplés à d’autres domaines de la physique (tab. 3.4): ainsi, un pro-
cessus rotatoire entraîne une production de chaleur lorsque le foret d’une perceuse fait
un trou dans une pièce métallique; lors de l’écoulement d’un fluide visqueux dans une
conduite, le processus hydraulique entraîne une production de chaleur (figure 3.6).

Précisons maintenant ce que nous avons abordé dans la section précédente. Lors du
couplage de deux processus, le processus moteur libère de l’énergie lors de la chute
de la grandeur extensive (figure 3.7), énergie qui est utilisée pour entraîner le proces-
sus consécutif, c’est-à-dire pour le pompage vers le haut d’une autre grandeur exten-
sive. Dans ce cas, nous affirmons qu’il y a liaison d’énergie à la grandeur qui s’écoule
«en remontant la pente». C’est pourquoi nous pouvons utiliser la quantité d’énergie
libérée pour mesurer le travail effectué par un processus et la quantité d’énergie liée
pour mesurer ce qui a été accompli. Cette libération et cette liaison d’énergie sont liées
à la puissance P que nous avons introduite pour quantifier l’efficacité des processus.

3.2.2 Enchaînements de processus: le transfert d’énergie

Considérons un enchaînement de processus tel que celui de la figure 3.8.

TABLEAU 3.4 Exemples de couplage de processus.

Hydraulique Électricité Rotation Chaleur

Hydraulique Bélier
hydraulique

Turbine plus
générateur

Turbine
Écoulement

visqueux

Électricité Pompe électrique Transformateur Moteur électrique Thermo-plongeur

Rotation Pompe à main Générateur Engrenage Frottement

Chaleur Pompe à chaleur
solaire

Générateur
thermoélectrique

Machine
thermique

Réfrigérateur à
absorption

P1 P2
SYSTÈME

P2P1

IV Chaleur

Conduite

Conduite

Phydr Ptherm

FIGURE 3.6 Dans un écoulement
visqueux, le fluide s’écoule de la
pression élevée vers la pression
basse, entraînant une production de
chaleur.

Libération
d'énergie

Liaison
d'énergie

Charge
électrique

Fluide

Énergie

Pompe électrique

P1 P2

Fils Conduite

IV

P21 P1

IQ

ϕ
2ϕ

Pompe électrique

PhydrPél

SYSTÈME

FIGURE 3.7 Une pompe électrique
couple les processus électrique et hy-
draulique. Le processus moteur libè-
re de l’énergie qui est liée dans le
processus consécutif. La quantité
d’énergie libérée ou liée est la mesu-
re du «travail» ou de l’« accomplis-
sement » réalisé par le processus. La
libération et la liaison d’énergie sont
représentées par des flèches grasses
verticales.

Chaque fois qu’un processus est entraîné, c’est-à-dire chaque fois qu’une
grandeur extensive s’écoule «en remontant la pente», de l’énergie est liée.
Cette énergie a dû être libérée par le processus moteur. L’énergie est la
grandeur qui couple deux processus de nature différente.

IV

1ϕ
2ϕ

Turbine

IQ

P2P1

Générateur

Chaleur

Thermoplongeur
Arbre de

transmission

1ω
2ω

ILPhydr Pméc Pméc Pél Pél Ptherm

FIGURE 3.8 Des processus peuvent
être liés pour former des chaînes. En
général, des processus d’écoulement
assurent le couplage entre les dispo-
sitifs et les systèmes.
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Les processus couplés sont comme des maillons d’une chaîne qui peut être très longue.
La turbine, entraînée par un écoulement d’eau, entraîne elle-même un générateur qui,
à son tour, peut être utilisé pour générer la production de chaleur dans un thermoplon-
geur (figure 3.8). L’énergie n’est pas que la mesure du couplage de deux processus à
l’intérieur d’un système tel que la turbine, le générateur ou le thermoplongeur par l’in-
termédiaire de libération et de liaison d’énergie. Le couplage doit également être as-
suré tout au long des enchaînements. Deux dispositifs différents sont couplés par
l’écoulement, d’un dispositif à l’autre, de grandeurs extensives telles que le volume
d’eau V, le moment cinétique L (sera traité au chapitre 7) ou la charge électrique Q
(figure 3.8). Considérons le couplage du générateur et du thermoplongeur dans la
figure 3.8. Dans le générateur, de l’énergie a été liée au courant électrique qui circule
d’un potentiel bas vers un potentiel plus élevé. Dans le thermoplongeur, l’énergie est
libérée lors de la chute de la charge électrique du potentiel élevé vers le potentiel bas.

Pour l’instant, nous admettons que la quantité d’énergie libérée dans le thermoplon-
geur est la même que celle qui a été liée au courant électrique dans le générateur. Le
second processus inverse parfaitement le premier; le courant électrique et la différence
de potentiel sont les mêmes. C’est pourquoi nous admettons que l’énergie liée lors du
premier processus est transférée du générateur vers le système que le suit (figure 3.9).
En fait, chaque fois que des dispositifs sont couplés dans des processus, de l’énergie
est transférée de l’un à l’autre.

3.2.3 Interruption et reprise de processus: le stockage de l’énergie

Les enchaînements de processus ne doivent pas nécessairement se dérouler de manière
continue. Il est possible de les interrompre, puis de les reprendre plus tard ou à un autre
endroit. Il doit donc être possible de stocker l’énergie transférée à travers la chaîne
pour qu’elle puisse être utilisée pour d’autres processus.

Considérons un réservoir sous pression que l’on remplit d’un fluide au moyen d’une
pompe (figure 3.10). Nous devons fournir de l’énergie à la pompe pour qu’elle puisse
fonctionner. Là, elle est libérée par la chute de la charge électrique entre les deux

IV

1ϕ
2ϕ

Turbine

IQ

P2P1

Générateur

Chaleur

Thermoplongeur

1ω
2ω

ILPhydr Pméc Pméc Pél Pél Ptherm

Énergie Énergie Énergie
FIGURE 3.9 L’énergie est transférée
d’un système à l’autre en compagnie
des grandeurs échangées dans les
processus – telles que les fluides et la
charge électrique. Le transfert est re-
présenté par des flèches grasses poin-
tant d’une système vers le suivant.

Dans des chaînes de processus, des systèmes (dispositifs) sont couplés par
l’écoulement de certaines grandeurs extensives telles que des fluides ou la
charge électrique. Le transfert de ces grandeurs d’un système à l’autre est
accompagné d’un écoulement d’énergie.

IV

1ϕ
2ϕ

Pompe

IQ

P2P1

Énergie Énergie

V

E

Réservoir
sous pression

V

E

Réservoir
sous pression

Énergie Énergie

Turbine et
générateur

1ϕ
2ϕP1 P2

IQIV

Pél Phydr Phydr Pél

FIGURE 3.10 Des enchaînements de
processus peuvent être interrompus
et repris plus tard. Cela peut être ex-
pliqué au moyen du stockage d’éner-
gie. Les réservoirs symboliques
affectés des lettres V et E représen-
tent respectivement le stockage du
volume et de l’énergie.
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niveaux du potentiel, puis liée au flux volumique et transférée avec le fluide au réservoir
sous pression. Le réservoir n’est donc pas seulement un dispositif de stockage pour les
fluides, il stocke également de l’énergie. Nous pouvons utiliser un réservoir sous pres-
sion rempli d’un fluide – et donc d’énergie – pour entraîner un système turbine/géné-
rateur, récupérant ainsi l’énergie qui avait été absorbée auparavant par le réservoir.

3.2.4 Conservation de l’énergie: l’énergie peut-elle disparaître ou 
être créée?

Supposons que nous fassions fonctionner différentes pompes électriques de manière
identique. À première vue, on pourrait s’attendre à ce qu’elles donnent toutes le même
résultat, mesuré en termes de quantité d’eau pompée à une hauteur donnée. En fait, on
trouve des résultats différents: certaines pompes travailleront moins bien que d’autres.

La majorité des processus dans la nature semblent ne pas se dérouler avec une effica-
cité optimale, l’efficacité étant mesurée en termes de quantité d’énergie liée dans le
processus désiré (contraint) comparée à celle qui a été libérée dans le processus mo-
teur (spontané). Une efficacité parfaite serait atteinte si l’énergie liée correspondait à
100% de l’énergie libérée. C’est ce que nous avons supposé dans les figures 3.7 à 3.10.

Cela signifie-t-il que les pompes de qualité moindre perdent de l’énergie, comparées
aux meilleures? Ce n’est pas le cas. On découvre que le moteur entraîne simultané-
ment deux processus – celui qui est souhaité et une production de chaleur non souhai-
tée – où chacun lie une partie de l’énergie libérée. À eux deux, ils utilisent 100% de
l’énergie disponible. Cela est vrai pour tous les processus. La «perte» apparente
d’énergie est toujours associée à la production non souhaitée de chaleur qui accompa-
gne toujours le processus pour lequel la machine a été conçue (figure 3.11).

Il existe une autre cause de perte d’énergie. Usuellement, les dispositifs de stockage
d’énergie perdent progressivement une partie de leur énergie au cours du temps. À
nouveau, nous pouvons interpréter cette observation non pas comme une perte réelle,
mais comme la conséquence d’une «fuite» de l’énergie. L’énergie qui n’est plus dis-
ponible peut toujours être détectée dans la nature, tout au moins en principe.

En résumé, il n’y a aucune raison d’admettre que l’énergie puisse disparaître, ni qu’el-
le puisse être créée. Si nous souhaitons mettre en route un enchaînement de processus,
nous avons toujours besoin d’un dispositif de stockage de l’énergie qui devra fournir
l’énergie qui circulera à travers la chaîne. On croit qu’il s’agit là d’une des propriétés
fondamentales de la nature: l’énergie ne peut être ni créée, ni détruite; l’énergie est
une grandeur conservée.

3.2.5 Propriétés de l’énergie

Énergie est un terme qui apparaît très souvent dans ce que l’on peut lire en science et
en technologie. Souvent, l’utilisation de ce terme est floue, ce qui donne une image im-
précise de ce qu’est vraiment l’énergie. On entend souvent parler de production et de
perte d’énergie, alors que l’énergie est conservée. On parle de conversion d’énergie, et
on lui donne une foule de noms différents, alors qu’il n’y a qu’une sorte d’énergie: on
parle d’énergie électrique, hydraulique, mécanique, d’énergie cinétique ou potentielle,

L’énergie peut être stockée dans des systèmes. Les dispositifs de stockage
d’énergie peuvent être utilisés pour entraîner des chaînes de processus sé-
parées de la première chaîne (qui avait été utilisée pour «remplir» le dis-
positif de stockage) dans le temps et dans l’espace.

IV

P2P1

IQ

1ϕ
2ϕ

Pompe

Chaleur
Pél Phydr

Ptherm

FIGURE 3.11 L’énergie n’est pas
«perdue» lors d’un processus qui ne
se déroule pas parfaitement. La
quantité d’énergie qui semble faire
défaut a entraîné un processus non
souhaité: la production de chaleur.
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de travail et de chaleur, et ainsi de suite. Ce qui est encore plus grave, c’est que l’on
confonde l’énergie avec les grandeurs fondamentales qui s’écoulent lors des processus
physiques, par exemple l’électricité, la chaleur et le mouvement.

En fait, nous avons peu de choses à savoir au sujet de l’énergie, et ce que nous allons
formuler se répète dans chacun des domaines de la physique. En nous basant sur ce
que nous avons découvert jusqu’à présent, nous pouvons affirmer:

Les deux premières propriétés font de l’énergie une grandeur extensive, ce qui veut
dire que l’on peut énoncer un bilan de l’énergie (section 3.5). Nous allons mainte-
nant étudier plus attentivement les propriétés de l’énergie, entre autres dans des buts
quantitatifs.

1. Considérez une pompe électrique. Quelle est la signification du proces-
sus moteur? Quel est le processus entraîné? Quel est le rôle de l’éner-
gie ?

2. Quelles sont les propriétés essentielles de l’énergie et comment peut-on
les représenter graphiquement dans des diagrammes de processus et
des diagrammes de dynamique des systèmes?

3. On entend souvent parler de «conversion de l’énergie». Quelles sont les propriétés de
l’énergie qui peuvent être considérées comme responsables de cette expression?

4. Quelle est la signification d’expressions telles que «de l’énergie a été perdue» et «de
l’énergie a été détruite» au cours d’un processus?

1. Le processus moteur (le processus électrique) est un processus spon-
tané au cours duquel la grandeur extensive (la charge électrique) fran-
chit une différence de potentiel «en descendant la pente». Dans ce cas,
il y a libération d’énergie. Le processus entraîné (le processus hydrauli-
que) est un processus au cours duquel la grandeur extensive (le volume
de fluide) franchit une différence de potentiel «en remontant la pente».
Tout ou partie de l’énergie libérée dans le processus primaire est néces-
saire pour entraîner le processus secondaire. Cette partie de l’énergie émerge du système en
compagnie de la grandeur extensive associée à ce processus.

2. L’énergie peut être stockée, transférée, libérée, et elle est conservée. Le stockage peut être
représenté au moyen d’un « réservoir d’énergie » dans un diagramme de processus. Le
transfert est représenté par une flèche entre les systèmes, alors que la libération et la liaison
d’énergie sont représentées par des flèches verticales à l’intérieur d’un diagramme de pro-
cessus. La conservation, tout comme le stockage et le transfert, sont représentés par un
bilan dans un diagramme de dynamique des systèmes.

3. Prenez l’exemple d’une pompe qui «convertit de l’énergie électrique en énergie hydrauli-
que ». Nous pouvons accepter cette affirmation en tant que métaphore pour le couplage des

Il existe une grandeur unique, appelée énergie, qui accompagne tous les
processus. Cette grandeur a les propriétés suivantes:

• L’énergie peut s’écouler d’un système à l’autre.

• L’énergie peut être stockée dans les systèmes.

• L’énergie peut être libérée et liée à l’intérieur des systèmes.

• L’énergie ne peut être ni créée, ni détruite, elle est conservée.

Q

R
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processus électrique et hydraulique dans la pompe: l’énergie est libérée dans la pompe par
la chute de la charge électrique et elle est transbordée pour être liée à l’écoulement du
fluide. Elle change de «porteur», pas de type (section 3.4).

4. Ces expressions signifient qu’une partie de l’énergie libérée dans un processus entraîne un
processus probablement non souhaité, ce qui conduit à une réduction de la quantité d’éner-
gie disponible pour le processus désiré. Usuellement, le processus non souhaité est une pro-
duction de chaleur.

3.3 PUISSANCE DES PROCESSUS

La nature nous présente un processus extrêmement simple qui peut servir de modèle
parfait des processus physiques: la chute d’eau. À la surface du globe, la gravité est
responsable de l’écoulement de l’eau. Nous introduisons l’énergie en tant que mesure
du travail effectué par la gravité dans une chute d’eau (figure 3.12).

Les observations de la section 3.1 nous ont révélé que le produit de la grandeur exten-
sive qui s’écoule lors d’un processus et de la différence des niveaux entre lesquels elle
s’écoule peut servir à mesurer l’efficacité du processus. Cette grandeur est la puissan-
ce P du processus. Nous allons maintenant l’introduire de manière précise et en énon-
cer les particularités.

3.3.1 Gravité et puissance d’une chute d’eau

Comme la gravité est responsable de la chute de l’eau, nous devons quantifier le pro-
cessus gravitationnel afin d’avoir tous les éléments nécessaires pour exprimer l’éner-
gie libérée par une chute d’eau.

Masse gravitationnelle et champ gravitationnel. Tout comme des quantités de fluide
et de charge électrique sont à l’origine des phénomènes hydrauliques et électriques, la
masse gravitationnelle est la source de la gravité. La masse gravitationnelle, mesurée
en kilogrammes (kg), est responsable de la pesanteur des corps, raison pour laquelle
on l’appelle également masse pesante. Le poids FG d’un corps, mesuré en newton (N),
est proportionnel à sa masse gravitationnelle mG:

(3.1)

Le facteur de proportionnalité g mesure l’intensité du champ gravitationnel à la surfa-
ce du globe, du champ de pesanteur. À la surface de la Lune, le poids d’un objet est
réduit au sixième de la valeur sur la Terre. La valeur utilisée habituellement pour g est
9.81 N kg-1.

Puissance d’une chute d’eau. Nous mesurons la quantité d’eau qui s’écoule au
moyen du courant de masse (gravitationnelle) Im, mesuré en kilogrammes par secon-
de. La seconde grandeur nécessaire est la hauteur de chute ∆h, mesurée en mètres. Ce
sont les grandeurs que nous avons utilisées pour quantifier provisoirement la puissance
du processus gravitationnel dans les centrales hydroélectriques du tableau 3.2.

La valeur du facteur de proportionnalité est suggérée par le fait qu’il s’agit d’un pro-
cessus gravitationnel. Il est raisonnable de supposer que la chute d’une même quantité
d’eau d’une même hauteur ait un effet moindre sur la Lune que sur la Terre, ce qui est
exprimé au moyen de l’intensité du champ gravitationnel. Nous pouvons donc calculer

FIGURE 3.12 Une chute d’eau libère
de l’énergie.

F gmG G=
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le taux de libération d’énergie, ou en d’autres termes, la puissance gravitationnelle
d’une chute d’eau:

(3.2)

Cette nouvelle grandeur se mesure en watt (W) dans le système international.

Potentiel. Il existe une interprétation graphique simple de l’expression pour la puis-
sance d’une chute d’eau (figure 3.13). Nous combinons les deux premiers facteurs du
deuxième membre de l’équation (3.2) en une nouvelle grandeur que nous appelons le
niveau ou potentiel du processus gravitationnel:

(3.3)

Nous pouvons alors écrire la puissance du processus comme le produit de la différence
du potentiel gravitationnel et du courant de masse franchissant cette différence de
niveaux:

(3.4)

Le signe moins est arbitraire. Il a été choisi pour être conforme à l’usage en électricité
qui attribue un signe positif à la tension dans le sens du courant conventionnel. La
puissance d’un processus spontané est donc positive, alors que celle d’un processus
contraint est négative.

3.3.2 Dissipation et efficacité des processus

Nous voyons que la détermination expérimentale du facteur de proportionnalité entre
le processus gravitationnel et le processus électrique dans le tableau 3.2 donne des va-
leurs qui sont légèrement plus faibles que g. Cela est dû au fait que les processus entre
le bassin d’accumulation et le générateur ne se déroulent pas de manière idéale: une
partie de l’énergie libérée par la chute de l’eau est utilisée pour la production de cha-
leur qui résulte des frottements. Cette production de chaleur qui accompagne le dérou-
lement des processus est appelée dissipation, et les processus sont dits dissipatifs.
Nous désignerons dorénavant par Pdiss la puissance nécessaire à cette production de
chaleur non souhaitée. Le lien entre cette puissance et la production de chaleur sera
traité à la section 5.4.

La dissipation est toujours présente dans la réalité, car des processus parallèles tels que
le frottement lient une partie de l’énergie libérée (figure 3.14). Pour mesurer l’effica-
cité du transfert de l’énergie vers le processus désiré, on introduit une nouvelle gran-
deur, l’efficacité ou rendement η, que l’on calcule en tant que rapport des puissances
impliquées:

(3.5)

Comme ce sera confirmé à la section 3.3.3, la puissance d’un processus électrique est
égale au produit de la tension et de l’intensité du courant. En appliquant cette règle aux
valeurs du tableau 3.2, nous voyons que l’efficacité globale des centrales hydroélectri-
ques modernes est remarquablement élevée, de l’ordre de 80% à 90%.
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1. Quelle est la signification du mot puissance? De quels facteurs la puis-
sance d’un processus gravitationnel dépend-elle?

2. Quelle est la signification de la grandeur apparaissant dans la dernière
colonne du tableau 3.2? Pourquoi les valeurs sont-elles différentes?

3. Le diagramme de processus apparaissant dans la figure 3.14 combine
tous les éléments d’une centrale hydroélectrique du lac artificiel au
générateur. Si vous décomposez ce système en ses parties, quel est le processus qui se
déroule en premier.

1. La puissance sert à mesurer le taux auquel l’énergie est libérée (ou liée)
à la suite de l’écoulement d’une grandeur extensive (telle que la masse
gravitationnelle) d’un niveau élevé vers un niveau bas (ou d’un niveau
bas vers un niveau élevé) du potentiel. La puissance gravitationnelle est
égale au produit de l’intensité du courant de la grandeur extensive
(masse gravitationnelle) et de la différence du potentiel gravitationnel.

2. Le produit de la tension et de l’intensité du courant mesure le taux de
travail effectué par le processus électrique (section 3.3.3). C’est pourquoi, dans le cas idéal,
le rapport de cette grandeur et du produit du courant de masse et de la hauteur de chute
devrait être égal à l’intensité du champ gravitationnel g. Cependant, comme les centrales
hydroélectriques ne fonctionnent pas de manière idéale, nous obtenons des valeurs qui sont
inférieures à 9.81 N/kg. Comme les efficacités des installations sont différentes, nous obte-
nons des valeurs différentes pour la facteur de la dernière colonne du tableau 3.2.

3. Le premier processus entraîné par la chute de masse est le processus hydraulique consistant
à «pomper» du volume à travers une différence de pression (figure 3.15).

EXEMPLE 3.1. Deux lacs artificiels en série.

Une installation hydroélectrique consiste en deux lacs artificiels, le premier situé 200 m plus
haut que le second. Il y a une première usine électrique au niveau du second lac, et une seconde
300 m plus bas. L’eau du premier lac alimente le second. Le lac supérieur reçoit 5·108 m3 d’eau
par les rivières qui l’alimentent. Le lac inférieur reçoit 2·108 m3 par des rivières. (a) À un certain
moment, le courant d’eau du premier lac vers le second est de 20 m3 s-1, et le courant du second
lac vers l’usine inférieure mesure 25 m3 s-1. Que vaut la puissance gravitationnelle totale résul-
tant de la chute de l’eau? (b) Combien d’énergie est libérée en une année par le processus gra-
vitationnel, si on utilise toute l’eau amenée dans les lacs?

SOLUTION : (a) La puissance gravitationnelle combinée est la somme des puissances du pre-
mier et du second processus:

(b) Vu que la puissance est le taux de libération d’énergie, la quantité d’énergie libérée durant
une certaine période Egrav est égale au produit de la puissance moyenne et de la durée:
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FIGURE 3.15 Processus hydraulique
entraîné par un processus gravita-
tionnel. Alors que c’est la même eau
qui possède simultanément les pro-
priétés masse et volume, ces gran-
deurs physiques apparaissent en tant
qu’entités séparées dans le diagram-
me de processus.
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où m* est la masse totale d’eau s’écoulant à travers la différence de potentiel durant l’intervalle
∆t. Il y a 5·1011 kg d’eau s’écoulant du premier vers le second lac et 5·1011 kg plus 2·1011 kg
s’écoulant hors du second lac. Nous avons donc Egrav = 9.81 N kg-1 · 200 m · 5·1011kg
+ 9.81 N kg-1 · 300 m · 7·1011 kg = 3.0·1015 Ws. (1 W·s = 1 J.)

B

3.3.3 Puissance des processus électriques

Les observations de la section 3.1.1 confirment que la puissance des processus électri-
ques doit bel et bien être écrite dans la forme de l’équation (3.4). Le produit UIQ est
la mesure du taux de «travail effectué» par le processus électrique:

(3.6)

3.3.4 Puissance des processus hydrauliques

En nous basant sur les observations de la section 3.1.3 relative au couplage turbine-
générateur, nous pouvons admettre que le même type de relation est valable pour les
processus hydrauliques:

(3.7)

3.3.5 Processus et puissance en général

En résumé, tous les types de processus étudiés affichent la même structure de base
(tab. 3.5); grâce à cette analogie de structure, la connaissance d’un domaine nous aide
à comprendre d’autres sujets.

Si une grandeur s’écoule «en descendant la pente», elle libère de l’énergie à un certain
taux. Ce taux est la puissance du processus. L’énergie libérée sert à entraîner «vers le
haut» le processus consécutif, au cours duquel l’énergie est liée à la grandeur qui
s’écoule (figure 3.16). La loi qui régit l’énergie libérée ou liée est la suivante:

TABLEAU 3.5 Comparaison de différents processus.

Grandeur Courant Potentiel Différence 
de potentiel Puissance

Gravité
Masse gravi-
tationnelle

Courant de
masse

Potentiel gra-
vitationnel

∆ϕG – ∆ϕG Im

Hydrauli-
que

Volume de
fluide

Courant de
volume

Pression ∆P – ∆PIV

Électricité
Charge

électrique
Courant

électrique
Potentiel
électrique

∆ϕél= – U
– ∆ϕélIQ

= UIQ

 P Pél él élou= − =∆ϕ I U IQ Q

 Phydr = −∆P IV

IX

X1ϕ

X2ϕ

PX

IX
PX

X1ϕ
X2ϕ

Processus
spontané

Processus
contraint

FIGURE 3.16 Processus et puissance
des processus. La même structure
fondamentale est découverte dans
tous les processus physiques.
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La lettre X représente la grandeur extensive qui s’écoule et détermine la nature du
processus: masse, volume et charge électrique respectivement pour les processus gra-
vitationnels, hydrauliques et électriques (tab. 3.5). Pour un processus particulier, nous
devons utiliser la grandeur extensive adéquate et son potentiel associé. Ainsi, pour un
processus hydraulique, X correspond à V, et ∆ϕX correspond à ∆p.

Énergie libérée (ou liée) dans un processus. Jusqu’à maintenant, nous avons pré-
senté les processus dans leur forme instantanée, dynamique. Nous parlons de courants
et de «taux de travail» ou de taux de libération d’énergie. Ces grandeurs mesurent à
quelle vitesse se déroule le processus, c’est-à-dire à quelle vitesse l’énergie est libérée
ou liée.

Mais, parfois, nous aimerions être en mesure d’indiquer combien d’énergie a été libé-
rée ou liée au cours d’un processus qui s’est déroulé sur une certaine période. La quan-
tité d’énergie libérée par un processus – appelée quelquefois travail1– peut être
obtenue graphiquement en déterminant, dans un graphique puissance-temps, l’aire
comprise entre la courbe de la puissance et l’axe t (figure 3.17). Cette grandeur est cal-
culée par intégration du produit de la différence de potentiel ∆ϕX et du flux IX de la
grandeur X:

(3.9)

Si la différence de potentiel reste constante pendant toute la durée du processus, alors
l’énergie libérée ou liée peut se calculer de manière simple en tant que produit de cette
différence de potentiel et de la quantité Xtr qui s’est écoulée à travers cette différence
de potentiel:

(3.10)

L’unité de mesure de l’énergie est le joule (J); en tant que produit des grandeurs puis-
sance et temps, l’énergie peut également se mesurer en wattseconde (1 J = 1 W·s).

3.3.6 Bilan de puissance dans des circuits électriques et hydrauliques

Une première indication relative au bilan d’énergie peut être obtenue en considérant
l’énergie libérée ou liée dans des circuits hydrauliques et électriques fermés: la somme
de tous les termes de puissance hydraulique et électrique doit être nulle.

1. Les notions de puissance et de travail sont parfois utilisées de manière inconsistante dans
différents domaines de la physique. En mécanique, par exemple, le travail représente la
quantité d’énergie transférée, et non pas libérée.

Lors d’un processus affectant une grandeur extensive X, la puissance du
processus, qui correspond au taux de libération ou de liaison de l’énergie,
dépend toujours de deux facteurs, la différence de potentiel ∆ϕX et l’inten-
sité du courant IX franchissant cette différence de potentiel:

(3.8) PX X XI= −∆ϕ

PX

t∆t

t∆t

EX

EX

PX

FIGURE 3.17 L’énergie libérée lors
d’un processus est calculée à partir
de la puissance en fonction du temps.
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C’est une conséquence de la seconde loi de KIRCHHOFF (loi des mailles) que nous
avons rencontrée en hydraulique (chap. 1) et en électricité (chap. 2). Considérons un
circuit électrique simple contenant une source, une résistance et un moteur électrique
(figure 3.18). Le courant de charge circulant à travers les trois éléments est le même,
et les tensions sur ceux-ci doit avoir une somme nulle:

(3.11)

Le courant circule à travers chacun des éléments, avec pour conséquence la libération
ou la liaison d’énergie. Si nous multiplions l’équation (3.11) par l’intensité du courant
IQ, nous obtenons USIQ + URIQ + UMIQ = 0. Vu que les termes représentent la puis-
sance électrique dans les éléments, cela est équivalent à

(3.12)

Cela signifie que l’énergie liée par le processus électrique dans la batterie est égale à
l’énergie libérée dans la résistance et le moteur combinés en conséquence de la chute
de la charge électrique. Autrement dit, l’énergie délivrée par la source est utilisée par
la résistance et le moteur.

1. Quelle sorte de montage expérimental pourrait-on utiliser pour démon-
trer la validité de l’équation (3.7)?

2. Comment pouvez-vous déterminer la quantité d’énergie libérée par une
source idéale au cours du temps? Quelles grandeurs devez-vous mesu-
rer ? Quel est le processus qui libère de l’énergie?

1. Un système qui couple des processus hydrauliques et électriques, tel
que l’ensemble turbine-générateur. Il faut veiller à ce que les processus
se déroulent de telle manière que le produit du courant électrique et de
la tension soit constant. S’il en va de même du produit du flux volumi-
que et de la différence de pression, l’équation (3.7) est confirmée par
l’expérience.

2. Il faut mesurer la tension et l’intensité du courant. Leur produit, la puis-
sance électrique, doit être intégré (figure 3.17) pour obtenir l’énergie libérée. Cette énergie
est libérée par des réactions chimiques.

EXEMPLE 3.2. Puissance d’une lampe à incandescence.

Considérons une lampe de 100 W fonctionnant à une tension de 220 V. On la monte en parallèle
à une résistance variable dans un circuit alimenté par une source de 220 V (figure 3.19). Le cur-
seur divise la résistance de 1000 Ω dans le rapport des longueurs x et l – x. Si x = l/4 et si la
résistance de la lampe reste constante, indépendamment de la valeur x, que vaut la puissance de
la lampe?

SOLUTION : Nous déterminons d’abord la résistance de la lampe à partir de sa puissance nomi-
nale. Pour une résistance, la relation entre puissance, tension et résistance est
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FIGURE 3.18 Dans un circuit fermé,
la somme des différences de poten-
tiel est toujours nulle. C’est pourquoi
la somme des termes représentant la
puissance électriques de tous les élé-
ments doit également être nulle.
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Nous avons donc R = (220 V)2/100 W = 484 Ω. Pour déterminer la tension sur la lampe dans le
circuit de la seconde figure, nous notons que RQ1 = 250 Ω et RQ2 = 750 Ω. À partir de la résis-
tance du montage des trois résistance, nous calculons l’intensité du courant à travers la source:

Nous en concluons que UR1 = RQ1Itot = 101 V, et UL = 220 V – 101 V = 119 V. Finalement,
nous avons

Notons que de travailler avec les grandeurs liées à l’énergie ne nous dispense pas de connaître
les bases des processus qui se déroulent. Il est nécessaire de calculer les intensités des courants
et les différences de potentiel avant de pouvoir déterminer les valeurs des grandeurs liées à
l’énergie.

B

EXEMPLE 3.3. Puissance dissipée dans un système hydraulique.

Le taux de variation d’un écoulement d’huile à travers une conduite droite évolue linéairement
et passe de 0.001 m3 s-2 à 0.0 m3 s-2 en 5 s. La conduite a une longueur de 10.0 m et un diamètre
de 7.0 cm. L’huile a une masse volumique de 910 kg/m3, une viscosité de 0.081 Pa s, et l’écou-
lement a lieu en régime laminaire. (a) Donnez l’équation de l’évolution du flux volumique en
fonction du temps et représentez-la graphiquement, sachant qu’il vaut 0.001 m3 s-1 à l’instant
t = 0 s. (b) Comment la valeur de la différence de pression due aux frottements dans la conduite
évolue-t-elle en fonction du temps; que vaut-elle à l’instant t = 2 s? (c) Faites les mêmes calculs
pour la puissance hydraulique due la résistance.

SOLUTION : (a) L’évolution linéaire du taux de variation du flux est donnée par:

Par intégration, et en prenant en compte la condition initiale, on obtient:

La figure 3.20 montre l’évolution du flux volumique pour les 5 premières secondes.

(b) La résistance de la conduite est évaluée à partir de la loi de HAGEN-POISEUILLE pour un
écoulement laminaire (équation (1.33):

La différence de pression ∆pR sur l’élément résistif est égale à l’opposé du produit de cette va-
leur et du flux volumique:

L’évolution de cette différence de pression est présentée dans la figure 3.21a. À l’échelle près,
elle est la symétrique de la courbe de la figure 3.20. Les différences de pressions dues à la ré-
sistance sont négatives dans le sens du courant.

(c) La puissance hydraulique due à la résistance 2 est calculée à partir de l’équation (3.7):
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FIGURE 3.20 Évolution du courant
d’huile en fonction du temps.

 �IV t t( ) = ⋅ − ⋅ ⋅− −1 0 10 0 2 103 3. .m s m s3 -2 3 -3

I tV t( ) = +⋅ ⋅ ⋅ −− −1 0 10 1 0 10 0 13 3. . .m s m s3 -1 3 -2 ⋅⋅ − ⋅10 3 2m s3 -3 t

R
l

r
V = −

⋅ ⋅
⋅

= =8 8 0 081 10

0 0354 4
13

η
π π

.

( .

Pa s m

m)
775 103⋅ Pa s m-3

∆P t R I tR VV t t( ) ( ) = − + ⋅ − ⋅( )= − 1375 0 1 0 1 0 01 2Pa . . . ;; .∆PR 2 3 57s kPa( ) = −



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 123

3.4  TRANSFERT D’ÉNERGIE ET PORTEURS D’ÉNERGIE

La figure 3.21b montre l’évolution de la puissance résistive. Notez que la puissance hydraulique
due au frottement interne du fluide est toujours positive.

B

EXEMPLE 3.4. Maximisation de la puissance d’une batterie.

Dans la figure 3.22, qui montre la caractéristique courant-tension de la batterie étudiée à la
section 2.7.2, l’aire des rectangles représente la puissance délivrée en fonction de la charge. On
observe que cette puissance est faible si la tension est élevée ou si l’intensité est élevée, et qu’el-
le sera maximale quelque part entre deux. Déterminer pour quelle valeur de la charge cette puis-
sance sera maximale.

SOLUTION : Nous substituons l’équation (2.26) dans l’équation (3.6):

En exigeant que la dérivée de la puissance par rapport au courant de charge s’annule:

nous trouvons que le courant de charge qui permet de délivrer une puissance maximale est:

Cela signifie que la puissance délivrée sera maximale si la résistance de charge est égale à la
résistance interne de la batterie.

B

3.4 TRANSFERT D’ÉNERGIE ET PORTEURS D’ÉNERGIE

L’énergie libérée dans un processus n’apparaît pas, venant du néant, et l’énergie liée
n’y disparaît pas. Elle est soit transférée dans ou hors du système, soit elle provient
d’un dispositif de stockage ou sera stockée (section 3.5). Nous voulons maintenant
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étudier le transfert d’énergie. Le point le plus important qui sera évoqué dans cette sec-
tion est le couplage entre l’écoulement des grandeurs extensives associées à la gravité,
l’hydraulique et l’électricité avec l’écoulement de l’énergie dans et hors des systèmes.
Nous découvrirons que la masse, le volume et la charge agissent comme des porteurs
d’énergie dans les processus dont ils sont responsables.

3.4.1 Porteurs d’énergie, potentiels et courants d’énergie

Un exemple simple illustre le fonctionnement de la nature. Envisageons l’écoulement
stationnaire d’une huile visqueuse à travers une conduite droite, comme dans la
figure 3.7. Comme le fluide qui s’écoule d’un point de pression élevée vers un point
de pression moindre, ce processus hydraulique libère de l’énergie à un certain taux
(figure 3.23). Cette énergie est ensuite liée dans le processus thermique qui s’ensuit.
Souvenons-nous que la production de chaleur due au frottement interne du fluide est
la seule chose qui se produit dans la conduite; nous pouvons donc admettre que 100%
de l’énergie libérée est liée dans le processus consécutif.

Pour devenir concret, admettons que l’intensité du courant de fluide est de 0.10 m3/s
et que la chute de pression est de 0.50 bar. En vertu de l’équation (3.7), l’énergie doit
être libérée au taux de 5.0 kW, ce qui veut dire que, chaque seconde, 5000 J d’énergie
sont libérés et rendus disponibles pour la production de chaleur. Cette énergie doit être
amenée dans le système et, comme le seul processus qui s’y déroule est l’écoulement
du fluide, nous sommes obligés de conclure qu’un fluide qui s’écoule sous pression
transporte une certaine quantité d’énergie: nous associons un courant d’énergie au
courant de fluide (figure 3.23). Il est donc plausible de considérer que le fluide est un
porteur d’énergie par rapport au système.

Nous nous attendons à ce que le courant d’énergie dépende de deux facteurs. Tout
d’abord, il doit être proportionnel au courant de fluide; deux courants identiques doi-
vent avoir un effet double de celui d’un seul. D’autre part, la pression du fluide doit
jouer un rôle. Déterminons la relation entre l’énergie et son courant porteur.

Si un fluide qui pénètre dans un système à un certain niveau (pression) transporte de
l’énergie, ce doit être également le cas du fluide qui réémerge du système. C’est pour-
quoi nous admettons que le taux auquel l’énergie est libérée est égal à la différence de
l’intensité des courants d’énergie entrant et sortant. Vu que la différence des flux
d’énergie est égale au produit de la différence de pression et du flux volumique, c’est-
à-dire,

l’expression la plus simple pour un courant d’énergie est donnée par le produit du flux
volumique et de la pression du fluide à l’entrée – ou à la sortie – du système.

(3.13)

On peut créer une image simple pour se souvenir de cette relation. On peut envisager
la pression comme un «facteur de chargement» du «courant porteur». Le flux volu-
mique est «chargé» d’énergie en accord avec la valeur de la pression. C’est pourquoi
le flux d’énergie est égal au produit du courant porteur et de son facteur de chargement.

À nouveau, il s’agit de la structure de l’écoulement de l’énergie valable dans tous les
domaines de la physique. Si nous considérons les différents dispositifs et processus
étudiés jusqu’ici – gravitationnels et électriques, ainsi qu’hydrauliques, nous arrivons
toujours à la même relation pour les courants d’énergie.
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Comme nous l’avons vu au chapitre 2, le potentiel électrique n’est pas une grandeur
absolue. Les valeurs du potentiel électrique doivent toujours être mesurées par rapport
à un niveau choisi, la «terre». Il en va de même du potentiel gravitationnel; sur notre
planète, nous nous référons usuellement à des niveaux ou hauteurs par rapport au
niveau de la mer. De tous les niveaux que nous connaissons jusqu’ici, seul le niveau
hydraulique (la pression) est absolu. Les flux d’énergie dans les processus électriques
et gravitationnels n’ont, pour cette raison, pas tout à fait la même signification que lors
d’écoulements de fluides. Seule la différence des flux d’énergie entrant et sortant d’un
système avec un courant unique d’une grandeur extensive est indépendante du choix
arbitraire des niveaux. Cette différence est égale à la puissance du processus associé
(figure 3.23).

Ce constat nous indique que cette vision de l’énergie «transportée» par le courant
d’une grandeur extensive ne doit pas être pris trop à la lettre. Comme nous le verrons
plus bas, «transportée» ne signifie pas que le courant porteur «contient» l’énergie
fournie. L’interprétation physique de l’équation (3.14) doit être que l’énergie s’écoule
toujours en même temps que la grandeur extensive – plutôt que liée au courant porteur.
En revanche, il est tout à fait correct d’affirmer que l’énergie ne s’écoule jamais seule:
il y a toujours un ou plusieurs écoulements conjoints d’autres grandeurs physiques.

3.4.2 Modes de transport de grandeurs extensives

Il existe, pour les grandeurs extensives, trois types de processus de transport fonda-
mentalement différents, et l’équation (3.14) n’est valable que pour l’un d’entre eux.
Nous étudierons en détail les processus de transport dans des chapitres ultérieurs, mais
nous voulons les aborder brièvement, vu leur importance pour les transferts d’énergie.

Transports par conduction. Tous les processus de transport que nous avons rencon-
trés jusqu’ici font partie de la même catégorie: ce sont ceux au cours desquels une dif-
férence de potentiel est nécessaire pour que la grandeur extensive puisse s’écouler
spontanément – une différence de potentiel gravitationnel pour les courants de masse
gravitationnelle, une différence de pression pour les courants de volume, et une diffé-
rence de potentiel électrique (une tension) pour les courants de charge. Examinons
plus attentivement ces trois exemples.

Lorsque la charge électrique circule à travers un matériau conducteur, elle le fait «en
descendant la pente» d’un potentiel élevé vers un potentiel bas (chapitre 2). La charge
s’écoule spontanément à travers la matière, et non pas avec la matière. Ce type de
transport est appelé conduction de l’électricité.

Alors qu’à première vue il semble différent, l’écoulement de volume entre deux ni-
veaux de la pression est du même type. Il est vrai qu’il y a ici également un écoulement
de matière. Cependant, ce n’est pas le point important. Les quantités de fluide s’écou-
lent à cause de la présence d’une différence de leur potentiel associé – la pression –,
ce qui est justement la caractéristique distinctive des transports par conduction. Il en
va de même pour les processus gravitationnels: la masse gravitationnelle engendre des

L’intensité d’un courant d’énergie entrant dans – ou émergeant d’ – un
système est le produit de l’intensité du courant porteur et de son potentiel
associé (figure 3.24):

(3.14)I IE X X X, = ϕ
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FIGURE 3.24 Relation entre flux
d’énergie, flux «porteur» et «facteur
de chargement»: (a) représentation
dans un diagramme de processus; (b)
représentation dans un diagramme
de dynamique des systèmes.
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champs gravitationnels et, par conséquent, des différences de potentiel gravitationnel.
À nouveau, l’écoulement de la grandeur extensive est associé à son propre potentiel.

Transports par convection. La charge, par exemple, peut être transportée d’une ma-
nière totalement différente. Plutôt que de circuler à travers un conducteur, elle peut
être stockée dans un corps. Si cet objet se déplace, il entraîne cette charge avec lui. Le
cas le plus fréquent de ce type de transport implique des écoulements de fluides. Les
fluides peuvent stocker d’autres grandeurs extensives telles que la charge, la chaleur
ou de la quantité de mouvement. Ainsi, lorsqu’un fluide s’écoule, le flux de volume ou
de substance est accompagné de celui des grandeurs qu’il contient. Elles ne s’écoulent
par à travers le fluide, mais avec le fluide.

On parle alors de transport par convection. Ici, l’écoulement d’une grandeur telle que
la charge n’est pas associé à une différence de potentiel; la charge est transportée par
l’écoulement du fluide qui, lui, est dû à une différence de pression! En résumé, un
transport par convection de grandeurs extensives ne nécessite pas la présence d’une
différence du potentiel associé.

Rayonnement. Finalement, quelques-unes des grandeurs extensives peuvent être
transportées à travers l’espace au moyen du rayonnement. C’est par exemple le cas de
la chaleur qui s’écoule de la surface du Soleil vers la Terre. Le rayonnement peut con-
tenir – et donc transporter – de la chaleur. Lorsqu’il est intercepté par un corps maté-
riel, il peut être absorbé avec la chaleur qu’il contient. Le transfert du rayonnement
dans un système matériel est d’une nature totalement différente de celle du transport
par conduction et par convection. Il suffit de penser à une sphère de verre exposée à la
lumière du Soleil pour s’en convaincre. Les grandeurs, telles que la chaleur, qui sont
transportées par le rayonnement, sont déposées directement à l’intérieur des corps
sans devoir s’écouler à travers le matériau à partir de la surface.

Transports d’énergie. Dans les trois types de transport de grandeurs extensives,
l’énergie s’écoule également, mais la relations entre les courants et le flux d’énergie
ne prend la forme de l’équation (3.14) que dans un seul cas, à savoir dans les transports
par conduction. Tous les autres cas, convection, rayonnement, et absorption ou émis-
sion de rayonnement doivent être étudiés de manière particulière.

Relevons encore une fois que lors du transport par conduction, l’énergie ne s’écoule
pas nécessairement avec la grandeur extensive. Ainsi, l’énergie qui s’écoule en même
temps que le courant électrique le fait à l’extérieur du conducteur, véhiculée par le
champ électromagnétique qui entoure le conducteur.

3.4.3 Remarque au sujet des «formes» d’énergie

Il est courant d’entendre dire par exemple que, dans un générateur, l’énergie hydrau-
lique a été «convertie» en énergie électrique et, réciproquement, que dans une pompe
électrique, l’énergie électrique a été «convertie» en énergie hydraulique.

Il est important de réaliser qu’il n’existe pas plusieurs sortes d’énergie. C’est toujours
la même énergie qui migre à travers un enchaînement de processus. À l’intérieur de
chaque système qui couple deux processus de nature différente, l’énergie change de
courant porteur. Ainsi, elle entre dans une pompe électrique en compagnie du courant

Les transports par conduction de grandeurs extensives sont associés à
(des différences de) leurs potentiels (tab. 3.5). En cas de convection, la for-
ce d’entraînement est celle qui entraîne le fluide contenant d’autres gran-
deurs extensives qui sont transportées lors de son mouvement.
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électrique et en émerge en compagnie du courant hydraulique. Les noms que l’on don-
ne aux différentes «formes» ou «sortes» d’énergie sont donc liés aux grandeurs ex-
tensives qu’elle accompagne et pas à l’énergie elle-même, comme il usuel est de
l’entendre.

Un système qui couple deux processus, une machine, sert donc à transborder l’énergie
d’un porteur à l’autre, mais en aucun cas à en changer la nature.

EXEMPLE 3.5. Courant d’énergie à la sortie d’un réservoir de fluide.

Un réservoir sous pression est rempli d’huile à une pression de 3.0 bar. L’huile s’échappe du
réservoir à travers une longue conduite horizontale ouverte à l’air libre à une pression de 1.0 bar
(figure 3.25). La conduite a une longueur de 10.0 m et un diamètre de 4.0 cm. La viscosité de
l’huile est de 0.20 Pa s. (a) Quelle est la valeur du flux d’énergie dû à l’écoulement du fluide
hors du réservoir, mesurée à la sortie du réservoir? (b) Que vaut le flux d’énergie à la sortie de
la conduite? (c) Pourquoi les résultats en a et b sont-ils différents?

SOLUTION : (a) Le flux d’énergie à la sortie du réservoir est égal au produit de la pression de
l’huile à cet endroit et du flux volumique. La pression est celle du fluide dans le réservoir. Nous
utilisons la loi de HAGEN-POISEUILLE pour évaluer le flux volumique:

(b) Le flux volumique est le même que ci-dessus. La pression du fluide a été réduite au tiers de
la valeur dans le réservoir. De ce fait, le flux d’énergie associé n’est plus que de – 628 W.

(c) L’énergie émergeant du réservoir entre dans la conduite. Vu que la pression tombe de 3.0
bar à 1.0 bar, de l’énergie est libérée dans la conduite à cause du frottement interne du fluide au
taux de (P – Pa)IV = 1257 W, ce qui correspond à la différence entre les flux d’énergie entrant
et sortant de la conduite.

B

3.5 ACCUMULATION ET BILAN D’ÉNERGIE

Dans un certain sens, l’énergie est comme des quantités d’eau ou d’argent: nous pou-
vons en tenir une comptabilité. Nous avons appliqué ce principe dans les processus
stationnaires étudiés dans les sections précédentes. L’énergie s’écoule à travers les en-
chaînements de processus et, comme nous croyons que c’est une grandeur conservée,
nous savons que l’intensité de l’écoulement ne varie pas.

Mais des variations dans le temps des intensités des écoulements sont cependant pos-
sibles si de l’énergie est stockée dans les systèmes. Ce n’est que si nous prenons en
compte le stockage de cette grandeur que nous obtiendrons une formulation générale
du bilan.

3.5.1 Formulation générale du bilan d’énergie

À moins de croire que de l’énergie est créée ou annihilée lorsque des enchaîne-
ments de processus sont interrompus, nous devons accepter l’idée qu’elle peut être
stockée (section 3.2). Les corps – et les systèmes physiques en général – peuvent
contenir de l’énergie, ils peuvent en absorber et en émettre, changeant ainsi les
quantités accumulées.
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Tout comme dans le cas de quantités d’eau ou de charge électrique, une équation de
bilan met en relation ce qu’il advient de la grandeur accumulée en conséquence
d’écoulements vers ou hors du système, et comme l’énergie est conservée, nous sa-
vons que les quantités stockées ne peuvent varier que par l’intermédiaire des flux.
C’est ce que nous appelons le bilan d’énergie pour un système.

Les outils de la dynamique des systèmes nous permettent d’exprimer le bilan de
l’énergie dans sa forme dynamique et de la manipuler aisément. Il suffit de tracer un
stock pour représenter la quantité d’énergie accumulée, connecté à autant de flows que
nécessaire pour symboliser les flux (figure 3.26).

Notons qu’une des propriétés de l’énergie – la faculté de pouvoir être libérée et liée –
n’apparaît pas dans un bilan. La libération et la liaison d’énergie, que nous mesurons
au moyen de la puissance d’un processus, a toujours lieu à l’intérieur du système con-
sidéré, alors que le bilan n’énonce que la relation entre les quantités stockées et les
quantités s’écoulant vers ou hors du système.

1. Quelles sont les propriétés que partagent les quantités d’eau et
d’énergie? Lesquelles sont-elles nécessaires pour pouvoir énoncer un
bilan?

2. Pourquoi la propriété particulière de l’énergie, à savoir d’être libérée et
liée dans les processus, n’apparaît-elle pas dans son bilan?

3. Laquelle des deux formes de l’équation de bilan – équation (3.15) ou
(3.16) – est-elle la plus générale?

L’énergie peut être stockée et peut s’écouler. La somme de tous les flux
d’énergie par rapport à un système indique à quelle vitesse varie la quan-
tité d’énergie stockée (figure 3.26):

(3.15)

Cette forme de l’équation de bilan est valable à n’importe quel instant.
D’autre part, la variation de la quantité d’énergie stockée est égale à la
quantité totale d’énergie transférée vers ou hors du système:

(3.16)

Eéch est la quantité d’énergie échangée au cours du processus, et corres-
pond à l’aire grisée dans la figure 3.27.

L’énergie échangée par l’intermédiaire d’un flux correspond également à
une aire dans le diagramme IE(t) et se calcule par intégration:

(3.17)
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1. Des quantités d’eau et d’énergie peuvent être accumulées, elles peuvent
s’écouler, et elles sont conservées (si nous faisons abstraction de la pos-
sibilité de réactions chimiques dans le cas de l’eau). Seuls le stockage
et l’écoulement sont des conditions nécessaires pour l’existence d’un
bilan relatif à une grandeur.

2. La libération d’énergie est une processus «interne» qui n’affecte pas le
bilan. Les bilans ne contiennent que des termes relatifs au stockage et
aux écoulements.

3. L’équation (3.15) est la plus générale. Elle est valable à n’importe quel instant, alors que
l’équation (3.16) n’est valable que pour une période particulière. La connaissance de la pre-
mière permet de déduire la seconde, mais l’inverse n’est pas possible.

EXEMPLE 3.6. Taux de variation de l’énergie stockée dans un réservoir d’eau.

De l’eau est pompée à raison de 50 L s-1 par le fond d’une cuve ouverte. La pression de l’air est
de 1.0 bar; la cuve a une section de 0.80 m2 (figure 3.28). Quel est le taux de variation de l’éner-
gie de l’eau stockée dans la cuve à l’instant où le niveau d’eau situé 2.0 m au-dessus de
l’admission?

SOLUTION : Il faut déterminer tous les flux d’énergie relatifs au système pour pouvoir calculer
le taux de variation à partir du flux net (bilan selon l’équation (3.15)). Il y a deux surfaces au
travers desquelles l’énergie entre et émerge du système. La première est au point C, où le fluide
pénètre dans le système à une pression PC comme le montre la figure 3.28. La seconde est la
surface libre du liquide. Elle est mobile et pousse l’air. L’eau ne franchit pas les limites du sys-
tème, mais l’énergie le fait. Naturellement, il n’y a pas de différence fondamentale entre un flui-
de qui franchit une section des limites du système à une pression donnée, et un fluide qui en
pousse un autre à une frontière qui se déplace avec ces fluides. Dans les deux cas, le flux d’éner-
gie est calculé selon des règles identiques, raison pour laquelle nous représentons les deux écou-
lements comme produit de leurs flux volumiques et des pressions respectives.

Selon l’équation (3.14), les deux flux d’énergie valent

(figure 3.28b). Le taux de variation de l’énergie est donc

B

3.5.2 Stocker de l’énergie avec l’aide de la gravité

Lorsque nous construisons une tour ou lorsque la nature fait surgir une chaîne de mon-
tagnes, il y a stockage d’énergie. Nous voulons en évaluer la quantité en étudiant la
construction d’une tour (figure 3.29). On utilise des briques de masse totale m, toutes
posées au niveau du sol. La tour est déjà partiellement construite à la hauteur h. Il faut
fournir une quantité d’énergie équivalent à mbgh pour placer la brique suivante au
sommet de la construction, si mb représente la masse d’une brique individuelle. Com-
me il s’agit d’un processus gravitationnel (un corps est soulevé dans le champ gravi-
tationnel), l’énergie fournie par une personne ou une grue est stockée dans le champ
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FIGURE 3.28 Remplissage d’une
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gravitationnel. La valeur totale de l’énergie stockée grâce à la construction de la tour
peut être calculée en sommant les contributions associées à chacune des briques.

Considérons d’abord une tour à parois verticales. La première couche de briques est
posée à même le sol, ce qui ne nécessite aucune énergie. La seconde couche requiert
une faible quantité d’énergie. La couche suivante, un peu plus, et ainsi de suite. L’éner-
gie nécessaire pour chaque couche croît proportionnellement à la hauteur de la couche.
La somme de toutes les contributions requises pour empiler les couches servant à bâtir
une tour de hauteur H est équivalente à l’énergie qui serait nécessaire pour amener tou-
tes les briques à mi-hauteur, c’est-à-dire à la hauteur du centre de masse (figure 3.30).
Elle est donc égale à mgH/2, ce qui correspond à l’aire du triangle dans la figure 3.30.
Ici, m représente la masse totale des briques. L’énergie du champ gravitationnel a aug-
menté d’autant:

(3.18)

L’analogie hydraulique nous aide à visualiser cette relation. Souvenons-nous que le
quotient de la variation d’une quantité de fluide stockée et de la variation de pression
associée a la signification de la capacité du dispositif de stockage. Ici, la grandeur stoc-
kée est la masse des briques, et le facteur gh est le potentiel gravitationnel. Il s’ensuit
que la capacité gravitationnelle CG est définie par

(3.19)

Pour une structure à parois verticales, cette grandeur est constante. À partir de
l’équation (3.19), nous trouvons qu’elle est égale à Aρ /g. Pour une structure de sec-
tion variable, nous devons simplement remplacer la section constante A par la variable
A(h). En conclusion:

(3.20)

Nous pouvons maintenant tracer la courbe du potentiel gravitationnel (mesuré par rap-
port à un niveau de référence convenablement choisi) en fonction de la capacité. Pour
une structure droite, le diagramme est celui de la figure 3.31. La quantité de la gran-
deur extensive stockée – ici la masse gravitationnelle – est représentée par l’aire appa-
raissant dans le diagramme. La quantité stockée multipliée par le potentiel moyen
ghCM auquel elle a été élevée représente la quantité d’énergie accumulée dans le
système.

Pour une construction de profil quelconque, la calcul est un peu plus compliqué. Un
diagramme semblable à celui de la figure 3.31 reste valable. À nouveau, le produit de
la masse et du potentiel gravitationnel moyen ghmoy = ghCM auquel elle a été élevée
représente la quantité d’énergie stockée (figure 3.32a). Il se révèle que l’utilisation de
la moyenne arithmétique, c’est-à-dire ghmoy = 0.5(gh1 + gh2), donne des résultats ac-
ceptables. Cependant, pour trouver la valeur exacte, nous devons utiliser un autre dia-
gramme. Pour construire une tour, il faut soulever de petites parties ∆mi de la masse
de la structure à une certaine hauteur hi. L’énergie ∆Ei nécessaire pour le faire est

Si nous traçons la grandeur ghCG en fonction de gh, nous voyons que la contribution
∆Ei est égale à l’aire d’un rectangle étroit. La variation totale de l’énergie du dispositif
de stockage est donc représentée par l’aire entre la courbe et l’axe gh (figure 3.32b).

h

E(h)

H

∆Echamp

FIGURE 3.30 Énergie accumulée
dans le champ de pesanteur à la suite
de l’empilement des briques servant
à construire la tour.
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FIGURE 3.31 Analogie hydraulique
de masse empilée dans le champ gra-
vitationnel. Le diagramme représen-
te le potentiel en fonction de la
capacité de la structure.
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EXEMPLE 3.7. Stockage d’énergie dans un bassin d’accumulation.

La surface d’un bassin d’accumulation a une aire de 2.0 km2 (figure 3.33). Il a une profondeur
de 50 m et le fond a une aire de 1.0 km2. Nous admettons que le profil vertical du lac est une
fonction linéaire de la profondeur. Quelle quantité d’énergie, mesurée par rapport à la centrale
électrique située 50 m en dessous du fond du lac, a-t-on stockée grâce à l’eau accumulée dans
le lac?

SOLUTION : Si nous souhaitons utiliser la méthode approximative de la figure 3.32 pour calcu-
ler ∆E, nous devons évaluer le potentiel gravitationnel au fond et à la surface du lac par rapport
à la centrale, ainsi que la capacité en fonction du niveau (hauteur ou potentiel); nous utilisons
la figure 3.34 pour illustrer nos calculs. Les potentiels gravitationnels des niveaux sont

La capacité gravitationnelle est proportionnelle à la section horizontale du lac qui est une fonc-
tion linéaire de la hauteur. La première valeur est calculée comme suit:

La seconde vaut le double. La masse de l’eau accumulée dans le lac est donc

(figure 3.35). En prenant la moyenne arithmétique des potentiels gravitationnels au fond et à la
surface du lac comme niveau moyen auquel l’eau est élevée par rapport à la centrale, nous trou-
vons que la quantité d’énergie stockée est

En utilisant la méthode exacte de la figure 3.32b, nous obtenons le graphique de ghCG en fonc-
tion de gh de la figure ci-contre. Une détermination de l’aire sous la courbe de la figure 3.35
donne une valeur de 5.61·1013 J, ce qui correspond à peu de chose près à la valeur approximative
ci-dessus.

B

3.5.3 Énergie accumulée dans les capacités électriques

Les tours, les cuves, les bassins d’accumulation sont des capacités gravitationnelles.
Nous nous attendons donc à ce que les résultats de la section précédente soient

gh

CG

∆m

gh

ghCG

∆Echamp

ghCM

gh1

gh2

gh1 gh2
∆Echamp = ghCM ∆m

a. b.
FIGURE 3.32 (a) Potentiel gravita-
tionnel en fonction de la capacité
pour une structure à section variable;
(b) l’énergie stockée peut aussi être
calculée au moyen du diagramme re-
présentant le produit du potentiel et
de la capacité en fonction du poten-
tiel.

h1 = 50 m
h2 = 100 m

A2 = 2.0 km2

A1 = 1.0 km2

FIGURE 3.33 Bassin d’accumula-
tion avec conduite.
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FIGURE 3.35 Diagrammes repré-
sentant l’analogie hydraulique d’un
stockage gravitationnel.
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également applicables à des éléments capacitifs hydrauliques et électriques. Nous al-
lons maintenant dériver ce résultat pour des condensateurs électriques en nous basant
sur une idée différente. Puis, nous présenterons une relation générale pour l’énergie
des éléments capacitifs.

Nous considérons la charge d’une capacité électrique telle qu’une sphère métallique
(figure 3.36). Pour simplifier les choses, nous admettons que le courant de charge est
constant (le résultat ne dépend pas du mode de charge). Nous allons évaluer l’énergie
stockée dans le système à partir de l’équation de bilan de l’énergie du condensateur:

où Eéch est l’énergie fournie au condensateur durant le processus de charge. Cette der-
nière quantité est calculée à partir du courant d’énergie durant la charge. Nous devons
exprimer le courant d’énergie en fonction du temps dans un diagramme tel que celui
de la figure 3.27, puis évaluer l’aire sous la courbe.

Le courant d’énergie est le produit de l’intensité du courant de charge et du potentiel
électrique (équation (3.14)):

Nous devons tenir compte du fait que le potentiel, c’est-à-dire la tension du condensa-
teur par rapport à la terre, varie durant le processus. Il dépend de la charge instantanée
que l’on peut calculer à partir de l’équation de bilan de la charge:

La dernière relation découle de la constance de IQ. C’est pourquoi le courant d’énergie
durant le processus de charge est une fonction linéaire du temps (figure 3.37):

L’énergie échangée peut être évaluée facilement, vu que la surface dans le diagramme
de la figure 3.37 est un triangle. Nous obtenons Eéch = 1/2tIQ

2/CQ, ce qui signifie que

(3.21)

Dans l’analogie hydraulique, cela correspond à l’énergie d’un fluide stocké dans un
récipient à parois verticales (figure 3.31), dans lequel tout le fluide aurait été élevé à la
moitié du niveau supérieur.

3.5.4 Généralisation

La dérivation présentée ici peut être étendue à des cas plus généraux, ainsi qu’à des
capacités de différents types, gravitationnel, hydraulique et électrique. Nous obtenons
toujours le résultat général:

FIGURE 3.36 Charger un condensa-
teur signifie lui fournir de la charge
et de l’énergie. Les deux grandeurs
sont stockées.
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1. Le tableau 3.6 indique comment calculer l’énergie stockée dans des
capacités. Où l’énergie réside-t-elle?

2. On charge un condensateur de 100 µF de capacité à 10 V. Que valent la
charge accumulée et l’énergie emmagasinée?

1. Dans les trois cas, l’énergie est accumulée dans un champ. Dans le cas
de la gravitation, l’énergie est accumulée dans le champ de pesanteur et
non pas le corps qui a été soulevé. Dans le cas hydraulique, la réponse
est la même, comme le montrent les développements de la
section 3.5.2. Dans le cas du condensateur, l’énergie réside à nouveau
dans le champ électrique qui s’établit entre les conducteurs qui
accueillent les charges. Dans les trois cas, on peut imaginer que le
champ, qu’il soit gravitationnel ou électrique, a une certaine élasticité, et que le fait de
déplacer des masses, des fluides ou des charges dans ces champs augmente la tension qui
règne dans le champ et le charge d’énergie. La terminologie électrique correspond à cette
image.

TABLEAU 3.6 Différents types de capacités constantes.

Gravitation Hydraulique Électricité

Capacité CG CV CQ

Différence potentiel ∆(gh) ∆P UC

Grandeur stockés ∆m = CG · ∆(gh) ∆V = CV · ∆P ∆Q = CQU

Énergie stockée
∆E =

1/2 CG · ∆(gh)2
∆E = 1/2 CV · ∆P 2

∆E = 1/2 CQUC
2

La variation de la quantité d’énergie stockée dans une capacité est égale
au produit de la variation de la grandeur extensive accumulée et du niveau
du centre de masse (proche du niveau moyen) de la grandeur stockée, me-
suré par rapport à un niveau de référence choisi arbitrairement
(figure 3.38a):

(3.22)

De manière alternative, l’énergie stockée peut être calculée à partir du
produit du potentiel et de la capacité (figure 3.38b):

(3.23)
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FIGURE 3.38 L’énergie emmagasi-
née dans des capacités peut être dé-
terminée graphiquement lorsque la
capacité est variable.
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2. La charge accumulée est égale à 1 mC. L’énergie emmagasinée est de 10 mJ.

3.5.5 Intégration de l’énergie dans les modèles dynamiques

Il est très simple d’intégrer les flux d’énergie dans les modèles de processus dynami-
ques. Considérons, à titre d’exemple, la vidange de la cuve que nous avons traitée à la
section 1.8.1.

Il y a deux flux qui transportent l’énergie accumulée dans la cuve à travers la conduite.
Un flux d’énergie hydraulique transportée par le flux volumique qui émerge de la con-
duite à la pression ambiante pa et un flux dissipatif transporté par la chaleur produite
à cause des frottements.

Pour prendre en compte de l’énergie dans le modèle dynamique, nous introduisons un
stock qui représente l’énergie accumulée dans le système. Ce stock se vide par l’inter-
médiaire des deux flux mentionnés ci-dessus, ce qui s’énonce au moyen de l’équation
de bilan de l’énergie:

où les flux d’énergie sont calculés selon l’équation (3.14):

Puisque nous évaluons l’énergie hydraulique émergente à pression ambiante, nous de-
vons tenir compte de la contribution de la pression ambiante dans l’énergie accumulée.
Ainsi, le contenu initial d’énergie de la cuve sera donné par:

IV
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PC + Pa Pa

Cuve

EVV

IE,hydr,in

IE,hydr,out

IE,diss

Chaleur
FIGURE 3.39 Mise en évidence des
flux d’énergie lors de la vidange
d’une cuve.

V
IV

delta pC

CV

delta pR

RV

h

A

E

I E hydr

I E therm

p a
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Nous remarquons que les deux flux n’ont pas la même constante de temps. Nous con-
naissons la manière dont évoluent les flux volumiques en régime laminaire:

ce qui nous permet, à partir de l’équation (3.14), de déterminer de quelle manière les
flux d’énergie évoluent dans le temps:

La constante de temps liée au flux dissipatif est égale à la moitié de celle du flux
d’énergie hydraulique. C’est une conséquence du fait que le flux dissipatif est propor-
tionnel au carré du flux volumique; en électricité, on désigne par effet Joule cette par-
ticularité des flux dissipatifs.

3.6 UNE CONSÉQUENCE DE LA QUANTIFICATION DE L’ÉNERGIE

On n’a pu comprendre les différents comportements dans la conduction de l’électricité
(section 2.6.2) qu’après le développement de la physique quantique, durant le premier
quart du XXe siècle. Nous allons exposer brièvement les lignes essentielles de cette
théorie et en déduire les raisons de l’existence, dans la conduction électrique, de con-
ducteurs, semi-conducteurs et isolants.

3.6.1 Quantification de grandeurs physiques

Au chapitre 2, nous avons été confrontés pour la première fois au fait que certaines
grandeurs physiques sont quantifiées, c’est-à-dire qu’elles sont des multiples d’une
brique élémentaire insécable. C’est le cas de la charge électrique libre qui est toujours
un multiple de la charge élémentaire e qui vaut 1.6·10-19 C. Notons toutefois que les
quarks, les particules dont sont constitués notamment les protons et les neutrons,
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FIGURE 3.41 Flux d’énergie lors de
la vidange d’une cuve. La constante
de temps liée au flux dissipatif est
égale à la moitié de celle du flux
d’énergie hydraulique.
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portent des charges égales au tiers de la charge élémentaire; mais ces particules ne se
rencontrent jamais à l’état libre, tout au moins aux énergies atteignables sur Terre,
même dans les plus grands accélérateurs de particules.

La découverte de la quantification de la charge électrique par J.J. Thompson en 1896
précède de quatre ans celle de la quantification de l’énergie. Les physiciens essayaient
depuis 1860 de comprendre et de modéliser le rayonnement du corps noir, c’est-à-dire
d’un objet qui absorbe toute la lumière, et l’énergie qu’elle transporte, sans la réfléchir
ni la transmettre; les petites mangeoires pour oiseaux que l’on suspend aux arbres du-
rant l’hiver en sont une illustration: le trou d’entrée est noir parce qu’il laisse entrer la
lumière qui n’en ressort jamais. En 1900, Max PLANCK découvrit la formule qui ren-
dait compte correctement de la répartition spectrale du rayonnement électromagnéti-
que à l’intérieur d’une telle enceinte, c’est-à-dire de la distribution de l’intensité du
rayonnement en fonction de sa longueur d’onde ou de sa fréquence. Pour expliquer sa
formule, découverte par des essais successifs, par un modèle physique, il dut recourir
à ce qu’il jugea comme un simple artifice de calcul. Il admit que l’énergie échangée
entre les parois et le champ électromagnétique ne pouvait l’être qu’en des multiples
entiers de «particules élémentaires d’énergie», de quanta d’énergie dont la valeur
s’exprime par:

(3.24)

où h représente le quantum d’action (grandeur résultant du produit d’énergie et de
temps), f la fréquence du rayonnement électromagnétique (de la lumière) envisagé, λ
sa longueur d’onde et c la vitesse de la lumière. La grandeur h, la constante de
PLANCK, vaut 6.67·10-34 J s. Sa petitesse est responsable du fait qu’elle ne manifeste
sa présence qu’au niveau atomique et sub-atomique.

Cinq ans plus tard, Albert EINSTEIN expliqua entre autres l’effet photoélectrique (arra-
chage par la lumière d’électrons de la surface d’un métal) en admettant que la lumière
elle-même était quantifiée, c’est-à-dire qu’elle était constituée de particules que l’on
appela les photons.

Les développements qui suivirent ces deux révolutions aboutirent à l’élaboration, es-
sentiellement entre 1920 et 1925, d’une théorie totalement nouvelle, la physique quan-
tique. C’est cette théorie qui permet entre autres de comprendre pourquoi un matériau
est un bon ou un mauvais conducteur de l’électricité.

3.6.2 Influence de la quantification sur la conduction de l’électricité

Jusqu’à la fin du XIXe siècle, on pensait que les charges mobiles étaient positives.
Après la découverte de l’électron par J.J. Thomson en 1896, on comprit que, dans les
métaux, c’étaient eux qui transportaient la charge électrique. Comment se déroule ce
processus?

La physique quantique a permis de comprendre et d’expliquer comment, dans un ato-
me isolé, les électrons s’arrangent autour du noyau en couches successives. Celui ou
ceux qui occupent la dernière couche sont appelés électrons de valence; suivant les
éléments considérés, ils sont plus ou moins fortement liés au reste de l’atome et con-
tribuent à donner à cet atome ses propriétés physico-chimiques. Ce sont par exemple
ces électrons qui sont responsables des réactions chimiques contribuant à la formation
de molécules. Un tel électron ne peut être que dans des «états» qui correspondent à
des valeurs bien définies de l’énergie, séparées par des intervalles de valeurs inacces-
sibles. Il ne peut passer d’un état accessible à l’autre que s’il reçoit ou libère la quantité
d’énergie qui correspond à la différence des valeurs associées aux deux états respec-

E hf h
c= =
λ
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tifs. Cette transitions entre deux états se fait par absorption ou émission d’un photon
dont la fréquence ou la longueur d’onde satisfait la relation donnée par
l’équation (3.24). Mais lorsqu’un tel atome fait partie d’un solide, il interagit avec ses
voisins, et ses «états» possibles ne correspondent plus à des énergies bien définies,
mais à un continuum de valeurs, réunies en «bandes d’énergie», séparées elles aussi
par des intervalles de valeurs inaccessibles. Les bandes qui contiennent les états acces-
sibles sont appelées « bandes permises », alors que les autres sont les « bandes
interdites».

Conducteurs et isolants. Le schéma des bandes permet de comprendre pourquoi un
solide conduit où ne conduit pas l’électricité. Il y a deux situations possibles: à tem-
pérature absolue nulle, les électrons remplissent complètement la dernière bande à la-
quelle ils peuvent accéder; cette bande est la «bande de valence». La bande permise
qui se situe au-dessus de la bande de valence, la bande de conduction, est totalement
vide; on a alors affaire à un isolant. Dans le second cas, les couches peuvent se super-
poser et le remplissage des couches successives par les électrons s’arrête à un niveau
qui est inférieur à la limite supérieure d’une bande permise; on a alors affaire à un mé-
tal. La bande partiellement remplie se nomme «bande de conduction».

Semi-conducteurs. Le comportement des isolants dépend fortement de la largeur de
la bande interdite qui sépare la bande de valence de la bande de conduction. Pour cer-
tains éléments, tels que le germanium et le silicium, qui sont tétravalents, cette bande
interdite est suffisamment étroite pour que, lorsque la température augmente, des élec-
trons acquièrent assez d’énergie pour passer de la bande de valence à la bande de con-
duction, laissant un trou dans la bande de valence. Les électrons qui sont passés dans
la bande de conduction et les trous dans la bande de valence peuvent se déplacer sous

Multitude d’atomes
dans un cristal
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Bande
permise

Bande interdite

Cinq atomes
rapprochés
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individuel

∆E∆E ∆E

FIGURE 3.42 Schéma de bandes.
L’interaction entre les atomes aug-
mente le nombre d’états accessibles.
Lorsque le nombre d’atomes est im-
portant, les niveaux accessibles
occupent une bande, dite bande per-
mise. L’espace entre deux bandes
permises est une bande interdite.
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FIGURE 3.43 La largeur de la ban-
de interdite détermine le comporte-
ment électrique du matériau.
Lorsqu’elle est importante, le maté-
riau est isolant. Dans les conduc-
teur, il y a chevauchement de la
bande de valence et de la bande de
conduction. Les semi-conducteurs
sont un cas intermédiaire.
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l’effet d’un champ électrique: l’isolant est devenu faiblement conducteur: c’est un
semi-conducteur. On comprend pourquoi la résistivité d’un tel matériau diminue lors-
que la température augmente. Ils ont un coefficient de température négatif.

Comme nous l’avons mentionné à la section 2.6.2, on peut augmenter la conductivité
en remplaçant par exemple une faible proportion d’atomes tétravalents du semi-con-
ducteur par des atomes d’arsenic, qui ont un électron de valence en plus. À tempéra-
ture ambiante, l’énergie de cet électron supplémentaire est suffisante pour lui
permettre d’accéder à la bande de conduction. Cette opération, appelée «dopage» du
semi-conducteur, permet d’augmenter sa conductivité de manière contrôlée en dosant
la concentration d’atomes dopants. On peut également doper le semi-conducteur avec
des atomes trivalents, tels que le bore. Dans ce cas, l’électron manquant laisse un
«trou» dans la bande de valence. Ces trous se comportent comme des charges positi-
ves libres et contribuent ainsi à augmenter la conductivité du matériau. Dans le pre-
mier cas, on parle de dopage n, vu qu’on a apporté des porteurs de charge négative,
dans le second cas de dopage p, vu que les trous représentent une charge positive.

Résumé du chapitre
L’énergie est la grandeur physique qui participe à tous les processus et, par le fait mê-
me, elle est celle qui permet le couplage de processus auxquels participent des gran-
deurs extensives de nature différente.

L’énergie peut être accumulée dans les systèmes, elle peut circuler de l’un à l’autre,
c’est donc une grandeur extensive dont les variations sont décrites par une équation de
bilan: . Elle a une particularité importante: elle n’apparaît jamais
seule, mais toujours en compagnie d’une autre grandeur extensive. Ainsi, lorsqu’elle
s’écoule, elle le fait, transportée par le flux d’une autre grandeur extensive telle qu’un
courant de fluide ou un courant électrique. C’est de cette particularité que découle la
distinction entre les «formes» d’énergie; ces formes ne distinguent pas entre elles des
sortes différentes d’énergie, mais par l’intermédiaire de quelle grandeur physique elle
a été transportée.

Lorsqu’une telle grandeur extensive circule spontanément entre deux niveaux de son
potentiel associé, elle libère de l’énergie. On appelle puissance du processus le taux de
libération d’énergie. La puissance produite par la chute d’une grandeur X entre deux
niveaux de son potentiel est égale à , ce qui implique que la puissance
d’un processus spontané est positive. Lorsqu’une grandeur Y est contrainte à franchir
une différence de potentiel «en remontant la pente», l’énergie est liée au flux de la
grandeur Y; la puissance de ce processus contraint se calcule de la même manière, elle
est donc négative. Lors du couplage de processus faisant intervenir des grandeurs de
nature différente, l’énergie libérée par la chute de la grandeur X rend possible le pro-
cessus contraint auquel participe la grandeur Y. Ces phénomènes de libération et de
liaison d’énergie se déroulent à l’intérieur des systèmes.

Lorsque l’énergie circule entre les systèmes, elle est toujours transportée par le flux
d’une grandeur extensive, elle ne circule jamais seule. Le flux d’énergie est propor-
tionnel au flux de la grandeur extensive transporteuse et à la valeur du potentiel qui lui
est associé: . Notons que les flux d’énergie ont des valeurs relatives, puis-
qu’ils dépendent du choix du niveau zéro du potentiel (à l’exception, pour l’instant, de
l’hydraulique parce que la pression P est une grandeur absolue).

La valeur de l’énergie accumulée dans un système en même temps que la grandeur ex-
tensive X qui l’y a amenée est proportionnelle au carré de la quantité de la grandeur
accumulée et à l’inverse de la capacité (si celle-ci est constante): ∆E = 1/2 ∆X 2/CX .

� …E IE EI= + +1 2

PX X XI= −∆ϕ

I IE X X X, = ϕ
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3.6  UNE CONSÉQUENCE DE LA QUANTIFICATION DE L’ÉNERGIE

Si l’on utilise le potentiel pour caractériser le processus, l’énergie est alors proportion-
nelle à la capacité et au carré de la différence de potentiel: ∆E = 1/2 CX ·∆ϕX

2. Dans
tous les cas, l’énergie réside dans le champ gravitationnel ou électrique. Nous verrons
plus loin qu’elle peut être accumulée ailleurs que dans un champ.
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Questions
1. Comment doit être conçue une expérience de chauffage d’eau

pour assurer que le processus qui entraîne le chauffage donne
toujours le même résultat? Pourquoi le chauffage de l’eau
avec un thermoplongeur est-il une expérience simple pour in-
troduire une mesure de la puissance électrique?

2. Quel est le diagramme de processus d’une batterie? Pourquoi
la batterie doit-elle être idéale si vous souhaitez déterminer
l’énergie libérée à partir des mesures des grandeurs électri-
ques (tension et intensité du courant électrique)?

 

Exercices
1. Estimez la puissance des chutes du Niagara.

2. Trois lampes identiques sont montées dans un circuit
(figure 3.44). Que est le rapport des puissances de la lampe L1
et de la lampe L2?

3. Un fil de longueur totale L est connecté à une certaine tension.
Il est constitué d’une partie ayant une résistivité ρ1 une lon-
gueur L1 et une partie de résistivité ρ2 et de longueur L2. Les
deux parties ont la même section. Quel doit être le rapport des
longueurs pour que la puissance électrique soit la même pour
les deux parties?

4. Un condensateur déchargé est connecté à une batterie et une
résistance. (a) Esquissez le diagramme de processus (pour les
porteurs et les flux d’énergie) pour les trois éléments du cir-
cuit. (b) Expliquez comment déterminer combien d’énergie
chaque élément a absorbée ou émise au total.

 

Problèmes
1. Une expérience doit démontrer que le produit de la tension et

du courant électrique est égale à la puissance électrique. Vous
disposez d’un récipient que vous pouvez isoler thermique-
ment, d’un thermoplongeur, d’un voltmètre et d’un ampère-
mètre, ainsi que d’un thermomètre et d’un chronomètre, et de
l’eau à profusion. Vous ne savez rien sur le comportement
thermique de l’eau. Vous ne savez pas, par exemple, si la
température de l’eau croît linéairement avec la quantité
d’énergie ajoutée, indépendamment de la température à
laquelle se déroule le processus. Comment concevez-vous
l’expérience?

L1Batterie

L2

+

FIGURE 3.44
Exercice 2

2. Comparaison de la surface requise pour une installation
hydroélectrique et une installation solaire. Données relatives
à l’installation hydroélectrique: la hauteur moyenne du bas-
sin (à parois verticales) est de 200 m au-dessus des turbines.
L’eau soutirée en une année correspond à une baisse de
niveau de 30 m. Le rendement de l’installation est de 85%.
Données relatives à l’installation photovoltaïque: en Suisse,
le rayonnement moyen sur une surface horizontale (altitude
solaire, jour, nuit et mauvais temps pris en compte) est 1/10
de la constante solaire de 1360 W m-2. Le rendement de
l’installation est de 9%. De combien l’aire de la surface de
l’installation solaire doit-elle être plus grande ou plus petite
que celle du bassin d’accumulation si toutes deux ont la
même puissance moyenne calculée sur l’année.

3. Un morceau de fil qui a une résistance de 10 Ω à une tempé-
rature de 20°C est connecté à des tensions variables. On
mesure le courant (voir tableau). Le coefficient de tempéra-
ture de la résistance est 10–2 K–1. Déterminez comment la
puissance électrique dans le fil dépend de la différence de
température par rapport à 20°C.

4. Un moteur diesel ayant un rendement de 40% entraîne un
générateur de rendement égal à 85%. Il consomme 20 L de
carburant par heure. Un litre libère une énergie équivalente à
40 MJ. (a) Le générateur délivre une tension de 380 V. Que
vaut l’intensité du courant? (b) Que valent les flux d’énergie
qui refroidissent le moteur et le générateur?

5. Un panneau solaire possède la caractéristique courant-ten-
sion de la figure 3.45. La tension à vide est de 20 V, le cou-
rant de court-circuit de 3.0 A. Nous approximons la
caractéristique par la fonction I(U) = a – b·Un, avec n = 8.
(a) Déterminez les coefficients a et b. (b) Quelle devrait être
la valeur de la résistance de charge pour que le système tra-
vaille au maximum de sa puissance?

6. On veut remplir un lac artificiel de grande surface et de faible
profondeur au moyen d’une conduite horizontale de 10 km de
longueur. Initialement, le lac est vide, et son contenu final
doit être de 105 m3 d’eau. La résistance de la conduite est de
type ohmique (flux volumique proportionnel à la différence
de pression), et la chute de pression linéaire est de 100 Pa m-1

pour un débit de 1.0 m3/s. Pendant le remplissage du bassin,
l’eau s’évapore à un rythme constant de 0.1 m3 s-1. (a) De
combien d’énergie aura-t-on besoin pour remplir le lac si le

 

TABLEAU 3.7 Problème 3.

U / V 44 78 110

IQ / A 2.24 2.58 2.74

Résistance
de charge

Cellules solaires

U / V

IQ / A
FIGURE 3.45
Problème 5
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débit constant est de 0.50 m3 s-1? (b) Quelle valeur devrait-on
donner à ce débit volumique (constant) pour que l’énergie
nécessaire au remplissage soit minimale?

7. On doit pomper de l’huile d’olive à travers une conduite verti-
cale de 20 m de longueur. La viscosité de l’huile d’olive est de
0.081 Pa·s, sa masse volumique de 910 kg m-3. La conduite a
un diamètre de 5.0 cm. Le flux volumique souhaité est de
10 L s-1. L’écoulement obéit à la loi de HAGEN-POISEUILLE.
(a) Quelle doit être la puissance minimale de la pompe ?
(b) Quelle différence de pression la pompe doit-elle fournir?

8. Un réservoir cylindrique de 20 cm de diamètre est rempli de
31.4 L d’une huile ayant une viscosité de 0.20 Pa s et une
masse volumique de 800 kg m-3. L’huile s’écoule du fond à
travers une conduite horizontale de 1.0 m de longueur et de
5.0 mm de diamètre (figure 1.31). (a) Que vaut le flux volu-
mique initial? (b) Après combien de temps le niveau sera-t-il
tombé à 0.40 m? (c) Que vaut, à cet instant, le taux de libéra-
tion d’énergie dû au frottement interne du fluide?

9. Une cuve est remplie par le bas au moyen d’une pompe à tra-
vers une longue conduite horizontale (figure 3.46). La pompe
génère une différence de pression constante. (a) Jusqu’à quel
niveau peut-on remplir la cuve? (b) Esquissez le diagramme
de processus pour l’énergie et ses porteurs. (c) Esquissez le
diagramme du flux volumique, des différences de pression et
des flux d’énergie pour la pompe, la conduite et la cuve.

10. Une cuve de section égale à 2.0 m2 est remplie par le bas
d’huile d’olive à travers une conduite horizontale en 1000 s
(figure 3.46). Le niveau final doit être de 5.0 m. La conduite a
une longueur de 20 m et un diamètre de 6.0 cm. Le flux volu-
mique est maintenu constant. La masse volumique de l’huile
est de 910 kg m-3, sa viscosité de 0.081 Pa s. (a) Représentez
graphiquement la puissance de la pompe en fonction du
temps. (b) De combien d’énergie a-t-on besoin pour ce
processus ? (c) Combien d’énergie a-t-on stockée dans la
cuve?

11. Un condensateur chargé (capacité C, tension U0) est con-
necté à travers une résistance R à un condensateur identi-
que, déchargé. Le courant qui s’établit après fermeture de
l’interrupteur décroît de manière exponentielle. (a) Que
vaut l’intensité initiale du courant? (b) Appliquez le bilan
d’énergie à chacun des condensateurs. Quelle partie de
l’énergie initiale est encore stockée à la fin dans les deux
condensateurs?

Cuve

Pompe

FIGURE 3.46
Problème 9

12. Un condensateur déchargé et une résistance de 20 Ω sont
connectés en série à une batterie. On mesure l’évolution dans
le temps de la tension du condensateur (figure 3.48). (a) Que
vaut la puissance électrique dans la résistance à t = 0.030 s?
(b) Quel est, au même instant, le taux de variation de l’éner-
gie du condensateur ? (c) Utilisez l’équation de bilan de
l’énergie pour déterminer le taux de libération d’énergie de la
batterie.

13. On remplit de mercure un tube en U de diamètre intérieur
égal à 1.5 cm. La longueur totale de la colonne de fluide est
de 0.60 m. Initialement, le niveau du fluide dans la branche
gauche dépasse de 30 cm celui de la branche droite. À cet
instant, le fluide est au repos. (a) Déterminez l’énergie stoc-
kée dans cette capacité hydraulique. (b) À quel taux le flux
volumique augmente-t-il à l’instant initial ? (c) Que vaut
alors le taux de variation de l’énergie de la capacité
hydraulique? d) Que vaut le taux de variation de l’énergie du
fluide en mouvement? e) Négligez les frottements. Que vaut
le flux volumique à l’instant où les niveaux sont égaux dans
les deux branches?

14. Un thermoplongeur dans une bouilloire est connecté à 220 V.
À 20°C, sa résistance électrique vaut 160 Ω . Elle augmente
linéairement avec la température, et le coefficient de tempé-
rature de la résistance vaut 4.0·10–3 K–1. Le transfert d’éner-
gie du thermoplongeur à l’eau est déterminé par le coefficient
de transfert de la chaleur de 100 W m-2 K-1. (Le flux d’éner-
gie du thermoplongeur à l’eau est proportionnel à la diffé-
rence de température entre l’eau et le thermoplongeur. Le
flux d’énergie est le produit du coefficient de transfert de la
chaleur, de l’aire de la surface, et de la différence de tempéra-
ture entre le plongeur et l’eau.) L’aire de la surface du ther-
moplongeur est de 0.020 m2. Que vaut le flux d’énergie vers
l’eau?

R

C C

FIGURE 3.47
Problème 11

0

5

10

15

20

0.00 0.02 0.04 0.06 0.08 0.10 t / s

U
C

/V

FIGURE 3.48
Problème 12
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15. Un condensateur de capacité égale à 2.0 µF est connecté en
série avec une résistance et une batterie de 100 V. Après avoir
été chargé, il est déconnecté de la batterie et déchargé dans
un second circuit électrique ayant une résistance de 5.0 kΩ .
Durant le processus de décharge, l’intensité du courant élec-
trique varie selon l’expression I(t)= Io exp(–t/RC).
(a) Déterminez la tension sur le condensateur en fonction du
temps. (b) Esquissez qualitativement chaque flux d’énergie
par rapport au condensateur et à la résistance en fonction du
temps (combien de flux d’énergie y a-t-il ?) (c) Déterminez
combien d’énergie était stockée dans le condensateur avant
qu’on le décharge.
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Beaucoup d’écoulements dans la nature manifestent une sorte d’inertie: leurs varia-
tions entraînent des effets observables. En général, il n’est pas possible de faire démar-
rer ou d’arrêter instantanément des écoulements; il leur faut du temps pour varier.

Ce comportement est appelé induction. Les phénomènes inductifs abondent lors
d’écoulements de fluides, d’électricité et de quantité de mouvement. Dans ce chapitre,
nous étudierons ses effets lorsqu’elle se manifeste lors de l’écoulement de fluide ou
d’électricité. Tout d’abord, nous verrons comment l’adjonction de l’induction permet
de construire des modèles plus réalistes des processus dynamiques. Après l’avoir
énoncée, nous utiliserons la loi d’induction lors de l’élaboration de modèles de circuits
incluant des éléments résistifs et inductifs. Puis, nous jetterons un regard sur deux élé-
ments inductifs en hydraulique et en électricité. Finalement, nous étudierons les os-
cillations qui apparaissent dans les systèmes contenant des capacités et des
inductances.

 

4.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

Dans cette section, nous allons mettre en évidence des comportements nouveaux qui
apparaissent lors de l’écoulement de grandeurs extensives telles que les liquides ou
l’électricité.

 

4.1.1 Démarrage d’un courant d’eau

Lors de l’ouverture d’un robinet, par exemple lors de la vidange d’un réservoir, le cou-
rant d’eau n’atteint pas instantanément sa valeur stationnaire. On peut l’observer en
filmant l’établissement d’un courant de liquide à la sortie d’une conduite horizontale.
La portée du jet augmente progressivement puis se stabilise finalement (fig. 4.1).

1 2

43

t

Ouverture de
la conduite

t / s

B

B

B

B

B

B
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B B

B B B B
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L
s-1

∆P
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FIGURE 4.1 Établissement d’un
courant d’eau: (a) dispositif
expérimental; (b) instantanés extraits
de la séquence vidéo; (c) variation de
la pression entre les extrémités de la
conduite; (d) variation de l’intensité
du flux (en unités arbitraires obte-
nues à partir de la portée du jet).
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Interprétation. L’eau contenue dans le tuyau possède une certaine inertie, ce qui l’em-
pêche de se mettre en mouvement instantanément; elle doit être accélérée. Cette iner-
tie des courants de fluide est à l’origine du phénomène d’induction.

 

4.1.2 Coup de bélier

Si l’on ferme brusquement un robinet, il peut arriver que l’on entende un bruit à carac-
tère explosif qui peut se répercuter dans les conduites.

Interprétation. Lors de la fermeture brusque du robinet, l’eau entraînée par son inertie
a tendance à poursuivre son mouvement, ce qui engendre une forte augmentation de
la pression en amont de la vanne. C’est cette surpression qui, en se libérant, provoque
l’onde de choc à l’origine du bruit explosif. À nouveau, c’est l’inertie du fluide qui
provoque l’apparition de ce phénomène de type inductif.

 

4.1.3 Oscillations entre deux réservoirs communicants

Il peut arriver que l’établissement de l’équilibre entre deux vases communicants ne se
fasse pas comme nous l’avons observé au chapitre 1 (section 1.1.1), mais que le liqui-
de oscille entre les deux réservoirs un certain nombre de fois avant de s’immobiliser.
C’est le cas lorsque l’on déséquilibre une colonne de mercure contenue dans une tube
en U (fig. 4.2).

Interprétation. Lorsque le fluide qui s’est mis en mouvement à cause de la différence
de niveau atteint la position d’équilibre, il poursuit son mouvement à cause de son
inertie; il ne peut pas être stoppé instantanément. Nous avons ici une nouvelle confir-
mation que l’inertie entraîne l’apparition du phénomène d’induction.
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Jusqu’ici, nous avons tenu compte de deux phénomènes dans notre description de la
nature: si des fluides ou de l’électricité sont stockés dans des capacités, la différence
de potentiel augmente sur ces dispositifs; et si ces grandeurs s’écoulent à travers des
résistances, le potentiel associé diminue dans le sens de l’écoulement. Comme nous
allons le voir, les modèles de processus dynamiques qui n’utilisent que des éléments
capacitifs et résistifs ne rendent pas compte des observations faites à la section 4.1.

 

4.2.1 Courants dans des systèmes RC et comportement réel

Considérons un circuit électrique simple, tel que celui de la figure 4.3, consistant en
une source, une résistance et un interrupteur. Lors de la fermeture du circuit, un cou-
rant se met à circuler; selon la loi de résistance énoncée au chapitre 2, son intensité est
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FIGURE 4.2 Oscillation d’une co-
lonne de mercure dans un tube en U.
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FIGURE 4.3 Lorsque le circuit est
fermé, l’intensité du courant saute
instantanément à la valeur calculée à
partir de la loi de résistance.
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(4.1)

où UR(t) est la tension sur la résistance. Si cette grandeur est constante, le courant l’est
aussi. Notons que, selon ce modèle, le courant atteint la valeur calculée à partir de
l’équation (4.1) aussitôt que le circuit est fermé: IQ suit UR instantanément (fig. 4.3).

Comme second exemple, étudions le modèle de deux réservoirs communicants décrits
au moyen des lois de capacité et de résistance. La pression au fond d’un réservoir est
déterminée par le niveau du fluide, et la différence de pression entre la sortie de l’un
des réservoirs à l’entrée de l’autre est responsable de l’intensité du courant de fluide à
travers la conduite de raccordement, selon une relation analogue à l’équation (4.1).

Dans les modèles du chapitre 1, le comportement du système est décrit par les niveaux
des fluides en fonction du temps, comme dans la figure 4.4. Au moment de l’ouverture
de la vanne, le courant de fluide prend sa valeur maximale, pour décroître ensuite et
atteindre une valeur nulle au moment où les deux niveaux s’équilibrent. Cette condi-
tion rend impossible l’apparition d’oscillations du fluide entre les deux réservoirs.

Le saut instantané d’un courant à une autre valeur requise par la loi de résistance dans
l’équation (4.1) est certainement irréaliste, comme le montre l’observation de la
section 4.1.1, illustrée par la figure 4.1d. En outre, nous savons que le fluide peut os-
ciller entre les deux réservoirs, ce que nous a révélé l’expérience de la section 4.1.3.
Voilà pourquoi des modèles construits uniquement à partir de réservoirs et de résistan-
ces (systèmes RC) ne peuvent pas expliquer complètement ce que nous observons
dans la nature. Nous devons apprendre à décrire les conditions qui entraînent des va-
riations de l’intensité de courants, ou comment les variations de courants induisent
d’autres phénomènes.

 

4.2.2 Induction et force d’entraînement inductive

Examinons l’écoulement d’un liquide émergeant d’une cuve à travers une conduite
horizontale, comme dans la figure 4.5 et dans l’expérience de la section 4.1.1. Si la
sortie de la conduite (point B) est bouchée, la pression sera la même partout dans la
conduite, et il n’y aura aucun écoulement. Si nous retirons le bouchon, la pression du
fluide en B devient égale à la pression ambiante, provoquant l’apparition d’une diffé-
rence de pression entre A et B. Nous savons que le courant mettra un certain temps
pour croître de zéro à sa valeur maximale, pour se mettre ensuite à décroître, vu que
la pression en A diminue avec le niveau de fluide.

Que le courant ait besoin d’un certain temps pour passer de zéro à sa valeur maximale
est un fait inexplicable en termes de capacité et de résistance. Notons que le courant
est nul à l’instant initial, alors même que la différence de pression ∆pAB n’est pas nul-
le. Cette différence de pression ne peut donc pas servir à entretenir un courant selon la
loi de résistance IV = – ∆PR /RV . En d’autres termes, ∆PR ≠ ∆PAB.

Bien au contraire, au tout début, IV = 0, et donc ∆PR = 0. Cela signifie que toute la
différence de pression ∆PAB doit être à l’origine d’un nouveau processus, la croissan-
ce du flux volumique. Vu que la variation du courant est liée à ce que nous avons ap-
pelé un comportement inductif, nous appellerons différence de pression inductive ∆PL
la différence de pression responsable de la croissance du courant. Au premier instant,
lorsque le liquide commence à s’écouler, on a ∆PL = ∆PAB.

Le phénomène d’induction est mesuré par la vitesse à laquelle le flux évolue, c’est-à-
dire en termes de taux de variation du flux dIV /dt. La valeur initiale du taux de varia-
tion du courant peut être représentée par la pente de la courbe IV –t à l’instant où elle

I t
U t

RQ
R

Q

( ) = ( )

FIGURE 4.4 Lorsque l’on ouvre la
vanne de la conduite reliant deux
cuves de fluide, le courant de fluide
saute instantanément à sa valeur
initiale.
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Ouverture de la conduite
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Ouverture de la conduite
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FIGURE 4.5 Lors de la vidange d’un
fluide à travers une longue conduite
horizontale, le courant ne peut pas at-
teindre instantanément la valeur cal-
culée selon la loi de résistance. Il
croît graduellement.
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commence à croître à partir de IV = 0 (fig. 4.6). Pour une différence de pression don-
née, le courant croîtra plus ou moins rapidement en fonction des propriétés physiques
du système. Si, par exemple, la quantité de fluide à mettre en mouvement est faible, la
différence de pression ∆pL entraînera une croissance rapide de l’intensité IV .

Comme le courant n’est plus nul, il doit également y avoir une différence de pression
associée à l’écoulement à travers l’élément résistif. En d’autres termes, la différence
de pression ∆PAB n’est plus uniquement responsable de la croissance du flux. Et c’est
exactement ce que nous observons: la pente de la courbe IV –t décroît avec le temps.
Nous pouvons nous attendre à ce que le courant croisse tant que son intensité est infé-
rieure à ∆PAB/RV..

Nous voyons donc que, dans une conduite traversée par un courant d’intensité varia-
ble, la différence de pression entre l’entrée et la sortie se répartit sur une contribution
inductive qui est responsable de la variation de l’intensité et une contribution résistive
qui sert à entretenir le courant. La pression résistive diminue toujours dans le sens du
courant. Par contre, la pression inductive diminue également dans le sens du courant
lors d’une augmentation de l’intensité, alors qu’elle augmente dans le sens du courant
lors d’une diminution de l’intensité, comme l’a révélé l’observation de la section 4.1.2
(coup de bélier).

La cause des effets inductifs dans les circuits électriques est moins évidente. Elle est
liée au champ magnétique engendré par la circulation du courant électrique. Si le cou-
rant varie, le champ magnétique en fait autant. La croissance ou la décroissance du
champ magnétique entraîne l’apparition d’une tension induite UL respectivement po-
sitive ou négative (sections 4.3 et 4.5).

1. Pourquoi la différence de pression dans le sens de l’écoulement n’est-
elle pas due à la résistance du fluide lorsque l’écoulement vient de
commencer?

2. Le circuit électrique de la figure 4.3 vient d’être fermé. Pourquoi la ten-
sion UR doit-elle être égale à zéro, et pourquoi cela pose-t-il problème?

3. Pourquoi un modèle RC d’un tube en U rempli de mercure ne prévoit-il
pas les oscillations du fluide?

4. Une pompe fournit une différence de pression constante ∆PAB le long d’une conduite con-
tenant un fluide. Initialement, le fluide est immobile. Pourquoi pouvons-nous prévoir que
l’intensité du flux IV croîtra jusqu’à atteindre la valeur ∆PAB/RV?

5. Une différence de pression inductive négative est associée avec une augmentation de
l’intensité du courant de fluide. Pourquoi une tension positive est-elle responsable d’une
augmentation de l’intensité du courant électrique?

1. Si l’écoulement est juste en en train de démarrer, le flux volumique est
nul. De ce fait, la différence de pression résistive ∆PR = – RVIV doit
également être nulle.

2. Le courant électrique est encore nul, ce qui signifie que UR = RQIQ est
aussi égal à zéro. En vertu de la loi des mailles, la somme de toutes les
tensions dans le circuit doit être égale à zéro. Sachant que UB ≠ 0, et
UR = 0, nous sommes confrontés à une contradiction que nous ne pou-
vons éliminer qu’en admettant la présence dans le circuit d’une tension supplémentaire qui
est responsable du taux de variation du courant.

FIGURE 4.6 Pour une différence de
pression inductive donnée, le courant
croîtra d’autant plus rapidement que
le quantité de fluide dans la conduite
est faible.
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3. Dans un système RC, le courant devient nul dès que les niveaux de fluide sont les mêmes.
Vu que cela signifie également que la différence de pression est nulle, le fluide ne peut plus
continuer à circuler.

4. Lorsque le courant a atteint cette intensité, la différence de pression résistive est égale à la
différence de pression ∆PAB. C’est pourquoi il n’y a plus de différence de pression disponi-
ble pour accélérer le fluide.

5. Une tension est définie en tant que différence de potentiel électrique négative. Nous avons
donc dans ce cas une différence de potentiel électrique négative associée à un courant
d’intensité croissante.

4.3 LOI D’INDUCTION

Nous avons découvert que les variations de l’intensité de courants sont liées à des dif-
férences de potentiel et voulons étudier la nature précise de cette relation. Nous com-
mencerons par des circuits hydrauliques, puis nous utiliserons l’analogie entre
l’hydraulique et l’électricité pour formuler également la loi d’induction pour les pro-
cessus électriques.

4.3.1 Loi d’induction en hydraulique

L’écoulement de fluides dans des conduites droites montre que, lorsqu’un courant
commence à circuler, le taux de variation du flux IV dépend de la différence de pres-
sion disponible pour accélérer le fluide, ce qui correspond à la différence de pression
∆PAB. Les expériences montrent que la pente initiale de la courbe IV –t est propor-
tionnelle à la différence de pression sur la conduite. Le taux de variation du flux IV et
la différence de pression inductive sont en fait toujours proportionnels, et pas seule-
ment lorsque le courant démarre. Nous devons simplement noter que la différence de
pression inductive n’est plus égale à ∆PAB dès qu’apparaissent les frottements dans
le fluide.

L’induction hydraulique est la conséquence de l’inertie du fluide qui s’écoule à travers
une conduite. Il devrait donc être possible de dériver une relation entre le taux de va-
riation de courants et les différences de pression inductive sur la base des lois de la mé-
canique, ce qui sera fait dans l’exemple 8.1 et à la section 11.9.3. Pour l’instant, nous
considérons les observations comme l’expression d’une loi hydraulique.

Loi d’induction: La différence de pression inductive ∆PL et le taux de va-
riation du flux volumique dIV /dt sont proportionnels. La constante de pro-
portionnalité est l’inductance LV du système (fluide dans une conduite):

(4.2)

Un courant croissant dans le temps est associé à une différence de pression
négative, un courant décroissant entraîne une différence de pression posi-
tive (fig. 4.7). L’inductance LV se mesure en Pa s2 m-3.

 ∆P L IL V V= − �

SYSTÈME

IV

PA PB

IV

IV

Conduite

PA PB

a. Courant croissant

IV

IV

Conduite

PBPA

b. Courant décroissant

FIGURE 4.7 La croissance et la
décroissance de courants sont
couplées à des différences de
pression inductives respectivement
négatives et positives.
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EXEMPLE 4.1. Estimation d’une inductance hydraulique.

De l’eau est immobile dans une conduite. À l’ouverture du robinet, la différence de pression sur
la conduite est de 2.0 bar. Le taux de variation initial du courant est de 2.0 L s-2. (a) Que vaut
l’inductance? (b) Quel serait le taux de variation si la conduite était deux fois plus longue?

SOLUTION: (a) L’inductance est calculée à partir de l’équation (4.2):

Cette valeur est assez courante pour des conduites de fluides. Un oléoduc de plusieurs centaines
de kilomètres de longueur a une inductance semblable.

(b) Si tous les autres facteurs sont maintenus constants, le doublement de la longueur de la con-
duite double la quantité d’eau à accélérer. Nous nous attendons donc à voir augmenter l’induc-
tance d’un facteur 2. Le taux de variation initial du flux deviendrait donc égal à 1.0 L s-2.

B

 

4.3.2 Différences de pression dans les circuits hydrauliques

Il est très important de bien comprendre la nature d’une différence de pression sur une
conduite contenant un fluide (fig. 4.8). Comme nous venons de le voir, la différence de
pression de A à B fournie, par exemple, par une pompe, peut être mise en relation avec
plusieurs processus. La pression peut diminuer dans le sens du courant à cause des
frottements dans le fluide, mais elle peut tout aussi bien augmenter ou diminuer de A
à B parce que le courant varie dans le temps. Nous connaissons deux extrêmes: soit le
courant est stationnaire et toute la différence de pression est liée aux frottements, soit
le courant est nul à l’instant considéré, et toute la différence de pression est unique-
ment due à la variation du courant. Dans ces deux cas extrêmes, nous avons respecti-
vement ∆PAB = ∆PR, ou ∆PAB = ∆PL. En général, la différence de pression est due
simultanément aux deux phénomènes, ce qui signifie qu’elle est répartie sur les deux
processus:

 

(4.3)

Cela peut être extrêmement bien visualisé dans les circuits électriques (fig. 4.8) où les
inductances et les résistances sont des éléments séparés, montés en série (section 4.3.3
). Nous pouvons imaginer que la pression diminue (ou augmente) d’abord à cause du
processus inductif, puis à cause des frottements. La somme des différences de pression
inductive et résistive est égale à la différence de pression de A à B.

Souvenons-nous que ∆PR ne peut être que négatif (dans le sens de l’écoulement), alors
que ∆PL peut, comme le montre l’équation (4.3), prendre l’un ou l’autre signe, ce qui
veut dire que ∆PAB peut être négatif ou positif. Une valeur positive de ∆PL signifie que
le flux de fluide décroît dans le temps.

 

EXEMPLE 4.2. Différences de pression résistive et inductive.

De l’eau s’écoule d’une cuve à travers une conduite horizontale comme dans la figure 4.5. La
conduite a une longueur de 1.75 m et un rayon de 2.0 mm. Le niveau initial de l’eau dans la cuve
est de 0.20 m. Les graphiques de la fig. 4.9 montrent le comportement modélisé du système avec
et sans prise en compte de l’induction. L’écoulement est toujours laminaire. (a) Déterminez l’in-
ductance et la résistance du fluide dans la conduite. (b) Calculez les différences de pression in-
ductive et résistive pour t = 20 s. (c) Déterminez la fonction IV(t) après un temps suffisamment
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long (t > 10 s), et calculez la section de la cuve. (d) Déterminez la différence de pression totale
sur la conduite à l’instant t = 20 s, et évaluez le volume d’eau contenu dans la cuve à cet instant.

SOLUTION: (a) Comme dans l’exemple 4.1, l’inductance peut être évaluée si nous connaissons
la différence de pression inductive et le taux de variation du flux volumique. On peut obtenir ce
dernier graphiquement à partir de la pente de la courbe à l’instant t = 0 s (fig. 4.9b). Une déter-
mination graphique donne une valeur de 6·10–6/0.45 m3 s-2 = 1.3·10–5 m3 s-2. La différence de
pression inductive à l’instant t = 0 s est égale à la différence de pression sur la colonne de liquide
dans la cuve:

Il en résulte pour l’inductance

La résistance pour l’écoulement laminaire est donnée par

(b) Nous obtenons la différence de pression inductive en appliquant la loi d’induction, pour
autant que nous connaissions le taux de variation du courant. Cette grandeur peut être estimée
graphiquement à partir du premier graphique (fig. 4.9a), ce qui donne dIV/dt (t = 20 s) ≈
– 3.7·10–6 m3 s-1 / 30 s = – 1.2·10–7 m3 s-2. Ainsi

La différence de pression résistive est calculée sur la base de la loi de résistance

Nous pouvons lire sur le premier graphique (fig. 4.9a) l’intensité du courant à l’instant t = 20 s.

(c) Après la montée rapide du courant, la phase inductive est pratiquement terminée et les dif-
férences de pression inductives deviennent très petites. La fonction IV(t) est pratiquement iden-
tique à celle que l’on obtiendrait sans la prise en compte de l’induction. Pour cette raison, nous
pouvons déterminer une approximation de IV(t) en calculant la solution de la vidange de la cuve
qui ne prend en compte que la capacité et la résistance:

Nous avons IV0 = 7.0·10–6 m3 s-1. Le courant décroîtra à 1/e de la valeur initiale en l’espace
d’une constante de temps τ. L’examen du premier graphique (fig. 4.9a) montre que τ ≈ 30 s. Ce
qui donne CV = τ/RV = 1.08·10–7 m3 Pa-1. À partir de là, nous pouvons calculer la section de la
cuve

(d) La différence de pression totale est la somme des contributions inductive et résistive:

C’est pourquoi le niveau d’eau est de 0.10 m. Le volume d’eau peut être calculé au moyen de
la capacité que nous obtenons à partir de la constante de temps τ = RVCV; d’où, CV = τ /RV =
30/2.8·108 m3 Pa-1 = 1.1·10–7 m3 Pa-1. Nous avons maintenant
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FIGURE 4.9 Graphiques représen-
tant le flux volumique en fonction du
temps dans un système hydraulique.
La courbe qui commence à 7E-6 uni-
tés a été calculée sans prise en comp-
te de l’induction. La figure b est un
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Naturellement, nous pourrions déterminer la quantité d’eau qui s’est échappée de la cuve durant
l’intervalle de temps allant de 0 s à 20 s (en évaluant l’aire entre la courbe IV–t et l’axe t), et en
déduire la valeur du volume initial.

B

4.3.3 Loi d’induction en électricité

L’électricité et l’hydraulique ont énormément de points communs. Les deux phénomè-
nes sont décrits en termes de grandeurs extensives que nous imaginons en train de
s’écouler et d’être stockées dans des systèmes. Les évolutions de la charge électrique
et des quantités de fluides sont toutes deux décrites par une équation de bilan. Chacune
de ces grandeurs est associée à un potentiel, et les différences de ces potentiels ont une
somme nulle le long d’un circuit fermé. Les différences de potentiel liées aux proces-
sus sont responsables pour les flux résistifs, et dans les deux domaines nous avons in-
troduit des lois de capacité et de résistance.

Loi d’induction. L’analogie se prolonge vers les phénomènes inductifs (tab. 4.1). Il est
tout aussi impossible d’avoir des courants électriques que des écoulements hydrauli-
ques qui sautent instantanément à des valeurs déterminées uniquement par les lois de
résistance, et il existe des circuits électriques qui peuvent osciller. Ces phénomènes
sont la conséquence de la combinaison d’éléments inductifs avec ceux que nous avons
déjà utilisés dans la description des circuits électriques. Dans les éléments inductifs,
le taux de variation du courant électrique est lié à une tension induite donnée par la loi
d’induction:

Champs magnétiques. La différence fondamentale entre l’induction électrique et hy-
draulique provient de l’origine du phénomène. Vu qu’ils ont une certaine inertie, les
fluides ont besoin d’une différence de pression pour pouvoir varier leur débit. En re-
vanche, l’induction électrique est due au fait qu’un champ magnétique est couplé au
courant électrique. Les courants électriques produisent un champ magnétique dont
l’intensité dépend de celle du courant. Si nous faisons croître un courant, le champ ma-
gnétique associé doit croître lui aussi. Le phénomène de la croissance du champ doit
être causé par le courant électrique. L’électricité est la cause d’autres phénomènes
lorsqu’elle circule en descendant ou en remontant la pente: c’est la source de la diffé-
rence de potentiel associée aux processus inductifs (fig. 4.10). Le rôle du champ ma-
gnétique lors des phénomènes d’induction sera expliqué en détail au chapitre 14.

Le tableau 4.1 récapitule les lois constitutives des deux domaines étudiés jusqu’à
présent, l’hydraulique et l’électricité. Il met en évidence le fait que les processus

V C P C PV C V20 20 20 1 1 10 7s s s mAB( ) ( ) ( )( )= = = ⋅ −∆ −∆ . 33 -1 3Pa Pa m⋅ = ⋅ −980 1 06 10 4.

Loi d’induction: La tension induite UL et le taux de variation du courant
électrique dIq/dt sont proportionnels. La constante de proportionnalité est
l’inductance LQ de l’élément:

(4.4)

Un courant croissant dans le temps est associé avec une tension induite
positive, un courant décroissant avec une tension UL négative. L’unité de
mesure de l’inductance électrique est le henry (H), soit 1 V s A .

 U L IL Q Q= �

1ϕ
2ϕ

Croissance du
champ magnétique

IQ

IQ

1ϕ
2ϕ

Décroissance du
champ magnétique

a. Courant électrique croissant

b. Courant électrique décroissant

FIGURE 4.10 Phénomène d’induc-
tion : (a) si un courant électrique
croît, il induit une différence de po-
tentiel qui le fait s’écouler en descen-
dant la pente, ce qui entraîne une
croissance du champ magnétique;
(b) un courant décroissant est lié à un
champ décroissant.
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fondamentaux, même s’ils n’ont pas toujours les mêmes causes, sont exprimés par
les mêmes lois. Nous rencontrerons les mêmes similitudes aussi bien en thermody-
namique qu’en mécanique.

Tensions dans les circuits électriques. Tous les éléments utilisés dans des circuits
électriques, tels que conducteurs, résistances, capacités, ont également des propriétés
inductives. Cependant, leur inductance est normalement très faible, ce qui nous permet
de les traiter comme n’ayant qu’une propriété. Pour obtenir de fortes inductances, on
utilise différentes bobines de fil conducteur, telles qu’un solénoïde (section 4.5). Dans
les diagrammes de circuit, les inductances sont représentées par des rectangles noirs
(fig. 4.11).

Si un élément d’un circuit électrique possède à la fois une résistance et une inductance,
la tension sur cet élément est la somme de la tension induite et de la tension résistive
(fig. 4.11):

(4.5)

Cette relation est analogue à celle que nous avons rencontrée dans le cas des circuits
hydrauliques et qui est exprimée par l’équation (4.3).

TABLEAU 4.1 Comparaison d’éléments hydrauliques et électriques.

Capacités Résistances Inductances

Hydraulique

Électricité
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FIGURE 4.11 Représentation d’élé-
ments inductifs et résistifs dans un
diagramme de circuit électrique.
Dans les modèles, les inductances et
les résistances sont également repré-
sentées ainsi, même si dans les élé-
ments réels, tels que de longs fils
conducteurs bobinés, ces deux pro-
priétés sont inséparables.

U U UL RAB = +

Les phénomènes de transport (de volume dans les processus hydrauliques,
de charge électrique dans les phénomènes électriques, de quantité de mou-
vement ou de moment cinétique lors du mouvement linéaire ou de rotation,
d’entropie dans les processus thermiques) ne sont pas seulement soumis à
un comportement résistif, mais également à une sorte d’inertie. Toute va-
riation de l’intensité IX du courant d’une grandeur extensive X est accom-
pagnée de l’apparition d’une différence de potentiel ∆ϕL,X. Dans sa forme
la plus simple, cette différence de potentiel est donnée par:

(4.6)

Cette différence de potentiel inductive est proportionnelle au taux de va-
riation de la grandeur X et à l’inductance LX. Le signe négatif indique
qu’une diminution du potentiel dans le sens du courant est associée à une
croissance de l’intensité du courant.

 ∆ϕL X X XL I, = − �
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1. Pourquoi n’y a-t-il pas de signe négatif dans la loi d’induction électri-
que dans l’équation (4.4) comme c’est le cas en hydraulique dans
l’équation (4.2)?

2. Considérez un circuit électrique comme dans la figure 4.11 ou une con-
duite contenant un fluide comme dans la figure 4.8. Est-il possible
d’avoir une tension négative ou une différence de pression positive de
A à B?

3. On ferme l’interrupteur dans le circuit de la figure 4.11. Pourquoi le courant électrique
atteint-il une valeur stationnaire? Comment la calcule-t-on?

1. Le loi d’induction électrique est formulée en termes de tension et non
pas de différence de potentiel. C’est ce qui justifie le changement de
signe.

2. Cette condition peut survenir si un courant diminue très rapidement,
donnant naissance à une forte tension induite négative ou à une forte
différence de pression induite positive.

3. Le courant augmente dans le temps, ce qui entraîne une augmentation de la tension sur la
résistance. Lorsque UR = – UB , nous avons UL = 0 V, et le courant ne peut plus continuer à
augmenter. La valeur de l’intensité stationnaire est déterminée au moyen de la loi de résis-
tance, en prenant UR = – UB .

4.4 MODÈLES RL DE CIRCUITS HYDRAULIQUES ET ÉLECTRIQUES

Les systèmes les plus simples qui incluent des éléments inductifs sont ceux qui sont
représentés dans les figures 4.8 et 4.11. Une pompe ou une batterie sont utilisées pour
établir respectivement une différence de pression constante et une tension constante de
A à B. Quels sont les modèles de dynamique des systèmes et le comportement du
système?

4.4.1 Démarrage et arrêt d’un courant dans un circuit RL

Parlons tout d’abord du comportement que nous nous attendons à observer, qui devrait
être le même aussi bien lors de processus hydrauliques que dans les circuits électri-
ques. Tout de suite après la fermeture des circuits, la différence de potentiel de A à B
est égale et opposée respectivement à la valeur de la différence de pression fournie par
la pompe et de la tension délivrée par la batterie. Vu que l’intensité du courant est nulle
à cet instant, les différences de potentiel résistives le sont également. C’est pourquoi
le courant doit varier à un taux dI/dt = – ∆ϕAB/L (fig. 4.12). Comme le courant aug-
mente, la valeur de la différence de potentiel (négative) due à la résistance doit le faire
également. La valeur de la différence de potentiel d’origine inductive doit donc dimi-
nuer dans le temps, ce qui entraîne une diminution de la pente du courant croissant.
Finalement, lorsque le courant atteint sa valeur stationnaire Istat = ∆ϕAB/R, la diffé-
rence de potentiel d’origine inductive est nulle, et le courant ne varie plus du tout. Na-
turellement, le processus peut être inversé: lors de la coupure d’un courant, la réaction
n’est pas instantanée, bien au contraire; le courant décroît de manière exponentielle.

Q

R

FIGURE 4.12 Comportement RL
simple: le courant croît de manière
exponentielle et tend vers une valeur
stationnaire.

t

Fermeture
du circuit

t

I

I

ABϕ∆

ABϕ∆ /R = Istat

dI/dt(0)
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Le comportement décrit ici en termes qualitatifs peut, par exemple, être facilement ob-
servé en mesurant et en affichant les grandeurs d’un circuit électrique au moyen d’un
oscilloscope (fig. 4.13)

4.4.2 Constante de temps résisto-inductive

Comme nous le verrons plus bas, le courant est une fonction exponentielle du temps.
Nous avons déjà été confrontés à ce comportement (chap. 1 et 2) et nous avons intro-
duit la notion de constante de temps résisto-capacitive. Il semble plausible que le com-
portement dans le temps de systèmes RL puisse être décrit en termes semblables. Nous
introduisons la constante de temps résisto-inductive τL qui, de manière analogue à la
procédure des chapitres 1 et 2, est mesurée par la section que la tangente à la courbe,
à l’instant de la fermeture du circuit, détermine sur l’horizontale (l’asymptote) d’or-
donnée égale à la valeur stationnaire du courant (fig. 4.14). La représentation graphi-
que nous permet de déterminer la valeur de cette constante de temps. Si X représente
la grandeur extensive (volume ou charge électrique) qui s’écoule, son taux de variation
IX(t) à l’instant initial est égal au quotient de la valeur du courant stationnaire et de la
constante de temps τL :

Mais, en vertu de la loi d’induction, à l’instant initial, le taux de variation de l’intensité
est donné (au signe près suivant le domaine considéré) par:

La comparaison des deux expressions donne:

(4.7)

La constante de temps représente également l’intervalle de temps nécessaire pour que
le courant atteigne une fraction égale à 1 – 1/e ≈ 0.64 de la valeur finale.
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FIGURE 4.13 Enclenchement et dé-
clenchement d’un courant électrique.
Le diagramme montre la tension me-
surée sur la résistance.
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4.4.3 Modèle dynamique du démarrage d’un courant

Examinons le circuit électrique de la figure 4.11. Lorsque nous fermons l’interrupteur,
le courant commence à croître pour atteindre finalement une valeur stationnaire. Cette
variation du courant est décrite par la loi d’induction: le taux de variation de l’intensité
du courant est égal au quotient de la tension induite et de l’inductance de l’élément
inductif. C’est notre point de départ pour l’élaboration du diagramme de dynamique
des systèmes et du modèle. Nous introduisons les symboles représentant la tension in-
duite UL , l’inductance LQ, et le taux de variation du courant et connectons les deux
premiers éléments avec le dernier (fig. 4.15). Ce que nous venons de faire représente
l’équation:

L’étape suivante consiste à obtenir l’intensité du courant à partir de son taux de varia-
tion par intégration:

C’est un nouvel aspect du modèle que nous sommes en train d’élaborer: nous n’avons
pas encore été confrontés à une loi exprimant le taux de variation d’une grandeur à
l’exception, indirectement, des équations de bilan où la somme de tous les courants est
égale au taux de variation de la grandeur accumulée. Ici, nous n’avons pas affaire à une
équation de bilan, mais d’un point de vue purement mathématique, il n’y a aucune dif-
férence entre ce que nous désirons faire ici, c’est-à-dire calculer le courant à partir de
son taux de variation, et calculer le contenu d’un système à partir de la somme des cou-
rants. C’est la raison pour laquelle l’opération d’intégration est représentée par un
stock (fig. 4.15). Pour obtenir le courant en fonction du temps, nous avons encore be-
soin de sa valeur initiale, qui est zéro dans le cas particulier. Un programme de dyna-
mique des systèmes obtient la solution de cette relation en utilisant les mêmes
méthodes numériques que celles qui sont utilisées dans le cas d’une équation de bilan.

Nous pouvons maintenant poursuivre la recherche de la solution. Connaissant l’inten-
sité du courant, nous pouvons calculer la tension résistive au moyen de la loi de résis-
tance et, à partir de l’équation (4.5), nous calculons la tension induite. Notez que UAB
dans la figure 4.11 est l’opposé de la valeur de US (tension de la source). Ce qui ferme
la boucle de rétroaction toujours présente dans les systèmes RL (fig. 4.15). La simula-
tion à partir de ce modèle pour une tension de 4 V, une résistance de 4 Ω et une induc-
tance de 1 H est représentée dans la figure 4.16; la constante de temps inductive est
égale à 0.25 s, comme le prédit la théorie.

On obtient le modèle de l’enclenchement du courant d’eau de la figure 4.1 en rempla-
çant, dans celui de la figure 4.15, les grandeurs électriques par les grandeurs hydrau-
liques correspondantes. À partir des données expérimentales, on peut estimer les
paramètres du système. Avec une inductance LV = 15·106 Pa s2 m-3 et une résistance
RV = 55·106 Pa s2 m-3, on atteint une adéquation quasi parfaite (fig. 4.17). La constante
de temps, donnée par l’équation (4.7), est égale à 0.28 s.

4.4.4 Description formelle des systèmes RL

En énonçant les équations équivalentes aux relations représentées dans les diagram-
mes de la figure 4.15, nous obtenons le modèle complet qui est formulé par le système
suivant:
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FIGURE 4.15 Diagramme de dyna-
mique des systèmes du modèle d’un
système RL représentant l’enclen-
chement d’un courant.
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FIGURE 4.16 Enclenchement d’un
courant électrique en présence d’un
élément inductif.
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(4.8)

En substituant les deux dernières équations du système d’équations (4.8) dans la pre-
mière, nous obtenons, après réarrangement des termes:

(4.9)

C’est une équation différentielle qui a exactement la même structure que celle qui dé-
crit la charge d’un condensateur (2.32), si l’on fait correspondre Q à IQ et CQ à LQ .
Sa solution sera donc semblable. Elle est donnée par:

(4.10)

ce que nous pouvons vérifier en substituant ce résultat dans l’équation différentielle.
Ici, τL est la constante de temps résisto-inductive exprimée par l’équation (4.7). Le
courant croît à partir de zéro pour atteindre une valeur stationnaire après un temps plus
ou moins long, déterminé par les paramètres du circuit.

EXEMPLE 4.3. Constante de temps résisto-inductive.

À partir des données de l’exemple 4.2, (fig. 4.9. (a) Déterminez graphiquement la constante de
temps inductive. (b) Comparez le résultat avec celui que vous obtenez au moyen de
l’équation (4.7). (c) Si le niveau du fluide pouvait être maintenu constant, combien de temps le
courant mettrait-il pour atteindre le 99% de sa valeur finale?

SOLUTION: (a) Le courant atteint approximativement 64% de sa valeur finale en une constante
de temps. Comme il n’y a pas d’état stationnaire, nous utilisons la valeur maximale du courant,
à savoir approximativement 6.7·10–6 m3 s-1. Le 64% de cette valeur (≈ 4.3·10–6 m3 s-1) est at-
teint environ 0.5 s après le début. Une estimation de la constante de temps est donc 0.5 s.

(b) Par le calcul, nous obtenons:

(c) Si le niveau de fluide peut être maintenu constant, la différence de pression sur la conduite
l’est aussi. Dans ce cas, nous avons à résoudre le simple problème du démarrage d’un courant
évoqué plus haut. Vu que le courant initial est égal à – UP/RV, nous avons:

ce qui peut être résolu par rapport à l’intervalle de temps inconnu:

Avec une constante de temps de 0.5 s, cette valeur devient égale à 2.3 s. Rappelons que les élec-
trotechniciens estiment qu’après 5τ le processus a pratiquement atteint le régime stationnaire.
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EXEMPLE 4.4. Circuit électrique avec inductance.

Considérez le circuit électrique de la figure 4.18. Une inductance idéale est connectée à une ré-
sistance de 24 Ω, et les deux sont montés en parallèle avec une résistance de 72 Ω. Ces trois
éléments sont branchés sur une batterie qui délivre une tension constante de 12 V. On ferme le
circuit à l’instant t = 0 s. (a) Donnez une esquisse qualitative de l’évolution dans le temps de la
tension induite (tension sur l’inductance idéale). (b) Donnez une esquisse qualitative de l’évo-
lution dans le temps de la tension sur la première résistance. Quelle est la valeur maximale de
l’intensité du courant? (c) Esquissez l’évolution dans le temps du courant à travers la batterie.

SOLUTION: Lors de la fermeture du circuit à l’instant t = 0 s, la tension sur RQ2, ainsi que sur
RQ1 et l’inductance, saute à 12 V. Dans la branche contenant l’inductance, le courant est nul, vu
qu’il n’a pas pu se mettre à croître. Vu qu’il n’y a pas d’élément inductif dans la branche de RQ2,
le courant saute instantanément à sa valeur donnée par la loi de résistance. Dans la branche con-
tenant l’inductance, le courant croîtra selon les règles discutées dans la section relative aux cir-
cuits RL; comme le montre la figure 4.14, il augmente jusqu’à ce qu’il ait atteint sa valeur
stationnaire.

(a) Comme le courant initial dans la branche qui contient l’inductance est nul, la tension sur RQ1
doit être nulle. Donc, à l’instant t = 0 s, nous avons UL = 12 V, ce qui correspond à la valeur
maximale de la tension induite. Puis, elle diminue de manière exponentielle jusqu’à zéro, ce qui
correspond à l’état stationnaire (fig. 4.19a).

(b) Comme nous l’avons déjà mentionné, le courant initial à travers R1 est nul. Lorsque l’état
stationnaire est atteint, la tension sur l’inductance est nulle, ce qui implique que UR1 = 12 V. En
conséquence, la valeur maximale du courant dans cette branche est de 12 V / 24 Ω = 0.50 A
(fig. 4.19b).

(c) Le courant dans la branche de RQ2 est dicté par la loi de résistance. Avec une tension cons-
tante de 12 V, nous obtenons une intensité égale à 12 V / 72 Ω = 1/6 A. Il faut ajouter cette in-
tensité constante à celle qui traverse R1 pour obtenir la valeur du courant de la batterie
(fig. 4.19c).

B

4.5 EXEMPLES D’ÉLÉMENTS INDUCTIFS

Le phénomène d’induction est dû à l’inertie des fluides en hydraulique et au champ
magnétique en électricité. Ces observations nous permettent de relier l’inductance des
éléments respectivement aux propriétés mécaniques des fluides et à celles des champs
électromagnétiques. Mais pour le faire, nous avons besoin des théories de la mécani-
que et de l’électromagnétisme. Vu que nous les étudierons plus tard, nous n’allons
pour l’instant présenter que deux cas qui ont un intérêt concret, à savoir l’inductance
d’un fluide dans une conduite droite et celle d’un long conducteur bobiné pour donner
un solénoïde.

FIGURE 4.18 Circuit électrique
composé d’une batterie, de résistan-
ces et d’un élément inductif.
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FIGURE 4.19 Évolution de la ten-
sion et des courants en fonction du
temps.
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4.5.1 Inductance hydraulique d’un fluide dans une conduite

L’inductance d’un fluide dans une conduite de longueur l et de rayon r dépend de la
masse volumique du fluide ρ, de la longueur l, et de la section de la conduite A = π r2.
Elle augmente avec la masse volumique et la longueur, et diminue si la section de la
conduite augmente:

(4.11)

Cette relation sera justifiée au chapitre 8 (exemple 8.1), lorsque nous aborderons les
phénomènes de mouvement linéaire et, d’une manière différente, à la section 11.9.3,
dans le contexte des systèmes ouverts mécaniques. Donnons les arguments qui la ren-
dent plausible. Les deux premières proportionnalités sont faciles à comprendre: l’iner-
tie, c’est-à-dire la masse du fluide à accélérer, croît linéairement avec la masse
volumique et la longueur de la conduite. L’influence de la section de la conduite n’est
pas aussi simple à justifier. D’une part, une section double offre une surface double à
l’action de la pression; d’autre part, il faut accélérer un volume de fluide double. Les
deux facteurs semblent se compenser, ce qui impliquerait que la section n’intervient
pas dans la valeur de l’inductance. Mais une section double signifie que l’on a la même
intensité du courant pour une vitesse deux fois moindre. C’est pourquoi une section
double provoque un doublement du taux de variation du courant pour une différence
de pression inductive donnée.

Il faut noter un point important au sujet des inductances hydrauliques. Nous savons
qu’elles lient le taux de variation du courant à la différence de pression inductive. Ce-
pendant, il est également possible d’avoir des différences de pression dans des fluides
sans frottement qui sont dues à un autre phénomène. Nous avons vu à la section 1.7.3
que, si un courant stationnaire s’écoule à travers une conduite qui se rétrécit, la pres-
sion décroît dans le sens de l’écoulement. Vu que l’intensité du courant ne varie pas,
cette variation de la pression n’est pas d’origine inductive; nous savons qu’elle est due
à l’effet BERNOULLI. Dans ce chapitre, nous ne considérerons que des conduites qui
ont une section constante.

4.5.2 Inductance d’un solénoïde

On appelle solénoïde un enroulement de fil électrique à spires jointives enroulées sur
un cylindre (fig. 4.20). Lorsqu’un courant électrique circule dans le fil, un champ ma-
gnétique s’établit essentiellement dans l’espace cylindrique. Des bobinages de ce type
sont utilisées dans les électro-aimants. Le champ magnétique peut être fortement am-
plifié si le solénoïde est rempli d’un matériau ferromagnétique, par exemple un noyau
de fer.

Le champ magnétique dépend de l’intensité du courant traversant la bobine et du nom-
bre de spires par unité de longueur. Étant donné que la croissance ou la décroissance
du champ occupant l’espace à l’intérieur du solénoïde est responsable du comporte-
ment inductif de cet élément, nous nous attendons à ce que l’inductance dépende de
son volume et du nombre de spires par unités de longueur; elle est donnée par:

(4.12)

Ici, µo est une constante de la nature, la constante d’induction ou perméabilité du vide;
sa valeur est de 4π·10–7 H m-1. N, A et l sont respectivement le nombre de spires, l’aire
de la section et la longueur du solénoïde. Avec un noyau de fer, l’intensité du champ

L
l

AV = ρ

FIGURE 4.20 Un solénoïde, une bo-
bine droite de fil électrique à spires
jointives, produit à l’intérieur du cy-
lindre un champ magnétique dirigé
selon l’axe de la bobine.
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et l’inductance sont amplifiés plusieurs centaines, voire plusieurs milliers de fois. Cet-
te relation sera justifiée au chapitre 14, section 14.3.

EXEMPLE 4.5. Inductance de conduites hydrauliques.

Des conduites de 60 cm de diamètre relient un lac artificiel à l’usine électrique. Elles ont une
longueur de 350 m. (a) Quelle est l’inductance hydraulique d’une telle conduite? (b) Un courant
d’eau de 1.0 m3 s-1 circule dans cette conduite. Si ce courant devait être arrêté en 0.10 s, quelle
serait la valeur de la différence de pression inductive?

SOLUTION: (a) L’inductance hydraulique est calculée selon l’équation (4.11):

(b) En prenant un taux de variation du courant moyen de 10 m3 s-2, nous avons

Aucune conduite ne peut résister à une telle surpression (coup de bélier). C’est la raison pour
laquelle les centrales hydroélectriques sont toutes équipées d’une cheminée d’équilibre qui per-
met d’évacuer cette surpression.

B

EXEMPLE 4.6. Inductance de solénoïdes montés en série.

Un long fil conducteur est bobiné sur deux supports cylindriques en carton. Le premier a une
longueur de 20 cm et un diamètre de 6.0 cm, alors que la longueur et le diamètre du second sont
respectivement de 10 cm et 4.0 cm. Il y a 200 spires sur le premier support et 300 sur le second.
Déterminez l’inductance de ce dispositif.

SOLUTION: Nous calculons d’abord les inductances individuelles selon l’équation (4.12):

Pour déterminer l’inductance du montage en série, nous tenons compte du fait que la tension
totale est la somme des tensions:

À partir de la loi d’induction donnée par l’équation (4.4), nous obtenons

vu que le courant et son taux de variation sont les mêmes pour les deux éléments. Nous en con-
cluons que l’inductance d’un montage en série est égale à la somme des inductances:
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4.6 PUISSANCE ET STOCKAGE D’ÉNERGIE LORS DE 
PROCESSUS INDUCTIFS

Au chapitre 3, nous avons utilisé des diagrammes de processus incluant des flux
d’énergie pour des dispositifs tels que des pompes, turbines et générateurs, lacs artifi-
ciels et conduites, résistances, moteurs électriques, etc. Ils démontrent tous que la li-
bération d’énergie est suivie de sa liaison lorsque les processus sont couplés.

4.6.1 Puissance des processus inductifs

Les éléments inductifs semblent nous confronter à un cas légèrement différent. Tout
d’abord, alors que les autres dispositifs fonctionnent strictement en sens unique – dans
les résistances, lorsqu’ils le font spontanément, le volume ou la charge s’écoulent tou-
jours «en descendant la pente» – les processus dans les inductances se déroulent dans
les deux sens. D’autre part, la majorité des systèmes mentionnés plus haut peuvent
fonctionner de manière stationnaire sans impliquer de stockage d’énergie; par contre,
des dispositifs inductifs ne fonctionnent que dynamiquement et ils servent également
de dispositifs de stockage d’énergie.

Troisièmement, et ceci est le plus important, il n’est pas facile de détecter si, dans de
tels dispositifs, il y a deux processus couplés, l’un se déroulant «en descendant la
pente», l’autre «en remontant la pente». Un examen attentif montre qu’il y a bel et
bien des processus qui sont couplés à ceux de nature hydraulique ou électrique qui,
eux, sont reconnaissables de manière évidente.

Le phénomène de l’induction électromagnétique est couplé à la croissance ou à la dé-
croissance du champ magnétique engendré par le courant électrique. Nous étudierons
les champs électriques et magnétiques au chapitre 13. Tout comme le champ de pesan-
teur (section 3.5.2), le champ magnétique agit en tant que dispositif de stockage de
l’énergie qui est libérée par ou liée au courant électrique, selon que le courant est crois-
sant ou décroissant dans le temps. Si le courant électrique qui traverse un élément in-
ductif croît dans le temps, c’est-à-dire si dIQ /dt > 0, il s’écoule «en descendant la
pente» à travers la différence de potentiel induite

(4.13)

Ce processus est associé à une libération d’énergie au taux

(4.14)

Il doit y avoir un processus qui se déroule «en remontant la pente» grâce à l’énergie
disponible. Ce processus existe: c’est l’établissement du champ magnétique qui, dans
le même temps, sert de dispositif de stockage de l’énergie libérée par le processus élec-
trique (fig. 4.21a).

Si le courant électrique à travers l’élément inductif décroît dans le temps, c’est-à-dire
si dIQ /dt < 0, le champ magnétique décroît lui aussi, libérant de l’énergie qui est prise
en charge par le courant électrique. En conséquence, ce courant est entraîné «en re-
montant la pente» à travers la différence de potentiel induite ∆ϕL (fig. 4.21b).

Le cas de l’induction hydraulique est tout à fait semblable, à la différence près qu’il
n’y a pas l’équivalent du champ magnétique associé au courant. C’est plutôt la crois-
sance ou la décroissance de la quantité de mouvement du fluide qui agit de manière
semblable au champ magnétique.

 ∆ϕL Q Q L Q QL I U L I= − =� �ou

 P Pél élou= − =∆ϕ L Q L QI U I

FIGURE 4.21 Dans un processus
électrique de type inductif, de l’éner-
gie est libérée ou liée. Le processus
est couplé à la création ou à la des-
truction d’un champ magnétique qui
sert de dispositif de stockage d’éner-
gie dans l’élément inductif.
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a. Courant électrique croissant

b. Courant électrique décroissant
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1. Sous quelles conditions de l’énergie peut-elle être libérée dans un élé-
ment inductif lors d’un processus électrique?

2. Pouvez-vous donner un exemple de libération d’énergie par un proces-
sus inductif en hydraulique?

1. Le courant électrique doit varier dans le temps, ce qui induit une diffé-
rence de potentiel. De l’énergie est libérée par la chute de la charge si le
courant croît dans le temps (fig. 4.21a).

2. La fermeture brutale d’un robinet peut engendrer un coup de bélier
dont il a été question à la section 4.1.2 et dans l’exemple 4.5. Il s’agit
d’un processus inductif qui libère de l’énergie (qui peut éventuellement
servir à endommager la conduite).

 

EXEMPLE 4.7. Puissance et énergie libérée dans un système hydraulique.

Nous reprenons les données de l’exemple 3.3 (fig. 4.22): le taux de variation d’un écoulement
d’huile à travers une conduite droite évolue linéairement et passe de 0.001 m3 s-2 à 0.0 m3 s-2

en 5 s. La conduite à une longueur de 10.0 m et un diamètre de 7.0 cm. L’huile a une masse
volumique de 910 kg m-3, une viscosité de 0.081 Pa s, et l’écoulement a lieu en régime laminai-
re. (a) Déterminez l’évolution dans le temps de la différence de pression inductive, évaluez sa
valeur à l’instant t = 2s et ajoutez son graphique à celui de la figure 3.21a. (b) Déterminez l’évo-
lution dans le temps de la puissance hydraulique due au phénomène d’induction, évaluez sa va-
leur à l’instant t = 2S et complétez la figure 3.21b. (c) Combien d’énergie la pompe libère-t-elle
durant les 5 premières secondes si son efficacité est de 80%?

SOLUTION: La pompe et la conduite transportant l’huile correspondent, en électricité, au mon-
tage en série d’une batterie, d’une résistance et d’une inductance (fig. 4.23). Comme ces élé-
ments sont montés en série, leurs contributions s’additionnent.

(a) L’inductance de la conduite est évaluée à partir de l’équation (4.11):

Lors de processus inductifs dus à la variation de l’intensité des courants
d’une grandeur X, la puissance associée au processus envisagé est égale
au produit de la différence de potentiel inductive ∆ϕL,Y donnée par
l’équation (4.6) et de l’intensité du courant de la grandeur X:

(4.15)

Alors que la puissance d’un processus résistif est toujours positive, car
c’est un processus dissipatif, celle d’un processus inductif peut être positi-
ve ou négative, ce qui indique qu’un tel processus permet l’accumulation
ou la libération d’énergie, donc qu’il conserve l’énergie.

  PL X L X X X X XI L I I, ,= − =∆ϕ �
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FIGURE 4.22 Évolution du courant
d’huile en fonction du temps.

FIGURE 4.23 Circuit électrique
équivalent pour une pompe et une
conduite contenant de l’huile.

+
IV

∆PL∆PR∆PP

Pompe

BA

A B

L
l

r
V = = = ⋅⋅

⋅
ρ

π π2 2

910 10

0 035
2365 1

kg m m

m)

-3

( .
003 mPa s2 -3



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 161

4.6  PUISSANCE ET STOCKAGE D’ÉNERGIE LORS DE PROCESSUS INDUCTIFS

La pression inductive est donnée par l’équation (4.2):

L’évolution de cette différence de pression apparaît dans la figure 4.24a.

(b) La puissance due à l’induction se calcule à partir de l’équation (4.14):

La différence de pression induite et la puissance associée apparaissent dans la figure 4.24. La
puissance due à l’induction est positive tant que l’intensité du courant croît dans le temps.

La valeur de la puissance due à l’induction à l’instant t = 2s est PL(t = 2 s) = 3.69 W.

(c) De l’énergie est libérée dans la pompe à la suite du processus électrique qui l’entraîne. Nous
pouvons calculer sa valeur si nous connaissons la puissance du processus électrique en fonction
du temps. L’aire entre la courbe PP,él(t) et l’axe t correspond au résultat désiré.

L’efficacité étant de 80%, la puissance électrique de la pompe doit être égale à 1/0.80 fois la
puissance hydraulique, selon l’équation (3.5). La puissance hydraulique est calculée à partir de
la différence de pression ∆pP sur la pompe et le courant d’huile. Comme, selon la loi des mailles,
la somme de toutes les différences de pression est nulle, nous avons:

En rassemblant tous les résultats précédents, nous trouvons:

(fig. 4.25a). Si nous multiplions cette expression par l’intensité du courant de fluide, nous obte-
nons la puissance électrique de la pompe:

et l’énergie libérée durant les 5 premières secondes est approximativement de 83 J. Cette valeur
correspond à l’aire comprise entre la courbe représentant PP,él(t) et l’axe t dans la figure 4.25b.

B

4.6.2 Stockage d’énergie par des inductances

Puisque le phénomène d’induction n’est pas dissipatif, l’énergie peut également être
stockée par des éléments inductifs électriques ou hydrauliques. Nous pouvons nous

 ∆P t L I t tL V V( ) ( ) ( )= − = − − ⋅� 2365 1 0 0 2Pa s-1. . ; .s kPa∆PL 2 1 42( ) = −
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FIGURE 4.24 Différences de pres-
sion et puissances hydrauliques en
fonction du temps pour les éléments
résistif et inductif du circuit hydrau-
lique.
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FIGURE 4.25 Différence de pression
et puissance hydraulique et électri-
que de la pompe. Comme la pompe
n’est pas idéale, la valeur absolue de
la puissance électrique est supérieure
à celle de la puissance hydraulique.

 
P PP, él P, él P, élt P t I tV( ) ( ) ( )=

1

0 80.
;∆ tt = =( )2 16 23s W.



162 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 4   PHÉNOMÈNES INDUCTIFS ET OSCILLATIONS

inspirer de la figure 4.21a pour calculer l’énergie contenue dans une inductance: c’est
celle qui a été libérée. Évaluons la quantité d’énergie accumulée lorsqu’un courant
augmente dans le temps.

La puissance instantanée est donnée par

Nous obtenons l’énergie accumulée par intégration:

4.7 SYSTÈMES OSCILLANTS

Les systèmes oscillants, qu’ils soient simples ou complexes, abondent dans la nature
ainsi que dans les systèmes techniques et sociaux. Cependant, les systèmes oscillants
de la physique sont relativement simples à étudier et nous permettent de découvrir la
structure cachée derrière les apparences.

4.7.1 Exemples de systèmes oscillants

Les oscillations sont des phénomènes répétitifs. De l’eau qui va et vient entre deux ré-
servoir communicants est l’exemple d’un système oscillant simple (fig. 4.26). Ici, les
oscillations sont périodiques, décroissent usuellement dans le temps, mais montrent
une forme simple.

Mais il existe des phénomènes plus complexes, tels que les oscillations de systèmes
chimiques. Si les réactions qui se déroulent dans un réacteur sont alimentées par un
écoulement de certaines substances, ou si certaines substances sont éliminées, et si les
réactions obéissent à quelques règles particulières, les quantités des substances peu-
vent osciller vers le haut ou vers le bas. Les oscillations du calcium apparaissant dans
la figure 4.27 sont périodiques comme celles de l’eau décrites ci-dessus, mais l’aspect
des courbes est bien différent de celui d’oscillations simples.

Beaucoup de systèmes naturels subissent des variations complexes, voire apériodi-
ques. Malgré tout, la structure oscillatoire est clairement visible. Par exemple, El Niño
(ENSO: El Niño Southern Oscillation) est un phénomène dans lequel le couplage en-
tre l’atmosphère et l’océan dans le Pacifique équatorial produit un phénomène à gran-
de échelle qui se répète à des intervalles variant approximativement entre deux et sept
ans (fig. 4.28).

En temps normal (fig. 4.28a), l’alizé souffle d’est en ouest sur le Pacifique équatorial.
L’eau chaude de surface s’accumule dans le Pacifique occidental où les températures
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Pour une inductance constante et une intensité initiale nulle, l’énergie
stockée dans un élément d’inductance constante LX est donnée par:

(4.16)

où IX est la valeur finale de l’intensité du courant de la grandeur X.
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FIGURE 4.26 Beaucoup de systèmes
manifestent un comportement os-
cillatoire – quelques-uns simples
comme du mercure dans un tube
en U…

0.00

0.50

1.00

1.50

0 2 4 6 8 10

Temps / s

Su
bs

ta
nc

es
ch

im
iq

ue
s

/m
ol

FIGURE 4.27 … d’autres plus com-
plexes, comme cet oscillateur chimi-
que (oscillations du calcium)…



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 163

4.7  SYSTÈMES OSCILLANTS

de surface dépassent d’environ 8°C celles de la côte sud-américaine; les températures
basses sont dues à la remontée en surface des eaux profondes plus froides (upwelling).
À proximité du continent américain, la couche d’eau froide est à environ 50 m sous la
surface. Durant un El Niño (fig. 4.28b), les vents dominants s’affaiblissent dans le
Pacifique central et occidental. Cela entraîne un abaissement de la frontière entre l’eau
chaude de surface et la couche froide dans le Pacifique oriental, et une élévation de cet-
te frontière près de la côte asiatique. La couche d’eau froide descend à environ 150 m
de profondeur dans le voisinage des côtes sud-américaines. L’efficacité du brassage
(upwelling) est fortement diminuée, et la température de surface augmente. Ces chan-
gements dans l’océan se répercutent sur le temps. En particulier, on observe un affai-
blissement des alizés orientaux, et les chutes de pluie migrent vers l’est à la suite du
temps chaud.

Nous allons tout d’abord étudier des oscillations d’un point de vue qualitatif, décrivant
le comportement, discutant l’exemple d’oscillations hydrauliques et créant un premier
diagramme de dynamique des systèmes. Dans la section 4.8, nous passerons à une
descriptions mathématique du phénomène.

4.7.2 Réservoirs communicants

Pour savoir pourquoi certains systèmes manifestent un comportement oscillatoire,
nous allons étudier deux réservoirs communicants (fig. 4.29). Nous savons que si nous
les remplissons avec une huile très visqueuse à des niveaux différents, ceux-ci vont
s’équilibrer comme le montre la figure 4.4. Le courant à travers la conduite qui relie
les deux réservoirs va décroître dans le temps pour s’interrompre lorsque les deux ni-
veaux seront égaux. Nous savons par les modèles que nous avons construits dans les
chapitres 1 et 2 que ce type de comportement est le résultat de l’action conjointe de
dispositifs de stockage (capacités) et de résistances. On parle de systèmes RC.

Fluides oscillants: le rôle de l’inertie. Si, par contre, nous utilisons un fluide de fai-
ble viscosité et si la section de la conduite est suffisamment grande, nous observerons
un phénomène totalement différent. Au lieu de s’interrompre lorsque les deux niveaux

a. b.

c.

FIGURE 4.28 … et d’autres très
complexes. El Niño (ENSO: El
Niño Southern Oscillation) est un
phénomène oscillatoire auquel par-
ticipent l’atmosphère et l’océan
dans la région du Pacifique équato-
rial. L’ENSO index (Figure c) est
une combinaison de différentes
mesures qui indiquent la présence
ou l’absence de l’effet El Niño.

FIGURE 4.29 Eau oscillant entre
deux réservoirs communicants.
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sont égaux, le courant a une intensité maximale à ce moment-là. C’est une conséquen-
ce de l’inertie du fluide qui va et vient entre les deux réservoirs, comme nous l’avons
observé à la section 4.1.3. La diminution de l’amplitude des oscillations est due aux
frottements.

Aux sections 4.1 et 4.2, nous avons attribué à l’induction la cause de l’apparition des
oscillations. En nous basant sur les observations et sur cette analyse, nous concluons
que, pour qu’un système puisse être le siège d’oscillations, deux conditions doivent
être remplies:

• il doit y avoir deux dispositifs de stockage pour que le fluide puisse s’écouler
en un mouvement de va-et-vient, et

• l’écoulement doit montrer une comportement inductif afin qu’il ne s’inter-
rompe pas la première fois que les niveaux des fluides sont devenus égaux.

Élaboration du modèle dynamique et simulation. Nous voulons construire le dia-
gramme de dynamique des systèmes pour le dispositif de deux réservoirs communi-
cants de la figure 4.29. Nous ferons les mêmes hypothèses qu’au chapitre 1 au sujet
des propriétés des cuves et des conduites, à la différence près que nous y ajouterons
l’induction. Dans nos modèles, les réservoirs sont uniquement caractérisés par leur
capacité; nous négligeons le fait qu’il y a également des frottements dans les réser-
voirs et que ceux-ci peuvent avoir une inductance. L’écoulement du fluide à travers les
conduites est soumis aux phénomènes de résistance et d’induction, comme nous
l’avons discuté à la section 4.3. Nous pouvons représenter notre modèle au moyen
d’un circuit électrique qui contient les mêmes éléments, à savoir deux capacités, une
inductance et une résistance (fig. 4.30).

Nous obtenons le modèle souhaité en adjoignant à celui de l’équilibrage des niveaux
développé à la section 1.2.4 le modèle de l’établissement d’un courant de la
section 4.4.3. La loi de capacité nous permet de calculer la pression au fond des réser-
voirs. La différence de ces deux pressions est équivalente à la tension d’une source
dans un circuit contenant une résistance et une inductance (fig. 4.11). L’application de
la loi des mailles nous permet de calculer respectivement la tension ou la différence de
pression induite et d’en déduire le taux de variation du courant. L’intégration de cette
valeur donne l’intensité du courant, permettant ainsi de lier les deux modèles en un
seul (fig. 4.31).

RQ

CQ1

LQ

CQ2

FIGURE 4.30 Circuit électrique re-
présentant un modèle des réservoirs
communicants de la fig. 4.29.

V1

C V1

I V

Delta P C1

V2

C V2

Delta P C2
Delta P C

R V
Delta P R

Delta P L

Int I V point
I V point

L V

FIGURE 4.31 La combinaison du
modèle de l’équilibrage des niveaux
entre deux réservoirs communicants
avec celui d’un circuit RL engendre
le modèle d’un système oscillant.
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La simulation de ce modèle (fig. 4.32) donne une solution qui est exactement pareille
à celle que représente la figure 4.26, ce qui prouve que notre analyse du phénomène
est correcte. Un régime d’oscillations peut apparaître dans des systèmes qui combi-
nent des capacités, des inductances et des résistances (que l’on appelle des systèmes
RCL). Si la résistance RV est considérée comme nulle dans le modèle, les oscillations
ne seront pas amorties, ce qui correspond exactement à ce que nous attendions.

4.7.3 Description du comportement oscillatoire le plus simple

Entrons maintenant dans une description plus détaillée du comportement du système
oscillant le plus simple. Les expériences et les modèles des systèmes LC montrent que
les oscillations, décrites au moyen de l’une des variables importantes telles que volu-
me du fluide ou pression, ou charge, courant et tension dans un circuit électrique, pren-
nent la forme d’une courbe sinusoïdale (fig. 4.33). On parle alors d’une oscillation
harmonique. L’expression mathématique qui décrit une telle oscillation devra donc
avoir la forme:

(4.17)

Ici, x représente l’une quelconque des grandeurs qui évoluent sinusoïdalement, telles
que le volume ou le niveau de fluide dans une cuve, la pression au fond de la cuve, le
flux de fluide, ou des grandeurs électriques telles que la charge, la tension, le courant,
etc. On l’appelle l’«élongation» du système, vu qu’elle représente son éloignement
par rapport à l’état d’équilibre. Dans le membre de droite, la grandeur assure tout
d’abord l’homogénéité des grandeurs de part et d’autre du signe d’égalité, le sinus
étant un nombre pur. Cette grandeur représente l’amplitude de l’oscillation, qui est la
moitié de la valeur absolue de la différence entre le maximum et le minimum de la
courbe sinusoïdale (fig. 4.33). Dans l’argument du sinus (que l’on appelle la phase),
le facteur ω, appelé fréquence angulaire, garantit, s’il est mesuré en s-1, que l’argu-
ment soit un nombre pur, alors que la constante additive ϕ, la constante de phase, per-
met d’avoir, si c’est nécessaire, une élongation non nulle pour t = 0.

Grandeurs descriptives. Les oscillations harmoniques font partie des phénomènes
périodiques. Ces phénomènes peuvent être caractérisés par les grandeurs que nous
avons introduites ci-dessus et par d’autres qui leur sont liées. Ainsi, on peut utiliser
également la période T qui se mesure en seconde et correspond au temps qui s’écoule
entre deux passages successifs par un état identique du système (fig. 4.33), ou encore
la fréquence f ou ν qui correspond au nombre de répétitions du phénomène par unité
de temps. Notons tout d’abord que la fréquence et la période liées par la relation

(4.18)

vu que, durant une période T, le phénomène a lieu exactement une fois.

Il existe également entre ces trois grandeurs un autre lien qui découle du fait que si,
dans l’argument du sinus, on remplace t par t+T (décalage d’une période dans la
figure 4.33), celui-ci prend la même valeur:

ce qui n’est possible que si , ce qui entraîne
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FIGURE 4.32 Oscillation d’un fluide
entre deux réservoirs.
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FIGURE 4.33 Une oscillation har-
monique est décrite par une courbe
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(4.19)

Cette dernière relation implique que la fréquence doit être mesurée dans une autre uni-
té que la fréquence angulaire; la fréquence f (ou ν) se mesure en hertz (Hz).

 

Détermination de la période des oscillations. Il est intéressant de se demander de
quels paramètres du système dépend la période ou la fréquence d’un oscillateur har-
monique. Nous allons motiver notre réponse sans avoir recours aux équations et à leur
solution. Pour le faire, nous nous référons au système de deux réservoirs communi-
cants discuté plus haut (fig. 4.29), et concentrons notre attention sur le premier quart
de période. Durant cet intervalle, le courant croît de zéro à sa valeur maximale, jusqu’à
ce que les niveaux s’égalisent (temporairement). Deux phénomènes se combinent pour
donner ce résultat. Au début, le processus inductif du démarrage du courant dans un
système RL produit la croissance initiale de la fonction. Ce phénomène se déroule dans
une échelle de temps mesurée par la constante de temps résisto-inductive τL détermi-
née par l’équation (4.7). Dans le même temps, le réservoir de gauche se vide au profit
de celui de droite, processus caractérisé par une échelle de temps donnée par la cons-
tante de temps résisto-capacitive τC . Comme nous nous attendons à ce que la période
des oscillations croisse avec l’inductance, nous présumons que T est proportionnel à
τL. Il doit en aller de même pour la relation entre la période et la constante de temps
résisto-capacitive. L’augmentation de la capacité du système doit ralentir le processus.
En conclusion, nous nous attendons à ce que le carré de la période des oscillations soit
proportionnel au produit des deux constantes de temps:

Vu que τL = LV/RV, et τC = RVCV , la période des oscillations doit être proportionnelle
à la racine carrée du produit de LV et CV . Comme nous le verrons à la section 4.8, c’est
bel et bien le cas. Nous trouverons que

 

(4.20)

Il est clair que ce résultat peut être également appliqué aux phénomènes électriques.
Nous remplaçons simplement le volume par la charge, la pression par le potentiel élec-
trique, l’inductance hydraulique par sa contrepartie électrique, et ainsi de suite.

1. Les cuves ou les capacités des figures 4.29 et 4.30, sont-elles connec-
tées en série ou en parallèle? Quelle est, en vertu de la réponse, la capa-
cité totale du système des deux cuves?

2. Un système composé d’un condensateur et d’un solénoïde est le plus
simple des oscillateurs électriques. Quelle est la grandeur qui oscille?
Quels sont les deux dispositifs de stockage dont nous avons dit qu’ils
devaient impérativement être présents? Quels éléments manifestent un
comportement inductif?

3. Quelle est la période des oscillations du mercure dans le tube en U de la figure 4.26? Quelle
est la plage des valeurs de la période des oscillations du phénomène El Niño?

ω π π πν= = =2
2 2

T
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1. Les cuves ou les condensateurs sont montés en série. Donc, l’inverse de
la capacité totale est égale à la somme des inverses des capacités indivi-
duelles.

2. La grandeur qui va et vient dans le système est la charge électrique.
Elle oscille d’une des plaques du condensateur vers l’autre, et inverse-
ment. C’est pourquoi un condensateur unique représente déjà deux dis-
positifs de stockage. Le solénoïde est l’élément inductif.

3. On observe 7 oscillations complètes en 10 secondes dans le diagramme des oscillations. La
période est donc de 10 s/7 = 1.43 s ; elle est constante. Dans le cas d’El Niño, l’indice
ENSO de la figure 4.28c montre une période variant entre 2 et 7 ans. Il ne semble pas y
avoir un ordre sous-jacent dans ce système apériodique.

4.8 TRAITEMENT MATHÉMATIQUE DES OSCILLATIONS

Nous allons énoncer les équations qui sous-tendent le modèle de la figure 4.31 pour
traiter sous forme analytique le phénomène oscillatoire. Pour des raisons typographi-
ques, nous utiliserons la notation de Leibniz pour les dérivées temporelles.

4.8.1 Élaboration du modèle 

L’élaboration du modèle selon la dynamique des systèmes commence par le bilan des
volumes pour les deux réservoirs. Volumes et capacités donnent les différences de
pression capacitives qui, sommées, donnent la différence de pression sur la conduite
∆PC = ∆PC1 + ∆PC2, qui elle-même est opposée à la somme des différences de pres-
sion résistive et inductive ∆PR + ∆PL. À partir des trois premières de ces quatre gran-
deurs, on peut exprimer ∆pL , pour obtenir dIV /dt et, par intégration, IV , l’intensité
du courant entre les réservoirs. Couplée avec RV, cette intensité nous permet de calcu-
ler ∆PR, et de fermer ainsi la structure du modèle.

Équations de bilan:

Lois de capacité:

Loi d’induction:

Loi de résistance:

Loi des mailles:

On peut interpréter ∆PC = ∆PC1 + ∆PC2 comme l’entraînement total du courant qui
est soumis à la résistance et à l’inductance de la conduite. En combinant les équations
ci-dessus, après avoir attribué aux deux réservoirs montés en série une capacité globale
calculée comme en électricité par:

R
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dt
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on obtient tout d’abord deux équations couplées:

En éliminant IV entre ces deux équations, on obtient une seule équation différentielle
du second ordre pour ∆PC:

(4.21)

qui est l’équation différentielle des oscillations amorties. Si on élimine ∆PC, on ob-
tient une équation différentielle pour IV qui a exactement la même forme:

4.8.2 Cas particulier des oscillations libres

Si on admet que les frottements sont nuls (RV = 0), alors le second terme de l’équation
différentielle ci-dessus disparaît:

Si nous réécrivons l’équation différentielle sous la forme:

nous nous rendons compte que la fonction inconnue ∆PC(t) est telle que, lorsqu’on la
dérive deux fois, elle est identique à elle-même, à un facteur multiplicatif près. Il
n’existe que trois fonctions qui ont cette propriété: le sinus et le cosinus (qui n’est
qu’un sinus déphasé) et l’exponentielle. Posons, comme fonction d’essai une sinusoï-
dale, comme nous l’avons déjà fait avec l’équation (4.17) en remplaçant par ∆PC:

Comme nous allons le voir ci-dessous, ω est fixé par les particularités du système phy-
sique, alors que ∆PC et ϕ seront déterminés par les conditions initiales.

Substituons cette fonction d’essai dans l’équation différentielle:
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La dernière égalité ne peut être vérifiée à tout instant que si le contenu de la parenthèse
est nul. Nous pouvons ainsi déterminer que:

En conclusion, nous pouvons dire qu’un fluide qui s’écoule entre deux réservoirs reliés
par une conduite sans frottement oscillera entre les deux réservoirs de telle façon que
la différence de pression capacitive sur la conduite évoluera selon:

Une fonction d’essai exponentielle aurait également donné une oscillation
sinusoïdale ; on le démontre de manière analogue à ce qui va être établi pour les os-
cillations amorties dans la section suivante.

4.8.3 Recherche de la solution pour les oscillations amorties

Si nous analysons l’équation (4.21), nous observons que la fonction ∆PC(t) est telle
que toutes ses dérivées sont proportionnelles entre elles; la seule fonction qui mani-
feste cette propriété est l’exponentielle. Nous n’avons pas d’autre choix que celui
d’une fonction d’essai exponentielle:

La substitution de cette fonction et de ses dérivées dans l’équation différentielle donne
(si nous posons pour le carré de la fréquence angulaire de l’oscillation
non amortie, c’est-à-dire pour ce que l’on appelle la fréquence propre du système):

Cette égalité doit toujours être vérifiée, quel que soit t; ce n’est possible que si le con-
tenu des crochets s’annule. La résolution de l’équation du second degré pour α donne:

Nous sommes donc en présence de deux solutions de l’équation différentielle. En ana-
lyse, on montre que la solution générale de l’équation différentielle est la combinaison
linéaire (somme pondérée) de ces deux solutions:
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Trois cas peuvent se présenter, suivant que est supérieur, égal ou inférieur
à . Nous n’envisageons ici que le dernier cas qui, comme nous allons le montrer, est
le seul qui décrit un processus oscillatoire. En effet, si les frottements sont trop impor-
tants, ils empêchent le système d’osciller. Dans le cas d’un amortissement faible
( ), que l’on appelle également sous-critique, le radicande est négatif et
le radical devient imaginaire. Si nous posons: j√ , où ωd est la
fréquence angulaire de l’oscillation amortie ou pseudo-fréquence (d pour damped), il
vient:

où A et B sont des constantes complexes. En vertu de la relation d’EULER:

nous pouvons écrire:

Comme A et B sont des constantes arbitraires, nous pouvons les remplacer en leur
substituant : . L’équation ci-dessus
prend alors la forme:

L’utilisation d’un des théorèmes d’addition de la trigonométrie permet de réécrire la
solution:

C’est l’équation d’une oscillation amortie, dont l’amplitude, donnée par
, décroît de manière exponentielle en fonction du temps.

La figure 4.34 montre les oscillations entre deux réservoirs communicants. La ligne
discontinue qui enveloppe la courbe des oscillations est l’exponentielle qui décrit la
décroissance de l’amplitude.

EXEMPLE 4.8. Énergie lors d’oscillations électromagnétiques.

Considérons un circuit électrique simple composé d’une capacité et d’une inductance idéales
(fig. 4.35), qui valent respectivement 1.0 µF et 0.020 H. Le condensateur est chargé à une ten-
sion de 100 V. (a) Calculer l’énergie du condensateur et de l’inductance en fonction du temps.
(b) Quand le taux de variation de l’énergie de l’inductance atteint-il son maximum (ou
minimum)? (c) Calculer l’énergie totale du système.

SOLUTION: Dans la section 4.7, nous avons découvert que le système doit être le siège d’os-
cillations harmoniques de fréquence
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FIGURE 4.34 Oscillation amortie du
fluide circulant entre deux réservoirs
communicants. La courbe disconti-
nue montre le taux de décroissance
de l’amplitude.

∆ ∆P t P e tC C

R

L
tV

V( ) = +( )
−

ˆ sin2 ω ϕd

A t P R L tC v V( ) ˆ exp ( / )= −[ ]∆ 2

FIGURE 4.35 Circuit oscillant.

+
L

IQ

ULUC

C



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 171

4.8  TRAITEMENT MATHÉMATIQUE DES OSCILLATIONS

La tension et le courant varient sinusoïdalement dans le temps (fig. 4.36):

(a) Selon les équations (3.21) et (4.16), les énergies du condensateur et de l’inductance sont

(fig. 4.37). La dernière relation peut être transformée au moyen de l’expression pour la fréquen-
ce, ce qui donne

(b) L’examen de la fonction EL(t) montre que le taux de variation de l’énergie de l’inductance
est nul à chaque quart de période. Il a son maximum à 1/4 de la période, puis à nouveau à 3/4 T,
et ses minima à 1/2 T et à la fin de la période.

(c) Pour calculer l’énergie totale, nous avons simplement à sommer les contributions capaciti-
ves et inductives:

Évidemment, l’énergie totale est constante et correspond à l’énergie initiale du condensateur.

B

Résumé du chapitre
Le démarrage ou l’arrêt d’un courant, que ce soit celui d’un fluide ou de l’électricité,
ne peut pas se faire instantanément, à cause de l’inertie du système. Il nécessite la pré-
sence d’une différence de pression ou de potentiel qui rend possible la variation du
courant; il s’agit du phénomène d’induction.

La différence de pression ou de potentiel est proportionnelle au taux de variation de
l’intensité du courant: . Dans cette relation, appelée loi d’induction, la
grandeur X peut être le volume V ou la charge électrique Q. Le coefficient LX est l’in-
ductance du système.

Le phénomène d’induction est une conséquence de l’inertie du fluide en hydraulique.
Par contre, en électricité, cette «inertie» est due au fait que le courant électrique est
toujours accompagné d’un champ magnétique; lors d’une variation de l’intensité du
courant électrique, le champ magnétique associé doit varier lui aussi, ce qui a le même
effet que l’inertie des fluides.

Contrairement aux résistances hydrauliques ou électriques, dont la présence dans un
système entraîne une dissipation d’énergie, les éléments inductifs peuvent accumuler
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de l’énergie et la restituer. La puissance instantanée associée à un processus inductif
est égale à . Pour une inductance constante, ce qui est
usuel, l’énergie accumulée par le processus de croissance d’un courant à partir d’une
valeur initiale nulle est où IX est la valeur finale atteinte par l’intensité
du flux de la grandeur X.

Un système constitué du couplage adéquat d’au moins deux éléments capacitifs et
d’un élément inductif peut manifester un comportement oscillatoire.

PX X x X X XI L I= − = −� � �ϕ ϕavec
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Questions
1. On entend souvent dire que le phénomène d’induction est la

conséquence d’un phénomène de «résistance», à savoir la ré-
sistance à la variation du courant. Dans le cas de l’hydraulique
plus particulièrement, on peut concevoir que l’inertie est la
cause de cette opposition à une variation du mouvement.
Quelle est la différence entre l’induction et la résistance pro-
voquée par le frottement interne du fluide?

2. Si un élément dans un circuit électrique possède simultané-
ment une résistance et une inductance, les différences de po-
tentiel résistives et inductives sur l’élément s’additionnent.
Pourquoi est-ce ainsi? Pourquoi ces deux différences de po-
tentiel ne sont-elles pas toutes deux égales à la différence de
potentiel sur l’élément?

3. Dans l’exemple 4.2, il est affirmé que la différence de pres-
sions inductive à l’instant t = 0 s est égale à la différence de
pression sur la colonne de fluide dans le réservoir. Pourquoi
cette affirmation n’est-elle pas tout à fait correcte? Qu’avons-
nous négligé en postulant ce résultat ? Le problème est le
même que celui auquel il est fait allusion dans la Question 7
du chapitre 1.

 

Exercices
1. Dans un circuit tel que celui de la figure 4.11, équipé d’une

batterie de 24 V, on observe, dans deux expériences différen-
tes, des taux initiaux de croissance de l’intensité du courant de
5.0·103 A s-1, et 10 A s-1. Que valent les inductances des élé-
ments dans chacun des cas?

2. Une huile de masse volumique égale à 910 kg m-3 et de visco-
sité égale à 0.081 Pa· s s’écoule à travers une longue conduite
droite. La longueur et le rayon de la conduite sont respective-
ment de 10 m et 50 mm. Le flux volumique et de 10–3 m3 s-1.
(a) Quelles sont les valeurs de la résistance et de l’inductance
hydrauliques? (b) Quelle est la constante de temps de ce dis-
positif hydraulique? (c) Que vaudra la différence de pression
induite si l’on interrompt le courant en 0.010 s?

 

Problèmes
1. On pompe du pétrole brut à travers une conduite de 100 km

de longueur et de 1.0 m de diamètre. En admettant que
l’écoulement est amorcé à partir de l’immobilité, déterminez
le temps que mettra le courant pour atteindre 99% de sa
valeur stationnaire. Considérez que l’écoulement reste lami-
naire.

2. On pompe du pétrole brut à travers une conduite de 100 km
de longueur et de 1.0 m de diamètre. En admettant que
l’écoulement est amorcé à partir de l’immobilité, déterminez
le temps que mettra le courant pour atteindre 99% de sa
valeur stationnaire. Considérez que l’écoulement reste lami-
naire.

3. Un réservoir au fond duquel est connectée une longue con-
duite horizontale a une capacité de 10–5 m3 Pa-1. La résis-
tance et l’inductance du système sont respectivement de
106 Pa s m-3 et 106 Pa s2 m-3. La masse volumique du fluide
dans la cuve est de 1000 kg m-3 et le niveau initial est de
1.0 m. (a) Que valent les deux constantes de temps du
système? (b) Esquissez de manière aussi précise que possible
l’évolution du flux volumique en fonction du temps (pour les
20 premières secondes).

4. On pompe un fluide à travers une conduite rectiligne dont
l’inductance hydraulique est de 5.0·106 Pa s2 m-3 et la résis-
tance négligeable. Le flux volumique croît linéairement de
–0.02 m3 s-1 à 0.03 m3 s-1 durant les 5 premières secondes. À
l’instant t = 2.0 s, la pression du fluide à la sortie de la con-
duite vaut 1.50 bar, que vaut-elle à l’entrée? Comment cette
valeur change-t-elle à l’instant t = 3.0 s?

5. On remplit au moyen d’un tuyau horizontal de 0.50 m de lon-
gueur et de 6.0 cm de diamètre, placé à la hauteur du fond, un
récipient à parois verticales et à section quadratique de 1.0 m
de côté. La pompe d’alimentation produit une surpression de
0.20 bar, le fluide pompé a une masse volumique de
900 kg m-3 et une viscosité de 0.20 Pa s. (a) Quelle sera la
valeur maximale du flux volumique si on néglige le phéno-
mène d’induction ? (b) Que vaut la puissance hydraulique
dissipée à cause des frottements dans la conduite à l’instant
où le niveau dans le récipient atteint la moitié de la valeur
finale? (c) Esquisser aussi précisément que possible l’évolu-
tion au cours du temps du flux volumique en tenant compte
du phénomène d’induction.

6. À l’instant t = 0 s, on ferme l’inter-
rupteur d’un circuit électrique com-
prenant une batterie, un solénoïde
idéal et une résistance montés en
série. Le tableau 4.2 indique les
valeurs de la tension mesurée sur le
solénoïde en fonction du temps.
(a) Quelle est la tension délivrée
par la batterie ? (b) Quelle est la
constante de temps inductive du
circuit ? (Suggestion : reportez les
données dans une échelle linéaire-
logarithmique.)

7. Un courant électrique d’intensité
égale à 7.0 A circule à travers un
solénoïde comportant 1500 spires,
ayant un diamètre de 8.0 cm et une longueur de 1.50 m. Le
conducteur est un fil de cuivre de 1.0 mm de diamètre, de
résistivité égale à1.8·10-8 Ω m. (a) Que vaut la tension mesu-
rée sur le solénoïde si le courant électrique est constant ?
(b) Le courant décroît linéairement jusqu’à zéro en 2.0 ms.
Que vaut la tension mesurée 1.0 ms après le début de la
décroissance?

8. Un solénoïde idéal ayant une inductance de 5.0 mH est con-
necté en série avec une résistance de 10 Ω à une source. La
tension de la source est variée pour entretenir un courant
selon la figure 4.38. (a) Déterminez la tension de la source en
fonction du temps. (b) Que valent les puissances électriques

TABLEAU 4.2
Problème 6.

t / ms UL / V

1.0 18.2

2.0 13.8

3.0 10.4

4.0 7.90

5.0 5.98

6.0 4.53

7.0 3.43

8.0 2.60
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dans la résistance et dans l’inductance à 4.5 ms ? (c) À
4.5 ms, d’où vient l’énergie libérée dans la résistance?

9. Dans un circuit comprenant une alimentation, un solénoïde et
une résistance montés en série, la tension sur l’alimentation
est variée de telle manière que le courant est donné par
Iq(t) = 3.0 A – 5.0 A s-1·t. La résistance et l’inductance valent
respectivement 4.0 Ω , and 0.50 H. (a) Que valent les tensions
sur la résistance et l’inductance à l’instant t = 0.40 s?
(b) Déterminez la tension de l’alimentation en fonction du
temps.

10. L’intensité du courant dans un solénoïde varie linéairement
dans le temps de 1.0 A à –1.0 A en l’espace de 2.0 s. Le solé-
noïde a une inductance de 0.50 H et une résistance de 1.0 Ω .
(a) Tracez la tension sur le solénoïde en fonction du temps.
(b) Tracez séparément la puissance due à la résistance et celle
due à l’inductance en fonction du temps. (c) Combien d’éner-
gie la source doit-elle délivrer durant les 2 premières
secondes?

t / ms

IQ / A

1.0 2.0 3.0 4.0 5.0

0.1

FIGURE 4.38
Problème 8
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Un premier modèle du fonctionnement du système cardiovasculaire d’un mouton a été
élaboré dans l’interlude I. Ce modèle de type RC nous a permis d’atteindre une assez
bonne adéquation avec les données expérimentales, à une exception près. Durant un
bref intervalle du cycle, le sang reflue vers le cœur sans y retourner et son écoulement
manifeste des oscillations, ce qui ne peut être expliqué et modélisé qu’en attribuant au
système des propriétés inductives. Un des objectifs de cet interlude est d’intégrer cette
particularité dans le modèle existant.

 

II.1 I

 

NTRODUCTION

La figure II.1 montre les résultats de la simulation du comportement du système car-
diovasculaire d’un mouton basée sur un modèle de type RC. Ce modèle ne rend pas
compte du reflux du sang dans l’aorte (valeur négative du courant volumique) observé
entre approximativement 0.35 s et 0.6 s, ni des oscillations entre 0.4 s et 0.75 s.

Nous avons appris au chapitre 4 qu’un système ne peut manifester un comportement
oscillatoire que s’il possède des propriétés à la fois capacitives et inductives. Nous
nous proposons de compléter notre modèle en prenant en compte l’inertie de l’écou-
lement du sang dans l’aorte. Nous le ferons dans un premier temps en complétant le
modèle de windkessel électrique (section II.3), puis en le transposant dans le modèle
d’écoulement du sang (section II.4).

Dans nos modèles de type windkessel électrique, l’action de la diode que nous utili-
sons pour simuler le comportement de la valve aortique est représentée de manière
simple. Nous allons proposer un modèle plus réaliste et montrer que son insertion dans
un modèle peut entraîner d’importants problèmes numériques (section II.2).
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FIGURE II.1 Résultats de la simu-
lation du modèle provisoire du sys-
tème cardiovasculaire d’un
mouton: (a) pression ventriculaire
∆PVG et pression aortique ∆PA1
comparée à la pression mesurée
∆PAm; (b) flux aortique simulé
IV12 comparé au flux mesuré IVm.
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Dans le modèle de l’interlude I, nous avons utilisé une diode pour simuler l’action de
la valve aortique. Nous avons admis qu’elle ne laissait passer le courant qu’à partir
d’un certain seuil, ce qui correspond à une caractéristique simple, mais peu réaliste
(fig. II.2a), la réalité étant représentée par la figure II.2b. Dans le modèle, la fonction
de la diode est simulée en exigeant qu’elle ne laisse passer le courant qu’à partir d’une
certaine valeur de la tension et qu’elle empêche des valeurs négatives de l’intensité
(section I.3.1). Ce modèle simple donne d’excellents résultats, comme le démontre la
figure I.9.

Dans cette section, nous allons d’abord mesurer la caractéristique d’une diode, déter-
miner comment l’intégrer dans le modèle et faire apparaître les problèmes qui peuvent
se manifester dans la simulation des modèles dont elle fait partie.

 

II.2.1 Caractéristique d’une diode

La caractéristique de la diode (fig. II.2b) est clairement non ohmique. Si l’on reporte
le logarithme de l’intensité du courant en fonction du la tension, on obtient une droite
(fig. II.2c), ce qui nous permet d’approximer la caractéristique de la diode au moyen
d’une fonction exponentielle:

 

(II.1)

La constante soustractive rend compte du fait que l’intensité est nulle lorsque la tension
sur la diode s’annule. Pour de grandes valeurs négatives de la tension, le terme
exp(aUD) devient très petit et l’intensité devient proche de –IQD0.

 

Détermination expérimentale des paramètres de la diode. Nous utilisons le circuit
de type windkessel électrique de la figure II.3. Les résultats des mesures au cours des-
quelles nous varions la tension de la source et mesurons les tensions aux bornes de la
source, de la résistance R1 et du condensateur apparaissent dans la figure II.4.
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FIGURE II.2 Caractéristique d’une
diode: (a) modèle simplifié utilisé
dans les simulations de l’interlude I;
(b) caractéristique réelle;
(c) représentation logarithmique
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FIGURE II.3 Circuit de type wind-
kessel électrique pour la détermina-
tion des paramètres de la diode.

FIGURE II.4 Résultats des mesures
effectuées sur le circuit de type wind-
kessel de la figure II.3. Les valeurs
de la tension UD ont été calculées à
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L’évolution de la tension sur la diode qui apparaît dans le graphique découle de la loi
des mailles:

 

(II.2)

Nous déterminons l’intensité du courant à travers la diode à partir de la loi d’OHM:

 

(II.3)

Nous sélectionnons une plage de valeurs pour lesquelles la tension UD est positive et
suffisamment grande pour que l’intensité soit notable, à savoir UD > 0.35 V. Il en ré-
sulte le graphique de la figure II.5.

Un ajustement aux données de la figure II.5b au moyen de la méthode des moindres
carrés donne, entre le logarithme de l’intensité du courant à travers la diode et la ten-
sion sur cet élément, la relation:

 

(II.4)

Il s’ensuit que les paramètres que nous devons introduire dans la relation (II.1) sont
respectivement:

 

(II.5)

 

II.2.2 Apparition de relations algébriques circulaires dans le modèle

Lorsque l’on essaie d’introduire cette caractéristique de la diode dans le modèle du
windkessel électrique de la figure II.3, le logiciel n’accepte pas le lien entre l’intensité
IQ1 et la tension UD sur la diode (fig. II.6). La raison est la suivante: nous calculons
l’intensité du courant IQ1 au moyen de la tension sur la première résistance du circuit:

 

(II.6)

Cependant, cette grandeur est dépendante de la tension sur la diode par l’intermédiaire
de la loi des mailles:

 

(II.7)
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Comme la tension UD dépend de l’intensité du courant à travers la diode en vertu de
l’équation (II.1), explicitement:

 

(II.8)

nous obtenons une relation circulaire entre UR1, IQ1 et UD. Le logiciel que nous utili-
sons pour la modélisation dynamique (comme la plupart des logiciels standard) n’est
pas en mesure de gérer ce genre de situation et n’accepte pas la création du lien entre
IQ1 et UD.

Pourquoi le logiciel ne gère-t-il pas cette situation alors que des relations circulaires
sont présentes dans tous nos modèles qui contiennent des boucles de rétroaction? Un
examen de ces modèles révèle que les boucles de rétroaction contiennent toujours au
moins un élément de stockage, ce qui rend le modèle dynamique. Sans un tel élément,
les relations circulaires entre des variables aboutissent à des équations algébriques non
linéaires. En effet, si nous substituons les équations (II.6) et (II.8) dans la relation
(II.7), nous obtenons:

 

(II.9)

qui est une équation non linéaire pour UR1.

Nous reviendrons à la section II.2.6 sur les problèmes numériques liés à l’apparition
de relations algébriques circulaires.

 

II.2.3 Résolution du problème lié aux relations algébriques circulaires

Comme le logiciel ne gère pas les modèles contenant des relations algébriques circu-
laires, nous devons trouver le moyen de résoudre ce problème. En examinant le circuit
de la figure II.3, on se rend compte que c’est la connexion en série de la diode et de la
première résistance qui en est l’origine. Par contre, le montage en série de la première
et de la seconde résistance n’est pas problématique: le condensateur placé entre ces
résistances fait du circuit un système dynamique. On en conclut qu’il doit y avoir au
moins un élément dynamique dans chaque boucle qui apparaît dans un modèle.

Du point de vue physique, il y a deux manières d’introduire un élément dynamique
entre la diode et la première résistance. Nous pouvons admettre que la diode n’est pas
seulement conductrice, mais qu’elle a également des propriétés capacitives. La secon-
de manière est de lui attribuer des propriétés inductives qui rendent compte de l’inertie
du courant électrique, thème que nous avons traité au chapitre 4, section 4.3.3.

Pour justifier cette manière de procéder, il suffit de réaliser que les éléments des sys-
tèmes dynamiques ont des propriétés multiples. Attribuer des propriétés capacitives ou
inductives à une diode est réaliste. Les éléments électriques que nous avons rencontrés
jusqu’ici ont simultanément des propriétés capacitives, inductives et résistives. Com-
me souvent une de ces propriétés est dominante, on peut modéliser l’élément en ne
tenant compte que de la propriété dominante. Un exemple mécanique de la multiplicité
des propriétés est l’aorte qui est à la fois un système capacitif qui stocke le sang, le
laisse circuler en lui opposant une certaine résistance et, à cause de l’inertie du sang
qui la traverse, est également un élément inductif. Les trois propriétés ont des impor-
tances pratiquement égales.
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II.2.4 Modèle de diode avec propriétés capacitives

L’attribution de propriétés capacitives à la diode est réalisée par l’introduction d’un
condensateur auxiliaire placé de telle manière qu’il engendre une boucle supplémen-
taire contenant l’alimentation, la diode et ce condensateur (fig. II.7) afin de rendre
dynamique la partie gauche du circuit.

L’ajout du condensateur auxiliaire modifie les calculs par rapport au modèle de la
section I.3.1. La loi des mailles nous fournit la tension sur la diode:

sur la première résistance:

et sur la seconde résistance:

Les tensions sur les condensateurs découlent de la loi de capacité. L’intensité du cou-
rant à travers la diode est donnée par l’équation (II.1), celle des deux autres par la loi
d’OHM avec la même condition que dans le modèle de la section I.3.1 en ce qui
concerne IQ1.

Il reste une question importante à régler: quelle valeur de la capacité faut-il attribuer
à ce condensateur auxiliaire? Pour des raisons physiques, elle doit être extrêmement
faible, plusieurs ordres de grandeur inférieure à celle du condensateur du modèle de
windkessel électrique.
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FIGURE II.7 Résolution du problème des relation algébriques circulaires: (a) adjonction d’un con-
densateur auxiliaire entre la diode et la première résistance afin de rendre dynamique la partie gauche du
circuit; (b) diagramme de dynamique des systèmes correspondant.
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FIGURE II.8 Simulation du modèle
de la figure II.7. Les valeurs mesu-
rées sont représentées par des points,
les résultats de la simulation par une
ligne continue. Les valeurs des para-
mètres apparaissent à droite. Seule la
capacité à dû être augmentée de 3%.
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INTERLUDE II   SYSTÈME CARDIOVASCULAIRE EN TANT QUE SYSTÈME RLC

Pour la simulation présentée à la figure II.8, la valeur choisie est de 100 pF, mais nous
aurions pu choisir une valeur plus faible. Si nous choisissons une valeur supérieure à
10 µF, nous commençons à remarquer des différences entre la simulation et les valeurs
mesurées. À partir de 100 µF, la simulation ne ressemble en rien aux valeurs mesurées.

La présence dans le modèle de deux condensateurs de capacités qui diffèrent l’une de
l’autre de plusieurs ordres de grandeur provoque l’apparition d’un nouveau problème
numérique, celui des équations «raides» qui sera abordé à la section II.2.6.

II.2.5 Modèle de diode avec propriétés inductives

Une autre manière d’intégrer la caractéristique d’une diode dans un modèle est de lui
attribuer une propriété inductive.

Si nous ajoutons un élément inductif en tant que partie de la diode dans le circuit de
charge d’un condensateur de la figure II.9a, dans le diagramme de dynamique des sys-
tèmes, l’intensité du courant de charge devra être évaluée de manière différente. Au
lieu d’appliquer directement la loi d’OHM, on l’obtient par intégration de son taux de
variation qui découle de la loi d’induction:

Cette partie du modèle apparaît dans l’ovale en pointillé du diagramme de dynamique
des systèmes de la figure II.9b. La loi des mailles fournit la tension ULD:

Les tensions sur le condensateur et sur la résistance sont fournies respectivement par
les lois de capacité et d’OHM, alors que la tension sur la diode est égale à:
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II.2  MODÉLISATION DYNAMIQUE D’UNE DIODE

(II.10)

II.2.6 Problèmes numériques

Dans cette section, nous allons aborder un certain nombre de problèmes numériques
qui peuvent survenir lors de la simulation de modèles de systèmes dynamiques.

Équations algébriques non linéaires résultant d’une relation circulaire. Lorsque
nous avons introduit la caractéristique réaliste de la diode dans le modèle de windkes-
sel électrique à la section II.2.2, l’évaluation de la tension sur la première résistance
débouche sur l’équation

(II.11)

qui est une équation non linéaire pour UR1. Comme elle ne peut pas être résolue ana-
lytiquement, c’est-à-dire au moyen d’une formule telle que celle qui sert à résoudre
l’équation du deuxième degré, elle devrait être résolue à chaque étape de la procédure
de simulation du modèle. La résolution d’une telle équation nécessite l’utilisation d’un
algorithme itératif. Plaçons-nous à l’instant ti. La valeur de US(ti) est donnée, ainsi que
celles des paramètres a, IQD0 et R1. Si nous admettons que la valeur de UR1 est censée
avoir été calculée à l’étape précédente ti-1, nous pouvons l’insérer dans le membre de
droite de l’équation (II.11) afin d’obtenir une nouvelle valeur pour UR1 , que nous pou-
vons à nouveau insérer dans le membre de droite en répétant l’opération en espérant
que la procédure converge suffisamment rapidement et utiliser cette nouvelle valeur
pour cette étape de la simulation.

Mais, comme nous l’avons vu, beaucoup de logiciels standard de modélisation dyna-
mique n’intègrent pas ces algorithmes gourmands en temps de calcul, raison pour la-
quelle ils refusent les relations algébriques circulaires.

Équations «raides». Nous avons contourné le problème des relations algébriques cir-
culaires en rendant dynamique la partie gauche du circuit de la figure II.3 par l’intro-
duction d’un élément de stockage, un condensateur, entre la diode et la première
résistance (fig. II.7a).

Si nous souhaitons utiliser de très petites valeurs de la capacité Caux afin de minimiser
son influence sur le comportement dynamique du système, les méthodes numériques
simples intégrées dans les logiciels de modélisation dynamique butent sur de sérieux
problèmes conduisant à l’échec de la simulation.

Le choix de la longueur du pas d’intégration (section 16.4.4) est crucial pour que la
simulation du comportement du système soit aussi fidèle à la réalité que possible. Si
le pas choisi est trop grand, la simulation diverge, produisant des résultats insensés.
Dans un tel cas, la simulation n’est pas seulement inexacte, mais également instable,
donc totalement inutilisable. Jusqu’à présent, nous avons toujours réussi à trouver une
valeur convenablement petite pour la longueur du pas d’intégration utilisée par le
logiciel.

Mais que signifie «convenable» dans le cas qui nous occupe? C’est l’examen des
constantes de temps apparaissant dans le modèles qui guide ce choix. Par exemple, si
nous simulons la charge d’un condensateur, nous choisissons la longueur du pas d’in-
tégration de manière à être certain que le logiciel effectue un nombre suffisant d’étapes
de calcul durant une période de longueur correspondant à celle durant laquelle ont lieu
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les plus grandes variations du système, Si le système considéré contient des éléments
avec différentes constantes de temps, on choisit l’intervalle de temps adapté aux varia-
tions les plus rapides.

Qu’advient-il si les constantes de temps diffèrent de plusieurs ordres de grandeur?
C’est exactement ce à quoi nous sommes confrontés dans notre exemple. Si nous at-
tribuons au condensateur auxiliaire une capacité de 100 pF et que la première résistan-
ce vaut 6 kΩ, la constante de temps est de l’ordre de la microseconde. Cela signifie que
nous devrions choisir un pas de l’ordre de 10-7 s, contraignant le logiciel à effectuer
10 millions de pas pour une seconde de temps de simulation, alors que la constante de
temps de R1 et du condensateur d’origine est de l’ordre de la seconde. Si l’on choisis-
sait pour Caux une valeur encore plus faible, le problème serait encore plus grave, le
logiciel aurait besoin de beaucoup plus de temps pour calculer une solution, ou il n’y
aurait plus suffisamment de mémoire pour stocker toutes les valeurs nécessaires pour
l’acquisition du résultat.

L’idéal serait que les mathématiciens mettent à disposition un algorithme qui ajusterait
la longueur du pas automatiquement, c’est-à-dire le rendre beaucoup plus grand dès
que les variations rapides ont cessé et que le système varie de manière plus calme. Les
bons logiciels de modélisation intègrent usuellement une telle possibilité.

Cependant, dans beaucoup de cas, et notre exemple en fait partie, cette technique ne
fonctionne pas. La méthode esquissée devient instable dès que le logiciel tente d’aug-
menter la valeur du pas d’intégration, même dans les plages de valeurs pour lesquelles
la solution varie très lentement. La variation rapide reste «incrustée» dans les équa-
tions, même lorsque l’on entre dans une période où elle a cessé d’être effective. Lors-
que l’on est confronté à un problème de la sorte, les mathématiciens disent que les
équations du modèle sont «raides». Les systèmes raides nécessitent l’utilisation de
procédures numériques particulières qui garantissent la stabilité de la solution même
lorsque le pas d’intégration est augmenté. Ces méthodes sont dites implicites.

Instabilité de l’algorithme d’intégration. Lorsque l’on lance la simulation du modèle
de la charge du condensateur de la section II.2.5, on bute sur de sérieux problèmes
dans de nombreux cas. Quelle en est la cause? Nous savons que l’intensité du courant
ne doit pas devenir négative, la diode étant censée ne laisser passer le courant que dans
le sens positif. La relation (II.10) devrait éviter que l’intensité tombe en dessous de
–IQD0. Vu que le courant –IQD0 est très faible, ce ne devrait pas être un problème.

Cependant, il se révèle que l’évaluation de l’intensité du courant par intégration de son
taux de variation peut devenir instable, la valeur de IQ (représentée par le stock dans
la partie entourée d’un ovale dans la figure II.10b) peut devenir fortement négative.
C’est un problème numérique dû à la nature des intégrateurs numériques. La forme la
plus simple d’un tel intégrateur est la méthode d’EULER explicite:

(II.12)

ce qui équivaut à ajouter à la valeur provenant du pas précédent l’accroissement cal-
culé comme produit du taux de variation instantané et de l’intervalle de temps ∆t. Si
le taux de variation est fortement négatif, ou si ∆t est trop grand, ou les deux, IQ, i +1
pourra devenir fortement négatif. Ce fait rend invalide le pas suivant de l’intégration
numérique. Pour cette raison, nous devons nous assurer que cela n’arrive pas en impo-
sant une condition qui empêche IQD de devenir négatif, par exemple:

 I I I tQ i Q i Q i, , ,+ = + ⋅1
� ∆

IF ( DT THEND DI U L dI dt U LQ L Q L+ ∗ > =/ ) / /0

ELSE dI dt c IQ Q/ = − ∗ // DT



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 183

II.3  MODÈLE DE WINDKESSEL ÉLECTRIQUE AVEC INDUCTION

L’algorithme teste si IQ, i+1 reste positif. Dans l’affirmative, il utilise la loi d’induction
pour calculer le taux de variation de l’intensité du courant. Si la réponse est négative,
nous utilisons une relation qui entraîne une décroissance exponentielle vers zéro de
l’intensité tout en évitant qu’elle devienne négative. L’effet de cette condition est ren-
du visible dans la partie agrandie de la figure II.9c pour une valeur de c = 1.

Si on prend une valeur de c plus grande, IQ décroît plus rapidement vers zéro. Dans ce
cas, et/ou pour une valeur faible de L, on peut être confronté à un nouveau problème
numérique qui rend «raides» les équations du modèle.

II.3 MODÈLE DE WINDKESSEL ÉLECTRIQUE AVEC INDUCTION

Il n’est possible de modéliser l’apparition d’oscillations dans le flux aortique qu’en in-
troduisant dans le modèle un élément inductif qui permet de prendre en compte l’iner-
tie inhérente à tout écoulement de fluide, ce qui nous permettra de quantifier l’intensité
du flux sanguin à l’intérieur de l’aorte, et non plus simplement à ses extrémités.

II.3.1 Élargissement du modèle

Dans un premier temps, nous complétons le modèle du windkessel électrique élaboré
à la section I.3.3 (fig. I.11) en y insérant une self entre les deux condensateurs qui
représentent les deux segments en lesquels nous avons découpé l’aorte.

La figure II.10b montre le circuit électrique modifié qui est analogue au système
hydraulique de la partie (a) de la même figure alors que la partie (c) représente le dia-
gramme de dynamique des systèmes correspondant; la partie entourée d’un ovale en
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pointillé comprend la loi d’induction ainsi que l’intégrateur qui calcule l’intensité. Ce
circuit électrique va nous permettre d’étudier le système à la fois par l’expérience et
par modélisation et simulation.

L’intensité du courant entrant est déterminée par la résistance R1:

La tension UR1 découle de l’application de la loi des mailles:

Pour permettre à ce circuit électrique de se comporter de manière aussi proche que
possible de celle du circuit sanguin d’un mammifère, nous donnons à la tension de
l’alimentation US un profil semblable à celui de la pression dans le ventricule gauche.
Ce profil apparaît dans la figure II.11a. La fonction de la diode est modélisée de la ma-
nière simple utilisée dans l’Interlude I.

Dans la branche médiane du circuit, la résistance R2 sert à mesurer indirectement l’in-
tensité du courant aortique IQ2. Dans le modèle, l’intensité IQ2 est déterminée à partir
de la loi d’induction. À partir de la tension sur la self donnée par la loi des mailles:

nous déterminons le taux de variation de l’intensité IQ2:

À partir de cette relation, l’intensité IQ2 est évalué par intégration dans le logiciel de
dynamique des systèmes.

L’intensité IQ3 dans la troisième boucle du circuit est calculée à partir de la loi des
mailles et de la loi d’OHM.

II.3.2 Simulation

Les résultats de la simulation sont présentés dans la figure II.11.
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II.4  INCLUSION DE L’INERTIE DU FLUX SANGUIN

Les tensions mesurées sur les condensateurs et sur R2 (qui sert à mesurer de manière
indirecte l’intensité du courant IQ2) s’ajustent très bien aux valeurs mesurées
(fig. II.10a). Les valeurs des paramètres utilisées pour optimiser la simulation corres-
pondent à celles qui ont été mesurées de manière indépendante (L = 20 H, C1 = C2 =
480 µF, UD = 0.80 V). Seule la valeur de la résistance utilisée pour la self est notable-
ment différente de la valeur mesurée statiquement : nous devons utiliser la valeur
RL = 120 Ω au lieu des 63 Ω mesurés statiquement. Cette différence est due aux pro-
priétés magnétiques du noyau de fer de la self: lorsqu’il est soumis à des cycles, il y a
production de chaleur comme dans les résistances standard.

II.4 INCLUSION DE L’INERTIE DU FLUX SANGUIN

Nous allons adjoindre au modèle hydraulique de l’Interlude I un élément inductif pour
tenir compte de l’inertie inhérente à tout écoulement de fluide.

II.4.1 Transfert au cas hydraulique du modèle avec inertie du fluide

Maintenant que nous avons pu, au moyen du modèle de windkessel électrique, simuler
l’apparition d’oscillations grâce à l’introduction d’un élément inductif, nous allons
transférer ce modèle au cas de la circulation sanguine. Dans un premier temps, nous
complétons le modèle élaboré à la section I.5 (fig. I.15). Le diagramme de dynamique
des systèmes ainsi complété apparaît dans la figure II.12.

Dans le modèle de la figure I.15, la grandeur IV12 représente le flux sanguin à l’inté-
rieur de l’aorte, entre les deux sections qui divisent l’aorte. La différence de pression
sanguine

est maintenant associée à deux phénomènes: à l’effet inductif dû au taux de variation
du flux sanguin et à l’effet résistif dû à la viscosité:

Les paramètres utilisés pour cette simulation sont énumérés dans le tableau II.1.Vu la
similitude des modèles, le modèle hydraulique produit des résultats semblables au mo-
dèle de windkessel électrique de la section II.3, à savoir l’apparition d’oscillations,
autant de la pression (fig. II.13a) que du flux aortique (fig. II.13b).
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Le flux aortique devient négatif durant une certaine période et la fréquence des oscilla-
tions est comparable à la valeur mesurée. Toutefois, la durée du reflux est plus brève
que celle qui a été mesurée et les oscillations de la pression (par exemple ∆PA1) sont
déphasées par rapport à celles de la pression mesurée ∆PAm. En outre, la simulation
ne reproduit pas le petit pic de pression qui apparaît juste après la fermeture de la valve
aortique. La prise en compte de l’inertie de l’écoulement du sang dans l’aorte a accen-
tué l’effet de lissage du flux systémique.

Malgré cette avancée, les résultats ne sont de loin pas satisfaisants. Nous sommes dans
une situation semblable à celle de la fin de la section I.5 de l’Interlude I et nous allons
adopter la même stratégie en affinant simultanément le modèle.

La première étape consistera à fermer le circuit comme à la section I.6 afin de renvoyer
le sang vers le cœur et de le modéliser en tant que pompe intermittente afin de pourvoir
simuler le flux entre le ventricule gauche et l’aorte. Simultanément, nous affinerons le
modèle de l’aorte en y ajoutant un troisième segment.

La seconde étape consistera à ajouter au modèle une dérivation pour tenir compte du
fait que l’aorte ne débouche pas uniquement sur les artères inférieures qui distribuent
le sang vers les organes abdominaux et les jambes, mais que des artères rayonnent vers
la tête et les bras depuis l’arc aortique. Dans cette ultime étape, nous tiendrons compte
de l’inertie de l’écoulement dans le segment entre le ventricule gauche et le début de
l’aorte.

TABLEAU II.1 Valeurs des paramètres du modèle de la figure II.12.

Grandeur Symbole Valeur SI Valeur «médicale»

Résistance RVA 1.45·107 Pa s m-3 0.110 mmHg s mL-1

R12 1.90·107 Pa s m-3 0.144 mmHg s mL-1

Rsyst 1.70·108 Pa s m-3 1.292 mmHg s mL-1

Capacité CV1 1.70·10-9 m3 Pa-1 0.191 mL mmHg-1

CV2 8.90·10-9 m3 Pa-1 1.171 mL mmHg-1

Inductance LV 6.3·105 Pa s2 m-1 4.79·10-3 mmHg s2 mL-1

Valeurs initiales ∆PA1,0 7000 Pa 53 mmHg

∆PA2,0 7000 Pa 53 mmHg

V12,0 1.0·10-5 m3 s-2 10 mL s-2
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FIGURE II.13 Résultats de la simu-
lation du modèle de la figure II.12:
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II.4  INCLUSION DE L’INERTIE DU FLUX SANGUIN

II.4.2 Le cœur en tant que pompe intermittente et fermeture du circuit

Comme à la section I.6, nous fermons le circuit systémique en le divisant en deux par-
ties, les artères qui apportent le sang riche en oxygènes aux organes et les veines qui
ramènent au cœur le sang chargé de dioxyde de carbone. Naturellement, nous laissons
de côté le circuit pulmonaire et la partie droite du cœur et ramenons le sang directe-
ment dans l’atrium gauche sans nous soucier de la façon dont il a été réoxygéné. Dans
le même temps, nous affinons le modèle de l’aorte en y adjoignant un troisième seg-
ment. Les capacités des différents éléments sont remplacées par leurs inverses, les
élastances, caractéristiques utilisées dans le monde médical.

La figure II.15 présente les résultats de la simulation de ce nouveau modèle. Comme
il utilise les même caractéristiques du ventricule gauche que celles utilisées à la fin de
l’Interlude I, l’évolution de la pression ∆PVG correspond à celle de la figure I.19.

La pression ∆PA1 à l’entrée de l’aorte évolue maintenant de manière plus proche de
celle qui a été mesurée. Par contre, l’extension du modèle n’a pas encore apporté
d’amélioration dans l’évolution du flux aortique. La durée du reflux reste bien infé-
rieure à celle qui a été mesurée.
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FIGURE II.14 Modèle du système
cardiovasculaire fermé laissant de
côté le circuit pulmonaire: les vei-
nes, l’atrium et le ventricule gau-
ches sont ajoutés en tant
qu’éléments de stockage au précé-
dent modèle. Le ventricule gauche
est modélisé en tant que pompe in-
termittente caractérisée par une
élastance variable dans le temps.
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FIGURE II.15 Résultats de la simu-
lation du modèle de la figure II.14:
(a) pression mesurée et résultats de
la simulation pour ∆PVG, ∆PA1 et
∆PA2; (b) intensité du flux aortique
mesuré près de la valve aortique et
résultats de la simulation pour
IVVA, IV12 et IV syst. Les courbes des
valeurs mesurées sont représentées
en pointillé.
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II.4.3 Prise en compte des artères supérieures

Une partie du sang qui arrive du ventricule gauche dans l’aorte est distribuée vers la
tête et les bras par l’intermédiaire de trois artères qui émanent de l’arc aortique. Nous
modélisons cette partie du circuit cardiovasculaire par un flux issu du premier segment
de l’aorte pour aboutir dans le stock qui représente le circuit veineux. L’intensité de ce
flux est contrôlé par la différence de pression entre l’entrée de l’aorte et le circuit vei-
neux et par la résistance de ces artères (fig. II.16).

L’influence de cette extension du modèle apparaît dans la figure II.17.

L’adjonction de cette dérivation influence le déphasage entre la pression mesurée à
l’entrée de l’aorte et celle que livre la simulation. La durée du reflux et des oscillations
dans l’aorte est maintenant proche de ce que révèlent les mesures.
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FIGURE II.16 Extension du modè-
le de la figure II.14 par l’introduc-
tion d’un flux entre l’entrée de
l’aorte et le circuit veineux pour
rendre compte de la distribution du
sang oxygéné vers la tête et les
bras.
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FIGURE II.17 Résultats de la simu-
lation du modèle de la figure II.16:
(a) pression mesurée et résultats de
la simulation pour ∆PVG, ∆PA1 et
∆PA2; (b) intensité du flux aortique
mesuré près de la valve aortique et
résultats de la simulation pour IV12.
Les courbes des valeurs mesurées
sont représentées en pointillé.
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II.4.4 Prise en compte de l’inertie entre le ventricule gauche et l’aorte

L’écoulement du sang entre le ventricule gauche et l’aorte a lieu dans un environne-
ment élastique, ce qui entraîne l’apparition d’effets inductifs modélisés par la loi d’in-
duction insérée dans le diagramme de dynamique des systèmes de la figure II.18.

Même si elle rend notre modèle plus proche de la réalité, l’introduction de cette pro-
priété de l’écoulement n’améliore pas l’adéquation aux valeurs mesurées de la pres-
sion ventriculaire et du flux aortique. Vu le grand nombre de paramètres ajustables
dont les valeurs apparaissent dans le tableau II.2, il est très difficile de trouver la com-
binaison qui garantit un ajustement optimal aux données mesurées.

II.4.5 Les phases du cycle cardiaque: diagramme pression-volume

À la fin de l’Interlude I, nous avons introduit brièvement le diagramme pression-volu-
me qui relie entre eux la pression qui règne dans le ventricule gauche et son volume
(fig. II.20). Il est usuel de distinguer quatre segments sur cette courbe. Ces segments
correspondent aux étapes du cycle cardiaque qui sont décrites en détail dans le
tableau II.3.

TABLEAU II.2 Valeurs des paramètres du modèle de la figure II.16.

Grandeur Valeur Grandeur Valeur

RVA 0.06 mmHg s mL-1 αAG 0.33 mL mmHg-1

R12 0.075 mmHg s mL-1 αV 0.01 mL mmHg-1

R23 0.075 mmHg s mL-1 L 3.5·10-3 mmHg s2 mL-1

RArt, sup. 1.50 mmHg s mL-1 Lin 5.0·10-4 mmHg s2 mL-1

RArt. inf. 0.85 mmHg s mL-1 VVG,0 60 mL

RVeines 0.05 mmHg s mL-1 VAi,0 15 mL

Rmitral 0.05 mmHg s mL-1 VVeines,0 3000 mL s-2

αA 2.5 mL mmHg-1 VAG,0 65 mL

IV VA

R VA delta PR VA

Int IV VA point
IV VA point

L in

delta PA1
delta PVG

FIGURE II.18 Élément ajouté au mo-
dèle de la figure II.16 pour la prise en
compte de l’inertie du flux sanguin
entre le ventricule gauche et l’aorte
au moyen de la loi d’induction.
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FIGURE II.19 Résultats de la simu-
lation du modèle de la figure II.16:
(a) pression mesurée et résultats de
la simulation pour ∆PVG, ∆PA1 et
∆PA2; (b) intensité du flux aortique
mesuré près de la valve aortique et
résultats de la simulation pour IV12.
Les courbes des valeurs mesurées
sont représentées en pointillé.
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TABLEAU II.3 Phases du cycle cardiaque.

Pression Flux volumique Volume

P
ha

se
 1

0.
0

s
<

t≤
0.

34
s

La pression dans l’atrium gauche est plus
élevée que celle du ventricule gauche qui
reste pratiquement à sa valeur minimale,
ce qui indique que la paroi du cœur est
relâchée (l’élastance est faible), lui per-
mettant d’accueillir le sang venant de
l’atrium. La pression dans l’aorte est au
minimum (pression diastolique).

La différence de pression entre
l’atrium gauche et le ventricule gau-
che entraîne l’ouverture de la valve
mitrale, le sang s’écoule entre ces
deux cavités, d’abord passivement,
entraîné par le gradient de pression,
puis activement (systole atriale après
0.23 s). Comme la valve aortique est
fermée, il n’y a aucun flux du ventri-
cule vers l’aorte, mais le sang oscille
dans l’aorte.

Le volume de sang du ventricule gauche
croît aux dépens de celui de l’atrium
gauche durant toute la phase. Le volume
de sang dans l’aorte est au minimum.

P
ha

se
 2

0.
34

s
<

t≤
0.

40
s

La paroi du ventricule gauche se tend et la
pression augmente. Lorsque la pression du
ventricule gauche dépasse celle de l’aorte
(t = 0.36 s), la valve aortique s’ouvre et la
pression aortique augmente rapidement.

La valve mitrale se referme, le flux
entre l’atrium et le ventricule gauche
est interrompu. À l’ouverture de la
valve aortique, les flux entre le ventri-
cule gauche et à l’intérieur de l’aorte
croissent très rapidement (phase
d’éjection rapide). L’intensité mesu-
rée dans l’aorte est plus faible, vu
qu’une partie est déviée vers les artè-
res supérieures.

Entre 0.34 s et 0.36 s, le volume du ven-
tricule gauche reste constant, on est
dans une phase de contraction isovolu-
mique. Puis, le contenu du ventricule
gauche diminue au profit de celui de
l’aorte. L’atrium gauche est relâché et se
remplit par l’intermédiaire d’une des
veines pulmonaires.

P
ha

se
 3

0.
40

s
<

t≤
0.

55
s La tension du muscle cardiaque diminue.

Lorsque la pression ventriculaire devient
inférieure à la pression aortique, la valve
aortique se ferme (t = 0.55 s) et la pression
aortique commence à décroître.

Les deux flux diminuent progressive-
ment jusqu’au moment de la ferme-
ture de la valve aortique (phase
d’éjection lente).

Les volumes ventriculaire et aortique
décroissent conjointement.

P
ha

se
 4

0.
55

s
<

t≤
0.

60
s Le muscle cardiaque entame sa phase de

relaxation qui durera jusqu’au début de la
phase de contraction du cycle suivant.

À la fermeture de la valve aortique, le
sang se met à osciller dans l’aorte.

Comme le muscle cardiaque se relaxe,
le volume de sang dans l’aorte et le ven-
tricule gauche reste constant, on a
atteint la phase de relaxation isovolumi-
que.
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Résumons dans quel état se trouve le muscle cardiaque au cours de chacune des ces
quatre phases.

Durant le phase 1, entre 0.0 s et 0.34 s, le muscle cardiaque est relâché, il se trouve en
situation de diastole ventriculaire. Il en va de même de l’atrium gauche, sauf à la fin
de cette phase durant laquelle il se contracte pour chasser le sang dans le ventricule,
ce qui devient nécessaire parce que les pressions dans les deux cavités se sont équili-
brées. Cette dernière phase est appelée systole atriale.

La phase 2, commence par une brève période, la contraction isovolumique, au cours
de laquelle le muscle se contracte sans pour autant produire de flux sanguin, vu que
les valves mitrale et aortique sont fermées. Après l’ouverture de la valve aortique, la
contraction se poursuit jusqu’à l’atteinte de la pression ventriculaire maximale.

La tension du muscle cardiaque diminue durant la phase 3, ce qui entraîne une décrois-
sance conjointe du flux volumique entre le ventricule et l’aorte, ainsi qu’une diminu-
tion des deux volumes. Les phases 2 et 3 constituent la systole ventriculaire.

Durant la phase 4, vu que les deux valves sont fermées, la relaxation du cœur se fait à
volume constant, on est en phase de relaxation isovolumique.

La systole ventriculaire, durant laquelle le muscle est contracté, dure approximative-
ment 0.20 s. Comme la durée du cycle est de 0.60 s, on constate que le cœur passe les
deux tiers du cycle en état de diastole ventriculaire, c’est-à-dire en état de relâchement.
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La thermodynamique est la science qui traite de la chaleur et de la température, de la
manière dont les corps et d’autres systèmes physiques se comportent en présence de
chaleur, et de l’utilisation de celle-ci pour entraîner d’autres processus. Dans ce cha-
pitre, nous allons introduire les grandeurs fondamentales et les concepts de base de la
thermodynamique.

Nous le ferons en observant et en interprétant un certain nombre de processus dans les-
quels la chaleur joue un rôle. En utilisant les idées développées dans les chapitres pré-
cédents, nous serons en mesure d’élaborer des modèles simples des processus
envisagées et de découvrir ainsi les propriétés fondamentales des grandeurs thermi-
ques et leur lien avec l’énergie.

De manière plus prononcée que dans les chapitres précédents, l’énergie apparaîtra
souvent en compagnie de la chaleur. La raison en est que, dans la thermodynamique
traditionnelle, élaborée au milieu du XIXe siècle notamment par Rudolf CLAUSIUS, ce
que nous associons au concept de chaleur dans notre vie quotidienne a été identifié
avec l’énergie.
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Les phénomènes thermiques font partie de notre quotidien, ce qui nous permet de con-
cevoir les grandeurs qui sont nécessaires à leur modélisation. Sur la base d’expérien-
ces, nous allons introduire de nouveaux concepts fondamentaux, à savoir ceux de
température, chaleur et énergie. Nous connaissons les deux premières grandeurs,
même de manière quelquefois approximative, et les chapitres précédents nous ont fa-
miliarisés avec l’énergie.

 

5.1.1 Contact thermique entre deux corps

Nous versons dans un récipient constitué de deux compartiments identiques séparés
par une mince paroi de métal (fig. 5.1) de l’eau chaude dans le premier et de l’eau froi-
de dans le second.
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FIGURE 5.1 Contact thermique: (a)
deux volumes identique d’eau chau-
de et froide sont en contact à travers
une mince paroi métallique séparant
les deux compartiments d’un réci-
pient bien isolé; (b) les températu-
res se rapprochent progressivement
jusqu’à ce qu’elles soient égales.
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Le récipient est bien isolé et recouvert d’une plaque de polystyrène. Pour uniformiser
la température, l’eau est continuellement brassée dans chacun des compartiments au
moyen d’agitateurs magnétiques. On constate que la température de l’eau chaude di-
minue alors que celle de l’eau froide augmente jusqu’à ce que les températures s’éga-
lisent à un niveau qui correspond assez bien à la moyenne des deux températures
initiales.

Les températures s’équilibrent également lorsque les objets en contact thermique sont
faits de matières différentes et ont des tailles différentes.

La figure 5.2 illustre ce fait pour un cylindre de cuivre plongé dans un bain d’eau chau-
de. En général, la température finale est située entre les températures initiales des deux
objets en contact thermique.

Interprétation. La chaleur a migré de l’eau chaude vers l’eau froide tant que les deux
températures étaient différentes. Nous pouvons donc interpréter la différence de tem-
pérature comme étant la force d’entraînement pour le flux de chaleur et la température
comme le niveau thermique, vu la similitude observée avec l’équilibrage des niveaux
dans des vases communicants (chapitre 1) et l’équilibrage des tensions de deux con-
densateurs reliés par des résistances (chapitre 2). Le second exemple démontre que ce
sont les niveaux thermiques qui s’équilibrent, et non pas les quantités de chaleur rési-
dant dans les corps. En d’autres termes, la température ne mesure pas les quantités de
chaleur, mais le degré de chaleur.

 

5.1.2 Compression de l’air

Chacun a observé que si l’on compresse rapidement l’air dans une pompe de bicyclette
tout en l’empêchant de sortir, celle-ci s’échauffe et peut devenir très chaude si l’on ré-
pète l’opération plusieurs fois. En procédant à cette compression de l’air dans un cy-
lindre muni d’un piston, au fond duquel on a placé un morceau d’amadou, ou d’une
substance facilement inflammable, on peut en observer la combustion même après une
seule compression rapide.

Interprétation. La combustion de l’amadou indique que l’air dans le cylindre est de-
venu très chaud. Pourquoi est-ce le cas? Si l’on analyse la situation, on se rend compte
qu’il n’y a aucune source de chaleur à l’intérieur du cylindre, que celle-ci ne peut pas
avoir migré de l’extérieur vers l’intérieur du cylindre (l’air dans le cylindre est plus
chaud que celui de l’environnement). On pourrait penser que le frottement dans l’air
serait responsable de l’échauffement, mais on peut conclure que cet effet est négligea-
ble, vu que le piston reprend pratiquement sa position initiale si on l’abandonne, ce qui
veut dire que la compression était presque parfaitement élastique. La quantité de cha-
leur dans l’air est donc resté pratiquement constante. La température de l’air s’élève
parce que la chaleur a été comprimée dans un volume beaucoup plus faible, elle a été
portée à un niveau plus élevé (fig. 5.3).
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FIGURE 5.2 Contact thermique:
(a) un cylindre de cuivre froid est
plongé dans de l’eau chaude conte-
nue dans un récipient isolé;
(b) représentation schématique;
(c) évolution des températures jus-
qu’à l’égalisation.

Air

T1T2

Chaleur

FIGURE 5.3 Diagramme de proces-
sus de la compression de l’air sans
chauffage ni refroidissement (com-
pression adiabatique). La tempéra-
ture augmente. Pour parler de
manière imagée, la chaleur de l’air a
été amenée à un niveau plus élevé.
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Cet exemple démontre de manière convaincante que la chaleur et la température ne
peuvent pas être de même nature physique. Lors de la compression rapide de l’air, la
quantité de chaleur reste constante alors que la température s’élève fortement.

 

5.1.3 Refroidissement et chauffage d’eau dans une canette

Afin de pouvoir observer le processus de refroidissement, on verse de l’eau très chaude
dans une canette en aluminium dont les parois ont été polies. Pour assurer une tempé-
rature uniforme, l’eau est brassée continuellement au moyen d’un brasseur magnéti-
que et on enregistre cette température (fig. 5.4). La température diminue rapidement
au début, puis de moins en moins vite, pour atteindre finalement une valeur légèrement
supérieure à celle de l’air ambiant.

Si de l’eau très froide contenue dans une canette entourée d’un manteau isolant est

placée dans une pièce très chaude, sa température augmente d’abord rapidement, puis
de plus en plus lentement pour se stabiliser à nouveau à une valeur légèrement supé-
rieure à celle de l’air ambiant, pour autant que l’on ait pris soin de la brasser continuel-
lement.

Interprétation. L’eau chaude perd de la chaleur à travers les parois de la canette. La
différence de température entre l’eau et l’air ambiant est la force d’entraînement du
flux de chaleur, et ce flux est d’autant plus important que la différence de température
est élevée. Cela explique l’aspect de la courbe d’évolution de la température. Le bras-
seur magnétique remplit son rôle grâce au frottement visqueux du fluide; il s’agit donc
d’un processus dissipatif qui produit un peu de chaleur, ce qui explique pourquoi la
température se stabilise à une valeur légèrement supérieure à celle de l’air ambiant.

Si l’eau est plus froide que l’air ambiant, la chaleur migre en sens inverse, mais l’évo-
lution de la température a lieu de manière analogue.

 

5.1.4 Premier modèle d’un processus thermique

L’évolution de la température lors des processus observés dans les expériences des
sections 5.1.1 et 5.1.3 offre une ressemblance frappante avec les processus d’équili-
brage des niveaux en hydraulique et des tensions en électricité, ainsi que de vidange
et de remplissage d’un réservoir ou de décharge et charge d’un condensateur.

Cette similitude des comportements nous permet d’élaborer un premier modèle basé
sur cette analogie.Nous admettons que les processus thermiques peuvent être décrits
au moyen de deux grandeurs fondamentales, une grandeur extensive, qu’il serait natu-
rel d’appeler chaleur ou calorique, comme l’a fait Sadi CARNOT qui a jeté les fonde-
ments de l’étude théorique des processus thermiques. Comme nous allons le voir plus
loin, pour des raisons historiques, la notion de chaleur est réservée à une grandeur
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FIGURE 5.4 Refroidissement et
chauffage: (a) évolution de la tem-
pérature d’eau chaude dans une ca-
nette d’aluminium à parois minces;
la température finale est supérieure
à la température ambiante; (b) évo-
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physique qui ne peut pas résider dans les corps, mais peut seulement être transférée.
Pour les mêmes raisons, la notion de calorique a été éliminée du corpus théorique et
remplacée par une autre grandeur dotée d’un nom savant, l’entropie S. C’est une gran-
deur semblable à un fluide qui peut être accumulée dans les objets, circuler d’un sys-
tème à l’autre et, nous l’avons vu dans les chapitres précédents, peut être produite lors
de processus dissipatifs. Nous pouvons donc énoncer une équation de bilan d’entropie
(version provisoire):

 

(5.1)

où la grandeur ΠS représente le taux de production d’entropie (par exemple celui qui
est dû au brassage magnétique). L’entropie accumulée dans un système est proportion-
nelle à la température (absolue) T, qui est la grandeur de niveau, la grandeur intensive
liée à la description des processus thermiques. Nous pouvons donc énoncer une loi de
capacité:

 

(5.2)

où KS représente la capacité entropique du système. Nous avons vu en hydraulique que
la capacité d’un récipient dépend de sa géométrie. La capacité thermique d’un systè-
me, sa faculté d’accumuler une quantité plus ou moins grande d’entropie, dépend res-
pectivement de sa masse (ou de sa quantité de matière). Il est donc usuel de travailler
avec la capacité entropique spécifique κS définie par:

 

(5.3)

L’entropie circule toujours entre deux niveaux de son potentiel associé qui, c’est de-
venu évident dans les sections précédents, n’est rien d’autre que la température abso-
lue T. L’intensité du flux d’entropie IS est déterminée par la différence de température
∆T et, respectivement, par la conductance GS ou la résistance RS du matériau traversé,
ce que l’on peut énoncer au moyen d’une loi de résistance:

 

(5.4)

∆T représente la différence entre la température instantanée de l’eau et celle de l’air
ambiant. Signalons d’ores et déjà que la conductance, et par le fait même la résistance,
sont des grandeurs qui ne sont pas nécessairement constantes et qui peuvent dépendre
de la température.

Dans un premier temps, nous allons modéliser le processus de refroidissement sans
prise en compte de la production d’entropie due au brassage.
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FIGURE 5.5 Refroidissement d’eau
dans une canette: (a) modèle du pro-
cessus sans prise en compte de l’in-
fluence du brassage; (b)
comparaison de la simulation de
l’évolution de la température (ligne
continue) et des valeurs mesurées
(petits cercles). La température fina-
le correspond à la température am-
biante (losanges).
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Vu que nous n’avons pas pris en compte la production d’entropie due au brassage, il
est normal que, dans ce modèle, la température finale de l’eau soit celle de l’environ-
nement.

Pour pouvoir tenir compte de ce processus supplémentaire, nous devons évaluer sa
puissance. Cette valeur peut être extraite des données expérimentales, comme nous le
montrerons à l’exemple 5.4. Nous avons découvert au chapitre 3 que la puissance d’un
processus était égale au produit de l’intensité du flux de la grandeur extensive consi-
dérée et de la variation du potentiel associé. Dans notre cas, le flux est remplacé par le
taux de production d’entropie ΠS. Mais quelle est la variation de température associée
à ce processus? Comme l’entropie créée à la température T de l’eau par le brassage
n’existait pas avant sa production, nous devons admettre qu’elle a été élevée de la tem-
pérature nulle à celle de l’eau. La variation de température est donc égale à la tempé-
rature instantanée de l’eau, ce qui nous permet d’écrire:

 

(5.5)

La prise en compte de cette contribution dans le modèle permet d’obtenir une simula-
tion qui correspond assez bien aux données expérimentales.

Il faut toutefois relever que l’ajustement n’est pas parfait. Nous découvrirons plus loin
que cette divergence est due au fait que la capacité entropique de l’eau n’est pas cons-
tante, mais qu’elle dépend de la température.

Avant de passer à l’élaboration des lois constitutives, nous allons compléter nos obser-
vations relatives aux différents processus thermiques.

 

5.1.5 Flux de chaleur dans une barre métallique

L’extrémité d’une barre cylindrique de cuivre est plongée dans de l’eau froide alors
que l’autre extrémité est chauffée par la flamme d’une bougie. On observe que la tem-
pérature de l’eau augmente. On observe une diminution progressive de la température
le long de la barre de cuivre.
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FIGURE 5.6 Refroidissement d’eau
dans une canette: (a) modèle du pro-
cessus avec prise en compte de l’in-
fluence du brassage; (b)
comparaison de la simulation de
l’évolution de la température (ligne
continue) et des valeurs mesurées
(petits cercles). La température fina-
le correspond aux mesures. La di-
vergence est due au fait que la
capacité entropique de l’eau n’est
pas constante.
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a. b. c. FIGURE 5.7 Flux de chaleur: (a)
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duite par la bougie; (b) évolution
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pérature ambiante, puis la bougie
est allumée à t = 700 s; (c) diagram-
me de processus du flux de chaleur.
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Interprétation. La chaleur produite par la flamme de la bougie est transférée par l’in-
termédiaire de la barre de cuivre dans l’eau. Ce processus de migration de la chaleur
à travers le matériau est appelé conduction. Il est analogue à la conduction de l’élec-
tricité dans les métaux. La diminution de la température le long de la barre est néces-
saire pour entraîner le flux de chaleur vers le récipient d’eau.

 

5.1.6 Vaporisation d’eau au moyen d’un thermoplongeur

De l’eau placée dans un récipient ouvert mais dont les parois sont isolées est chauffée
au moyen d’un thermoplongeur dont la puissance est maintenue constante. À une tem-
pérature proche de 100°C, elle se met à bouillir. Les mesures permettent de constater
que la température reste constante pendant tout le processus de vaporisation et que la
masse de l’eau diminue linéairement.

Interprétation. Nous constatons à nouveau que ce changement de phase nécessite un
apport de chaleur qui n’entraîne aucune variation de la température des deux substan-
ces participant à ce changement de phase. Comme la chaleur est produite à un taux
constant par le thermoplongeur et que la masse de l’eau diminue de manière linéaire,
nous en concluons que des quantités égales de chaleur produisent des quantités égales
de vapeur.

La chaleur a dû être produite par le thermoplongeur, elle n’y était pas contenue préa-
lablement, sinon le processus de chauffage s’arrêterait assez rapidement. Le diagram-
me de processus du thermoplongeur explique comment il faut comprendre le
processus. De l’énergie est libérée dans le processus électrique et mise à disposition
pour le processus consécutif qui est la production de chaleur. La chaleur a été produite
à partir de rien, mais pas d’elle-même, un processus particulier a délivré l’énergie né-
cessaire pour le faire.

 

5.1.7 Fusion de glace et congélation d’eau

Lorsqu’elle est placée dans un environnement chaud, la glace fond. Pour étudier le dé-
roulement du processus de manière détaillée, nous plaçons un tube de verre rempli de
glace dans un récipient d’eau tiède et nous enregistrons l’évolution des températures
de la glace et de l’eau. On observe que, tout d’abord, la température de la glace s’élève
jusqu’à 0°C. Ensuite, la température du mélange de glace et d’eau contenu dans le tube
à essai reste constante à 0°C alors que celle de l’eau du récipient diminue progressive-
ment. Cette situation perdure jusqu’à ce que la glace soit totalement fondue. Ce n’est
qu’à partir de ce moment que la température de l’eau contenue dans le tube à essai
commence à s’élever.
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FIGURE 5.8 Vaporisation d’eau:
(a) l’eau est vaporisée au moyen
d’un thermoplongeur dans un réci-
pient ouvert dont les parois sont
isolées; la température reste cons-
tante durant le processus de
vaporisation; (b) la masse de l’eau
est enregistrée en fonction du
temps; (c) diagramme de processus.
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Réciproquement, si de l’eau est placée dans un environnement très froid (nettement en
dessous de 0°C), le processus inverse se déroule. La température de l’eau tombe à 0°C,
de la glace commence à se former et la température du mélange n’évolue plus jusqu’à
ce que toute l’eau se soit solidifiée. Seulement alors, la température de la glace com-
mence à descendre en dessous du point de congélation.

Interprétation. Il faut de la chaleur pour faire fondre la glace. Dans un premier temps,
la chaleur provenant de l’eau sert à réchauffer la glace jusqu’au point de fusion. À par-
tir de ce moment, la chaleur provenant de l’eau du récipient sert uniquement à faire
fondre la glace, raison pour laquelle la température du mélange dans le tube à essai
reste bloquée à 0°C.

5.1.8 Moteur de STIRLING

Le moteur de STIRLING est un exemple classique de moteur thermique. Contrairement
aux moteurs à combustion interne, le gaz contenu dans le moteur (par exemple de l’air)
est chauffé depuis l’extérieur et de l’eau sert à refroidir la partie chaude du moteur. Ce
système peut entraîner un processus mécanique. Si on réduit le flux de l’eau de refroi-
dissement, l’efficacité du moteur est réduite.

Interprétation. Elle reprend celle proposée par Sadi CARNOT dans son ouvrage de
1824, Réflexions sur la puissance motrice du feu et sur les machines propres à déve-
lopper cette puissance. La chaleur, qu’il appelait le «calorique», tombe de la tempé-
rature élevée de la chaudière, ou «source chaude», à la température basse de la partie
que l’on appelle le condenseur, ou «source froide». En le faisant, elle libère de l’éner-
gie utilisée pour entraîner le processus mécanique du moteur. Toute la chaleur fournie
par la chaudière doit être évacuée vers l’environnement dans le condenseur. Cela ex-
plique pourquoi l’eau de refroidissement s’échauffe plus si on réduit son débit et pour-
quoi, dans ce cas, l’efficacité du moteur diminue: la différence de température entre la
chaudière et le condenseur est plus faible.

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

[

[
[
[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[
[[[
[[[[[
[[
[[[[[[[[[[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

-20

-10

0

10

20

0 1000 2000 3000

T
em

pé
ra

tu
re

/°
C

Temps / s

a. b. FIGURE 5.9 Fusion de glace: (a) un
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FIGURE 5.10 Moteur de STIRLING:
(a) le moteur à combustion externe;
la chaleur apportée de la source
chaude extérieure migre vers la
source froide et entraîne un proces-
sus mécanique; (b) diagramme de
processus: la chaleur s’écoule d’une
température élevée vers une tempé-
rature plus basse, libérant de l’éner-
gie qu sert à entraîner un processus
rotatoire.
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5.1.9 Inversion du mode de fonctionnement d’une pompe électrique

Dans une pompe électrique, le processus électrique entraîne un processus hydraulique
(fig. 5.11, partie gauche). Mais nous l’avons tous observé, la pompe s’échauffe, car de
la chaleur a été produite à cause des frottements. Il est possible d’inverser les proces-
sus, c’est-à-dire d’utiliser le système en tant que turbine et générateur (fig. 5.11, partie
droite). Dans ce cas également, le système s’échauffe à cause de la production de
chaleur.

Interprétation. Les processus physiques peuvent être inversés, à une exception près, la
production de chaleur. Pour pouvoir inverser tous les processus dans un système qui
produit de la chaleur, nous devrions détruire de la chaleur, ce qui est impossible. Au
contraire, il y a une nouvelle production de chaleur. Nous en concluons que la chaleur
est une grandeur qui peut être produite, mais pas détruite.

1. Pourquoi le phénomène décrit par la figure 5.2 montre-t-il que, lors du
contact thermique entre deux corps, ce sont les températures plutôt que
les quantités de chaleur qui s’équilibrent?

2. Pourquoi la température commune atteinte par le cuivre et l’eau dans
l’expérience de la figure 5.2 n’est-elle pas égale à la température
moyenne ? Y a-t-il des situations analogues en hydraulique et en
électricité?

3. La chaleur a-t-elle toujours pour effet de rendre les corps plus chauds? A-t-on toujours
besoin de chaleur pour rendre un corps plus chaud?

4. Citez quelques moyens de produire de la chaleur.

5. Quels types de processus sont-ils réversibles? Lesquels ne le sont pas?

1. À cause de la taille différente des objets en contact.

2. Parce que les capacités thermiques des deux systèmes ne sont pas les
mêmes (celle de l’eau est plus élevée que celle du cuivre). La situation
est la même que lors de l’équilibrage des niveaux de vases communi-
cants de sections (capacités) différentes ou de l’équilibrage des ten-
sions de condensateurs de capacités différentes.

3. Non, elle peut les faire fondre ou se vaporiser (sans élévation de température). Non, on peut
par exemple comprimer un gaz.

4. Le feu, la circulation de l’électricité, les frottements, les réactions chimiques, l’absorption
de la lumière solaire, la diffusion de substances, etc.

5. Tous les processus durant lesquels il n’y a pas de production de chaleur sont réversibles.
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FIGURE 5.11 Diagramme de
processus: (a) d’une pompe entraî-
née par un moteur électrique; (b) de
son inverse, un système de turbine et
générateur. Les deux systèmes pro-
duisent de la chaleur. La production
de la chaleur ne peut pas être
inversée; c’est ce que l’on appelle
l’irréversibilité.
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5.2 GRANDEURS FONDAMENTALES: TEMPÉRATURE ET CHALEUR

Dans la section précédente, nous avons utilisé de manière informelle les notions de
température et de chaleur. L’objectif de cette section est de préciser leur sens, d’en dé-
gager les propriétés et également de préciser ce qu’elles sont ou ne sont pas. Cette sec-
tion débouchera entre autres sur l’identification de la chaleur avec l’entropie.

5.2.1 Notion de température

Dans la vie quotidienne, on qualifie souvent les objets au moyen de leur degré de cha-
leur, qui indique à quel point un corps est chaud. Ces degrés de chaleur peuvent être
imaginés comme alignés sur un collier de perles, les perles indiquant la variation de
très froid à très chaud en passant par froid, tiède, chaud, etc.

La température est la coordonnée de ces degrés de chaleur. Tout comme pour les sys-
tèmes de coordonnées, on peut introduire différentes échelles de température.

Il est fréquent de rencontrer des personnes qui confondent les concepts de chaleur et
de température et les utilisent indifféremment. Or, de simples observations permettent
de se rendre compte que ces deux notions ne représentent pas la même grandeur. En-
visageons un volume d’eau qui contient une certaine quantité de chaleur et divisons-
le en deux parties égales (fig. 5.12). L’expérience nous révèle que leur température est
la même que celle du volume initial. Par contre, la chaleur, tout comme le volume ou
la masse, a été répartie en parts égales dans les deux moitiés.

Deux des expériences dont il a été question dans la section précédente permettent d’il-
lustrer la différence entre les deux notions. Lorsque l’on chauffe de la glace, elle fond
grâce à l’apport de chaleur, mais sa température ne varie pas tant que l’on a un mélange
d’eau et de glace. Dans l’expérience de la compression rapide de l’air dans un cylin-
dre, la température augmente sans qu’il y ait eu un apport de chaleur.

Tous les phénomènes au cours desquels il y a transfert de chaleur entre deux systèmes
ne se poursuivent que pour autant qu’il y a une différence de température entre les
deux. On en conclut que la chaleur ne s’écoule spontanément qu’entre deux niveaux
de la température. Le tableau 5.1 compare cette grandeur avec celles de niveau intro-
duites dans les chapitres précédents.

TABLEAU 5.1 Comparaison de quelques processus.

Processus Grandeur Potentiel

Récipients d’eau reliés par une
conduite

Volume d’eau Niveau d’eau

Sphères chargées en contact Charge électrique Potentiel électrique

Corps en contact thermique Chaleur Température

avant après

FIGURE 5.12 L’eau chaude con-
tient une certaine quantité de cha-
leur à une certaine température. Si
on répartit l’eau du premier verre à
parts égales dans deux verres, cha-
cune de ces parts contient la moitié
de la chaleur originelle. La tempéra-
ture n’est pas affectée par cette
opération.

La comparaison nous amène à interpréter la température comme le poten-
tiel thermique et les différences de température comme la force motrice
thermique. La température est la grandeur intensive liée aux processus
thermiques.
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La température peut être mesurée au moyen d’une quelconque substance dont les pro-
priétés changent avec la température. De telles propriétés thermoscopiques sont la lon-
gueur de tiges, le volume de liquides, la pression de gaz, la résistance électrique de
conducteurs, la tension de thermocouples, le rayonnement thermique et beaucoup
d’autres. Examinons deux exemples.

Thermomètre au mercure et échelle CELSIUS. Une premier échelle de température
empirique peut être basée sur le thermomètre au mercure: la variation du volume du
liquide est utilisée en tant que propriété thermométrique. Un tel dispositif sert à définir
l’échelle CELSIUS: la température du point de congélation de l’eau correspond à 0°C,
et 100°C est la température de vaporisation de l’eau à une pression de l’air de 1 bar.
On admet implicitement que la température CELSIUS est une fonction linéaire du vo-
lume du liquide thermométrique.

Tous les liquides ne se prêtent pas à faire office de substance thermométrique; l’eau
est le contre-exemple le plus frappant (fig. 5.13). L’eau existe en tant que liquide entre
0°C et 100°C, mais son volume décroît entre le point de congélation et 4°C, où elle
atteint sa densité maximale, pour croître à nouveau au-dessus de cette température.
Cette particularité est appelée une anomalie de l’eau; elle est à l’origine du fait que
l’eau des lacs gèle d’abord en surface, ce qui sauve les poissons durant l’hiver.

Résistance électrique. Comme nous l’avons déjà mentionné à la section 2.6.2, la ré-
sistivité électrique d’un matériau varie avec la température, ce qui rend son utilisation
possible pour la thermométrie. La figure 5.14 montre la relation entre la résistance
d’un matériau et la température. Très souvent, cette relation peut être approximée par
une fonction du second degré:

(5.6)

où αR et βR sont respectivement les coefficients de température de la résistivité linéai-
re et quadratique.

Température du gaz parfait. L’échelle CELSIUS se prête bien pour l’usage dans la vie
courante, mais elle est mal adaptée pour les besoins théoriques. Nous allons mainte-
nant introduire l’échelle de température de la thermodynamique, l’échelle KELVIN, qui
est basée sur la température du gaz parfait et qui, comme nous le montrerons à la sec-
tion 5.8, est indépendante du fluide thermométrique.

Les gaz changent de volume et de pression en fonction de leur température. Si l’on
maintient le volume constant (un tel processus est dit isochore), la pression augmente
lors de l’échauffement du gaz. Pour des gaz très dilués (loin du point de liquéfaction,
pression peu élevée, température suffisamment élevée), on observe un comportement
linéaire (AMONTONS, 1703, fig. 5.15):

(5.7)

Le coefficient de proportionnalité β est le coefficient de température de la pression. Il
vaut:

(5.8)

Si l’on imagine que le gaz conserve toujours la propriété décrite par la relation ci-des-
sus, particulièrement pour les basses températures, on constate que la pression s’annu-
le pour une certaine température. Cette valeur est la même pour toutes les substances,
elle représente le zéro absolu de la température (fig. 5.16). Si l’on introduit une échelle
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FIGURE 5.13 Variation de la densi-
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FIGURE 5.14 Variation d’une résis-
tance en fonction de la température.
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dont le zéro correspond à –273.15˚C, la pression des gaz dilués devient proportionnel-
le à cette nouvelle température.

L’introduction de cette nouvelle échelle montre que la pression d’un gaz parfait à vo-
lume constant est proportionnelle à la température absolue, ce qui peut s’exprimer
sous la forme:

(5.10)

Notons que cette relation est valable pour toutes les substances dans un état de dilution
suffisant (par exemple pour une substance telle que du sel dilué dans de l’eau).

5.2.2 Propriétés de la chaleur

S’il y a une proposition qui ne peut pas être mise en doute, c’est celle qui affirme que
la chaleur est ce qui rend un objet chaud et qui fait fondre la glace. Pour rendre un ob-
jet tel qu’une pierre encore plus chaude, nous lui fournissons de la chaleur, pour le re-
froidir, nous en retirons de la chaleur. Si nous laissons de la glace dans un
environnement chaud, elle fondra à cause d’un apport de chaleur. La chaleur est la
grandeur idéale pour décrire ces processus.

Ce que la chaleur n’est pas. Commençons par tenter de répondre à la question:
Qu’est-ce qu’un objet en mouvement, une sphère chargée et un corps chaud ont en
commun? Sur la base de ce que nous avons appris dans les chapitres précédents, nous
pouvons affirmer que chacun des ces objets a reçu de l’énergie (fig. 5.17). Dans cha-
cun des cas, le système possède plus d’énergie que si l’objet ne se mouvait pas, la
sphère n’était pas chargée ou le corps n’était pas chaud. Du point de vue de l’énergie,
les trois situations sont semblables. Mais alors, qu’est-ce qui différencie par exemple
une pierre en mouvement d’une pierre chaude?

Nous apprendrons que l’objet est en mouvement parce qu’il a reçu de la quantité de
mouvement et que cet apport entraîne une hausse d’énergie. Mais nous savons égale-
ment que l’énergie d’un système peut avoir de multiples origines, raison pour laquelle
nous attribuons à la quantité de mouvement le fait que l’objet est en mouvement plutôt
que de devenir chaud.

Si nous appliquons ce raisonnement au corps chaud, nous devons conclure que la pier-
re est chaude non pas parce qu’elle contient de l’énergie, mais parce qu’elle contient
plus de chaleur que si elle était froide. Une pierre s’échauffe et un cube de glace fond
parce qu’ils reçoivent de la chaleur. Même si nous savons que l’énergie accompagne
tous les processus, chauffage inclus, elle ne fait pas de distinction entre eux. La
conclusion est : ce que nous appelons chaleur dans la vie quotidienne n’est pas de
l’énergie.

θ-273°C 0°C

P

FIGURE 5.16 La pression des gaz
dilués évolue linéairement avec la
température lorsque le volume est
maintenu constant. Si l’on reporte
les mesures pour deux gaz diffé-
rents, on obtient deux droites pour
lesquelles p= 0 se situe à la même
température. Ce comportement est
observé pour tous les gaz suffisam-
ment dilués et chauds. La droite qui
interpole et extrapole les mesures
effectuées représente le modèle du
gaz parfait.

Les gaz qui ont les propriétés décrites ci-dessus sont des gaz parfaits. C’est
la raison pour laquelle la nouvelle température est appelée température
des gaz parfaits ou température absolue T:

(5.9)

La relation ci-dessus montre qu’une différence de température de 1 K cor-
respond à une différence de température de 1°C. L’unité de mesure est le
kelvin (K). L’échelle ainsi définie est l’échelle KELVIN.

T = ° ⋅ +θ 1 K
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mouvement
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FIGURE 5.17 Comparaison de deux
processus. Dans le premier, nous ac-
célérons une pierre. En termes phy-
siques, nous pouvons dire que nous
avons transféré de la quantité de
mouvement, ce qui le fait se mou-
voir plus rapidement. Simultané-
ment, de l’énergie est ajoutée à la
pierre. Dans le second cas, la pierre
est chauffée. La différence est que,
maintenant, nous ajoutons de la cha-
leur plutôt que de la quantité de
mouvement. La chaleur rend la pier-
re plus chaude.
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Les lois de la physique nous confortent dans cette vision. Nous apprendrons au chapi-
tre 8 que l’énergie est une mesure différente de la gravité et de l’inertie, ce qui impli-
que qu’une augmentation de l’énergie d’un système entraîne une augmentation de sa
masse. Cela ne signifie pas nécessairement que l’objet est devenu plus rapide, plus
chaud ou les deux; il peut tout aussi bien être devenu chargé électriquement. L’énergie,
et donc la masse, ne peut pas être utilisée pour distinguer des processus différents.
Nous avons absolument besoin d’autres grandeurs telles que la quantité de mouvement
ou la charge électrique pour déterminer ce qui est arrivé à un objet. Appliqué aux pro-
cessus thermiques, cela signifie que si la chaleur est la grandeur responsable de
l’échauffement d’une pierre ou de la fusion de la glace, plutôt que de rendre ces objets
plus lourds, alors la chaleur ne peut pas être de l’énergie.

Ce qu’est la chaleur. La grandeur que nous avons appelée chaleur dans les pages pré-
cédentes était appelée calorique par Sadi CARNOT et ses contemporains. Cette gran-
deur facile à visualiser et comprise intuitivement correspond à ce qui, après 1850, a été
appelée entropie en physique, chimie et ingénierie. Nous voyons donc que le concept
d’entropie qui, dans la présentation traditionnelle de la thermodynamique, est consi-
déré comme formel, dérivé et non intuitif, a des racines simples et intuitives. C’est une
grandeur analogue au volume et à la charge en dynamique des fluides et en électricité
respectivement.

À partir de maintenant, nous utiliserons le terme d’entropie pour désigner des quan-
tités de chaleur. Cependant, lorsque nous utiliserons le langage familier, le terme de
chaleur désignera toujours une quantité d’entropie. Dans une expression telle que «de
la chaleur a été produite durant ce processus», le mot chaleur sera utilisé à la place
de son équivalent formel, à savoir l’entropie. Dans tous les autres cas, nous n’utilise-
rons pas le terme de chaleur pour la seule acception valable en thermodynamique tra-
ditionnelle, à savoir en tant que quantité d’énergie échangée lors d’un processus de
chauffage.

Chauffage et refroidissement: transport d’entropie. Nous avons observé que la
température d’un objet peut être augmentée par un apport d’entropie. Nous appelle-
rons dorénavant chauffage ce processus, et cette notion représentera le taux de trans-
fert d’entropie vers le système. Réciproquement, nous appellerons refroidissement le
taux de transfert d’entropie hors du système (fig. 5.18).

Il est évident que l’entropie, la chaleur, peut être transportée. Elle nous arrive du Soleil
pour être distribuée dans l’atmosphère avant d’être rayonnée dans l’espace. Elle
s’écoule des profondeurs de la Terre vers sa surface. Elle migre à travers une barre mé-
tallique (fig. 5.7). De grandes quantités sont transportées du golfe du Mexique vers
l’Europe par l’intermédiaire du Gulf Stream. Dans un chauffage central, elle est trans-
portée de la chaudière vers les radiateurs. Ces quelques exemples montrent qu’il existe
trois modes de transport de l’entropie, de la chaleur.

• Conduction. L’entropie s’écoule à travers les corps entraînée par une diffé-
rence de température entre différentes parties des corps.

• Convection. L’entropie est transportée avec les corps en mouvement, essentiel-
lement les fluides. La force motrice de ce type de transport d’entropie est celle
qui entraîne le flux de matière, par exemple une différence de pression.

• Rayonnement. L’entropie qui nous vient du Soleil est transportée par la
lumière, c’est-à-dire le champ électromagnétique.

Accumulation d’entropie. Si le chauffage est le taux de transfert d’entropie vers un
système, cela implique que l’entropie doit être contenue dans le système, de la même
manière que de l’eau ou de l’électricité transportée vers un système sont contenues
dans le système (fig. 5.19). Nous pouvons donc affirmer:

FIGURE 5.18 Chauffage et refroi-
dissement. Par chauffage, nous en-
tendons un flux d’entropie vers
l’intérieur du corps. Dans le cas du
refroidissement, l’entropie émerge
du corps. Nous assumons donc que
l’entropie est une grandeur qui peut
s’écouler et qui peut être accumulée
dans les corps.

Chauffage

Refroidissement

Chaleur

Chaleur

Système

T

IS
T

S

FIGURE 5.19 Accumulation d’en-
tropie (diagramme de processus
avec le réservoir d’entropie).



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 205

5.2  GRANDEURS FONDAMENTALES: TEMPÉRATURE ET CHALEUR

Pour des raisons historiques, l’entropie est traditionnellement mesurée en J K-1. Nous
montrerons à la section 5.4 quelle est l’origine de ce fait. Dans ce chapitre, nous men-
tionnerons à chaque fois l’équivalence: 1 Ct = 1 J K-1.

Nous pouvons ajouter l’entropie à la liste des grandeurs extensives que nous connais-
sons.

Rappelons ce qui a déjà été dit à plusieurs reprises dans les chapitre précédents au sujet
des grandeurs semblables à des fluides telles que la charge électrique ou l’entropie.
Ces grandeurs sont des notions abstraites, elles ne sont pas matérielles dans quelque
sens que ce soit.

Production d’entropie. Il y a une question que nous ne nous sommes pas encore
posée: d’où vient l’entropie? La nature nous révèle qu’il doit y avoir des sources d’en-
tropie. Dans certains cas, l’entropie s’écoule hors des corps lors d’un processus de re-
froidissement. Mais il y a d’autres exemples plus intéressants: de l’entropie nous vient
du Soleil ou des profondeurs de la Terre; de l’entropie est produite dans un feu, lorsque
nous nous frottons les mains pour les réchauffer, lorsque de l’électricité circule dans
un conducteur (fig. 5.20).

Il y a une différence fondamentale entre le premier exemple et les suivants. Dans le
premier cas, l’objet qui se refroidit perd l’entropie qu’il avait reçue lors du chauffage;
il y a simplement inversion des processus. Dans les autres cas, l’entropie émise n’était
pas préalablement présente dans le système; la température du Soleil ne diminue pas,
celle de la Terre non plus, nos mains se réchauffent, la température du conducteur ne
diminue que si nous coupons le courant. Nous devons en conclure que lors de ces pro-
cessus, l’entropie du monde augmente. Nous devons donc admettre une évidence que
nous impose la nature: l’entropie peut être créée, elle peut être produite au cours de
certains processus.

Parmi les processus producteurs d’entropie que nous connaissons déjà, citons les frot-
tements dans les fluides (chapitre 1), le transport de l’électricité par conduction (cha-
pitre 2), qui sont des processus de transport en présence de résistances. Mais si les
phénomènes de transport sont producteurs d’entropie, alors le transport conductif de
l’entropie lui-même doit l’être aussi. Cette particularité jouera un rôle important dans
tous les phénomènes de transfert de chaleur que nous étudierons par la suite.

TABLEAU 5.2 Grandeurs semblables à un fluide.

Processus Grandeur

Hydraulique Volume V

Électrique Charge électrique Q

Gravité Masse grave m

Thermique Entropie S

L’entropie est une grandeur qui peut être accumulée dans les corps et qui
peut s’écouler d’un corps à l’autre. Ces propriétés en font une grandeur
extensive (semblable à un fluide). C’est la grandeur extensive fondamen-
tale pour la description des processus thermiques. Elle est désignée par le
symbole S. Nous introduisons pour cette nouvelle grandeur une unité par-
ticulière, le carnot (Ct)

Thermoplongeur

IS

ΠS

IQ

T
ϕ1 ϕ2

FIGURE 5.20 Production d’entro-
pie (diagramme avec la source d’en-
tropie représentée par un point
entouré d’un cercle).
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Irréversibilité. Puisque l’entropie peut être créée, on doit immédiatement se poser la
question de savoir si elle peut être détruite. À nouveau, la nature nous offre la réponse,
à savoir que l’entropie ne peut pas être détruite.

Les processus réels sont dits irréversibles. Illustrons cette notion par deux exemples:
si nous lançons un objet sur une surface horizontale, nous savons qu’il ralentira et fi-
nira par s’arrêter à cause des frottements qui entraînent une production d’entropie.
L’objet pourra être lancé en sens inverse, mais à nouveau, de l’entropie sera produite
lors de ce mouvement inversé. Jamais on ne verra un objet qui s’est arrêté à cause des
frottements réabsorber (et détruire) l’entropie émise et se mettre spontanément en
mouvement. C’est ce que l’on entend par irréversibilité d’un processus.

Un autre exemple est celui de la section 5.1.9. Le fonctionnement d’une pompe élec-
trique peut être inversé pour en faire un générateur, à l’exception près que le système
s’échauffera dans ses deux modes de fonctionnement. Nous pouvons donc proposer la
définition suivante:

1. Pourquoi la fusion de la glace ou la vaporisation de l’eau démontrent-
elles clairement la différence entre la chaleur (l’entropie) et la
température? Pourquoi cette différence est-elle plus difficile à perce-
voir lors du chauffage de l’eau?

2. D’où vient l’entropie et où va-t-elle lors de l’utilisation d’un thermo-
plongeur pour chauffer de l’eau?

3. Quelle est la signification des termes «chauffage» et «refroidissement»? Sont-ils équiva-
lents à «devenir plus chaud» et «devenir plus froid»?

1. Parce que lors d’un changement de phase, la température ne varie pas
malgré l’apport (ou le retrait) d’entropie. Lors du chauffage de l’eau, la
quantité d’entropie et la température augmentent toutes deux.

2. De nulle part: elle est produite dans le thermoplongeur et va dans l’eau.

3. Le chauffage consiste en un apport d’entropie au système, le refroidis-
sement en un retrait d’entropie. Ces processus ne sont pas équivalents à
devenir plus chaud ou plus froid; un changement de phase est un chauffage ou un refroidis-
sement sans variation de température.

5.2.3 Processus thermiques et diagrammes T-S

Lors de processus auxquels participe la chaleur, il y a plusieurs grandeurs physiques
qui peuvent varier simultanément. À titre d’exemple, l’atmosphère terrestre est, d’un
endroit à l’autre, constamment et simultanément en train de varier sa pression, sa

Un processus irréversible est un processus au cours duquel il y a création
d’entropie. Un processus qui se déroule sans production d’entropie est
dit réversible. Un autre terme est utilisé pour caractériser les processus
au cours desquels il y a production d’entropie: on parle de processus
dissipatifs.

Q

R
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température, son volume, de s’échauffer ou de se refroidir, pour ne citer que quelques
aspects de ses changements. Pour simplifier la description de phénomènes physiques
aussi complexes, on essaie, dans un premier temps, de ne considérer que des processus
«simples» au cours desquels une ou deux grandeurs varient simultanément. L’objectif
de cette section est de montrer comment les diagrammes T-S permettent de donner une
vision simple de processus thermiques fondamentaux.

Compression et détente adiabatique. Revenons à l’expérience de la section 5.1.2
qui consistait à compresser un volume d’air tellement rapidement qu’aucun échange
de chaleur ne pouvait avoir lieu avec l’extérieur du système. Notre analyse nous a per-
mis de conclure que la quantité d’entropie (de chaleur) n’avait pas varié dans le systè-
me, vu qu’il n’y avait aucun apport par chauffage ou par dissipation. Le processus en
question n’a pour conséquence qu’une variation de la température sans variation de
l’entropie. Un tel processus est dit adiabatique ou isentropique.

Dans un diagramme où l’on reporte la température en fonction de la quantité d’entro-
pie, un tel processus est décrit par une droite verticale (fig. 5.21).

Chauffage à volume constant. Lorsque, par exemple, un gaz est chauffé dans un ré-
cipient dont le volume ne varie pas, le processus est dit isochore, la température aug-
mente en même temps que la quantité d’entropie accumulée dans le volume envisagé.

Dans un tel cas, la construction du diagramme T-S n’est pas aussi simple que lors d’un
processus adiabatique. Seule la connaissance des lois constitutives, c’est-à-dire de la
manière dont la substance réagit à l’apport ou au retrait d’entropie, permet de tracer le
diagramme en question. Dans les sections suivantes, l’introduction de la capacité en-
tropique nous permettra de la faire en connaissance de cause. Pour l’instant, nous nous
contentons d’une illustration qualitative d’un processus isochore (fig. 5.22).

Processus isotherme. Un autre type particulier de processus thermique consiste à
chauffer un gaz en maintenant sa température constante. On parle alors de processus
isotherme. Nous avons vu qu’une détente adiabatique entraînait une diminution de la
température, alors qu’un chauffage à volume constant produisait l’effet contraire.
Forts de cette observation, nous pouvons conclure que l’augmentation de la tempéra-
ture d’un gaz due à un apport d’entropie peut être compensée par une augmentation
adéquate du volume. La figure 5.23 montre comment un tel processus peut être réalisé.
Le processus est représenté par des droites horizontales dans le diagramme T-S.

1. Quelle courbe représente la condensation de la vapeur d’eau dans un
diagramme T-S?

2. Un morceau de fer chaud est en train de refroidir dans un environne-
ment froid. Comment se présentent les diagrammes T-S pour le mor-
ceau de fer et pour l’environnement durant ce processus?

3. Comment se présente le diagramme T-S de la détente d’air dans un
cylindre équipé d’un piston? Supposez qu’il n’y a ni chauffage, ni refroidissement. Y a-t-il
une différence entre le diagramme d’une détente réversible et celui d’une détente
irréversible?

4. Est-il possible que l’air devienne plus chaud lorsque son entropie diminue?

S

T
Compression

Détente

FIGURE 5.21 Diagramme T-S
d’une compression ou d’une détente
adiabatique, c’est-à-dire sans
échange d’entropie (de chaleur et
d’énergie) avec l’extérieur.

S

T

Chauffage

FIGURE 5.22 Diagramme T-S d’un
processus isochore (ici, d’un chauf-
fage à volume constant). L’aspect de
la courbe dépend des propriétés du
corps que l’on chauffe.

T

S

Compression

Détente

Réservoir

Chaleur

T = const

FIGURE 5.23 Réalisation et
diagramme T-S d’un processus
isotherme.

Q
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1. Droite horizontale de la droite vers la gauche passant par l’ordonnée
100°C (273.15 K).

2. Pour le fer: de la partie supérieure droite vers la partie inférieure gau-
che du graphique. Pour l’environnement: droite (quasi-)horizontale de
la gauche vers la droite du graphique.

3. Détente réversible: droite verticale, de haut en bas. Détente
irréversible: courbe de la partie supérieur gauche vers la partie inférieure droite (il y a pro-
duction d’entropie).

4. Oui, si on le comprime en même temps qu’on le refroidit (retrait d’entropie).

5.3 BILAN D’ENTROPIE

Les propriétés de l’entropie que nous avons découvertes à la section 5.2.2 révèlent
qu’il s’agit d’une grandeur extensive. Comme pour celles que nous avons rencontrés
dans les chapitres précédents, nous pouvons énoncer une équation de bilan que nous
allons élaborer progressivement.

Chauffage, refroidissement et dissipation. Les processus de chauffage et de refroi-
dissement sont liés d’une part à des transports d’entropie à travers les matériaux entre
deux niveaux de la température: il s’agit d’un processus de conduction. Nous décri-
rons ce mode de transport de l’entropie au moyen de flux d’entropie désignés par IS,

cond. Mais nous savons que la conduction de l’entropie est accompagnée d’une pro-
duction d’entropie que nous prendrons en compte au moyen du taux de production
d’entropie ΠS. Le taux de variation de l’entropie due au chauffage ou refroidissement
par conduction sera donc donné par:

(5.11)

Dans cette équation, la grandeur IS, cond, net représente les flux nets par rapport au sys-
tème considéré. Rappelons que les flux entrants sont positifs, les flux sortants négatifs.
En outre, il y a deux différences importantes entre un taux de production et un flux.
Dans le cas des flux, la grandeur transportée provient d’un autre système dont elle aura
été extraite et où elle fera défaut. L’entropie produite ne fera défaut nulle part, elle
apparaît simplement dans le système (fig. 5.24).

Apport d’entropie par convection. Nous avons également découvert que l’entropie
peut être amenée dans un système ou en être extraite par l’intermédiaire de l’écoule-
ment d’un fluide. Dans ce cas, l’écoulement de l’entropie n’est pas dû à une différen-
ce de température, mais à une différence de pression qui entraîne l’écoulement du
fluide. C’est le phénomène de convection qui est responsable du flux d’entropie que
nous désignerons par IS, conv. Nous ajoutons cette contribution à l’équation de bilan
d’entropie:

(5.12)

Dans la section précédente, nous avons mentionné que l’entropie pouvait également
être transportée par rayonnement, par exemple par l’intermédiaire du rayonnement
solaire. Nous laisserons de côté pour l’instant cette contribution à la variation de l’en-
tropie d’un système; le sujet sera traité dans les chapitres 10 et 11.

R

 �S IS S= +, cond, net Π

 �S I IS S S= + +, ,cond, net conv, net Π

Système

S

Π S

IS1

IS2

S
I S1

I S2

Pi S

a.

b.

FIGURE 5.24 Bilan d’entropie: (a)
diagramme de processus montrant
l’accumulation, les flux et la pro-
duction d’entropie: (b) diagramme
de dynamique des systèmes corres-
pondant à l’équation de ce bilan.
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EXEMPLE 5.1. Un bilan d’entropie.

On chauffe de l’eau d’une manière particulière avec un thermoplongeur. Le taux de production
d’entropie est maintenu constant à 1.2 Ct s-1. Les pertes de chaleur à travers les parois du réci-
pient sont données par un flux d’entropie qui croît, en 1000 s, de 0.20 Ct s-1 à 0.50 Ct s-1. Con-
sidérez l’eau et le récipient comme un système unique. (a) Dessinez le diagramme de processus
du système. (b) Comment le taux de variation de l’entropie varie-t-il au cours du temps? (c) De
combien l’entropie du système a-t-elle varié au cours de ces 1000 s?

SOLUTION: (a) Le système est parcouru par la charge électrique qui s’écoule entre deux ni-
veaux du potentiel. Ce processus produit de l’entropie. Une partie de l’entropie produite est ac-
cumulée, le reste se perd dans l’environnement, comme le montre la figure 5.25a.

(b) Le taux de variation de l’entropie peut être calculé à partir de l’équation (5.12), pour autant
que tous les courants et taux de production soient connus. Ils sont, en vertu de la donnée, soit
constants, soit croissants linéairement en fonction du temps (fig. 5.25b).

(c) Nous obtenons la variation de l’entropie du système par intégration de son taux de variation.
Donc:

ce qui correspond à l’aire du trapèze grisé dans la figure ci-contre.

B

Lors de processus de chauffage ou de refroidissement d’un système, le taux
de variation de l’entropie est dû aux flux et à la production ou à la dissi-
pation d’entropie:

(5.13)

La variation de l’entropie du système est égale à la somme de l’entropie
transportée ou échangée par l’intermédiaire des flux et de l’entropie pro-
duite par des réactions ou à cause de la dissipation:

(5.14)

Le taux de production d’entropie est toujours positif:

Les lois constitutives déterminent les intensités des flux et des taux de pro-
duction.
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FIGURE 5.25 Exercice 5.1: a) dia-
gramme de processus; b) évolution
des grandeurs thermiques.
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5.4 ÉNERGIE DANS LES PROCESSUS THERMIQUES

Sachant que l’énergie participe à tous les processus physiques, nous devons établir la
relation entre elle et les grandeurs que nous venons d’introduire pour décrire les pro-
cessus thermiques en procédant par analogie, ainsi que compléter l’équation de bilan
de l’énergie par l’adjonction d’un terme supplémentaire qui décrit ce nouveau type
d’échange d’énergie.

5.4.1 Inclusion des processus thermiques dans le bilan d’énergie

Pour nous convaincre que les processus thermiques impliquent des échanges d’éner-
gie, revenons sur le chauffage d’un volume d’eau au moyen d’un thermoplongeur en-
visagé dans la section 5.1.6. L’énergie entre dans le système transportée par
l’électricité et elle est transférée à l’eau par l’intermédiaire de l’entropie produite dans
le thermoplongeur à cause de sa résistance.

5.4.2 Entropie, température, énergie

Pour trouver la relation entre l’entropie et l’énergie, nous profitons de l’analogie entre
les processus thermiques et les processus hydrauliques et électriques que nous avons
étudiés dans les chapitres précédents. Il y a presque deux cents ans, SADI CARNOT,
dans ses recherches sur la puissance motrice du feu, utilisa la comparaison entre la
puissance d’une chute d’eau et celle de la chaleur, ce dont s’inspire notre vision des
processus physiques et chimiques. La vision de CARNOT1, que nous reprenons, est la
suivante:

1. «D’après les notions établies jusqu’à présent, on peut comparer avec assez de justesse la
puissance motrice de la chaleur à celle d’une chute d’eau: toutes deux ont un maximum
que l’on ne peut pas dépasser, quelle que soit d’une part la machine employée pour recevoir
l’action de l’eau, et quelle que soit de l’autre la substance employée pour recevoir l’action
de la chaleur. La puissance motrice d’une chute d’eau dépend de sa hauteur et de la quantité
de liquide; la puissance motrice de la chaleur dépend aussi de la quantité de calorique
employé, et de ce qu’on pourrait nommer, de ce que nous appellerons la hauteur de sa
chute, c’est-à-dire de la différence de température des corps entre lesquels se fait l’échange
de calorique.» Réflexions sur la puissance motrice du feu et sur les et sur les machines pro-
pres à développer cette puissance.

Les échanges d’énergie lors de processus thermiques sont pris en compte
par l’adjonction d’un terme supplémentaire dans l’équation de bilan de
l’énergie:

(5.15)

IE,therm se réfère aux transferts d’énergie lors de chauffage et de refroidis-
sement. La forme intégrée sur un intervalle de temps de l’équation de bilan
de l’énergie sera:

(5.16)
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• Une machine thermique absorbe de l’entropie de la chaudière, que nous appel-
lerons dorénavant «source chaude», à une température élevée; si elle pouvait
fonctionner de manière réversible, la même quantité d’entropie serait trans-
mise au condenseur, c’est-à-dire à l’environnement à une température basse.
Dès maintenant, nous appellerons «source froide» cette partie de la machine
thermique.

• Le transfert d’entropie d’un point de température élevée à un point de basse
température libère de l’énergie à un certain taux qui correspond à la puissance
thermique; cette énergie entraîne le processus mécanique.

• L’énergie ainsi libérée est transmise à la machine par l’entropie produite dans
la source chaude. De manière générale, de l’énergie est transférée avec l’entro-
pie lors de processus de chauffage et de refroidissement.

En nous inspirant de l’image de la chute d’eau et en considérant le diagramme du pro-
cessus thermique (fig. 5.26), nous pouvons conclure:

L’énergie libérée lors de la chute d’entropie doit être introduite dans le système dans
lequel elle est libérée. Elle l’est par le courant d’entropie lors du chauffage. Récipro-
quement, lors du refroidissement du système, il n’y a pas qu’un courant d’entropie
vers l’extérieur, mais également un courant d’énergie (fig. 5.27) .

Cette dernière relation révèle que l’énergie correspond au produit de l’entropie et de
la température. Au milieu du XIXe siècle, lors de l’élaboration de la thermodynamique
traditionnelle par CLAUSIUS, l’énergie fut considérée comme la grandeur thermique
fondamentale et l’entropie dut être introduite a posteriori comme une grandeur déri-
vée. C’est pour cette raison qu’elle est mesurée en J K-1. Dans le reste de ce chapitre,
nous utiliserons les deux notations: 1 Ct = 1 J K-1.

FIGURE 5.26 Diagrammes de pro-
cessus expliquant la relation de base
entre l’entropie et l’énergie: (a) de
l’énergie est libérée lorsque de l’en-
tropie «tombe» d’une température
élevée vers une température plus
basse; (b) de l’énergie est utilisée
pour pomper de la chaleur vers une
température plus élevée. Le taux
auquel l’énergie est libérée ou utili-
sée est la puissance thermique.

PthermIS

T2T1

Système

Ptherm IS

T1 T2

Système

a.

b.

La puissance d’une machine thermique est proportionnelle à la chute du
potentiel thermique, la température, et au flux d’entropie:

(5.17) Ptherm = − −( )T T IS2 1

Système

T

IS

T

IE,therm

FIGURE 5.27 Le flux d’entropie
lors du processus de chauffage (ou
de refroidissement) est accompagné
d’un courant d’énergie.

Le flux d’énergie associé à un processus thermique est égal au produit de
l’intensité du flux d’entropie et de la température:

(5.18)

L’entropie est le porteur de l’énergie dans les processus thermiques
(chauffage et refroidissement).

L’énergie échangée lors d’un processus de chauffage ou refroidissement,
est donnée par:

(5.19)
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5.4.3 Dissipation

L’entropie est produite à partir de rien, mais le processus n’a pas lieu spontanément.
Il faut «travailler» pour la produire, c’est-à-dire qu’une partie ou la totalité de l’éner-
gie disponible est utilisée pour ce processus. Au chapitre 3, nous avons appelé dissi-
pation ce phénomène de « gaspillage » de l’énergie (l’énergie nécessaire pour la
production d’entropie n’est plus disponible pour produire du travail utile, sauf si le but
du processus est de produire de la chaleur). Appelons taux de dissipation Pdiss le taux
auquel l’énergie est dissipée.

Pour mettre en relation le taux de dissipation Pdiss et le taux de production d’entropie
ΠS, nous allons nous appuyer sur l’exemple d’un thermoplongeur en régime perma-
nent (fig. 5.28). Comme nous sommes en régime permanent, les deux courants d’éner-
gie et, de ce fait, les deux puissances sont égales et de signes opposés. Dans
l’équation (5.17), la température T2 est celle du thermoplongeur et de l’eau, ainsi que
celle du flux d’entropie émergent, donc T dans la figure 5.28. À quelle température
correspond ici la température T1 du flux entrant dans la partie inférieure de la
figure 5.26? C’est le taux de production d’entropie qui correspond à ce flux entrant et,
vu que l’entropie n’existait pas avant d’avoir été produite par le processus envisagé,
nous pouvons assimiler sa production à son élévation du zéro absolu à la température
T. Ainsi:

(5.20)

ce qui nous permet de tirer la conclusion que:

Le taux de production d’entropie ΠS est une grandeur positive ou nulle, mais jamais
négative, vu que l’entropie ne peut pas être détruite. En conséquence, le taux de dissi-
pation Pdiss l’est aussi, en vertu de l’équation (5.20). Or, selon l’équation (5.17), la
puissance du processus de production de chaleur Ptherm est négative, puisque T2 cor-
respond à T et T1 au zéro absolu. En conclusion:

(5.21)

1. Que signifie le terme «irréversible»?

2. Le moteur de STIRLING de la figure 5.10 est refroidi par un courant
d’eau. Comment le moteur réagit-il si on augmente le débit de l’eau de
refroidissement?

3. Quelle doit être l’intensité d’un flux d’entropie s’écoulant d’une source
chaude à 500 K vers une source froide à 300 K pour obtenir une puis-
sance thermique de 1.0 MW?

4. Quel est le lien entre la puissance thermique et les flux d’énergie thermique?

1ϕ
2ϕ

Thermoplongeur

T

IE,él

ISΠS

Pél

IE,therm

IQ

Ptherm

FIGURE 5.28 Diagramme de pro-
cessus d’un thermoplongeur.
L’énergie libérée par le processus
électrique est complètement dissi-
pée (utilisée pour produire de
l’entropie).

 Pdiss = T SΠ

Créer de l’entropie à la température T équivaut à l’élever du zéro absolu
à cette température; l’énergie nécessaire pour sa production est égale à
celle pour pomper l’entropie au niveau désiré.

 P Pdiss therm= −

Q
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1. On dit d’un processus qu’il est irréversible si son déroulement est
accompagné d’une production d’entropie (de chaleur).

2. L’efficacité augmente.

3. IS = Ptherm / ∆T = 5000 W K-1 = 5000 Ct s-1.

4. La différence des flux d’énergie thermique est égale à la puissance ther-
mique.

EXEMPLE 5.2. Énergie dissipée dans un thermoplongeur.

On utilise un thermoplongeur pour chauffer de l’eau. Il est connecté au réseau électrique qui dé-
livre une tension de 220 V; on mesure une intensité du courant de 1.5 A; ces valeurs restent
constantes. (a) Que vaut le taux de production d’entropie dans le thermoplongeur et l’eau con-
sidérés comme un système unique si la température est de 20°C? (b) Combien d’entropie est
produite en 10 s si la température croît linéairement jusqu’à 22°C durant cet intervalle?

SOLUTION: (a) La puissance électrique du thermoplongeur

est égale au taux de dissipation d’énergie. Donc:

(b) L’évolution de la température est donnée par:

et la quantité d’entropie produite durant cet intervalle sera, selon l’équation (5.14):

Comme la variation de température est très faible, le résultat est pratiquement égal à celui que
l’on obtient si l’on admet que le taux de production d’entropie est constant.

B

5.5 ENTROPIE ET TEMPÉRATURE DANS LES FLUIDES SIMPLES

L’entropie peut avoir différents effets sur les matériaux, tels que la dilatation, la fusion
ou la vaporisation, ou le chauffage. Dans cette section, nous allons étudier les cas où
l’unique réponse à un accroissement de l’entropie du corps est une augmentation de
sa température, afin de déterminer comment la température et le contenu en entropie

R
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d’un corps dépendent l’une de l’autre. Nous serons amenés à introduire la notion de
capacité en entropie ou capacité entropique.

5.5.1 Modèle de chauffage uniforme

Le modèle que nous allons construire est celui de chauffage ou refroidissement uni-
forme et réversible, ce qui signifie que nous admettons que lors du chauffage, l’entro-
pie se répartit instantanément dans tout le corps sans qu’il y ait production d’entropie
due à cet écoulement d’entropie. Dans ce cas, l’entropie ajoutée au système sera réé-
mise lors du refroidissement, ce qui est la caractéristique d’un processus réversible.

Un tel processus peut être approché par le chauffage de liquides. Vu qu’ils peuvent être
brassés facilement, il est aisé d’attribuer une température unique à tout le corps durant
l’absorption d’entropie, et cette température peut être mesurée facilement. Durant le
chauffage des solides, qui fonctionne différemment, il est plus difficile de déterminer
les variations d’entropie et de température.

5.5.2 Bilan d’entropie et d’énergie

Le modèle dont il est question est représenté par le diagramme de processus de la
figure 5.29. Si le chauffage et le refroidissement sont réversibles, l’équation de bilan
de l’entropie prend la forme:

(5.22)

et que les seuls processus admis sont le chauffage et le refroidissement, l’équation de
bilan de l’énergie est:

(5.23)

La relation entre les flux d’entropie et d’énergie lors du chauffage nous permet de
combiner ces deux équations de bilan pour trouver une relation pour la variation d’en-
tropie d’une part et celle de l’énergie d’autre part:

(5.24)

Ceci est un exemple de ce qui est généralement appelé relation fondamentale de
GIBBS. Nous en rencontrerons plusieurs autres versions dans les chapitres qui traite-
ront des processus thermiques.

5.5.3 Apport d’entropie à un liquide

Nous allons examiner le chauffage d’eau et d’éthylène glycol dans un récipient pres-
que parfaitement isolé. Le thermoplongeur produit l’entropie qui est transférée au li-
quide en même temps que l’énergie, ce qui entraîne une élévation de la température.

Les résultats de la section 5.4 nous permettent de déterminer l’entropie produite et
transférée au liquide. Il suffit de connaître la puissance du thermoplongeur et la tem-
pérature en fonction du temps. Le taux de production d’entropie est calculé à partir de
ces valeurs et, par intégration, par exemple dans un tableur, nous pouvons déterminer
la variation de l’entropie du liquide durant l’intervalle considéré. Si nous fixons arbi-
trairement une entropie nulle pour une température de référence (usuellement 0°C), la
variation d’entropie peut être convertie en contenu d’entropie.

T

Entropie

Eau

T

S

Énergie

E

FIGURE 5.29 Diagramme de pro-
cessus du chauffage d’un corps: de
l’entropie et de l’énergie sont ajou-
tés. Si aucun autre processus n’entre
en jeu, les quantités ajoutées sont
accumulées dans le système.

 �S IS=

 �E IE= , therm

 � �E TS=
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Si nous répétons l’expérience avec différents volumes de liquide, le taux de variation
de la température varie proportionnellement. Pour rendre les résultats indépendants de
la quantité de liquide et pour obtenir une relations température-entropie qui est liée
uniquement au matériau et pas à sa quantité, les mesures de l’entropie sont converties
à l’unité de masse. Cette grandeur est l’entropie spécifique s du matériau, qui se
mesure en Ct kg-1 (ou J K-1 kg-1):

(5.25)

La relation entre l’entropie spécifique et la température peut être représentée dans un
diagramme T-s (fig. 5.30), dans une table ou par toute autre approximation analytique.

Les résultats expérimentaux pour l’eau et l’éthylène glycol font apparaître deux carac-
téristiques intéressantes. Il faut moins d’entropie pour élever la température du glycol
de 1K que pour l’eau. En outre, la forme de la courbe, dite caractéristique T-s ou
caractéristique entropie-température, est différente pour les deux matériaux; alors
qu’elle est linéaire pour le glycol, elle ne l’est pas pour l’eau.

5.5.4 Coefficient de chauffage et capacité entropique

La signification de la caractéristique T-s pour des matériaux simples est analogue à la
caractéristique pression-volume pour un récipient ou tension-charge pour un conden-
sateur. Elle peut donc être analysée de la même manière. La particularité la plus signi-
ficative est la pente de la courbe T(s). Elle nous indique à quelle vitesse la température
augmente en fonction de l’apport d’entropie (fig. 5.31).

Le coefficient de chauffage αs , mesuré en K kg Ct-1 (ou K2 kg J-1) et la capacité
entropie spécifique en Ct K-1 kg-1 (ou J K-2 kg-1).

Plus le coefficient de chauffage d’un matériau est grand, plus il est facile de le chauffer.
Cette grandeur est l’équivalent de l’élastance de récipients de fluide ou de condensa-
teurs électriques. Lorsque la caractéristique T-s est linéaire, la température peut être
facilement calculée au moyen de ce facteur:

(5.28)
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FIGURE 5.30 Diagramme T-s expé-
rimental pour l’eau et l’éthylène
glycol. La relation pour le glycol est
presque linéaire, alors que celle de
l’eau ressemble à une fonction
exponentielle. L’entropie des maté-
riaux a été arbitrairement fixée à
zéro à T = 273 K.
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FIGURE 5.31 La pente de la courbe
T-s nous indique avec quelle facilité
il est possible de chauffer un corps.

La pente de la caractéristique T-s d’un processus de chauffage est le coef-
ficient de chauffage αs . Il relie le taux de variation de la température à
celui de l’entropie spécifique:

(5.26)

L’inverse du facteur de chauffage est la capacité entropique spécifique κs:

(5.27)

Les deux facteurs dépendent en général de la température.
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La capacité entropique, ΚS = mκs, a la signification usuelle d’une capacité, comme
en hydraulique et en électricité. Elle se mesure en Ct K-1 (ou J K-2). En général, la ca-
pacité entropique dépend de la température du matériau. La variation de l’entropie
peut être calculée graphiquement à partir du diagramme température-capacité
(fig. 5.32). Le choix inhabituel de la lettre grecque Κ (kappa) pour une capacité est dû
au fait que la lettre C est, dans la thermodynamique traditionnelle, strictement réser-
vée à l’énergie.

5.5.5 Énergie de matériaux simples

Nous voulons établir le lien direct entre la variation d’énergie et celle de la température
dans un matériau. Pour le faire, nous introduisons dans l’équation de bilan de l’énergie
la relation entre les flux d’énergie et ceux d’entropie lors du chauffage:

(5.29)

ce qui nous permet de formuler la relation souhaitée:

(5.30)

où

(5.31)

Le facteur c est le coefficient de température spécifique de l’énergie (chaleur massi-
que2), et la grandeur e = E/m, l’énergie par unité de masse, est l’énergie spécifique du
matériau (fig. 5.33). Alors que κs = ds/dT est une capacité comme le sont les capacités
hydraulique et électrique (les trois s’obtiennent en dérivant la grandeur extensive du
domaine par rapport à son potentiel), la grandeur c n’en est pas une. Il n’y a pas de
potentiel (grandeur de niveau) propre à l’énergie.

5.5.6 Matériaux à coefficients de température de l’énergie constants

Un certain nombre de matériaux, tels que l’eau et les solides à haute température, ont
des chaleurs spécifiques constantes. Évaluons l’entropie et l’énergie de ces matériaux:

Nous en tirons:

(5.32)

Pour une valeur constante de c, nous obtenons:

(5.33)

2. Le nom de chaleur spécifique est dérivé de l’usage en thermodynamique traditionnelle où
la quantité de chaleur est mesurée en termes d’énergie.
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FIGURE 5.32 La température en
fonction de la capacité entropique.
Le diagramme peut être utilisé pour
calculer la variation de l’entropie
d’un corps.
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Le tableau 5.3 donne les capacités entropiques spécifiques et les coefficients de tem-
pérature de l’énergie pour un certain nombre de matériaux.

1. À partir des données expérimentales (fig. 5.30), on obtient une valeur de 0.130 K kg Ct-1 =
0.130 K2 kg J-1 pour le coefficient de chauffage de l’éthylène glycol. Que vaut sa capacité
entropique spécifique?

2. Que vaut le coefficient de chauffage d’un mélange eau-glace durant le changement de
phase?

3. Utilisez l’équation (5.32) pour déterminer de quelle manière la capacité entropique de l’eau
varie en fonction de la température.

1. κs = 1/αs = 7.67 Ct K-1 kg-1 = 7.67 J K-2 kg-1.

2. Zéro.

3. En vertu de l’équation (5.27), il suffit de dériver l’équation (5.32) par
rapport à la température pour trouver que la capacité entropique de
l’eau varie de manière inversement proportionnelle à la température.

TABLEAU 5.3 Capacité entropique et coefficient de température de l’énergie 
(chaleur massique) à 20°C.

Substances
Capacité entropique 

spécifique
Coefficient de température 

spécifique de l’énergie 

κs / Ct K-1 kg-1

(J K–2 kg–1)

c /Ct kg-1

(J K–1 kg–1)

Acier (moyenne) 1.57 460

Aluminium 3.06 896

Bois (moyenne) 8.53 2500

Cuivre 1.31 383

Fer 1.54 452

Glace (0°C) 7.69 2100

Plomb 0.44 129

Sable sec 2.87 840

Sodium 4.16 1220

Eau 14.26 4180

Mercure 0.47 139

Pétrole 7.30 2140

R
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EXEMPLE 5.3. Élaboration d’un diagramme T-s et détermination des paramètres du glycol.

Pour déterminer la relation entre l’entropie spécifique et la température d’un liquide, on chauffe
le liquide au moyen d’un thermoplongeur dans un récipient bien isolé (fig. 5.35) et on mesure
l’évolution de la température en fonction du temps. C’est ce qui a été fait pour l’éthylène glycol.
Le résultat de cette expérience apparaît dans la figure 5.34. (a) Comment, à partir des valeurs
de la température mesurées à intervalles réguliers ∆t, rassemblées dans un tableur, ainsi que de
la valeur de la puissance du thermoplongeur, peut-on obtenir la courbe T-s de la figure 5.30?
(b) Comment obtient-on le coefficient de chauffage αs? (c) Sachant que le coefficient de chauf-
fage vaut 0.130 K kg Ct-1 = 0.130 K2 kg J-1, déterminez la capacité entropique spécifique. d)
Que vaut la chaleur massique c du glycol?

SOLUTION: Pour chaque mesure, on détermine le taux de production d’entropie en divisant la
puissance du thermoplongeur par la température mesurée et on accumule ces contributions pour
obtenir l’évolution de l’entropie du glycol en fonction du temps (en admettant que celle-ci est
nulle au début du processus de chauffage):

La division de ces valeurs par la masse du fluide fournit l’entropie spécifique que l’on peut re-
porter en fonction de la température afin d’obtenir la courbe de la figure 5.30.

(b) Le coefficient de chauffage αs est égal à la pente de la courbe dans le diagramme T-s. Elle
peut être obtenue graphiquement ou, de manière précise, au moyen d’un ajustement par la mé-
thode des moindres carrés (qui permet par ailleurs de vérifier que la relation est linéaire).

(c) La capacité entropique spécifique est l’inverse du facteur de chauffage:

d) En vertu de l’équation (5.31), la chaleur massique du glycol croît linéairement avec la
température:

La chaleur massique du glycol varie entre 2240 J K-1 kg-1 à 20°C et 2860 J K-1 kg-1 à 100°C.

B

5.5.7 Modèle dynamique de chauffage de fluides

La température est la grandeur centrale dans tout modèle dynamique d’un processus
thermique. Nous allons illustrer comment nous pouvons modéliser l’évolution de la
température d’un fluide simple soumis à un chauffage ou un refroidissement en utili-
sant les relations énoncées dans la section précédente.

Nous chauffons dans un récipient bien isolé au moyen d’un thermoplongeur à puissan-
ce électrique constante respectivement de l’eau et du glycol (fig. 5.35) et nous re-
cueillons les valeurs de la température du fluide en fonction du temps.

L’examen des courbes de température révèle que sa croissance est linéaire pour l’eau,
ce qui n’est pas le cas pour le glycol (fig. 5.34). Selon l’équation (5.33), la températu-
re varie linéairement avec l’énergie spécifique lorsque le coefficient de température
spécifique de l’énergie (la chaleur massique) est constant. Nous en déduisons donc que
c’est le cas pour l’eau. Pour déterminer pour les deux fluides la manière dont évolue
la capacité entropique spécifique ks en fonction de la température, nous utilisons la
procédure exposée dans l’exemple 5.3.
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FIGURE 5.34 Évolution de la tem-
pérature de l’éthylène glycol lors du
chauffage dans un récipient isolé.
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Chauffage de glycol. L’examen de ce diagramme s-T confirme que la capacité entro-
pique spécifique du glycol est constante; elle correspond à la pente de la droite et vaut
7.67 Ct K-1 kg-1 (ou J K-2 kg-1).

Le modèle dynamique permettant d’évaluer la température reproduit la démarche sui-
vie pour déterminer l’entropie spécifique à partir de la puissance du thermoplongeur
et de la température. Le quotient de l’entropie spécifique et de la capacité entropique
spécifique permet de calculer la température dans le modèle. La concordance parfaite
entre la température calculée au moyen du modèle et la température mesurée, illustrée
par la figure 5.36, valide les hypothèses sur lesquelles repose le modèle.

Chauffage d’eau. La linéarité de la croissance de la température permet de supposer
que la chaleur massique c est constante. Un graphique de l’énergie spécifique en fonc-
tion de la température permet de le confirmer et d’évaluer la valeur de c en tant que
pente de la droite; on trouve ceau = 4204 J K-1 kg-1.

Le modèle dynamique du chauffage de l’eau est basé sur son contenu énergétique plu-
tôt que sur son entropie, en suivant une démarche semblable à celle du modèle de
chauffage du glycol (fig. 5.37). La légère différence entre la courbe simulée et les va-
leurs mesurées (quelques dixièmes de degrés) est due à la non-prise en compte de la
puissance de brassage (environ 2 W) et à une surestimation de la valeur de la chaleur
massique de 0.5%.
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FIGURE 5.36 Chauffage de glycol:
(a) modèle dynamique; (b) résultat
de la simulation (les valeurs mesu-
rées sont représentées par des petits
cercles).
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5.6 ENTROPIE ET ÉNERGIE LORS DE TRANSFERT DE CHALEUR

Pour pouvoir créer des modèles de processus thermiques, nous devons également trou-
ver les expressions qui décrivent la transmission d’entropie à travers différentes cou-
ches lors de chauffage ou de refroidissement.

5.6.1 Transfert d’entropie à travers des couches composites

Nous savons que l’entropie peut s’écouler soit spontanément par conduction à travers
la matière sous l’effet d’une différence de température, soit par convection, transportée
par un fluide en mouvement, soit par rayonnement. Si l’un, voire plusieurs de ces pro-
cessus contribuent à un écoulement d’entropie à travers une série de couches entre
deux niveaux de la température (fig. 5.38 et 5.39), nous parlons d’un flux global d’en-
tropie. Le flux d’entropie IS est exprimé au moyen d’une conductance entropique glo-
bale GS et de la différence de température:

(5.34)

où Tamb est la température de l’air ambiant et T celle du fluide. L’équation est écrite
par rapport au corps qui est soumis au chauffage ou au refroidissement. La conductan-
ce GS se mesure en Ct s-1 K-1 (W K-2). La conductance d’une série de couche dépend
naturellement de l’aire de la section à travers laquelle s’écoule l’entropie, ce qui nous
permet de réécrire l’équation (5.34) sous la forme:

(5.35)

hS est le coefficient de transmission global de l’entropie et se mesure en Ct s-1 K-1 m-2

(W K-2 m-2). Il est important de noter que ce coefficient, et avec lui la conductance,
dépendent de la température. Nous savons en outre que le processus de conduction est
irréversible, donc qu’il entraîne une production d’entropie; nous y reviendrons à la
section 5.7. Il est donc primordial de préciser à quel endroit (à quelle surface de trans-
mission) nous calculons le flux d’entropie.

Le flux d’entropie à travers une surface entraîne un flux d’énergie; ils sont liés entre
eux par la température T à la surface du corps:

(5.36)

où GE = TGS est la conductance énergétique globale. Le produit du coefficient de
transmission d’entropie et de la température

(5.37)

est le coefficient de transmission de la chaleur3 (de l’énergie), mesuré en W K-1 m-2.
En conséquence, le flux d’énergie accompagnant le flux d’entropie est donné par:

(5.38)

3. La notion de chaleur est utilisée, dans la thermodynamique traditionnelle, pour représenter
l’énergie transférée lors de processus de chauffage ou de refroidissement. C’est la raison
pour laquelle le terme de chaleur est associé au coefficient de transfert de l’énergie.
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FIGURE 5.38 Transfert d’entropie
et d’énergie à travers des couches
d’une température élevée vers une
température basse.
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On a englobé dans le facteur h (et dans les facteurs de transmission en général) toute
la complexité du processus de transport d’énergie à travers plusieurs couches
(fig. 5.39). Si nous considérons, à titre d’exemple, le flux de chaleur à travers les parois
d’un bâtiment en hiver, nous voyons que plusieurs processus entrent en œuvre. La tem-
pérature diminue dans la paroi en direction de l’extérieur; il y a des gradients de tem-
pérature dans les couches et l’entropie est transmise par conduction. Ces gradients de
température ne dépendent pas que de la différence de température globale, mais éga-
lement du type de matériau dont sont constituées les couches. La loi de transmission
de la chaleur pour le courant d’énergie à travers une couche conductrice (loi de con-
duction) est donnée par:

(5.39)

Le facteur δ représente l’épaisseur de la couche traversée par la chaleur, alors que le
facteur λ est la conductivité thermique (ou conductivité énergétique); λ se mesure en
W K-1 m-1. Leur quotient est le coefficient de transmission par conduction hcond.

Mais la paroi à l’intérieur de la pièce est plus froide que l’air dans la pièce, ce qui im-
plique qu’il y a une diminution de la température entre l’air ambiant et la paroi inté-
rieure. Comme l’air à l’intérieur de la pièce est suffisamment brassé, on peut admettre
que sa température est uniforme, à l’exception d’une fine couche, la couche de trans-
mission convective (couche limite), à l’intérieur de laquelle la température diminue
dans le sens du flux d’entropie. La nature du transfert d’entropie à travers cette couche
est très complexe et elle est représentée schématiquement dans la figure 5.40. La loi
de transmission de l’énergie à travers une couche limite fait intervenir un coefficient
de transmission par convection hconv :

(5.40)

Le facteur hconv se mesure en W K-1 m-2.

Naturellement, on retrouve la même situation du côté extérieur de la paroi. En résumé,
nous pouvons affirmer que la température diminue en plusieurs étapes à travers ces
couches successives. Cette situation rappelle la chute du potentiel électrique le long
d’une chaîne de résistances montées en série. Nous pouvons donc interpréter chacune
des couches de la paroi comme une résistance thermique. Si on considère en plus les
fenêtres et les portes, celles-ci sont également des résistances, mais elles sont en pa-
rallèle à celles de la paroi.

Dans la loi de transmission ((5.36), on remplace souvent la conductance par la résis-
tance thermique (ou énergétique) RE; elle devient alors:

(5.41)

La résistance thermique se mesure en K W-1. Lors de la transmission de la chaleur à
travers plusieurs couches successives, on peut calculer la résistance globale comme
celle du montage en série de résistances électriques; la résistance totale est égale à la
somme des résistances individuelles:

(5.42)
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Cette relation est encore incomplète, car elle ne tient pas compte du phénomène de dis-
sipation lié au transfert de chaleur à travers les couches successives.

EXEMPLE 5.4. Extraction des informations à partir des données expérimentales.

Pour pouvoir modéliser le processus de refroidissement d’eau dans une canette sans isolation
(fig. 5.4a), dont les résultats sont repris dans la figure 5.41, on doit pouvoir disposer de valeurs
approximatives des paramètres intervenant dans le modèle afin de lancer les premières simula-
tions sur des bases proches de la réalité. Sachant que la masse de l’eau contenue dans la canette
est de 0.490 kg et que le coefficient de transmission de l’entropie de l’eau vers les parois de la
canette est très élevé (les parois ont la même température que l’eau), déterminer une première
approximation de la conductance globale GS et de la puissance de brassage.

SOLUTION: L’équation de bilan de l’entropie doit prendre en compte le flux d’entropie de
l’eau vers l’environnement et la production d’entropie due au brassage:

Le taux de variation de l’entropie peut être exprimé au moyen de la capacité entropique du vo-
lume d’eau:

où KS peut être calculé à partir de la masse du volume d’eau et une entropie spécifique moyenne
dans la plage de température considérée, à savoir κs = 13.0 Ct K-1 kg-1 = 13.0 J K-2 kg-1. Avec
ces valeurs, nous obtenons KS = 6.37 Ct K-1= 6.37 J K-2.

Les flux d’entropie et le taux de production d’entropie peuvent être calculés selon les
équations (5.34) et (5.20) et substitués dans l’équation de bilan de l’entropie:

Les valeurs du taux de variation de la température peuvent être extraites des données expéri-
mentales, particulièrement au début de l’expérience (c’est la pente de la tangente à l’origine de
la courbe, elle est égale à -6.90·10-3 K s-1) et lorsque le régime permanent est atteint (le taux de
variation est alors nul). Si nous introduisons ces deux valeurs dans l’équation de bilan de l’en-
tropie, nous obtenons le système d’équations linéaires suivant:

La solution de ce système est GS = 7.7·10-4 Ct s-1 K-1 = 7.7·10-4 W K-2 et Pbrassage = 1.72 W.

B

5.6.2 Un modèle de transfert de chaleur

Refroidissement d’eau dans un récipient sans isolation. Nous voulons affiner le
modèle provisoire de la section 5.1.4 concernant le refroidissement d’un volume d’eau
enfermé dans une canette de 0.5 L (canette de bière) dont les parois ont été débarras-
sées de la couche de peinture pour laisser apparaître la surface métallique qui a été po-
lie pour réduire au maximum les effets du rayonnement. Pour assurer une température
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FIGURE 5.41 Évolution de la tem-
pérature lors du refroidissement
d’eau dans une canette sans
isolation.
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uniforme dans tout le volume, l’eau est brassée au moyen d’un mélangeur magnétique.
Les données recueillies révèlent que la température finale de l’eau se stabilise au-des-
sus de la température ambiante.

Le processus peut être décrit simplement au moyen d’une conductance globale GS =
hsA telle qu’elle est introduite par l’équation (5.35). À partir du contenu en entropie
du système, on calcule la température en se basant sur l’équation (5.32) pour trouver:

où Tréf = 273 K. Ce modèle donne une évolution qualitativement correcte mais avec
une température finale égale à la température ambiante. La différence observée est due
à la production d’entropie par le mélangeur. On peut estimer grossièrement la puissan-
ce de ce processus puisqu’elle est égale au flux d’énergie résiduel lorsque la tempéra-
ture s’est stabilisée. Cette valeur peut être affinée dans le modèle.

On arrive à une adéquation parfaite entre les mesures et la simulation (fig. 5.42b) pour
les valeurs suivantes: GS = 7.22·10-4 Ct s-1 K-1 = 7.22·10-4 W K-2 et Pbrassage = 1.75
W, ce qui montre que la première approximation de l’exemple 5.4 était proche de la
réalité.

Réchauffement d’eau froide dans un environnement chaud. Nous étudions le pro-
cessus inverse, à la différence près que le récipient est une gourde métallique bien iso-
lée du point de vue thermique (fig. 5.43). Les données recueillies montrent à nouveau
que la température de l’eau se stabilise légèrement au-dessus de la température am-
biante, ce qui est dû au brassage destiné à assurer une température uniforme dans le
volume d’eau.

Le modèle dynamique est identique à celui de la figure 5.42, et l’adéquation est à nou-
veau parfaite si nous utilisons les valeurs Pbrassage = 0.26 W et hs = 0.0102
Ct s-1 K-1 m-2 (W K-2 m-2). La diminution de la valeur du coefficient de transmission
global de l’entropie est une conséquence de la présence de l’isolation autour de la
gourde. L’entropie doit traverser une couche supplémentaire, ce qui diminue l’inten-
sité du flux d’entropie.

Il est possible de distinguer entre les modes de transmission de l’entropie. Dans ce cas,
on doit faire la distinction entre la transmission en mode convectif à l’intérieur de la
gourde, en mode conductif à travers le manteau et l’isolation et à nouveau en mode
convectif à l’extérieur de l’isolation. Pour le faire, on calcule les résistances thermi-
ques (résistances au flux d’énergie) pour chacune des trois couches qui constituent le
manteau de la gourde et on les additionne comme dans l’équation (5.42), vu qu’elles
sont en série (fig. 5.39). On fait de même pour le fond de la gourde. Comme ces deux
résistances sont montées en parallèles, la somme de leurs inverses correspond à la
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FIGURE 5.42 Refroidissement
d’eau dans un récipient non isolé:
(a) modèle dynamique; (b) résultat
de la simulation; les données expé-
rimentales sont représentées respec-
tivement par des petits cercles ou
losanges.

FIGURE 5.43 Réchauffement d’eau
dans un environnement chaud.
L’eau est contenue dans une gourde
isolée et est brassée continuellement
au moyen d’un mélangeur
magnétique.
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conductance énergétique GE. Le quotient de cette valeur et de la température instanta-
née de l’eau est égal à la conductance entropique GS qui apparaît dans le modèle dy-
namique de la figure 5.42a. On obtient une correspondance parfaite entre les données
expérimentales et les valeurs du modèle en choisissant: αint = 600 W K-1 m-2, αext =
12 W K-1 m-2 et λisol = 0.021 W K-1 m-1. Pour compléter le modèle, il faut encore pren-
dre en compte la dissipation liée au transfert d’entropie.

5.7 TRANSFERT DE CHALEUR ET PRODUCTION D’ENTROPIE

Nous avons découvert au chapitre 3 que les processus de transport de grandeurs exten-
sives telles que le volume de fluide ou la charge électrique étaient dissipatifs, car ils
sont toujours accompagnés d’une production de chaleur due aux frottements. L’entro-
pie étant elle aussi une grandeur extensive, son transport doit également être dissipatif.

5.7.1 Dissipation dans les résistances thermiques

En d’autres termes, l’écoulement d’entropie produit de l’entropie, ce qui rend le pro-
cessus irréversible. Pour nous en convaincre, il suffit de réaliser par exemple que la
conduction de l’entropie à travers une succession de couches est analogue à la conduc-
tion de la charge électrique qui est un processus qui produit de l’entropie. Nous l’avons
vu à la section 5.6.1, un conducteur thermique est une résistance thermique, tout com-
me un conducteur électrique a des propriétés résistives.

Vu que la production d’entropie est une conséquence de la transmission de chaleur, et
que cette transmission a lieu à travers des couches (fig. 5.39), nous devons modifier
notre modèle d’élément(s) résistif(s). Le diagramme de processus d’une résistance
thermique doit inclure une source représentant la production d’entropie (fig. 5.44 et
5.45).

Le taux de production d’entropie dans un élément résistif thermique est calculé à partir
du taux de dissipation. L’énergie dissipée est l’énergie libérée par l’entropie lors de sa
chute entre T1 et T2 (fig. 5.44). La puissance thermique du courant d’entropie entrant
dans le système est

(5.43)

Vu que, selon l’équation (5.21), Pdiss = – Ptherm, et que la dissipation a lieu à la tem-
pérature inférieure T2

(5.44)

le taux de production d’entropie est

(5.45)

Une représentation possible de la production d’entropie due à la transmission d’entro-
pie dans un modèle dynamique est la suivante (fig. 5.46). Les équations de bilan d’en-
tropie pour les deux corps échangeant de la chaleur sont représentés par des stocks.
Sans la dissipation, l’échange pourrait être représenté par un flow entre les deux
stocks. Nous devons ajouter un troisième stock pour symboliser l’entropie des couches
de transmission entre les corps.
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FIGURE 5.44 La transmission d’en-
tropie due à une chute de températu-
re est dissipative: il y a production
d’entropie supplémentaire.
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FIGURE 5.45 Transfert de chaleur à
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Vu que ces couches sont des résistances, elles n’accumulent pas d’entropie. C’est
pourquoi le flux qui émerge de cet élément doit être égal à la somme du flux entrant et
du taux de production dans l’élément:

(5.46)

L’intégration de la production d’entropie due au transfert de chaleur entre deux élé-
ments d’un système est représentée dans la figure 5.46. Le stock médian sert à modé-
liser l’augmentation du flux d’entropie donné par l’équation (5.46).

EXEMPLE 5.5. Conductances thermiques pour des couches composites.

L’équation (5.34) décrit le transfert d’entropie à travers des couches composites au moyen
d’une conductance globale GS. L’interface entre deux systèmes peut être imaginée comme une
combinaison de conductances en parallèle (fig. 5.47a) ou en série (fig. 5.47b). Si l’on admet que
les conductances ne dépendent pas de la température, que valent les conductances équivalentes
(a) du montage en parallèle; (b) du montage en série?

SOLUTION: (a) Dans le cas du montage en parallèle (fig. 5.47a), la situation est la même qu’en
électricité lors du montage en parallèle de conductances entre deux différences de potentiel:

(b) Dans le cas du montage en série (fig. 5.47b), il y a une différence essentielle due à la pro-
duction d’entropie dans les éléments. En vertu de l’équation (5.45), l’entropie produite dans le
premier élément du montage est donnée par:

Il s’ensuit:

Les différences de températures s’additionnent et peuvent être exprimées au moyen du quotient
des flux d’entropie et des conductances respectives:
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FIGURE 5.46 Modèle dynamique
du transfert de chaleur entre deux
corps avec prise en compte de la
dissipation.
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En conclusion:

B

5.7.2 Corps en contact thermique

Équilibrage des températures de deux volumes d’eau. Nous sommes maintenant
en mesure de modéliser la dynamique du système de la section 5.1.1 illustré par la
figure 5.1. Nous savons qu’il faudra prendre en compte la dissipation due au transfert
de chaleur, et le modèle de la figure 5.46 constituera l’élément de base auquel nous
ajouterons les particularités du système considéré.

Comme il s’agit d’eau, nous utilisons la chaleur spécifique quasi constante dans la pla-
ge de température considérée plutôt que la capacité entropique variable. La puissance
du brassage est intégrée comme dans les modèles précédents. Pour obtenir la coïnci-
dence entre les valeurs mesurées et les valeurs calculées au moyen du modèle, il faut
prendre en compte le fait que la conductance entropique dépend de la température.
Pour le faire, on détermine dans un premier temps la conductance thermique (énergé-
tique) GE que l’on divise ensuite par la température du fluide pour obtenir GS.
(fig. 5.48).

La correspondance entre les valeurs mesurées et celles du modèle (fig. 5.49) a été ob-
tenue en choisissant Pbrassage = 0.50 W et λisol = 0.05 W K-1 m-1. L’isolation était cons-
tituée d’une couche d’ouate de coton entre le récipient de verre et le conteneur
cylindrique en aluminium. La valeur choisie correspond à celle que l’on trouve dans
les tables pour le coton.

Chauffage d’un cylindre de cuivre plongé dans de l’eau chaude. Dans tous les
modèles que nous avons élaborés jusqu’à présent, nous avons admis que la tempéra-
ture était la même dans tout le volume du système considéré et que le chauffage ou
le refroidissement dû à des flux d’entropie provoquait une variation de température

∆ ∆ ∆T T
I

G

I

G
I

G

T

T G
T S S

S S

S

S S

= ++ = + =
⎛

⎝
⎜1 2

1 2

1 2

1

1 1 2

1 1 ⎞⎞

⎠
⎟ = I

G
S

S

1

, série

1 1 1

1 1 2GS G

T

T GS S, série

= +

S eau chaude Dissipation

I S 2
S eau froide

I S 1

Pi S

s spec eau chaude s spec eau froide

m eau chaude
m eau froidec eau

c eau

T eau chaude T eau froide

G S

T réf

I S pertes 1 I S pertes 2
T amb

T amb

G S pertes 1
G S pertes 2

P brassage
P brassage

T eau chaude
T eau froide

G E pertes
G E pertes

T eau chaude T eau froide

FIGURE 5.48 Modèle dynamique
du transfert de chaleur entre deux
volumes d’eau.

É

É

É

É
É
É
É
É
É
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

É

É

É

É
É
É
É
É
ÉÉ
ÉÉ
ÉÉÉ

ÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

290

310

330

350

370

0 500 1000 1500 2000

T
em

pé
ra

tu
re

/K

Temps / s

FIGURE 5.49 Équilibrage des tem-
pératures de deux volumes d’eau.
Les valeurs mesurées sont représen-
tées par des cercles.



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 227

5.7  TRANSFERT DE CHALEUR ET PRODUCTION D’ENTROPIE

uniforme. Le brassage des liquides permet de réaliser pratiquement cet uniformisa-
tion de la température.

La situation n’est pas la même lors du chauffage d’un cylindre de cuivre plongé dans
de l’eau chaude qui a été présenté dans la figure 5.2. Les deux températures s’équili-
brent, mais lorsque l’on examine en détail l’évolution de la température du cuivre, on
constate que, malgré l’excellente conductivité du métal, son taux de variation n’est pas
maximal au début du processus (fig. 5.50), comme c’est le cas lors de l’équilibrage des
températures de liquides (fig. 5.49). Le phénomène est facile à interpréter lorsque l’on
sait que la température est mesurée près de l’axe du cylindre. L’entropie ne peut pas
atteindre instantanément tout le volume du solide, elle doit migrer de l’extérieur vers
l’intérieur, de manière semblable à ce qui se passe lors du transfert de chaleur dans une
barre métallique étudié à la section 5.1.5 et illustré par la figure 5.7. Nous avons déjà
rencontré ce phénomène lors de l’étude de l’écoulement d’un fluide à travers une chaî-
ne de réservoirs à la section 1.8.6 et de la charge électrique à travers une chaîne de con-
densateurs à la section 2.8.4. Nous sommes en présence d’un phénomène de diffusion.

Le modèle à élaborer doit donc unir diffusion et dissipation en répétant l’élément de
base de la figure 5.46 autant de fois que la finesse du modèle l’exige (fig. 5.51). Nous
décidons de diviser le cylindre de cuivre en trois cylindres coaxiaux de rayons respec-
tifs égaux à 3.0 cm, 2.0 cm et 1.0 cm. Nous envisageons chacun de ces éléments en
tant qu’accumulateur d’entropie avec sa capacité propre et sa température (que nous
associons au centre de l’élément). Le matériau entre deux centres est considéré comme
un élément résistif entre deux unités de stockage de l’entropie. En outre, la transmis-
sion de la chaleur entre ces éléments est à l’origine d’un phénomène de dissipation.

La figure 5.52 montre les résultats de la simulation. La décomposition, dans le modèle
dynamique, du cylindre de cuivre en couches permet de rendre compte du retard pris
par la chaleur pour atteindre l’axe du cylindre.
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FIGURE 5.50 Chauffage d’un cy-
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1. Quelles observations permettent de supposer que, lors du transfert de
chaleur à travers des couches, les courants d’entropie sont proportion-
nels à la différence de température?

2. Pourquoi le transfert de chaleur est-il un processus dissipatif?

3. De l’entropie s’écoule à travers une couche de transmission de 600 K
du côté chaud à 300 K du côté froid. Dans quelle proportion le courant
d’entropie a-t-il varié?

4. Pourquoi la relation pour la combinaison de conductances pour des couches en série est-
elle, comme le montre l’exemple 5.5, différente de celle qui s’applique aux circuits
électriques?

1. Parce que les courbes d’évolution de la température (fig. 5.4 et 5.42b)
sont semblables à celles de l’évolution de la tension lors de la charge ou
la décharge d’un condensateur.

2. Lors de la chute de l’entropie entre deux niveaux de la température,
l’énergie libérée ne peut servir à rien d’autre qu’à produire de l’entro-
pie.

3. Il a doublé.

4. À cause de la production d’entropie à l’intérieur des couches de transmission.

5.8 MACHINES THERMIQUES ET TEMPÉRATURE ABSOLUE

En combinant ce que nous avons appris jusqu’ici, nous allons pouvoir énoncer un cer-
tain nombre de relations générales concernant le fonctionnement des machines
thermiques.
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5.8.1 Machines thermiques et pompes à chaleur idéales

Rappelons d’abord que nous avons appelé «machine» un système qui sert à transbor-
der l’énergie d’un porteur à l’autre, comme par exemple une pompe électrique qui
transborde l’énergie de la charge électrique à un courant d’eau. Une machine thermi-
que est une machine qui utilise l’énergie libérée lors de la chute de l’entropie entre la
température élevée de la source chaude et celle plus basse de la source froide pour en-
traîner un autre processus (fig. 5.53).

Si toute l’énergie libérée est utilisée pour entraîner le processus désiré (mécanique,
électrique, etc.), la machine est dite idéale. Les machines idéales sont non dissipatives.
Dans un tel cas, le diagramme de processus prend la forme de la figure 5.54a. Pour les
pompes à chaleur et les réfrigérateurs, où l’entropie est pompée d’un niveau de tem-
pérature bas vers un niveau plus élevé, il suffit d’inverser les flux des grandeurs sem-
blables à un fluide et de changer les signes des différences de potentiel (fig. 5.54b).

L’analyse des performances d’une machine thermique idéale, en régime permanent,
repose sur l’équation de bilan de l’entropie:

(5.47)

et sur les relations qui lient l’entropie à l’énergie:

(5.48)

Nous y ajoutons les relations entre les flux d’entropie du chauffage et du refroidisse-
ment et les flux d’énergie associés:

(5.49)

où TH et TB représentent respectivement la température haute et la température basse
(source chaude et source froide).
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FIGURE 5.53 Diagramme de pro-
cessus d’une machine thermique.
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5.8.2 Efficacité et coefficient de performance

Il est usuel d’introduire deux mesure de l’efficacité d’une machine thermique. La pre-
mière est le rapport du flux d’énergie utile et de l’énergie fournie à la source chaude,
que l’on appelle efficacité ou rendement énergétique ou efficacité selon la première
loi:

(5.50)

La seconde est le rapport de la puissance utile et de la puissance thermique ; elle est
appelée rendement effectif ou efficacité selon la deuxième loi:

(5.51)

Pour une machine idéale, la deuxième mesure de l’efficacité est égale à 1. Elle semble
plus naturelle et intuitive que la première. Elle nous indique ce que la machine est ca-
pable de réaliser comparé à ce que la nature permet. Nous ne pouvons utiliser que
l’énergie libérée par la chute de l’entropie, c’est-à-dire Ptherm. Si nous pouvons en dis-
poser totalement, nous avons une machine parfaite. L’efficacité définie dans
l’équation (5.51) est analogue à celle que nous avons introduite à la section 3.3.2.

L’efficacité énergétique est généralement utilisée pour quantifier la performance de
machines thermiques. L’efficacité thermique d’une grande centrale nucléaire est légè-
rement inférieure à 30%. Pour des machines idéales, l’efficacité donnée par
l’équation (5.50) est l’efficacité ou rendement de CARNOT ηC des machines thermi-
ques. C’est l’efficacité maximale atteignable par une machine thermique travaillant
entre une source chaude à la température TH et une source froide à la température TB.

Il est important de se rendre compte que l’efficacité de CARNOT est inférieure à 1,
même pour une machine non dissipative, à moins que l’on soit capable de construire
une source froide qui fonctionne à la température la plus basse possible, soit 0 K. La
raison est simple à comprendre si l’on s’appuie sur le bilan d’entropie plutôt que sur
celui de l’énergie. Vu que l’entropie fournie à la machine par la source chaude doit être
évacuée par la source froide, un flux d’énergie égal à TBIS sera émis vers l’environne-
ment, ce qui est inévitable. L’entropie produite dans la source chaude doit tôt ou tard
finir dans l’environnement.

Dans le cas des pompes à chaleur, on introduit le coefficient de performance COP en
tant que rapport du courant d’énergie utile (celui qui accompagne le flux d’entropie
émergent dans la figure 5.54b) et de la puissance du processus moteur:

(5.52)

Pour les même raisons que pour les machines thermiques, on préfère comparer la puis-
sance thermique à la puissance du processus moteur:

(5.53)

On remarquera que, dans les deux cas, les relations sont l’inverse de celles qui ont été
introduites pour les machines thermiques. C’est une conséquence du fait que, dans les
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pompes à chaleur, le flux d’entropie circule «en remontant la pente». Pour une pompe
à chaleur idéale, cette efficacité est égale à 1, inférieure à 1 sinon.

5.8.3 Machines et cycle de CARNOT

Les résultats obtenus ci-dessus ne sont valables que pour des appareils réversibles ou
pour ce que l’on peut désigner par machines de CARNOT. La tâche d’une machine ther-
mique est de transporter l’entropie de la source chaude vers la source froide; dans son
ouvrage, CARNOT considère une machine qui absorbe l’entropie de la source chaude
à température constante. Ensuite, l’entropie est abaissée à la température de la source
froide d’où toute l’entropie est émise à nouveau à température constante. Dans notre
étude, la machine est le fluide de travail, par exemple de l’air ou de la vapeur. Ce fluide
subit un processus cyclique appelé cycle de CARNOT (fig. 5.55a). Ce cycle peut être dé-
composé en quatre étapes; nous supposons que le fluide est de l’air.

1. L’air subit une détente isotherme à la température TH. Lors d’une détente
isotherme, l’air absorbe de l’entropie à température constante.

2. La température de l’air doit être abaissée au niveau de celle de la source
froide. Ce processus doit se dérouler sans aucun échange d’entropie, ce qui
implique que cette étape doit être une détente adiabatique.

3. L’entropie absorbée lors de la première étape doit être réémise à température
constante TB, ce qui peut être réalisé par une compression isotherme.

4. Finalement, il faut ramener l’air à la température de la source chaude au
moyen d’une compression adiabatique, vu qu’il ne doit pas y avoir
d’échange d’entropie. Le cycle peut recommencer.

Notons que l’aire déterminée par le rectangle dans le diagramme T-S du cycle de CAR-

NOT (fig. 5.55b) représente l’énergie qui a été libérée par la chute de l’entropie entre
la source chaude et la source froide.

5.8.4 Machines thermiques dissipatives

Les machines thermiques et les pompes à chaleur réelles sont dissipatives (fig. 5.56).
La production d’entropie peut avoir plusieurs raisons, la principale étant le transfert de
chaleur (sect. 5.7). Sans entrer dans les détails, on peut ajouter un terme dissipatif dans
l’équation de bilan de l’entropie, ce qui a des conséquences importantes. Une partie
de l’énergie libérée par la chute de l’entropie entre les températures TH et TB sera uti-
lisée pour cette production d’entropie. Cette entropie supplémentaire doit être évacuée
par le condensateur avec l’entropie provenant de la source chaude, ce qui veut dire que
le flux d’énergie vers l’environnement sera plus important que dans le cas réversible.
L’énergie disponible pour le processus souhaitée sera inférieure à celle d’une machine
réversible.

L’efficacité réelle selon la deuxième loi peut être obtenue de manière analogue aux
équations (5.47) et (5.48). Celles qui changent sont:

(5.54)

Puissance disponible et perte de puissance. La puissance libérée par la chute de
l’entropie à travers une différence de température est donnée par l’équation (5.17).
Elle est souvent calculée en utilisant la température ambiante Tamb remplaçant la tem-
pérature de la source froide TB. La puissance ainsi calculée est le maximum qui peut
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être obtenu d’un flux d’entropie émis par un réservoir à la température T vers l’envi-
ronnement. Pour cette raison, elle est appelée puissance disponible Pdisp ou puissance
exergétique de l’entropie:

(5.55)

De la même façon, la perte de puissance due à l’irréversibilité, conséquence de la pro-
duction d’entropie, est calculée par rapport à la température ambiante Tamb. La perte
de puissance Pperdue, c’est-à-dire la réduction par rapport au maximum possible est
donnée par

(5.56)

Nous comprenons maintenant pourquoi l’efficacité de CARNOT est inférieure à 1,
même dans le cas idéal. La puissance disponible pour une machine idéale est:

(5.57)

5.8.5 Température absolue et potentiel thermique

Lors de l’introduction de l’échelle de température du gaz parfait à la section 5.2.1,
nous avons annoncé que nous apporterions la justification de son caractère de tempé-
rature absolue et de potentiel thermique.

Les résultats trouvés dans l’étude des machines thermiques permettent de préciser la
notion de potentiel thermique. Considérons l’équation (5.50) donnant l’efficacité de
CARNOT. Cette grandeur dépend uniquement des températures. Si nous souhaitons que
cette grandeur prenne une valeur unique pour un cas concret de machine thermique,
alors les températures apparaissant dans la formule prennent une signification indé-
pendante de matériaux et de processus particuliers. Cela nous amène au concept de
température absolue, c’est-à-dire indépendante d’une substance thermométrique.
Nous en concluons que nous pouvons utiliser la grandeur T en tant que mesure du po-
tentiel thermique.

Le terme «absolu» a également une seconde signification, celle de l’existence d’un
zéro absolu de la température. La production d’entropie et l’efficacité de CARNOT en
imposent l’existence. Si, dans l’expression de l’efficacité de CARNOT, la température
T n’était pas définie sur une échelle absolue, la valeur de l’efficacité dépendrait de
l’échelle choisie.

D’autre part, la relation entre l’énergie dissipée et l’entropie produite ne pourrait pas
être formulée sans ambiguïté. À titre d’exemple, l’équation (5.44) prédirait des taux
de production d’entropie négatifs s’il existait des températures négatives, ce qui est en
contradiction avec tout ce que nous avons supposé. Les grandeurs semblables à un flui-
de qui peuvent être créées et/ou détruites doivent avoir un potentiel absolu. C’est par
exemple le cas du volume et de la pression; le volume peut être produit ou détruit par
détente ou compression, et le potentiel associé, la pression, a un zéro absolu.

5.8.6 Premier et deuxième principes de la thermodynamique

La présentation de la thermodynamique proposée dans ce chapitre est basée, comme
nous l’avons exprimé au début, sur les idées de Sadi CARNOT. Elle n’est pas basée sur
les concepts qui ont été développés dans la thermodynamique traditionnelle après
1850, à la suite de la découverte de la notion d’énergie.

 Pdisp amb= − −( )T T IS

 Pperdue amb= T SΠ

 P = Pdisp amb amb perdue= −( ) −( ) = −T T I T T IS S EΠ 1
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Le premier principe apparaît sous une forme généralisée dans le bilan d’énergie for-
mulé dans les équations (5.15) et (5.16). La forme traditionnelle du premier principe
est l’équation de bilan de l’énergie pour des systèmes qui échangent de l’énergie au
cours de processus thermiques et mécaniques. Il est formulé sous sa forme intégrale:
la variation de l’énergie d’un système est égale à l’énergie échangée lors de chauffage
et de refroidissement plus l’énergie échangée mécaniquement. Le premier terme,
l’énergie du système, est appelé énergie interne, l’énergie échangée lors de chauffage
et de refroidissement est appelée chaleur, et le troisième, l’énergie échangée mécani-
quement est appelée travail.

Le cas du deuxième principe est plus complexe. Dans la littérature, on en trouve de
nombreux énoncés. Il est peu probable que toutes ces formes expriment les mêmes
concepts, ce qui nous amène à nous demander ce qu’est vraiment «le» deuxième prin-
cipe. Ce qu’on peut en dire, c’est que ces formes sont des variations de notre équation
de bilan de l’entropie (sect. 5.2) ou une relation entre l’entropie, la température et
l’énergie semblable à l’équation (5.19), ou une combinaison des deux.

Pour notre propos, il suffit de savoir que le premier principe a quelque chose à voir
avec le bilan d’énergie et que le deuxième principe est lié à l’entropie. Cela explique
les termes d’efficacité selon le premier principe (5.50) et selon le deuxième principe
(5.51) des machines thermiques.

1. Une centrale nucléaire typique est une machine thermique qui fonc-
tionne entre deux niveaux de température qui sont respectivement de
600 K et 300 K. Quelle est l’efficacité thermique idéale? L’efficacité
thermique réelle est de l’ordre de 30%; quelle est dans ce cas l’effica-
cité thermique selon la seconde loi?

2. Quelle est la relation entre la puissance thermique et la puissance utile
d’une machine thermique idéale?

3. Pourquoi l’efficacité thermique d’une machine idéale est-elle inférieure à 1?

1. .En vertu de l’équation (5.50), l’efficacité thermique idéale est de 0.5.
Dans le cas idéal, elle vaudrait 0.5/0.5, mais comme l’efficacité réelle
n’est que de 0.3, elle vaut 0.3/0.5 = 0.6.

2. Elles sont égales.

3. Parce qu’elle est définie en tant que quotient de la puissance utile et du
flux d’énergie de la source chaude plutôt que comme le quotient de la
puissance utile et de la puissance thermique.

EXEMPLE 5.6. Courant d’entropie à travers une machine de CARNOT idéale.

Considérons une machine de CARNOT idéale travaillant entre une source chaude à 300°C et une
source froide à 40°C. Cette machine idéale est censée délivrer une puissance mécanique de
5.0 MW. (a) Quelle doit être l’intensité du courant d’entropie à travers la machine? (b) Si l’on
garde le même courant d’entropie, quelle devrait être la différence de température pour une
puissance mécanique de 4.0 MW?

SOLUTION: Comme il s’agit d’une machine idéale, la puissance thermique est égale à la puis-
sance mécanique délivrée, ce qui implique:
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(b) La puissance motrice de la machine est proportionnelle à la différence des températures en-
tre les sources chaude et froide. Comme la nouvelle puissance représente les 4/5 de la puissance
originelle, il suffit de réduire la différence de température dans la même rapport et la ramener à
208 K. Si l’on garde la même température pour la source froide, il suffira que la température de
la source chaude soit de 248°C.

B

 

EXEMPLE 5.7. Chauffer de l’eau avec une pompe à chaleur.

Une pompe à chaleur nécessite un flux d’énergie de 330 W pour pouvoir fonctionner. En hiver,
elle retire de l’entropie du sol à 2°C pour chauffer de l’eau. (a) Que vaut le courant d’entropie
au début, lorsque l’eau est à 20°C? Comparez cette valeur avec celle d’un thermoplongeur de
même puissance que la pompe à chaleur (exemple 5.2). (b) Faites les mêmes calculs lorsque la
température de l’eau est de 100°C. (c) Que valent les flux d’énergie entrant dans l’eau dans les
deux cas?

SOLUTION: (a) Le flux d’entropie entrant est

alors que le flux d’entropie généré par le thermoplongeur n’est que de 1.13 Ct s-1 (W K-1).
L’énorme différence est due au fait que le thermoplongeur doit élever l’entropie depuis le zéro
absolu alors que la pompe à chaleur prend en charge une entropie qui est déjà au niveau 275 K.

(b) Lorsque l’eau a atteint la température de 100°C, le courant d’entropie n’est plus que de
330 W / 98 K = Ct s-1 (W K-1), vu que l’on dispose de la même quantité d’énergie pour franchir
une différence de niveau thermique plus de 5 fois plus grande. Dans le cas du thermoplongeur,
le flux d’entropie ne serait plus que de 0.89 Ct s-1 (W K-1).

(c) Le courant d’énergie qui émerge de la pompe à chaleur en entrant dans l’eau à 20°C est:

À 100°C, ce flux d’énergie n’est plus que de 1587 W.

B

 

Résumé du chapitre
Les phénomènes thermiques sont liés à ce que l’on appelle communément la chaleur,
grandeur familière à chacune et chacun d’entre nous. Nous lui attribuons les propriétés
d’être contenue dans les corps, de les rendre chauds, de pouvoir circuler entre les corps
et d’être produite lors de certains processus, comme par exemple la combustion.

Pour des raisons historiques, le vocable de chaleur a été réservé au milieu du XIXe siè-
cle à l’énergie échangée lors des processus thermiques, ce qui implique que, dans la
thermodynamique traditionnelle, la chaleur ne peut pas être contenue dans les corps.

Pour la description des processus thermiques, la grandeur extensive fondamentale est
l’entropie S. Elle peut être accumulée dans les corps, peut s’écouler et, particularité
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importante, elle peut être produite, mais pas détruite. L’équation de bilan de l’entropie
met en relation le taux de variation de l’entropie d’un système et les flux ou production
d’entropie qui en sont la cause. L’intensité des flux d’entropie est symbolisée par IS et
le taux de production d’entropie par ΠS. L’entropie peut s’échanger entre les systèmes
selon trois modes: par conduction (c’est l’objet de ce chapitre), par convection et par
rayonnement. Si l’on ne tient pas compte de cette dernière contribution, l’équation de
bilan de l’entropie est: .

La grandeur intensive associée, servant à indiquer le niveau thermique, est la tempé-
rature T. On la mesure en utilisant des matériaux thermoscopiques, c’est-à-dire des
matériaux dont certaines propriétés évoluent en fonction de leur degré de chaleur.
Contrairement au potentiel électrique, qui est une grandeur relative, la température est,
comme la pression, une grandeur absolue: il existe un zéro de la température.

Tout comme les flux de fluides et d’électricité, les flux d’entropie sont accompagnés
de flux d’énergie. Les flux d’entropie sont «chargés» d’énergie et le taux de charge-
ment est égal à la température T; l’intensité d’un flux d’énergie est donc égale à IE =
T·IS. Lorsqu’elle s’écoule entre deux niveaux T1 et T2 de la température, l’entropie li-
bère de l’énergie lorsque le processus est spontané, ou de l’énergie est liée à l’entropie
si le processus est contraint. Le taux de libération ou de liaison de l’énergie est la puis-
sance thermique du processus: Ptherm = - (T2 - T1)IS. Tout comme lors de la circulation
des fluides dans des conduites ou de la charge électrique dans des conducteurs, la con-
duction de l’entropie s’accompagne d’une production de chaleur (d’entropie). Il s’agit
du phénomène de dissipation: une partie de l’énergie libérée est utilisée pour la pro-
duction d’entropie et ne sera plus disponible pour le processus souhaité. Le taux de
dissipation est donné par la relation Pdiss = ΠS.

Les processus de chauffage ou de refroidissement consistent en des apports ou retraits
d’entropie. Le taux de variation de l’entropie du corps qui subit le processus est lié au
taux de variation de sa température par la capacité entropique KS. La relation est ana-
logue à celles que nous avons énoncées pour les processus hydrauliques et électriques :

. Mais il existe une différence importante: la capacité entropique dépend gé-
néralement de la température T. Habituellement, la capacité entropique est rapportée à
l’unité de masse; on parle alors de capacité entropique spécifique ks. L’entropie spéci-
fique est liée par l’intermédiaire de la température à la grandeur énergétique associée,
le coefficient de température spécifique de l’énergie c que l’on appelle chaleur massi-
que dans la thermodynamique traditionnelle: c = Tκs.

Nous l’avons déjà mentionné plus haut, les flux d’entropie sont des processus dissipa-
tifs, c’est-à-dire qu’ils sont accompagnés de production de chaleur. Ce phénomène est
dû au fait que les matériaux qui sont traversés par l’entropie opposent une résistance
à son écoulement. On modélise ce phénomène en introduisant, comme en hydraulique
et en électricité, les notions de conductance et de résistance, qui lient l’intensité des
flux à la différence de température.

L’entropie est la grandeur qui est responsable des changements de phase de la matière.
Un apport d’entropie peut entraîner une processus de fusion ou de vaporisation et, à
l’inverse, un retrait d’entropie pourra avoir pour conséquence la condensation ou la so-
lidification d’une substance. Lors des changements de phase, les apports ou les retraits
d’entropie n’entraînent aucune variation de la température de la substance: ce proces-
sus se déroule à température constante (qui, elle, dépend de la pression ambiante).

Comme celui d’un fluide ou de l’électricité entre deux niveaux de leur potentiel asso-
cié, l’écoulement spontané de l’entropie entre deux niveaux de la température peut ser-
vir à entraîner un autre processus: on a alors affaire à une machine thermique. De
même qu’un moteur électrique peut être utilisé en tant que générateur pour «pomper»
de l’électricité vers un niveau plus élevé, une machine thermique peut également servir
de pompe à chaleur.

 
�S I IS S S= + +, ,cond, net conv, net Π
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Questions 
1. Dans quel sens la température représente-t-elle l’intensité de

la chaleur? À quelles autres grandeurs physiques la tempéra-
ture peut-elle être comparée?

2. Que se passe-t-il avec tous les corps dans n’importe quelle cir-
constance si leur énergie augmente? Quelle genre de conclu-
sion ne peut-on pas tirer du fait que l’énergie d’un corps a
varié?

3. Comparez des grandeurs semblables à des fluides telles que
charge électrique, entropie, quantité de matière et quantité de
mouvement. Quelles propriétés ont-elles en commun? Quel-
les sont les différences possibles?

4. Qu’advient-il de l’entropie et de la température du système
lors des processus suivants?

a) Fusion de glace.
b) Condensation de vapeur d’eau.
c) Chauffage d’une pierre.
d) Compression isotherme d’un volume d’air.
e) Compression adiabatique réversible d’air.
f) Refroidissement d’air à volume constant.

5. Pourquoi la capacité entropique n’a-t-elle rien à voir avec les
changements de phase?

6. Considérez un volume d’eau chauffée par un thermoplongeur.

a) Si vous considérez le volume d’eau comme un système,
comment énoncez-vous le bilan d’entropie? Admettez que
l’entropie se répartit de manière réversible dans le
système ; que cela signifie-t-il pour la conduction de
l’entropie dans le système?

b) Répondez à la question dans le cas où le système est cons-
titué de l’eau et du thermoplongeur.

Exercices
1. Formulez le(s) équation(s) de bilan de l’entropie (version ins-

tantanée et version intégrée) pour les situations suivantes:

a) Un matériau homogène est chauffé mais pas refroidi.
b) De l’eau dans un récipient ouvert est chauffée au moyen

d’un thermoplongeur et brassée simultanément.
c) Un liquide dans un récipient bien isolé est brassé mécani-

quement.
d) Un gaz réel est comprimé dans un cylindre bien isolé.
e) Une pierre très chaude plongée dans de l’eau froide dans

un récipient bien isolé. Considérez d’abord la pierre et
l’eau comme des systèmes séparés, puis comme un sys-
tème unique.

f) De l’eau chaude refroidit dans un récipient à paroi épaisse
dans une environnement froid (considérez l’eau et le réci-
pient comme deux systèmes séparés).

g) De l’eau est chauffée dans une bouilloire mais sa tempéra-
ture n’augmente plus.

2. Un corps est chauffé et refroidi simultanément. L’entropie en-
tre à l’une des extrémités au taux de 300 Ct s-1 (W K-1). À

l’autre extrémité, on retire de l’entropie au taux de 200 Ct s-1

(W K-1). Que vaut le flux net d’entropie? À quelle vitesse le
contenu en entropie change-t-il? Supposez que l’entropie est
conservée durant ce processus.

3. Un corps a une capacité entropique constante entre 200°C et
500°C.

a) Esquissez l’évolution de sa capacité énergétique.
b) Comment son entropie varie-t-elle?
c) Comment son énergie varie-t-elle?

4. Dans une certaine quantité d’eau, le contenu en entropie croît
linéairement de 20 Ct à 60 Ct (J K-1)en 100 s. Simultanément,
le courant d’entropie dû aux pertes de chaleur vers l’environ-
nement croît de 0.10 Ct s-1 à 0.25 Ct s-1 (J K-1 s-1).

a) Que vaut le taux de variation de l’entropie de l’eau?
b) Exprimez l’intensité du courant d’entropie de chauffage en

fonction du temps.
5. Un thermoplongeur a une température de 120°C lorsqu’il

émet un courant d’énergie de 0.80 kW. (a) Quelle est l’inten-
sité du courant d’entropie qui franchit sa surface? (b) Quelle
est l’intensité du flux d’entropie entrant dans l’eau, si celle-ci
a une température de 80°C?

Problèmes
1. Le filament en tungstène d’une lampe à incandescence est

parcouru par un courant d’intensité égale à 10 mA lorsqu’il
est branché sur une source qui délivre une tension de 1.0 V.
Lorsque la tension est de 150 V, l’intensité est de 500 mA.
Quelle est la température du filament pour la seconde lecture
si l’expérience est effectuée à température ambiante de
20°C? Les coefficients de température pour le filament de
tungstène sont respectivement α = 4.11·10-3 K-1 et
β = 9.62·10-7 K-2.

2. Un flux d’entropie constant de 200 Ct s-1 (W K-1) émerge
d’un système, alors que le flux entrant varie au taux de -
20 Ct s-1·t.

a) Combien d’entropie est respectivement absorbée et émise
durant les 15 premières secondes ? Associez l’entropie
absorbée au courant entrant et celle émise au courant
émergent.

b) Combien d’entropie a été échangée au total? Quelle est la
variation du contenu en entropie du système?

3. Un corps que l’on chauffe subit un processus irréversible. Le
courant net d’entropie passe de -100 Ct s-1 (W K-1) à zéro en
20 s. Pendant ce temps, le taux de production d’entropie est
de 30 Ct s-1 (W K-1).

a) Que vaut le taux de variation de l’entropie du corps?
b) Que valent l’entropie échangée et la variation de l’entropie

durant ces 20 s?

4. La surface absorbante d’un collecteur solaire reçoit de l’éner-
gie du rayonnement absorbé au taux de 1800 W.

a) Si nous admettons que le rayonnement solaire transporte
relativement peu d’entropie, que vaut le taux de production
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d’entropie dans la surface absorbante, si sa température
vaut 100°C.

b) Les 40% de l’entropie produite dans la surface absorbante
retournent à l’environnement à cause des pertes de cha-
leur. Quelle est l’intensité du flux d’entropie de la surface
absorbante vers l’eau du collecteur?

c) Quelle est l’intensité du flux d’énergie de l’absorbeur vers
l’environnement?

d) Quelle est l’intensité du flux d’entropie qui arrive dans
l’environnement à 20°C?

e) Que vaut le taux de production d’entropie entre l’absor-
beur et l’environnement?

f) Quelles sont les intensités des courants d’énergie et
d’entropie entrant dans l’eau, si celle-ci a une température
moyenne de 50°C?

5. Le rayonnement solaire transporte de l’énergie, mais relative-
ment peu d’entropie. De 8 h à 18 h, le courant d’énergie du
rayonnement solaire sur une surface varie sinusoïdalement
entre 0 W et 900 W. Les 70% de cette énergie sont absorbés,
ce qui provoque une variation sinusoïdale de la température
entre 20°C et 50°C.

a) Déterminez l’évolution du taux de production d’entropie
en fonction du temps.

b) Combien d’entropie est-elle produite en un jour?

6. Le courant d’énergie d’une centrale thermique vers le cou-
rant de refroidissement à 30°C a une intensité de 1.5 GW.

a) Quelle est l’intensité du courant d’entropie de la centrale
vers l’environnement?

b) Quelle est l’intensité du courant d’entropie de la source
chaude vers l’installation, si le processus se déroule de
manière réversible? Que vaut-elle dans le cas contraire?

c) Quelle doit être la température de chauffage si la puissance
thermique doit être de 1.235 GW?

7. On a besoin de 1520 s pour faire fondre 1 kg de glace au
moyen d’un thermoplongeur branché sur le secteur à 220 V
et traversé par un courant d’intensité égale à 1.0 A.

a) Combien d’énergie le mélange eau-glace a-t-il reçue?
b) Combien d’entropie a -t-il reçue?
c) Que vaut l’entropie spécifique de fusion de la glace?

8. Dans un congélateur, on produit 10 kg de glace à -20°C à
partir de la même quantité d’eau à 0°C. Le courant d’entropie
émanant de l’eau a une valeur moyenne de 0.15 W K-1.

a) Combien d’entropie a-t-on extrait de l’eau?
b) Combien de taux le processus dure-t-il?
c) Combien d’entropie s’écoule-t-elle dans le compartiment

de refroidissement?
d) Quelle est l’intensité du courant d’énergie de l’eau vers le

compartiment de refroidissement?
e) À quel taux doit-on extraire l’entropie du compartiment de

refroidissement pour que la température reste constante?

9. On fait condenser 100 kg de vapeur d’eau à 100°C par refroi-
dissement.

a) Quelle est la variation totale de l’entropie du mélange de
vapeur et d’eau?

b) Combien d’entropie la vapeur d’eau libère-t-elle?

c) Combien d’énergie est libérée par la vapeur d’eau?
d) Quelle est la variation de l’énergie du système?
e) Quelle est la variation de l’enthalpie du système?

10. Un bâtiment a une conductance énergétique globale de
300 W K-1. La température intérieure est maintenue cons-
tante à 20°C. La température extérieure constante vaut -10°C.

a) Quelle est la valeur de la conductance entropique à la tem-
pérature du bâtiment?

b) Quelles sont les valeurs des courants d’entropie et d’éner-
gie qui s’échappent du bâtiment?

c) Quelle est la valeur du taux de production d’entropie entre
le bâtiment et l’environnement due à la déperdition de
chaleur?

d) Quelle doit être la puissance du chauffage à l’intérieur du
bâtiment?

11. Les radiateurs dans une pièce doivent délivrer un courant
d’entropie de 3.12 Ct s-1 (W K-2) provenant d’une eau à
45°C. La température de la pièce est de 20°C. Le coefficient
de transfert de l’entropie de l’eau vers la pièce vaut approxi-
mativement 0.030 Ct s-1 m-2 (W K-2 m-2).

a) Quelle doit être l’aire de la surface d’échange des
radiateurs?

b) Quelle est l’intensité du courant d’entropie émanant de
l’eau?

c) Quelle est la valeur de la conductance énergétique des
radiateurs?

d) Quelle est la valeur du taux de production d’entropie lors
du transport de chaleur de l’eau vers la pièce?

e) Quelle est l’intensité du courant d’entropie arrivant dans la
pièce?

12. Une centrale thermique (telle qu’une centrale nucléaire)
reçoit son entropie du réacteur à une température de 600 K.
L’entropie est évacuée par le condenseur à 300 K. La puis-
sance mesurée est de 1.0 GW.

a) Esquissez le diagramme de processus (avec porteurs et
courants d’énergie) pour le système (le système entre le
réacteur et le condenseur).

b) Si la machine thermique pouvait fonctionner de manière
idéale, quelle serait l’intensité du courant d’entropie qui la
traverse?

c) L’efficacité thermique de la centrale n’est que de 30%.
Que doit être l’intensité réelle des courants d’entropie et
d’énergie du réacteur vers la machine thermique?

d) Quel est le taux de production d’entropie dans la machine
thermique (entre le réacteur et le condenseur)?

d) Quel est le taux de production d’entropie dans la machine
thermique (entre le réacteur et le condenseur)?

e) Quel est le taux de production d’entropie total (incluant
celui du réacteur)?

13. Un moteur de voiture fonctionne en régime permanent.
L’essence fournit de l’énergie à un taux de 400 kW, la puis-
sance mécanique mesurée du moteur est de 100 kW. L’entropie
est fournie à une température de 900 K et le refroidissement a
lieu à 300 K.

a) Esquissez le diagramme de processus du moteur en tant
que système entre la source chaude et la source froide.
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b) Quelle est l’intensité du courant d’entropie dans le
moteur?

c) Que vaut la puissance thermique?
d) Quelle serait l’intensité du courant d’entropie vers le con-

denseur si le moteur fonctionnait de manière idéale ?
Quelle serait alors l’intensité du courant d’énergie vers le
condenseur?

e) Quelle est l’intensité réelle du courant d’énergie vers le
condenseur?

f) Quel est le taux de production d’entropie dans le moteur?

14. On utilise une pompe à chaleur pour chauffer de l’eau à 60°C
en puisant la chaleur dans le sol à 2°C. Le coefficient de per-
formance vaut 2.2 et l’intensité du courant d’énergie durant
le chauffage est de 1.0 kW.

a) Quel est le taux de production d’entropie?
b) Quelle est la valeur de la puissance perdue ? Montrez

qu’elle est égale au produit du taux de production d’entro-
pie et de la température de l’environnement.

c) Quelle est la valeur de l’efficacité de la pompe à chaleur
selon la seconde loi?

15. Des mesures permettent de fixer la valeur de la capacité
entropique de 1 kg de glace à 8.1 Ct K-1 (J K-2) à une tempé-
rature de -13°C et à 7,7 Ct K-1 (J K-2) à la température de
0°C.

a) Calculez l’intensité du courant d’entropie nécessaire pour
pour chauffer un bloc de glace de 1 kg à -13°C de telle
manière que sa température augmente de 1 K par minute.

b) Estimez la quantité totale d’entropie transmise au bloc de
glace lorsque sa température aura atteint 0°C.
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Les processus chimiques sont ceux qui ont un rapport avec la nature et le comporte-
ment des substances. Ils ont affaire à la quantité des espèces chimiques, leur intensité
les unes par rapport aux autres et leur faculté d’être la cause d’autres phénomènes. Les
processus chimiques sont essentiellement de deux natures: transport et réaction. Les
substances peuvent migrer d’une place à l’autre, se transformer et être produites ou dé-
truites lors de réactions chimiques. Ce sont ces phénomènes que nous allons introduire
dans ce chapitre.
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Chaque jour, nous observons que les substances se transforment: le pain devient sec
si on le laisse à l’air libre, le beurre et les graisses deviennent rances, le papier journal
jaunit, les élastiques deviennent cassants, les objets en fer rouillent, les toits en cuivre
verdissent. Ces observations montrent que, dans la nature inanimée, il existe des forces
qui modifient la matière. Le fait que l’on ne peut pas, même en prenant des précau-
tions, garder indéfiniment des aliments, des médicaments ou des substances chimiques
montre que, même sans influence extérieure, les substances ont une tendance à se
transformer.

Pour comprendre et modéliser ces transformations, nous allons, sur la base d’expé-
riences, introduire deux nouveaux concepts fondamentaux, à savoir ceux de quantité
de matière et de potentiel chimique. Le second concept est usuellement considéré
comme une grandeur abstraite qui ne peut être définie que sur la base d’arguments
thermodynamiques et dont on ne peut pas se faire une idée concrète. Nous montrerons
que ce concept peut être appréhendé de manière tout aussi intuitive que celui de la tem-
pérature dans notre vie quotidienne1.

Comme il s’agit de la paire de grandeurs extensive et intensive liée à la description des
phénomènes chimiques, elles prendront un caractère très concret grâce à l’analogie
avec les grandeurs correspondantes introduites dans les domaines déjà étudiés (hy-
draulique, électricité, chaleur).

Pour entrer dans le vif du sujet, nous allons étudier et modéliser une réaction chimique,
la décomposition de la murexide en milieu acide et un exemple de transport de matiè-
re, la diffusion de sel à travers une membrane.

1. Le concept didactique derrière cette approche doit beaucoup aux travaux de Georg JOB
(1972). À la connaissance des auteurs, Georg JOB a été le premier à suggérer qu’une expo-
sition des réactions chimiques devrait se faire en introduisant, dès le départ, le potentiel
chimique en tant que concept facile à saisir. Voir également JOB (1983), JOB et HERRMANN
(2006), JOB et RÜFFLER 2009, D’ANNA, FUCHS et LUBINI (2008), FUCHS (2009).
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6.1.1 Décomposition de la murexide en milieu acide

 

Recueil des données

 

. La murexide (C8H5N5O6), appelée également purpurate d’am-
monium, est un colorant pourpre, synthétisé à partir de l’acide urique, qui était ancien-
nement fabriqué en grandes quantités à partir du guano. Lorsqu’on la dissout dans une
solution acide, qui contient des protons H+, elle se décompose en deux produits, l’al-
loxane (C4H2N2O4) et l’uramile (C4H5N3O3). Dans l’eau pure, la murexide est de
couleur pourpre, alors que l’alloxane et l’uramile sont tous deux incolores. On peut dé-
terminer la concentration de murexide dans la solution en mesurant son absorbance,
c’est-à-dire en mesurant la quantité de lumière qui passe à travers une cuvette conte-
nant ce liquide. Les concentrations initiales respectives sont 3.00·10-4 mol L-1 pour la
murexide et 2.70·10-2 mol L-1 pour les ions H+. Le modèle que nous allons élaborer
montrera que, comme la concentration des ions H+ dans la solution est élevée, elle ne
varie pratiquement pas et la décroissance de celle de la murexide est de type exponen-
tiel (fig. 6.1).

 

Interprétation, hypothèses. Nous avons déjà rencontré ce type de comportement lors
de la vidange d’un réservoir en régime laminaire (section 1.8.1), de la décharge d’un
condensateur (section 2.8.1) et du refroidissement d’un corps chaud dans un environ-
nement à température constante (section 5.6.2). Chacun de ces processus était entraîné
par une différence de niveau de la grandeur intensive associée, la pression, le potentiel
électrique et la température.

Forts de cette similitude de comportement, nous pensons qu’il doit y avoir une force
d’entraînement de cette réaction, une sorte de tension chimique, une différence de chi-
mique entre le produit de départ et les produits finaux. Ce niveau chimique est appelé
potentiel chimique. Cette grandeur a été introduite en 1876 par le théoricien américain
Josiah Willard GIBBS. Pour cette raison, nous utiliserons le gibbs, que nous abrégerons
par G, pour mesurer les valeurs de cette grandeur. Nous reviendrons à la section 6.4
sur son lien avec les unités du Système international.

 

Modélisation du processus. La décomposition de la murexide peut être décrite au
moyen d’une équation simplifiée:

 

(6.1)

où M, A et U représentent respectivement la murexide, l’alloxane et l’uramile. La réac-
tion dépend de l’acidité de la solution, ce qui implique que les protons sont utilisés
dans la réaction (ils n’ont pas un rôle de catalyseur). Toutefois, vu que leur concentra-
tion est 100 fois plus élevée que celle de la murexide, elle peut être considérée comme
constante. En outre, la réaction est à sens unique, c’est-à-dire que les produits ne réa-
gissent pas pour reformer de la murexide. Leur présence dans la solution n’a donc
aucune influence sur le déroulement de la réaction.

Nous devons énoncer l’équation de bilan pour la quantité de matière de chacun des
deux réactifs impliqués dans la réaction, ainsi que pour chacun des produits. La quan-
tité de matière est la grandeur fondamentale extensive liée aux processus faisant inter-
venir des transformations (réactions, migration, etc.) de substances. Elle est
représentée par le symbole n et se mesure en moles, que l’on abrège par mol. Sa défi-
nition sera précisée à la section 6.3. En vertu des constatations du paragraphe précé-
dent, le modèle ne devra tenir compte que de la variation de la quantité de matière de
la murexide, égale à son taux de production:

 

(6.2)

Le taux de production Π est négatif, puisque la murexide disparaît lors de la réaction.
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FIGURE 6.1 Le colorant murexide
réagit avec les protons en solution
aqueuse et se désintègre en des
substances incolores. Si la concen-
tration des protons est élevée, la dé-
croissance de celle de la murexide
est de type exponentiel.

M H A U+ → ++

 �n nmurexide murexide= Π ,
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Il s’agit maintenant de trouver le lien entre les taux de production et la force d’entraî-
nement chimique. En nous servant de l’analogie avec les situations semblables ren-
contrées dans les domaines de la physique déjà étudiés, nous admettons que ces deux
grandeurs sont proportionnelles:

 

(6.3)

où

 

A symbolise la force d’entraînement chimique, la réactivité de la murexide en pré-
sence des ions H+ (le symbole est celui d’un des plus anciens concepts en chimie, l’af-
finité chimique). L’hypothèse la plus simple est d’imaginer qu’elle est proportionnelle
à la concentration de la murexide:

où représente la concentration molaire de la murexide, mesurée en mol L-1. Le taux
de production par unité de volume, la densité du taux de production, devient alors:

où kn est le coefficient de vitesse de réaction. Après multiplication par le volume V de
la solution (mesuré en litres), le taux de disparition de la murexide devient:

 

(6.4)

La figure 6.2 montre le modèle basé sur l’équation (6.4) et le résultat de la simulation.
À partir du volume V = 10 mL et de la concentration initiale de 3·10-4 mol L-1 pour la
murexide, on peut calculer sa quantité de matière initiale. Le coefficient de vitesse kn
est le seul paramètre dont la valeur est encore indéterminée. L’adéquation entre le mo-
dèle et les valeurs expérimentales est obtenue pour une valeur de 0.0022 s-1.

Comme nous l’avons déjà mentionné plus haut, il serait naturel d’appeler

 

A la tension
chimique. Nous verrons plus loin qu’elle correspond, comme c’est le cas lors des pro-
cessus électriques, à l’opposé de la différence des potentiels chimiques des substances
participant à la réaction. Le potentiel chimique étant représenté par le symbole µ, nous
pouvons écrire:

 

(6.5)

 Πn, murexide ∝ A

 A ∝ cmurexide

c

π n nk c, murexide murexide= −

Πn n nV Vk c, murexide , murexide murexide= = −π
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FIGURE 6.2 Décomposition de la
murexide en milieu acide: (a) modè-
le de dynamique des système;
(b) confrontation des résultats de la
simulation et des données
expérimentales.
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6.1.2 Diffusion de sel à travers une membrane

 

Recueil des données

 

. Lors d’une expérience, de l’eau salée est introduite dans un
tube à dialyse (boyau fait d’une membrane semi-perméable) dont les deux extrémités
sont ensuite nouées ou pincées. On plonge ce tube dans un bécher contenant 300 g
d’eau fraîche que l’on remue délicatement pour uniformiser sa composition. On me-
sure la conductivité en fonction du temps. Les données sont reportées dans le graphe
de la figure 6.3 pour trois solutions différentes de sel de table (NaCl), à savoir 10 g L–1,
50 g L–1 et 100 g L–1. Le tube à dialyse contient à chaque fois 10 mL de solution.

Interprétation, hypothèses. La migration du sel à travers la membrane n’est possible
que s’il existe une différence de niveau chimique entre le tube de dialyse et l’eau dans
laquelle il est plongé. La grandeur qui varie d’un milieu à l’autre est la concentration
du sel.

Modélisation du processus. Les trois expériences fournissent des résultats sembla-
bles (croissance linéaire de la concentration de sel dans le bain), ce qui nous permet
de nous concentrer sur la modélisation d’une seule des trois expériences, la série mé-
diane correspondant à une concentration initiale de 50 g L–1 dans le tube de dialyse.

Le taux de variation de la quantité de matière dans les deux milieux dépend du flux de
sel du tube vers l’eau contenue dans le bécher, ce que nous formulons au moyen de
deux équations de bilan:

(6.6)

Nous devons formuler une loi constitutive pour le flux de sel entre les deux milieux.
L’hypothèse la plus simple est de supposer une proportionnalité entre l’intensité du
courant et la différence des concentrations:

(6.7)

où Gn est la conductance liée au flux de quantité de matière à travers la membrane et
la concentration molaire du sel dans chacun des milieux.

Les données expérimentales sont exprimées en termes de fraction masse-volume que
nous devons convertir en concentration molaire au moyen des équations (6.16) et
(6.17). Les données essentielles dont nous avons besoin pour le modèle sont, d’une
part, la concentration initiale de sel dans le tube:

ainsi que la valeur de la conductance Gn. Nous pouvons la déterminer en utilisant
l’équation (6.7), pour autant que nous ayons la valeur du flux de quantité de matière.
Ce dernier peut être extrait des données expérimentales, vu qu’il est proportionnel au
taux de variation de la concentration, soit graphiquement, soit par un ajustement au
moyen de la méthode des moindres carrés. Après conversion en valeurs molaires, nous
obtenons à partir des valeurs initiales:

Le modèle basé sur ces réflexions est représenté dans la figure 6.4a et les résultats de
la simulation apparaissent dans la figure 6.4b.
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Ce modèle a la même structure que celui de l’équilibrage des niveaux entre deux ré-
servoirs communicants, de l’équilibrage des tensions de deux condensateurs ou de ce-
lui des températures de deux corps en contact thermique. Nous pouvons donc admettre
que l’évolution du processus sera de type exponentiel caractérisé par une constante de
temps liée à la croissance de la concentration de sel dans le bécher ou à la décroissance
de celle du sel dans le tube de dialyse. Pour pouvoir la déterminer à partir des données
expérimentales, il faut évaluer la concentration d’équilibre qui sera atteinte lorsque le
sel sera réparti uniformément dans le volume total d’eau:

Comme dans les autres cas, la constante de temps est liée au taux de variation initial
de la concentration et à cette concentration d’équilibre par la relation:

On trouve ainsi

Si l’on prolonge la durée de la simulation du modèle, on peut représenter graphique-
ment l’équilibrage des concentrations de sel. La figure 6.5 montre l’évolution vers
l’équilibre ainsi que la détermination graphique de la constante de temps. La tangente
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à l’origine de la courbe de décroissance de la concentration dans le tube de dialyse in-
tercepterait l’asymptote au même endroit que celle de la courbe de croissance.

6.2 MULTIPLICITÉ DES PHÉNOMÈNES CHIMIQUES

Nous allons compléter les observations de la section précédente pour illustrer le grand
nombre de processus qui se manifestent lors de transformations ou de migrations de
substances.

6.2.1 Réactions chimiques et quantité de matière

Il est usuel d’admettre que les substances sont composées de «briques élémentaires»
de matière que l’on appelle les éléments. Considérons quelques réactions auxquelles
participent les éléments hydrogène, oxygène et chlore (fig. 6.6). Les chimistes ont dé-
couvert qu’il fallait prendre 4 g d’hydrogène pour réagir complètement avec 32 g
d’oxygène afin de former 36 g d’eau. Cependant, la réaction entre l’oxygène et le chlo-
re n’est complète que si on prend respectivement 64 g et 71 g de ces éléments. De mê-
me, une réaction complète entre le chlore et l’hydrogène nécessite de prendre 71 g de
chlore et 2 g d’hydrogène.

Interprétation. Nous voyons que la masse d’une certaine quantité d’un élément ne peut
pas servir de mesure naturelle de la quantité de matière impliquée dans une réaction.
Il apparaît par exemple que 71 g de chlore sont chimiquement équivalents à 2 g d’hy-
drogène. Il est donc nécessaire d’introduire une nouvelle mesure de la quantité de ma-
tière. Si nous fixons que 2 g de gaz hydrogène (H2) correspondent à une unité de
quantité de matière, appelée 1 mole, alors 1 mole de chlore correspondra à 71 g de
chlore. De même, 32 g d’oxygène (O2) correspondront à 1 mole de cet élément. La
masse d’une mole d’un élément est sa masse molaire.

6.2.2 Pression de gaz dilués

Les substances peuvent être amenées à l’état gazeux. Si le gaz est suffisamment dilué
ou suffisamment chaud, ou les deux, toutes les substances dans cet état manifestent le
même comportement, proche de celui d’un gaz parfait (chapitre 10). Si nous plaçons
un tel gaz dans un récipient de volume donné à une température donnée, il faut prendre
diverses masses pour des gaz différents afin d’obtenir la même pression. Par exemple,
2 g d’hydrogène, 31 g d’oxygène et 71 g de chlore à l’état gazeux ont tous la même
pression si le volume et la température sont les mêmes.

Interprétation. La pression d’un gaz dépend de la quantité de matière de ce gaz, et pas
de sa masse. Dans le modèle corpusculaire, il faut le même nombre de particules pour
obtenir la même pression pour les mêmes volume et température.

6.2.3 Diffusion de sel dans l’eau

Lorsque l’on superpose une couche d’eau distillée sur une couche d’eau salée, en
veillant à ce qu’elles ne se mélangent pas (fig. 6.7a), le sel va se propager lentement
vers le haut. Finalement, il sera distribué uniformément, ce qui signifie que sa concen-
tration est devenue uniforme dans tout le volume d’eau (fig. 6.7b). Il est possible de
déterminer indirectement la concentration du sel en mesurant la conductivité de la
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solution. Une simulation, basée sur des mesures, montre qu’il faut plus d’un mois pour
qu’approximativement 1 g de sel se répande dans 1 litre d’eau distillée.

Interprétation. Le sel peut se dissoudre dans des liquides tels que l’eau en se décom-
posant en ions Na+ et Cl–, rendant la solution conductrice. Si la concentration de la
substance dissoute est plus élevée en certains endroits, elle migre vers les endroits de
concentration plus faible . Lorsque la concentration est devenue uniforme, ce proces-
sus appelé diffusion s’interrompt. Les différences de concentration sont la force d’en-
traînement des transports par diffusion.

6.2.4 Distribution de toluène dans l’eau et dans l’air

Dans un environnement homogène, une substance peut diffuser et occuper tout l’espa-
ce au bout d’un certain temps; les odeurs, qui ne sont rien d’autre que des substances
qui activent nos cellules olfactives, en sont une illustration. Ce n’est pas le cas si la
substance peut migrer à travers et se répandre dans différents matériaux en contact les
uns avec les autres, comme l’eau, l’air et le sol. À titre d’exemple, le toluène diffuse
de l’eau vers l’air jusqu’à ce que la concentration soit approximativement quatre fois
supérieure dans l’eau que dans l’air. La figure 6.8a montre comment, à partir d’une
concentration initiale élevée dans l’eau et nulle dans l’air, on assiste à une diminution
de la concentration dans l’eau et une augmentation dans l’air jusqu’à ce que les
concentrations atteignent ce que l’on appelle les valeurs d’équilibre.

Interprétation. La diffusion d’une substance dissoute dans un environnement homo-
gène est attribuée à des différences de concentration, à un gradient de concentration.
Elle diffuse des endroits où la concentration est élevée vers les endroits où elle l’est
moins, jusqu’à ce qu’elle soit uniforme.

Cette explication n’est pas applicable lorsqu’une substance diffuse à travers des
milieux différents en contact l’un avec l’autre. Il semble que le toluène «préfère» être
dans l’eau plutôt que dans l’air, ce que nous expliquons, comme à la section 6.1.1, en
admettant l’existence d’une tension chimique. À concentrations égales, le potentiel
chimique du toluène est plus bas dans l’eau que dans l’air. La différence des potentiels
chimiques est la force d’entraînement du flux de toluène d’un milieu vers l’autre.

Le fait que le niveau des concentrations d’équilibre n’est pas le même dans l’eau et
dans l’air est analogue à la situation que nous avons rencontrée en hydraulique lorsque
l’on relie entre eux deux récipients qui contiennent des liquides de densités
différentes: à l’équilibre, les niveaux libres des liquides ne sont pas égaux. Les niveaux
et les densités ont leur importance, mais en fin de compte c’est la pression, en tant que
potentiel hydraulique, qui permet d’expliquer ce que l’on observe.
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6.2.5 Transformation du glucose

Le glucose est un sucre qui existe en deux configurations différentes, les anomères, qui
se différencient dans l’arrangement spatial des atomes dans la molécule. Les deux con-
figurations sont appelées α-glucose et β-glucose r. On dissout de l’α-glucose pur dans
de l’eau et on observe qu’une partie va progressivement se transformer en β-glucose
(fig. 6.9); les deux anomères sont optiquement actifs et font tourner le plan de polari-
sation de la lumière qui traverse la solution, mais de manière différente pour chacun
d’eux, ce qui permet d’observer l’évolution de la réaction.

Interprétation. Les deux configurations ont tendance à se transformer. L’intensité de
cette tendance peut être exprimée en termes de potentiel chimique, comme dans le cas
de la tendance d’une substance à diffuser. Pour une valeur standard de la concentra-
tion, l’α-glucose et le β-glucose ont des potentiels chimiques différents. Une telle dif-
férence est la force d’entraînement de la réaction qui dure tant que la différence existe.
L’expérience montre que les potentiels chimiques de ces deux types de glucose de-
viennent égaux à des concentrations différentes, comme dans le cas du toluène dans
l’eau et dans l’air.

La dynamique de la réaction est à nouveau semblable à celle de nombreux processus
que nous avons observés dans les chapitres précédents. La différence de potentiel chi-
mique semble jouer un rôle semblable aux différences de pression, de température, de
potentiel électrique, de vitesse linéaire ou angulaire.

 

6.2.6 Cœurs de pommes de terre dans l’eau

Des cœurs de pommes de terre de forme sphérique et de taille approximativement éga-
le sont plongés dans de l’eau distillée ou dans de l’eau dans laquelle on a dissous un
peu de sel de cuisine. On les pèse à intervalles réguliers. Au cours du temps, la masse
des cœurs change (fig. 6.10). S’il n’y a que de l’eau, ou de l’eau avec une faible con-
centration de sel, la masse augmente. Au-dessus d’une certaine concentration, la mas-
se diminue. Pour une concentration particulière, dite isotonique, la masse ne change
pas. Si l’on utilise du sucre à la place du sel, on observe que l’on obtient une solution
isotonique si la molalité (nombre de moles du soluté par kilogramme de solvant) est
approximativement deux fois celle du sel.

Interprétation. Vu que la masse varie, il faut admettre que des substances s’écoulent
vers les cœurs ou hors de ceux-ci. Nous avons vu que des substances telles que le sel
peuvent diffuser à travers des matériaux. Ici, la situation est différente: dans le cas de
l’eau distillée ou peu salée, la seule substance qui migre dans les cœurs est l’eau. Si la
concentration de sel dans la solution dépasse une certaine valeur, c’est le processus
inverse qui se déroule: le cœur perd de l’eau.

Généralement, l’eau s’écoule des points de pression élevée vers les points de pression
plus basse. Si nous admettons cette interprétation, nous devons conclure que, dans le
cas de l’eau distillée, la pression de l’eau à l’intérieur des cœurs est plus basse qu’à
l’extérieur. Or, le cœur est essentiellement constitué d’eau dans laquelle sont dissoutes
un certain nombre de substances. Cela veut dire que la pression de l’eau est plus basse
lorsqu’elle contient des substances dissoutes.

Si nous acceptons cette conclusion, nous pouvons expliquer les autres observations. Si
l’on dissout de plus en plus de sel dans l’eau, la pression diminue, ce qui a pour
conséquence que de moins en moins d’eau migre à l’intérieur des cœurs. À partir
d’une certaine concentration du soluté (solution isotonique), on assiste à l’inversion
du processus.

Ce type de transport de l’eau est appelé osmose. Il s’agit du transport de l’eau à travers
des membranes semi-perméables (perméable uniquement à l’eau et pas aux solutés)

FIGURE 6.9 Concentrations d’α-
glucose (courbe décroissante) et de
β-glucose dans l’eau en fonction du
temps. L’α-glucose se transforme
en β-glucose; le phénomène est ap-
pelé mutarotation du glucose. La
concentration est déterminée en me-
surant la rotation du plan de polari-
sation de lumière polarisée
linéairement passant à travers la
solution de glucose. Données avec
l’aimable autorisation de
J. SONNLEITNER.
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entre deux solutions aqueuses. La pression est une indication du potentiel chimique de
l’eau. Les solutés diminuent la pression et par le fait même le potentiel chimique de
l’eau.

 

6.2.7 Batteries et piles à combustible

Les batteries et les piles à combustible sont des appareils qui permettent d’utiliser des
réactions spontanées pour établir une tension et entraîner un courant électrique. La
tension à vide des éléments électrochimiques se situe approximativement entre 1 et
4 volts.

Interprétation. Les réactions spontanées libèrent de l’énergie. Dans les éléments élec-
trochimiques, une partie de cette énergie est utilisée pour pomper les charges électri-
ques, le reste servant à produire de l’entropie, les processus ne se déroulant pas de
manière idéale. La puissance du processus électrique est proportionnelle à l’intensité
du courant et à la tension établie. De manière analogue, la puissance des processus chi-
miques dépend de la force d’entraînement chimique (la tension chimique) et du taux
de réaction. En mesurant les grandeurs électriques et le taux de réaction, on peut en
déduire la valeur de la tension chimique.

1. Comment les réactions chimiques, la pression des gaz, ou le phéno-
mène d’osmose nous permettent-ils de démontrer que l’on ne peut pas
utiliser la masse pour mesurer la quantité de matière?

2. Dans le processus de conversion d’α-glucose en β-glucose (fig. 6.9),
comment peut-on utiliser les résultats expérimentaux pour motiver le
concept de potentiel chimique?

3. Expliquez pourquoi les concentrations à l’équilibre du toluène dans l’eau et dans l’air sont
différentes. Pourquoi la concentration à l’équilibre du sel dans un volume d’eau est-elle la
même partout?

4. Pourquoi une pomme de terre s’alourdit-elle lorsqu’on la plonge dans de l’eau distillée?

5. Expliquez comment le concept de potentiel chimique et de différences de potentiel chimi-
que permet de donner une explication commune de phénomènes tels que réactions chimi-
ques, fonctionnement des batteries, écoulements de substances dans l’environnement ou de
drogues dans l’organisme, diffusion, modification du point d’ébullition de l’eau par adjonc-
tion de sel ou de sucre, pression de vapeur, etc.

6. Donnez un exemple d’une réaction chimique contrainte à se dérouler dans le sens opposé à
celui qu’elle emprunte habituellement.

1. Lors de réactions chimiques complètes (tous les réactifs sont utilisés),
les masses des réactifs respectifs ne sont pas égales mais, pour une
paire de substances donnée, le rapport des masses est toujours le même.
Pour obtenir la même pression avec des gaz de nature différente, il faut
utiliser des masses toujours plus importantes lorsque l’on monte dans
le tableau périodique. Lors du phénomène d’osmose, l’eau peut migrer
d’un réservoir qui ne contient que très peu d’eau (mais une forte con-
centration de soluté) vers un réservoir contenant une plus grande quantité d’eau, mais une
plus faible concentration de soluté.

2. En comparant les résultats expérimentaux à ceux que l’on obtient lorsque l’on fait commu-
niquer deux récipients contenant des fluides de masses volumiques différentes. Dans le cas
du processus chimique, le potentiel chimique joue un rôle équivalent à celui de la pression.

Q

R
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3. À l’équilibre, le potentiel chimique du toluène dans l’air est supérieur à celui du toluène
dans l’eau. Le toluène «préfère» être dans l’eau plutôt que dans l’air. Dans le cas du sel
dans l’eau, il n’y a pas de changement de milieu: le sel migrera des régions où sa concen-
tration, et donc son potentiel chimique, sont élevés, vers les régions où ils sont moindres,
jusqu’à ce que sa concentration soit la même partout.

4. Parce que l’eau pure pénètre à l’intérieur de la pomme de terre pour y diminuer la concen-
tration des substances qui y sont dissoutes.

5. Dans tous les exemples cités (et dans bien d’autres), on est en présence de processus qui se
déroulent spontanément, comme c’est le cas lors de l’équilibrage des niveaux en hydrauli-
que, celui des tensions en électricité ou celui de la température lors de processus thermi-
ques. Dans chaque cas, nous avons pu expliquer ces phénomènes par la présence d’une
différence de potentiel en tant que moteur du processus. La notion de potentiel chimique
permet d’étendre cette vision dynamique des processus aux phénomènes chimiques.

6. Dans une batterie, la réaction spontanée libère l’énergie qui est utilisée pour entraîner
l’écoulement des charges électriques. En inversant le sens du courant au moyen d’une
source de tension, on peut inverser la réaction chimique et forcer les substances chimiques à
«remonter la pente» du potentiel chimique: c’est le processus de recharge de la batterie.

6.3 QUANTITÉ DE MATIÈRE ET PARTICULES

Les systèmes physiques ont certaines propriétés fondamentales: un corps à une masse,
de l’entropie, de la quantité de mouvement s’il se déplace, éventuellement de la charge
électrique, pour ne citer que les plus importantes. Dans cette section, nous allons pré-
ciser les particularité de la grandeur extensive que nous avons rencontrée dans les deux
sections précédentes, la quantité de matière. Il ne s’agit pas du tout d’une notion de
remplacement pour la masse, ou d’une grandeur pratique pour les chimistes. Tout sys-
tème physique, qu’il soit de la matière ou de la lumière, a cette propriété, et il y a des
phénomènes physiques qui sont associés à son existence.

6.3.1 Substances, réactions chimiques et électrolyse

Substances de base. Les objets qui nous entourent sont constitués de parties assem-
blées. La description de la composition d’un objet au moyen de ses constituants dé-
pendra du point de vue, de ce que sont les briques fondamentales qui intéressent
l’observateur. Ainsi, la composition de pâte à pain pourra être décrite ainsi:

où les indices représentent les quantité de chaque substance mesurées en tasses. Le
granit pourrait être décrit par

où A, B et C représentent les différents minéraux qui constituent la roche et les nom-
bres ν1, ν2, et ν3 mesurent le volume relatif de chacun des constituants. Les chimistes
utilisent les éléments en tant que briques fondamentales, ce qui implique que les subs-
tances chimiques, telles que l’alcool éthylique, sont écrites sous la forme

farine eau levure sel3 2 0 1 0 05. .

 A B Cν ν ν1 2 3 …

C H OH2 5
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où les lettres représentent les éléments et les nombres la quantité de matière de chacun
des éléments. Pour les physiciens, finalement, une unité de substance appelée hélium-
4 pourrait être écrit en tant que

où p, n et e représentent les «substances» appelées protons, neutrons et électrons. En
fait, il s’agit ici de particules.

Réactions chimiques et quantité de matière. L’observation de la section 6.2.1 nous
a révélé que les substances chimiques pures ne réagissent complètement les unes avec
les autres que si leurs quantités respectent des rapports particuliers qui ne peuvent être
exprimés au moyen de la masse. Pour tenir compte de ce fait, on introduit une nouvelle
grandeur extensive.

La masse d’une mole de quantité de matière est la masse molaire M de la substance;
elle est définie par:

(6.9)

Ces observations et relations sont valables pour tous les éléments et les substances chi-
miquement pures qui sont toujours des proportions constantes, multiples des quantités
de constituants participant à des réactions complètes. Une réaction complète est notre
manière de définir ce que nous entendons par quantités de matière équivalentes au sens
chimique du terme.

Électrolyse. La combinaison de réactions chimiques avec l’électricité fournit une
autre information sur la propriété mesurée en termes de quantité de matière. Lors
d’une électrolyse, le courant électrique passant à travers un fluide conducteur est res-
ponsable de transformations chimiques. Considérons l’électrolyse de chlorure de po-
tassium (KCl) et de chlorure de cuivre (CuCl2). Il se révèle qu’il faut une certaine
quantité de charge électrique passant à travers le sel fondu de KCl pour déposer une
mole de potassium sur la cathode, alors qu’il faut exactement le double de cette charge
pour y déposer une mole de cuivre. Les réactions entrant en jeu sont:

pour le chlorure de potassium et

p n e2 2 2

Lors de processus liés au transport de substances ou à des réactions entre
elles, la grandeur extensive qui sert à la description des phénomènes est
la quantité de matière n qui se mesure en mole (symbole: mol). Dans un
modèle microscopique des substances, la quantité de matière correspond
au nombre de particules N donné par:

(6.8)

Le nombre NA est le nombre d’AVOGADRO. Sa valeur est fixée par le Sys-
tème international: NA = 6.022 140 76 ·1023 mol-1.

N N n= A

m Mn=

K K

Cl Cl

+

-
2

+ →

→ +

e

e2 2



250 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 6   TRANSPORT DE SUBSTANCES ET RÉACTIONS

pour l’électrolyse du chlorure de cuivre. Ici, e représente à nouveau la «substance» ap-
pelée électron. Ces phénomènes peuvent être résumés au moyen de la relation

(6.10)

Pour l’électrolyse d’une quantité de matière n, il faut une quantité de charge Q qui est
un (petit) multiple entier z de la constante de FARADAY F = 96485 C mol-1.

Ce résultat montre une fois encore que c’est la quantité de matière qui peut être mise
dans une relation simple avec une quantité fixe de charge électrique, et non la masse.

EXEMPLE 6.1. Électrolyse du chlorure de cuivre.

Un courant électrique d’intensité égale à 10 A circule durant une heure à travers du chlorure de
cuivre fondu. Quelle est la quantité de cuivre déposée sur la cathode?

SOLUTION: La quantité de charge traversant la substance fondue est:

En posant, pour les ions de cuivre, z = 2 dans l’équation (6.10), nous obtenons:

ce qui correspond à 11.9 g de cuivre.

B

6.3.2 Quantité de matière et particules

La quantité de matière d’une substance est liée au nombre de particules qui la compo-
sent par l’intermédiaire du nombre d’AVOGADRO NA, relation exprimée par
l’équation (6.8).

Considérons, à titre d’exemple, une électrolyse. Le modèle microscopique de la char-
ge, avec la charge élémentaire e =1.6022·10-19 C, nous permet d’affirmer qu’il faut un
nombre entier de charges élémentaires pour chaque particule de matière déposée sur
l’une des électrodes. Si nous désignons par τ un atome de quantité de matière, c’est-
à-dire la quantité de matière élémentaire, alors l’équation (6.10) peut être transformée
en

(6.11)

Pour z = 1, nous obtenons

(6.12)

pour la plus petite quantité de matière possible (quantum de matière). Son inverse est
le nombre d’AVOGADRO, soit le nombre de particules par mole de quantité de matière.

Cu Cu

Cl Cl

2+

-
2

+ →

→ +

2

2 2

e

e

  Q z= F n
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6.3.3 Grandeurs molaires et mesures de concentration

Les substances peuvent se diluer dans l’espace ou dans d’autres substances, elles peu-
vent paraître seules ou avec d’autres substances. Pour tenir compte des quantités de
chacune d’elles, nous utilisons des densités, grandeurs molaires et diverses mesures de
concentration, particulièrement en présence de solutions (soluté dissous dans un sol-
vant). Nous allons énumérer quelques-unes des mesures utiles pour nos besoins.

Grandeurs molaires. Des grandeurs qui sont accumulées dans des matériaux et celles
semblables à un fluide, telles que l’entropie, la masse, la charge, le volume, peuvent
être mises en relation avec la quantité de matière du corps. Pour indiquer une grandeur
molaire, nous surlignerons son symbole écrit en lettre minuscule. L’entropie molaire
et le volume molaire sont définis par:

(6.13)

La masse molaire est définie par l’équation (6.9).

Les mesures de concentration sont utilisées pour exprimer de manière indirecte les
quantités de matière d’une espèce particulière, le soluté, dissoute dans un solvant. Il
existe beaucoup de mesures appelées concentration.

Fraction massique et fraction molaire. La fraction massique ws d’un soluté dans une
solution est définie en tant que masse du soluté divisée par la masse totale de la solu-
tion (solvant f et soluté s):

(6.14)

Cette définition peut également être appliquée au solvant. La fraction molaire est dé-
finie de manière analogue:

(6.15)

Fraction masse-volume. C’est le rapport de la masse du soluté et du volume total de
la solution (à ne pas confondre avec la masse volumique du soluté):

(6.16)

Concentration molaire (molarité), molalité et molinité. La concentration molaire est
la mesure standard de la concentration utilisée le plus souvent dans ce qui va suivre.
Elle est définie comme le quotient de la quantité de matière dissoute (le soluté s) et du
volume total de la solution:

(6.17)

L’unité SI de la molarité est 1 mol m-3. La valeur utilisée communément par les chi-
mistes est 1 mol L-1, souvent abrégée par M. Par exemple, si un litre d’une solution
contient 0.1 mol de soluté, on dira qu’il s’agit d’une solution 0.1 M. Finalement, les
termes molalité et molinité désignent les rapports de la quantité de matière de la subs-
tance et de la masse du solvant (molalité, symbole mB), ou de la masse totale de la so-
lution (molinité, pas de symbole); les deux se mesurent en mol kg-1.
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EXEMPLE 6.2. Sel de cuisine dans l’eau.

On dissout 100 g de sel de cuisine (NaCl) dans 1.0 L d’eau. (a) Déterminez la molalité et la mo-
linité de la solution. (b) Quelle est la concentration (molaire)? (c) Quelles sont les fractions mas-
sique et molaire?

SOLUTION: Le sel de cuisine a une masse molaire de 0.0585 kg mol-1. Il y a donc nsel = 0.100
kg / 0.0585 kg mol-1 = 1.71 mol de sel. Pour l’eau, nous avons neau = 1.0 kg / 0.018 kg mol-1 =
55.5 mol.

(a) La molalité est mB = 1.71 mol / 1.0 kg = 1.71 mol kg-1. La molinité vaut 1.71 mol / 1.100
kg = 1.56 mol kg-1.

(b) Sur la base de ce que nous savons, nous ne pouvons pas déterminer exactement la concen-
tration molaire, vu que nous ne savons pas ce qui advient du volume de la solution lorsque l’on
dissout 100 g de sel dans 1.0 L d’eau. En admettant que le volume ne varie pas fortement, nous
pouvons estimer: ≈ 1.71 mol / 1.0 L = 1.71 mol L-1 = 1.71 M.

(c) w = 0.100 kg / 1.100 kg = 0.0909; = 1.71 mol / (55.5 mol + 1.71 mol) = 0.0299.

B

6.3.4 Bilan de quantité de matière

Vu que la quantité de matière est, parmi les grandeurs extensives que nous avons in-
troduites jusqu’ici, l’une des plus facilement imaginables, il sera relativement simple
d’énoncer l’équation de bilan qui la concerne.

Équation de bilan pour les processus de transport. Si on n’autorise que des pro-
cessus de transport, les variations de la quantité de matière n accumulée dans un sys-
tème ne peuvent être dues qu’à des flux de quantité de matière In. Il existe deux types
de transport de substances, par diffusion lorsque les substances migrent à travers un
substrat (solution, gel, solide) , ou par convection, c’est-à-dire transportée par un fluide
qui pénètre dans le système ou le quitte. La diffusion est un flux par conduction.

Lors de processus de transport de substances de ou vers un système, le taux de varia-
tion de la quantité de matière de chacune des substances (désignée par x) est égal à:

(6.18)

Les courants de quantité de matière se mesurent en mol s-1.

Équation de bilan pour les réactions. Les réactions entraînent la destruction (dispa-
rition) ou la production (apparition) d’espèces chimiques. Il en va ainsi lors de la réac-
tion de l’hydrogène et de l’oxygène pour former de l’eau : les deux éléments
disparaissent, l’eau apparaît. Un processus de production (ou destruction) est décrit en
termes de taux de production Πn, de manière analogue au taux de production d’entro-
pie dans les processus thermiques. Le taux de variation de la quantité d’une certaine
substance x est déterminé par la somme de tous les taux de production:

(6.19)

Le taux de production se mesure également en mol s-1.

c

x

 �n I In nx x,cond x,conv= +, ,

 �n nx x,net= Π ,
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Relations entre les taux de production dans une réaction. Une réaction qui épuise
tous les réactants peut être écrite sous forme d’équations contenant les coefficients stœ-
chiométriques νι . Ces coefficients expriment la «conservation des éléments» qui im-
pose des restrictions aux taux de production et de destruction concernant les
différentes espèces qui réagissent. Si nous écrivons la réaction sous la forme:

(6.21)

cela signifie que durant la réaction, ν1 unités de A1, ν2 unités de A2, etc., sont consom-
mées alors que υ1 unités de B1, υ2 unités de B2, etc. sont produites. Ainsi, la relation
entre le taux de destruction des A et le taux de production des B doit être

(6.22)

EXEMPLE 6.3. Combustion du glucose.

La combustion du glucose (C6H12O6) produit du dioxyde de carbone et de l’eau. (a) Écrivez
l’équation de la réaction en attribuant au glucose un coefficient stœchiométrique égal à l’unité.
(b) Mettez en relation les taux de production respectifs.

SOLUTION: (a) En comptant le nombre d’atomes de chaque élément apparaissant des deux cô-
tés de l’équation de réaction, nous pouvons déterminer les coefficients stœchiométriques:

(b) En vertu de l’équation (6.22), les rapports des taux de production sont:

Dans cette relation, les taux des réactifs sont affectés d’un signe positif, ceux des produits d’un
signe négatif. Mais en fait, les taux de production du glucose et de l’oxygène sont négatifs, puis-
que ces deux réactifs sont détruits, et ceux du dioxyde de carbone et de l’eau sont positifs, puis-
que ces deux substances sont créées.

B

1. Considérez une certaine quantité d’hydrogène contenu dans un réci-
pient, à une certaine température. Qu’advient-il de la pression si on
remplace l’hydrogène par la même masse d’oxygène?

Équation de bilan généralisée. Si aussi bien les transports que les réac-
tions participent à un processus, l’équation de bilan de quantité de matière
pour une substance X prend en compte les deux contributions (fig. 6.11):

(6.20) �n I In n nx x,cond x,conv x,net= + +, , ,Π

FIGURE 6.11 Représentation gra-
phique du bilan généralisé de quan-
tité de matière. Les substances
peuvent être transportées et égale-
ment être produites ou détruites.
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2. Pourquoi une des substances n’est-elle pas complètement utilisée lorsque l’on fait réagir
1 kg d’hydrogène gazeux avec 1 kg d’oxygène gazeux? Laquelle des deux substances n’est
utilisée que partiellement?

3. On introduit 1 kg d’hydrogène moléculaire H2 et 10 kg d’oxygène moléculaire O2 dans un
réacteur. Quelle quantité de chacune des substances sera utilisée dans la réaction produisant
de l’eau? Quelle sera la quantité d’eau si on admet une réaction complète?

4. Quelle est la fraction massique de 100 g de sucre que l’on dissout dans 1 L d’eau?

5. Calculez les masses d’une mole des gaz néon et oxygène, de sel de table, de glucose.

6. L’eau de mer a une concentration de sel de 35 parts pour mille. À combien de moles par
litre cela correspond-il?

7. Combien de particules passent dans la solution lorsque l’on dissout 10 g de sel de table?

8. La masse molaire de l’eau est 0.018 kg mol-1. Quel est le volume molaire de l’eau?

9. On ajoute du sucre dans un bioréacteur au rythme de 2 mol min-1. On constate qu’il aug-
mente au taux de 0.70 mol min-1. Quel est le taux de production ou de consommation de
sucre?

10.On dissout 5 g de glucose dans 2 litres d’eau. Quelle est la concentration (molaire) de la
solution?

1. Comme l’oxygène a une masse molaire huit fois plus grande que celle
de l’hydrogène, la quantité de matière est plus faible, ce qui entraîne
une diminution de la pression.

2. Pour que la réaction soit complète, il faut que le nombre de moles
d’hydrogène soit le double de celui d’oxygène. Comme la masse
molaire de l’oxygène est approximativement 16 fois supérieure à celle
de l’hydrogène, il n’y a qu’un huitième de la masse d’hydrogène qui est
utilisée lors de la réaction.

3. Les quantité correspondent respectivement à 500 mol et 625 mol d’hydrogène et d’oxy-
gène. Les 500 mol d’hydrogène vont réagir avec 250 mol d’oxygène pour produire 500 mol
d’eau. Les 375 mol d’oxygène superflu correspondent à 6 kg.

4.

5. Une mole de substance contient toujours le même nombre de «briques élémentaires»,
quelle que soit la substance. C’est le nombre d’AVOGADRO. Connaissant la composition
d’une telle brique élémentaire, il faut en rechercher la masse atomique dans le tableau
périodique des éléments, et la multiplier par l’équivalent en kilogrammes de l’unité de
masse atomique (muma = 1.66054·10-27 kg) et par le nombre d’AVOGADRO.

MNe = 20.18·1.66054·10-27 kg·6.022·1023 mol-1 = 0.0202 kg mol-1.
MO2 = 2·16.00·1.66054·10-27 kg·6.022·1023 mol-1 = 0.0320 kg mol-1.
MNaCl = (22.99 + 35.45)·1.66054·10-27 kg·6.022·1023 mol-1 = 0.0584 kg mol-1.
Mglucose = (6·12.01+12·1.01+6·16.00)·1.66054·10-27 kg·6.022·1023 mol-1 = 0.1802 kg mol-1.

6. La concentration correspond à 35 g de sel par kilogramme de solution. Nous convertissons
la masse de sel en quantité de matière en la divisant par la masse molaire (Question 1) pour
obtenir 0.6 mol. Le volume de la solution étant égal à un litre, la concentration vaut 0.6 M.

7. Comme le sel se dissocie lorsqu’il se dissout dans l’eau, il faut doubler le nombre de
«briques élémentaires». Nous obtenons ainsi:

8.
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9.

10.

6.4 POTENTIEL CHIMIQUE ET FORCE D’ENTRAÎNEMENT CHIMIQUE

L’objectif de cette section est de formaliser le concept de potentiel chimique, de l’il-
lustrer par des exemples et de montrer de quels facteurs il dépend.

6.4.1 Force d’entraînement de conversions chimiques simples

Dans les exemples des sections 6.1 et 6.2, nous avons à chaque fois pu interpréter les
observations en postulant l’existence d’une force d’entraînement responsable de:

• la décomposition de la murexide,

• la diffusion de sel à travers une membrane,

• la diffusion de sel dans l’eau,

• la migration, la diffusion du toluène de l’eau vers l’air,

• la transformation du glucose,

• le phénomène d’osmose dans les cœurs de pommes de terre,

• et d’autres phénomènes tels que la congélation ou la fusion de l’eau.

� �n I n In n n n= + ⇒ = − = −Π Π mol min-10 70 2 0. . mmol min mol min-1 -1= −1 3.

c
n

V

m M

V
= = =

solution solution
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mol L M
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-1

⋅
= =

2
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La grandeur qui permet de mesurer la tendance des substances à réagir
avec d’autres substances, à migrer d’une région vers une autre, ou à se
transformer, c’est-à-dire à changer d’état d’agrégation, est le potentiel
chimique µ. C’est, pour les processus envisagés, la grandeur intensive
analogue à la pression, au potentiel électrique, au potentiel gravitationnel
ou à la température (fig. 6.12). Les différences de potentiel chimique agis-
sent comme force d’entraînement des processus chimiques, comme une
tension chimique.

Système

Potentiel
chimique

Flux de quantité
de matière

Potentiel
chimique

Système

Potentiels
chimiques

Π n

a. b. FIGURE 6.12 Diagrammes de
processus: (a) pour le flux de quan-
tité de matière; (b) pour la destruc-
tion et la production d’espèces. Le
potentiel chimique µ est assimilable
au niveau de la substance. Les diffé-
rences de potentiels chimiques sont
les forces d’entraînement du trans-
port d’espèces. µR et µP représen-
tent respectivement les potentiels
chimiques des réactants et des
produits.
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Chaque substance possède un potentiel chimique qui peut dépendre d’un certain nom-
bre de facteurs tels que la température, la pression, la concentration, le milieu, etc. Le
processus de migration d’une espèce est envisagé comme l’écoulement de points de
haut potentiel chimique vers ceux où il est plus bas (fig. 6.12a), alors que la conversion
d’une substance A en une substance B est visualisée en tant que disparition de la pre-
mière à un haut niveau du potentiel et l’apparition de la seconde à un niveau plus bas
(fig. 6.12b).

Le potentiel chimique se mesure en J mol-1. Comme il s’agit de la grandeur intensive
fondamentale du domaine étudié, nous lui attribuons une unité particulière, le gibbs,
que nous abrégeons par G.

Transformations simples. Pour donner une description plus formelle de la force
d’entraînement chimique, considérons les transformations simples d’une substance
unique en une autre espèce unique:

(6.23)

Les exemples de telles conversions sont la fusion de la glace, la mutation de glucose,
la diffusion d’un colorant d’un point vers un autre, la dissolution du sucre dans l’eau,
l’évaporation du mercure dans l’air, la désintégration radioactive (sans prise en comp-
te des particules et photons émis), etc. Nous désignons par µA et µB les potentiels chi-
miques des substances A et B ou des substances dans des états ou des endroits A et B.
Dans ce cas, la différence de potentiel chimique pour la transformation est

(6.24)

Tension ou affinité chimique. En analogie à ce qui se fait en électricité, où l’opposé
de la différence de potentiel est la tension, nous introduisons l’opposé de la différence
de potentiel chimique et le nommons tension chimique A :

(6.25)

Comme nous l’avons déjà signalé, cette nouvelle grandeur correspond à ce que les chi-
mistes appellent l’affinité chimique, mais pour maintenir l’analogie avec les autres do-
maines, particulièrement avec l’électricité, nous continuerons à la considérer comme
une tension. Une valeur positive de cette grandeur est responsable de conversions chi-
miques spontanées, alors qu’une transformation non spontanée, forcée, est associée à
une tension négative (fig. 6.13).

Équilibre chimique. Nous avons vu que certaines transformations, aussi bien les réac-
tions que les transports, peuvent s’arrêter. Lorsqu’elles s’arrêtent, c’est le signe que
l’équilibre a été atteint, comme l’équilibre de vases communicants, celui des poten-
tiels en électricité, celui des températures pour des corps en contact thermique. Pour
des réactions chimiques, la condition d’équilibre est

(6.26)

Les processus peuvent démarrer de part et d’autre de l’équilibre. Des réactions peu-
vent être forcées à quitter l’état d’équilibre par une «intervention extérieure», com-
me c’est le cas d’une batterie qui peut être rechargée par l’application d’une tension
extérieure.

A B→

∆µ µ µ[ ] = −
→A B B A

 

A

A

> 0 : transformation

spontanée

<< 0 : transformation

contrainte

FIGURE 6.13 Le signe de la tension
chimique détermine si une réaction
est spontanée ou contrainte.

 AA B A B→ →
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 AA B A B→ →= ⇔ =0 0∆µ
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6.4.2 Quelques exemples

Illustrons le nouveau concept au moyen de quelques exemples concrets. Les valeurs
utilisées seront introduites et justifiées à la section 6.4.4.

Désintégration radioactive. Le strontium-90 se désintègre en yttrium-90, qui lui-
même se désintègre en zirconium-90 (fig. 6.14). Pourquoi les désintégrations se dé-
roulent-elles selon cette séquence?

Les valeurs absolues du potentiel chimique de quelques isotopes du tableau 6.1, déter-
minées au moyen de l’équation (6.32), à la section 6.4.4, nous permettent de calculer
les différences qui sont de –52·109 G pour la désintégration du strontium vers l’yttrium
et de -222·109 G pour celle de l’yttrium vers le zirconium. La chute de potentiel envi-
ron quatre fois supérieure pour la seconde désintégration permet de supposer que cette
désintégration se déroule plus rapidement que la première, ce que l’on observe. Mais
les demi-vies sont respectivement 28.8 années et 2.67 jours, d’autres facteurs doivent
jouer un rôle important dans la vitesse de réaction. Les valeurs absolues du tableau
sont déterminées pour la masse molaire de la substance, elles correspondent donc à
l’énergie molaire.

Réactions chimiques. L’utilisation des potentiels chimiques absolus nécessiterait de
connaître leur valeur avec une précision d’au moins 12 chiffres significatifs, ce qui
donnerait lieu à des calculs fastidieux. Les chimistes ont choisi une voie plus simple,
celle d’attribuer à la configuration stable d’une substance une valeur nulle du poten-
tiel chimique et de déterminer les valeurs des autres configurations relativement à cet-
te valeur de base. Nous reviendrons à la section 6.4.4 sur la manière dont sont
déterminés les potentiels chimiques. Le tableau 6.3 en donne les valeurs pour quel-
ques substances.

Considérons la formation de l’eau à partir de l’hydrogène et de l’oxygène (fig. 6.15).
Les potentiels chimiques des deux molécules H2 et O2 sont donc nuls en vertu de la
convention évoquée ci-dessus. Celui de l’eau est de -237 kG. La réaction se déroule
donc de manière spontanée. Pour que ce soit le cas, la condition nécessaire est que la
variation du potentiel chimique soit négative. Une réaction spontanée se déroule «en
descendant la pente» du potentiel chimique.

Changement de phase. La condensation de la vapeur d’eau ou la formation de glace
illustrent ce type de transformation qui fait passer une substance d’une forme particu-
lière à une autre forme distincte de la première. À température ambiante, l’eau liquide
a un potentiel chimique plus bas que la glace, ce qui entraîne la fusion de la glace. Les
valeurs du tableau 6.2 confirment cette interprétation. Par contre, la situation est inver-
sée pour les basses températures: en dessous du point de congélation, l’eau se trans-
forme spontanément en glace (fig. 6.16).

TABLEAU 6.1 Potentiels chimiques absolus 

Isotope M / kg mol-1 µµµµ0 / kG

1H 0.001007825 0.0905788·1012

4He 0.004002603 0.359736·1012

90Sr 0.08990774 8.080505·1012

90Y 0.08990716 8.080453·1012

90Zr 0.08990470 8.080231·1012

28.78 y

64.1 h

stable

38

90 Sr

40

90 Zr

40

90 Y

FIGURE 6.14 Schéma de désinté-
gration du Sr-90. Les valeurs indi-
quées sur les niveaux énergétiques
sont les demi-vies.

 
H O H O2 2

0 kG

2

-237 kG

+ →0 5.� ����� ����� �

FIGURE 6.15 La réaction qui forme
de l’eau à partir des éléments est
spontanée: elle correspond à une
diminution (variation négative) du
potentiel chimique. La réaction
inverse ne peut pas se dérouler
spontanément.

 

T = 298 K

H O H O2 solide

-236.59 kG

2 liqui� ���� ���� → dde

-237.18 kG

2 solide

-232 k

= 198 K

H O

� ���� ����

T

GG

2 liquide

-230 kG

H O� ���� ���� � ���� ����
←

FIGURE 6.16 L’eau passe sponta-
nément d’une phase ayant un certain
potentiel à une phase dont le poten-
tiel est moins élevé. Suivant la tem-
pérature, le changement de phase
peut être inversé.
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6.4.3 Dépendance du potentiel chimique d’autres facteurs

L’exemple des changements de phase de l’eau nous amène à nous rendre compte que
le potentiel chimique d’une substance dépend de la température, mais également
d’autres paramètres tels que la pression, la concentration et d’autres encore.

Dépendance de la température. Pour des plages de température qui ne sont pas trop
étendues, sa dépendance peut être décrite au moyen d’une approximation linéaire:

(6.27)

est le coefficient de température du potentiel chimique. Il est indiqué dans le
tableau 6.2 pour les trois phases de l’eau aux conditions standard (P0 = 101 325 Pa,
T0 = 298.15 K), que nous signalons par un zéro en exposant. Ce coefficient a les di-
mensions de l’entropie molaire. Il peut être interprété en tant qu’entropie molaire né-
gative de la substance:

(6.28)

Cela signifie que le potentiel chimique décroît avec la température. Cela peut paraître
surprenant à première vue, puisque l’on s’attend plutôt à ce que les transformations
chimiques deviennent plus intenses lorsque la température augmente. Mais il ne faut
pas oublier que la grandeur qui entraîne la réaction est la différence de potentiel
chimique des réactants et des produits; les deux côtés de l’équation de réaction sont
influencés par la température.

EXEMPLE 6.4. Détermination du point de fusion de la glace.

En utilisant les valeurs des potentiels chimiques et des coefficients de température du
tableau 6.2 pour l’eau et la glace, ainsi que l’idée de l’équilibre chimique, trouvez une approxi-
mation du point de fusion de la glace.

SOLUTION: Étant donné que ce changement de phase peut se dérouler dans les deux sens au
point de fusion, les potentiels chimiques des deux phases doivent être égaux:

Nous exprimons les potentiels chimiques de chacune des substances au moyen des potentiels
standard et de la prise en compte de l’effet de la température selon la relation (6.27):

Nous résolvons l’équation et insérons les valeurs du tableau 6.2 pour trouver:

TABLEAU 6.2 Propriétés de l’eau aux conditions standard.

Phase / kG / G K-1 /µG Pa-1

Glace – 236.59 – 44.77 19.7

Eau liquide – 237.18 – 69.91 18.1

Vapeur d’eau – 228.60 – 188.72 24465

µ 0 α µ
0 βµ

0

µ µ αµT P T P T T, ,0 0 0( ) = ( ) + −( )0 0 0

αµ
0

αµ = −s

µ µglace fusion eau fusionT T( ) ( )=

µ α µ αµ µglace , glace fusion eau , ea

0 0 0 0+ − = +( )T T uu fusion

0 0T T−( )
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Cette valeur ne dépasse que de 1.5°C la valeur mesurée, ce qui est acceptable, vu qu’il ne s’agit
que d’une approximation linéaire.

B

Dépendance de la pression. Nous savons par expérience que l’eau bout à une tem-
pérature plus basse que 100°C en altitude, où la pression est plus basse. Cela signifie
que le potentiel chimique doit dépendre de la pression. Nous pouvons à nouveau uti-
liser une approximation linéaire:

(6.29)

Le facteur est le coefficient de pression du potentiel chimique. Plus loin dans ce
chapitre (section 6.6.4, exemple 6.12), nous montrerons que ce coefficient est égal au
volume molaire de la substance:

(6.30)

EXEMPLE 6.5. Variation du point de fusion de la glace par modification de la pression.

Déterminez de combien la température de fusion de la glace varie si la pression est modifiée.
Pourquoi la température de fusion diminue-t-elle lorsque la pression augmente? Cela est-il vrai
pour tous les types de substances?

SOLUTION: Les arguments sont les mêmes que dans l’exemple 6.4, à la différence près que
nous devons prendre en compte l’influence de la pression:

Si nous choisissons la température de fusion de la glace (à pression normale P0) comme tempé-
rature de référence T0, les potentiels de référence de la glace et de l’eau sont les mêmes. Donc:

Nous devons insérer les valeurs de ces paramètres à la température de congélation 0°C. Les
coefficients de pression du potentiel chimique, qui correspondent aux volumes molaires respec-
tifs, étant très peu affectés par ce changement de température de référence, nous pouvons re-
prendre les valeur du tableau 6.2. Par contre, nous devons convertir les valeurs des coefficients
de température qui correspondent à l’opposé de l’entropie molaire. Nous utilisons
l’équation (5.32), développée à la section 5.5.6, ainsi que les valeurs du tableau 5.3 pour procé-
der à la conversion:

Pour la glace, nous obtenons:
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et pour l’eau liquide 63.3 Ct mol-1.

Avec ces valeurs, le taux d’abaissement de température est égal à – 7.34·10-8 K Pa-1, ce qui
équivaut à un abaissement de la température de fusion de 0.73 K pour une pression de 100 bar.

Ce résultat remarquable, qui n’est valable que pour l’eau et peut-être pour une ou deux autres
substances, est dû au fait que le coefficient de pression de la glace est plus grand que celui de
l’eau. En effet, la température de fusion augmente généralement avec la pression car, si la phase
solide a une plus grande densité, le volume molaire et le coefficient de pression sont plus petits.

B

Dépendance de la concentration. Il est clair que le potentiel chimique de substances
doit dépendre de leur concentration. Cela devient évident dans les processus de trans-
port où des substances diffusent dans un milieu, mais c’est également visible dans la
mutarotation du glucose (fig. 6.9). Les concentrations des deux espèces évoluent du-
rant la réaction, ce qui entraîne une évolution conjointe de la vitesse de réaction jus-
qu’à ce que l’équilibre soit atteint.

Pour des variations de concentration molaire qui ne sont pas trop importantes, nous
pouvons à nouveau utiliser une approximation linéaire:

(6.31)

Il est intéressant de noter que le coefficient de concentration du potentiel chimique
est le même pour toutes les substances diluées. Il vaut pour des
conditions standard.

6.4.4 Valeurs du potentiel chimique

Comme les potentiels chimiques dépendent de l’environnement, de la température, de
la pression, des concentrations, etc., il existe une foule de méthodes pour obtenir les
valeurs des potentiels chimiques. La théorie permet de relier les mesures à la valeur
que l’on souhaite obtenir. L’exemple 6.13 illustre une manière de déterminer le poten-
tiel chimique de l’eau au moyen de mesures électriques.

Le potentiel chimique est un potentiel absolu, comme le sont la température et la pres-
sion, contrairement aux potentiels associés à la gravité, au mouvement et à l’électrici-
té2. Aux conditions qui règnent sur la Terre, le potentiel chimique d’une espèce est
donné par sa masse (son énergie) divisée par sa quantité de matière:

(6.32)

où c est la vitesse de la lumière. Les valeurs pour quelques isotopes sont données dans
le tableau 6.1. Ces valeurs sont énormes et sont pratiquement indépendantes de la tem-

2. Les potentiels associés à des grandeurs non conservées (entropie et volume) sont absolus.
Si ce n’était pas le cas, les quantités d’énergie associées aux processus de production et/ou
de destruction ne pourraient pas être correctement définies. Les potentiels gravitationnel et
électrique, la vitesse et la vitesse angulaire sont associés aux grandeurs conservées masse,
charge, quantité de mouvement et moment cinétique. Leur niveau de référence (auquel on
associe la valeur nulle) peut être fixé de manière arbitraire.
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pérature et de la pression, sauf dans les conditions extrêmes qui règnent à l’intérieur
des étoiles, on peut donc les considérer comme constantes. Ce fait est à l’origine du
caractère exponentiel de la désintégration radioactive que nous étudierons à la
section 6.8.4.

EXEMPLE 6.6. Énergie libérée lors de la désintégration d’un noyau de 90Sr.

Calculez l’énergie libérée lorsqu’un noyau de 90Sr se désintègre en un noyau de 90Y.

SOLUTION: La valeur absolue du potentiel chimique d’une espèce est approximée, selon
l’équation (6.32), par son énergie totale par unité de quantité de matière. Dans cette approxima-
tion, l’énergie libérée est liée à la variation du potentiel chimique lors de la réaction:

où τ représente l’unité de quantité de matière calculée selon l’équation (6.12). Les valeurs ont
été extraites du tableau 6.1. La valeur obtenue correspond à celle que l’on enregistre lors de la
désintégration.

B

L’utilisation des potentiels absolus se révèle impossible dans la pratique: les différen-
ces des valeurs absolues sont tellement faibles par rapport à ces valeurs absolues qu’il
faudrait en connaître au moins douze chiffres significatifs. Les chimistes ont choisi
une approche différente: ils attribuent une valeur nulle au potentiel chimique de la for-
me la plus stable des éléments du tableau périodique. Par conséquent, les valeurs des
potentiels chimiques de substances composées représentent la différence entre leur va-
leur absolue propre et celles des éléments dont elles sont composées. Ainsi, la réaction

peut être comprise comme

Les réactifs se décomposent en leurs éléments et les produits sont formés à partir de
ces éléments. En calculant ainsi la force d’entraînement des réactions (la tension chi-
mique), il n’est pas nécessaire de connaître les valeurs absolues des potentiels.

Le tableau 6.3 donne les valeurs des potentiels chimiques de quelques substances dont
certaines apparaissent dans ce chapitre. On remarquera que beaucoup de substances
ont un potentiel chimique négatif. Cela signifie qu’elles se forment de manière spon-
tanée à partir de leurs éléments et qu’elles ne se décomposent pas spontanément en
leurs éléments: elles sont stables. Par contre, les substances qui ont un potentiel chi-
mique positif sont difficiles à synthétiser et ont tendance à se décomposer en leurs
éléments.
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TABLEAU 6.3 Potentiels chimiques de quelques substancesa.

a. G. JOB: Chemische Potenziale ausgewählter Stoffe (www.job-stiftung.de).

Formule Substance  / kGb

b. Aux conditions standard: 298.15 K, 101 325 Pa, pur ou 1 mol L-1.

 / G K-1 /µG Pa-1

C (s)c

c. (s) solide, (l) liquide, (g) gazeux, (aq) en solution aqueuse.

Carbone (graphite) 0 – 5.69 5.4

C2H2 (g) Acétylène 209.20 – 200.83

CH4 (g) Méthane – 50.89 – 186.10 24 465

CH4O (l) Méthanol –166.35 – 126.74

C6H12O6 (aq) Glucose – 917.44

C7H8 (g)
C7H8 (l)

Toluène 122.39
110.61

– 319.70
– 219.00

CO (g) Monoxyde de carbone – 137.15 – 197.56

CO2 (g)
CO2 (aq)

Dioxyde de carbone – 394.40
– 385.99

– 213.68
– 113.00

24 465

CaCO3 (s) Carbonate de calcium – 1128.76 – 92.88 36.92

CaC2 (s) Carbure de calcium – 67.78 – 70.29 28.9

Ca(OH)2 (s) Hydroxyde de calcium – 896.76 – 76.15 33.2

Cl– (aq) Ion de chlorure – 131.26 – 56.48 18.0

Cu2+ (aq) Ion cuivrique 65.52 99.58

Fe (s) Fer 0 – 27.32 7.1

Fe2O3 (s) Oxyde de fer – 734.58 – 87.4 30.4

H2 (g) Hydrogène 0 – 131 24 465

H2O (g)
H2O (l)
H2O (s)

Eau – 228.60
– 237.18
– 236.59

– 188.72
– 69.91
– 44.77

24 465
18.1
19.7

Hg (l)

Hf (g)

Mercure 0

31.84

–76.02

–174.87

14.1

24 465

N2 (g) Azote 0 – 191.50 24 465

NH3 (g) Ammoniaque – 16.40 – 192.50

Na+ (aq) Ion sodium – 261.89 – 58.99 – 1.6

NaCl (s) Sel de cuisine – 384.03 – 72.13 27.02

O2 (g)
O2 (aq)

Oxygène 0
16.44

– 205.02 24 465

PbO2 (s) Dioxyde de plomb – 212.42 – 76.57

PbSO4 (s) Sulfate de plomb – 813.20 – 148.57 48.2

SO4
2– (aq) Ion sulfate – 744.63 – 20.08 15.0

SiO2 (s) Dioxyde de silicium – 856.48 – 41.46 22.6

Zn2+ (aq) Ion zinc – 147.03 112.13 -26

µ 0 α µ
0 βµ

0
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1. Comment le processus de destruction ou de production d’une substance
peut-il être utilisé pour justifier le fait que le potentiel chimique est une
grandeur absolue?

2. Lorsque le toluène est présent à des concentrations égales dans l’eau et
dans l’air (fig. 6.8a), dans lequel de ces deux environnements a-t-il le
potentiel chimique le plus élevé? Pourquoi?

3. Vu que, selon l’équation (6.28), les coefficients de température du potentiel chimique de
substances sont négatifs, comment est-il possible qu’une réaction qui n’a pas lieu à tempé-
rature ambiante puisse se dérouler à des températures plus élevées?

4. Pourquoi la force d’entraînement d’une réaction spontanée doit-elle être positive? Y a-t-il
une règle semblable pour d’autres processus, tels que hydrauliques ou électriques?

5. Quel est le lien entre le concept d’équilibre chimique et ceux de potentiel chimique et de
force d’entraînement chimique?

6. Qu’advient-il de la température de vaporisation de l’eau si la pression diminue? Comment
peut-on l’interpréter en termes de potentiel chimique?

7. Quel est le rôle de l’énergie lors de transformations spontanées? Lors de réactions
entraînées? Donnez des exemples de réactions chimiques non spontanées.

8. Quelle est la différence de potentiel associée à la réaction du carbone et de l’oxygène pour
former du dioxyde de carbone?

9. Pourquoi la glace fond-elle à 25°C?

10.L’or peut-il s’oxyder?

11.Est-il possible d’obtenir une solution 1 M de sel?

12.Quelle est la différence de potentiel lors de la combustion de méthane (CH4 + 2 O2 → CO2
+ 2 H2O)?

13.La réaction des gaz hydrogène et oxygène est-elle spontanée, ou se déroule-t-elle plutôt
dans le sens inverse?

14.L’acétylène (C2H2) est produit à partir de carbure de calcium et d’eau (CaC2 + H2O →
Ca(OH)2 +C2H2). Il a un potentiel chimique bien plus élevé que ses constituants. Comment
cela est-il possible?

15.Le sel de table se dissout-il plus facilement à 45°C qu’à 25°C?

16.De combien le point de fusion de la glace change-t-il si l’on augmente la pression à 10 bar?

1. Si le potentiel chimique n’était pas une valeur absolue, la puissance
d’une réaction chimique ne pourrait pas être définie.

2. Le potentiel chimique du toluène est plus élevé dans l’air. Le toluène va
migrer vers l’eau, vu qu’elle en accueille quatre fois plus que l’air à
l’équilibre.

3. Les variations de tous les potentiels doivent être prises en considéra-
tions pour déterminer la différence de potentiel à une température plus élevée.

4. La force d’entraînement est égale à l’opposé de la différence de potentiel, ce qui est égale-
ment le cas de la tension électrique.

5. La différence de potentiel chimique associée à une transformation chimique doit être nulle
à l’équilibre.

6. Le point de vaporisation est abaissé. Le potentiel chimique de l’air diminue.

7. De l’énergie est libérée lors de réactions spontanées, alors qu’elle est utilisée pour entraîner
une réaction non spontanée, telle que la charge d’une batterie.

Q

R
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8. Le potentiel chimique des deux constituants est nul (ils sont dans leur état le plus stable).
La différence de potentiel correspond donc au potentiel chimique du dioxyde de carbone,
soit –394.40 G.

9. Parce que le potentiel chimique de la glace à 25°C est supérieur (moins négatif) à celui de
l’eau à la même température. À cette température (et à cette pression), l’eau «préfère» être
à l’état liquide.

10.Non, car le potentiel chimique de son oxyde (Au2O3) est positif , il vaut 164.0 G, alors que
celui des éléments est nul. La variation du potentiel chimique est positive, ce qui implique
que la réaction ne peut pas se dérouler spontanément.

11.Oui, la consultation du tableau 6.3 permet de calculer que la variation du potentiel chimi-
que est égale à – 9.12 kG.

12.Le tableau 6.3 indique que le potentiel chimique des réactifs est égal à -50.89 kG alors que
celui des produits vaut – 394.40 kG – 2·228.60 kG = – 881.60 kG. La variation du potentiel
chimique est donc de – 800.71 kG.

13.Le potentiel chimique des réactifs est nul, celui de l’eau vaut – 457.60 kG, la réaction est
spontanée et pratiquement à sens unique.

14.En consultant les tables, on trouve que la somme des potentiels chimiques des réactifs est
égale à – 67.78 kG – 237.18 kG = – 304.96 kG, alors que celui de l’acétylène vaut 209.20
kG. Ce qui rend la réaction possible, c’est le fait que le potentiel chimique de l’hydroxyde
de calcium vaut – 896.76 kG, La variation du potentiel chimique est donc de – 382.60 kG,
ce qui rend la réaction possible.

15.Oui. Il faut recalculer les potentiels chimiques respectifs à partir de l’équation (6.27) et des
valeurs du tableau 6.3. La différence de potentiel passe de – 9.12kG à – 9.99 kG.

16.En reprenant les résultats trouvés dans l’exemple 6.5, on trouve que le point de fusion est
abaissé de 0.066 K.

6.5 GAZ PARFAIT ET SOLUTIONS DILUÉES

Dans la section précédente, nous avons exprimé comment le potentiel chimique dé-
pend de la température et de la pression au moyen d’une approximation linéaire, parce
que nous n’avons pas de modèle du comportement des substances par rapport à ces pa-
ramètres. Par contre, après avoir élaboré un modèle du gaz parfait, nous allons pouvoir
exprimer la manière dont son potentiel chimique dépend de la pression à température
constante et étendre les résultats obtenus aux solutions diluées.

6.5.1 Modèle du gaz parfait

À la section 5.2.1, nous avons observé de manière expérimentale que, lorsqu’elle est
suffisamment basse, la température des gaz à volume constant est proportionnelle à la
température, ce qui nous a permis d’introduire le concept de température des gaz par-
faits, dont nous avons démontré qu’elle pouvait être utilisée en tant que température
absolue.

La première mention de cette observation est due à AMONTONS en 1702. Mais d’autres
faits expérimentaux relatifs aux gaz ont été découverts, à savoir:

• BOYLE (1662) et MARIOTTE (1676) ont découvert pratiquement simultané-
ment qu’à température et quantité de matière constantes, le volume d’un gaz
est inversement proportionnel à sa pression (fig. 6.17):
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FIGURE 6.17 Relation entre le vo-
lume et la pression de l’air à tempé-
rature constante. L’air est
emprisonné dans un cylindre avec
un piston de mercure. h est la hau-
teur de la colonne d’air (proportion-
nelle à son volume) et la pression P
est mesurée en cm de la colonne de
mercure. La fonction ajustée aux
points mesurés est l’hyperbole dé-
crite par l’équation (6.33).
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(6.33)

• GAY-LUSSAC énonce en 1802 qu’à pression et quantités de matière constantes,
le volume d’un gaz est proportionnel à sa température:

(6.34)

• AVOGADRO découvre en 1811 qu’à température et pression constantes, le
volume d’un gaz est proportionnel à sa quantité de matière:

(6.35)

Le volume est donc proportionnel au produit de ces grandeurs proportionnelles. La va-
leur du produit kab des coefficients de proportionnalité doit être déterminée par l’ex-
périence. Il s’agit d’une constante universelle, la constante universelle des gaz parfaits
R = 8.314 J K-1 mol-1 = 8.314 G K-1.

6.5.2 Mélanges de gaz 

Très souvent, les substances sont des mélanges de substances pures, ce qui peut en-
gendrer de nouveaux effets. Dans cette section, nous allons examiner des mélanges de
gaz parfaits, ce qui nous permettra d’introduire un certain nombre de concepts utiles
pour la suite.

Fraction molaire. Lors d’un mélange de N substances pures, chacune contribue pour
une part ni à la quantité de matière totale:

(6.37)

La quantité relative

(6.38)

est la fraction molaire du composant i. Il s’agit d’une généralisation de la relation
(6.15). Si Mi représente la masse molaire du ie composant, la masse molaire du mélan-
ge est donnée par:

(6.39)
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Loi des gaz parfaits:

(6.36)

Cette relation est applicable à des gaz réels pour autant qu’ils soient suf-
fisamment dilués (loin du point de liquéfaction), à température suffisam-
ment élevée et à pression basse. Dans des conditions normales ou standard
de température et de pression, ce modèle décrit bien la réalité.
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Pression partielle d’un composant d’un mélange. Si nous envisageons un mélange
de gaz tel que l’air, nous pouvons le traiter comme un gaz parfait. Si nous écrivons
l’équation d’état de cette substance au moyen des quantités de matière de ses consti-
tuants, nous obtenons:

(6.40)

Nous pouvons réécrire le membre de droite de cette relation en utilisant les fractions
molaires:

Le terme

(6.41)

est la pression partielle du composant i. La somme des pressions partielles est égale à
la pression totale du mélange:

(6.42)

Dans un mélange de gaz parfaits, chaque composant se comporte de manière indépen-
dante des autres, remplissant le volume total V à la température T du mélange, et cha-
que constituant est régi par la loi des gaz parfaits:

(6.43)

La composition de l’air sec donnée dans le tableau 6.4 va nous permettre d’illustrer
ces notions.

EXEMPLE 6.7. Quelques particularités de l’atmosphère terrestre.

Le tableau 6.4 énumère les fractions massiques des composants les plus importants de l’atmos-
phère sèche. (a) Déterminez ou recherchez les masses molaires des substances apparaissant
dans le tableau et calculez la masse molaire du mélange de gaz constituant l’air atmosphérique.
(b) Déterminez la fraction volumique de ces composants et comparez le résultat obtenu pour le
dioxyde de carbone avec le graphique de la figure 6.18. (c) Déterminez les fractions molaires

TABLEAU 6.4 Composition de l’atmosphère sèche.

Gaz Symbole Fraction massique

Azote N2 0.7552

Oxygène O2 0.2314

Argon Ar 0.0128

Dioxyde de carbone CO2 0.00058

Néon Ne 0.000013
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des gaz apparaissant dans le tableau. (d) Considérez 1.0 m3 d’air à une pression de 0.97 bar et
une température de 20°C; quelles sont les pressions partielles des constituants? Votre réponse
dépend-elle du volume considéré? (e) Calculez la masse de l’atmosphère de la Terre. (f) Déter-
minez les quantités de matière des gaz mentionnés dans le tableau, ainsi que le masse de dioxyde
de carbone dans l’atmosphère. (g) Quelle quantité de dioxyde de carbone y avait-il dans l’at-
mosphère en 1750 et en 2005? Quel a été le taux de variation de la quantité de matière et de la
masse du dioxyde de carbone dans l’atmosphère? (h) À partir de la variation saisonnière du
dioxyde de carbone (fig. 6.19), déterminez quelle quantité est liée par la biomasse en une année.
(i) On peut lire qu’en 1980, le taux de production de carbone (pas de dioxyde de carbone) par
combustion de carburants fossiles était d’environ 6000 millions de tonnes par année. Comment
cela peut-il être comparé avec le taux de croissance du dioxyde de carbone dans l’atmosphère?

SOLUTION: (a) Les masses molaires, dans l’ordre des substances donné par le tableau 6.4, sont
respectivement de 28.0134·10-3 kg mol-1, 31.999·10-3 kg mol-1, 39.948·10-3 kg mol-1,
44.010·10-3 kg mol-1, 20.1804·10-3 kg mol-1, Comme nous n’avons pas tous les composants de
l’air, nous devons adapter l’équation (6.39):

où les wi sont les fractions massiques respectives. L’introduction des valeurs des masses molai-
res permet de trouver que:

(b) Étant donné que la même quantité de matière gazeuse occupe le même volume, les fractions
volumiques et molaires sont égales. On obtient la fraction molaire (et la fraction volumique) de
la substance i en multipliant par sa fraction massique le quotient de la masse molaire de l’air et
de sa masse molaire:

À partir des données, on trouve dans l’ordre du tableau 6.4, les valeurs 0.7844, 0.2104, 0.00932,
0.000383 et 0.000019.

(c) Les fractions molaires ont été calculées en (b).

(d) La pression totale de 0.97 bar est la somme des pressions partielles, qui sont, en vertu de
l’équation (6.41), le produit de cette pression et de la fraction molaire: on trouve ainsi, à nou-
veau dans l’ordre du tableau 6.4, les valeurs 761 mbar, 204 mbar, 9 mbar, 372 µbar, 18 µbar.

(e) La pression de l’atmosphère au niveau du sol est due au poids de la masse d’air qui la cons-
titue. Ainsi:

(f) Nous obtenons les quantités de matière respectives en divisant la part massique de la masse
totale de l’air par la masse molaire:

La répartition, dans l’ordre du tableau, est: 142.3·1018 mol, 38.2·1018 mol, 1.7·1018 mol,
69.6·1015 mol, 3.4·1015 mol.

320

325

330

335

340

1970 1972 1974 1976 1978 1980

C
O

2 
C

on
ce

nt
ra

tio
n 

/ p
pm

Time / a

Atmospheric CO2

FIGURE 6.19 Évolution saisonnière
de la concentration de dioxyde de
carbone (en ppmv) dans l’atmos-
phère terrestre entre 1970 et 1980.

M

w M

w

i i

i

i

i

air = =

=

∑

∑
1

5

1

5

M air

-1kg mol= ⋅ −29 098 10 3.

x w
M

M
i i

i

= air

m
P A

g
air

atm Terre
Pa m

= =
⋅ ⋅ ⋅( )101325 4 6 378 106 2

π .

99 81
5 28 1018

.
.

N m
kg

-2
= ⋅

n
w M

M
i

i

i

= air



268 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 6   TRANSPORT DE SUBSTANCES ET RÉACTIONS

Nous obtenons la masse du dioxyde de carbone en multipliant la masse totale par sa fraction
massique, ce qui donne 3.06·1015 kg.

(g) Les valeurs pour les années envisagées sont 278 ppmv et 382 ppmv, que nous convertissons
en fractions massiques en les multipliant par le quotient des masses molaires du dioxyde de car-
bone et de l’air, soit 1.51, ce qui donne 420 ppmm et 578 ppmm (parts par million en masse).
De la même manière qu’au point (f), nous trouvons respectivement 2.22·1015 kg et 3.05·1015 kg.

En divisant la différence des deux valeurs par les 255 années écoulées, nous obtenons un taux
de variation moyen de 3.26·1012 kg a-1, ce qui correspond à 74.1·1012 mol a-1.

(h) En consultant la figure 6.19, nous observons que l’apport moyen annuel de dioxyde de car-
bone est d’approximativement de 7 ppmv, alors que la part liée par la biomasse est d’approxi-
mativement 6 ppmv, soit 9.1 ppmm, ce qui équivaut à 48.1·1012 kg de dioxyde de carbone liés
par l’assimilation chlorophyllienne.

(i) Nous obtenons la masse de dioxyde de carbone produite par combustion en multipliant la
masse du carbone par le quotient des masses molaires, soit 44/12, ce qui donne 22.0·1012 kg. À
partir de là , nous pouvons calculer un taux de croissance de 1.2 ppmv a-1, ce qui correspond à
1.8 ppmm a-1, soit 9.50·1012 kg a-1. Cette valeur correspond à moins de la moitié de la produc-
tion annuelle de dioxyde de carbone. La différence est essentiellement due à l’absorption de ce
gaz par les océans.

B

6.5.3 Potentiel chimique du gaz parfait

Pour déterminer comment le potentiel chimique d’un tel gaz dépend de la pression (à
température constante), nous réécrivons l’équation (6.29) de manière différente:

Si nous remplaçons βµ par le volume molaire, en vertu de l’équation (6.30), et que
nous exprimons ce volume à partir de l’équation (6.43), nous obtenons:

Nous effectuons le passage à la limite de variations infinitésimales de chacune des
deux grandeurs et intégrons:

ce qui donne:

(6.44)

Cette relation donne le potentiel chimique du gaz parfait à température constante. Elle
donne des approximations acceptables dans un large domaine de pressions allant de
proches de zéro à dix fois supérieures à la pression atmosphérique. Elle va nous servir
pour décrire le comportement des solutions diluées.

6.5.4 Solutions diluées

Lorsqu’elles sont dissoutes dans des fluides, les substances ont tendance à se compor-
ter comme un gaz parfait, pour autant que la concentration du soluté soit suffisamment
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faible (inférieure à 0.1 M pour des substances neutres, inférieure à 0.001 M pour des
ions). Dans ce cas, sa pression est liée à la température absolue de la même manière
que celle du gaz parfait:

(6.45)

Cette relation est confirmée par les observations qui révèlent également qu’elle ne dé-
pend pas de l’espèce de la substance dissoute: il peut s’agir de sel, de macromolécules
ou même de particules macroscopiques.

À la section 6.2.6, pour comprendre la variation du poids des cœurs de pommes de ter-
re, nous avons supposé que la présence du soluté diminue la pression du solvant:

(6.46)

où Pf,0 représente la pression du solvant pur (fluide sans aucun soluté). Les termes Pf
et Ps de l’équation (6.46) sont des pressions partielles, telles que celles que nous avons
introduites par l’équation (6.41). Elles correspondent aux pressions que chacune des
deux composantes exercerait si elle occupait tout le volume à disposition.

Une des manifestations de l’influence d’un soluté sur le solvant est le phénomène d’os-
mose. Lorsque deux cellules contenant l’une un solvant pur, l’autre une solution, sont
séparées par une membrane semi-perméable (perméable uniquement pour le solvant),
le solvant est «attiré» dans la solution pour la diluer. La conséquence est que le niveau
de fluide augmente dans la cellule qui contient la solution (fig. 6.20). La différence de
pression indiquée par les niveaux est la pression osmotique du soluté. Ce phénomène
sera illustré par un exemple à la section 6.7.4.

Le soluté se comportant comme un gaz parfait, nous pouvons conclure que son poten-
tiel chimique doit se conformer à la relation:

(6.47)

Cette relation est également valable pour des substances dissoutes dans des gels ou des
solides, ce qui permet de comprendre la diffusion de substances à travers de la matière
au repos.

Afin d’établir la relation correspondante pour le solvant (fluide), nous le traitons com-
me un fluide incompressible et utilisons le résultat de l’exemple 6.12:

Vu que la différence des pressions du solvant est due à la présence du soluté, la relation
(6.46) nous permet d’écrire:

(6.48)

pour le potentiel chimique du solvant dans la solution. Il est usuel d’introduire la frac-
tion molaire du soluté dans cette équation. Vu que la quantité de matière dissoute est
supposée être faible par rapport à celle du solvant, cette grandeur est approximée par
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En prenant en compte l’équation (6.45), nous obtenons:

(6.49)

pour la dépendance du potentiel chimique du solvant par rapport à la concentration du
soluté. C’est ce dont nous avons besoin pour obtenir des résultats quantitatifs lors de
l’osmose ou d’autres processus tels que les variations de la pression de vapeur ou des
points d’ébullition ou de congélation.

EXEMPLE 6.8. Température de congélation de l’eau de mer.

À quelle température l’eau de mer, avec une concentration de 35 parts pour mille de sel, se met-
elle à geler?

SOLUTION: En l’absence de sel, l’eau gèle à 0°C, les potentiels chimiques des substances pures
sont alors égaux (exemple 6.4). La présence du sel et le changement de température entraînent
une variation du potentiel chimique de l’eau. Celui de la glace n’est influencé que par la varia-
tion de température. Avec l’adjonction de sel, à la nouvelle température, les potentiels chimi-
ques sont à nouveau égaux. Si nous utilisons 0°C et l’absence de sel comme référence, la
condition d’équilibre devient:

Le facteur 2 précédant la quantité de sel est dû au fait que le sel dissocie. Comme les potentiels
de l’eau et de la glace sont égaux à 0°C, nous obtenons:

Pour la concentration donnée, le point de congélation est abaissé d’environ 2°C.

B

1. De combien la pression de l’eau change-t-elle si l’on dissout 1.0 mol de
sel de table dans 1.0 L d’eau?

2. Pourquoi le doublement de la pression d’un gaz ou de la concentration
d’une substance dissoute augmente-t-il toujours le potentiel chimique
de la même valeur, indépendamment des valeurs initiales de la pression
ou de la concentration?

3. Lorsque de l’air contenant du dioxyde de carbone est en contact avec de l’eau, une partie du
CO2 migre dans l’eau. Pourquoi? Comment peut-on utiliser les potentiels chimiques et
l’idée de la force d’entraînement chimique pour déterminer quelle quantité de CO2 va
migrer dans l’eau ? De quelle information doit-on disposer pour pouvoir effectuer les
calculs?

4. De quoi la pression partielle d’une composante d’un mélange de gaz parfaits dépend-elle?

5. Quelle est la différence dans le déplacement du point d’ébullition si l’on dissout 1 mol de
sucre ou 1 mol de sel?
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6. Quelle est la variation du potentiel chimique de l’air lorsque sa pression est multipliée par
10?

7. Quelle est la variation du potentiel chimique d’un sel dissous s’il est dilué 10 fois plus?

1. La diminution correspond à la pression du soluté, donnée par
l’équation (6.45), soit 2481 Pa.

2. Dans les deux cas, le potentiel chimique varie suivant le logarithme du
quotient des pressions et des concentrations. Le soluté se comporte
comme un gaz parfait.

3. Le potentiel chimique du dioxyde de carbone est plus faible dans l’eau
que dans l’air. Il faut considérer l’équilibre entre le CO2 dans l’air et le CO2 dissous dans
l’eau. Il faut connaître la pression partielle du CO2 dans l’air.

4. Elle dépend de sa fraction molaire .

5. L’effet du sel est double (dissociation du NaCl).

6. À partir de l’équation (6.44), on obtient une augmentation de 5.71 kG.

7. À partir de l’équation (6.47), on obtient une augmentation de 5.71 kG.

6.6 ÉNERGIE ET ENTROPIE DANS LES PROCESSUS CHIMIQUES

Les processus chimiques se déroulent entre deux niveaux du potentiel chimique, Or,
nous savons que les différences de potentiel sont associées à une libération ou une uti-
lisation d’énergie; dans tous les processus physiques, le taux auquel les grandeurs
s’écoulent à travers une différence de potentiel est lié à la puissance du processus.
Nous allons étendre ce constat aux processus chimiques.

6.6.1 Puissance des processus chimiques et transfert d’énergie

Lorsqu’une substance s’écoule d’une valeur élevée vers une valeur plus basse du po-
tentiel chimique, il y a libération d’énergie (fig. 6.21a). Mais les substances peuvent
réagir, donc apparaître ou disparaître. Ainsi, lorsqu’une substance est consommée
(fig. 6.21b), de l’énergie est libérée.

La seconde relation nécessite un bref commentaire. Nous considérons ici le
«processus unité» de la disparition ou apparition d’une substance sans considérer
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FIGURE 6.21 Flux d’énergie dans
les processus chimiques: (a) lors-
qu’une substance s’écoule d’un
potentiel chimique élevé vers un
potentiel plus bas, de l’énergie est
libérée: (b) si une substance est con-
sommée dans une réaction chimi-
que, il y a également libération
d’énergie.

Le taux auquel l’énergie est libérée ou liée lors de transport ou de réaction
de substance est la puissance chimique. Lors de processus de transport, la
puissance chimique est proportionnelle à la variation du potentiel

(6.50)

Lors d’une réaction, la puissance est proportionnelle au taux de produc-
tion ou de destruction de la substance impliquée:

(6.51)

 Pchim = −∆µIn

 Pchim = −µΠ n
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d’autres substances qui pourraient être impliquées dans une réaction complète. Lors
de la disparition d’une substance, que l’on peut considérer comme détruite, son éner-
gie est libérée. Pour la création d’une certaine quantité de matière, nous avons besoin
d’une quantité bien définie d’énergie. C’est la raison pour laquelle, dans
l’équation (6.51), c’est le potentiel chimique, et pas sa différence, qui est utilisé. Ce
cas nous est familier en thermodynamique (section 5.4.3). Lors de la production d’une
unité d’entropie, une quantité bien définie d’énergie est nécessaire. Cela est assuré par
le fait que la température, le potentiel thermique, est absolue, qu’elle a un point zéro.
Il doit en aller de même pour le potentiel chimique; dans l’équation (6.51), µ est la va-
leur absolue du potentiel chimique de la substance consommée ou créée.

Pour compléter l’image du rôle de l’énergie dans les processus chimiques, rappelons
que les substances peuvent être transportées. Lorsqu’elles entrent dans un système ou
le quittent à une certaine valeur du potentiel chimique, elles entraînent un courant
d’énergie associé au transport (fig. 6.22):

(6.52)

Les relations que nous venons d’introduire peuvent servir à la détermination des
valeurs du potentiel chimique. Si nous pouvons mesurer la puissance d’un processus
chimique et le taux de conversion de la quantité de matière impliquée, nous pouvons
déterminer le potentiel chimique.

6.6.2 Énergie et force d’entraînement des réactions chimiques

Nous sommes maintenant en mesure de déterminer la différence de potentiel chimi-
que, c’est-à-dire la force d’entraînement, d’une réaction complète. Considérons une
réaction impliquant plusieurs réactants Ai et plusieurs produits Bi telle qu’elle est ex-
primée dans l’équation (6.21).

La puissance totale de la réaction chimique, déterminée dans exemple 6.9, est égale à:

(6.53)

où le terme entre crochets, la variation de potentiel chimique, est évalué par:

(6.54)

Ainsi, la force d’entraînement de la réaction décrite par l’équation (6.21) sera donc:

(6.55)

Si [∆µ]réaction < 0, la réaction se déroule de la gauche vers la droite, c’est-à-dire qu’elle
favorise la production des substances désignées par B, alors que si [∆µ]réaction > 0, elle
se déroule en sens inverse, favorisant la production des substances désignées par A.

EXEMPLE 6.9. Détermination de la puissance d’une réaction chimique.

Déterminez la puissance d’une réaction chimique décrite par l’équation (6.21).

SOLUTION: Nous généralisons l’équation (6.51) en prenant en compte toutes les substances
participant à la réaction:
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FIGURE 6.22 Lorsqu’une substan-
ce entre dans un système ou en sort,
il y a un transfert d’énergie associé.
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Nous amplifions le membre de droite par le facteur νi pour pouvoir utiliser la relation entre les
taux de production et de destruction exprimée par l’équation (6.22):

La somme apparaissant dans le dernier membre est égale à l’opposé de la variation du potentiel
chimique, équation (6.54), ce qui nous permet de conclure:

relation valable pour n’importe quel indice i, en vertu de l’équation (6.22).

B

6.6.3 Production d’entropie lors de processus chimiques

L’énergie libérée lors de processus chimiques est souvent complètement dissipée. Des
exemples typiques sont la combustion de carburants; le tableau 6.5 donne les quantités
d’énergie échangées avec l’entropie, appelées pouvoir énergétique ou chaleur de com-
bustion. Le tableau donne les valeurs du pouvoir énergétique supérieur, c’est-à-dire la
quantité d’énergie dégagée par la combustion complète d’une unité de combustible, la
vapeur d’eau étant supposée condensée et l’énergie récupérée.

L’entropie est produite à un taux qui dépend de la puissance du processus chimique et
de la température à laquelle la production d’entropie a lieu (fig. 6.23). Dans le cas
d’une réaction chimique, cela donne:

(6.56)

Bilan d’entropie: réactions exothermiques et endothermiques. Qu’advient-il de
l’entropie produite lors de la réaction? Pour le savoir, il faut calculer, au moyen des
tables du coefficient de température du potentiel chimique, les entropies des réactants

TABLEAU 6.5 Pouvoir énergétique supérieur de quelques carburants.

Carburant Formule Pouvoir énergétique / kJ kg-1

Charbon C 32 800

Hydrogène H2 141 800

Méthane CH4 55 530

Éthanol C2H6O 29 670

Propane C3H8 50 330

Essence CnH1.87n 47 300

Gaz naturel CnH3.8nN0.1n 50 000
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et des produits, ce qui permet de calculer la variation de l’entropie du système par rap-
port à la situation de départ, c’est-à-dire des conditions standard de température et de
pression. Il faut également tenir compte de l’entropie accumulée dans le système dans
lequel a lieu la réaction.

Il y a trois issues possibles (fig. 6.24):

• La variation ∆S de l’entropie des réactifs est négative, le système émet de
l’entropie à laquelle vient s’ajouter l’entropie produite par la réaction. La réac-
tion est exothermique.

• La variation de l’entropie du système est positive, il faut amener de l’entropie
qui sera stockée par les produits. Si l’entropie produite par la réaction est supé-
rieure à celle qui est nécessaire pour le stockage, la réaction est exothermique.

• La variation de l’entropie du système est positive, il faut amener de l’entropie.
Si l’entropie produite par la réaction ne suffit pas pour couvrir le déficit,
l’entropie manquante doit être puisée dans l’environnement, la réaction est
dite endothermique.

Notons que l’environnement peut être un liquide dans lequel des substances dissoutes
réagissent entre elles. Dans ce cas, l’effet de réactions exothermiques ou endothermi-
ques est une augmentation ou une diminution respective de la température du solvant.

EXEMPLE 6.10. Bilan d’entropie lors de la dissolution du sel de table.

On dissout une mole de sel de table dans l’eau. (a) Quelle est la variation de l’entropie? (b) Déter-
minez l’entropie produite lors de la réaction? Le processus est-il exothermique ou
endothermique?

SOLUTION: (a) Comme il s’agit d’une mole, il suffit de calculer la variation des entropies
molaires. Or, en vertu de l’équation (6.28), les entropies molaires sont, au signe près, égales aux
coefficients de température du potentiel chimique que nous trouvons dans le tableau 6.3:

(b) La quantité d’entropie produite correspond à l’énergie dissipée divisée par la température à
laquelle a lieu la réaction, comme l’indique l’équation (6.56):

La quantité d’entropie produite est inférieure à la variation d’entropie due à la dissolution. Le
processus est endothermique; l’entropie manquante est puisée dans l’eau dont la température
diminue.

B

EXEMPLE 6.11. Entropie et énergie échangées lors de la formation de l’eau.

Considérez la formation de l’eau à partir d’hydrogène et d’oxygène. (a) Combien d’entropie est
produite lors de la formation d’une mole d’eau? (b) Déterminez la variation d’entropie engen-
drée par la réaction. (c) Déterminez l’entropie échangée avec l’environnement; la réaction est-

Réactions exothermiques
(Émission d’entropie)
a. ∆S < 0 ⇒

Séch = ∆S − Sprod < 0

∆S > 0, Sprod > ∆S ⇒
Séch = ∆S − Sprod < 0

b.

Réactions endothermiques
(Absorption d’entropie)

∆S > 0, Sprod < ∆S ⇒
Séch = ∆S − Sprod > 0

FIGURE 6.24 Le caractère exother-
mique ou endothermique d’une
réaction dépend de la variation de
l’entropie des systèmes et de l’en-
tropie produite. Les cas envisagés
incluent également la possibilité de
réactions non dissipatives (Sprod=0)
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elle exothermique ou endothermique? (d) Évaluez l’énergie échangée avec l’environnement et
utilisez le résultat pour déterminer le pouvoir énergétique de l’hydrogène gazeux. Admettez que
la réaction se déroule aux conditions standard.

SOLUTION: (a) L’entropie produite par la réaction est donnée par l’équation (6.56):

(b) La variation de l’entropie des substances entrant dans la réaction est égale à:

(c) Lors de la formation d’une mole d’eau, l’entropie échangée avec l’environnement est:

La réaction est exothermique, il y a émission d’entropie vers l’environnement.

Le produit de l’entropie échangée et de la température est égal à l’énergie échangée:

(d) En divisant le dernier résultat par la masse molaire de l’hydrogène, nous obtenons l’énergie
libérée par la réaction d’un kilogramme d’hydrogène:

Cette valeur correspond au pouvoir énergétique supérieur qui apparaît dans le tableau 6.5.

B

6.6.4 Potentiels combinés

Les substances peuvent participer à des réactions chimiques, mais elles peuvent éga-
lement être soumises à des processus gravitationnels et électriques, vu qu’elles ont une
masse et peuvent être électriquement chargées. Lors de processus d’écoulement, les
substances peuvent de ce fait être soumises simultanément à plusieurs forces d’entraî-
nement. Pour pouvoir décrire de façon pratique des écoulements dans des champs gra-
vitationnels ou électriques, les potentiels gravitationnels et électriques sont combinés
avec le potentiel chimique de l’espèce. Ainsi, plusieurs processus pourront être consi-
dérés comme étant la conséquence de forces d’entraînement électrochimiques ou
gravitochimiques.

Dans cette section, nous allons déterminer le potentiel gravitochimique et nous ferons
de même à la section 6.9 pour le potentiel électrochimique.

Potentiel gravitochimique. Lorsque des substances s’écoulent dans le champ gravi-
tationnel, elle sont soumises simultanément à deux processus, chimique et gravitation-
nel. Le phénomène devra donc être décrit au moyen d’un potentiel combiné, dit
potentiel gravitochimique.
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Pour pouvoir l’exprimer, nous considérons une substance qui s’écoule verticalement
entre deux régions, entraînée par une différence de potentiel chimique. Le flux d’éner-
gie associé à cet écoulement est la somme du flux d’énergie chimique et du flux
d’énergie gravitationnelle:

(6.57)

Les termes de la parenthèse:

(6.58)

représentent le potentiel gravitochimique. µ est le potentiel chimique standard, M la
masse molaire et ϕgrav le potentiel gravitationnel (qui est égal à gh à la surface de la
Terre).

EXEMPLE 6.12. Potentiel chimique des fluides incompressibles.

Comme la pression des fluides incompressibles ne dépend pas de la température, leur potentiel
chimique sera une fonction de la pression uniquement. Déterminez leur potentiel chimique en
considérant un volume de fluide placé dans le champ de pesanteur de la Terre.

SOLUTION: Dans le champ de pesanteur, la pression d’un fluide incompressible de masse vo-
lumique ρ varie de manière linéaire:

L’indice 0 indique un point de référence dans le fluide. Comme le fluide est immobile, nous de-
vons conclure que le potentiel gravitochimique µGC ne varie pas dans la direction verticale:

En combinant les deux équations, nous obtenons la relation entre le potentiel gravitationnel et
la pression:

où est le volume molaire du fluide incompressible. Cette relation justifie notre affirmation
de la section 6.4.3.

B

1. Lorsque l’on dissout de l’acide citrique dans l’eau, la température de la
solution diminue de manière notable. Que cela implique-t-il au sujet de
la relation entre la variation de l’entropie de la substance et de l’entro-
pie produite?

2. Une mole de la substance A et deux moles de B sont converties en une
mole de C. Comment peut-on utiliser l’équation (6.51) pour justifier le
fait que les potentiels chimiques des substances doivent être affectés
des coefficients stœchiométriques, puis additionnés, pour obtenir la force d’entraînement de
la réaction?

I I I I M I M IE n m n n n= + = + = +( )µ ϕ µ ϕ µ ϕgrav grav grav
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3. Les réactifs sont introduits dans une pile à combustible et les produits en émergent. Com-
ment l’expression des flux d’énergie liés à ces transports de substances peut-elle être utili-
sée pour justifier l’expression de la puissance d’une réaction chimique?

4. Quelle est la signification des termes exothermique et endothermique?

5. Combien d’entropie est produite lors de la production d’un kilogramme d’eau par combus-
tion d’hydrogène et d’oxygène ? Admettez que la réaction se déroule aux conditions
standard.

6. La combustion du méthane avec l’oxygène produit du dioxyde de carbone et de l’eau. En
admettant des conditions standard: (a) formulez l’équation de réaction; (b) déterminez la
quantité d’entropie produite par mole de méthane; (c) déterminez la variation de l’entropie
par mole de méthane; (d) déterminez la quantité d’entropie émise ou absorbée par l’envi-
ronnement par mole de méthane ; (e) déterminez la quantité d’énergie transférée avec
l’entropie échangée; (f) déterminez à combien d’énergie par kilogramme de méthane cela
correspond et comparez ce résultat avec la valeur du tableau 6.5.

1. La réaction est endothermique, ce qui signifie que la substance a
absorbé de l’entropie, mais que l’entropie produite lors de la réaction
était insuffisante pour fournir l’entropie absorbée. Cette situation est
semblable à celle de l’exemple 6.10.

2. Les substances A et B sont détruites et libèrent de l’énergie proportion-
nellement à leurs quantités; cette énergie est utilisée pour la création de
C, également de manière proportionnelle à sa quantité.

3. La puissance d’un processus est égale à la différence de tous les flux d’énergie entrants et
de tous les flux d’énergie émergents.

4. Lors d’un processus exothermique, il y a émission d’entropie; lors d’un processus endo-
thermique, il y a absorption d’entropie.

5. En appliquant l’équation (6.56) comme dans l’exemple 6.10, on obtient une production de
44 222 Ct.

6. (a) CH4 + 2 O2 → CO2 + 2 H2O; (b) 2743.14 Ct mol-1; (c)–242.64 Ct mol-1; (d) –2985.79
Ct mol-1; (e) –890.2 kJ mol-1, émis vers l’environnement; (f) –55.5 MJ mol-1, correspond à
la valeur du tableau 6.5.

6.7 TRANSPORT DE SUBSTANCES: DIFFUSION ET OSMOSE

Dans cette section, nous allons formuler quelques modèles simples pour appliquer et
mettre à l’épreuve les relations mathématiques que nous avons développées dans ce
chapitre. Nous nous limiterons à des phénomènes de transport, à l’exclusion de réac-
tions chimiques.

Rappelons que les substances peuvent s’écouler ou être transportées de deux manières
différentes: elles peuvent migrer à travers les matériaux, ce que l’on appelle diffusion,
ou elles peuvent être transportés avec d’autres matériaux, ce que l’on appelle convec-
tion. Aussi bien la diffusion que le transport d’une «substance porteuse» dans la
convection sont entraînés par des différences de potentiel chimique.

6.7.1 Bilans et modèles dynamiques

Vu que nous excluons les réactions chimiques, l’équation de bilan pour une espèce
unique est:

R
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(6.59)

On obtient les modèles dynamiques en introduisant les flux d’une espèce dans son
équation de bilan.

6.7.2 Diffusion

Diffusion dans un milieu uniforme. Imaginons des particules de concentration
dans un milieu uniforme (par exemple un gel ou un solvant liquide). La force chimique
pousse ou tire les particules qui, vu qu’elles se déplacent dans un milieu résistif, attei-
gnent rapidement une certaine vitesse de drift. Le flux de quantité de matière dû à la
diffusion est égal au produit de la section A, de la concentration et de la vitesse de
drift vd (fig. 6.25):

(6.60)

Nous modélisons la vitesse de drift comme résultant de l’action d’une force chimique
∆µ = µ(x2) – µ(x1), équilibrée par une force due à la viscosité. L’application du bilan
d’énergie nous indique que n∆µ = nFd∆x, ce qui implique que la force sur une parti-
cule et par conséquent la vitesse de drift doivent être proportionnelles à la force par
unité de longueur: vd = kD∆µ/∆x, où kD est le facteur de diffusion. Ainsi:

(6.61)

∆µ/∆x est le gradient du potentiel chimique. Le signe négatif indique que le flux est
positif dans la direction de décroissance du potentiel chimique de la substance qui mi-
gre. En général, le gradient diminue d’un endroit à l’autre (fig. 6.25). Dans le cas uni-
dimensionnel, il correspond à la pente de la courbe et peut être écrit en tant que dérivée
par rapport à la position:

(6.62)

On peut admettre que le potentiel chimique de la substance qui migre est gouverné par
la relation logarithmique (6.47). Sa substitution dans l’équation (6.62) donne:

Si nous divisons le courant par la section A à travers laquelle il s’écoule, nous obtenons
la densité de courant de quantité de matière. La relation qui en découle est la forme
usuelle de la loi de diffusion de Fick:

(6.63)

D = kDRT est le coefficient de diffusion, alors que le terme est le gradient de
concentration. L’équation (6.63) est analogue à la loi d’OHM énoncée au moyen de
l’équation (2.22).

Nous avons déjà eu l’occasion de modéliser ce phénomène de diffusion dans les sys-
tèmes dynamiques spatialement uniformes, à savoir lorsque nous avons traité la chaîne
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FIGURE 6.25 Les substances diffu-
sent des endroits où le potentiel chi-
mique est élevé (dû à une
concentration élevée) vers les en-
droits où le potentiel est plus bas.
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de réservoirs à la section 1.8.6, la chaîne de condensateurs à la section 2.8.4 et la
migration de l’entropie vers le centre d’un cylindre de cuivre plongé dans l’eau chaude
à la section 5.7.2. Les flux entre deux éléments capacitifs successifs sont déterminés
par les différences de potentiel entre ces deux éléments. C’est exactement ce qui se
passe lors du processus de diffusion: les éléments du substrat à travers lequel migrent
les substances dissoutes servent d’éléments de stockage. La quantité de substance
contenue dans un tel élément détermine le potentiel chimique dont la différence est
responsable du flux entre les éléments. Cette manière d’envisager le processus définit
la structure de modèles dynamiques simples consistant à découper le système en par-
ties couplées entre elles (fig. 6.26).

Influence de la concentration. Pourquoi, comme l’indique la relation (6.62), le trans-
port de substances doit-il être proportionnel à la concentration de la substance qui
migre? Ne suffit-il pas que le potentiel chimique dépende de la concentration? En fait,
la force d’entraînement, la tension chimique, c’est-à-dire les différence des potentiels,
dépendent du (logarithme du) rapport des concentrations en deux points 1 et 2 situés
sur le chemin des substances qui migrent:

Peu importe que µ1 = 2 et µ2 = 1, ou que µ1 = 0.002 et µ2 = 0.001, la force d’entraî-
nement est la même, mais le courant de diffusion de la substance sera 1000 plus fort
dans le premier cas, ce qui nous oblige à le rendre dépendant de la concentration des
espèces dissoutes.

6.7.3 Migration d’espèces entre deux environnements différents

Les substances peuvent s’écouler d’un environnement à un autre tant qu’il existe une
différence de leurs potentiels chimiques dans les milieux considérés. En analogie avec
ce qui précède, admettons que le flux de substance entre les environnements I et II
(fig. 6.27) est donné par:

(6.64)

Si la substance est dissoute, son potentiel chimique est une fonction logarithmique du
quotient de sa concentration et d’une concentration de référence qui sera différente
d’un milieu à l’autre (équation (6.47)). Les concentrations qui s’établissent lorsque
l’équilibre est atteint s’imposent comme valeurs de référence pour le calcul des
potentiels:
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FIGURE 6.26 Diagramme du modè-
le dynamique de la diffusion dans
une seule direction spatiale. Le sys-
tème a été divisé en plusieurs élé-
ments, chacun étant traité comme
uniforme.
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Comme les valeurs du potentiel dans les milieux I et II sont les mêmes à l’équilibre,
la force d’entraînement de la diffusion se réduit à:

(6.65)

ce qui nous permet de calculer le courant de substance par substitution dans la relation
(6.64):

(6.66)

Conditions proches de l’équilibre. À l’équilibre, la différence des potentiels chimi-
ques (6.65) s’annule. Pour de faibles déviations de l’équilibre, ln(x) peut être remplacé
par x – 1. Ainsi:

Si nous introduisons le rapport des concentrations à l’équilibre dans les milieux I et II
respectivement, la constante d’équilibre K :

(6.67)

et la substituons dans cette dernière relation:

nous obtenons finalement:

(6.68)

où le coefficient Gn,c, I→II = k′RTAK–1 peut être interprété comme une sorte de con-
ductance. On constate que la force d’entraînement du processus n’est plus simple-
ment due à la différence des concentrations mais à la différence de concentrations
pondérées.

Cette relation est valable lorsque le rapport des concentrations à l’équilibre est cons-
tant, comme c’est le cas pour le toluène dans l’eau et dans l’air (fig. 6.8b). En revan-
che, si ce rapport n’est pas constant, ce que montre la figure 6.28 pour le cas de l’eau
et du sol, la relation entre parenthèses doit être modifiée. Elle prend alors la forme

, où α est un paramètre ajustable.

Ces deux contributions doivent être prises en compte dans le modèle de diffusion du
toluène de l’eau (milieu I) vers l’air et le sol (milieu II), vu qu’elles ont pratiquement
la même intensité. Le modèle et le résultat de la simulation sont présentés dans la
figure 6.29. Seules les concentrations du toluène dans l’eau et dans l’air ont été
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représentées dans le graphique, vu que celle du toluène dans le sol est, à l’équilibre,
environ dix fois plus importante que les deux autres.

 

6.7.4 Osmose: perméabilité des globules rouges

Des globules rouges sont placés dans un bain isotonique dont le soluté a une concen-
tration de 300 mol m-3. On ajoute rapidement du soluté afin de doubler sa concentra-
tion. Cette substance peut traverser la membrane cellulaire. Les globules rouges, dont
le volume individuel initial est de 87·10-18 m3, rétrécissent en l’espace de 0.25 s, d’en-
viron 10% de leur volume, puis retournent plus lentement vers leur volume originel
(fig. 6.30).

Le soluté augmente la concentration des substances dissoutes dans le bain relative-
ment à l’intérieur des cellules. Deux processus se succèdent: le soluté migre dans la
cellule (diffusion) et de l’eau s’écoule de la cellule vers le bain (osmose). Vu que seule
la quantité d’eau dans la cellule détermine son volume, celui-ci diminue.

À un certain point, le flux d’eau vers l’extérieur de la cellule s’interrompt parce que
les potentiels chimiques à l’intérieur et à l’extérieur sont égaux. Cependant, le soluté
continue à diffuser vers l’intérieur des cellules, vu qu’il n’est sensible qu’au gradient
de sa propre espèce. Comme la concentration du soluté augmente dans les cellules, le
flux d’eau change de sens, ce qui entraîne leur croissance.

Lors de la modélisation du processus, nous devons considérer les deux substances qui
peuvent pénétrer à l’intérieur des globules rouges ou en sortir: l’eau et le soluté. Les
équations de bilan respectives de l’eau et du soluté à l’intérieur d’une cellule sont:

 

(6.69)

Le transport de l’eau est un processus d’osmose alors que celui de la substance dissou-
te est une diffusion.

Le flux d’eau entrant ou émergeant d’un globule rouge est dû à la différence de poten-
tiel chimique de l’eau à l’intérieur et à l’extérieur de la cellule:
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où A représente l’aire de l’enveloppe des globules rouges, considérés comme des dis-
ques d’environ 7.5 µm de diamètre et 2 µm d’épaisseur, soit une aire de 140·10-12 m2.
Les indices «int» et «ext» se réfèrent respectivement à l’intérieur et à l’extérieur d’un
globule rouge. Le produit kn, eau·A peut être considéré comme une conductance chimi-
que.

Les potentiels chimiques dépendent des concentrations du soluté dans chacun des
deux milieux. Nous devons faire la différence entre la concentration du soluté dans le
bain isotonique, que nous désignerons par , et celle qui est due à l’adjonction du
soluté, que nous désignerons par . À l’intérieur de la cellule, la variation de est
due à la variation du volume de la cellule (effet de l’osmose) et celle du soluté ajouté
varie à cause de la diffusion à travers les parois. En nous basant sur les
équations (6.45) et (6.48), nous pouvons écrire:

À l’extérieur de la cellule, dans le bain, ces deux concentrations ne varient que très peu
et peuvent être remplacées par leurs valeurs initiales:

La diffusion du soluté à travers les parois des globules rouges est entraînée par les dif-
férences de concentration entre l’intérieur des cellules et le bain:

À l’intérieur de la cellule, les différentes concentrations varient en fonction de son
volume, que nous admettons égal au volume de l’eau qu’elle contient:

Les concentrations sont donc égales à:

où Veau, init correspond au volume initial d’un globule rouge.
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Le modèle est établi sur la base de ces relations et des valeurs initiales des concentra-
tions respectives. L’ajustement aux données expérimentales se fait en variant les
valeurs des deux paramètres, kn,eau et kn,s.

1. Pourquoi, lors de la diffusion, l’intensité des flux des substances est-
elle proportionnelle à la concentration des espèces?

2. Considérez une substance qui «préfère» être dans un environnement I
plutôt que dans un environnement II. La constante d’équilibre est-elle
supérieure ou inférieure à 1?

3. Qu’advient-il du flux de quantité de matière entre deux environnements
différents en présence de la condition cII = KcI?

1. Pour une force d’entraînement ∆µ donnée, l’intensité du courant
dépend de la quantité de substance à transporter.

2. Inférieure à 1, en vertu de l’équation (6.47).

3. Le flux net est nul.

6.8 RÉACTIONS CHIMIQUES

Si nous voulons décrire la dynamique des réactions chimiques, nous devons pouvoir
exprimer dans les équations de bilan les taux de production des substances impliquées.
Ces taux sont aussi appelés vitesse de réaction. Les facteurs les plus importants qui
influencent ces taux sont les potentiels chimiques qui dépendent essentiellement des
concentrations. Nous admettrons que les autres facteurs qui influencent le déroule-
ment d’une réaction, tels que la pression, la température, la mobilité des particules,
etc., peuvent être considérés comme constants.

6.8.1 Bilans de quantité de matière lors d’une réaction

En général, les substances s’écoulent et réagissent entre elles. Si nous ne prenons pas
en compte les flux, qui ont été traités à la section 6.7, nous pouvons nous limiter à ne
considérer que les destructions (taux de production négatifs) et les créations de subs-
tances (taux de production positifs). Ainsi, l’équation de bilan pour une substance i se
résume à:

(6.70)

Cette équation de bilan devra être énoncée par chacune des espèces participant à la
réaction.

6.8.2 Vitesse de réaction pour une réaction de type A→→→→B

Lors d’une simple réaction de type A B (telle que la transformation du glucose
mentionnée à la section 6.2.5), nous devons connaître le taux de destruction ΠnA du

Q

R

 �ni ni ni= +Π Π, ,production destruction
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réactif A. Vu que le doublement du volume, toutes autres choses étant égales par
ailleurs, provoquera un doublement du taux de production, nous considérerons la den-
sité de destruction πnA que nous supposerons proportionnelle à la différence des po-
tentiels chimiques, à la concentration de A et à la constante de vitesse k′:

(6.71)

Si nous admettons que les substances sont des gaz ou des solutions diluées, nous pou-
vons exprimer la différence des potentiels chimiques en tant que:

Comme lors de l’étude de processus de transport, nous avons choisi les valeurs d’équi-
libre de chaque espèce comme valeur de référence. À l’équilibre, µA et µB sont égaux,
ce qui nous permet d’écrire:

(6.72)

Après substitution dans l’équation (6.71) et multiplication par le volume V, nous obte-
nons la vitesse de réaction:

(6.73)

Ce taux de production est négatif si la réaction va de A vers B, comme nous nous y
attendions.

Comme lors de l’étude des processus de transport, nous introduisons la constante
d’équilibre:

(6.74)

ce qui nous permet d’écrire:

(6.75)

6.8.3 Mutarotation du glucose

Nous allons appliquer le résultat de la section précédente à la modélisation de la trans-
formation d’α-glucose en β-glucose décrite à la section 6.2.5.

La modélisation au moyen de l’équation (6.75) donne un résultat qui s’approche des
données expérimentales, mais doit être amélioré.

En procédant de la même manière qu’à la section 6.7.3 dans le cas de conditions pro-
ches de l’équilibre, nous remplaçons ln(x) par x – 1 et obtenons:

(6.76)
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où k = k′RTK-1 est la constante de vitesse de la réaction.

Les équations de bilan respectives deviennent ainsi:

La constante d’équilibre K peut être estimée à partir des données expérimentales. Tou-
tefois, l’examen des graphiques révèle que l’équilibre n’est pas encore atteint lorsque
les mesures ont été interrompues, ce qui implique que la valeur que l’on obtient est une
première approximation qu’il faut affiner lors de la simulation. Nous obtenons la
meilleure adéquation aux données expérimentales avec les valeurs K = 1.91 et une
constante de vitesse k = 9.77·10-5 s-1.

6.8.4 Désintégration radioactive

Les réactions nucléaires en général, et la désintégration radioactive en particulier, peu-
vent être considérées comme une sorte de réaction chimique. Alors que les réactions
chimiques laissent inchangée la nature des éléments, les réactions nucléaires aboutis-
sent usuellement à un changement des éléments impliqués, à une transmutation. Con-
trairement à la décomposition de la murexide, ce processus ne nécessite pas la
présence d’une autre substance.

Nous considérons tout d’abord la désintégration de l’isotope Ba-137 (fig. 6.33a). Une
courbe de décroissance exponentielle a été ajustée aux données expérimentales. L’adé-
quation parfaite, confirmée par la linéarité de la courbe logarithmique du taux de dé-
sintégration (fig. 6.33b), nous indique que la désintégration d’un seul isotope est
semblable à la vidange d’un réservoir d’huile ou à la décharge d’un condensateur, ce
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FIGURE 6.32 Mutarotation du
glucose: (a) modèle de dynamique
des systèmes; (b) résultat de la
simulation.

FIGURE 6.33 Évolution temporelle
de la désintégration de l’isotope Ba-
137 (données: E.B. Norman et al.).
(a) Une courbe exponentielle a pu
être ajustée aux données expérimen-
tales, ce qui implique que le taux de
désintégration est proportionnel à la
quantité d’isotopes encore actifs.
(b) La linéarité de la courbe loga-
rithmique du taux de désintégration
confirme le caractère exponentiel de
ce processus.
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qui implique que le taux de désintégration est proportionnel à la quantité de substance
présente.

Dans la figure 6.34, nous sommes confrontés à un exemple moins simple, vu que deux
isotopes se désintègrent simultanément. Il s’agit des isotopes Ag-108 et Ag-110, qui
ont été obtenus artificiellement par bombardement d’argent au moyen de neutrons
lents.

En vertu de la similitude des comportements, nous supposons que les processus ra-
dioactifs peuvent être décrits de la même manière que les processus chimiques. Nous
énonçons donc une équation de bilan pour chacune des deux substances:

(6.77)

Nous basant sur l’équation (6.71) et sur ce que nous apprend la physique nucléaire, à
savoir que la force d’entraînement pour la désintégration de A en B est virtuellement
constante, nous obtenons:

(6.78)

Toutefois, dans ce contexte, les notions de quantité de matière, de concentration et de
volume ne sont pas usuelles. Nous multiplions les deux membres des équations par le
nombre d’AVOGADRO NA:

(6.79)

pour obtenir une relation qui montre que le taux de variation du nombre N de noyaux
radioactifs de chacun des isotopes est proportionnel au nombre de noyaux radioactifs
présents dans l’échantillon. Le paramètre λ qui a remplacé le coefficient de vitesse kn
est la constante de désintégration.

La figure 6.35 montre le modèle élaboré sur la base des réflexions et la confrontation
du résultat de la simulation et des données expérimentales. La meilleure adéquation a
été obtenue pour λAg-108 = 4.75·10-3 s-1 et λAg-110 = 27.5·10-3 s-1, ce qui correspond à
des demi-vies respectives de 146 s et 25.2 s, alors que les valeurs de la littérature sont
de 144 s et 24.6 s. Il est possible que le bruit de fond dû à la radioactivité naturelle n’ait
pas été retranché des valeurs utilisées pour la simulation, ce qui pourrait expliquer que
les valeurs obtenues sont supérieures à celles de la littérature.

FIGURE 6.34 (a) Évolution tempo-
relle de la désintégration des isoto-
pes Ag-108 et Ag-110 (données: L.
Wickham). Cette évolution résulte
de la superposition de deux décrois-
sances de type exponentiel. (b) La
courbe logarithmique révèle la pré-
sence de deux portions linéaires, ce
qui confirme la superposition de
deux décroissances de type
exponentiel.
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.

1. En quoi le transport d’une substance vers un environnement chimique-
ment différent et la transformation d’une substance A en une substance
B sont-ils des processus comparables?

2. Que peut-on conclure lorsque la valeur de la constante d’équilibre est
faible ? Grande ? Égale à 1 ? Donnez un exemple de processus pour
lequel K = 1.

3. Pour la conversion d’α-glucose en β-glucose, la meilleure adéquation a été obtenue pour la
valeur K = 1.91. Que vaut la différence des potentiels chimiques?

1. Pour les deux phénomènes, la différence des potentiels chimiques res-
pectifs a la même forme, comme le montrent les équations et (6.76).

2. La concentration des produits (par rapport à celle des réactifs) est fai-
ble. La concentration des produits est grande. Les concentrations des
réactifs et des produits sont comparables. Le transport d’une substance
entre deux environnements identiques.

3. À partir de la relation RT ln(K)=–[∆µ]réaction, on trouve une différence des potentiels chi-
miques standard égale à – 1605 G.

6.9 PROCESSUS ÉLECTROCHIMIQUES

Nous l’avons déjà observé, les substances ne sont pas seulement le siège de réactions
chimiques, elles peuvent également être soumises à des processus gravitationnels et
électriques, vu qu’elles ont une masse et peuvent être électriquement chargées. Ainsi,
en présence d’un champ électrique, les processus qui se déroulent pourront être con-
sidérés comme étant la conséquence de forces d’entraînement électrochimiques décri-
tes par un potentiel électrochimique.

6.9.1 Exemple d’appareil électrochimique

Nous commençons par l’observation qu’une tige de zinc est attaquée dans une solution
de sulfate de cuivre et qu’il y a déposition de cuivre métallique sur la tige de zinc. Le

N Ag 108 N Ag 110
Pi N Ag 108 Pi N Ag 110

Pi N Ag total
lambda Ag 108 lambda Ag 110

a. b.
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caractère spontané de la réaction peut être expliqué par la différence de potentiel
chimique:

et peut être interprété comme le transfert de deux électrons d’un atome de zinc vers un
atome de cuivre. Le résultat de la réaction est la disparition progressive du zinc qui part
en solution, la déposition du cuivre et la production d’entropie.

Si nous voulons tirer bénéfice du transfert d’électrons, c’est-à-dire si nous voulons
transformer la cellule dans laquelle se déroule la réaction en une batterie, nous devons
réussir à séparer les ions cuivriques de la tige de zinc et permettre aux électrons de pas-
ser par un conducteur externe (fig. 6.36). Cet objectif est réalisé au moyen d’une cel-
lule comportant deux compartiments séparés par une barrière poreuse, qui est
perméable aux ions mais empêche le mélange des solutions (CuSO4 dans le compar-
timent de la cathode, ZnSO4 dans celui de l’anode). Comme les ions cuivriques char-
gés positivement ne diffusent pas vers l’électrode de zinc positive, ils sont confinés
dans le compartiment contenant l’électrode de cuivre. Nous avons maintenant deux
réactions séparées qui se déroulent dans chacun des compartiments:

Le transfert des électrons d’un compartiment à l’autre s’effectue, comme souhaité, par
l’intermédiaire d’un fil conducteur externe.

6.9.2 Pompes à électricité et pompes chimiques

De manière semblable à d’autres phénomènes, les processus électrochimiques peu-
vent être divisés en deux catégories, une première dans laquelle des réactions chimi-
ques entraînent l’écoulement de l’électricité et une seconde dans laquelle un courant
électrique est utilisé pour entraîner une réaction qui ne se déroulerait pas spontané-
ment dans ce sens.

Dans le premier cas, nous sommes en présence d’une «pompe à électricité» (fig. 6.37),
alors que dans le second, il s’agit d’une «pompe chimique» (fig. 6.38). Dans une pom-
pe à électricité, l’électricité s’écoule d’un niveau bas vers un niveau élevé du potentiel
électrique, alors que dans une pompe chimique, ce sont les substances qui sont pom-
pées vers une valeur plus élevée de leur potentiel.

 
Zn + Cu Zn + Cu2+

kG + 65.52 kG

2+

-1470
� �� �� →

..03 kG + 0 kG
� �� ��

AnodeCathode
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FIGURE 6.36 Cellule électrochimi-
que consistant en deux comparti-
ments au sein desquels se déroulent
deux réactions, chacune impliquant
un échange d’électrons. Les élec-
trons migrent à travers un dispositif
externe.
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a. b.FIGURE 6.37 Des réactions chimi-

ques entraînent l’écoulement de la
charge électrique dans des «pompes
à électricité». L’énergie nécessaire
pour le faire est libérée lors des réac-
tions qui se déroulent (a) dans la
pile à combustible ou (b) dans la bat-
terie. Les diagrammes de processus
représentent le cas irréversible, ac-
compagné de production d’entropie,
Les indices r et p représentent
respectivement les réactifs et les
produits.
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Les piles à combustible et les divers types de batteries sont des exemples de pompes
à électricité. La différence essentielle entre ces deux catégories réside dans le fait que
dans les piles à combustible, les réactifs sont introduits en continu dans le système et
les produits en sont extraits. Par contre, dans les batteries, les réactifs sont stockés
dans le système et s’épuisent progressivement. Ces différences ont une influence sur
l’énoncé des équations de bilan mais n’affectent pas le mode de fonctionnement des
dispositifs.

Lors d’une électrolyse ou de la recharge d’une batterie, nous forçons les processus que
nous venons de décrire à se dérouler en sens inverse: le courant électrique sert à en-
traîner une réaction chimique (fig. 6.38). L’énergie libérée par la chute du courant
électrique entre deux niveaux du potentiel est utilisée pour entraîner une réaction chi-
mique. Citons à titre d’exemples l’électrolyse de l’eau, la réduction électrolytique de
l’alumine (Al2O3) dans les fours à induction pour obtenir l’aluminium métallique et
l’affinage industriel du cuivre.

6.9.3 Potentiel électrochimique

L’interaction entre des processus chimiques et électriques est un phénomène large-
ment répandu. Elle n’a pas seulement lieu dans les appareil électrochimiques, mais
elle est tout aussi importante en biologie. Le système nerveux et les muscles dépendent
de manière cruciale de cette interaction. Pour pouvoir modéliser ce type de processus,
nous devons pouvoir disposer d’un potentiel combiné, le potentiel électrochimique.

Imaginons deux régions séparées par une membrane (fig. 6.39) et admettons que les
milieux I et II soient différents et qu’une substance dissoute «préfère» être dans le mi-
lieu II. Il s’ensuit que la concentration de cette substance est plus élevée dans le milieu
II que dans le milieu I, comme l’était celle du toluène dans l’eau (fig. 6.8a). Tant que
l’équilibre n’a pas été atteint, la force chimique «attirera» de la substance vers le mi-
lieu II. Si la substance est constituée d’ions, il y a apparition dans le système d’un
champ électrique qui va exercer une force sur ces particules. Si nous partons de la dis-
tribution d’équilibre (plus grande concentration dans le milieu II), les ions auront ten-
dance à être repoussés vers le milieu I, changeant de ce fait à la fois la distribution
d’équilibre chimique et le champ électrique. Ce processus durera jusqu’à ce que la for-
ce nette due aux deux effets —électrique et chimique— soit égale à zéro: le système
a atteint l’équilibre électrochimique. La substance dissoute est en équilibre si les
concentrations sont telles que la différence du potentiel électrochimique µEC de part et
d’autre de la membrane est nulle:

IE,él,in
IE,chim,out

IQ

Pchim

Pél

Πn,r

Πn,p

μr μp

IE,therm,out

IS
Ptherm ΠS

ϕoutϕin

T

Cellule électrolytique

In,in

In,out

FIGURE 6.38 Dans une cellule élec-
trolytique, c’est le passage du cou-
rant électrique qui entraîne les
réactions chimiques. Des substances
(telles que de l’eau) entrent dans la
cellule à un potentiel chimique bas et
sont détruites, alors que de nouvelles
espèces (telles que l’hydrogène et
l’oxygène) sont produites et émer-
gent de la cellule à un potentiel chi-
mique plus élevé. Une partie de
l’énergie fournie sert à produire de
l’entropie, ce qui rend le processus
irréversible.
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FIGURE 6.39 Une substances est
dissoute dans les milieux I et II. Le
potentiel chimique standard de la
substance est plus élevé en I qu’en
II. La figure montre la condition de
l’équilibre chimique (concentration
plus élevée en II).Si les particules
sont chargées, il existe une force
électrique qui les entraîne de II vers
I. À l’équilibre électrochimique, la
distribution des concentrations sera
différente.
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(6.80)

Des considérations liées à l’énergie vont nous permettre de combiner les deux poten-
tiels. Le flux d’énergie dû au transfert simultané de substance et de charge est égal à:

(6.81)

Il est important de noter que les substances et les charges électriques sont couplées.
Les particules d’une espèce chimique portent une charge électrique, ce qui permet de
faire correspondre au courant électrique un courant équivalent de quantité de matière,
qui doit être multiplié par la charge molaire pour obtenir le courant électrique. Si e est
la charge élémentaire (positive), z le nombre de charges élémentaires du ion, et NA le
nombre de particules par mole, alors:

(6.82)

où F est la constante de FARADAY. La substitution de cette dernière relation dans
l’équation (6.81) permet d’exprimer le potentiel électrochimique combiné:

(6.83)

où µ est le potentiel chimique simple.

6.9.4 Réactions électrochimiques

Dans un élément électrochimique (pile à combustible ou batterie), des réactions chi-
miques qui se déroulent spontanément libèrent de l’énergie qui est utilisée pour entraî-
ner un courant électrique à travers une différence de potentiel (fig. 6.40). En d’autres
termes, la réaction chimique crée une tension électrique. Un petit nombre entier de
charges élémentaires sont séparées pour chaque unité de conversion chimique. Si le
processus pouvait se dérouler de manière réversible, l’équation de bilan de la puissan-
ce deviendrait:

Si nous utilisons l’équation (6.82) et remplaçons le courant de quantité de matière par
le taux (négatif) de conversion ΠA1, nous obtenons:

ou

(6.84)

U est la tension à vide de l’élément. Nous avons ainsi établi une méthode relativement
simple pour déterminer la force chimique des réactions ou, alternativement, un
moyen de prévoir les performances d’un élément électrochimique à partir de données
chimiques.

µ µEC ECI II( ) = ( )

I I I I IE E E n Q= + = +, chim , él µ ϕ

  I zeN I z IQ n= =A F n

 µ µ ϕEC = + zF
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2ϕ1ϕ

FIGURE 6.40 Diagramme de pro-
cessus d’un élément électrochimi-
que (batterie ou appareil similaire).
L’énergie libérée par la réaction chi-
mique est utilisée pour entraîner un
courant électrique.
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EXEMPLE 6.13. Potentiel chimique de l’eau déterminé à partir de mesures électriques.

Aux conditions standard, la tension mesurée aux bornes d’une pile à combustible, qui produit
de l’eau à partir d’oxygène et d’hydrogène, prend une valeur maximale de 1.23 V. Déterminez
le potentiel chimique de l’eau.

SOLUTION: Nous devons formuler les réactions qui se déroulent aux électrodes de la pile à
combustible. La molécule H2 dissocie en 2H+ et deux électrons. Sur l’autre électrode, les mo-
lécules d’oxygène réagissent avec les H+ et les électrons pour former des molécules d’eau:

Il y a donc 2 moles d’électrons utilisées lors de la réaction d’une mole d’hydrogène gazeux. En
vertu de l’équation (6.84), le potentiel chimique de la réaction est:

Vu que les potentiels chimiques des gaz d’hydrogène et d’oxygène sont fixés à zéro, cette valeur
représente le potentiel chimique de l’eau.

B

EXEMPLE 6.14. Transfert d’ions à travers une membrane.

Un grand nombre de fonctions biologiques, incluant notamment celles des cellules nerveuses et
la propagation des signaux nerveux, impliquent le transfert sélectif d’ions à travers les membra-
nes cellulaires.

Admettez que la même sorte d’ions est en solution de part et d’autre d’une membrane, comme
le montre la figure 6.39. Le liquide dans lequel ils sont dissous est le même dans les deux envi-
ronnements et les concentrations des ions sont respectivement cI et cII. Quelle est la valeur de
la tension engendrée par cette différence de concentration?

SOLUTIOIN: Si la distribution des ions dans les deux environnements a atteint l’équilibre
électrochimique:

alors, en vertu des équations (6.83) et (6.47), nous avons:

Nous obtenons une différence de potentiel égale à:

Cette expression est le potentiel de Nernst.
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Résumé du chapitre
Les processus chimiques sont la manifestation de l’interaction entre des substances.
Ils sont essentiellement de deux natures: transport et réaction. Les substances peuvent
migrer d’une place à l’autre, se transformer et être produites ou détruites lors de réac-
tions chimiques.

La grandeur extensive servant à la description quantitative des substances est la quan-
tité de matière n qui se mesure en mole. Cette grandeur n’est pas réservée à la mesure
de substances matérielles, elle peut également être appliquée à la lumière dont le ca-
ractère granulaire a été révélé au début du XXe siècle. Une mole de substance contient
un nombre d’entités individuelles égal au nombre d’Avogadro NA = 6.022·1023 mol-1.

La forme générale de l’équation de bilan: prend en compte
les différents processus qui font évoluer la quantité de matière d’un système. Les ter-
mes du membre de droite sont respectivement les flux conductifs liés à la diffusion ou
à la migration de la substance, les flux convectifs qui décrivent les processus de trans-
port vers ou hors du système et le taux de production ou destruction associé aux réac-
tions qui se déroulent à l’intérieur du système.

Les grandeurs qui caractérisent une substance, telles que sa masse, son entropie, sa
concentration, sont généralement exprimées sous forme molaire en tant que quotient
de la grandeur et de la quantité de matière n.

La grandeur intensive associée à la quantité de matière est le potentiel chimique µ. Il
se mesure en gibbs abrégé par G, unité qui équivaut à 1 J mol–1. Le potentiel chimique
mesure la tendance des substances à réagir avec d’autres substances, à migrer d’une
région vers une autre ou à se transformer, c’est-à-dire à changer d’état d’agrégation.
Les différences de potentiel chimique agissent comme force d’entraînement des pro-
cessus chimiques, elles sont comparables à une tension chimique. Le potentiel chimi-
que dépend à la fois de la température, de la pression et de la concentration des
substances. En première approximation, il décroît proportionnellement à la tempéra-
ture, croît proportionnellement à la pression et à la concentration. Les coefficients de
proportionnalité sont respectivement l’entropie molaire et le volume molaire pour la
température et la pression, alors que celui qui est associé à la concentration est le
même pour toutes les substances.

Le potentiel chimique est un potentiel absolu, vu qu’il est associé à une grandeur non
conservée, la quantité de matière. Pour des raisons pratiques, les tables donnent les va-
leurs des potentiels chimiques de substances composées en tant que différence entre
leur valeur absolue propre et celles des éléments dont elles sont composées. On attri-
bue la valeur nulle du potentiel chimique à la forme la plus stable des éléments du ta-
bleau périodique.

Les processus chimiques entraînent des échanges d’énergie. La puissance d’un pro-
cessus est donnée par Pchim = –∆µIn s’il s’agit d’un processus de migration à l’inté-
rieur du système et Pchim = –µΠn s’il s’agit d’une réaction entraînant l’apparition ou
la disparition d’une substance. Lorsque des substances entrent dans un système ou le
quittent, elles transportent de l’énergie dont l’intensité du courant est IE, chim = µIn .

Les réactions chimiques sont accompagnées de production d’entropie. Si la somme de
l’entropie produite par la réaction et de la variation de l’entropie des réactifs est posi-
tive, la réaction est dite exothermique, de l’entropie est émise vers l’environnement. Si
cette somme est négative, la réaction est endothermique, l’environnement fournit de
l’entropie au système.

À température constante, le potentiel chimique du gaz parfait est donné par la relation
µ = µ0 + RT ln(P/P0). Lorsqu’elles sont suffisamment diluées, les substances se com-
portent comme un gaz parfait. On utilise la relation en remplaçant la pression par la

	n I In n n= + +, , ,cond conv netΠ
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concentration en tant que base à la modélisation des processus de diffusion d’une subs-
tance dans un milieu uniforme, de migration entre deux environnements différents.
C’est également le cas pour la modélisation de l’osmose, qui est le phénomène de
transport de solvant et de soluté à travers une membrane semi-perméable.

La description de la dynamique des réactions chimiques fait intervenir les taux de pro-
duction des substances impliquées, taux qui sont aussi appelés vitesse de réaction. Les
différences de potentiels chimiques, eux-même dépendant de la concentration comme
dans le cas des phénomènes de transport, exercent une influence prépondérante sur
cette vitesse de réaction.

Les processus électrochimiques sont des réactions qui libèrent des électrons, permet-
tant ainsi le transfert d’énergie d’un porteur chimique vers un porteur électrique (pile
à combustible ou batterie). Le processus peut être inversé, par exemple dans une cel-
lule électrolytique. Ces processus font intervenir un potentiel combiné, le potentiel
électrochimique.
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Exercices et problèmes
1. Considérez du fructose et du dextrose (qui sont deux formes

de sucre simple) en solution aqueuse. (a) Laquelle des deux
formes va-t-elle, aux conditions standard, se convertir dans
l’autre forme? (tab. 6.1); (b) Que vaut la constante d’équili-
bre de la réaction?

2. Montrez que le potentiel chimique de l’eau varie de – RTx
lorsque l’on y dissout une substance. x est la fraction molaire
du soluté dans la solution.

3. Démontrez que le déplacement du point d’ébullition d’un
solvant est donné par RTx/∆svap, où ∆svap est l’entropie
molaire de vaporisation du solvant.

4. Estimez la température de vaporisation de l’éthanol.

5. Calculez les valeurs du potentiel chimique de H2O dans ses
phases gazeuse, liquide et solide pour les températures 200
K, 300 K et 400 K. Déterminez à partir des résultats quelle
est la forme stable pour chacune de ces trois températures.

6. La combustion du méthane produit du dioxyde de carbone et
de l’eau. Admettez que les substances initiales et les produits
sont tous dans leur état standard. Utilisez les valeurs des
potentiels chimiques et des entropies molaires trouvées dans
les tables. (a) Formulez l’équation de réactions. (b) Détermi-
nez l’entropie produite par mole de méthane. (c) Déterminez
la variation d’entropie par mole de méthane pendant cette
réaction. (d) Combien d’entropie par mole de méthane est
émise vers ou absorbée de l’environnement? (e) Quelle quan-
tité d’énergie est transférée par l’intermédiaire de l’entropie
échangée ? (f) À quoi correspond cette énergie par kilo de
méthane? Comparez ce résultat à la valeur du pouvoir éner-
gétique supérieur du tableau 6.5.

7. Calculez l’énergie libérée lors de la désintégration d’un
noyau de 90Sr en un noyau de 90Y.

8. De combien la pression de l’eau varie-t-elle si l’on dissout
1.0 mole de sel de cuisine dans 1.0 litre d’eau?

9. Le coefficient de partage est le rapport à l’équilibre des con-
centrations d’une substance dans deux environnements diffé-
rents. Que vaut le coefficient de partage du toluène dans l’eau
et l’air?

10. Deux grammes de CO2 sont dissous dans un litre d’eau en
bouteille. Si l’on admet qu’il n’y a que du dioxyde de car-
bone dans le volume au-dessus de l’eau, que vaut la pression
du gaz?

11. Calculez les valeurs à l’équilibre CO2 dans de l’eau pure
dans une atmosphère contenant respectivement 280 ppmv et
380 ppmv de dioxyde de carbone.

12. Dans de l’eau pure, quelques molécules de H2O se dissocient
en H+ et OH–. Utilisez les valeurs des potentiels chimiques
standard pour calculer la concentration de H+ à l’équilibre.

13. Il y a approximativement 30 g de sel (NaCl) dissous dans 1
litre d’eau de mer. (a) Calculez la pression osmotique du sel
par rapport au solvant (eau pure) à la température de 300 K.
(b) De combien la solution d’élèverait-elle dans une cellule

idéale avec une membrane semi-perméable la séparant du
solvant?

14. Une centrale basée sur l’osmose à pression retardée utilise la
différence de pression entre l’eau de mer et l’eau douce. Si
une telle centrale est placée à l’embouchure d’un fleuve char-
riant 1000 m3 s-1, quelle en serait la puissance dans le cas
idéal?

15. Comment le mélange à l’équilibre d’azote, d’hydrogène et
d’ammoniac varie-t-il lorsque la pression passe de P0 à P,
sachant que l’équation de la synthèse est N2 + 3 H2

 

V 2 NH3.

16. Les vapeurs de mercure sont toxiques. Une concentration de
0.1 mg m–3 dans l’air est tolérable durant une semaine de tra-
vail (40 h). (a) Aux conditions standard, et dans une atmos-
phère de mercure pure, le liquide s’évapore-t-il ou, au
contraire, sa vapeur condense-t-elle? (b) Déterminez la pres-
sion de vapeur du mercure dans l’air (considérez la vapeur de
mercure comme un gaz parfait). (c) Quelle est la concentra-
tion d’équilibre en mg m–3? La masse molaire du mercure est
de 200 g mol–1. Durant combien de temps par semaine serait-
on autorisé à travailler dans une telle atmosphère? (d) Dans
quelle proportion la vapeur de mercure est-elle plus grande
ou plus faible à 35°C?

17. Donnez des raisons qui montrent que la diffusion d’une subs-
tance à travers la matière est un processus complètement dis-
sipatif. En admettant que cette affirmation est correcte,
déterminez le taux de production d’entropie pour la diffu-
sion.

18. Une réaction de type A + 2B

 

T C se déroule dans un réacteur
d’un volume de 5 litres. Tous les réactifs et produits sont dis-
tribués uniformément durant la réaction. Au début, le réac-
teur contient 2 moles de A, 1 mole de B et pas de C. Le taux
de réaction est proportionnel à la concentration de A et au
carré de la concentration de B. Admettez que le réaction se
déroule complètement dans la direction indiquée. (a) Esquis-
sez graphiquement l’évolution de la concentration des subs-
tances en fonction du temps. Indiquez les quantités de
matière initiales et finales de chacune des substances. (b)
Admettez que le réacteur fonctionne en régime stationnaire,
c’est-à-dire que les substances A et B sont introduites et C
extraite de manière continue. Formulez les équations diffé-
rentielles pour les quantités de matière de chacune des subs-
tances. Les membres de droite de ces équations sont
supposés ne contenir que les concentrations, le volume du
réacteur, la constante de réaction et les flux constants InA, InB
et InC. (c) On admet que la régime stationnaire a les particu-
larités suivantes : (1) La valeur de InC est fixée de telle
manière que toute la quantité de C produite peut être extraite
instantanément, soit InC = 1.0 mol h–1; (2) La concentration
de A est constante à 4.0 mol L–1. Quelles sont les valeurs de
InA et InB qui permettent de maintenir le système dans cet
état? Que valent les quantités de matière nA et nB en régime
stationnaire ? Admettez que la constante de réaction est
k = 0.10 L2 mol–2 h–1.
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THERMOÉLECTRIQUES

La thermoélectricité est un phénomène fascinant: dans certains matériaux, le transport
de la charge électrique et celui de la chaleur (entropie) sont couplés de telle manière
que ce couplage engendre des processus qui peuvent être utilisés pour développer des
générateurs thermoélectriques et des pompes à chaleur électrothermiques. La recher-
che actuelle est dirigée vers le développement de nouveaux matériaux et d’appareils
thermoélectriques, vu qu’ils sont porteurs d’applications nouvelles très utiles.

Les applications pratiques sont par exemple des générateurs pour les vols dans l’espa-
ce, loin du Soleil, où la source de chaleur est un matériau radioactif, de simples ali-
mentations électriques dans des régions privées de réseau électrique ou des
alimentations dans des véhicules afin de récupérer de grandes quantités d’énergie, qui
serait autrement dissipée avec la chaleur produite par les moteurs.

Les pompes à chaleur thermoélectriques sont utilisées pour refroidir les puces des
ordinateurs; en médecine, on a étudié leur engagement pour le contrôle d’aires du cer-
veau touchées lors d’une attaque cérébrale. Leur avantage est qu’elles peuvent être
contrôlées de manière très précise et qu’elle réagissent très rapidement, ce qui permet
de contrôler les températures en médecine et dans des échantillons biologiques très pe-
tits. Une telle application est un appareil dont on peut varier la température de surface
très rapidement et très finement afin d’étudier le sens du toucher chez des patients vic-
times d’une maladie particulière.

Dans l’étude de cas qui suit, nous étudierons le fonctionnement de modules PELTIER

utilisés en tant que refroidisseur ou de générateur. Nous effectuerons des expériences
et analyserons les données recueillies afin d’acquérir une meilleure connaissance des
phénomènes, ce qui nous permettra d’élaborer des modèles de ces dispositifs. Enfin,
les modèles pourront être utilisés pour étudier les propriétés et le comportement de ces
appareils par l’intermédiaire de simulations.
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Les modules PELTIER modernes (fig. III.1) sont constitués de deux types différents de
semiconducteurs qui transportent l’entropie et la charge de manières différentes: dans
l’un, l’entropie circule dans le même sens que la charge, dans l’autre, elle circule dans
le sens opposé.

FIGURE III.1 Module PELTIER: le
module a une surface de 6x6 cm et
une épaisseur de quelques millimè-
tres. 254 courts segments de maté-
riaux semi-conducteurs sont
connectés de manière alternée,
créant une séquence de conducteur
pour la charge électrique et de
ponts pour transporter l’entropie
d’une surface vers l’autre. La
figure III.6 contient les détails de
cette structure.
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THERMOÉLECTRIQUES

Lorsqu’ils sont combinés, ces éléments permettent soit d’utiliser le transport de la
charge électrique pour forcer l’entropie à circuler d’endroits froids vers des endroits
chauds, en mode pompe à chaleur, soit d’utiliser le transport de l’entropie pour forcer
la charge à remonter le potentiel électrique, en mode générateur. Dans ce qui va suivre,
nous jetons un premier regard sur deux expériences qui lèvent le voile sur ce qui se
passe.

 

III.1.1 Refroidisseur P

 

ELTIER

Si nous connectons les câbles d’un module PELTIER aux bornes d’une batterie, nous
observons que, très rapidement, les faces opposées changent de température: l’une de-
vient chaude alors que l’autre se refroidit, ce qui suggère que nous pouvons utiliser ce
dispositif en tant que pompe à chaleur. Deux volumes d’eau dans un récipient bien iso-
lé sont séparés par un module PELTIER connecté à une alimentation électrique
(fig. III.2a). Si nous établissons une tension constante aux bornes du dispositif, nous
observons que l’un des volumes d’eau se refroidit alors que l’autre se réchauffe
(fig. III.2b). La température globale augmente si le système est isolé thermiquement
sur tous les côtés, fond et couvercle compris.

 

Le module 

 

P

 

ELTIER

 

 en tant que pompe à chaleur (entropie). Le volume d’eau qui
se réchauffe reçoit de la chaleur, celui qui se refroidit en perd. Il est sensé d’admettre
que la chaleur acquise par le premier volume vient du second. Vu que la chaleur circule
ici d’un corps froid vers un corps chaud, elle ne le fait pas spontanément, comme dans
un processus de conduction. La chaleur est pompée par le dispositif thermoélectrique.
Comme pour n’importe quel autre type de pompe, un tel processus a besoin d’énergie
pour réaliser sa tâche (fig. III.3).

 

Conduction d’entropie. Le pompage d’entropie semble s’interrompre après approxi-
mativement 2000 s dans l’expérience qui fait l’objet de la figure III.2a: la température
du côté froid cesse de diminuer.

Mais le processus doit certainement se poursuivre, vu que le courant électrique conti-
nue de circuler à travers l’appareil. La raison du comportement observé est simple-
ment le résultat de l’écoulement d’entropie à travers la barrière entre les volumes
d’eau chaude et froide. Cet écoulement se déroule en mode conductif, vu qu’il existe
la différence de température nécessaire et que le dispositif n’est pas parfaitement isolé.
Le transport en mode conductif a lieu dans la direction opposée au transport thermoé-
lectrique. Lorsque les deux courants d’entropie deviennent égaux, la température du
volume froid cessera de diminuer.

 

Production d’entropie. Le module PELTIER produit également de la chaleur ; le
matériau à travers lequel s’écoule la charge électrique a une certaine résistance, et de
la chaleur (de l’entropie) est produite par effet Joule. En conséquence, la chaleur
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FIGURE III.2 Refroidisseur
PELTIER: (a) deux volumes d’eau
sont séparés par un module PELTIER.
Un couvercle isolé thermiquement
est traversé par deux thermomètres
n’apparaissant pas dans la photo qui
enregistrent les températures
respectives; (b) enregistrement des
températures de chacun des bains.

FIGURE III.3 Module PELTIER utili-
sé en mode pompe à chaleur: la
charge électrique circule d’un
potentiel élevé vers un potentiel in-
férieur en libérant de l’énergie.
Cette énergie est utilisée pour pom-
per la chaleur (l’entropie) vers le
haut et, simultanément, pour pro-
duire de l’entropie supplémentaire.
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(l’entropie) des deux volumes d’eau croît globalement, tout comme la température
moyenne; c’est ce qui apparaît dans le diagramme de la figure III.2b. Si nous souhai-
tons que le module PELTIER fonctionne correctement comme refroidisseur de l’un des
volumes d’eau, nous devons extraire l’entropie du système.

 

Résumé. Un dispositif thermoélectrique est un matériau qui transporte de la charge
électrique et de la chaleur de telle manière que les deux flux sont couplés. Il n’y a ni
parties mobiles, ni fluides caloporteurs. Par conséquent, il semble que, dans une pom-
pe à chaleur thermoélectrique, la charge électrique transporte de l’entropie.

 

III.1.2 Générateur thermoélectrique

Un module PELTIER peut être amené à fonctionner à l’envers, auquel cas il fonctionne
en tant que machine thermique, c’est-à-dire comme générateur électrique. Lorsque le
module est placé entre un volume d’eau chaude et un volume d’eau froide, comme
dans la figure III.2a, une tension UMP apparaît aux bornes du module PELTIER

(fig. III.4a); si aucune charge n’est connectée, la tension mesurée est la tension à vide.
Comme de l’entropie s’écoule du volume chaud vers le volume froid, la température
élevée TH diminue alors que la température basse TB augmente. En conséquence, la
tension à vide UMP, vide diminue de plus en plus. Lorsque les températures des volu-
mes d’eau se sont équilibrées, la tension s’annule.

La tension s’ajuste quasi parfaitement à une fonction linéaire de la différence de tem-
pérature TH –TB. Il s’ensuit que nous pourrions utiliser un dispositif thermoélectrique
en tant que thermomètre, et pas seulement en tant que générateur ou pompe à chaleur.

Si nous connectons une charge telle qu’une résistance ohmique aux bornes du dispo-
sitif, celui-ci entraîne un processus électrique dont la puissance peut être évaluée à par-
tir des mesures de la tension et de l’intensité du courant (fig. III.5a). L’efficacité est
inférieure à celle de CARNOT (chapitre 5, section 5.8.2, équation (5.50)), ce qui signi-
fie que, comme toutes les autres machines thermiques, un générateur PELTIER produit
de l’entropie au cours de son fonctionnement.

Le diagramme de processus (fig. III.5b) explique le fonctionnement de la machine
thermique PELTIER. Nous remarquons qu’il est semblable à celui d’un moteur de
STIRLING ou de n’importe quelle autre machine thermique (chapitre 5, section 5.8.4,
fig. 5.56). Lorsque la chaleur tombe d’un niveau élevé vers un niveau bas, elle libère
de l’énergie qui est utilisée pour entraîner d’autres processus, par exemple l’écoule-
ment de charges électriques d’un potentiel bas vers un potentiel plus élevé. Cependant,
dans ce cas particulier, il est parfaitement clair que seule une fraction de l’énergie li-
bérée est utilisée pour entraîner le courant électrique. Une bonne partie est utilisée
pour produire de la chaleur.
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FIGURE III.4 Module PELTIER en
tant que générateur électrique: (a)
évolution de la température de deux
volumes d’eau séparés par un mo-
dule PELTIER dans un récipient bien
isolé, ainsi que de la tension à vide
aux bornes du dispositif; (b) dia-
gramme de l’ajustement linéaire de
la tension en fonction de la différen-
ce de température des volumes
d’eau.



 

298

 

P

 

HYSIQUE

 

, 

 

UNE

 

 

 

PRÉSENTATION

 

 

 

SYSTÉMIQUE

 

I

 

NTERLUDE 

 

III   P

 

OMPES

 

 

 

À

 

 

 

CHALEUR

 

 

 

ET

 

 

 

GÉNÉRATEURS

 

 

 

THERMOÉLECTRIQUES

La puissance de sortie mesurée est proportionnelle au carré de la différence de tempé-
rature entre l’eau chaude et l’eau froide (fig. III.5a). Cela est analogue à ce que nous
savons de la puissance dissipée dans une résistance qui est proportionnelle au carré de
la tension (chapitre 3, section 3.3.3, exemple 3.2). Nous pouvons expliquer qualitati-
vement ce résultat. Admettons que l’énergie libérée lors de la chute de la chaleur de
TH àTB est proportionnelle à la différence de température. Si le flux d’entropie est aus-
si proportionnel à la différence de température, la puissance thermique doit être pro-
portionnelle au carré de la différence de température. Si, d’autre part, nous admettons
qu’une partie fixe de l’énergie libérée lors de la chute de la chaleur est utilisée pour
entraîner le courant électrique, nous obtenons ce que montre la figure III.5b. Dans la
section III.2, nous procéderons à une analyse numérique de cette observation.

 

Résumé. Lorsque le module PELTIER est utilisé en mode pompe à chaleur, notre in-
terprétation est que l’électricité qui s’écoule à travers le matériau entraîne de l’entropie
dans son mouvement. Il semble raisonnable d’admettre que le principe du générateur
thermoélectrique consiste dans le processus inverse, celui de l’entropie entraînant de
la charge électrique dans son écoulement. Nous pouvons en conclure que les transports
de charge et d’entropie sont couplés par le matériau.

 

III.1.3 Thermocouple et structure d’un module P

 

ELTIER

Le dispositif thermoélectrique le plus simple est un thermocouple qui est un élément
constitué de deux matériaux conducteurs différents qui couplent les transports de char-
ge et d’entropie de différentes manières (fig. III.6a). Des segments de ces deux maté-
riaux sont connectés électriquement à l’une de leurs extrémités et exposés à un
environnement ayant une température TH (fig. III.6a).
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FIGURE III.5 Module PELTIER utili-
sé en mode générateur électrique:
(a) la puissance délivrée par un
module PELTIER entre deux réser-
voirs de températures différentes est
proportionnel au carré de la diffé-
rence de température; (b) diagram-
me de processus du générateur
PELTIER.
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FIGURE III.6 Thermocouple et module PELTIER: (a) thermocouple constitué de deux matériaux conducteurs
différents; entre deux environnements aux températures respectives TH et TB, il peut fonctionner comme générateur
ou comme thermomètre; les sources et les puits d’entropie doivent être isolés électriquement du thermocouple; (b)
une combinaison de thermocouples constitués de semi-conducteurs de type n et de type p peut servir de pompe à
chaleur PELTIER: les flèches continues représentent les flux d’entropie, les flèches discontinues les flux de charge
électrique; le flux conductif d’entropie qui s’établirait entre les extrémités chaude et froide n’apparaît pas dans la
figure.
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III.1  MODULE PELTIER EN TANT QUE REFROIDISSEUR ET GÉNÉRATEUR

Si les deux autres extrémités ouvertes sont exposées à un environnement ayant une
autre température TB, une tension apparaît entre ces deux extrémités. L’utilisation d’un
thermocouple de cette manière en fait un thermomètre permettant de déduire la tem-
pérature à partir de la tension mesurée. Si nous branchons une charge entre ces deux
extrémités, ce dispositif devient un générateur thermoélectrique capable d’entraîner
un processus.

Dans la figure III.6, il est clair que nous devons avoir deux matériaux différents pour
obtenir un thermocouple. Même si chacun des conducteurs A ou B couple les trans-
ports d’entropie et de charge, nous n’enregistrerions aucun effet, vu que les courants
d’entropie ou de charge se compenseraient si les deux matériaux étaient identiques. Il
n’est pas nécessaire d’utiliser des semi-conducteurs (de type p ou n), comme c’est le
cas dans la figure III.6b, où les flux de charge et d’entropie sont soit parallèles, soit
anti-parallèles; pour obtenir l’effet thermoélectrique, il suffit d’utiliser deux métaux
différent tels que le cuivre et le constantan pour lesquels l’intensité du couplage ther-
moélectrique des flux est différent. La différence de ces intensités est responsable de
l’effet thermoélectrique observé. L’intensité du couplage est mesurée au moyen du
coefficient SEEBECK du matériau; les valeurs des coefficients SEEBECK de quelques
matériaux sont reportées dans le tableau III.1.

L’effet est plus prononcé si des matériaux ayant des coefficients de SEEBECK positifs
et négatifs peuvent être utilisés comme dans le cas de semi-conducteurs de type p et
n. La combinaison de deux matériaux qui diffèrent fortement est essentielle si l’on dé-
sire construire des refroidisseurs thermoélectriques, car dans le cas contraire, l’effet
est trop faible. La figure III.6a montre que, pour de tels matériaux, le flux d’entropie
est soit parallèle, soit antiparallèle au flux de charge électrique.

Les refroidisseurs PELTIER modernes sont construits à partir de semi-conducteurs dont
l’une des branches du thermocouple est de type p et l’autre de type n. Si plusieurs, voi-
re un grand nombre de ces couples peuvent être combinés électriquement en série et
thermiquement en parallèle, on obtient des solutions efficaces pour des refroidisseurs
thermoélectriques (fig. III.6b).

TABLEAU III.1 Coefficients SEEBECK à 0°C (relativement au platine)a

a. Le coefficient SEEBECK absolu du platine vaut approximativement 5 µV K-1

Métaux
Coefficient

SEEBECK
Semi-conducteurs

Coefficient

SEEBECK

εεεε / µV K-1 εεεε / µV K-1

Aluminium 3.5 Ge 300

Bismuth – 72 Se 900

Constantan – 35 Si 440

Cuivre 6.5 Te 500

Or 6.5 PbTe – 180

Nichrome 25 Bi2Te3 (n-type) – 230

Nickel – 15 Sb2Te3 (p-type) 185

Platine 0

Argent 6.5

Tungstène 7.5
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INTERLUDE III   POMPES À CHALEUR ET GÉNÉRATEURS THERMOÉLECTRIQUES

Le module PELTIER utilisé dans cette étude de cas (Melcor CP-127-06L) utilise 127
couples de semi-conducteurs Bi2Te3 (de type n) et Sb2Te3 (de type p); nous avons
donc 254 conducteurs entre les deux faces du dispositif. Selon le tableau III.1, la dif-
férence des coefficients SEEBECK pour un couple unique est de 415 µV K-1. Au total,
le coefficient SEEBECK du module PELTIER Melcor doit être de 530 mV K-1.

III.2 ANALYSE DE QUELQUES EXPÉRIENCES

Dans cette section, nous allons discuter les résultats de quelques expériences utilisant
un module PELTIER. Les données recueillies seront analysées au moyen des outils con-
ceptuels qui ont été développés dans les chapitres 1 à 6.

III.2.1 Observations initiales

Nous allons effectuer plusieurs expériences simples. Un module PELTIER (Melcor CP-
127-06L) est pris en sandwich entre deux plaques de cuivre ayant la même surface de
6x6 cm2 que le module et de 1.0 cm d’épaisseur, dont on peut mesurer la température;
les plaques de cuivre sont assez bien isolées de l’environnement (fig. III.7a). On
connecte ce module à un circuit électrique simple comprenant une résistance externe
et une alimentation qui peut être enclenchée et déclenchée (fig. III.7b).

La figure III.8 montre deux réalisations typiques de l’expérience. Au début de l’expé-
rience, les températures des plaques de cuivre sont égales. L’alimentation est enclen-
chée pendant 100 s et le module fonctionne en tant que pompe à chaleur, ce qui
entraîne une évolution de la température des plaques. Après 100 s, l’alimentation est
déclenchée et les températures des plaques peuvent se rapprocher de l’équilibre. La
tension de la source US, celle du module PELTIER UMP et celle de la résistance externe
UR, ext sont enregistrées (fig. III.8b et d). Dans la première expérience (fig. III.8a et b),
le circuit reste fermé après le déclenchement de l’alimentation; la tension UMP est éga-
le à la tension négative aux bornes de la résistance externe qui fonctionne alors comme
charge pour le générateur thermoélectrique. Dans la seconde réalisation de l’expérien-
ce (fig. III.8c et d), le circuit est ouvert après le déclenchement de l’alimentation; dans
ce cas, la tension UR, ext est nulle (fig. III.8c et d).

UMP

Rext

MP

US

UR,ext
1 2

IS

IQ

Cuivre 1 Cuivre 2Module
Peltier

T2CuT1Cu T1 T2

1

2

a. b.

FIGURE III.7 Expérience avec un
module PELTIER: (a) le module
PELTIER est pris en sandwich entre
deux plaques de cuivre dont on peut
mesurer la température; (b) le dis-
positif est intégré dans un circuit
équipé d’une alimentation et d’une
résistance externe. Les blocs de cui-
vre sont isolés thermiquement avec
du papier et deux plaques métalli-
ques maintiennent l’ensemble en
place.
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Les températures des plaques de cuivre (T1Cu et T2Cu dans les figures III.8a et c) nous
servent d’estimations des températures de surface T1 et T2 du module PELTIER

(fig. III.7b).

Quelques conclusions générales simples peuvent déjà être tirées de l’inspection des
mesures. (1) Le dispositif fonctionne comme une pompe à entropie entraînée par
l’électricité durant les 100 premières secondes. (2) Lorsque l’alimentation est coupée
et que les températures des faces sont différentes, la tension aux bornes de l’élément
thermoélectrique fait fonctionner le module comme générateur (t > 100 s). Le flux
d’entropie entre les deux plaques doit être à l’origine du processus électrique.

III.2.2 Mode pompe à chaleur: module PELTIER en tant que refroidisseur

Si nous commençons toujours l’expérience avec les plaques de cuivre à températures
égales, le processus (2) ne peut pas avoir lieu. Nous avons alors une situation qui nous
permet d’étudier l’effet du flux d’électricité (entraîné par l’alimentation) sur le flux
d’entropie. Nous mesurons les grandeurs électriques, en particulier UR, ext (fig. III.7d),
ce qui nous fournit l’intensité du courant électrique si nous connaissons la valeur Rext
de la résistance externe:

(III.1)

Nous mesurons les températures des plaques de cuivre sur une courte période pour
voir à quelle vitesse elles s’écartent l’une de l’autre; cette vitesse est une indication de
l’intensité du courant d’entropie pompée par le module PELTIER. Nous le faisons pour
différentes valeurs de la tension US de l’alimentation et obtenons le diagramme de la
figure III.9a.

Le taux initial auquel T1Cu et T2Cu s’écartent se révèle être proportionnel à l’intensité
du courant (fig. III.9b). Vu que le taux de variation des températures des plaques de
cuivre indique le taux auquel elles perdent ou gagnent de l’entropie, nous pouvons for-
muler l’hypothèse que la charge électrique entraîne avec elle de l’entropie avec une
intensité proportionnelle à celle du courant:
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(III.2)

Le facteur de proportionnalité α est appelé coefficient PELTIER du module1. Il indique
la force du couplage entre les flux de charge et d’entropie; sa valeur dépend des ma-
tériaux utilisés et de la structure géométrique (longueur et section des conducteurs).
T1 et T2 sont les températures des surfaces du module PELTIER. Lorsque nous serons
amenés à faire des calculs, nous devrons nous souvenir que T1Cu et T2Cu ne sont pas
exactement égales aux précédentes mais, pour l’instant, nous les utiliserons comme in-
dication des températures du module.

En outre, le fait que la première plaque refroidit moins vite que la seconde s’échauffe
nous permet de conclure que de l’entropie est produite par le module PELTIER, très
probablement comme conséquence de la conduction de charge électrique à travers le
dispositif. La différence des pentes de température pour une expérience particulière
doit être proportionnelle à la différence des courants d’entropie quittant la première
plaque et entrant dans la seconde, et doit être égale au taux global de production
d’entropie.

Estimation du coefficient PELTIER. Nous allons utiliser les résultats présentés dans
la figure III.9a pour obtenir une première approximation de la valeur du coefficient
PELTIER. Expliquons d’abord comment le graphe III.9b a été obtenu. Pour déterminer
le taux de variation de la température, nous utilisons les valeurs des températures de
la figure III.9a pour l’intervalle allant de 15 à 30 s pour l’une des expériences. Comme
il y a deux valeurs, une pour chacune des plaques de cuivre, nous utilisons la moyenne
des valeurs absolues. Comme nous le voyons dans la figure III.8b, la valeur de UR,ext
varie durant cet intervalle; nous prenons ici aussi la valeur moyenne pour calculer les
intensités des courants électriques au moyen de l’équation (III.1).

Nous devons convertir le taux de variation de la température d’une plaque de cuivre en
taux de variation de l’entropie. Nous admettons que cette grandeur est égale au flux
d’entropie entrant et traversant le module PELTIER. Le taux de variation de l’entropie
est donné par:

(III.3)

Les valeurs pour la masse et le coefficient de température de l’énergie (chaleur massi-
que) sont respectivement de 0.31 kg et 400 J K-1 kg-1. Si, pour la température, nous
choisissons TB = 300 K, la pente de la courbe qui s’ajuste aux points de la figure III.9b

1. Dans la présentation traditionnelle, basée sur l’énergie, c’est le produit Tα qui est appelé
coefficient PELTIER.
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peut être convertie de manière à obtenir le coefficient PELTIER. En vertu de
l’équation (III.2):

Le fabricant indique pour le coefficient PELTIER de son produit une valeur de
0.053 W K-1 A-1, soit plus du double de celle que nous avons trouvée. Ce n’est pas une
surprise, vu que les données utilisées ne répondent pas à la condition de températures
égales de part et d’autre du module. Comme T2 > T1, nous devons nous attendre à ce
que de l’entropie s’écoule en mode conductif du point 2 vers le point 1, dans le sens
opposé au transport d’entropie emportée par la charge qui circule du point 1 vers le
point 2. Il s’ensuit que, si nous n’avons pas des conditions isothermes, il a a deux écou-
lements opposés de chaleur (entropie) à travers le module. C’est pour cette raison que
l’intensité IS du courant d’entropie émanant de la plaque de cuivre gauche représente
de manière très insuffisante le courant d’entropie thermoélectrique entraîné de gauche
à droite par le courant électrique.

III.2.3 Module PELTIER en tant que générateur électrique

La seconde partie des données apparaissant dans les figures III.8c et d, après le déclen-
chement de l’alimentation, peut être utilisée pour étudier le fonctionnement du module
comme générateur. Dans le cas présent, le changement consiste à laisser le circuit
ouvert après le déclenchement de l’alimentation.

Tension thermoélectrique. Dans ce cas, la tension UMP mesurée aux bornes du mo-
dule PELTIER doit être égale à la tension du générateur, la tension thermoélectrique
UTE pour la phase 2 de l’expérience (fig. III.10a).

Si nous reportons la tension à vide du circuit (UMP = UTE) en fonction de la différence
de température T2 – T1, pour laquelle nous prenons T2Cu –T1Cu, nous observons que la
première est proportionnelle à la seconde (fig. III.10b): une différence de température
entre les faces d’un module PELTIER entraîne l’apparition d’une tension qui permet
d’utiliser le module comme générateur:

(III.4)
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Le facteur de proportionnalité ε qui relie la tension thermoélectrique à la différence de
température est appelé coefficient SEEBECK. Si nous utilisons les résultats reportés
dans la figure III.10a, nous obtenons:

Cette nouvelle estimation n’est pas fiable, vu que nous n’avons pas les valeurs des tem-
pératures T1 et T2 sur les faces du module PELTIER. Étant donné que la différence de
température du module est certainement plus faible que la valeur que nous avons uti-
lisée, une valeur fiable de ε doit être supérieure à 0.028 V K-1. Il se révèle qu’elle doit
être égale à 0.053 V K-1, valeur égale à celle du coefficient PELTIER. Cela est un constat
important que nous confirmerons sur des bases théoriques à la section III.4.

Conductance entropique du module PELTIER. Nos observations nous permettent
d’évaluer une autre propriété importante du module, à savoir comment il conduit l’en-
tropie. Nous utilisons l’évolution des températures en fonction du temps (fig. III.10a)
et calculons le taux de variation de la température la plus élevée. Nous utilisons cette
valeur pour calculer le taux de variation de l’entropie de la plaque de cuivre la plus
chaude au moyen de l’équation (III.3). Si nous négligeons d’éventuelles pertes d’en-
tropie vers l’environnement, cette grandeur est égale au courant d’entropie à travers le
générateur PELTIER. Il s’agit du seul processus de transport, vu que le dispositif fonc-
tionne en circuit ouvert, et ce transport est de type conductif. Si nous reportons IS en
fonction de la différence de température, nous obtenons une relation linéaire quasi par-
faite (fig. III.11), ce qui nous permet de calculer la conductance entropique globale du
module:

(III.5)

Puisque nous n’avons pas les températures T1 et T2, nous les remplaçons par les tem-
pératures des plaques de cuivre T1Cu et T2Cu:

Comme la différence de température utilisée ici est trop élevée, une meilleure valeur
de la conductance entropique sera plus élevée (proche de 3.7·10-3 W K-2).

Puissance et diagramme caractéristique du module PELTIER comme généra-
teur. Jusqu’ici, nous avons utilisé les données de l’expérience qui se déroulait avec le
circuit électrique ouvert. Lorsque les deux faces du module PELTIER sont à des tempé-
ratures différentes, une tension apparaît à ses bornes. Comme cette tension est mesurée
en circuit ouvert, elle doit correspondre à la tension d’un générateur interne, comme
c’est le cas lors de la mesure de la tension à vide d’une batterie.

Pour pouvoir étudier plus en détail les propriétés électriques du générateur, nous allons
utiliser une variante de l’expérience décrite plus haut. Lorsque le module PELTIER est
pris en sandwich entre deux plaques métalliques (ou deux volumes d’eau) à des tem-
pératures différentes et fonctionne en tant que générateur, nous varions successive-
ment la valeur de la résistance ohmique de charge et relevons les tensions UR, ext et
UMP et (qui doivent être égales). Le module est la paroi qui sépare les deux volumes
d’eau de la figure III.2a. Les résultats de l’expérience sont reportés dans la
figure III.12a.

ε =
−

= = −U

T T
TE V

K
V K

2 1

10 83

30
0 028

.
.

I G T TS S= − −( )2 1

G
I

T TS
S= −
−

= − − = ⋅
−

− −

2 1

1
30 075

30
2 5 10

Cu Cu

W K

K
W K

.
. 22

FIGURE III.11 Flux d’entropie en
fonction de la différence de tempé-
rature. La caractéristique conducti-
ve est quasi linéaire avec une pente
de 2.5·10-3 W K-2.

0

0.02

0.04

0.06

0.08

0 10 20 30

I S
/W

/K

∆T / K



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 305

III.2  ANALYSE DE QUELQUES EXPÉRIENCES

Comme les propriétés du générateur PELTIER évoluent avec la différence de tempéra-
ture, nous ne pouvons pas utiliser directement les données expérimentales. Nous de-
vons essayer de rapporter tous les calculs à la même différence de température, qui
peut être arbitraire.

Nous savons sur la base d’observations précédentes (fig. III.5a) que la puissance élec-
trique est proportionnelle au carré de la différence de température. Le calcul de la puis-
sance est simple, vu que nous connaissons la tension UR, ext et la valeur de la résistance
externe utilisée:

(III.6)

La puissance électrique doit être calculée séparément pour chacune des phases de l’ex-
périence de la figure III.12a. Les résultats sont représentés dans la figure III.12b en
fonction du carré de la différence de température pour les quatre premières valeurs de
la résistance externe. Chaque jeu de données peut être ajusté par une relation linéaire.
À partir de ces relations, nous pouvons calculer la puissance pour chacune des charges
pour la même différence de température, par exemple 50 K. Ces valeurs ont été calcu-
lées pour chacune des phases et la puissance a été représentée dans la figure III.13a en
fonction de la résistance sur une échelle logarithmique. Le résultat est le même que
celui que l’on obtient lors de l’étude des éléments galvaniques (batteries): la puissance
atteint un maximum pour une valeur particulière de la résistance.

Nous approchons du but. Connaissant la puissance électrique d’une charge et sa résis-
tance, nous pouvons calculer l’intensité du courant qui s’écoule à travers la charge:

(III.7)
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ce qui nous permet de construire la caractéristique du module PELTIER en tant que
générateur. La figure III.13b révèle qu’elle se présente exactement comme celle d’une
batterie qui possède une résistance interne constante. Autrement dit, le fonctionne-
ment électrique d’un module PELTIER peut être modélisé de la même manière que
celui d’un élément galvanique (chapitre 2, section 2.7.2, figures 2.55 et 2.56).

Nous pouvons calculer la résistance interne de notre modèle de deux manières diffé-
rentes. À partir de la caractéristique de la figure III.13b, nous obtenons une valeur
d’approximativement 1.2 Ω. Mais, si nous regardons attentivement les données
recueillies au début de l’expérience, nous voyons que la tension UMP aux bornes du
module et UR, ext sur la résistance externe sont pratiquement égales (fig. III.8b), ce qui
démontre que le module possède une résistance interne. La tension fournie par l’ali-
mentation est répartie de manière égale sur le module PELTIER et la résistance externe,
ce qui suggère que la résistance interne Rint est pratiquement égale à celle de la résis-
tance externe, qui était de 1.0 Ω lors de l’expérience.

Enfin, nous pouvons comprendre pourquoi la tension sur le module PELTIER augmente
durant la première phase de l’expérience (fig. III.8b), alors que UR, ext diminue. Dès
qu’une différence de température s’établit entre les deux faces du module, la tension
thermoélectrique apparaît également alors même que le module est en mode pompe à
chaleur. Les résultats indiquent que UTE doit être positive: nous avons donc trois ten-
sions positives qui se partagent celle de l’alimentation. Il s’ensuit que UR, ext et le cou-
rant électrique diminuent, laissant une tension plus élevée pour UMP.

III.2.4 Comparaison des puissances électrique et thermique

Les données obtenues lors de l’expérience nous permettent de dériver encore d’autres
résultats. Examinons les résultats de la phase 2, durant laquelle le module fonctionne
comme générateur (fig. III.8, t > 100 s). Nous allons utiliser les taux de variation des
températures T1Cu et T2Cu pour obtenir ceux de l’entropie. Il nous les faut pour pouvoir
estimer le flux d’entropie qui s’écoule à travers le module, comme dans le diagramme
de processus de la figure III.5b. Le résultat de cette évaluation apparaît dans la
figure III.15a.
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FIGURE III.14 Modèle du fonction-
nement d’un module PELTIER. Un
générateur électrique idéal, qui éta-
blit une tension entre les points A et
B, est la force d’entraînement du
module en mode générateur. Le
module est en outre caractérisé par
une résistance interne Rint. La ten-
sion du module UMP, entre les
points 1 et 2, est la somme de UTE et
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module fonctionne en mode généra-
teur thermoélectrique.
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Le courant d’entropie et la différence de température peuvent être utilisés pour calcu-
ler la puissance thermique du module; de manière analogue, nous utilisons la tension
sur la résistance de charge et l’intensité du courant électrique pour calculer la puissan-
ce électrique:

(III.8)

Les résultats de ces calculs sont présentés dans la figure III.15b, où la puissance élec-
trique est reportée en fonction de la puissance thermique. Le résultat le plus important
est que la relation entre les deux grandeurs est linéaire : une fraction constante de
l’énergie libérée dans le processus thermique, c’est-à-dire la chute de l’entropie entre
deux niveaux de la température, est utilisée pour entraîner la charge électrique d’un
niveau bas vers un niveau plus élevé du potentiel électrique. Cette fraction représente
la mesure naturelle de l’efficacité du module, appelée efficacité selon la deuxième loi
(chapitre 5, section 5.8.2, équation (5.51)):

(III.9)

Les résultats de nos expériences montrent que cette efficacité est d’environ 7%. C’est
approximativement la moitié de la valeur prédite par la théorie. La différence est facile
à expliquer. Nous avons effectué les calculs à partir de la seule différence de tempéra-
ture qui nous est accessible, celle des plaques de cuivre. Cette différence T2Cu –T1Cu
est nettement plus élevée que la différence de température T2 –T1 entre les deux faces
du module PELTIER. Nous devons admettre qu’il existe une résistance de contact ther-
mique entre les plaques de cuivre et le module qui cause un saut de température aux
surfaces de contact (fig. III.16).

III.3 MODÈLES DYNAMIQUES D’UN MODULE PELTIER

Nous avons réussi à glaner une grande quantité d’informations par une analyse des
données recueillies lors des expériences décrites plus haut. Nous devrions être en
mesure de comprendre les processus de transport d’entropie et de charge électrique, et
nous savons comment introduire les paramètres matériels, coefficients SEEBECK et
PELTIER, résistance électrique interne, conductance entropique, qui permettent de
quantifier les effets. Cependant, pour ces quatre coefficients, nous n’avons pour l’ins-
tant qu’une seule estimation fiable, celle de la résistance interne du module, proche de
1.0 Ω. Les trois autres estimations numériques souffrent d’une connaissance insuffisan-
te des températures du module, vu que nous n’avons pu mesurer que les températures
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FIGURE III.16 Saut de température
aux surfaces de contact: (a) schéma
du dispositif expérimental (les pla-
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le PELTIER.
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des plaques de cuivre ou des volumes d’eau entre lesquels le module PELTIER était pris
en sandwich. Les températures réelles mais inobservables ne peuvent être obtenues
qu’à partir de simulations, comme par exemple le résultat représenté dans la
figure III.16b.

En outre, il est assez difficile d’aborder les effets dynamiques si l’on n’a que des don-
nées et des concepts simples. Prenons, à titre d’exemple, la mesure de la tension aux
bornes du module PELTIER en mode circuit ouvert (fig. III.8d). Juste après la coupure
de l’alimentation, un agrandissement du graphique fait apparaître deux temps caracté-
ristiques pour l’évolution de la tension (fig. III.17).

La plus courte de ces constantes de temps est liée à la capacité entropique du module
PELTIER. Nous pouvons certainement essayer d’estimer cette grandeur sans recourir à
un modèle dynamique élaboré, mais il sera plus simple de cerner cette valeur si nous
pouvons ajuster des séries temporelles expérimentales à des simulations de la dynami-
que des systèmes étudiés jusqu’ici.

En résumé, les modèles dynamiques vont nous permettre d’effectuer des simulations
de situations dont l’étude expérimentale, destinée à développer de nouveaux systèmes
thermoélectriques, coûterait beaucoup trop de temps.

III.3.1 Idée pour un modèle dynamique de base

Le point de départ pour un modèle dynamique qui englobe tous les aspects discutés
jusqu’ici est l’observation qu’un module PELTIER ressemble à un panneau qui a un
côté chaud et un côté froid. Simultanément, un côté est à un potentiel électrique élevé,
le côté opposé à un potentiel moindre.

Cela suggère le modèle suivant (fig. III.18). Le module consiste en deux éléments de
stockage de l’entropie, pour le côté froid et le côté chaud respectivement, l’entropie
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accumulée déterminant la température, et deux condensateurs, pour le potentiel élevé
et le potentiel bas respectivement, la charge du condensateur déterminant leur poten-
tiel. Les températures associées aux capacités thermiques représentent les températu-
res des faces respectives et la différence des potentiels des condensateurs est égale à
la tension aux bornes du module PELTIER.

Une représentation graphique de ces idées est présentée dans la fig. III.18. Un généra-
teur parfait responsable de la tension UTE et une résistance pour le transport conductif
de la charge sont placés entre les deux condensateurs, de manière analogue à une bat-
terie, comme dans la figure III.14. La tension thermoélectrique est créée par la diffé-
rence de température des capacités thermiques.

De même, une résistance thermique pour le flux conductif d’entropie est placée entre
les capacités thermiques. Les flux couplés d’entropie et de charge qui sont responsa-
bles de l’effet thermoélectrique sont comme un pontage de cette résistance thermique.
Il existe un transport non dissipatif d’entropie qui est directement couplé au courant
électrique.

Dans ce modèle, la résistance thermique est la seule source de dissipation, c’est-à-dire
de production d’entropie. Toute l’entropie produite s’ajoute au transport d’entropie en-
tre les capacités thermiques. Le taux de production d’entropie est la conséquence de
deux processus: le flux conductif de charge à travers la résistance électrique et le flux
conductif d’entropie à travers la résistance entropique.

III.3.2 Un premier modèle dynamique concret

La transposition des idées relatives au fonctionnement du module PELTIER, illustrées
dans la fig. III.18, en un modèle dynamique n’est pas difficile du tout. Elle est même
rendue plus simple si nous traitons d’abord le cas d’un module isolé thermiquement
de son environnement, ce qui nous permet d’ignorer les afflux et déflux d’entropie IS
de et vers les éléments thermoélectriques. Les quatre éléments capacitifs représentés
par des réservoirs ainsi que les flux d’entropie et de charge constituent l’ossature de
notre modèle (fig. III.19).

Il existe deux types de transport d’entropie entre les capacités entropiques: l’un qui est
couplé avec le courant de charge IS, TE entre les condensateurs, et le transport conduc-
tif IS2 causé par la différence de température T2 –T1. Ce dernier a déjà été modélisé au
chapitre 5, section 5.6.1:
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(III.10)

Si GS est censé représenter la conductance entropique totale du module, le facteur 2
prend en compte le fait que les centres des deux éléments capacitifs thermiques ne sont
séparés que par la moitié de l’épaisseur du module. Le transfert thermoélectrique d’en-
tropie est formulé comme dans la section (III.2), ce qui nous donne la première des
deux relations de rétroaction entre les processus électrique et thermique. L’irréversibi-
lité (production d’entropie dans le module) n’a pas été prise en compte.

La charge électrique s’écoule entre les condensateurs, entraînée par la tension sur la
résistance interne Rint (fig. III.14). C’est la conséquence de l’interaction entre la ten-
sion UMP aux bornes du module qui est égale à la différence des potentiels électriques
des deux faces du module PELTIER et de la tension thermoélectrique UTE:

(III.11)

Finalement, la tension UTE est calculée à partir de la différence de température T2 –T1,
comme dans l’équation (III.4), ce qui conclut la seconde rétroaction entre les proces-
sus thermique et électrique. Il ne reste plus qu’à déterminer l’intensité du courant élec-
trique dans la partie externe du circuit: IQ1 dépend de UR,ext qui est égal à la différence
de US et UMP. Notons que IQ3 est égal à IQ1, ce qui ferme le circuit.

III.3.3 Simulation du modèle non dissipatif

Si nous attribuons aux paramètres les valeurs déterminées et discutées dans notre ana-
lyse de l’expérience à la section III.2 et que nous utilisons une fonction en marche
d’escalier pour la tension US de l’alimentation, la simulation donne des résultats qui
s’ajustent déjà assez bien aux fonctions mesurées (fig. III.20).

Il y a deux différences principales entre la simulation et l’expérience. Tout d’abord, les
processus se déroulent plus vite dans la simulation, de l’ordre de 10 fois plus rapide-
ment. La raison en est simple: dans l’expérience, les plaques de cuivre ralentissent les
processus à cause de leur très grande capacité entropique, alors que dans le modèle, le
seul corps impliqué est le module PELTIER. Sa capacité entropique a été choisie de
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manière à obtenir, pour les variations, une constante de temps semblable à la constante
de temps courte observée lors de l’expérience (fig. III.17a).

La seconde différence est due au fait que nous avons négligé l’irréversibilité. Vu qu’il
n’y a pas d’entropie produite dans le module isolé de l’environnement, les températu-
res tendent vers une température d’équilibre qui est celle de départ: l’entropie du sys-
tème est conservée.

Comme on pouvait s’y attendre, il y a des différences dans la seconde phase de la si-
mulation (module en mode générateur) lorsque le circuit est laissé ouvert (lignes dis-
continues dans la figure III.20). La tension UMP doit être plus élevée dans le circuit
ouvert, vu qu’il n’y a pas de courant électrique et donc pas de tension résistive dans le
module PELTIER; les températures vont s’équilibrer plus rapidement si le circuit est
fermé, étant donné que nous avons simultanément des courants d’entropie thermoélec-
trique et conductif, alors que le courant d’entropie thermoélectrique est nul si le circuit
est ouvert. Cependant, le courant d’entropie conductif a une intensité plus grande dans
le circuit ouvert, puisque les températures s’équilibrent plus lentement.

Capacités et problèmes numériques. Nos études antérieures de systèmes dynami-
ques RC simples nous ont appris que le produit des résistances et des capacités déter-
mine les échelles de temps (constantes de temps) liées à l’évolution des variables. La
constante de temps du système RC thermique est de quelques secondes, mais qu’en
est-il de celle du système RC électrique? Un module PELTIER n’est pas un condensa-
teur dans le sens usuel du terme, et quelle que soit la valeur de la capacité, elle est très
faible. En conséquence, la constante de temps électrique est de plusieurs ordres de
grandeur plus petite que celle de temps thermique. Dans un tel cas, on doit avoir re-
cours à des méthodes mathématiques particulières pour la simulation du modèle, mé-
thodes adaptées à l’intégration numérique d’équations différentielles raides (stiff
diffenrential equations). Ce sujet est abordé à l’Interlude II.

III.3.4 Récapitulation des lois constitutives

Les observations qui avaient été résumées par les équations (III.2) et (III.4) concernent
les «effets purs»: entropie pompée à une différence de température nulle et tension
thermoélectrique pour un courant électrique nul. Le modèle que nous avons élaboré ici
présente le cas général, ce qui implique que nous devons prendre en compte les effets
conductifs des flux d’entropie et de charge électrique. Cela suggère les relations cons-
titutives générales pour le transport d’entropie à travers le module thermoélectrique et
la tension à ses bornes.

S’il n’y a pas de transport conductif d’entropie, c’est-à-dire si la différence de tempé-
rature entre les extrémités du module PELTIER est nulle, il n’y a qu’un seul courant
d’entropie, celui qui est donné par l’équation (III.2). Cependant, en général, le courant
d’entropie est la somme de courants thermoélectrique et conductif:

(III.12)

où GS est la conductance entropique du module. D’autre part, la tension thermoélec-
trique de l’équation (III.4) est la seule différence de potentiel entre les condensateurs
s’il n’y a pas de flux de charge dans le circuit électrique. C’est le cas lorsque le circuit
est ouvert. Autrement dit, la différence de potentiel est la somme des parties thermoé-
lectrique et résistive, c’est-à-dire, selon l’équation (III.11): UMP = UTE + UR, int, ce
qui donne:

(III.13)

I I G T TS Q S= − −( )α 2 1

U T T R IQ QMP int= −( ) +ε 2 1 ,
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Les deux dernières équations sont les formes intégrées de la représentation des proces-
sus thermoélectriques qui inclut les variations spatiales (chapitre 12, section 12.7).

Le modèle est complété par les relations constitutives de type capacitif pour l’entropie
et la charge électrique. Si nous admettons que ces capacités sont constantes, nous pou-
vons écrire:

(III.14)

III.3.5 Modèle incluant la dissipation

L’adjonction des effets de la dissipation, autant électrique que thermique, est assez
simple. Nous calculons les taux de dissipation pour les flux conductifs d’entropie et de
charge et les divisons par la température (fig. III.21). Les taux de dissipation sont
égaux aux puissances électriques et thermiques associées aux transports conductifs et
se calculent de la manière usuelle.

L’expression pour le taux total de production d’entropie est la somme des contribu-
tions thermique et électrique:

(III.15)

En fait, l’expression dépend plus précisément du sens du flux conductif d’entropie,
c’est-à-dire de la localisation du côté le plus chaud. En fonction de la situation, nous
utilisons soit T1, soit T2 pour T dans l’équation (III.15). Si les différences de tempéra-
ture sont faibles par rapport aux valeurs actuelles de la température, la valeur que nous
prenons pour T n’a pas grande importance. Dans le modèle, nous avons choisi T2, et
les résultats de la simulation sont montrés dans la figure III.22. Nous constatons que,
maintenant, les températures croissent en moyenne, tout comme l’avaient révélé les
expériences. Les tensions exhibent le comportement typique et n’ont pas beaucoup
évolué. Les taux de production d’entropie sont une fraction de l’intensité du courant
d’entropie conductif. En mode pompe à chaleur, l’intensité de la dissipation électrique
est relativement élevée; en mode générateur, la dissipation électrique est plus faible
que celle qui est due au flux conductif d’entropie.

III.3.6 Coefficients SEEBECK et PELTIER

Lorsque nous avons calculé des valeurs numériques à partir des expériences, nous
avons observé que les coefficients SEEBECK et PELTIER devraient être égaux. Notre
analyse relativement grossière ne l’a pas confirmé directement, les valeurs obtenues
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pour les coefficients PELTIER et SEEBECK étant respectivement de 0.023 V K-1 et
0.028 V K-1, alors que le fabricant donne une valeur de 0.053 V K-1.

Une démonstration élégante de l’égalité des deux coefficients doit attendre une analy-
se détaillée des relations énergétiques dans un module PELTIER (section III.4). Mais en
nous appuyant sur des résultats simulés, nous pouvons d’ores et déjà montrer que la
loi de conservation de l’énergie ne serait pas respectée si les deux coefficients n’étaient
pas égaux.

Notre modèle peut être utilisé pour évaluer des grandeurs énergétiques. Le bilan global
d’énergie se présente comme suit. Considérons la phase initiale lorsque le module
fonctionne comme une pompe à entropie. De l’énergie est injectée par l’alimentation
externe. Ce flux d’énergie dans le système est divisé en trois parties. Une part va être
accumulée dans le système capacitif thermique, la deuxième partie est stockée dans le
système capacitif électrique et la troisième partie quitte le système par l’intermédiaire
de la résistance externe. Les intensités de flux et les taux de variation des quantités ac-
cumulées se calculent de la manière suivante:

(III.16)

La signification de ces grandeurs peut être lue dans les diagrammes de modèle dyna-
mique des figures III.19 et III.21. Le bilan de ces grandeurs exige que:

(III.17)

Lors de la simulation du modèle, cette relation n’est satisfaite que si α = ε.

III.3.7 Intégration des deux plaques de cuivre dans le modèle

Il ne nous reste plus qu’à montrer comment modéliser le transfert d’entropie de et
vers l’environnement. Nos expériences (fig. III.8) nous suggèrent ce à quoi il faut
s’attendre.
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Extension du modèle. L’adjonction des éléments de la figure III.7 dans le modèle
existant du module PELTIER est assez simple. Nous devons ajouter les éléments qui re-
présentent les deux plaques de cuivre en y incluant les transports d’entropie associés,
tous les processus additionnels étant de caractère uniquement thermique.

Chaque plaque de cuivre est représentée en tant que réservoir d’entropie; un réservoir
unique par plaque est suffisant, vu que le cuivre conduit l’entropie tellement bien que
nous pouvons admettre que ces éléments ont une température unique. L’entropie est
transférée d’une plaque vers le module PELTIER, mais également vers
l’environnement; ce processus doit être pris en compte, vu que l’isolation thermique
était relativement simple lors de l’expérience. La figure III.23 explicite la partie ther-
mique du modèle.

Chacun de ces modes de transfert est de type conductif. Il nous faut les températures
des plaques de cuivre, des deux faces du module PELTIER et la température ambiante.
Les courants d’entropie peuvent être modélisés en termes de différences de tempéra-
ture et de conductances entropiques appropriées.

La conductance GS, pertes est déterminée par l’interface convective entre le cuivre et
l’air. Une estimation pour une valeur minimale donne:

Le coefficient de transfert GS, CMP prend en compte la conduction à travers la moitié
de l’épaisseur du bloc de cuivre, un quart de l’épaisseur du module PELTIER et une ré-
sistance de contact entre les surfaces du cuivre et du module. Le troisième de ces effets
se révèle être le facteur majeur dans ce cas. Le premier peut être complètement négligé
et le deuxième est quantifié en termes de conductance du module PELTIER.

Les deux conductances entropiques seront déterminées par approximations successi-
ves en ajustant les résultats des simulations du modèle aux données expérimentales.
Le résultat pour la conductance de l’interstice entre le cuivre et le module est d’ap-
proximativement 0.015 W K-2. Si nous utilisons la valeur de la conductance entropi-
que globale d’une plaque de cuivre à l’autre à travers le module PELTIER, valeur que
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FIGURE III.23 Partie thermique du modèle relatif à l’interaction du module PELTIER avec les deux plaques de cuivre entre
lesquelles il est enserré. Ces blocs de cuivre peuvent perdre ou recevoir de l’entropie vers ou de l’environnement à une
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III.4  RÔLE DE L’ÉNERGIE DANS LES PROCESSUS THERMOÉLECTRIQUES

nous avons déterminée à partir des données de la figure III.11, la conductance de l’in-
terstice nous permet d’évaluer à 0.0035 W K-2 celle du module PELTIER, ce qui corres-
pond à la valeur donnée par le fabricant.

Afin de compléter le modèle, nous devons introduire les capacités entropiques des
deux blocs de cuivre. Nous connaissons le coefficient de température de l’énergie du
cuivre qui est d’approximativement 400 J K-1 kg-1. Si nous acceptons une température
moyenne de 310 K, une estimation de la capacité entropique d’un bloc unique de cui-
vre de masse égale à 0.31 kg est approximativement égale à 0.40 J K-2.

Simulations. Lorsque le modèle est simulé en utilisant des paramètres proches des va-
leurs que nous avons utilisées jusqu’ici, nous obtenons des résultats très satisfaisants,
si nous considérons la simplicité du modèle (fig. III.24). La comparaison avec les don-
nées expérimentales nous permet d’ajuster les paramètres inconnus, tels que ceux de
la perte d’entropie vers l’environnement, du transfert d’entropie du cuivre vers le mo-
dule, de la capacité entropique du module et de la conductance entropique du module.
Si nous utilisons les valeurs données par le fabricant pour le coefficient SEEBECK (et
PELTIER) et la résistance interne électrique, seul l’ajustement de la conductance du
module n’est pas totalement satisfaisante. Cependant, la précision du résultat s’amé-
liore considérablement si le module PELTIER est modélisé en utilisant plus que seule-
ment deux éléments capacitifs thermiques.

III.4 RÔLE DE L’ÉNERGIE DANS LES PROCESSUS THERMOÉLECTRIQUES

Jusqu’ici, nous avons réussi à analyser le fonctionnement d’un module thermoélectri-
que sans avoir recours à des considérations énergétiques. Nous espérons en obtenir
une meilleure compréhension en faisant appel à la loi de conservation de l’énergie. En
fait, nous pourrons en dériver l’égalité des coefficients de couplage thermoélectrique,
les coefficients SEEBECK et PELTIER: Cette relation est la relation de réciprocité.

Considérons un module PELTIER fonctionnant en mode générateur entre deux tempé-
ratures T1 et T2 (fig. III.25). Nous admettons que la production d’entropie due au trans-
fert de et vers le module se déroule à l’extérieur du système analysé, et la production
d’entropie due à la conduction électrique a été symbolisée séparément pour clarifier le
rôle de la tension UTE en tant que conséquence directe de l’effet thermoélectrique.
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L’entropie s’écoule à travers le module entraînée par la différence de température. Il
faut faire la distinction entre deux composantes de ce flux d’entropie: le courant con-
ductif IS, cond et le courant thermoélectrique IS, TE; ce dernier est couplé au courant
électrique d’après l’équation (III.2). Le courant conductif est purement dissipatif,
l’énergie libérée lors de sa chute de T1 à T2 est utilisée pour produire de l’entropie. La
chose est différente pour IS, TE: sa chute est non dissipative, l’énergie libérée est utili-
sée pour entraîner le courant électrique à travers la différence de potentiel UTE.

Égalité des coefficients PELTIER et SEEBECK. Pour conclure la conceptualisation
du rôle de l’énergie dans un processus thermoélectrique, nous allons maintenant don-
ner une démonstration simple de l’égalité des coefficients de couplage thermoélectri-
que α et ε. Les puissances thermique et électrique lors du processus thermoélectrique
sont données par:

(III.18)

Vu que ces deux puissances sont égales, et que les équations (III.4) et (III.2) nous don-
nent respectivement UTE et IS, TE, nous avons:

(III.19)

ce qui démontre l’égalité des coefficients PELTIER et SEEBECK.

Efficacité des modules thermoélectriques selon la deuxième loi. Au chapitre 5,
section 5.8.2, l’efficacité selon la deuxième loi a été introduite en tant que mesure na-
turelle de la manière dont fonctionne une machine thermique. Pour une machine sim-
ple, elle est égale au quotient de la puissance utile au déroulement du processus et de
la puissance due à la chute de l’entropie entraînant la machine thermique. Cette idée
peut être utilisée dans le cas des générateurs thermoélectriques (fig. III.25) et des re-
froidisseurs (fig. III.26).

Pour un générateur, la définition est évidente. L’efficacité selon la deuxième loi est
égale à la puissance électrique utile (puissance thermoélectrique moins puissance du
processus électrique résistif) divisée par la puissance due à la chute du courant d’en-
tropie IS1 de T1 à T2:

(III.20)
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FIGURE III.25 Diagramme de pro-
cessus d’un générateur thermoélec-
trique. La résistance interne
électrique a été dessinée séparément
afin de clarifier le rôle de la tension
UTE. Il faut noter que IE, él < Pél, TE.
Ptherm, cond est la puissance du cou-
rant conductif d’entropie, alors que
Ptherm, TE est associé au courant
d’entropie couplé au flux de charge
électrique.
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III.5  PHÉNOMÈNES THERMOÉLECTRIQUES EN TANT QUE PROCESSUS CHIMIQUES

C’est le résultat que l’on obtient pour une charge ohmique connectée aux bornes du
générateur thermoélectrique. Rext est la résistance de la charge externe, Rint, GS et ε
sont les trois paramètres du module, à savoir la résistance interne, la conductance en-
tropique et le coefficient SEEBECK. Pour le module Melcor CP-127-06L, l’efficacité
est de 14%, comme mentionné plus haut.

Ce résultat nous permet de discuter comment il serait possible d’améliorer l’efficacité
en certaines circonstances. Pour un générateur donné, nous souhaiterions trouver la
valeur de la charge qui optimise l’efficacité selon la deuxième loi. Ou encore, en fonc-
tion de l’objectif caractérisé par la charge, nous souhaitons adapter les caractéristiques
du générateur pour améliorer les performances du système.

Le cas du refroidisseur thermoélectrique est semblable. L’efficacité selon la deuxième
loi peut être définie en tant que quotient de la puissance utile de pompage du courant
d’entropie IS1 de T1 à T2 et de la puissance électrique d’entraînement UextIQ
(fig. III.26):

(III.21)

Après substitution des relations constitutives, nous obtenons une expression pour ηII
pour une valeur donnée de IQ :

(III.22)

Il est important de noter que les équations utilisées pour calculer l’efficacité selon la
deuxième loi pour le générateur thermoélectrique et le refroidisseur ne prennent pas
en compte les transferts d’entropie de et vers les modules. Si nous incluons ces trans-
ferts, les résultats sont considérablement plus faibles.

III.5 PHÉNOMÈNES THERMOÉLECTRIQUES EN TANT 
QUE PROCESSUS CHIMIQUES

Au chapitre 6, section 6.3.1, équation (6.10), nous avons découvert que la charge élec-
trique est couplée aux substances de base impliquées dans les transports de charge, tels
que électrons et trous. Lors de l’étude des processus électrochimiques, nous avons ap-
pris qu’il existe une quantité fixe de charge électrique par quantité de substance, par
exemple, les 96485 As de charge par mole d’électrons.
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FIGURE III.26 Diagramme de pro-
cessus d’une pompe à chaleur PELT-
IER. La résistance interne électrique
a été dessinée séparément afin de
clarifier le rôle de la tension UTE. Il
faut noter que Uext > UTE.
Ptherm, cond est la puissance du cou-
rant conductif d’entropie, alors que
Ptherm, TE. est associé au courant
d’entropie couplé au flux de charge
électrique.
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Mais les substances stockent également de l’entropie et nous pouvons rapporter sa
quantité à la quantité de matière. Contrairement à la charge électrique, la quantité
d’entropie transportée par les porteurs de charge (électrons, trous) dépend des carac-
téristiques thermoélectriques du matériau.

L’image de substances transportant à la fois de la charge et de l’entropie nous permet
d’interpréter les grandeurs thermoélectriques fondamentales, les coefficients PELTIER

et SEEBECK, en tant que quotient de l’entropie par quantité de matière et de la charge
par quantité de matière:

(III.23)

où est l’entropie molaire de la substance porteuse de charge et la charge molaire,
à savoir la constante de FARADAY mentionnée plus haut. La première dépend du ma-
tériau, la seconde est une constante universelle. Les coefficients thermoélectriques
sont donc dépendants du matériau.
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Dans ce chapitre, nous allons découvrir de quelle manière les structures communes à
l’hydraulique, l’électricité, la thermodynamique et aux processus chimiques sont
transposables aux processus mécaniques, pour commencer à ceux qui traitent du mou-
vement de rotation. Nous verrons dans le chapitre suivant comment elles sont applica-
bles au processus de translation.

Nous introduirons une nouvelle grandeur extensive caractéristique pour ce type de
processus, le moment cinétique. Comme nous l’avons fait pour la charge électrique,
l’entropie ou la quantité de matière, nous n’essaierons pas de définir cette grandeur,
mais nous la considérerons comme fondamentale et étudierons ses propriétés. C’est
ainsi que nous découvrirons qu’elles sont les mêmes que celles des grandeurs exten-
sives déjà rencontrées, ce qui entraînera l’apparition de phénomènes semblables.

 

7.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

Les objets en rotation font partie de notre vie quotidienne. On en trouve dans les mo-
teurs de nos appareils ménagers, dans ceux des véhicules, dans nos horloges et nos
montres, dans les usines, les centrales électriques, et la liste n’est pas exhaustive. Dans
cette première section, nous allons découvrir quelques exemples, passés ou présents,
de machines comportant des éléments tournants, ainsi que la présence du phénomène
de rotation dans la nature.

 

7.1.1 Exemples de machines utilisant la rotation

Pratiquement toutes les machines que nous utilisons ou qui ont été utilisées dans le
passé comportent des éléments tournants.

 

• Le moulin à vent (fig. 7.1) a déjà été utilisé dans l’Antiquité; la première men-
tion de son existence date du VIIe siècle avant Jésus-Christ, en Perse. Il s’agis-
sait d’un type de moulin à arbre vertical, non orientable. Ils étaient utilisés
pour l’irrigation et pour moudre le grain. En Europe, le moulin à vent s’est
généralisé à partir du XIIe siècle, probablement à partir du moment où l’on a
retrouvé la maîtrise de la construction des engrenages servant à transférer le
mouvement de rotation.

 

• L’éolienne est une version actuelle du moulin à vent, servant à transborder
l’énergie du vent au courant électrique.

 

• La noria, mot d’origine arabe, désigne originellement une machine hydrauli-
que permettant d’élever l’eau en utilisant l’énergie amenée par le courant
(fig. 7.2). C’est l’ancêtre des moulins à eau dont l’existence est déjà attestée
par l’architecte romain VITRUVE au premier siècle avant Jésus-Christ.

 

• La machine à vapeur est en quelque sorte un perfectionnement du moulin à
eau, et le moteur à combustion un avatar supplémentaire.

FIGURE 7.1 Moulin à vent à galerie.
La calotte supérieure, qui supporte
les ailes, est orientable et la galerie
permet au meunier d’orienter les
ailes face au vent. (Photo: Chris
Nyborg (CC)).

FIGURE 7.2 Noria servant à puiser
l’eau nécessaire à l’irrigation.
(Photo: Möhrendorf (CC)).
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• Les volants d’inertie (exemple 7.2) servent à stocker temporairement de
l’énergie.

 

• Dans une montre mécanique, un balancier oscillant (fig. 7.3) sert à diviser le
temps grâce à ses mouvements de va-et-vient entraînés par un ressort spiral.
Lorsqu’il est abandonné à lui-même après avoir été déplacé de sa position
d’équilibre, le système se met à osciller avec une amplitude qui diminue pro-
gressivement.

 

7.1.2 Exemples de mouvements de rotation dans la nature

La nature offre également de beaux exemples de systèmes en rotation.

 

• La Terre tourne sur elle-même et autour du Soleil qui, lui-même tourne autour
du centre de la Voie lactée.

 

• Les galaxies ont un mouvement de rotation propre (fig. 7.4) et tournent géné-
ralement autour du centre de l’amas dont elles font partie .
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Pour nous familiariser avec les processus de rotation, nous allons étudier la collision
de deux disques.

 

7.2.1 Expérience, recueil et exploitation des données

 

Expérience. L’expérience est réalisée au moyen de deux disques identiques en plexi-
glas, montés sur un axe commun (fig. 7.5a). Ils sont fixés à l’axe de rotation au moyen
de roulements à billes, ce qui leur permet de tourner presque librement. Le disque su-
périeur peut être légèrement rehaussé par rapport au disque inférieur. Il est mis en ro-
tation au moyen d’un ressort spiral tendu, alors que le disque inférieur est immobile.
Lorsque l’on laisse tomber le disque supérieur sur le second, les deux interagissent de
telle manière que le premier ralentit alors que le second accélère. Le processus est fil-
mé au moyen d’une caméra vidéo.

 

Détermination de la vitesse angulaire. L’élongation angulaire est calculée à partir
des abscisses et ordonnées respectives des repères blancs sur la figure 7.5b. Pour ob-
tenir la vitesse angulaire, on divise la différence de deux valeurs successives par l’in-
tervalle de temps qui les sépare.

Le graphique de la figure 7.6 montre l’évolution des vitesses angulaires. Nous notons
que, malgré l’utilisation de roulements à billes, la vitesse angulaire du disque supérieur

FIGURE 7.3 Balancier spiral d’une
montre mécanique.

FIGURE 7.4 Galaxie du Tourbillon
(Messier 51).

FIGURE 7.5 Collision de deux
disque: (a) les deux disques identi-
ques en plexiglas tournent autour
d’un axe vertical commun et peuvent
interagir. Le disque supérieur est mis
en mouvement au moyen d’un res-
sort et tombe sur le disque inférieur
qu’il entraîne; (b) l’élongation angu-
laire instantanée est calculée à partir
des abscisses et ordonnées respecti-
ves des repères blancs sur chacun des
disques.

a. b.
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n’est pas constante avant l’interaction mais décroît légèrement. Il en va de même de la
vitesse angulaire commune. Les fluctuations que nous observons sont la conséquence
du fait que l’intervalle de temps est de 0.04 s. La division par cette valeur amplifie d’un
facteur 25 les imprécisions dues à la méthode de mesure.

 

7.2.2 Vitesse angulaire et moment cinétique

L’examen de la figure 7.6 révèle que l’évolution des vitesses angulaires respectives à
partir du début de l’interaction est semblable à celle des niveaux de deux réservoirs
communicants munis chacun d’un écoulement supplémentaire ou de deux condensa-
teurs couplés qui peuvent également se décharger par une résistance montée entre
leurs électrodes. Ce constat va nous permettre de conceptualiser les processus de rota-
tion.

 

Vitesse angulaire en tant qu’indicateur du niveau de rotation. La vitesse angulaire,
que l’on désigne par le symbole ω (oméga), s’est imposée de manière naturelle pour
la description du mouvement de rotation. Lorsque les disques interagissent, leurs vi-
tesses angulaires respectives varient jusqu’à ce qu’elles atteignent une valeur commu-
ne, tout comme le font la pression en hydraulique et la tension en électricité lors de
l’équilibrage des niveaux hydrauliques ou électriques. Nous pouvons donc conclure
par analogie que la vitesse angulaire indique le niveau de rotation et représente donc
le potentiel associé au mouvement de rotation. C’est la grandeur intensive qui sert à la
caractérisation du mouvement de rotation.

 

Moment cinétique. Également en vertu de l’analogie avec les processus observés
dans les autres domaines de la physique, nous devons conclure que, lors de l’interac-
tion entre les deux disques, il y a eu un échange d’une grandeur extensive. Tout corps
en rotation possède une certaine «quantité de mouvement de rotation» dont la déno-
mination officielle est le moment cinétique, désigné par le symbole L. Cette grandeur
a les mêmes caractéristiques que les grandeurs extensives que nous avons introduites
dans les chapitres précédents, à savoir qu’elle peut être accumulée dans les objets en
rotation, qu’elle peut être transportée et transférée entre des systèmes en interaction.

 

7.2.3 Relation entre moment cinétique et vitesse angulaire

Le moment cinétique accumulé par un objet doit être d’autant plus grand que sa vitesse
angulaire est élevée. La relation la plus simple qui peut être proposée est:

 

(7.1)

La grandeur J est le moment d’inertie. L’analogie avec les processus étudiés dans les
chapitres précédents nous permet de conclure qu’il s’agit d’une capacité qui mesure
quelle quantité de moment cinétique un objet tournant à la vitesse angulaire ω est ca-
pable d’accumuler. Nous reviendrons en détail sur les particularités de cette grandeur
à la section 7.7.

 

7.2.4 Modèle de la collision de deux disques

Les processus hydrauliques, électriques et thermiques sont expliqués en termes de
transfert (et éventuellement de production) de grandeurs assimilables à un fluide qui
sont représentées par des réservoirs dans les modèles de dynamique des systèmes. Nous
allons appliquer ce mode de conceptualisation des processus physiques aux phénomè-
nes de rotation, ce qui veut dire que nous admettons que les interactions mécaniques
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peuvent être représentées, dans les processus de rotation, en tant que transfert de mo-
ment cinétique vers ou hors des corps qui participent à ces interactions.

Nous énonçons donc un bilan pour le moment cinétique de chacun des disques de l’ex-
périence. Dans un premier temps, nous ne tenons pas compte des pertes dues aux
frottements:

 

(7.2)

L’équation (7.1) permet de calculer les vitesses angulaires respectives.

Nous devons encore formuler des idées pour les flux de moment cinétique. En nous
appuyant sur ce que nous avons fait dans les chapitres précédents, nous pouvons com-
mencer par une relation linéaire entre le flux et la différence des vitesses angulaires:

 

(7.3)

Dans le modèle, ce flux de moment cinétique n’est activé que pour t > 0.24 s. Les va-
leurs initiales du moment cinétique de chaque disque sont déterminées à partir des va-
leurs mesurées des vitesses angulaires respectives. Les valeurs égales du moment
d’inertie J sont choisies arbitrairement, vu que nous n’avons pas suffisamment d’in-
formations pour les évaluer. Nous procédons à la simulation en ajustant la valeur de k
dans l’équation (7.3). La figure 7.7 montre le résultat de cette première simulation.

Le choix de la valeur de k a permis un ajustement acceptable pour la phase d’interac-
tion entre les deux disques. Il faut encore tenir compte des pertes dues aux frottements,
ce que nous faisons en admettant qu’elles sont proportionnelles à la vitesse angulaire
de chacun des disques:

 

(7.4)

Nous varions la valeurs de kpertes pour obtenir le meilleur ajustement possible.

L’accord entre le modèle et l’expérience (fig. 7.8) nous permet d’admettre que nos
idées sur la modélisation du mouvement de rotation vont dans la bonne direction.
Nous devons cependant nous souvenir que nous devons découvrir les caractéristiques
du moment d’inertie J et de la constante de flux k, vu que les deux valeurs ont été choi-
sies arbitrairement et que la variation de l’une entraîne une variation correspondante
de l’autre.
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1. Que révèle l’équilibrage des vitesses angulaires dans l’expérience de la
section 7.2.1?

2. L’expérience présentée à la section 7.2.1 permet-elle d’affirmer que le
moment cinétique n’est pas conservé?

1. Il révèle que, lors du contact entre des objets en rotation, une grandeur
extensive, une charge rotatoire, le moment cinétique, s’écoule de l’un
vers l’autre et que la vitesse angulaire est la grandeur indicatrice du
niveau de rotation.

2. Non, la diminution du moment cinétique est due à la présence de frotte-
ments qui provoquent une «fuite» vers l’environnement. Tout comme
la charge électrique, le moment cinétique est une grandeur conservée.
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Les observations de la section précédente révèlent que les processus de rotation peu-
vent être caractérisés par l’accumulation et le transfert d’une grandeur que nous avons
appelée moment cinétique. Les flux de cette grandeur ont toujours lieu entre deux ni-
veaux de la vitesse de rotation des objets entre lesquels elle s’écoule.

7.3.1 Moment cinétique ou moment angulaire

Comme le moment cinétique est une grandeur primitive, nous la mesurerons en euler,
abrégé par Eu. La correspondance avec les unités SI est: 1 Eu = 1 N m s. Cette corres-
pondance sera justifiée à la section 9.5.3.

Deux «espèces» de moment cinétique. Une expérience met en évidence un phéno-
mène remarquable. Les disques de la figure 7.5a peuvent être assemblés et reliés entre
eux par un ressort spiral tendu. Lors de la libération du ressort, les deux disques se
mettent à tourner en sens opposé. Les vitesses de rotation respectives dépendent de la
masse et du rayon de chacun des disques. Si les deux disques sont identiques, les
valeurs des vitesses sont les mêmes, les sens opposés.
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Cette expérience révèle que, pour une direction donnée (par exemple la direction ver-
ticale), il existe deux «espèces» de moment cinétique, déterminées par le sens de ro-
tation. Tout aussi arbitrairement qu’en électricité, nous pouvons décider d’attribuer un
signe positif à l’une de ces espèces et le signe négatif à l’autre. Il est usuel d’attribuer
un signe positif au moment cinétique lorsqu’il correspond à une rotation dans le sens
horaire, c’est-à-dire à un sens de vissage positif. À partir du moment où cette affecta-
tion des signes a été effectuée, il est clair qu’il faut s’y tenir et qu’elle ne peut plus être
modifiée; mais, contrairement à ce qui a été fait en électricité, où l’on a attribué une
fois pour toutes le signe positif à l’« électricité vitreuse » et le signe négatif à
l’«électricité résineuse», l’attribution du signe au moment cinétique a lieu chaque fois
que l’on aborde une nouvelle situation.

L’analogie électrique peut être poussée encore plus loin, si l’on assimile chacune des
deux parties du système décrit ci-dessus à deux condensateurs connectés aux bornes
d’une source d’énergie (fig. 7.9) : la source (le ressort) fournit l’énergie nécessaire
pour transférer la charge d’un des condensateurs vers l’autre (le moment cinétique
d’une des parties du système vers l’autre).

Il est également possible d’utiliser une analogie hydraulique du phénomène, en assi-
milant chacune des parties du système à des réservoirs de moment cinétique qui plon-
gent dans un gigantesque lac de moment cinétique. Au début de l’expérience
(fig. 7.10a), les deux réservoirs sont «vides», c’est-à-dire que leur niveau correspond
à celui du lac. À la fin de l’expérience (fig. 7.10b), le niveau d’un des réservoirs est
plus élevé que le niveau de référence, celui de l’autre est en dessous de ce même niveau
de référence.

Conservation du moment cinétique. Nos observations révèlent une autre propriété
fondamentale du moment cinétique: c’est une grandeur conservée, c’est-à-dire qu’elle
ne peut ni être créée, ni être détruite, mais seulement accumulée ou transférée d’un
système à l’autre.

L’observation de la section 7.2.1 semble être en contradiction avec l’affirmation pré-
cédente. Il n’en est rien; comme nous le verrons à la section 7.8, les frottements sont
ici responsables du transfert du moment cinétique du disque en mouvement vers le dis-
que immobile.

Caractère vectoriel du moment cinétique. Nous avons découvert que le sens de ro-
tation permettait de distinguer deux sortes de moment cinétique. Cette particularité,

UC2UC1

V V

+

FIGURE 7.9 Analogie électrique du
phénomène de séparation des deux
«espèces» de moment cinétique. La
source (le ressort) fournit l’énergie
nécessaire pour séparer les charges
(les deux espèces de moment
cinétique).

L1 > 0

L2 < 0

L1 = 0 L2 = 0 ω = 0

ω = 0

a.

b.
ω1 > 0

ω2 < 0

FIGURE 7.10 Analogie hydraulique
du phénomène de séparation des
deux «espèces» de moment cinéti-
que. Le niveau de moment cinétique
est indiqué par la vitesse angulaire.
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liée à l’orientation dans l’espace, implique que, contrairement aux grandeurs extensi-
ves que nous avons introduites dans les chapitres précédents (volume, charge électri-
que, énergie, entropie, quantité de matière), le moment cinétique n’est pas une
grandeur scalaire (quantifiée par un seul nombre), mais vectorielle.

Dans ce chapitre, pour des raisons de simplicité, nous ne considérerons que des pro-
cessus de rotation autour d’un axe fixe ou d’un axe de direction constante.

Le moment cinétique dans le monde microscopique. Comme celle de la charge
électrique, la notion de moment cinétique n’est pas réservée au monde macroscopique.
En effet, on associe notamment aux particules dites élémentaires leur charge électri-
que (+e pour le proton, -e pour l’électron, 0 pour le neutron, 0 pour le photon, etc.) et
leur moment cinétique propre que l’on appelle le spin ( … pour les particules
appelées fermions, comme les électrons, protons et neutrons, … pour les par-
ticules appelées bosons, comme les photons). Il est important de noter que le spin de
ces particules ne caractérise pas une rotation propre. La notion de rotation propre perd
son sens au niveau microscopique. Le spin de l’électron, par l’intermédiaire du prin-
cipe d’exclusion de Pauli, est à l’origine de la structure des atomes et de la matière
ordinaire. En spectroscopie, le spin joue un rôle primordial pour aider les chimistes à
décrypter la structure des molécules. En médecine, c’est encore une fois le spin des
noyaux d’hydrogène qui permet l’imagerie par résonance magnétique (IRM). La liste
des exemples est loin d’être exhaustive.

7.3.2 Flux de moment cinétique

L’expérience de la section 7.2 révèle l’existence d’écoulements de moment cinétique
entre des systèmes ou entre les composants d’un système, écoulements qui, grâce à
l’analogie électrique ou hydraulique peuvent être caractérisés de la même manière.
Nous représentons les flux de moment cinétique par le symbole IL et ils sont mesurés
en Eu s-1.

Pour une direction donnée (par exemple la verticale dans l’expérience de la
section 7.3.1), le moment cinétique peut s’écouler dans un sens ou dans l’autre. On at-
tribue arbitrairement une valeur positive à l’un des deux sens d’écoulement (par exem-
ple vers le haut) et le sens négatif à l’autre. Toutefois, ce choix est lié, pour des raisons
de cohérence, à celui de signe positif du moment cinétique. Si l’on adopte la conven-
tion usuelle qui attribue un signe positif au moment cinétique lorsque le sens de vissa-
ge est positif, un flux positif entraînera une augmentation de la vitesse angulaire
positive.

En tant que flux d’une grandeur vectorielle, les flux de moment cinétique ont aussi un
caractère vectoriel, chacune de ses trois composantes étant liée à la composante cor-
respondante du moment cinétique:

La grandeur extensive (semblable à un fluide) associée au mouvement de
rotation est le moment cinétique L. C’est un vecteur caractérisé par trois
composantes indépendantes les unes des autres, une pour chaque direction
de l’espace:
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(7.6)

En mécanique, un flux de moment cinétique est appelé un couple. Son nom est dû au
fait qu’il résulte souvent de l’application d’une paire de forces opposées, ce qui sera
illustré à la section 9.5.3. Les différents types d’interaction entre un corps et son envi-
ronnement entraînent différentes formes d’écoulement du moment cinétique. Imagi-
nons par exemple un disque tournant autour d’un axe fixe. Le transfert de moment
cinétique peut résulter de l’action de quelqu’un qui exerce une force à sa périphérie,
de frottement entre le disque et l’axe de rotation, de frottement de l’air, de l’interaction
entre un disque métallique et un champ magnétique (frein à induction), de l’action
d’un ressort de torsion, et de maintes autres manières. Le lien entre les forces et les
flux de moment cinétique sera traité au chapitre 9, à partir de la section 9.5.

Un flux stationnaire de moment cinétique n’est possible que si le circuit est fermé,
comme en électricité. La figure 7.11 illustre ce fait: le moment cinétique passe de la
perceuse dans le mur par l’intermédiaire de la mèche, circule dans la paroi et le sol et
remonte à travers la personne, pompée par le moteur de la perceuse. Par contre, l’éner-
gie transportée par le moment cinétique est «déposée» dans le récepteur, la paroi, où
elle sert à forer le trou et à produire de l’entropie. Nous reviendrons sur ce sujet lorsque
nous parlerons du lien entre le moment cinétique et l’énergie.

La situation mentionnée ici est semblable à celle que l’on rencontre en électricité lors-
que le retour du courant ne se fait pas au moyen d’un fil conducteur mais est assuré,
par exemple, par la carrosserie de la voiture, par le cadre du vélo, par les rails du train,
voire par la terre. Notons que le moment cinétique peut également migrer à travers
l’air, par exemple lors de la mise en mouvement de rotation d’un disque immobile par
un disque parallèle situé à une distance suffisamment faible du disque immobile. Le
champ de pesanteur (les champs en général) peut également transporter et accumuler
du moment cinétique. Dans un moteur électrique, le moment cinétique est transporté
du stator vers le rotor par l’intermédiaire du champ magnétique.

7.3.3 Vitesse angulaire et potentiel rotatoire

Les observations de la section 7.2.2, ainsi que l’analogie hydraulique (fig. 7.10) nous
permettent d’affirmer:
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FIGURE 7.11 Les écoulements de
moment cinétique ne sont possibles
que si le circuit est fermé. Le moteur
de la perceuse «pompe» le moment
cinétique dans le circuit.
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1ω 2ω

FIGURE 7.12 Diagramme d’un pro-
cessus de rotation. Le moment ciné-
tique s’écoule entre deux niveaux de
la vitesse angulaire qui est le poten-
tiel rotatoire.

Le taux de chargement en moment cinétique d’un objet est indiqué par la
vitesse à laquelle il tourne, la vitesse angulaire ωωωω . Comme le moment ci-
nétique, la vitesse angulaire est un vecteur:

(7.7)

C’est toujours entre deux niveaux de cette grandeur qu’ont lieu les trans-
ferts de moment cinétique. La vitesse angulaire est donc le potentiel lié aux
processus de rotation (fig. 7.12).
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1. Quelles sont les caractéristiques et les particularités du moment
cinétique?

2. Quelles sont les caractéristiques et les particularités de la vitesse
angulaire?

1. Le moment cinétique L est la grandeur extensive qui sert à mesurer la
quantité de mouvement rotatoire. En tant que grandeur extensive (assi-
milable à un fluide), il peut s’accumuler dans les objets et s’écouler
entre des systèmes en rotation. C’est une grandeur vectorielle qui peut
prendre des valeurs positives ou négatives par rapport à un axe de rota-
tion ou une direction donnée. Le moment cinétique est une grandeur
conservée.

2. La vitesse angulaire est la grandeur intensive qui sert à mesurer le niveau de rotation d’un
système. C’est une grandeur vectorielle, comme le moment cinétique. Le moment cinétique
s’écoule toujours entre deux niveaux de la vitesse angulaire.

7.4 ANALYSE DE SYSTÈME I: BILANS DE MOMENT CINÉTIQUE

Vu sa qualité de grandeur extensive, nous pouvons formuler une équation de bilan
pour le moment cinétique d’un système donné (ici, pour une de ses composantes):

Q

R

Le taux de variation d’une composante du moment cinétique est égale au
flux net de moment cinétique dans la direction de cette composante:

(7.8)

La variation de cette composante du moment cinétique s’obtient par
intégration:

(7.9)

L’intégrale des courants de moment cinétique sur un intervalle de temps
représente le moment cinétique transporté ou échangé Léch:

(7.10)

Les deux dernières équations nous livrent la forme intégrée de l’équation
de bilan:

(7.11)
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Il existe plusieurs manières de transférer du moment cinétique d’un système à l’autre
ou entre les divers éléments d’un système:

• au moyen d’un arbre de transmission soumis à une torsion; dans ce cas, le
transfert se fait en mode supraconducteur;

• au moyen d’un embrayage à friction, comme par exemple dans les
automobiles;

• par des engrenages comme dans une boîte à vitesses ou dans une montre;

• au moyen d’un ressort spiral, comme dans les montres mécaniques;

• par l’intermédiaire d’un champ, par exemple le champ gravitationnel ou le
champ électrique ou magnétique.

Nous allons modéliser le comportement de deux disques couplés par un embrayage
(fig. 7.13). Nous considérerons à la section 7.8 plusieurs cas de figure afin d’illustrer
différentes réponses du système.

Nous considérons chacun des deux disques comme un système; l’équation de bilan
correspondante sera donc:

La figure 7.14 montre le diagramme de dynamique des systèmes correspondant à cette
équation de bilan. On notera l’analogie avec celui de deux réservoirs reliés par une
conduite ou de deux condensateurs reliés par un conducteur.

1. Quels sont les modes de transfert du moment cinétique?

2. Quelles sont les particularités des éléments qui transmettent le moment
cinétique dans les modes de transfert du moment cinétique?

1. Le moment cinétique peut être transmis par un arbre de transmission,
par un engrenage, un embrayage à friction, un ressort spiral, un fluide,
un champ (gravitationnel, électrique, magnétique).

2. Un arbre rigide est un supraconducteur du moment cinétique. Un
engrenage transmet l’énergie, tout en variant la vitesse angulaire et le
moment cinétique. Dans un embrayage à friction, c’est le fluide qui
conduit le moment cinétique; il le fait d’autant mieux que sa viscosité
est importante. Un ressort stockera l’énergie apportée par le moment cinétique entrant et
utilisera cette énergie pour restituer le moment cinétique. Un champ transmet le moment
cinétique sans dissipation d’énergie; dans un générateur, une dynamo, le champ magnéti-
que transmet le moment cinétique entre le rotor et le stator.

Embrayage

FIGURE 7.13 Deux disques couplés
par un embrayage.
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FIGURE 7.14 Bilan pour le système
de deux disques couplés par un
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7.5 ANALYSE DE SYSTÈME II: CINÉMATIQUE DE LA ROTATION

Comme nous l’avons affirmé à la section 7.3.3, la vitesse angulaire est le potentiel as-
socié au moment cinétique: ce dernier s’écoule toujours entre deux niveaux de la vi-
tesse angulaire. Mais la vitesse angulaire est une des grandeurs cinématiques servant
à décrire le mouvement de rotation. Il est donc nécessaire de préciser quelles sont ces
grandeurs et comment elles sont liées entre elles.

7.5.1 Élongation, vitesse et accélération angulaire

La description du mouvement de rotation se fera naturellement au moyen de coordon-
nées polaires (fig. 7.15), à savoir du rayon r de la trajectoire et de l’angle ϕ mesuré à
partir d’une origine fixée arbitrairement; cet angle est l’élongation angulaire et se me-
sure en radians (rappelons qu’il s’agit d’une unité fantôme, puisqu’elle est définie en
tant que rapport de deux longueurs).

Le taux de variation de l’élongation angulaireϕ, défini par:

(7.12)

représente le module ou une composante de la vitesse angulaire. Son signe est lié au
choix qui a été fait au sujet de celui de l’élongation angulaire ϕ. L’unité de mesure est
la s-1.

Réciproquement, on passera du module de la vitesse angulaire à l’élongation angulaire
par intégration (fig. 7.16):

(7.13)

Si nous considérons un objet en rotation autour d’un axe fixe (donc dans un plan), à
une vitesse angulaire instantanée de module égal à ω, tout point de l’objet distant de r
de l’axe de rotation se meut à une vitesse de module égal à v = ω·r. Or, la vitesse est
une grandeur vectorielle v, tout comme le vecteur position (ou rayon vecteur) r. Pour
faire apparaître le caractère vectoriel de la relation v = ω·r, on définit un vecteur ωωωω au
moyen de:

(7.14)

Le vecteur de vitesse angulaire ωωωω est simultanément perpendiculaire aux vecteurs r et
v, donc au plan dans lequel a lieu le mouvement de rotation du point considéré
(fig. 7.17). Son sens correspond au sens de vissage positif défini par la rotation.

Il est rare que la vitesse angulaire soit constante (aussi bien en module qu’en direc-
tion). Son taux de variation, défini par:

(7.15)

représente une composante de l’accélération angulaire (fig. 7.18). Son unité de mesu-
re est la s-2.

De la même manière que pour la vitesse angulaire, on lui donne un caractère vectoriel
en la liant à l’accélération linéaire par:

(7.16)
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Trajectoire

FIGURE 7.15 Description du mou-
vement circulaire au moyen de coor-
données polaires r et ϕ.
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FIGURE 7.16 Relation entre l’élon-
gation angulaire ϕ et le module de la
vitesse angulaire ω.
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FIGURE 7.17 Relation entre le vec-
teur de vitesse linéaire et celui de vi-
tesse angulaire.
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7.5.2 Fréquence et vitesse angulaire

Il arrive souvent que les paramètres cinématiques d’un processus de rotation ne soient
pas donnés par la vitesse angulaire, mais par le nombre de tours par unité de temps (le
compte-tours sur le tableau de bord d’une automobile est calibré en milliers de tours
par minute que l’on abrège par tr min-1 ou rpm en anglais).

On appelle fréquence la grandeur qui mesure le nombre de tours par unité de temps.
Elle est désignée par le symbole f ou la lettre grecque ν (nu):

(7.17)

où ∆n représente le nombre de révolutions durant l’intervalle ∆t. L’unité de mesure de
la fréquence est le hertz (Hz).

On appelle période T le temps nécessaire pour une seule révolution. Il s’ensuit que:

(7.18)

L’angle balayé durant une période vaut 2π. On en déduit une relation entre la vitesse
angulaire ω et la fréquence:

(7.19)

En vertu de cette dernière relation, la grandeur ω est également appelée fréquence an-
gulaire, particulièrement lorsqu’elle sert à décrire les phénomènes oscillatoires.

EXEMPLE 7.1. Cinématique d’un objet en rotation.

Un volant d’inertie tel que celui de la figure 7.23a un diamètre de 20 cm. Il peut atteindre une
vitesse de rotation de 60 000 tr min-1. Quelles sont: (a) la vitesse angulaire; (b) la vitesse linéai-
re à la périphérie du volant; (c) l’accélération angulaire constante et l’accélération linéaire à la
périphérie du volant, si l’on admet qu’il atteint ce régime en 10 s; (d) l’angle balayé et la dis-
tance parcourue par un point de la périphérie durant ces 10 secondes?

SOLUTION: (a) La donnée correspond à la fréquence f; donc:

(E.7.1)

(b) La vitesse linéaire à la périphérie:

(E.3)

ce qui n’est pas loin de deux fois la vitesse du son.

(c) Puisque l’accélération angulaire est constante, on peut la calculer par:

et l’accélération linéaire à la périphérie est:
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(d) L’angle balayé s’obtient par intégration de la vitesse angulaire

et la distance parcourue par un point de la périphérie:

B

7.5.3 Intégration du potentiel dans le modèle dynamique

Nous poursuivons l’élaboration du modèle en y intégrant la vitesse angulaire de cha-
cun des disques (fig. 7.19). Cette vitesse angulaire est liée à leur moment cinétique par
l’intermédiaire de la capacité dont il sera question à la section 7.7.

7.6 ÉNERGIE ET MOUVEMENT DE ROTATION

Chaque fois que le moment cinétique s’écoule entre deux niveaux de la vitesse angu-
laire (par exemple dans un embrayage à friction), il libère de l’énergie si le niveau ini-
tial est plus élevé que le niveau final, il en lie dans le cas contraire.

Nous verrons à la section 7.9 que l’énergie peut également être emmagasinée de ma-
nière dynamique lors d’un processus de rotation .

a a r= ⋅ = ⋅628 s 0 1 m = 62.8 m s-2 -2.

ϕ ω α
α
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10 s

s

10 s

= = ⋅ ⋅ =( ) ⎡
⎣⎢∫ ∫t dt t dt

0 0 2
⎤⎤
⎦⎥

=
0 s

10 s

rad3140

s r= ⋅ =ϕbalayé 314 m

L1 L2

I L

omega 1 omega 2

FIGURE 7.19 Introduction du poten-
tiel (vitesse angulaire ω) dans le mo-
dèle de deux disques couplés.

FIGURE 7.20 Puissance d’un pro-
cessus de rotation: de l’énergie est li-
bérée à un certain taux lorsque du
moment cinétique s’écoule de lieux
de vitesse angulaire élevée vers des
lieux de vitesse angulaire moindre.

Système

IL

1ω 2ω

Prot

Système

IL

IE

ω

E

L

FIGURE 7.21 L’énergie transférée
par un flux de moment cinétique dé-
pend de la vitesse angulaire à laquel-
le est transféré le moment cinétique.

ω
ω/2

CL = J

E

L

FIGURE 7.22 Image hydraulique de
l’accumulation d’énergie dans un
système en rotation.

Lorsque le moment cinétique s’écoule entre deux niveaux de son potentiel,
la vitesse angulaire ω, de l’énergie est libérée ou liée (fig. 7.20). Le taux
de libération ou de liaison de l’énergie est la puissance du processus
rotatoire:

(7.2)

Le flux d’énergie transportée par le moment cinétique lorsqu’il pénètre
dans ou quitte un système en un point où la vitesse angulaire est égale à ω
(fig. 7.21) est:

(7.3)

L’énergie accumulée sous forme capacitive par un solide rigide de capa-
cité rotatoire constante CL = J, en rotation à une vitesse angulaire de mo-
dule égal à ω, qui a donc accumulé un moment cinétique égal à L = CLω,
(fig. 7.22) est égale à:

(7.4)

 Prot = −∆ω IL

I IE L L, = ω

E I d C JC L E L L, ,= = =∫ ω ω ω1
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EXEMPLE 7.2. Stockage d’énergie dans un volant d’inertie.

Lors du freinage des véhicules (automobiles, bus, métro, train), l’énergie cinétique est dissipée
dans les freins. Une méthode pour éviter ce gaspillage consiste à récupérer l’énergie au moyen
d’un volant d’inertie relié à l’essieu moteur. Cette méthode est utilisée entre autres en Formule
1 au moyen du système KERS (Kinetic Energy Recuperation System, fig. 7.23). Durant la phase
de freinage, le volant est couplé au moyeu et l’énergie y est accumulée. Elle est restituée au mo-
ment du redémarrage. On embarque toujours sur le véhicule un nombre pair de volants d’inertie
tournant en sens inverse pour éviter que le véhicule soit déséquilibré lors des changements de
direction. En admettant que le volant est un anneau de rayons respectifs de 6 cm et 10 cm, de
masse égale à 5 kg, évaluer, en tenant compte de 20% de pertes dues aux frottements: (a) l’éner-
gie emmagasinée pour une vitesse de rotation de 60 000 tr min-1; (b) la puissance moyenne dé-
livrée par le système si le démarrage dure 10 s.

SOLUTION: (a) Le moment d’inertie d’un anneau est donné dans le tableau 7.1:

(b) La puissance délivrée est de 53.7 kW.

B

1. Quelle est la relation entre les flux de moment cinétique et les flux
d’énergie dans un engrenage idéal?

2. Quels sont les problèmes à résoudre lors de la conception d’un volant
d’inertie tel que celui de la figure 7.23?

1. Un engrenage transmet l’énergie pour différentes valeurs du couple. Le
flux d’énergie et proportionnel à la fois au couple et à la vitesse angu-
laire, ce qui implique que, pour un flux d’énergie donné, la vitesse
angulaire sera inversement proportionnelle au couple. Un engrenage est
l’équivalent mécanique d’un transformateur électrique qui transmet une
certaine quantité d’énergie à des intensités et des tensions différentes.

2. Comme ils doivent atteindre des vitesse de rotation très élevées, il faut
minimiser les frottements; ce but est atteint en l’enfermant dans une enceinte évacuée et,
pour certains, au moyen d’une suspension magnétique. Les flux de moment cinétique sont
accompagnés de flux de quantité de mouvement qui, comme nous le verrons à la
section 8.4.1, entraînent l’apparition de contraintes importantes aux vitesses considérées.
Le volant doit donc être enfermé dans une enceinte de protection très résistante.

7.7 LOI DE CAPACITÉ: LE MOMENT D’INERTIE

Nous avons observé que des systèmes sont susceptibles d’accumuler du moment ciné-
tique, ce qui implique qu’ils doivent posséder une capacité à emmagasiner cette gran-
deur. L’objectif de cette section est de déterminer comment cette capacité dépend des
propriétés du système.

FIGURE 7.23 Volant d’inertie
(KERS) développé par la firme Fly-
brid pour la Formule 1. (Photo: Geni
(CC)).
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7.7.1 Énoncé de la loi de capacité

Dans trois des domaines que nous avons abordés jusqu’ici, nous avons énoncé une loi
de capacité qui lie entre elles les variations de la grandeur extensive caractéristique du
domaine considéré et celles de son potentiel associé:

(7.5)

Comme nous l’ont déjà suggéré les observations de la section 7.2, ainsi que l’analogie
des comportements des systèmes dans le domaine que nous étudions et ceux qui ont
précédé, nous pouvons énoncer la loi de capacité pour le moment cinétique:

7.7.2 Centre de masse d’un objet

Comme la notion du centre de masse va jouer un rôle important dans ce qui va suivre,
nous allons la préciser, dans un premier temps pour un système de particules.

Considérons un système de n particules de masses respectives m1, m2 ..., mn, situées
dans l’espace dans des positions repérées par les vecteurs r1, r2 ..., rn (fig. 7.24). Le
centre de masse de ce système est un point CM repéré par un vecteur rCM défini en tant
que moyenne pondérée des vecteurs position de chacune des masses, les masses jouant
le rôle de coefficient de pondération:

(7.8)

où M représente la masse totale du système de particules. Comme l’expression ci-des-
sus fait intervenir des vecteurs, le calcul concret devra être effectué sur chacune des
composantes du vecteur rCM.

Dans le cas d’un solide rigide homogène (objet qui ne se déforme pas lorsqu’il est sou-
mis à des contraintes), on subdivise l’objet en éléments ∆mi choisis de manière adé-
quate, auxquels on associe leurs vecteurs position ri. Lorsque l’on fait tendre les ∆mi
vers zéro, les sommes ci-dessus deviennent des intégrales:

(7.9)

Ici aussi, les intégrales devront être calculées pour chacune des composantes du vec-
teur rCM.

 
� � � � � �V C P Q C U S K TV Q S= = =; ;

La loi de capacité établit le lien entre le taux de variation du moment ci-
nétique d’un objet en rotation et de celui de sa vitesse angulaire au moyen
de la capacité CL:

(7.6)

Cette relation implique que le moment cinétique est:

(7.7)

 � �L CL= ω

L CL= ω
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FIGURE 7.24 Définition du centre
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EXEMPLE 7.3. Calcul du centre de masse d’un objet symétrique.

Calculer la position du centre de masse: (a) d’un cône de révolution de hauteur H et de rayon
de la base R ; (b) d’une molécule d’eau (fig. 7.25), sachant qu’il s’agit d’une molécule planai-
re, que la longueur L de la liaison entre l’atome d’oxygène et un atome d’hydrogène est de
96·10-12 m, que l’angle α formé par ces deux liaisons vaut 105° et que la masse de l’oxygène
correspond à 16 fois celle de l’hydrogène.

SOLUTION: (a) Vu la symétrie de l’objet, il est clair que le centre de masse est situé sur son
axe (fig. 7.26). La masse du cône est égale au produit de sa masse volumique et de son volume,
Pour obtenir zCM l’ordonnée du centre de masse, nous appliquons la relation (7.9) où les élé-
ments infinitésimaux de masse dm sont des disques de rayon variable r(z) et d’épaisseur dz:

On trouve le rayon en fonction de la hauteur en appliquant le théorème de Thalès:

Après substitution dans l’intégrale, on obtient:

(b) Ici aussi, le centre de masse se situe sur l’axe de symétrie. Nous choisissons le noyau de
l’atome d’oxygène comme origine du repère. L’ordonnée du centre de masse est:

Cette distance est légèrement plus grande que le rayon du nuage électronique de l’atome d’oxy-
gène isolé.

B

7.7.3 Approche expérimentale de la capacité en moment cinétique

La relation entre la capacité d’un objet à accumuler du moment cinétique et ses pro-
priétés doit être déterminée de manière expérimentale. On ne commence pas les expé-
riences avant d’avoir émis un certain nombre d’hypothèses sur les propriétés que l’on
veut découvrir. Ainsi, dans le cas qui nous occupe, il est sensé de supposer que la ca-
pacité en moment cinétique dépendra de la masse de l’objet (plus la masse est grande,
plus il pourra accumuler de moment cinétique) et de la répartition de cette masse. Pour
tester ces hypothèses et pour rendre l’analyse des résultats aussi simple que possible,
nous effectuerons les expériences avec des objets de forme cylindrique tournant autour
d’un axe fixe et dont la masse est répartie de manière homogène autour de l’axe.

Dans une première expérience, nous observons un transfert de moment cinétique entre
deux disques que l’on couple au moyen d’un embrayage (fig. 7.27). Avant le couplage,
le disque de gauche a une certaine vitesse angulaire ω1, le disque de droite, de même
rayon mais de masse double, a une vitesse angulaire nulle. Après le couplage, la vites-
se commune des deux disques correspond au tiers de la vitesse initiale du premier
disque.

L

y
CM

FIGURE 7.25 Représentation sché-
matique d’une molécule d’eau. Les
nuages électroniques ne sont pas dis-
joints, et la distance L est celle entre
les centres de ces nuages.
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FIGURE 7.26 Pour déterminer la po-
sition du centre de masse d’un cône,
on le décompose en disques parallè-
les au plan de base, d’épaisseur infi-
nitésimale dz et de rayon variable.
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disque a le même rayon, mais une
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Lors de cette expérience, le moment cinétique n’a pas varié, il s’est réparti sur un sys-
tème de masse trois fois supérieure, ce qui a réduit la vitesse angulaire d’un facteur
trois. Or, le moment cinétique, égal au produit de la capacité et de la vitesse angulaire,
est inchangé, ce qui implique que la capacité a été multipliée par trois, tout comme la
masse. Nous en concluons que la capacité est proportionnelle à la masse, ce que con-
firment toutes les expériences que l’on peut encore réaliser.

(7.10)

Pour étudier la manière dont la géométrie influence la capacité, nous procédons à une
expérience analogue dans laquelle le second disque a la même masse que le premier,
mais un rayon diminué de moitié (fig. 7.28). Après couplage, la vitesse angulaire com-
mune est égale aux quatre cinquièmes de la vitesse initiale du disque de gauche.

La capacité du système après couplage est égale aux cinq quarts de la capacité du dis-
que de gauche, ce qui veut dire que celle du disque de droite vaut un quart de celle du
disque de gauche, pour une masse égale et un rayon réduit de moitié. L’hypothèse la
plus simple est d’admettre que la capacité et proportionnelle à une fonction du carré
du rayon:

(7.11)

7.7.4 Moment d’inertie de solides rigides

Une analyse plus poussée (autant expérimentale que théorique) permet d’énoncer:

EXEMPLE 7.4. Moments d’inertie d’un cône et d’une molécule d’eau.

En reprenant les données de l’exemple 7.3, calculer le moment d’inertie (a) d’un cône de révo-
lution par rapport à son axe; (b) d’une molécule d’eau par rapport à son axe de symétrie et aux
deux autres axes perpendiculaires à celui-ci passant par le centre de masse (axes principaux).

SOLUTION: (a) Nous devons décomposer le cône en éléments infinitésimaux situés à une dis-
tance r de l’axe de rotation. Ce sont des anneaux de basse 2πr, de hauteur infinitésimale dr et
d’épaisseur infinitésimale dz.

C mL ∝

FIGURE 7.28 Transfert de moment
cinétique entre deux disques au
moyen d’un embrayage. Le second
disque a la même masse, mais un
rayon égal à la moitié du celui du
premier.

C f RL ∝ ( )2

La capacité en moment cinétique CL d’un solide rigide en rotation, que
l’on appelle son moment d’inertie J, est une grandeur proportionnelle à la
masse m du solide et à une combinaison particulière du carré de ses di-
mensions linéaires. Le moment d’inertie peut être mesuré ou, pour autant
que cela soit possible, calculé par intégration:
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(b) Nous faisons coïncider l’origine O du repère avec le centre de masse (fig. 7.29).

Rotation autour de Ox:

Rotation autour de Oy:

Rotation autour de Oz:

B

Il est usuel de désigner par K2 la combinaison linéaire du carré des dimensions du
solide; dans le cas du cône de révolution, K2 est égal à 3/10 R2. La racine K de ce carré
est le rayon de giration.

(7.13)

Le rayon de giration représente la distance de l’axe à laquelle toute la masse de l’objet
pourrait être concentrée sans changer son moment d’inertie J.

Le tableau 7.1 donne les rayons de giration d’un certain nombre de solides homogènes
pour une rotation autour d’un axe de symétrie (qui est un axe principal comme nous
allons le voir plus bas). Lorsque la rotation d’un objet a lieu autour d’un axe de symé-
trie, le vecteur de moment cinétique L et celui de la vitesse ωωωω sont parallèles.

Par contre, si la répartition de la masse n’est plus symétrique, les deux vecteurs ne sont
plus parallèles, ce qui entraîne l’apparition de vibrations lors de la rotation. Ce phéno-
mène se manifeste lorsque les roues avant d’une voiture sont mal équilibrées: le volant
se met à vibrer parce que la masse n’est pas répartie de manière uniforme autour de
l’axe de rotation, l’axe de symétrie et celui de rotation ne sont plus confondus. On voit
donc que l’inertie d’un objet en rotation ne peut pas être représentée par un seul nom-
bre, comme la masse qui est une grandeur scalaire, ni même par un vecteur comme le
moment cinétique ou la vitesse angulaire, mais par une matrice, la matrice d’inertie:
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y
CM

x
O

FIGURE 7.29 Axes principaux de la
molécule d’eau. Le troisième axe est
perpendiculaire au plan de la molé-
cule et passe par le centre de masse.
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Il faut toutefois noter que pour tout solide rigide, quelle que soit sa forme, il existe au
moins trois axes, mutuellement perpendiculaires, passant par le centre de masse, pour
lesquels les deux vecteurs en question sont parallèles. Ce sont les axes principaux du
solide rigide. Le garagiste qui équilibre une roue de voiture ne fait rien d’autre que de
répartir la masse de telle manière que la rotation de la roue ait lieu autour d’un de ses
axes principaux. Lorsque la rotation a lieu autour d’un axe principal, la matrice d’iner-
tie n’a plus que trois éléments non nuls, les moments d’inertie principaux qui se trou-
vent sur la diagonale de la matrice:

Les moments d’inertie principaux des objets les plus courants sont répertoriés dans le
tableau 7.1.

En définitive, nous pouvons maintenant rassembler les résultats des lignes qui précè-
dent et indiquer de quelle manière se calcule le moment cinétique d’un solide rigide
en rotation.

Le moment cinétique d’un solide rigide en rotation à la vitesse angulaire ω est donné
par:

(7.14)

TABLEAU 7.1 Carré du rayon de giration de quelques solides homogènes.
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La grandeur J est la matrice d’inertie du solide rigide. Lorsque la rotation a lieu autour
d’un axe principal, la matrice en question est diagonale, et les vecteurs L et ωωωω sont
alors parallèles:

(7.15)

7.7.5 Théorème de Huygens-Steiner (théorème de l’axe parallèle)

Usuellement, les tables numériques, comme le tableau 7.1, donnent les moments
d’inertie principaux JCM, c’est-à-dire relatifs à un axe qui passe par le centre de masse.
Lorsque la rotation a lieu autour d’un axe a parallèle à un axe principal, situé à une
distance d de l’axe principal, le nouveau moment d’inertie peut être calculé de manière
simple au moyen du théorème de Huygens-Steiner, qui stipule que le nouveau moment
d’inertie Ja s’obtient à partir de l’ancien en y ajoutant le produit de la masse m de l’ob-
jet (ou du système) et du carré de la distance d:

(7.16)

EXEMPLE 7.5. Évaluation de moments d’inertie.

En utilisant les valeurs du tableau 7.1 et/ou le théorème de Huygens-Steiner, évaluer les mo-
ments d’inertie: (a) d’une tige mince de longueur L par rapport à un axe principal perpendicu-
laire à la tige; (b) de la même tige par rapport à un axe perpendiculaire à la tige passant par une
des ses extrémités; (c) d’une plaque rectangulaire mince; (d) d’un anneau d’épaisseur négligea-
ble.

SOLUTION: (a) La tige mince est considérée comme un cylindre de rayon négligeable; en se
basant sur la deuxième ligne du tableau 7.1, on obtient:

(b) La distance entre l’axe principal et nouvel axe a est égale à L/2. Le nouveau moment d’iner-
tie sera donc:

(c) Une plaque rectangulaire mince est un parallélépipède dont une des dimensions est négli-
geable (par exemple c = 0). Pour un axe de rotation autour de l’axe principal perpendiculaire au
côté de longueur a, nous trouvons à partir du tableau 7.1:

(d) L’épaisseur négligeable entraîne que R1 = R2 = R. Ainsi:
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ce qui est un résultat évident, vu que toute la masse est située à une distance R de l’axe de rota-
tion.

B

EXEMPLE 7.6. Conservation du moment cinétique: la pirouette en patinage.

Pour effectuer une pirouette debout, le patineur amorce le mouvement de rotation avec les bras
écartés du corps et une jambe relevée, puis il ramène ses membres près de l’axe du corps, les
bras contre la poitrine ou au-dessus de la tête (fig. 7.30a).

Nous établissons un modèle fortement simplifié: le corps de l’athlète est modélisé par un cylin-
dre d’axe vertical, de masse M = 50 kg, de rayon R = 18 cm. Chaque bras est représenté par un
cylindre de rayon moyen r = 4 cm, de longueur L = 60 cm et de masse m = 3 kg. Au début de la
pirouette, les bras sont écartés (fig. 7.30b), puis ramenés à la verticale au-dessus de la tête
(fig. 7.30c). Quelle sera la vitesse de rotation du patineur lors de la pirouette si, au début, il lui
faut 1.2 s pour un tour complet?

SOLUTION: Si l’on admet que les frottements entre la glace et les patins sont négligeables du-
rant la préparation de la pirouette, nous pouvons appliquer la loi de conservation du moment
cinétique qui n’a qu’une composante verticale:

Lors de l’évaluation des moments d’inertie, il faut tenir compte que la rotation des bras a lieu
autour d’un axe parallèle à un axe principal en appliquant le théorème de Huygens-Steiner; dans
les calculs, a et b représentent respectivement la distance entre l’axe de rotation et le centre de
masse des bras dans la position écartée et relevée:

La vitesse de rotation de la pirouette sera:

Cette valeur est en dessous des valeurs que l’on observe dans la réalité, vu que nous n’avons pas
pris en compte la contribution de la jambe écartée dans le calcul du moment d’inertie lors de la
phase d’amorce de la pirouette.

B

EXEMPLE 7.7. Valeurs de quelques moments cinétiques et de flux de moment cinétique.

Calculer: (a) le moment cinétique propre du Soleil et de la Terre en admettant que ces deux
corps célestes sont des sphères homogènes; la période de rotation moyenne du Soleil est de

a.

b.

c.

FIGURE 7.30 Pirouette debout: (a)
attitude de la patineuse pendant la
phase de rotation rapide; (b) modèle
simplifié de l’athlète à l’amorce de
la rotation; (c) modèle simplifié de
l’athlète durant la phase de rotation
rapide.
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27 jours; (b) le moment cinétique orbital de la Terre autour du Soleil; (c) le moment cinétique
orbital de la Lune; (d) le couple (flux de moment cinétique) exercé par un moteur d’automobile
qui développe une puissance de 75 kW lorsque le régime est de 4400 tr min-1.

SOLUTION: (a) Moment cinétique du Soleil

Moment cinétique de la Terre:

Dans les deux cas, le moment cinétique est surévalué, parce que la densité de ces deux corps
augmente de la surface vers le centre.

(b) La Terre effectue une révolution complète autour du centre de masse du système en une an-
née terrestre (fig. 7.31). À partir de l’équation (7.8), on détermine que le centre de masse du sys-
tème est à 4.50·105 m du centre du Soleil, ce qui représente 0.7‰ du rayon solaire. Nous
pouvons donc admettre que la révolution de la Terre a lieu autour du centre du Soleil. Le mo-
ment d’inertie de la Terre doit être corrigé au moyen de la relation de Huygens-Steiner (7.16).
Le moment cinétique orbital de la Terre dans sa révolution autour du Soleil est donc:

ce qui représente 2.7% de moment cinétique propre du Soleil. En calculant de la même manière
le moment cinétique orbital de chacune des planètes du système solaire, on se rend compte que
le moment cinétique du Soleil représente moins de 4% du moment cinétique total du système
solaire.

(c) Le moment cinétique orbital de la Lune, calculé de manière analogue à la partie (b) est égal
à 2.9·1034 Eu, ce qui représente 4 fois celui de la Terre (celui de la Lune, soit 2.4·1029 Eu, est
négligeable). Le moment cinétique orbital important du système Terre-Lune a un effet stabili-
sateur sans lequel on suppose que l’axe de rotation de la Terre ne garderait pas son inclinaison
autour de 23.5° par rapport au plan de l’écliptique.

(d) L’équation (7.2) indique que la puissance du processus est proportionnelle au couple et à la
variation de la vitesse angulaire. Comme la vitesse angulaire des roues est négligeable par rap-
port au régime du moteur, c’est cette dernière valeur qui apparaît dans les calculs:

B

7.7.6 Intégration de la capacité dans le modèle

La loi de capacité permet de déterminer la vitesse angulaire à partir du moment ciné-
tique et du moment d’inertie des éléments du système envisagé.
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FIGURE 7.31 Système Soleil-Terre.
Les échelles sont incorrectes, autant
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des corps célestes que la distance
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Comme nous envisageons de modéliser le couplage de deux disques (fig. 7.32), la con-
naissance de leurs dimensions et de leurs masses permettra de calculer leurs moments
d’inertie respectifs. Au cas où il ne s’agit pas d’objets de géométrie simple, le moment
d’inertie doit être déterminé par l’expérience.

1. Quelle est la particularité de l’inertie en rotation?

2. Comment calcule-t-on le moment d’inertie d’un système de corps soli-
des en rotation autour d’un axe?

1. La particularité est qu’elle ne dépend pas que de la masse inerte, mais
également de sa répartition autour de l’axe de rotation. C’est de cette
particularité (et de la conservation du moment cinétique) que le pati-
neur fait usage lorsqu’il amorce sa pirouette avec les bras écartés, puis
les ramène rapidement contre son corps pour diminuer son moment
d’inertie, ce qui provoque une augmentation de sa vitesse de rotation.

2. Pour chacun des solides du système, il faut tenir compte de deux
contributions: le moment d’inertie propre, auquel il faut ajouter le moment cinétique orbital
que l’on obtient au moyen du théorème de Huygens-Steiner. La distance d qui apparaît dans
ce calcul est celle qui sépare le centre de masse de l’axe de rotation de chaque solide.

7.8 LOI DE RÉSISTANCE

Nous avons vu en hydraulique, en électricité et lors de l’étude des processus thermi-
ques que tout transfert d’une grandeur extensive (volume, charge, entropie) rencontre
généralement une résistance à l’écoulement entraînant une dissipation d’énergie. Lors
des processus de rotation, ce sont les frottements qui sont à l’origine de la dissipation.
Dans ce qui suit, nous désignerons par IL,R les flux de moment cinétique engendrés par
les frottements.

7.8.1 Transmission par un arbre rigide (supraconduction)

Un arbre rigide transmet le moment cinétique sans en limiter le flux; c’est un supra-
conducteur du moment cinétique. Mais cette transmission du moment cinétique n’a
lieu que s’il est soumis à une torsion (qui n’est pas nécessairement visible).

L1 L2

I L

omega 1 omega 2

J1 J2

m1 r1 m2r2

FIGURE 7.32 Insertion de la loi de
capacité dans le modèle des deux
disques couplés par un embrayage.
La connaissance du moment d’iner-
tie de chacun des disques permet de
calculer leur vitesse angulaire à par-
tir de leur moment cinétique.

Q

R
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7.8.2 Frottement constant (frottement de COULOMB)

Le flux de moment cinétique (le moment, le couple) est constant (fig. 7.33), quelle que
soit la valeur de la vitesse angulaire, mais son signe dépend de celui de la vitesse an-
gulaire, c’est-à-dire du sens de rotation:

(7.17)

Les frottements dans les appuis des pièces en mouvement de rotation peuvent égale-
ment contribuer à la conductance et donc à des flux de moment cinétique.

7.8.3 Frottement de type ohmique (frottement visqueux)

Le module du couple dû au frottement peut dépendre de la vitesse relative des deux
corps en interaction. Si l’on dépose un film d’huile entre les surfaces des deux corps,
l’effet est proportionnel à la différence des vitesses angulaires:

(7.18)

La caractéristique de ce type de frottement est linéaire (fig. 7.34), comme celle de la
loi d’OHM en électricité. C’est la viscosité du fluide qui détermine la valeur du coeffi-
cient de proportionnalité k.

7.8.4 Embrayage à friction

Un embrayage à friction (comme celui des voitures) oppose une résistance dont la
caractéristique est assez particulière. Il transmet le moment cinétique jusqu’à une cer-
taine valeur maximale de l’intensité IL,rupture; en régime stationnaire, cette transmis-
sion se fait sans dissipation d’énergie (en mode supraconducteur, avec une
conductance infinie). Il n’est pas possible de dépasser cette valeur limite, quelle que
soit la différence des vitesses angulaires entre les deux parties de l’embrayage: il se
met à patiner. Le flux de moment cinétique diminue avant de devenir constant (frotte-
ment de COULOMB). La valeur du couple où a lieu la rupture dépend de la pression
exercée sur les disques d’embrayage (fig. 7.35).

Il est important de noter que, dans le cas de la transmission du moment cinétique, les
frottements (par exemple les frottement dans les appuis ou ceux que l’on utilise
sciemment dans les freins à disque pour ralentir le mouvement de rotation) ne s’op-
posent pas aux flux de moment cinétique mais, au contraire, les favorisent. Lors de la
transmission par conduction du moment cinétique, les frottements contribuent à la
conduction.

IL

∆ω

FIGURE 7.33 Frottement de
COULOMB: le flux de moment cinéti-
que (le couple dû au frottement) est
indépendant de la différence de
vitesse entre les deux corps en
interaction.

I IL R L, ,sgn= − ( )ω Coulomb

I kL R, = − ⋅ ∆ω

IL

∆ω

FIGURE 7.34 Frottement visqueux:
le flux de moment cinétique (le cou-
ple dû au frottement) est proportion-
nel à la différence de vitesse entre les
deux corps en interaction.

IL

∆ω

IL, rupt

FIGURE 7.35 Caractéristique d’un
embrayage à friction: la transmission
du moment cinétique en mode supra-
conducteur cesse au-delà d’une va-
leur de rupture; après la rupture, le
couple dû au frottement est constant
(après une phase de réduction).
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7.8.5 Intégration des flux résistifs dans le modèle

Nous sommes maintenant en mesure de compléter le modèle des deux disques.

Nous y ajoutons les particularités du transfert de moment cinétique par un embrayage
à friction. Un couple moteur variable entraîne le disque 1 qui est couplé au disque 2
par un embrayage à friction équipé d’un limiteur de couple. Le couple moteur croît
linéairement de 0 Eu s-1 à 150 Eu s-1 durant les 4 premières secondes, est nul durant
les 4 secondes suivantes, puis est inversé et exerce un couple négatif de module égal à
100 Eu s-1. Le limiteur de couple ne laisse passer entre les deux disques qu’un flux de
moment cinétique de module inférieur ou égal à 50 Eu s-1. Les moments d’inertie des
disques valent respectivement 25 Eu s et 50 Eu s.

Dans le modèle, le paramètre «signe» prend les valeurs 1 ou -1 en fonction des valeurs
des vitesses angulaires respectives et détermine si le moment cinétique s’écoule du
disque 1 vers le disque 2 ou en sens inverse. Le flux de moment cinétique est calculé
séparément et il est désigné par IL0 lorsque le couple moteur est nul et par IL couple lors-
que celui-ci est enclenché.

La figure 7.37a montre l’évolution du couple moteur et celle du flux de moment ciné-
tique entre les deux disques et la figure 7.37b celle des vitesses angulaires respectives.
Les figures 7.37c et 7.37d montrent l’évolution des flux d’énergie et de l’énergie elle-
même. Un flux d’énergie sera considéré comme positif s’il va vers le second disque,
comme négatif dans le cas contraire. Au début du processus, les deux vitesses

FIGURE 7.36 Modèle du couplage
de deux disques au moyen d’un em-
brayage à friction.
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FIGURE 7.37 Simulation du modèle de la figure 7.36: (a) flux de moment cinétique; (b) vitesse angulaire des disques; (c) flux
d’énergie; (d) énergie accumulée dans les disques et énergie dissipée dans l’embrayage.
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angulaires croissent conjointement, le moment cinétique se répartit proportionnelle-
ment aux moment d’inertie de chacun des disques. Lorsque le flux de moment cinéti-
que entre les deux disques atteint la valeur limite de 50 Eu s-1, ce qui se produit après
2 secondes, l’embrayage se met à patiner, le flux entre les deux disques ne varie plus
et la vitesse angulaire du second disque continue de croître au taux acquis, alors que
celle du premier disque croît plus rapidement, à cause de l’apport plus important de
moment cinétique. Le flux d’énergie injectée par le couple moteur est positif durant
les 4 premières secondes.

Les figures 7.38, 7.39 et 7.40 visualisent les flux de moment cinétique, d’entropie et
d’énergie entre les différents éléments du système.

Lorsque le couple moteur s’annule après 4 secondes, le flux de moment cinétique entre
les deux disques conserve sa valeur de 50 Eu s-1, ce qui entraîne une diminution du
moment cinétique et de la vitesse angulaire du premier disque et une augmentation des
mêmes grandeurs du second disque jusqu’à ce que leurs vitesses angulaires atteignent
la même valeur, ce qui se produit 1 seconde plus tard.

À partir de cet instant, les vitesses angulaires ne varient plus, vu que le couple moteur
est nul et que nous avons admis qu’il n’y avait pas de frottement.
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FIGURE 7.38 Diagrammes de pro-
cessus illustrant les flux de moment
cinétique, d’entropie et d’énergie du-
rant les différentes phases du
processus: (a) 0 s ≤ t < 2 s;
(b) 2 s ≤ t < 4 s.
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FIGURE 7.39 Diagrammes de pro-
cessus illustrant les flux de moment
cinétique, d’entropie et d’énergie du-
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processus: (a) 4 s ≤ t < 5 s;
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Lorsque le moteur exerce un couple négatif de 100 Eu s-1 sur le premier disque, le sens
du flux de moment cinétique entre les deux disques s’inverse, mais reste limité à 50
Eu s-1, ce qui entraîne une diminution plus rapide de la vitesse angulaire du premier
disque; l’embrayage patine à nouveau. Au bout de 10 secondes, la vitesse angulaire du
premier disque s’inverse, celle du second disque s’inversera après 12 secondes si le
couple négatif continue à agir. À partir de l’instant où le couple a été inversé, l’em-
brayage patine, vu que le flux de moment cinétique dépasse la limitation de couple.

Les flux d’énergie s’inversent lors de l’inversion du couple moteur, ce qui veut dire que
le couple moteur soutire de l’énergie au système des deux disques. Lorsque le sens de
rotation du premier disque s’inverse, le couple moteur injecte à nouveau de l’énergie
dans le système. Durant les 4 premières secondes, le flux d’énergie entre les deux dis-
ques est plus faible que celui du couple moteur, parce qu’une partie de l’énergie est
déposée dans le premier disque et que, à partir du moment où l’embrayage se met à
patiner, une partie de l’énergie injectée est dissipée par la production d’entropie. À
partir du moment où les vitesses angulaires des deux disques sont égales, tous les flux
d’énergie s’annulent, jusqu’à l’instant de l’enclenchement du couple moteur inversé.
Les flux d’énergie s’inversent jusqu’à ce que le premier disque inverse son sens de ro-
tation (le flux d’énergie du couple moteur devient positif) et que, plus tard, le sens de
rotation du second disque s’inverse lui aussi (le flux entre les deux disques devient à
nouveau positif). On remarquera que les flux d’énergie n’ont pas toujours le même
sens que les flux de moment cinétique.

FIGURE 7.40 Diagrammes de pro-
cessus illustrant les flux de moment
cinétique, d’entropie et d’énergie
durant les différentes phases du
processus: (a) 8 s ≤ t < 10 s;
(b) 10 s ≤ t < 12 s; (c) t ≥ 12 s.
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1. Comment les frottements influencent-ils le processus de rotation?

1. Les frottements sont des conducteurs de moment cinétique, que ce soit
pour en apporter au système, comme par exemple dans un embrayage à
friction, ou pour en extraire du système, par exemple dans les freins.
Dans le cas de frottements de type visqueux, la conductance en
moment cinétique du fluide est d’autant plus grande que la viscosité est
importante.

7.9 INDUCTION LORS DE FLUX DE MOMENT CINÉTIQUE 

Le phénomène d’induction se manifeste lorsque la transmission se fait au moyen
d’une pièce susceptible de se tordre élastiquement, par exemple lorsque la transmis-
sion du moment cinétique est assurée par un ressort (comme le ressort spiral d’une
montre mécanique).

7.9.1 Énoncé de la loi d’induction

7.9.2 Oscillations amorties du pendule de POHL

Le pendule de POHL (fig. 7.41) est un système destiné à montrer les particularités d’un
mouvement de rotation oscillatoire. Il consiste en un disque (une roue à rayons) mé-
tallique (en général du cuivre) couplé au support par un ressort spiral. La partie infé-
rieure du disque passe entre les deux pôles d’un électroaimant, ce qui permet de
contrôler l’amortissement au moyen des courants de FOUCAULT, que l’on pilote par
l’alimentation en courant de l’électroaimant. Il est de type visqueux, donc proportion-
nel à la vitesse angulaire.

Il y a deux contributions à la variation du moment cinétique du pendule, à savoir le
flux de moment cinétique dû à l’action du ressort, qui sera décrit par la loi d’induction,
et celui qui est dû à l’action de l’électroaimant, décrit par la loi de résistance.

Nous pouvons donc énoncer cette loi de variation au moyen de l’équation de bilan:

Q

R

La loi d’induction a la même forme qu’en hydraulique et en électricité, à
savoir:

(7.19)

ce qui implique que l’inductance en rotation se mesure en Eu-1 s ou N-1 m-1.

 ∆ωL L LL I= − �

FIGURE 7.41 Pendule de POHL: il
s’agit d’une roue en cuivre entraî-
née par un ressort spiral. Un élec-
troaimant alimenté permet de
contrôler l’amortissement par
l’intermédiaire de courants de
FOUCAULT.
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(7.20)

Le flux de moment cinétique dû à l’action du ressort est décrit par la loi d’induction;
dans ce cas particulier, nous pouvons écrire ∆ωL = ωL = ω, vu qu’ici nous mesurons
la différence des vitesses angulaires entre le pendule et son support immobile. Pour
éviter la confusion avec la fréquence angulaire, nous exprimerons la vitesse angulaire
au moyen de la dérivée temporelle de l’élongation angulaire ϕ:

(7.21)

Comme nous l’avons déjà signalé plus haut, le phénomène d’induction est une consé-
quence de l’élasticité du ressort (et de l’inertie du pendule). La caractéristique élasti-
que d’un tel ressort est décrite par la constante de torsion D qui met en relation
l’élongation angulaire ϕ et le flux de moment cinétique (le moment ou couple exercé
par le ressort):

(7.22)

La dérivation de dernière relation par rapport à la variable t et la comparaison du ré-
sultat obtenu avec la loi d’induction montrent que l’inductance du ressort est égale à
l’inverse de sa constante de torsion:

(7.23)

L’influence de l’aimant servant à amortir le mouvement oscillatoire se manifeste par
un flux de moment cinétique (un couple) proportionnel à la vitesse angulaire (les cou-
rants de FOUCAULT sont un effet inductif qui se manifeste dans les matériaux conduc-
teurs qui se déplacent dans un champ magnétique). Il s’agit donc d’un frottement de
type ohmique donné par l’équation (7.18):

(7.24)

Notons que, dans ce cas, le moment cinétique est transporté vers le châssis du dispo-
sitif par le champ magnétique de l’aimant.

Pour lier le membre de gauche de notre équation de bilan aux caractéristiques du sys-
tème étudié, nous devons encore appliquer la loi de capacité qui donne la relation entre
le moment cinétique du pendule et son moment d’inertie J:

(7.25)

Substituons ces trois lois dans l’équation de bilan:

(7.26)

Divisons les deux membres par J et rassemblons tous les termes dans le membre de
gauche:

(7.27)
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Cette équation différentielle a exactement la même forme que celle que nous avions
rencontrée à la section 4.8 lors de l’étude des oscillations d’un fluide entre deux réser-
voirs communicants. Nous pouvons donc reprendre la solution que nous avions trou-
vée en tenant compte des correspondances:

(7.28)

où λ = k/2J est la constante d’amortissement (mesurée en s-1) et ωd la fréquence angu-
laire de l’oscillation amortie (fig. 7.42). Cette fréquence angulaire est donnée par:

(7.29)

où ω0 représente la fréquence angulaire de l’oscillation non amortie ou fréquence pro-
pre (cas hypothétique, non réalisable). La fréquence angulaire de l’oscillation amortie
est généralement très proche de la fréquence propre.

Si nous nous étions intéressés à la vitesse angulaire ω au lieu de l’élongation angulaire
ϕ, nous aurions trouvé une équation différentielle analogue, et sa solution aurait été
formellement la même, à savoir:

(7.30)

Nous voyons donc que la vitesse angulaire ω (à ne pas confondre avec la fréquence
angulaire ωd qui apparaît dans l’argument du sinus) diminue progressivement dans le
temps à cause des frottements caractérisés par le coefficient d’amortissement λ.

7.9.3 Oscillations entretenues et phénomène de résonance

Il est possible de compenser la dissipation due aux frottements en réinjectant de l’éner-
gie dans le système. C’est ce que font par exemple le mécanisme d’échappement dans
une horloge ou une montre (fig. 7.43) qui réinjecte l’énergie dissipée à chaque oscilla-
tion du pendule en la prenant soit dans un ressort « remonté», soit dans le poids
«remonté», ou un enfant sur une balançoire qui entretient le mouvement en se faisant
pousser par ses parents ou en projetant ses jambes vers l’avant. Dans les deux cas, la
compensation des pertes énergétiques ne se fait pas pendant tout le cycle, mais à un
moment précis de ce cycle et, en quelque sorte, par paquets.

Une autre manière de procéder consiste à injecter l’énergie durant tout le cycle, par
une excitation extérieure dont le comportement doit être similaire à celui du système
oscillant, donc sinusoïdal.

Pour le pendule de POHL, il s’agit de réinjecter cette énergie en l’y amenant par les flux
de moment cinétique. Pour ce faire, on «excite» le pendule de POHL par un système
de bielle-manivelle qui exerce un couple variant sinusoïdalement dans le temps, im-
primant ainsi un mouvement sinusoïdal à l’extrémité du ressort. On peut varier la fré-
quence de cette excitation extérieure donnée par:

(7.31)

Pour résoudre ce problème mathématiquement, il suffit d’ajouter cette contribution à
l’équation de bilan du moment cinétique que nous avons formulée à la section 5.4.

Avant de donner la solution, réfléchissons à la manière dont va réagir le système. Tout
d’abord, nous nous rendons compte que, au bout d’un certain temps, il ne pourra pas
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FIGURE 7.42 Enregistrement des
oscillations amorties du pendule de
POHL.
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FIGURE 7.43 Mécanisme d’échap-
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faire autre chose que d’osciller à la fréquence qui lui est imposée par l’excitation ex-
térieure. Mais avant de pouvoir le faire, il devra «oublier» soit sa fréquence propre,
soit celle à laquelle il était en train d’osciller, comme le révèle l’expérience illustrée
par la figure 7.44 (les changements de fréquence sont indiqués par des flèches).

D’autre part, nous pouvons assez facilement imaginer que la réponse du système sera
déphasée par rapport à l’excitation (il y a par exemple un déphasage entre le mouve-
ment d’une balançoire et celui des jambes de l’enfant qui s’y trouve ou l’impulsion qui
lui est donnée par la poussée des parents).

Finalement, nous réalisons également que l’amplitude du mouvement oscillatoire dé-
pendra de la fréquence de l’excitation extérieure. Par exemple, si cette fréquence est
beaucoup plus grande que la fréquence propre du pendule, celui-ci ne pourra plus sui-
vre à cause de son inertie et il n’effectuera que des oscillations de très faible amplitude.

Le traitement de l’équation différentielle dans laquelle on tient compte de l’excitation
extérieure permet de trouver la solution suivante:

(7.32)

Examinons cette solution. Le premier terme n’est rien d’autre que la solution de
l’équation différentielle décrivant le mouvement non excité dont il est question au dé-
but de cette section (en termes techniques, il s’agit de la solution de l’équation diffé-
rentielle homogène, ou sans second membre). Comme nous l’avons vu à la fois au
chapitre 4 et à la section 7.9.2, cette partie de la solution décroît exponentiellement et
«s’éteint» au bout d’un certain temps. Il est usuel d’appeler phase transitoire (les élec-
troniciens parlent de transient) la durée pendant laquelle cette partie de la solution est
non négligeable. Elle représente le temps que met le système pour «oublier» sa fré-
quence propre ou la fréquence qu’on lui avait imposée avant le changement de la fré-
quence extérieure.

Le second terme représente la réponse du système à l’excitation extérieure. C’est une
oscillation qui se déroule à la fréquence imposée par l’excitation avec un déphasage
qui dépend des propriétés physiques du système oscillant. En termes techniques, cette
partie de la solution, qui prend en compte le terme inhomogène de l’équation différen-
tielle, est appelée solution particulière par les mathématiciens, ou réponse stationnaire
du système par les physiciens.

Il est important de noter que cette réponse stationnaire dépend de l’amplitude de l’ex-
citation extérieure (ce qui est en fait une banalité), mais également de l’écart entre la
fréquence propre du système et celle de l’excitation extérieure et, finalement, du

FIGURE 7.44 Mise en évidence du
double effet du changement de fré-
quence de l’excitation extérieure
(indiqué par des flèches). Le système
met un certain temps pour s’y adap-
ter, et l’amplitude de la réponse
varie.
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coefficient d’amortissement (ce qui est à nouveau presque évident). De même, le dé-
phasage δ dépend lui aussi de cet écart et du facteur d’amortissement. La résolution
mathématique du problème permet de trouver que:

(7.33)

Mais ce qu’il est beaucoup plus important de noter, c’est que la partie stationnaire de
la réponse du système dépend également de la fréquence de l’excitation. En effet, la
partie stationnaire de la réponse est donnée par:

(7.34)

Une analyse sommaire du facteur du sinus montre qu’il doit passer par un maximum,
vu que le dénominateur passe par un minimum pour une certain valeur de la fréquence
d’excitation, minimum que l’on obtient en exigeant la nullité de la dérivée du radican-
de par rapport ωext.

Cette variation de l’amplitude de la réponse du système à une excitation extérieure et
son passage par un maximum est appelé phénomène de résonance. La courbe de ré-
ponse est la courbe de résonance (fig. 7.45), et la fréquence qui correspond au maxi-
mum de cette courbe est la fréquence de résonance. Selon les critères énoncés ci-
dessus, celle-ci est donnée par:

(7.35)

ce qui implique qu’elle s’éloigne de plus en plus vers des fréquences inférieures à cel-
les de la fréquence propre du système lorsque l’amortissement augmente, ce qui n’est
pas le cas pour un oscillateur électrique dont la fréquence de résonance correspond
exactement à sa fréquence propre.

Dans la figure 7.45, les courbes de résonance sont données en fonction d’un paramètre
Q, le facteur de qualité. Il est défini par:

(7.36)
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FIGURE 7.45 Évolution de l’ampli-
tude de la réponse du système en
fonction de la fréquence de l’excita-
tion et mise en évidence du phéno-
mène de résonance. Le paramètre Q,
le facteur de qualité, est inversement
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Que nous apprend cette analyse sommaire de la réponse à une excitation extérieure
d’un système oscillant?

Essentiellement, que cette réponse dépend de la fréquence extérieure et qu’elle passe
par un maximum pour une fréquence égale ou proche de la fréquence propre du sys-
tème. Les conséquences peuvent être soit nuisibles, soit au contraire souhaitées.

L’exemple de conséquences nuisibles est essentiellement lié au fonctionnement des
machines qui comportent presque toutes des parties tournantes, qui ont donc un com-
portement cyclique caractérisé par une fréquence. Certaines parties de la machine peu-
vent entrer en résonance suivant le régime de travail et, comme nous l’avons vu ci-
dessus, l’amplitude des oscillations ainsi engendrées peut devenir tellement importan-
te qu’elles provoquent la destruction du système (rupture d’un pont lors du passage
d’une troupe au pas cadencé en 1850, à Angers, causant la mort de plus de 220 soldats,
etc.).

Par contre, il arrive souvent que le phénomène de résonance soit souhaité. C’est le cas
dans un récepteur radio, dont on accorde la fréquence de réception à celle de l’émet-
teur en variant la capacité du circuit oscillant et par le fait même la fréquence propre
du système (en anglais, to «tune» veut dire «accorder»).

Pour sonder la structure de la matière et des molécules, les physiciens et les chimistes
utilisent notamment des méthodes spectroscopiques dont la majorité sont basées sur
le phénomène de résonance et consistent à injecter de l’énergie dans le système étudié
au moyen d’ondes électromagnétiques et à observer à quelles fréquences l’échantillon
absorbe cette énergie. Or, comme nous l’avons découvert, cette absorption sélective de
l’énergie est une conséquence du phénomène de résonance. Les ondes électromagné-
tiques utilisées couvrent tout le spectre allant des ondes radio (pour la résonance ma-
gnétique nucléaire) aux rayons X et rayons gamma. La résonance magnétique
nucléaire est utilisée en médecine pour l’imagerie médicale (IRM: Imagerie par réso-
nance magnétique).

7.9.4 Stockage d’énergie lors de processus inductifs

En nous basant sur les résultats énoncés à la section 4.6, plus particulièrement sur
l’équation (4.15), nous pouvons affirmer que l’énergie accumulée lors d’un processus
de rotation faisant intervenir un élément inductif est donnée par:

(7.37)

Dans le cas d’un ressort de torsion de constante D déplacé d’un angle ϕ par rapport à
sa position d’équilibre, l’énergie accumulée devient, en vertu des équations (7.22) et
(7.23):

(7.38)

EXEMPLE 7.8. Modélisation du pendule de POHL.

Modéliser le comportement du pendule de POHL, comparer les résultats de la simulation avec
ceux de la mesure illustrés par la figure 7.42 et simuler la manière dont l’énergie se répartit du-
rant le processus.

SOLUTION: Le modèle contient trois éléments essentiels: le stock représentant la quantité de
moment cinétique du pendule injectée par le ressort spiral et perdue à cause des frottements de
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type visqueux. Le deuxième élément est un intégrateur qui sert à déterminer le flux de moment
cinétique du ressort à partir de son taux de variation et le troisième un intégrateur qui calcule
l’élongation angulaire à partir de la vitesse angulaire instantanée (fig. 7.46).

Lors de la simulation, on peut introduire la valeur mesurée de la constante de torsion D du res-
sort (1.75·10-2 Eu s-1) et ajuster les valeurs de J (1.5·10-3 kg m2) et k (0.33·10-3 Eu s-1) après
avoir déterminé la période T (1.84 s) et le facteur d’amortissement λ (0.11 Eu) à partir des don-
nées mesurées.

La figure 7.47 montre le résultat de la simulation et la manière dont l’énergie totale constante
du système se répartit au cours du processus: la partie qui n’est pas dissipée va et vient entre le
ressort, dans lequel elle est stockée grâce au processus inductif, et le pendule en mouvement.

B

1. Quelles sont les particularités d’un système tel que le pendule de POHL

qui rendent possible un comportement oscillatoire?
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FIGURE 7.46 Modélisation du com-
portement dynamique du pendule de
POHL.
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1. C’est la présence simultané dans le système d’un élément inductif (le
ressort spiral) et d’un élément capacitif (le disque). Les deux peuvent
emmagasiner alternativement l’énergie et l’échanger au cours d’un
cycle.

Résumé du chapitre

La description des processus de rotation se fait au moyen de deux grandeurs fonda-
mentales, le moment cinétique et la vitesse angulaire.

Le moment cinétique L est la grandeur extensive liée au mouvement de rotation; on
l’appelle parfois moment angulaire. Il peut être accumulé dans les objets en rotation,
peut s’écouler entre les systèmes et ses variations sont décrites par une équation de bi-
lan. Sa particularité est d’être une grandeur vectorielle. De ce fait, les flux IL de mo-
ment cinétique sont aussi une grandeur vectorielle. Les flux de moment cinétique sont
usuellement appelés couple. L’équation de bilan est:

La grandeur extensive, le potentiel associé au moment cinétique, est la vitesse angu-
laire ωωωω. C’est également une grandeur vectorielle. Les flux de moment cinétique ont
toujours lieu entre deux niveaux de ce potentiel. À côté de la vitesse angulaire, on peut
utiliser d’autres grandeurs telles que la fréquence f (ou ν) ou la période T pour la des-
cription cinématique du mouvement de rotation.

Les flux de moment cinétique sont accompagnés de flux d’énergie. Le taux de charge-
ment en énergie est proportionnel à la vitesse angulaire, ce qui implique qu’un flux
d’énergie sera égal à IE = ωωωω •IL. Lorsque le processus est spontané, il y a libération
d’énergie, alors que de l’énergie est liée au flux de moment cinétique si le processus
est contraint. Le taux de libération ou de liaison de l’énergie est la puissance du
processus: Prot = – (ω2 - ω1)|IL| = – ∆ω |IL|. L’énergie accumulée dans un objet en ro-
tation, son énergie cinétique de rotation, est égale à Erot = 1/2 Jω2.

La capacité d’un système à emmagasiner du moment cinétique et de l’énergie est son
moment d’inertie J. Cette grandeur est proportionnelle à la masse inerte du système et
à la répartition de cette masse autour de l’axe de rotation, répartition que l’on quantifie
au moyen d’une combinaison linéaire de carrés des dimensions du système.

Le moment cinétique peut passer d’un système à l’autre de différentes manières: par
l’intermédiaire d’un arbre rigide (en mode supraconducteur), par des embrayages qui
entraînent généralement une dissipation de l’énergie à cause des frottements, par des
éléments inductifs tels que des ressorts ou par l’intermédiaire de champs. La présence
d’éléments inductifs dans un système est à l’origine de phénomènes d’oscillations (ba-
lancier de montre).

R

� …L = I IL L1 1+ +
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Questions
1. Comment se présente la combinaison de diagrammes de pro-

cessus représentant l’éolienne et le générateur apparaissant
dans la figure sur la page de titre de ce chapitre?

2. D’où vient le moment cinétique qui circule à travers la mèche
d’une perceuse électrique? Quel est le rôle de l’énergie dans
ce cas?

3. Considérez deux disques avec un axe commun comme dans la
figure 7.48. Si l’un des deux reçoit initialement une certaine
quantité de moment cinétique, qu’advient-il de ce moment ci-
nétique et de l’énergie emmagasinés dans ce disque? Suppo-
sez que le système est isolé de son environnement.

4. Considérez deux verres, pas nécessairement identiques; le
premier est plein. Versez l’eau du premier dans le second jus-
qu’à ce que les niveaux soient les mêmes. Dans quelle mesure
cet exemple démontre-t-il les rôles du moment cinétique et de
l’énergie des disques de la question 3?

5. Si la masse de la Terre était distribuée de manière homogène
au lieu d’être plutôt concentrée autour du centre, son moment
d’inertie serait-il plus grand ou plus petit qu’il n’est en
réalité? Comment sa période de rotation changerait-elle si
l’on pouvait redistribuer sa masse de manière uniforme?

Exercices
1. Le flux d’énergie entre une grosse turbine et un générateur

vaut 200 MW. La turbine effectue 3000 tours par minute. Dé-
terminez la valeur du courant de moment cinétique circulant à
travers l’arbre.

2. Un générateur a une efficacité de 93%, et sa puissance électri-
que vaut 5.0 kW. (a) Esquissez le diagramme de processus du
dispositif. (b) Déterminez la puissance rotatoire. (c) La mesu-
re du courant de moment cinétique à travers l’arbre donne
600 Eu s-1. Quelle est la vitesse de rotation de l’arbre?

3. Le flux de moment cinétique du courant d’air entraînant une
éolienne vaut 250 Eu s-1, alors que celui qui est transporté par
l’arbre allant de la turbine au générateur vaut 150 Eu s-1. (a)
Déterminez le taux de variation du moment cinétique des pa-
les de la turbine. (b) Si le moment d’inertie des pales de la tur-
bine vaut 2000 kg m2, quelle est la valeur du taux de variation
de la vitesse angulaire? (c) Que vaut le moment cinétique
après 10 s en admettant que le courant de moment cinétique

Embrayage

FIGURE 7.48
Question 3

est constant et que la turbine était immobile au début? (d) Que
vaut la vitesse angulaire des pales après 10 s?

4. On envisage un objet en rotation dont le moment d’inertie
vaut 100 kg m2. À un certain moment, sa vitesse angulaire
vaut 3.0 s–1 et l’accélération angulaire 0.20 s–2. (a) Quel est le
taux de variation du moment cinétique de l’objet? (b) Quel est
le taux de variation de l’énergie de l’objet?

5. Dans l’Exercice 1, l’arbre a une longueur de 8 m et un diamè-
tre de 40 cm. Il est en acier dont le module de torsion est de
8.0·1010 N m-2. Déterminez l’angle de torsion.

6. Dans l’embrayage à friction de la figure 7.48, le courant de
moment cinétique vaut 20 Eu s-1 lorsque les disques tournent
à des vitesses angulaires respectives de 3.0 s–1 et 1.5 s–1. Dé-
terminez la coefficient de frottement de l’embrayage.

Problèmes
1. Une automobile qui roule à la vitesse de 100 km h-1 utilise

4.7 litres d’essence pour une distance de 100 km. La combus-
tion d’un litre d’essence libère 38 MJ d’énergie. Le régime
du moteur, dont l’efficacité mécanique est de 20%, est de
3000 tours par minute. Déterminez la valeur du flux de
moment cinétique à travers l’arbre.

2. Un cheval de bois est fixé sur un manège à 4 m de l’axe.
L’évolution temporelle de la vitesse angulaire est donnée par
la figure 7.49. (a) Quel est l’angle parcouru par le cheval de
bois durant les premières 25 s? (b) Déterminez son accéléra-
tion angulaire en fonction du temps.

3. L’accélération angulaire d’un disque évolue comme le mon-
tre la figure 7.50. Déterminez la valeur de la vitesse angulaire
à l’instant t = 30 s, en admettant qu’elle valait 20 s–1 à l’ins-
tant t = 5 s.

4. La vitesse angulaire d’un disque dont le moment d’inertie
vaut 150 kg m2 évolue comme le montre la figure 7.51.
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Problème 2

0

1

2

0 10 20 30 40 50 t /s

A
cc

él
ér

at
io

n
an

gu
la

ir
e

/s
-2

FIGURE 7.50
Problème 3
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Déterminez de quelle manière évolue le flux d’énergie éma-
nant du disque.

5. Un manège a un moment d’inertie de 15000 kg m2. Sa
vitesse angulaire augmente à un taux constant, et elle est de
12 tours par minute après 4 s. Quelle doit être la puissance
minimale du moteur entraînant le manège après 2.0 s?

6. Deux disques tournant sur un axe commun sont reliés entre
eux par un embrayage à friction (fig. 7.48). La caractéristique
de l’embrayage est de type ohmique (le courant de moment
cinétique à travers l’embrayage est proportionnel à la diffé-
rence des vitesses angulaires) et le facteur de proportionnalité
vaut 2.0 N m s. Au début, le petit disque (moment d’inertie de
40 kg m2) tourne avec une vitesse angulaire de 100 s–1, alors
que le second disque (moment d’inertie de 80 kg m2) est
immobile. Un moteur entraîne le petit disque, fournissant un
courant de moment cinétique constant de 40 Nm. Le compor-
tement du système apparaît dans la figure 7.52.

(a) A l’instant t = 20 s, la vitesse angulaire du petit disque vaut
61.04 s–1. Calculez la vitesse angulaire du second disque au
même instant et comparez cette valeur avec celle du graphique.
(b) Déterminez la différence des vitesses angulaires après un très
long temps et comparez votre valeur avec celle du graphique.

7. Deux disques tournent sur le même axe (fig. 7.48). Initiale-
ment, les deux disques sont immobiles, les moments d’inertie
sont respectivement de 45 kg m2 et 90 kg m2. Durant 5.0 s,
un moment de 150 N m est appliqué depuis la gauche au petit
disque. L’embrayage à friction peut transmettre un moment
maximal de 50 N m. (a) Esquissez l’image hydraulique du
processus. (b) Que vaut la vitesse angulaire de chacun des
disques après 5 s? (c) Que vaut la vitesse angulaire des dis-
ques après un très long moment?
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Problème 4
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Problème 6

8. La figure 7.53a montre un disque couplé par un embrayage à
friction à un axe élastique (ressort de torsion). La partie b de
la figure 7.53 montre l’évolution de la vitesse angulaire aux
deux extrémités de l’axe élastique, ainsi que celle du disque.
Le système est entraîné par un moteur qui applique un
moment tel que la vitesse angulaire ω1 à l’entrée varie de
manière périodique. Le moment d’inertie du disque est de
10.0 kg m2, la constante de torsion du ressort spiral est de
0.10 Nm, la résistance de l’embrayage de 1.0 (Nms)–1.

(a) Esquissez le diagramme du modèle dynamique du proces-
sus se déroulant dans le système. (b) Écrivez l’équation du
bilan de moment cinétique du disque. (c) Comment se pré-
sente l’équation décrivant le comportement inductif de l’axe
élastique ? (d) Dans la figure 7.53b, la vitesse angulaire à
l’entrée de l’embrayage et celle du disque sont indiquées
pour un cas particulier. Déterminez le courant de moment
c iné t ique à t ravers l ’arbre en fonct ion du temps.
e) Déterminez la puissance rotatoire du moteur qui entraîne
le système en fonction du temps. f) Déterminez le taux de
libération d’énergie dans l’embrayage à l’instant t = 10 s.

9. Deux disques tournant sur le même axe sont couplés par un
embrayage à friction (fig. 7.48). La caractéristique de
l’embrayage est de type ohmique (le courant de moment
cinétique à travers l’embrayage est proportionnel à la diffé-
rence des vitesses angulaires). Initialement, le petit disque,
de moment d’inertie égal à 40 kg m2 tourne à raison de
1200 tours par minute, le grand disque (moment d’inertie de
80 kg m2) est immobile. Après 100 s, la vitesse angulaire du
petit disque a été réduite de moitié. (a) Que vaut la vitesse
angulaire du grand disque à l’instant t = 100s? (b) Combien
d’énergie a été dissipée dans l’embrayage jusqu’à cet
instant? (c) Combien de temps faut-il pour que le grand dis-
que atteigne 90% de sa vitesse angulaire finale?
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Nous l’avons vu au chapitre précédent, les processus mécaniques peuvent être expli-
qués de la même manière que les phénomènes électriques ou thermiques: ils sont la
conséquence du stockage et du transfert d’une grandeur extensive entre deux niveaux
d’une grandeur intensive associée. Nous découvrirons ici que les phénomènes de
translation résultent du stockage, du transport et du transfert de quantité de mouve-
ment. En fait, on dit qu’un processus mécanique a lieu dès que de la quantité de mou-
vement (ou du moment cinétique) est transférée d’un corps à un autre. Le côté
géométrique du mouvement – le fait que des corps changent de position – n’est pas
une caractéristique fondamentale d’un processus mécanique.

 

8.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

 

: 

 

COLLISIONS

Les collisions illustrent la propriété fondamentale des corps en mouvement: ils con-
tiennent de l’élan que l’on appelle quantité de mouvement lorsqu’ils se déplacent. Ils
la transfèrent lorsqu’ils interagissent mécaniquement avec d’autres corps. Nous le re-
marquons si une personne nous bouscule, si on nous lance une balle ou que nous la
frappons, ou si nous buttons contre une paroi. De toute évidence, un corps en mouve-
ment transporte une quantité de mouvement d’autant plus grande qu’il se meut vite et
qu’il est gros. Lors de collisions, il y a transfert de quantité de mouvement d’un corps
à l’autre.

 

8.1.1 Exemples de collisions et de chocs

Les chocs ont lieu à toutes les échelles, grandes ou petites, rapides ou lentes. Quelques
exemples:

 

• Dans la vie quotidienne, la collision avec d’autres personnes lors de bouscula-
des ou l’accrochage de voitures lors d’un accident de la circulation.

 

• Dans tous les sports de balle, la trajectoire de la balle est essentiellement
modifiée lors de chocs. C’est le cas de tous les sports de raquette et, entre
autres, du football. La figure 8.1 montre l’interaction entre la tête du footbal-
leur et le ballon lors d’un renvoi de la tête. Dans le jeu de billard, la trajectoire
de la boule est modifiée par les collisions avec d’autres boules ou avec les ban-
des. Notons que la rotation des balles ou des boules permet également de
modifier la trajectoire.

 

• En physique, on utilise des projectiles pour sonder la structure intime de la
matière. Ce procédé a été inventé par RUTHERFORD au cours d’une série
d’expériences qui lui ont permis de découvrir l’existence du noyau atomique
en 1911. Dans ce type de collisions, les particules qui se rencontrent ne se tou-
chent pas mais échangent de la quantité de mouvement par l’intermédiaire de
champs, dans le cas particulier, le champ électrique. On continue à utiliser

FIGURE 8.1 Choc entre la tête d’un
footballeur et le ballon.

FIGURE 8.2 Collision proton-proton
à 7 TeV produisant plus d’une centai-
ne de particules chargées dans le dé-
tecteur CMS au CERN.
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cette méthode, mais avec des énergies des millions de fois supérieures, dans
tous les accélérateurs de particules, et en particulier au CERN pour sonder la
structure interne des nucléons (fig. 8.2).

 

• À l’autre extrémité de l’échelle, on peut observer des collisions de planètes et
de comètes, mais aussi de galaxies (fig. 8.3). Lors de telles collisions, il est
rare que des étoiles elles-mêmes entrent en collision, mais le gaz et les pous-
sières interagissent et sont localement comprimés, ce qui les réchauffe et peut
provoquer la naissance de nouvelles étoiles (starburst ou sursaut de formation
d’étoiles). Une autre application en astronautique est l’assistance gravitation-
nelle (ou fronde gravitationnelle), qui consiste à utiliser les planètes du sys-
tème solaire pour modifier la trajectoire d’une sonde et augmenter sa vitesse
lorsqu’on l’envoie dans des missions lointaines. Ici aussi, la «collision» se fait
sans contact entre les deux corps; ils échangent de la quantité de mouvement
par l’intermédiaire du champ gravitationnel.
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Pour nous familiariser avec le mouvement de translation et les nouvelles notions qui y
sont rattachées, nous allons étudier la collision de deux glisseurs munis d’aimants
fixés de telle manière qu’ils se repoussent. Les glisseurs sont montés sur un rail à cous-
sin d’air et se déplacent dans une seule dimension. Les données relatives à la position
sont extraites d’un enregistrement vidéo. Nous allons construire un modèle dynami-
que avec plusieurs objectifs en vue. En premier lieu, nous voulons montrer que des
concepts simples suffisent pour construire une compréhension élémentaire des phéno-
mènes de translation. Ensuite, nous serons en mesure de déduire une loi des interac-
tions mécaniques sans devoir l’emprunter à la littérature existante. Troisièmement,
nous comparerons les simulations obtenues à partir du modèle et les données expéri-
mentales pour déterminer les valeurs des paramètres du modèle. Dans une section
ultérieure, les valeurs de l’énergie seront intégrées au modèle pour nous permettre de
comprendre son rôle dans les systèmes mécaniques. Cette première partie a pour

FIGURE 8.3 NGC 4038 et NGC
4039, dites les galaxies des Anten-
nes, photographiées par le télescope
spatial Hubble, de la NASA. Ces
deux galaxies sont en train de fusion-
ner, et cette fusion engendre la for-
mation de nombreux amas d’étoiles.
Les galaxies des Antennes ont com-
mencé à interagir il y a quelques cen-
taines de millions d’années (Photo:
ESA/Hubble (CC)).

FIGURE 8.4 Quelques séquences de
l’enregistrement de la collision de
deux glisseurs sur un rail à coussin
d’air. La répulsion est assurée par des
aimants montés à l’avant de chacun
des glisseurs.
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objectif de révéler les points importants, sans s’attarder sur le formalisme. Les résul-
tats trouvés seront formalisés dans les sections suivantes.

 

8.2.1 Expérience, recueil et exploitation des données

 

Expérience. Les deux glisseurs se déplacent sur un rail à coussin d’air horizontal,
donc pratiquement sans frottement. Le premier glisseur est de taille standard, on a ac-
couplé un glisseur plus petit au second glisseur. Deux aimants sont fixés sur chacun
des glisseurs (fig. 8.5) de telle manière qu’ils se repoussent lorsqu’ils s’approchent
l’un de l’autre. La masse d’un glisseur standard est de 503 g, celle d’un petit glisseur
de 250 g et celle d’un aimant de 115 g. Chaque aimant a une longueur de 9.1 cm. Le
mouvement des glisseurs est enregistré par une caméra vidéo

 

Recueil des données expérimentales. Les positions respectives des glisseurs sont
déterminées à partir des images successives de la séquence vidéo (fig. 8.5). La
figure 8.6 indique la position de la face antérieure de chacun des glisseurs ainsi que
leur distance en fonction du temps.

 

Détermination de la vitesse à partir de la position. Lorsque l’on connaît la position
d’un objet en fonction du temps, le module de sa vitesse peut être aisément déterminé
en tant que taux de variation de la position. Si nous le faisons à partir des données de
la figure 8.6, nous obtenons les composantes des vitesses en fonction du temps, repré-
sentées dans la figure 8.7. Le signe positif est attribué au mouvement vers la droite.

On notera que les deux glisseurs inversent le sens de leur mouvement durant la colli-
sion, ce qui se manifeste par un inversion du signe de la composante des vitesses res-
pectives. D’autre part, lorsqu’ils sont suffisamment éloignés l’un de l’autre, les
vitesses sont pratiquement constantes. La variation de la vitesse du glisseur 1 est plus
importante que celle du glisseur 2.

FIGURE 8.5 Mesure de la position
lors de la collision de deux glisseurs
équipés d’aimants sur un rail à cous-
sin d’air. La position en fonction du
temps est mesurée à partir des ima-
ges successives d’une séquence
vidéo.
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FIGURE 8.6 Collision de glisseurs:
(a) positions respectives des faces
antérieures des glisseurs: (b) distan-
ce des faces antérieures en fonction
du temps.
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FIGURE 8.7 Composante de la vi-
tesse des deux glisseurs obtenue à
partir des données de la
figure 8.6.On mesure le taux de va-
riation moyen de la position entre
deux intervalles de temps (dt = 0.04
s) et les valeurs sont lissées en utili-
sant une moyenne mobile centrée
portant sur 5 points.
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8.2.2 Vitesse et quantité de mouvement

Comme pour les autres domaines de la physique, nous avons besoin de deux grandeurs
fondamentales pour la description du mouvement de translation, l’une intensive pour
indiquer le niveau de mouvement, l’autre extensive pour indiquer la quantité du
mouvement; ce seront la vitesse et la quantité de mouvement .

 

Vitesse en tant qu’indicateur du niveau de mouvement. La vitesse est une grandeur
qui s’offre de manière évidente pour la description du mouvement de translation. Nous
observons que cette grandeur varie lors de la collision des deux glisseurs, mais qu’il
n’y a pas échange des vitesses, puisque les variations ne sont pas les mêmes pour cha-
cun des glisseurs.

Pour révéler le rôle de la vitesse dans les phénomènes de mouvement, nous observons
ce qui se passe lorsqu’un bloc est lancé sur un chariot immobile (fig. 8.8). Le bloc se
met à glisser sur le chariot et le met en mouvement à cause du frottement. On observe
que la vitesse du bloc par rapport au chariot diminue alors que celle du chariot par rap-
port au sol augmente. Finalement, le bloc cesse de se mouvoir par rapport au chariot
et se déplace en commun avec le chariot: les deux corps ont atteint une vitesse com-
mune.

Nous avons observé ce comportement dans d’autres phénomènes de caractère complè-
tement différent: des éléments en interaction atteignent le même niveau ou potentiel
si nous attendons suffisamment longtemps pour que l’équilibre puisse s’établir. Nous
en concluons donc, par analogie, que la vitesse est le niveau ou le potentiel du mouve-
ment de translation.

 

Quantité de mouvement. Le bloc lancé sur le chariot y apporte une certaine quantité
de mouvement dont il cède une partie jusqu’à ce que les deux objets aient atteint leur
vitesse commune. La quantité de mouvement perdue par le bloc a été transférée au
chariot, ce qui nous permet de supposer que la quantité de mouvement totale du bloc
et du chariot est restée constante durant l’interaction.

La quantité de mouvement est la grandeur extensive liée au mouvement de translation.
Elle a les mêmes propriétés que les grandeurs extensives qui nous ont servi à la des-
cription d’autres phénomènes: le volume dans les processus hydrauliques, la charge
en électricité, l’entropie dans les processus thermiques, etc. La quantité de mouvement
est accumulée dans des objets en mouvement, et elle peut être transférée d’un corps
vers un autre lorsqu’ils interagissent mécaniquement. À défaut d’une connaissance
plus détaillée, nous allons commencer notre étude en admettant que la quantité de
mouvement ne peut être ni créée, ni détruite, que c’est une grandeur conservée. Nos
observations quotidiennes semblent contredire cette hypothèse; si nous voulons con-
tinuer à la considérer comme correcte, nous devons assumer que la quantité de mou-
vement perdue est transférée au support et, finalement, à la Terre.

La notion de quantité de mouvement a été introduite en 1687 en tant que définition par
Isaac NEWTON dans son ouvrage fondateur, Philosophiae naturalis principia mathe-
matica. Elle est désignée par le symbole p.

 

8.2.3 Relation entre quantité de mouvement et vitesse

Intuitivement, on se rend compte que la quantité de mouvement d’un objet sera
d’autant plus grande qu’il se meut rapidement. Mais ce constat ne nous permet pas de
conclure que les notions de vitesse et de quantité de mouvement sont interchangea-
bles. Pour nous en convaincre, il suffit d’imaginer que nous sommes frappés par une
balle de ping-pong, une balle de golf ou un ballon de football arrivant tous à la même
vitesse. Ce n’est pas le volume, mais une autre caractéristique de l’objet qui détermine
la valeur de sa quantité de mouvement.

FIGURE 8.8 Un bloc lancé sur un
chariot initialement immobile glisse
et le met en mouvement. Le proces-
sus de glissement dure jusqu’à ce
que les deux objets aient acquis une
vitesse commune.
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L’analyse de la collision inélastique de deux glisseurs identiques (fig. 8.9), le second
immobile avant le choc, révèle que leur vitesse commune est égale à la moitié de celle
du premier glisseur. Vu que la quantité de mouvement a été répartie en parts égales sur
chacun des glisseurs, cette observation nous permet de conclure que la quantité de
mouvement et la vitesse sont proportionnelles:

 

(8.1)

Comme nous l’avons fait remarquer ci-dessus, ce n’est pas le volume, mais l’inertie
de l’objet qui détermine, à vitesse égale, la quantité de mouvement qu’il est en mesure
d’emmagasiner. La grandeur qui mesure l’inertie d’un objet est sa masse inerte m:

 

(8.2)

La masse inerte d’un objet est strictement proportionnelle à sa masse grave, ou masse
pesante. C’est la raison pour laquelle on mesure la masse inerte au moyen d’une
balance qui mesure le poids (c’est-à-dire l’intensité de l’interaction entre l’objet et la
Terre).

En tant que quotient de la quantité de mouvement et de la vitesse, la masse d’un objet
n’est rien d’autre que sa capacité à accueillir de la quantité de mouvement (la capacité
électrique est aussi le quotient de la grandeur extensive, la charge, et de la grandeur
intensive associée, le potentiel électrique).

 

8.2.4 Un premier modèle de la collision entre deux glisseurs

Comme la quantité de mouvement est la grandeur extensive, semblable à un fluide, as-
sociée au mouvement de translation, nous la représenterons au moyen d’un réservoir
dans un modèle de dynamique des systèmes (fig. 8.10). Nous calculons la vitesse, en
tant que niveau du mouvement, à partir de la quantité de mouvement en la divisant par
la masse.

Dans ce modèle, nous n’avons pas tenu compte de la présence des aimants, responsa-
bles de l’interaction entre les deux glisseurs. Comme il n’y a aucun écoulement de
quantité de mouvement d’un réservoir vers l’autre, cette grandeur reste constante, ce
qui entraîne que la vitesse de chacun des glisseurs l’est aussi dans cette version préli-
minaire du modèle. Les vitesses calculées par le modèle sont les vitesses initiales des
deux glisseurs.

Ce que nous apprenons de ce premier modèle, c’est que: S’il n’est soumis à aucune
interaction, c’est-à-dire en l’absence de flux de quantité de mouvement, la vitesse d’un
objet reste constante.

v

p1 p2 = 0

v / 2

p1* = p1/2 p2* = p1/2

FIGURE 8.9 Deux glisseurs identi-
ques entrent en collision sur un rail
à coussin d’air. Le premier est en
mouvement, le second immobile.
Après le choc inélastique, la quan-
tité de mouvement est répartie sur
les deux corps. Les mesures indi-
quent que la vitesse commune est
égale à la moitié de la vitesse du
glisseur incident avant le choc.

 p ∝v

p mi= v

p1 p2

v1 v2m1 m2
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FIGURE 8.10 Premier modèle du
mouvement des glisseurs. (a) Cha-
cun des glisseurs a une certaine
quantité de mouvement, représen-
tée par un réservoir. Dans ce modè-
le, il n’y a aucune interaction qui
pourrait entraîner un transfert de
quantité de mouvement; (b) en
conséquence, quantité de mouve-
ment et vitesse restent constantes.
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8.2.5 Transfert de quantité de mouvement lors de collisions

Lors de la modélisation de la collision entre deux disques en rotation à la section 7.2.4,
nous avons modélisé un processus mécanique de la même manière que les processus
étudiés précédemment. Nous pouvons donc admettre que les interactions mécaniques
lors du mouvement de translation peuvent être représentées en tant que transfert de
quantité de mouvement vers ou hors des corps qui participent à ces interactions.

Accroissement et diminution de quantité de mouvement. Un objet peut perdre ou
gagner de la quantité de mouvement lorsqu’il interagit mécaniquement avec son envi-
ronnement (d’autres objets font partie de l’environnement). Dans l’expérience que
nous étudions ici, un glisseur peut interagir avec le rail, avec l’air environnant et avec
l’autre glisseur par l’intermédiaire des aimants.

Si nous admettons que toutes les interactions sont négligeables, à l’exception de celle
qui est engendrée par les aimants, il ne subsiste que le transfert de quantité de mouve-
ment d’un glisseur vers l’autre. Nous devons donc prendre en compte un transfert de
quantité de mouvement du glisseur 1 vers le glisseur 2, ce qui est représenté par un
flux entre les deux réservoirs du modèle de la figure 8.11.

Les vitesses mesurées lors de l’expérience indiquent que l’interaction mécanique dure
approximativement de 0.75 s à un peu plus de 1.85 s. En dehors de cet intervalle de
temps, les vitesses et les quantités de mouvement des glisseurs sont (presque) constan-
tes, ce qui veut dire que les transferts de quantité de mouvement sont négligeables.

Il reste une question importante à régler: comment le transfert de quantité de mouve-
ment évolue-t-il dans le temps? Commençons par l’hypothèse la plus simple en ad-
mettant que le flux de quantité de mouvement est constant durant l’intervalle au cours
duquel les vitesses et les quantités de mouvement varient, ce qui sera programmé par:

Ip_magn = IF (TIME > 0.75 AND TIME < 1.88) THEN 0.223 ELSE 0

où Ip, magn représente le flux de quantité de mouvement entre les deux glisseurs par
l’intermédiaire du champ magnétique (fig. 8.12). Les valeurs numériques des paramè-
tres (début et fin de l’intervalle et intensité du courant) ont été déterminées de telle ma-
nière que les vitesses calculées par la simulation s’approchent au plus près possible
des vitesses mesurées (partie droite de la figure 8.11).

Il est clair que notre hypothèse simplificatrice ne permet pas de représenter correcte-
ment les détails de l’interaction entre les deux glisseurs. Cependant, le fait que le mo-
dèle reproduit correctement les vitesses finales des glisseurs indique que nous avons
les valeurs correctes des quantités de mouvement respectives avant et après la colli-
sion. En outre, vu que le seul processus mécanique est le transfert de quantité de mou-
vement entre les deux glisseurs, nous pouvons conclure que la quantité de mouvement
totale est conservée dans le modèle (et dans la nature). Le modèle nous apprend que
la quantité de mouvement perdue par le glisseur 1 est gagnée par le glisseur 2, ce qui
est un cas particulier de l’équation de bilan de la quantité de mouvement d’un corps:
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FIGURE 8.11 Deuxième modèle
du mouvement des glisseurs. (a)
Introduction d’une interaction
d’intensité constante durant la pé-
riode allant approximativement de
0.75 s à 1.85 s. (b) Durant cet inter-
valle, la quantité de mouvement et
la vitesse évoluent à un taux cons-
tant, produisant un résultat modes-
tement satisfaisant. Notons que les
vitesses initiales et finales sont cal-
culées correctement. La quantité de
mouvement totale des glisseurs est
conservée.

FIGURE 8.12 Flux de quantité de
mouvement entre les deux aimants
utilisé dans le modèle de la
figure 8.11.
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8.2  ÉTUDE DE CAS: COLLISION ENTRE DEUX GLISSEURS

(8.3)

Dans notre cas, où deux corps échangent de la quantité de mouvement par ailleurs con-
servée, nous avons:

(8.4)

Il existe une formulation alternative intéressante du modèle que nous avons élaboré
(fig. 8.13). Au lieu de représenter l’interaction par un flux unique entre les deux réser-
voirs, nous attribuons un flux à chacun des réservoirs. Cela signifie que la quantité de
mouvement s’écoule hors du (ou vers le) glisseur 1 et vers le (ou hors du) glisseur 2.

Comme nous admettons la conservation de la quantité de mouvement, les deux flux
doivent être égaux au signe près:

(8.5)

Voilà un exemple de la relation communément appelée principe d’action et de réac-
tion en mécanique, mais qui peut être appliquée à d’autres processus, puisqu’elle ne
fait qu’exprimer une loi de conservation.

8.2.6 Calcul de la position des glisseurs

La prochaine étape dans la construction du modèle concerne le calcul de la position
des mobiles à partir de leurs vitesses respectives. D’une part, nous nous intéressons à
cette grandeur parce qu’elle est facilement observable. D’autre part, nous verrons que
nous pouvons faire usage de l’information contenue dans les positions pour créer un
modèle plus réaliste de l’interaction entre les aimants (section 8.2.7).

Le calcul de la position consiste en une intégration de la vitesse par rapport au temps
après spécification de la position initiale. Dans un logiciel de dynamique des systèmes,
on le réalise en représentant la vitesse au moyen d’un flux et la position au moyen d’un
réservoir connecté à ce flux (fig. 8.14a).
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FIGURE 8.13 Formulation alterna-
tive du modèle de la figure 8.10:
l’interaction est représentée par
deux flux. Des flux additionnels qui
pourraient être utilisés pour repré-
senter des frottements ou d’autres
interactions mécaniques ont été
ajoutés. Dans le cas particulier, ils
ont été mis à zéro.
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FIGURE 8.14 Calcul de la position
par intégration à partir des vites-
ses. (a) La grandeur à intégrer est
représentée par un flux connecté à
un réservoir qui représente l’inté-
grale de cette grandeur. (b) Com-
paraison de la simulation et des
données expérimentales.
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8.2.7 Modèle de l’interaction entre les aimants

Le modèle que nous avons construit saisit les aspects les plus importants de la collision
entre les deux glisseurs. Ce qui manque encore est un modèle adéquat du flux de quan-
tité de mouvement entre les deux aimants lorsqu’ils s’approchent l’un de l’autre.

Notre expérience nous enseigne que la répulsion entre des aimants, donc l’intensité de
l’interaction, augmente lorsque les extrémités des aimants se rapprochent. Il est donc
sensé d’admettre que le courant de quantité de mouvement entre les deux glisseurs
dans les figures 8.11 et 8.14 mesure l’intensité de l’interaction et doit donc augmenter
lorsque la distance entre les deux aimants diminue. Une relation mathématique qui ex-
prime cette particularité est un courant de quantité de mouvement dont l’intensité est
inversement proportionnelle à une puissance de la distance entre les deux aimants:

(8.6)

Un point de détail important concerne la manière de définir la distance entre les deux
aimants, vu qu’ils ont une extension dans la direction du mouvement. Deux possibili-
tés s’offrent spontanément à nous: soit nous prenons la distance entre les extrémités
antérieures des aimants, soit nous prenons en compte la distance entre les milieux des
aimants. Quelle que soit la décision, nous avons à déterminer la valeur de trois para-
mètres pour pouvoir compléter le modèle (fig. 8.15).

Si nous optons pour la distance entre les centres des aimants, il ne subsiste que deux
paramètres, k et n, dans la relation exprimée par l’équation (8.6). L’adéquation entre
les valeurs expérimentales et la simulation est la meilleure pour n = 5 et k = 1.65·10-5

unités SI. L’exposant n détermine la forme de la relation interaction-distance alors que
k mesure l’intensité intrinsèque des aimants utilisés dans cette expérience. Avec ces
valeurs, le courant de quantité de mouvement en fonction du temps, ainsi qu’en fonc-
tion de la distance entre les centres des aimants, est représenté dans la figure 8.16.
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FIGURE 8.15 Modèle complet.
(a) Le flux de quantité de mouve-
ment entre les deux glisseurs est
rendu dépendant de la distance en-
tre les aimants. (b) On obtient un
excellent accord entre les données
expérimentales et la simulation
pour le choix particulier de l’inte-
raction représentée par la
figure 8.16.
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FIGURE 8.16 Intensité du courant
de quantité de mouvement utilisée
pour le modèle de la figure 8.15 et
calculée selon l’équation (8.6) (a)
en fonction du temps (b) et de la
distance entre les centres des
aimants.
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8.2.8 Les lois d’interaction mécanique

Dans le préambule de cette section, nous avons annoncé que l’étude du cas allait nous
permettre de découvrir les lois de l’interaction mécanique. Résumons:

Ces trois énoncés ne sont rien d’autre qu’une version préliminaire des lois fondamen-
tales de la dynamique, connues sous la dénomination des lois de NEWTON. Nous re-
viendrons de manière approfondie sur ces résultats à la section 9.1.1. Nous verrons
entre autres que les flux de quantité de mouvement sont équivalents au concept de for-
ce qui sera alors précisé.

Les sections suivantes vont nous permettre de formaliser et de généraliser ce que nous
avons découvert lors de cette étude de cas et d’intégrer l’énergie dans le contexte
mécanique.

1. Quel est le rôle de la vitesse dans la description du mouvement de
translation?

2. Que représente la quantité de mouvement?

1. La vitesse est la grandeur qui sert à indiquer le niveau de mouvement
d’un objet. Elle est la grandeur intensive dans la paire de grandeurs qui
servent à caractériser le processus de translation. Elle indique l’inten-
sité du mouvement.

2. La quantité de mouvement est la grandeur extensive qui est transportée
par les objets en mouvement et qui est échangée lorsque des objets inte-
ragissent.

8.3 GRANDEURS FONDAMENTALES

L’étude de la section 8.2 a révélé que les processus de translation peuvent être carac-
térisés par l’accumulation et le transfert d’une grandeur que nous avons appelée la
quantité de mouvement. Les flux de cette grandeur ont toujours lieu entre deux ni-
veaux de la vitesse des objets entre lesquels elle s’écoule.

S’il n’est soumis à aucune interaction, c’est-à-dire en l’absence de flux de
quantité de mouvement, la vitesse d’un objet reste constante
(section 8.2.4).

Le taux de variation de la quantité de mouvement d’un corps est égal à la
somme des flux de quantité de mouvement (équation (8.3)).

Lorsque deux corps entrent en interaction, les quantités de mouvement
échangées sont égales et de signes opposés (équation (8.5)).

Q

R
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8.3.1 Quantité de mouvement

En tant que grandeur mécanique, la quantité de mouvement a des propriétés qui res-
semblent à celles que nous avons découvertes au sujet du moment cinétique.

Quantité de mouvement en tant que grandeur extensive. Nous allons nous servir
d’une image pour justifier le caractère extensif de la quantité de mouvement d’un objet
qui se déplace. Si nous divisons l’objet en deux parties égales, il est évident que les
deux parties se meuvent à la même vitesse: la vitesse n’est pas divisée en deux parties
égales (fig. 8.17). En revanche, nous sommes obligés d’admettre que la «quantité de
mouvement» de l’objet a dû être divisée en deux parties égales. Il est deux fois plus
facile d’immobiliser la moitié de l’objet que tout l’objet.

Deux «espèces» de quantité de mouvement. Les observations de la section 8.2 ré-
vèlent que, pour une direction donnée, il existe deux «espèces» de quantité de mou-
vement, déterminées par le sens du mouvement. Tout aussi arbitrairement qu’en
électricité, nous pouvons décider d’attribuer un signe positif à l’une de ces espèces et
le signe négatif à l’autre. À partir du moment où cette affectation des signes a été ef-
fectuée, il est clair qu’il faut s’y tenir et qu’elle ne peut plus être modifiée; mais, con-
trairement à ce qui a été fait en électricité, où l’on a attribué une fois pour toutes le
signe positif à l’«électricité vitreuse» et le signe négatif à l’«électricité résineuse»,
l’attribution du signe à la quantité de mouvement a lieu chaque fois que l’on aborde
une nouvelle situation (nous y reviendrons ci-dessous).

Conservation de la quantité de mouvement. Les phénomènes mécaniques que nous
observons quotidiennement peuvent nous donner l’impression que le mouvement doit
être entretenu si on veut éviter qu’il cesse. Une bille qui roule s’arrête au bout d’un
certain temps, et nous devons la pousser si nous voulons qu’elle poursuive sa course.
Afin de savoir si la quantité de mouvement peut être créée ou détruite, nous devons
expliquer un certain nombre de phénomènes de la vie quotidienne:

• Lorsqu’une voiture accélère (fig. 8.18a), sa quantité de mouvement augmente.
Y a-t-il eu création de quantité de mouvement?

• Un objet qui glisse sur une surface ralentit et s’arrête. Y a-t-il eu destruction de
quantité de mouvement?

• Deux corps identiques se dirigent l’un vers l’autre avec des vitesses égales.
Lors de la collision, ils ne se séparent pas et s’immobilisent totalement. Y a-t-il
eu destruction de quantité de mouvement?

• Deux glisseurs sur un rail à coussin d’air sont catapultés dans des directions
opposées par la détente d’un ressort (fig. 8.18b). Y a-t-il eu création de quan-
tité de mouvement lors de ce processus?

Dans les deux premiers exemples, la quantité de mouvement n’a été ni créée, ni dé-
truite, mais elle vient de la Terre ou s’écoule vers elle, ce qui entraîne une modification
du mouvement de notre planète, mais tellement ténue qu’elle ne peut en aucun cas être
perçue. Le troisième et le quatrième exemple montrent que, lors de collisions, la quan-
tité de mouvement ne disparaît pas, mais est échangée. Dans le troisième exemple, les
quantités de mouvement égales, mais de signes opposés, se compensent. Le ressort qui
pousse les deux glisseurs sert de dispositif pour séparer de la quantité de mouvement
en une partie positive et une partie négative.

Dans chacun des cas, la conclusion doit être que la quantité de mouvement ne peut être
ni créée, ni détruite, mais uniquement transférée d’un système vers un autre.

Caractère vectoriel de la quantité de mouvement. Il est important de noter que,
contrairement aux grandeurs extensives que nous avons introduites dans les chapitres
précédents (volume, charge électrique, énergie, entropie, quantité de matière), la quan-
tité de mouvement, tout comme le moment cinétique, n’est pas une grandeur scalaire

FIGURE 8.17 Si un objet en mou-
vement est divisé en deux parties
égales, chacune des parties se meut
à la même vitesse. En revanche,
chaque partie ne contient que
la moitié de la quantité de
mouvement.

Quantité de mouvement p

Vitesse v

Vitesse v1 = v
p1

p2

p

Quantité de mouvement
p = p1 + p2

Vitesse v2 = v

FIGURE 8.18 (a) Un véhicule en
train d’accélérer reçoit sa quantité
de mouvement de la terre. (b) Lors-
que deux chariots sont catapultés
dans des directions opposées par un
ressort, celui-ci sépare la quantité
de mouvement en deux parties po-
sitive et négative. La quantité de
mouvement s’écoule du chariot de
gauche vers celui de droite.

La quantité de mouvement
s'écoule de la Terre vers la voiture

La quantité de mouvement s'écoule du
véhicule de gauche vers celui de droite

Direction positive

a.

b.
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mais une grandeur vectorielle, caractérisée par trois composantes indépendantes les
unes des autres, une pour chaque direction de l’espace.

Toutefois, dans ce chapitre, nous ne considérerons que des processus de translation
dans une seule direction.

Unité de la quantité de mouvement. Comme il s’agit d’une grandeur fondamentale,
nous attribuons une nouvelle unité à la quantité de mouvement, le huygens, abrégé par
Hy. Dans le Système international, le huygens correspond au newton seconde: 1 Hy =
1 N s.

La quantité de mouvement dans le monde microscopique. Comme celle de charge
électrique et de moment cinétique, la notion de quantité de mouvement n’est pas ré-
servée au monde macroscopique. En effet, toutes les particules matérielles (molécules,
atomes, particules élémentaires) transportent et accumulent de la quantité de mouve-
ment. Il en va de même pour des entités immatérielles telles que les champs électriques
et magnétiques ainsi que le champ gravitationnel et la lumière. La quantité de mouve-
ment (tout comme le moment cinétique et l’énergie) est une grandeur omniprésente
dans la nature.

8.3.2 Écoulements de quantité de mouvement

Nos observations révèlent l’existence d’écoulements de quantité de mouvement entre
des systèmes ou entre les composants d’un système, écoulements qui, grâce à l’analo-
gie électrique (ou hydraulique), peuvent être caractérisés de la même manière. Les flux
de quantité de mouvement seront représentés par le symbole Ip.

Pour une direction donnée (par exemple l’horizontale dans l’expérience de la
section 8.2), la quantité de mouvement peut s’écouler dans un sens ou dans l’autre. On
attribue arbitrairement une valeur positive à l’un des deux sens d’écoulement (par
exemple vers la droite) et le sens négatif à l’autre. Toutefois, ce choix est lié, pour des
raisons de cohérence, à celui de signe de la quantité de mouvement.

La grandeur extensive (semblable à un fluide) associée au mouvement de
translation est la quantité de mouvement p. C’est un vecteur caractérisé
par trois composantes indépendantes les unes des autres, une pour chaque
direction de l’espace:

(8.7)

La quantité de mouvement est une grandeur conservée.
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Les flux de quantité de mouvement se mesurent en huygens par seconde (Hy s-1), ce
qui correspond, dans le Système international, au newton: 1 Hy s-1 = 1 N.

 

8.3.3 Vitesse en tant que potentiel

8.3.4 Récapitulation et comparaison

Nous voyons donc que la paire de grandeurs extensive et intensive liée au mouvement
de translation doit être la quantité de mouvement et la vitesse. Elle va jouer le même
rôle que les paires que nous avons introduites pour la description des autres phénomè-
nes physiques. Le tableau 8.1 en dresse la liste.

 

TABLEAU 8.1

 

Paires de grandeurs extensives et intensives.

 

Phénomène Grandeur extensive Grandeur intensive

Hydraulique Volume Pression

Électricité Charge Potentiel électrique

Gravité Masse gravitationnelle Potentiel gravitationnel

Thermique Entropie Température

Chimie Quantité de matière Potentiel chimique

Mouvement (rotation) Moment cinétique Vitesse angulaire

Mouvement (translation) Quantité de mouvement Vitesse

Comme la quantité de mouvement, les flux de quantité de mouvement sont
des vecteurs dont chacune des trois composantes est liée à la composante
correspondante de la quantité de mouvement:

(8.8)I p

p

p

p

I

I

I

x

y

z

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Système

Ip

2v1v

FIGURE 8.19 Diagramme de pro-
cessus d’un processus de transla-
tion. La quantité de mouvement
s’écoule entre deux niveaux de la
vitesse linéaire qui est le potentiel
associé à la quantité de mouvement.

Le taux de chargement en quantité de mouvement d’un objet est indiqué
par la vitesse à laquelle il se déplace, la vitesse (linéaire) v. Comme la
quantité de mouvement, la vitesse est un vecteur:

(8.9)

C’est toujours entre deux niveaux de cette grandeur qu’ont lieu les trans-
ferts de quantité de mouvement. La vitesse est donc le potentiel lié aux pro-
cessus de translation (fig. 8.19).
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1. Quelles sont les caractéristiques de la quantité de mouvement?

2. Quelles sont les caractéristiques des flux de quantité de mouvement?

1. La quantité de mouvement est la grandeur extensive qui sert à la des-
cription des processus de translation. Pour une direction donnée, elle
peut prendre des valeurs positives ou négatives. C’est une grandeur
vectorielle. Elle ne peut être ni créée, ni détruite, mais seulement
échangée entre les systèmes qui interagissent, ce qui en fait une gran-
deur conservée.

2. Les flux de quantité de mouvement ont toujours lieu entre deux niveaux
de la vitesse qui est la grandeur intensive liée aux processus de translation. Comme la quan-
tité de mouvement est une grandeur vectorielle, ses flux le sont aussi.
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Lors de chocs, les corps perdent ou reçoivent de la quantité de mouvement. Les méca-
nismes de transfert peuvent prendre trois formes différentes.

 

8.4.1 Transfert de quantité de mouvement par contact entre les corps

Lors de collisions, ou lorsque des corps sont tirés ou poussés – avec des cordes, les
mains, des tiges, des ressorts, etc. –, les corps impliqués dans le processus sont en con-
tact direct. De ce fait, la quantité de mouvement doit être transférée à travers les sur-
faces des corps en contact et à travers les corps. Dans un tel cas, on parle de transfert
par conduction de la quantité de mouvement. Un exemple qui illustre très bien ce type
de transfert de la quantité de mouvement est celui du choc d’une chaîne de billes sus-
pendues à un châssis commun (fig. 8.20).

Le transfert de quantité de mouvement par conduction provoque l’apparition de con-
traintes mécaniques dans les corps à travers lesquels elle s’écoule. C’est ce que nous
ressentons lors d’interactions mécaniques.

 

Courants de quantité de mouvement et contraintes. Pour quantifier le phénomène
d’écoulement de quantité de mouvement, nous avons introduit la notion de courant de
quantité de mouvement ou flux de quantité de mouvement, que nous symbolisons par
Ip. Cette grandeur nous indique combien de quantité de mouvement s’écoule à travers
les limites du système par unité de temps.

Considérons par exemple un bloc de bois qui est poussé sur une surface horizontale au
moyen d’une tige (fig. 8.21). Le bloc accélère parce qu’il reçoit de la quantité de mou-
vement qui doit s’écouler de la tige vers le bloc. Les deux objets sont soumis à des con-
traintes mécaniques de compression. L’intensité de la contrainte que subit le matériel
est mesurée par la densité du courant qui traverse la surface. Plus la tige est mince pour
la même charge, plus la contrainte est importante, vu que l’écoulement doit avoir lieu
à travers une section plus faible (ce que l’on constate lorsqu’un parquet est abîmé par
des talons aiguilles). La contrainte mécanique est quantifiée au moyen d’une nouvelle

Q

R

1

2

3

FIGURE 8.20 Toutes les billes sont
identiques et la collision est centra-
le. Lorsque la bille de gauche frap-
pe les trois billes immobiles, elle
s’immobilise et seule la bille de
l’extrême droite est propulsée avec
une vitesse qui est égale à celle de
la bille incidente avant l’impact.
Durant la collision, de la quantité
de mouvement doit s’écouler à tra-
vers les deux billes qui restent
immobiles.
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grandeur, la densité de flux de quantité de mouvement jp, dont la mesure est liée à celle
du flux de quantité de mouvement par la relation:

 

(8.10)

L’unité SI pour la densité de flux de quantité de mouvement est [jp] = N m-2. En
d’autres termes, la densité de flux de quantité de mouvement nous indique comment
le courant est distribué sur la surface au travers de laquelle il s’écoule. Cette distribu-
tion est fondamentale en mécanique: elle permet de décrire l’état de contrainte d’un
matériau (c’est sur elle que reposent toutes les théories établies sur la résistance des
matériaux).

Imaginons maintenant que nous poussons le bloc au moyen d’une tige sur une surface
de telle manière qu’il glisse à vitesse constante dans le sens positif. La tige est soumise
à une contrainte en compression, et il y a transfert de quantité de mouvement vers l’ob-
jet. Comme sa vitesse ne varie pas, cette quantité de mouvement doit s’écouler immé-
diatement, à un taux égal à celui de l’apport ; elle le fait latéralement à travers la
surface de contact entre l’objet et le support sur lequel il se meut. Dans un tel cas, on
dit que l’objet est soumis à des contraintes de cisaillement qui le déforment oblique-
ment par rapport à la direction de référence (fig. 8.22).

 

Pression et contrainte normale. Nous connaissons déjà un cas particulier de con-
trainte mécanique: il s’agit de la pression dans les fluides. Si nous isolons en pensée
une certaine portion d’un fluide, nous constatons que cet élément exerce une pression
sur le matériel environnant, qui peut être une autre portion du fluide ou une partie de
la paroi du récipient. Dans tous les cas, la situation est la même que dans la figure 8.21
où la tige pousse le bloc; nous aurions pu utiliser un jet de fluide sous pression pour le
pousser.

Cependant, il faut mentionner une différence essentielle. Alors qu’un objet solide peut
être utilisé pour engendrer une contrainte de cisaillement à la surface d’un autre corps,
ce n’est pas possible avec un fluide, à moins qu’il soit visqueux. Mais même un fluide
visqueux ne peut pas transmettre de la quantité de mouvement obliquement à une sur-
face s’il est immobile. Dans tous les cas, la composante normale du flux de quantité
de mouvement à travers une surface de fluide est la pression du fluide. L’unité de la
pression est la même que celle de la densité de flux de quantité de mouvement. Par
conséquent, 1 Pa = 1 N m-2.

I A jp p=

Courant de quantité
de mouvement Ip

+ x

Surface A

FIGURE 8.21 Lorsque des corps
interagissent mécaniquement par
contact, de la quantité de mouve-
ment s’écoule dans les corps et à
travers les surfaces. La densité sur-
facique du flux de quantité de mou-
vement mesure la contrainte
mécanique.

Dans un matériau soumis à une contrainte en compression, la quantité de
mouvement positive, déterminée par le repère choisi, s’écoule dans le sens
positif par rapport à ce repère (fig. 8.21). Si le matériau est soumis à une
contrainte en traction (tension), la quantité de mouvement positive s’écou-
le dans le sens négatif. Les contraintes en traction ou en compression sont
également appelées contraintes normales parce qu’elles sont dues à des
flux de quantité de mouvement perpendiculaires à la surface traversée.

FIGURE 8.22 Une contrainte de
cisaillement est la conséquence de
l’écoulement latéral de la quantité
de mouvement.

Courant de quantité
de mouvement Ip

+ x

Surface A

Lorsque la quantité de mouvement s’écoule latéralement à travers un ma-
tériau, celui-ci est soumis à des contraintes de cisaillement, que l’on ap-
pelle également contraintes tangentielles.
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8.4.2 Mouvement dans un champ: transfert par rayonnement

La mise en mouvement des corps peut se faire sans contact direct avec un autre objet,
comme nous l’avons observé dans l’expérience de la section 8.2 où le transfert de
quantité de mouvement avait lieu par l’intermédiaire du champ magnétique engendré
par les aimants. C’est également le cas d’un objet tombant à la surface de la Terre. Vu
que le corps est accéléré, sa quantité de mouvement doit augmenter. Nous affirmons
qu’il reçoit cette quantité de mouvement de la Terre (qui, de ce fait, se meut dans le
sens opposé, à la rencontre de l’objet) par l’intermédiaire de son champ gravitationnel
(fig. 8.23).

Ce mode de transfert a des propriétés complètement différentes du transfert par con-
duction. Les objets ne se touchent pas; la quantité de mouvement ne s’écoule pas à tra-
vers les corps, elle s’écoule directement dans (ou hors de) chaque partie de l’objet,
sans influencer les autres parties. L’absence de contraintes, que peuvent par exemple
expérimenter les astronautes qui flottent librement dans leur satellite, indique que cet
apport de quantité de mouvement se fait sans écoulement à travers les corps. Contrai-
rement au processus de conduction qui se déroule à travers la surface de l’objet, celui-
ci se déroule à l’intérieur du volume. Ce processus a beaucoup de points communs
avec le transfert par rayonnement de l’entropie dans ou hors des corps (chapitre 5).

Ce processus se déroule comme s’il existait dans l’objet des sources (ou des puits) de
quantité de mouvement. C’est pourquoi, en lieu et place des courants de quantité de
mouvement, on utilise ici un taux de source de quantité de mouvement Σp pour indi-
quer combien de quantité de mouvement l’objet reçoit par unité de temps. On lui at-
tribue la même unité de mesure que le flux de quantité de mouvement, à savoir le
newton.

Le transfert par rayonnement de quantité de mouvement ne provoque pas de contrain-
tes à l’intérieur de l’objet. Pour que des contraintes apparaissent, il faut que la quantité
de mouvement doive s’écouler à travers le corps pour une raison ou pour une autre.
Par exemple, un objet posé sur un plan horizontal (fig. 8.24) est soumis à un double
transfert de quantité de mouvement: il en reçoit du champ gravitationnel terrestre en
mode radiatif; comme il est immobile, cette quantité de mouvement est immédiate-
ment évacuée vers la terre par conduction à travers la base de l’objet. Nous pouvons
ressentir les contraintes engendrées par ces flux de quantité de mouvement, en tant que
compression dans nos pieds si nous sommes debout sur le sol ou en tant que traction
dans nos mains si nous nous suspendons à une barre horizontale.

Ce que nous avons décrit dans cette section est la conséquence de l’interaction entre
des corps et des champs. Il existe d’autres exemples de tels processus. Des corps char-
gés électriquement sont soumis à l’action des champs électriques, et des corps chargés
en mouvement ou des matériaux magnétiques reçoivent de la quantité de mouvement
par l’intermédiaire du champ magnétique (section 8.2). Tout comme un objet doit être
chargé électriquement pour être sensible au champ électrique, il doit être «chargé
gravitationnellement» pour être influencé par le champ gravitationnel. La charge gra-
vitationnelle est la masse gravitationnelle, et l’interaction d’un objet avec le champ
gravitationnel de la Terre est responsable de son poids.

 

8.4.3 Transfert de quantité de mouvement par convection

La quantité de mouvement peut pénétrer dans ou quitter un système transportée par un
fluide en mouvement. Le fluide qui s’écoule contient de la quantité de mouvement. S’il
entre dans un système ou en émerge, il y amène ou en emporte de la quantité de mou-
vement, produisant ainsi un courant de quantité de mouvement par rapport au système.
Un tel système est un système ouvert.

Source de
quantité de
mouvement Σp

+ y

FIGURE 8.23 La quantité de mou-
vement atteint directement chaque
partie de l’objet par l’intermédiai-
re du champ gravitationnel terres-
tre, sans passer à travers la surface.
Au lieu de courants, nous avons
des sources de quantité de mouve-
ment qui sont représentées par les
points cerclés. Les lignes disconti-
nues sont censées représenter l’ap-
port de quantité de mouvement par
l’intermédiaire du champ gravita-
tionnel. Elles ne correspondent
pas à une réalité concrète.

Courants de quantité
de mouvement Ip

+ y

Source de
quantité de
mouvement Σp

FIGURE 8.24 Dans un corps au re-
pos à la surface de la Terre, la quan-
tité de mouvement apportée par le
champ gravitationnel (sources à
l’intérieur du corps) s’écoule à tra-
vers sa base. Les courants s’écou-
lent à travers le matériel
(conduction), et le corps est soumis
à une contrainte en compression.
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Les flux de quantité de mouvement par conduction ou par rayonnement n’influencent
pas l’intégrité matérielle d’un système; ils n’en modifient pas la masse. Ce n’est pas
le cas lors du transfert par les fluides, que l’on appelle convection. Les fusées sont un
exemple de système ouvert dans lequel les échanges de quantité de mouvement se font
par convection. Les processus de convection et les systèmes ouverts seront traités au
chapitre 11.

8.4.4 Énoncé de l’équation de bilan de quantité de mouvement

Nous pouvons résumer les observations qui précèdent par l’énoncé de l’équation de
bilan de la quantité de mouvement.

Nous n’aborderons les flux convectifs qu’à la section 11.6.2.

EXEMPLE 8.1. Inductance hydraulique d’un fluide dans une conduite cylindrique.

Justifier la relation (4.11) qui donne l’inductance d’un fluide de masse volumique ρ dans une
conduite cylindrique de section A et de longueur l (fig. 8.25).

SOLUTION: Pour éviter toute confusion avec la quantité de mouvement, la pression est dési-
gnée par un P majuscule. Sachant que le flux volumique IV est égal au produit Av de la section
et de la vitesse d’écoulement, la loi d’induction hydraulique devient:

(E.8.1)

La différence de pression inductive sert à accélérer le fluide, donc à engendrer une variation de
sa quantité de mouvement. En vertu de l’équation (8.10), cette variation de quantité de mouve-
ment est égale au produit de la différence de pression et de la section de la conduite, et l’équation
de bilan devient:

(E.8.2)

En comparant le troisième et le cinquième termes de la suite d’égalités on voit que:

B

Lorsque l’on prend en compte les trois modes de transfert de quantité de
mouvement, l’équation de bilan qui établit le lien entre le taux de variation
de la quantité de mouvement et les transferts de cette grandeur devient:

(8.11)

où Ip,cond , ΣΣΣΣp et Ip,conv représentent respectivement la somme des flux de
quantité de mouvement par conduction, la somme des apports en mode ra-
diatif et la somme des flux convectifs.
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FIGURE 8.25 Les variations de l’in-
tensité d’un courant sont liées à une
différence de pression inductive.
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8.4  MODES DE TRANSFERT DE LA QUANTITÉ DE MOUVEMENT

EXEMPLE 8.2. Phénomène de marée.

Expliquer le phénomène de marée auquel est soumis un corps plongé dans un champ gravita-
tionnel inhomogène (c’est le cas de celui de la Lune).

SOLUTION: Comme le champ est inhomogène, l’apport de quantité de mouvement par rayon-
nement diminue dans le sens opposé à l’attraction (fig. 8.26a).

Afin que l’accélération de toutes les parties du corps soit la même, ce déséquilibre dans la dis-
tribution de la quantité de mouvement doit être corrigé. Il ne peut l’être que par des flux de quan-
tité de mouvement qui vont de la partie où elle est excédentaire vers la partie où elle est
déficitaire. L’intensité de ce flux n’est pas constante, mais elle croît dans le sens opposé à l’at-
traction jusqu’à la partie centrale du corps pour décroître ensuite (fig. 8.26b). Cette variation de
l’intensité du flux est due au fait que le flux émanant des régions où l’intensité du champ est la
plus importante doit franchir la région centrale du corps.

Ce flux de quantité de mouvement dans la direction négative engendre une contrainte en trac-
tion, une tension, qui a tendance à déformer le corps. Si le corps est recouvert d’une partie flui-
de, comme c’est le cas pour la Terre, cette déformation entraîne l’apparition de deux bourrelets
d’eau diamétralement opposés. Ces deux bourrelets sont toujours dans la direction du centre
d’attraction alors que la Terre tourne une fois sur elle-même en 24 h, ce qui engendre deux ma-
rées quotidiennes.

Le frottement engendré par la rotation de la Terre sous le bourrelet de marée ralentit sa rotation
de 2 millisecondes par siècle. C’est ce phénomène qui a ralenti la rotation propre de la Lune jus-
qu’à ce que sa période propre soit égale à sa période de révolution, raison pour laquelle elle nous
présente toujours la même face.

L’effet de marée n’est pas réservé au seul système Terre-Lune (le Soleil intervient également,
mais de manière moindre), mais se manifeste partout dans l’Univers. Un exemple remarquable
est celui de Io, une lune de Jupiter. C’est la lune la plus proche et les effets de marée sont telle-
ment importants que le bourrelet s’élève à une centaine de mètres (il n’est que de quelques di-
zaines de centimètres en moyenne sur la Terre). À cause de son interaction avec Europe et
Ganymède, deux autres lunes de Jupiter, Io vacille légèrement, ce qui provoque un déplacement
du bourrelet. Les frottements engendrés par ce phénomènes sont tels qu’ils provoquent la fusion
de la roche, ce qui explique l’activité volcanique très intense qui règne à la surface de Io.

B

1. Quels sont les modes de transfert de la quantité de mouvement?

2. Un objet est poussé au moyen d’une tige au travers de laquelle un cou-
rant de quantité de mouvement de 120 Hy s-1 s’écoule durant 10 s.
Combien de quantité de mouvement la tige transmet-elle? Si, dans le
même temps, une quantité de mouvement de 700 Hy s’échappe de
l’objet, de combien sa quantité de mouvement a-t-elle varié?

3. La tige de la Question 2 a une section de 0.0050 m2. Que vaut la contrainte mécanique dans
la tige? Dans quel sens la quantité de mouvement s’écoule-t-elle?

4. Si, dans la figure 8.23, le sens positif est défini vers le haut, d’où vient la quantité de mou-
vement et où va-t-elle?

5. Dans la figure 8.24, définissez le sens positif vers le haut. Le flux conductif de quantité de
mouvement à travers le cylindre change-t-il de sens? Cela change-t-il la contrainte?

1. La quantité de mouvement peut être transférée par contact entre les
objets qui interagissent. Dans ce cas, les flux de quantité de mouvement
engendrent des contraintes (traction, compression, cisaillement) à
l’intérieur des objets qu’ils traversent. Ces flux de quantité de mouve-
ment entrent dans ou émergent de l’objet par la surface de celui-ci.

+

a.

b.

c.

y

FIGURE 8.26 Corps dans un
champ gravitationnel inhomogène,
dont l’intensité diminue dans le
sens négatif: (a) les apports de
quantité de mouvement par rayon-
nement diminuent dans le sens op-
posé à l’attraction; (b) la quantité
de mouvement se redistribue par
conduction à l’intérieur du corps;
(c) la redistribution par conduction
engendre une contrainte en traction
qui provoque une déformation des
parties fluides du corps soumis à
cette contrainte. Les effets ont été
exagérés.

Q

R
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Lorsque la quantité de mouvement est transférée par l’intermédiaire d’un champ (gravita-
tionnel, électrique ou magnétique), on parle de transfert par rayonnement. Dans ce cas, la
quantité de mouvement est échangée à l’intérieur du volume de l’objet, sans passer par la
surface. La quantité de mouvement peut également être transférée par un objet ou un fluide
en mouvement; on parle de transfert par convection.

2. Un courant de 120 Hy s-1 s’écoulant de manière constante durant 10 s amène une quantité
de mouvement de 120 Hy s-1 · 10 s = 1200 Hy à l’objet. Comme la quantité de mouvement
est conservée, sa variation dans le système doit être ∆p = 1200 Hy – 700 Hy = 500 Hy.

3. Si le flux de quantité de mouvement est constant sur toute la section de la tige, la densité de
flux de quantité de mouvement (qui est la contrainte) est jp = Ip /A = 120 N / 0.0050 m2 =
24·103 N m-2. La tige est comprimée, ce qui veut dire que la quantité de mouvement
s’écoule dans le sens positif.

4. Dans ce cas, l’objet se meut dans le sens négatif. Sa vitesse devient de plus en plus négative
au cours du temps. De ce fait, le corps doit perdre de la quantité de mouvement (positive). Il
doit donc y avoir des puits de quantité de mouvement plutôt que des sources, et la quantité
de mouvement s’écoule vers la terre à travers le champ gravitationnel.

5. Comme nous avons des puits de quantité de mouvement par rapport à l’objet, de la quantité
de mouvement doit lui être amenée par sa section inférieure qui repose sur le sol. Elle est
transportée par conduction à travers le cylindre, de bas en haut. Naturellement, la contrainte
restera une compression.

8.5 CAPACITÉ EN QUANTITÉ DE MOUVEMENT

Nous l’avons découvert à la section 8.2.2, la quantité de mouvement des corps dépend
de deux facteurs. Tout d’abord, pour un objet donné, la quantité de mouvement sera
d’autant plus importante que sa vitesse est grande. D’autre part, des objets différents
se déplaçant tous à la même vitesse contiennent des quantités de mouvement différen-
tes. Il suffit, pour s’en persuader, d’imaginer être frappé par une balle de ping-pong ou
un ballon de football se déplaçant tous deux à la même vitesse. Ce qui différencie les
deux objets, c’est leur masse.

8.5.1 Capacité en quantité de mouvement

Dans chacun des domaines de la physique que nous avons étudié jusqu’ici, la capacité
mesure le rapport entre la variation de la grandeur extensive caractéristique à ce do-
maine et celle de la grandeur intensive associée. Ainsi, la capacité en quantité de mou-
vement mesure quelle quantité de mouvement il faut ajouter à un corps pour obtenir
une augmentation donnée de sa vitesse. Comme il est plus difficile de mettre en mou-
vement un objet qui a une grande capacité, ce facteur mesure l’inertie du corps.

La masse inerte a la même unité que la masse pesante, le kilogramme. La justification
sera donnée à la section 8.5.4. Les capacités en quantité de mouvement des corps

La capacité en quantité de mouvement est communément appelée masse
inerte mi du corps. En d’autre termes, mi = p/v, ou

(8.12)p mi= v
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peuvent être obtenues à partir de mesures effectuées lors de chocs ou, comme nous al-
lons le voir, à partir de la mesure de leur masse gravitationnelle.

Il faut veiller à ne pas identifier masse et quantité de matière. En effet, nous montre-
rons que la masse (la capacité à accumuler de la quantité de mouvement) n’est pas une
grandeur constante, mais qu’elle croît en fonction de la vitesse de l’objet en mouve-
ment, sans que la quantité de matière ait augmenté pour autant. Nous aborderons ce
phénomène de variation de la masse en fonction de la vitesse à la section 8.9, où nous
parlerons du mouvement d’objet à vitesse élevée (proche de celle de la lumière).

Une conséquence de la variation de la masse en fonction de la vitesse est que la pro-
portionnalité entre la quantité de mouvement et la vitesse n’est valable qu’aux vitesses
faibles par rapport à celle de la lumière. Les effets ne se manifestant que pour de très
grandes vitesses, nous pourrons, en tant que «piétons de la physique», les utiliser sans
craindre d’obtenir des résultats aberrants.

EXEMPLE 8.3. Quelques valeurs de quantité de mouvement.

Déterminer la valeur de la quantité de mouvement: (a) d’un moustique (m = 2.5 mg) volant à la
vitesse de 1 m s-1; (b) d’une balle de pistolet (m = 5 g) propulsée à la vitesse de 500 m s-1; (c)
d’une automobile (m = 1000 kg) roulant à la vitesse de 72 km par heure; (d) de la Terre dans sa
course autour du Soleil.

SOLUTION:

B

8.5.2 Analogie hydraulique de la quantité de mouvement

La relation entre la quantité de mouvement, la vitesse et la masse inerte d’un corps
peut être représentée par une image déjà utilisée dans les chapitres précédents
(fig. 8.27). Un corps est représenté par un réservoir à parois verticales dont la section
représente la capacité en quantité de mouvement, c’est-à-dire sa masse inerte. Le flui-
de contenu dans ce réservoir imaginaire représente la quantité de mouvement stockée,
et le niveau du fluide correspond à la vitesse du corps.

TABLEAU 8.2 Capacités de systèmes physiques.

Domaine Capacité

Hydraulique CV = dV/dp

Électricité CQ = Q/U

Thermique KS = dS/dT

Mouvement (rotation) CL = J = L /ω

Mouvement (translation) Cp = mi = p/v

a) 2.5 10 kg 1 m s 2.5 10 Hy

b)

-6 -1 -6p = ⋅ ⋅ = ⋅

5 10 kg 500 m s 2.5 Hy

c)

--3 -1p

p

= ⋅ ⋅ =

= 11000 kg 20 m s 20 10 Hy

d) 6 10

-1

-2

3⋅ = ⋅

= ⋅p 44 -1 28kg 3 10 m s 18 10 Hy4⋅ ⋅ = ⋅

v

v = 0

p

mi

FIGURE 8.27 Analogie hydrauli-
que de la quantité de mouvement.
La quantité de mouvement d’un
corps est semblable à une quantité
de fluide dans un réservoir. Le
niveau du fluide et la section du
réservoir représentent respective-
ment la vitesse et la masse inerte du
corps.
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Cette image est analogue à celle que nous avons utilisée pour les processus de rotation
(chapitre 7), et très semblable à l’analogie hydraulique d’autres grandeurs. Le dessin
de la figure 8.27 fait apparaître la vitesse mesurée par rapport à un niveau zéro. Pour
l’étude de mouvement à la surface de notre planète, nous pouvons associer ce niveau
particulier à la vitesse de la Terre. La Terre elle-même peut être considérée comme un
réservoir de quantité de mouvement géant qui fournit ou reçoit des quantités de mou-
vement lors de processus mécaniques entre objets ordinaires sans en être affecté. La
vitesse d’un corps, et par le fait même sa quantité de mouvement, peuvent être positifs
ou négatifs par rapport au niveau de ce réservoir.

8.5.3 Analogie hydraulique lors de chocs

L’analogie hydraulique peut être utilisée pour visualiser des chocs dans une dimension
entre deux corps (fig. 8.28). La quantité de mouvement des deux corps est mesurée par
rapport au même observateur (qui peut être admis comme immobile par rapport à la
Terre). Il est usuel d’admettre que – tout au moins durant le bref instant que dure le
choc – le système des deux corps est isolé du reste du monde, ce qui laisse inchangée
la quantité de mouvement totale. Avec p1 + p2 = constant, nous avons

(8.13)

Cette relation est représentée par l’analogie hydraulique de la collision, qui peut même
être utilisée pour résoudre le problème graphiquement.

8.5.4 Masse inerte et masse pesante

Des corps qui ont une grande inertie sont également plus pesants. En fait, il s’agit là
d’une proportionnalité stricte et ce fait représente l’une des plus remarquables lois de
la nature:

(8.14)

Elle est communément appelée principe d’équivalence de la masse inerte et de la mas-
se pesante. Elle a été vérifiée avec une très grande précision dans un grand nombre
d’expériences différentes, et c’est sur elle que repose toute la théorie de la relativité
générale. Même si les phénomènes dus à la gravité et à l’inertie sont superficiellement
assez différents, on donne à la grandeur qui les mesure la même unité, à savoir le ki-
logramme. Une conséquence pratique de cette proportionnalité est que nous pouvons
utiliser des balances pour mesurer la masse inerte des corps.

∆ ∆p p1 2= −

v1

v = 0

m1

v2

m2

∆p1

∆p2

v *
FIGURE 8.28 Analogie hydraulique
du choc totalement inélastique de
deux corps. Le second corps se meut
initialement dans le sens négatif. La
ligne discontinue à v = v* indique la
valeur de la vitesse commune finale
du corps combiné.

m minerte pesante~
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EXEMPLE 8.4. Mesure de la masse inerte de corps au moyen de chocs.

(a) Un glisseur qui a une unité de masse inerte et une vitesse de 0.90 m s-1 entre en collision
avec un autre glisseur immobile sur le même rail à coussin d’air. Les deux corps restent accro-
chés après le choc, et on mesure une vitesse commune de 0.65 m s-1. Déterminer la masse iner-
te du second glisseur. (b) Deux astronautes flottent dans une station orbitale. L’un des deux
pousse l’autre et ils se séparent, le premier ayant acquis une vitesse de 0.50 m s-1, le second de
0.60 m s-1 dans le sens opposé. Sachant que le premier a une masse de 80 kg, déterminer la
masse du second.

SOLUTION: (a) Pour résoudre le problème, nous pouvons utiliser la figure 8.28, avec v2 = 0.
La section du second réservoir est inconnue, mais nous connaissons la vitesse commune finale.
À partir de l’équation (8.13), nous pouvons écrire

ou

(b) Le processus est à l’opposé d’un choc totalement inélastique (les astronautes se déplacent
tout d’abord en commun, puis sont séparés après l’événement). Avant la séparation, les deux
sont immobiles par rapport à l’observateur, ce qui signifie que les deux réservoirs de la
figure 8.28 sont vides. L’événement a pour conséquence que l’un des réservoirs se remplit aux
dépens de l’autre. En d’autres termes, de la quantité de mouvement est pompée d’un réservoir
vers l’autre. Nous utilisons à nouveau l’équation (8.13):

ce qui entraîne m2 = – v1*/v2*m1 = – 0.50 m s-1 / (–0.60) m s-1 · 80 kg = 66.7 kg.

B

1. Quelle est la grandeur qui représente la capacité en quantité de
mouvement?

2. La masse est-elle égale à la quantité de matière?

1. La masse d’un objet est la grandeur qui indique la capacité d’un objet à
accueillir de la quantité de mouvement. On fait la distinction entre la
masse inerte qui limite les variations de quantité de mouvement et la
masse pesante qui est responsable du poids des objets. L’égalité de ces
deux masses est à la base de la théorie de la relativité générale.

2. Non, elle n’est que proportionnelle à la quantité de matière. La masse
inerte d’un objet dépend de sa vitesse, mais cet effet ne se manifeste
qu’à des vitesses qui sont proches de celle de la lumière.

 m m1 1 2 0v v v* *− = − −( ) ( )

 
m m2

1
1

0 65 0 90

0 65
1 0= −

−
= −

−v v
v
*

*

. .

.
.

m/s m/s

m/s
kg kg= 0 385.

m m1 1 2 0v v v* *− = − −( ) ( )

 m m1 1 2 0v v v* *− = − −( ) ( )

Q
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8.6 QUANTITÉ DE MOUVEMENT ET ÉNERGIE

Les seules équations de bilan de quantité de mouvement ne suffisent pas pour prévoir
l’issue des phénomènes de collision, sauf si l’on connaît l’évolution temporelle des
flux de quantité de mouvement, ce qui n’est en général pas facile à obtenir. Nous avons
réussi à le faire dans l’exemple de la section 8.2, parce que la géométrie du système
était simple. Mais si nous pouvons déterminer l’énergie accumulée dans les objets en
mouvement, il nous sera possible d’obtenir les caractéristiques de l’état final à partir
de celles de l’état initial.

8.6.1 Conservation et dissipation de l’énergie lors de transferts de 
quantité de mouvement

Lors de transferts de quantité de mouvement, on fait face à deux situations extrêmes
en ce qui concerne l’énergie.

L’examen du choc des deux billes suspendues (fig. 8.29) révèle que la première bille
transfère intégralement sa quantité de mouvement à la seconde. Nous verrons que,
dans ce cas, l’énergie est conservée. Un tel choc est dit totalement élastique. L’autre
issue extrême, lors de chocs, est réalisée lorsque les deux objets qui entrent en colli-
sion forment un objet unique (accrochage de deux wagons); lors d’un tel choc, une
partie de l’énergie incidente est dissipée. Dans ce cas (vitesse commune après la col-
lision), le choc est dit totalement inélastique. Presque toutes les collisions que l’on
peut observer dans la pratique se situent entre ces deux extrêmes.

8.6.2 Énergie d’un corps en mouvement

Comme pour tous les autres phénomènes, l’énergie apparaît également dans les pro-
cessus de translation. Ainsi, un corps en mouvement stocke de l’énergie, tout comme
le fait un corps chaud. À nouveau, l’analogie hydraulique nous permet de visualiser
l’énergie associée au mouvement. Vu que nous assimilons le «contenu» d’un réservoir
à la quantité de mouvement du corps, et vu que ce contenu doit être amené dans le ré-
servoir – un processus qui nécessite un apport d’énergie –, l’énergie stockée est égale
au produit du niveau du centre du contenu (qui est v/2) et du contenu (fig. 8.30).

1 2 3 4

FIGURE 8.29 Collision de deux
billes métalliques identiques. Si une
première bille, abandonnée à partir
d’une certaine hauteur, entre en col-
lision avec une seconde bille immo-
bile, cette dernière se met en
mouvement avec la vitesse finale de
la première, alors que la première
s’immobilise. C’est un exemple de
choc parfaitement élastique.

v

v = 0

mi

v / 2

p

FIGURE 8.30 L’énergie d’un objet
associée à son mouvement (son éner-
gie cinétique) correspond, dans
l’analogie hydraulique, à l’énergie
accumulée par un fluide dans un ré-
servoir.

Parce qu’elle est transportée par la quantité de mouvement, l’énergie d’un
corps en mouvement est appelée énergie cinétique:

(8.15) E p micin = =1
2

1
2

2v v
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8.6.3 Libération et liaison d’énergie lors de chocs

Le flux d’énergie transportée par la quantité de mouvement lorsqu’elle pénètre dans
(ou quitte) un système en un point où la vitesse est égale à

 

v (fig. 8.31) est, pour une
direction particulière, donné par:

 

(8.16)

Il est important de remarquer que le flux d’énergie n’a pas nécessairement le même
sens que le flux de quantité de mouvement auquel il est associé (fig. 8.32). Le sens du
flux d’énergie par rapport à celui de la quantité de mouvement dépend du choix du ré-
férentiel.

À titre d’exemple, considérons les flux dans la chaîne d’un vélo qui se déplace de gau-
che à droite: aussi bien la quantité de mouvement que l’énergie sont conduites par la
partie supérieure de la chaîne (la partie inférieure n’est soumise à aucune contrainte,
elle ne transporte pas de quantité de mouvement et, par conséquent, aucune énergie).
Comme la partie supérieure de la chaîne est soumise à une contrainte en traction, le
flux de quantité de mouvement est négatif, il est dirigé de l’avant vers l’arrière (du pé-
dalier vers le pignon) dans le repère choisi dans la figure 8.32a. Le flux d’énergie va
aussi dans le sens négatif, ce que confirme le calcul effectué au moyen de
l’équation (8.16), les deux facteurs,

 

v et Ip, sont de signes opposés. Si nous choisissons
le sens positif de droite à gauche (fig. 8.32b), les deux flux, quantité de mouvement et
énergie, ont des sens opposés. L’énergie s’écoule dans le même sens que la quantité
de mouvement si la vitesse est positive dans le repère choisi.

Les flux conductifs ne sont pas seuls responsables de la variation de la quantité de
mouvement lors d’un processus. Il faut également prendre en compte les contributions
des champs, particulièrement celle du champ gravitationnel dans notre vie quotidien-
ne. Comme nous l’avons énoncé aux sections 8.4.2 et 8.4.4, ces contributions sont re-
présentées par leur taux de source ΣΣΣΣp. Pour tenir compte du caractère vectoriel à la fois
de la vitesse, du flux de quantité de mouvement et du taux de source, il y a lieu de gé-
néraliser la relation qui donne le flux d’énergie transportée par la quantité de mouve-
ment en formant le produit scalaire de ces vecteurs.

Système

Ip

IE

v

E

p

v = 0

FIGURE 8.31 L’énergie transférée
par un flux de quantité de mouve-
ment dépend de la vitesse à laquel-
le est transférée la quantité de
mouvement.

 I E I pE p, = = =� �v vp

x

Ip v

IE

x

Ip v

IE

a.

b.

FIGURE 8.32 Flux de quantité de
mouvement et d’énergie dans une
chaîne de vélo: le flux d’énergie
n’a pas nécessairement le même
sens que celui de la quantité de
mouvement. C’est le choix du réfé-
rentiel qui détermine l’orientation
réciproque des deux flux.La variation de l’énergie d’un système en mouvement de translation à la

vitesse v est due aux flux d’énergie entraînés par les flux et les sources de
quantité de mouvement:

(8.17)

La puissance ou taux de libération d’énergie d’un processus entraîné par
un flux de quantité de mouvement et/ou un taux de source entre deux ni-
veaux de vitesse (fig. 8.33), est égal à:

(8.18)

Les grandeurs sont les modules des vecteurs apparaissant dans l’équation.

  � i i �E IE p p= = +( ) =. v vI pp ΣΣ

 Ptransl = − +∆v I p pΣ

Système

Ip
Ptrans

v1 v2

Σp

FIGURE 8.33 Puissance d’un pro-
cessus de translation: le taux de li-
bération de l’énergie est
proportionnel à la chute de niveau.
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L’énergie libérée par l’un des objets lors d’une collision (fig. 8.34) peut être liée en
proportions variables suivant le caractère de la collision: dans une collision totalement
élastique, il n’y a aucune dissipation, alors qu’une partie non négligeable peut être dis-
sipée lors d’un choc inélastique.

Cette énergie libérée (ou liée) lors d’un processus se calcule par intégration de la rela-
tion (8.8) ci-dessus:

 

(8.19)

Dans les deux dernières relations, la grandeur ∆

 

v représente la chute moyenne de ni-
veau de la quantité de mouvement échangée.

Illustrons cette situation en appliquant l’image hydraulique à un choc complètement
élastique dans une dimension (fig. 8.35). La quantité de mouvement franchit une dif-
férence de potentiel «de haut en bas» jusqu’à ce que la vitesse commune du choc iné-
lastique soit atteinte. Vu que l’énergie n’est pas dissipée, l’énergie libérée est liée
lorsqu’elle pompe, dans la seconde phase de la collision, la même quantité de mou-

vement «de bas en haut». Dans l’image hydraulique, l’état final est symétrique de
l’état initial par rapport à la ligne inélastique.

 

8.6.4 Intégration de l’énergie dans les modèles

L’équation (8.7) nous permet d’ajouter tout ce qui concerne l’évolution de l’énergie
dans un modèle. Nous allons le faire pour le processus étudié à la section 8.2. Les flux
d’énergie respectifs peuvent être calculés à partir de la vitesse instantanée de chacun

∆v

v = 0

m1 m2

∆p1

∆p2

péch

FIGURE 8.34 L’énergie libérée par
la «chute» de quantité de mouve-
ment est représentée dans l’analogie
hydraulique d’une collision. La figu-
re montre un bref intervalle en début
de collision.

E I dt

p

p pp

p

éch

libérée = − +( ) ⋅

= −

∫∆

∆

v

v

Σ
1

2

v1

v = 0

m1

v2

m2

v2 *
Ligne inélastique

v1 *

v *

FIGURE 8.35 Analogie hydrauli-
que d’un choc totalement élastique
entre deux objets. Le second se
mouvait initialement dans la direc-
tion négative. L’énergie libérée du-
rant la première phase de la
collision (jusqu’au moment où les
deux objets ont une vitesse com-
mune indiquée par la ligne inélasti-
que) est utilisée pour «pomper»
encore autant d’énergie du premier
objet vers le second.
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des glisseurs et du flux de quantité de mouvement. Chacun de ces flux d’énergie ali-
mente un réservoir (stock) qui représente l’énergie cinétique de chacun des glisseurs.
La paire constituée d’un réservoir et d’un flux associé représente le bilan d’énergie
pour un glisseur.

La figure 8.36a montre le modèle de la collision après intégration des flux et des
variations respectives de l’énergie. Dans la partie (b) de la figure, l’évolution des quan-
tités de mouvement de chacun des glisseurs est représentée, ainsi que celle de la quan-
tité de mouvement totale du système. On observe que celle-ci ne varie pas, ce qui est
une conséquence de la conservation de la quantité de mouvement.

Le graphique représentant l’énergie cinétique totale (fig. 8.36c) semble contredire la
loi de conservation de l’énergie, ce qui n’est pas le cas. On observe tout d’abord que
l’énergie totale après la fin de l’interaction, lorsque les deux glisseurs sont à nouveau
suffisamment éloignés l’un de l’autre, est la même qu’avant la collision. On en conclut
que l’énergie a été accumulée dans un autre système que les deux glisseurs durant la
phase d’interaction. La seule explication possible, c’est que le champ magnétique en-
gendré par les deux aimants sert de réservoir d’énergie; il emmagasine l’énergie du-
rant la phase de rapprochement des glisseurs, puis la restitue durant la phase
d’éloignement. Le minimum de la courbe correspond à l’instant où les deux glisseurs
atteignent la vitesse qui est indiquée par la ligne inélastique dans la figure 8.35.

 

EXEMPLE 8.5. Choc partiellement élastique.

Une camionnette entre en collision par l’arrière avec une voiture. La camionnette et la voiture
roulaient à des vitesses de modules respectifs de 108 km h-1 et 72 km h-1, leurs masses sont de
1500 kg et 800 kg. Si la moitié de l’énergie libérée est dissipée, que valent les vitesses des deux
véhicules après le choc?

FIGURE 8.36 Modèle de collision
entre deux glisseurs: (a) intégration
de l’énergie dans le modèle; les flux
d’énergie sont calculés à partir des
flux de quantité de mouvement et de
la vitesse instantanée. L’énergie est
accumulée ou libérée par l’intermé-
diaire de ces flux; (b) évolution des
quantités de mouvement respectives
et de la quantité de mouvement
totale; (c) évolution de l’énergie
cinétique totale.
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SOLUTION: Nous commençons par calculer la ligne inélastique (la vitesse commune
qu’auraient atteinte les deux véhicules si le choc avait été totalement inélastique). En appliquant
la loi de conservation de la quantité de mouvement (8.13), nous trouvons:

ou

À partir de cette valeur, nous pouvons évaluer la quantité d’énergie qui aurait été libérée. Jus-
qu’à cet instant, la quantité de mouvement transférée est

Ne sachant rien de la manière dont évoluent les vitesses respectives durant la première phase de
la collision, nous choisissons l’option la plus simple, à savoir une variation linéaire. Cela nous
permet de calculer les grandeurs cherchées en nous servant des vitesses moyennes. Pour la ca-
mionnette, nous obtenons 0.5·(30.00 m s-1 + 26.52 m s-1) = 28.26 m s-1 et, pour la voiture
0.5·(20.00 m s-1 + 26.52 m s-1) = 23.26 m s-1. Avec une variation de vitesse ∆

 

v = 23.26 m s-1 -
28.26 m s-1 = -5.00 m s-1, nous obtenons pour l’énergie qui aurait été libérée:

La moitié de cette énergie est utilisée pour pomper de la quantité de mouvement supplémentaire
de la camionnette vers la voiture. Ce qui nous fournit un système de deux équations:

dont la solution est . Si la collision avait été parfaitement
élastique, la voiture aurait eu une vitesse finale de module égal à 33.04 m s-1, alors que la ca-
mionnette aurait décéléré à 23.04 m s-1.

B

 

EXEMPLE 8.6. Équation de BERNOULLI.

On considère un fluide incompressible, sans viscosité, de densité ρ, qui s’écoule à travers une
conduite de section variable (fig. 8.37). (a) En admettant que la conduite est horizontale, appli-
quer le bilan de la quantité de mouvement à un volume infinitésimal de fluide qui se déplace
sous l’effet de la différence de pression et en déduire la répartition de la densité d’énergie.
(b) En admettant que la conduite comporte des segments à des altitudes différentes, appliquer
la loi de conservation de l’énergie à un volume de fluide qui se déplace sous l’effet de la diffé-
rence de pression. (c) Utiliser le résultat pour justifier celui relatif à la perte de charge énoncé à
la section 1.7.3.

SOLUTION: (a) Rappelons que nous désignons la pression par P majuscule. Le volume infini-
tésimal de fluide de section A et de longueur dx se déplace grâce à la différence de pression entre
ses extrémités:
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FIGURE 8.37 Écoulement dans une
conduite horizontale de section
variable.
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Mais la vitesse

 

 

 

v

 

 varie en fonction de la position, c’est-à-dire que

 

v

 

 = 

 

v(x). Nous devons tenir
compte de ce fait lors de l’évaluation de sa dérivée par rapport au temps:

Après substitution dans l’équation de bilan, nous obtenons:

ce qui entraîne:

Ce résultat signifie que, dans une conduite horizontale, la densité d’énergie est constante le long
d’une ligne de courant. Cette densité d’énergie se répartit sur un terme dynamique qui est la den-
sité d’énergie cinétique, que l’on appelle pression dynamique, et sur la pression interne du flui-
de, que l’on appelle pression statique. Lorsque la section de la conduite varie, le débit ne change
pas, vu que le fluide est incompressible, et la vitesse varie de manière inversement proportion-
nelle à la section. Si par exemple la section diminue, la vitesse augmente et la pression dynami-
que elle aussi, aux dépens de la pression statique. Cet effet est mis en pratique dans la trompe à
eau qui sert à créer un vide relativement modeste dans de petits récipients.

(b)

Nous considérons le volume de fluide compris entre les sections A1 et A2 à la hauteur desquel-
les règnent respectivement les pression P1 et P2 (fig. 8.38). Durant l’intervalle de temps ∆t, les
éléments de fluide initialement à la hauteur de la section A1 se déplacent sur une distance
∆s1 =

 

v1·∆t, alors que ceux qui se trouvaient à la hauteur de la section A2 se sont déplacés sur
une distance ∆s2 =

 

v2·∆t. Comme le fluide est incompressible, les volumes déplacés sont les
mêmes: ∆V1 = A1·∆s1 = ∆V2 = A2·∆s2 = ∆V. Les masses déplacées sont aussi égales, à savoir
∆m = ρ·∆V.

Afin de pouvoir évaluer la quantité d’énergie échangée au cours de ce processus, qui correspond
à la variation de l’énergie mécanique du système, nous calculons d’abord la variation de la
quantité de mouvement engendrée par la différence de pression:

Le flux d’énergie associé à ce flux de quantité de mouvement est:

et la quantité d’énergie échangée devient
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FIGURE 8.38 Écoulement dans une
conduite dont les segments ont des
sections et des altitudes différentes.
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Cette énergie échangée est égale à la variation de l’énergie mécanique, à savoir de l’énergie
cinétique et de l’énergie gravitationnelle:

Après avoir égalé l’énergie échangée et la variation de l’énergie mécanique, divisé tous les ter-
mes par ∆V et rassemblé les termes de même indice dans le même membre, nous obtenons:

Ce résultat généralise celui que nous avons trouvé au point (a): le long d’une ligne de courant
d’un fluide incompressible et sans viscosité, la densité d’énergie totale est constante:

Le terme ρgz représente la densité d’énergie gravitationnelle. Cette expression est l’équation de
BERNOULLI.

(c) Nous appliquons l’équation de BERNOULLI aux points A et B (fig. 8.39), en tenant compte
du fait que z = 0:

La vitesse au point A est négligeable. La différence de pression est donc:

ce qui justifie théoriquement le résultat expérimental de la section 1.7.3.

B

EXEMPLE 8.7. Découverte du neutron.

Des expériences de bombardement de béryllium au moyen de particules α provenant de polo-
nium radioactif, réalisées en 1930 par Bothe et Becker, et en 1931 par le couple JOLIOT-CURIE,
révélèrent l’émission d’un «rayonnement» qui fut tout d’abord interprété comme des rayons γ.
James Chadwick, un disciple de RUTHERFORD qui, en 1920, avait déjà émis l’idée de l’existence
d’une particule neutre dans le noyau, refit ces expériences en admettant que le rayonnement
émis par le béryllium était une particule. Il bombarda notamment des noyaux d’hydrogène (con-
tenus dans une feuille de paraffine) et d’azote et mesura la vitesse des noyaux éjectés lors de
chocs élastiques (fig. 8.40). Pour ceux qui avaient subi une collision frontale (qui étaient donc
éjectés dans la même direction que la particule incidente), il trouva que le rapport des vitesses
respectives des protons et des noyaux d’azote valait 7.5. En admettant que la masse du noyau
d’azote vaut 14 fois celle du proton, déterminer la masse de la particule incidente en fonction
de celle du proton.

SOLUTION: Nous désignons par n la particule incidente, par p et N les protons et les noyaux
d’azote. Nous appliquons la loi de conservation de la quantité de mouvement et celle de l’éner-
gie aux deux types de collision.
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Collision avec les protons:

Collision avec les noyaux d’azote:

Dans les deux paires d’équations, nous isolons dans le membre de droite les termes concernant
les protons et les noyaux d’azote et divisons membre à membre les équations ainsi obtenues:

Ces relations nous permettent d’éliminer la vitesse de la particule incidente après la collision et
d’exprimer la vitesse des protons et des noyaux d’azote éjectés, après avoir remplacé la masse
de l’azote par 14 fois celle du proton:

En prenant en compte le fait que le rapport de ces deux vitesses est égal à 7.5, on trouve après
quelques manipulations algébriques:

B

1. Quelle est l’utilité de la loi de conservation de l’énergie lors de l’étude
de collisions?

2. Lors du choc des deux glisseurs sur le rail à coussin d’air, les deux
vitesses sont, à un moment donné, proches de zéro (fig. 8.7). Cela
signifie-t-il que l’énergie n’est pas conservée?

1. Lors de la majorité des chocs, on n’a pas accès aux détails de l’interac-
tion des corps qui entrent en collision. La seule loi de la conservation
de la quantité de mouvement ne suffit pas pour prévoir l’issue de la col-
lision. Par contre, si l’on sait que le choc est parfaitement élastique, la
loi de conservation de l’énergie, couplée avec celle de la conservation
de la quantité de mouvement, permet de déterminer l’état du système
après la collision. Dans le cas d’une collision parfaitement inélastique,
la loi de conservation de la quantité de mouvement suffit pour déterminer la vitesse com-
mune des corps entrant en collision. Dans le cas intermédiaire, si l’on connaît ou si l’on
peut évaluer le taux de dissipation de l’énergie, il est possible de déterminer l’état final du
système.
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2. Non, les deux glisseurs repartent en sens inverse et, lorsque l’on étudie l’évolution de
l’énergie totale du système, on observe que celle-ci est la même à fin de l’interaction
(fig. 8.36c). Durant la phase d’interaction, l’énergie est stockée dans le champ magnétique,
puis restituée.

8.7 LOI DE RÉSISTANCE

Lorsque deux systèmes qui échangent de la quantité de mouvement sont en contact, le
transfert se fait par conduction et l’intensité des flux dépend de particularités que l’on
énonce au moyen d’une loi constitutive, la loi de résistance. Dans ce qui suit, nous
désignerons par Ip,R les flux de quantité de mouvement engendrés par les frottements.

8.7.1 Frottement constant (frottement de COULOMB)

Le flux de quantité de mouvement est constant (fig. 8.41), quelle que soit la valeur de
la vitesse linéaire, mais son signe dépend de celui de la vitesse linéaire dans le repère
choisi:

(8.20)

8.7.2 Frottement visqueux

Dans ce cas, le module des flux de quantité de mouvement dépend de la vitesse relative
des deux systèmes en interaction.

Frottement visqueux de type ohmique. Si la différence de vitesse est suffisamment
faible, l’effet est proportionnel à cette différence:

(8.21)

La caractéristique de ce type de frottement est linéaire (fig. 8.42), comme celle de la
loi d’OHM en électricité. C’est la viscosité du fluide dans lequel se déplace l’objet qui
détermine la valeur du coefficient de proportionnalité k.

Frottement visqueux de type turbulent. Lorsque la vitesse dépasse une certaine
limite, on passe du régime laminaire (ohmique) au régime turbulent (comme en hydrau-
lique). La résistance devient proportionnelle au carré de la différences des vitesses:

(8.22)

Il est important de noter que, dans le cas de la transmission de la quantité de mouve-
ment, les frottements ne s’opposent pas aux flux de quantité de mouvement mais, au
contraire, les rendent possibles.

EXEMPLE 8.8. Chute de caissettes à cupcakes.

Modéliser la chute de caissettes à cupcakes et comparer la simulation avec les données re-
cueillies à partir d’un film de leur chute.

Ip

∆v

FIGURE 8.41 Frottement de
COULOMB: le flux de quantité de
mouvement est indépendant de la
différence de vitesse entre les deux
corps en interaction.

I Ip R p, ,sgn= − ( )v Coulomb

I kp R, = − ⋅ ∆v

Ip

∆v

FIGURE 8.42 Frottement visqueux:
le flux de quantité de mouvement est
proportionnel à la différence de
vitesse entre les deux corps en
interaction.

I kp R, = − ⋅ ∆v 2
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SOLUTION: Deux contributions font varier la quantité de mouvement des caissettes, celle de
la pesanteur qui la fait augmenter et celle du frottement de l’air qui la réduit.

Les deux manières dont se manifeste la masse ont été séparées dans le modèle (fig. 8.43), même
si ces masses sont égales. Le frottement de l’air est de type turbulent, décrit par
l’équation (8.22). La meilleure adéquation est obtenue pour k = 0.001 Hy s m-2.

Les graphiques de le figure 8.44 montrent que l’hypothèse d’un frottement visqueux turbulent
permet une description suffisante du processus. Les données expérimentales relatives à la vites-
se ont été extraites du film de la chute libre, raison pour laquelle elles fluctuent fortement. Elles
ont été lissées en utilisant une moyenne mobile centrée calculée sur cinq points.

B

8.8 MODÈLE CORPUSCULAIRE DU GAZ PARFAIT MONOATOMIQUE

Les processus physiques sont la conséquence de l’accumulation et du transfert de
quelques grandeurs physiques fondamentales telles que la charge, l’entropie ou la
quantité de mouvement. Nous avons combiné cette vision avec une image particulière
qui veut que ces quantités et les systèmes à travers lesquels elles s’écoulent sont spa-
tialement continus. C’est l’hypothèse fondamentale sur laquelle repose ce que l’on ap-
pelle la physique des milieux continus. Elle nous a servi jusqu’ici pour éclairer et
comprendre les phénomènes macroscopiques, et elle continuera à nous guider dans la
plupart de nos investigations.

Il existe une vue complémentaire qui interprète les phénomènes physiques comme le
résultat d’innombrables processus microscopiques qui ont lieu entre les constituants
microscopiques de la matière et du rayonnement. En termes un peu sommaires, on af-
firme quelquefois que les processus sont la conséquence du mouvement de petites par-
ticules dont est fait le monde.

p caissette
Apport pesanteur Résistance air

g Vitesse
Masse inerteMasse pesante

k

FIGURE 8.43 Modèle de la chute de
caissettes à cupcakes.
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Deux théories – la théorie cinétique et la mécanique statistique – ont été développées
avec pour objectif d’éclairer et de comprendre les propriétés de la matière et du rayon-
nement en considérant le mouvement de beaucoup de particules, ou les propriétés
moyennes d’un très grand nombre de molécules, atomes, photons, voire de consti-
tuants encore plus petits des systèmes physiques, pour tenter de déduire le comporte-
ment macroscopique des objets en tant que « somme » de ces comportements
microscopiques. De pair avec la physique quantique, qui modélise le comportement
des particules microscopiques, ces deux théories ont permis d’accroître considérable-
ment notre connaissance du monde qui nous entoure.

Toutefois, malgré leur importance et leur indéniable succès, ces théories ne rempla-
cent pas la vision d’une nature continue et se prêtent mal à la résolution des problèmes
que tente de résoudre l’ingénieur. Ce ne sont pas les bonnes théories pour affronter les
phénomènes macroscopiques d’une point de vue pratique. Toutefois, elles permettent
d’obtenir des informations importantes sur certaines propriétés particulières de la ma-
tière et du rayonnement, informations qui peuvent être intégrées dans les modèles
macroscopiques. On peut dire que les théories microscopiques d’une part, et la physi-
que des milieux continus d’autre part, offrent des visions complémentaires de la ma-
nière dont fonctionne la nature.

La théorie cinétique et la mécanique statistique doivent faire face à un très sérieux pro-
blème dans un cours de physique élémentaire: à l’exception d’un très petit nombre
d’applications, elles sont beaucoup trop compliquées. Mais il est important de com-
prendre dans quel sens la vision microscopique de la nature peut nous aider à conce-
voir ses aspects macroscopiques.

La théorie des chocs, étudiée dans ce chapitre, peut servir de présentation des métho-
des et de l’utilité de la théorie cinétique. En considérant un gaz parfait monoatomique
tel qu l’hélium comme un ensemble de corpuscules élastiques, on peut mettre en évi-
dence des relations entre la pression du gaz et l’énergie des particules, ou entre leur
énergie cinétique moyenne et la température du gaz. La dernière relation fournit éga-
lement une dérivation du coefficient de température de l’énergie du gaz parfait monoa-
tomique qui coïncide extrêmement bien avec l’observation.

8.8.1 Pression d’un ensemble de particules élastiques indépendantes

Dans n mol d’un gaz, il y a N = nNA particules, où NA = 6·1023 particules/mol est le
nombre d’AVOGADRO (chapitre 6). Nous considérons un ensemble de N particules
enfermées dans un boîte cubique d’arête de longueur d (fig. 8.45). Ces particules frap-
pent une certaine paroi à des intervalles ∆ti = 2d/vxi. L’indice i sert à numéroter les par-
ticules, et nous considérons la composante selon l’axe x du mouvement des particules
qui viennent frapper la paroi droite du récipient dans la figure 8.45. Lors de chaque
collision, une particule de masse m transfère à la paroi une quantité de mouvement

Ce transfert de quantité de mouvement fait apparaître des contraintes dans la paroi, qui
ne sont rien d’autre que la pression (section 8.4); selon la définition, cette pression est
égale à la quantité de mouvement transférée par unité de temps et de surface. Pour N
particules, elle vaut

x

vi

vxi

i

d

FIGURE 8.45 Des particules enfer-
mées dans une enceinte entrent en
collision avec les parois. Le transfert
de quantité de mouvement aux parois
engendre la pression du gaz sur son
récipient.
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8.8  MODÈLE CORPUSCULAIRE DU GAZ PARFAIT MONOATOMIQUE

où V représente le volume du récipient. Vu que, pour la particule i,

et, vu que les directions dans lesquelles se meuvent les particules sont indépendantes
les unes des autres, nous nous attendons à avoir en moyenne

De ce fait, la pression du gaz devient

(8.23)

où E représente l’énergie totale du gaz. C’est ainsi parce que les particules n’ont que
l’énergie due à leur mouvement; elles n’ont aucune autre propriété (aucun autre degré
de liberté) qui leur permettrait d’accumuler de l’énergie supplémentaire. La relation
(8.23) révèle que la pression d’un gaz est proportionnelle à sa densité d’énergie.

8.8.2 Énergie et température

Si nous combinons les résultats du modèle corpusculaire avec l’équation d’état du gaz
parfait, PV = nRT (section 6.5.1), nous obtenons

où k est la constante de BOLTZMANN

(8.24)

qui est également appelée constante des gaz pour une particule unique. Par consé-
quent, l’énergie (cinétique) moyenne pour une particule unique est 3/2kT, ce qui signi-
fie que

(8.25)

Il s’ensuit que, pour un gaz monoatomique, la vitesse quadratique moyenne (moyenne
du carré de la vitesse) d’une particule et la température du gaz sont directement pro-
portionnelles.

Nous pouvons maintenant dériver la valeur du coefficient de température de l’énergie
(«chaleur spécifique») d’un gaz monoatomique. Par définition, CV = ∂E/∂T. Pour no-
tre gaz, nous obtenons

(8.26)

ce qui montre que le coefficient de température de l’énergie molaire est 3/2R. Ce ré-
sultat sera généralisé à la section 10.3.6.
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Qu’advient-il lorsque l’on fournit à un objet une quantité de mouvement de plus en
plus grande? En vertu des lois que nous avons découvertes jusqu’ici, sa vitesse devrait
croître de plus en plus. Dans l’analogie hydraulique (fig. 8.27), le niveau du fluide ne
cesserait d’augmenter.

Mais il se trouve que le mouvement à très grande vitesse révèle des particularités qui
ne se manifestent pas à des vitesses faibles par rapport à celle de la lumière. En effet,
on sait depuis 1905 grâce à EINSTEIN et à sa théorie de la relativité que la vitesse de la
lumière ne peut pas être dépassée (ni même atteinte) par un corps matériel. Vu qu’il
est toujours possible de poursuivre l’apport de quantité de mouvement, il faut conclure
que l’augmentation de la quantité de mouvement entraîne une augmentation de la
capacité en quantité de mouvement d’un objet, c’est-à-dire de sa masse (fig. 8.46).

L’apport de quantité de mouvement s’accompagne d’un apport d’énergie. Il s’ensuit
qu’il doit y avoir une relation étroite entre l’énergie et la masse d’un système physique,
relation que nous voulons découvrir. Ce fait est connu, en théorie de la relativité, sous
la dénomination de l’équivalence de la masse et de l’énergie.

 

8.9.1 Quantité de mouvement transportée par la lumière

Une des observations les plus importantes au sujet de la lumière est qu’elle se com-
porte comme si elle était constituée d’un jet de particules, les photons, dont certaines
propriétés physiques sont, sous certains aspects, semblables à celles de la matière
ordinaire. Les photons transportent de la quantité de mouvement, tout comme les
corps matériels, mais ils ne peuvent se déplacer à aucune autre vitesse que celle de la
lumière. Une expérience (réalisée pour la première fois en 1886 par Michelson et Mor-
ley) révèle que des observateurs se déplaçant à des vitesses totalement différentes les
unes des autres mesurent tous la même vitesse de propagation de la lumière. Cette par-
ticularité, élevée au rang de postulat, sert de base à la théorie de la relativité restreinte
d’EINSTEIN.

Comme les photons transportent de la quantité de mouvement, nous introduisons sa
capacité en quantité de mouvement m et écrivons

 

(8.27)

où c représente la vitesse de la lumière (c = 2.998·108 m s-1). Soulignons que m ne
représente pas une quantité de matière (la lumière est immatérielle), mais la capacité
d’accumuler de la quantité de mouvement.

Vu que les photons ne peuvent exister qu’à la vitesse de la lumière, l’apport de quantité
de mouvement n’entraîne qu’une augmentation de l’énergie, selon la relation:

 

(8.28)

(fig. 8.47). Si nous combinons les équations (8.27) et (8.28), nous devons conclure que

 

(8.29)

En d’autres termes, la capacité en quantité de mouvement et l’énergie de la lumière
sont directement liées. Le facteur de conversion est le carré de la vitesse de la lumière.

v

v = 0

p

mi

∆p

∆v

∆m

Vitesse de
la lumière

FIGURE 8.46 L’accroissement de la
quantité de mouvement n’entraîne
que partiellement à une augmenta-
tion de la vitesse. La masse augmen-
te également, particulièrement à des
vitesses proches de celle de la lumiè-
re. Vu que l’énergie augmente con-
jointement, nous en déduisons une
relation fondamentale entre l’énergie
et la masse.

p mc=

E c p=

FIGURE 8.47 La «création» d’un
photon ayant une quantité de mouve-
ment p nécessite une quantité d’éner-
gie égale à cp (pour «soulever» la
quantité de mouvement à la
vitesse c).
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8.9.2 Quantité de mouvement, masse et énergie de corps matériels

Passons maintenant à la discussion du comportement d’un objet «ordinaire». Nous
avons vu qu’un tel objet ne peut ni atteindre, ni dépasser la vitesse de la lumière. Ce-
pendant, lorsque sa vitesse approche celle de la lumière, il a de plus en plus tendance
à se comporter comme un photon. En particulier, tout apport supplémentaire de quan-
ti té de mouvement s’accompagne d’un apport d’énergie calculé selon
l’équation (8.28) pour les photons et comme on peut le voir dans les figures 8.46 ou
8.47.

Que deviennent les propriétés des objets s’ils se mettent à se comporter de manière
semblable aux photons lorsqu’ils se meuvent à très haute vitesse? La relation vitesse
– quantité de mouvement, qui introduit la capacité en quantité de mouvement, est pri-
mordiale. Si nous utilisons l’équation (8.29) pour la masse et écrivons

 

(8.30)

alors cette relation tend vers celle qui est valable pour les photons lorsque la vitesse du
corps s’approche de celle de la lumière. Elle est équivalente à l’équation (8.28) si nous
remplaçons

 

v par c.

Considérons maintenant le processus consistant à ajouter une petite portion de quan-
tité de mouvement ∆p à un corps qui se meut à la vitesse

 

v. Cela nécessite une quantité
d’énergie ∆E =

 

v

 

· ∆p. Vu que, selon l’équation (8.29), nous avons également
∆E = c2·∆m, nous pouvons conclure que:

L’intégration de cette équation (après passage à la limite)

donne

 

(8.31)

Ici, m0 représente la masse au repos, c’est-à-dire la masse de l’objet lorsqu’il est im-
mobile (dans le référentiel considéré). Comme nous avons pu le constater dans la
figure 8.46, la masse d’un corps augmente lorsqu’on lui ajoute de la quantité de mou-
vement, et notre résultat nous indique de quelle manière se produit ce phénomène.
Cette relation peut également s’exprimer au moyen de l’énergie de l’objet:

 

(8.32)

C’est un résultat extrêmement intéressant, comme nous pouvons le constater en con-
sidérant la limite pour un objet au repos ; dans ce cas, la quantité de mouvement est
réduite à zéro, et il reste:

 

(8.33)

En d’autres termes, un objet au repos possède encore une énergie égale au produit de
sa masse au repos m0 et du carré de la vitesse de la lumière. Cette énergie est l’ énergie
au repos E0. C’est sur ce résultat qu’est basée l’interprétation qui veut que l’énergie et
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la masse sont une seule et même grandeur physique qui est conservée. L’apport
d’énergie à un objet le rend plus pesant et plus inerte, ce qui se produit également si
nous lui ajoutons de la masse. C’est en basant notre argument sur cette propriété que
nous avons pu affirmer, au chapitre 5, que la grandeur qui rendait un objet chaud ne
pouvait pas être de l’énergie.

Nous pouvons montrer que la masse d’un objet dépend de sa vitesse. Posons p = m

 

v
dans la relation entre la quantité de mouvement et la masse, c’est-à-dire dans
l’équation (8.31), résolvons-la par rapport à m:

 

(8.35)

(fig. 8.49b). Cela montre que la masse d’un corps matériel deviendrait infinie s’il se
mouvait à la vitesse de la lumière ce qui, par conséquent, est impossible.

 

8.9.3 Mouvement relativiste

Vérifions au moyen d’un modèle ce que l’adjonction à la mécanique newtonienne de
la relation masse-énergie (8.34) entraîne comme modification du comportement dyna-
mique des corps matériels.

Nous envisageons le mouvement d’un corps de masse au repos m0 soumis à une force
constante. Comme nous l’avons mentionné à la section 8.2.8, la notion de force cor-
respond à un flux de quantité de mouvement Ip . Le cœur de notre modèle est le bilan
de quantité de mouvement duquel nous déduisons le module

 

v

 

 de la vitesse instanta-
née à partir de l’équation (8.12) toujours valable dans le cas relativiste. Le module de
la vitesse et celui du flux de quantité de mouvement déterminent le flux d’énergie IE
vers le corps, donné par l’équation (8.17) valable autant pour les vitesses faibles que
dans le cas relativiste. Nous obtenons l’énergie instantanée, ce qui nous permet de cal-
culer la masse instantanée donnée par l’équation (8.34), la relation qui fait intervenir
la théorie de la relativité dans le modèle qui est représenté dans la figure 8.48.

Aussi bien pour des objets matériels que pour la lumière, et pour toutes les
vitesses allant de zéro à celle de la lumière, l’énergie et la masse du systè-
me représentent la même grandeur. Leurs valeurs sont liées par la relation

(8.34)E mc= 2

m
m

c
=

−
0

2 21 v

E

I E

p

I p

m0

m

c

v

m sur m0

v sur c

FIGURE 8.48 Modèle du mouve-
ment relativiste d’un objet.
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La simulation a été effectuée pour un corps de masse au repos égale à 1 kg soumis à
une force de module constant de 100 N. La figure 8.49a montre que la vitesse s’appro-
che de celle de la lumière, qui est une limite inatteignable pour un corps matériel. Cela
est dû au fait que l’apport de quantité de mouvement, et donc d’énergie, contribue es-
sentiellement à accroître la masse lorsque l’on s’approche de cette limite (fig. 8.49b).

 

8.9.4 Conséquences géométriques

Les propriétés du mouvement à très grande vitesse ont quelques conséquences géomé-
triques fascinantes. Étant donné que la lumière a la même vitesse par rapport à n’im-
porte quel système de référence, et vu que les corps matériels ne peuvent ni atteindre,
ni dépasser cette vitesse, les règles pour les additions des vitesses doivent être diffé-
rentes de celles que nous utilisons usuellement. Pour des vitesses ordinaires, deux vé-
hicules qui roulent l’un vers l’autre se croiseront avec une vitesse relative qui est la
somme des valeurs individuelles. Cela n’est plus le cas pour des vitesses proches de
celle de la lumière. Par exemple, si une particule du rayonnement cosmique se meut
en direction de la Terre à une vitesse approchant celle de la lumière, un observateur se
déplaçant vers la particule à très haute vitesse par rapport à la Terre mesurera toujours
une vitesse de la particule inférieure à celle de la lumière.

En outre, l’espace et le temps ont des propriétés inattendues par rapport à notre expé-
rience quotidienne. En particulier, des mesures de distances et d’intervalles de temps
dépendent du mouvement de l’observateur, différents observateurs obtenant différents
intervalles de temps et de distances. Ces propriétés qui vont à l’encontre de notre in-
tuition sont confirmées quotidiennement dans les laboratoires de physique des hautes
énergies où des particules élémentaires sont amenées à entrer en collision à des vites-
ses très proches de c. L’espace et le temps ne sont vraiment pas ce qu’ils semblent être
à première vue. C’est pourquoi il est encore plus surprenant de voir jusqu’où nous pou-
vons aller avec notre vision simplifiée de la vie quotidienne.

 

Résumé du chapitre

La description des processus de translation se fait au moyen de deux grandeurs fonda-
mentales, la quantité de mouvement et la vitesse linéaire.

La quantité de mouvement

 

p est la grandeur extensive liée au mouvement de transla-
tion. Elle peut être accumulée dans les objets en mouvement, peut s’écouler entre les
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FIGURE 8.49 Mouvement relativiste
d’un objet: (a) évolution de la vitesse
en fonction du temps sous l’effet
d’une force constante; (b) évolution
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systèmes et ses variations sont décrites par une équation de bilan. Sa particularité est
d’être une grandeur vectorielle. De ce fait, les flux Ip de quantité de mouvement sont
aussi une grandeur vectorielle. La quantité de mouvement peut entrer ou sortir d’un
système de différentes manières. Tout d’abord par conduction, c’est-à-dire lors du
contact entre les objets qui entrent en interaction. Dans ce cas, les flux de quantité de
mouvement pénètrent dans les corps à travers leur surface, s’y répartissent et engen-
drent des contraintes (de traction, de compression ou de cisaillement). Mais les corps
peuvent également échanger de la quantité de mouvement avec les champs (gravita-
tionnel, électrique, magnétique). Ces échanges de quantité de mouvement ne se font
pas par l’intermédiaire de flux, mais par rayonnement, c’est-à-dire que les échanges
ont lieu à l’intérieur du volume, sans passer par la surface. On les décrit au moyen d’un
taux de source Σp . Si le champ est uniforme, les corps ne sont pas soumis à des
contraintes; dans le cas contraire, il y a effet de marée. La forme générale de l’équation
de bilan de la quantité de mouvement est: . Les flux de quantité de
mouvement et les taux de source correspondent au concept de force.

La grandeur extensive, le potentiel, est la vitesse linéaire v. C’est également une gran-
deur vectorielle. Les flux de quantité de mouvement ont toujours lieu entre deux ni-
veaux de ce potentiel.

Les échanges de quantité de mouvement sont accompagnés de flux d’énergie. Le taux
de chargement en énergie est proportionnel à la vitesse linéaire, ce qui implique qu’un
flux d’énergie sera égal à IE = v • (Ip + ΣΣΣΣp) où Ip et ΣΣΣΣp représentent les apports de quan-
tité de mouvement respectivement en mode conductif et radiatif. Lorsque le processus
est spontané, il y a libération d’énergie, alors que de l’énergie est liée au flux de mo-
ment cinétique si le processus est contraint. Le taux de libération ou de liaison de
l’énergie est la puissance du processus: Ptrans = – ∆v|Ip + Σp|. L’énergie accumulée
dans un objet en mouvement, son énergie cinétique, est égale à Ecin = 1/2 mv 2.

La capacité d’un système à emmagasiner de la quantité de mouvement et de l’énergie
est sa masse inerte m.

La quantité de mouvement peut être transférée d’un système à l’autre de différentes
manières: lors de chocs, en mode conductif, par l’intermédiaire des frottements, par
des éléments inductifs tels que des ressorts ou par l’intermédiaire de champs en mode
radiatif. La présence d’éléments inductifs dans un système est à l’origine de phénomè-
nes d’oscillations.

�p I p p= +, cond ΣΣ
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Questions
1. Si l’on admet qu’un corps peut se mouvoir de manière com-

plexe – combinant rotation et translation –, comment pour-
riez-vous définir le mouvement de translation? Qu’est-ce qui
caractérise la translation?

2. Comment pourriez-vous détecter si un certain corps a violé la
loi d’équivalence de la masse inerte et de la masse pesante?

3. Deux pièces de monnaie de même masse, posées l’une sur
l’autre, tombent en chute libre. Y a-t-il un flux de quantité de
mouvement à travers la surface de contact entre les deux
pièces? Votre réponse changerait-t-elle si la pièce supérieure
avait une masse gravitationnelle du double de sa masse
inerte? Même question si la masse gravitationnelle de la pièce
inférieure était le double de sa masse inerte?

4. Une balle lancée perpendiculairement contre une paroi rebon-
dit élastiquement après l’impact. Quelle est, exprimée au
moyen de la quantité de mouvement avant l’impact, la quan-
tité de mouvement transmise à la paroi? Que fait la paroi avec
cette quantité de mouvement? Qu’advient-il de l’énergie de la
balle?

5. Durant un choc frontal, deux véhicules perdent de la quantité
de mouvement à cause des frot tements. Comment
l’équation (8.13) est-elle modifiée?

6. Comment une fusée fonctionne-t-elle?

7. Dans une explosion, les fragments d’un corps partent dans
toutes les directions. Comment, et d’où reçoivent-ils leur
quantité de mouvement?

8. Pourquoi la masse d’un corps doit-elle augmenter lorsque sa
vitesse s’approche de celle de la lumière?

Exercices
1. Un glisseur, sur un rail à coussin d’air, de masse égale à

2.0 kg, est tiré par une ficelle, à partir de l’immobilité, pendant
3.0 s. Le flux de quantité de mouvement à travers la ficelle a
une intensité de 0.50 N. (a) Déterminez la tension qui règne
dans la ficelle dont le diamètre est de 1.0 mm. (b) Quelle est
la quantité de mouvement qui a été injectée dans le glisseur?
(c) Déterminez le changement de la quantité de mouvement
du glisseur. (d) Quel sera le module de la vitesse finale du
glisseur?

2. La tension dans une corde de 2.0 cm de diamètre vaut
4.0·105 N m-2. Déterminez la valeur de l’intensité du flux de
quantité de mouvement qui s’écoule à travers la corde.

3. Un bloc est posé sur une table. Le champ gravitationnel trans-
fère de la quantité de mouvement au taux de 200 N dans le
bloc et au même taux dans la table. (a) Déterminez l’intensité
du flux de quantité de mouvement entre le bloc et la table.
(b) Déterminez l’intensité du flux de quantité de mouvement
entre la table et le sol. (c) Les pieds de la table ont une forme
cylindrique de rayon égal à 1.5 cm. Quelle est la valeur de la
tension dans chacun des quatre pieds?

4. Dans un écran d’ordinateur, les électrons sont accélérés par
une tension de 2.0 kV. Quelle est l’énergie, le module de la vi-
tesse et de la quantité de mouvement d’un électron
individuel ? La masse d’un électron est de 9.11·10–31 kg.
Négligez les effets relativistes.

5. Une balle lancée perpendiculairement contre une paroi rebon-
dit de manière parfaitement élastique. Sa masse et le module
de sa vitesse avant le rebond sont respectivement de 0.40 kg
et 10.0 m s-1. Déterminer la variation de la quantité de mou-
vement de la balle. Quelle est la quantité de mouvement trans-
férée à la paroi?

6. Une balle de pâte à modeler de 0.25 kg est lancée contre une
paroi à une vitesse de module égal à 5.0 m s-1 et y reste collée.
Quelle est la quantité d’énergie libérée lors de ce processus?
Qu’advient-il de cette énergie? À quoi est-elle utilisée?

7. Un joueur de football frappe la balle qui acquiert une vitesse
de module égal à 9.0 m s-1. La balle a une masse de 400 g. Le
contact entre le pied du joueur et la balle dure approximative-
ment 0.10 s. (a) Déterminez l’intensité moyenne du flux de
quantité de mouvement du pied vers la balle. (b) Usuellement,
la balle se met également à tourner. Ce fait change-t-il la
réponse à la première question?

8. Le diagramme de dynamique des systèmes de l’ancien modè-
le (éliminé) modélise le choc inélastique de deux corps dans
une dimension. Admettez pour ces objets des masses de
2.0 kg et 1.0 kg et des vitesses respectives de 7.5 m s-1s et
0 m s-1. Admettez un flux constant de quantité de mouvement
de 50 N durant le choc. (a) Déterminez la valeur de la quantité
de mouvement échangée. (b) Combien de temps dure le choc?
(c) Déterminez les vitesses en fonction du temps.
(d) Déterminez le taux de libération d’énergie en fonction du
temps.

9. Les électrons ont une masse de 9.11·10–31 kg. (a) Déterminez
leur énergie au repos. (b) Si l’énergie d’un électron vaut 1.2
fois son énergie au repos, que vaut alors sa masse? Que vaut
sa quantité de mouvement?

Problèmes
1. Un véhicule à fond plat, de masse égale à 1000 kg, se déplace

horizontalement sans frottement à une vitesse de module égal
à 3.0 m s-1. Une personne de masse égale à 100 kg saute d’un
arbre sur l’arrière du véhicule. Puis elle court vers l’avant et
saute du véhicule à une vitesse de 5.0 m s-1 par rapport au
véhicule. (a) Quelle sera la vitesse du véhicule après que la
personne l’a quitté ? (Indication : résolvez le problème en
deux étapes.) (b) De combien d’énergie cinétique a-t-elle
diminué lorsque la personne a sauté sur le véhicule? (Négli-
gez l’énergie du mouvement vertical.) (c) Combien d’énergie
la personne a-t-elle libérée en augmentant sa vitesse pour
sauter du véhicule?

2. Une balle de mastic de masse égale à 0.20 kg est jetée hori-
zontalement contre une bloc de bois immobile de masse
égale à 1.0 kg. La balle reste collée sur le bloc et les deux
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corps se déplacent en commun avec une vitesse de 4.0 m s-1.
(a) Dessinez l’analogie hydraulique du processus et calculez
la vitesse de la balle avant le choc. (b) Refaites le problème
pour un observateur se déplaçant à une vitesse de 10.0 m s-1

dans le même sens que la balle.

3. Une balle de pistolet de masse égale à 3.0 g se déplaçant à
une vitesse de module égal à 400 m s-1 traverse une plan-
chette de bois montée sur un glisseur sur un rail à coussin
d’air (fig. 8.50). Finalement, elle s’enfonce dans une autre
planchette montée sur un second glisseur. Les masses respec-
tives des glisseurs (planchettes incluses) sont de 750 g et
747 g. Ils étaient initialement immobiles et entrent en colli-
sion après avoir parcouru respectivement 3.0 m et 1.0 m.
(a) Déterminez les modules des vitesses des glisseurs après
l’impact de la balle. (b) Déterminez l’énergie dissipée et le
taux de dissipation d’énergie lorsque la balle traverse la pre-
mière planchette.

4. Déterminez le module de la vitesse du centre de masse des
trois corps du Problème 3 avant que la balle percute la pre-
mière planchette, après la traversée de cette planchette et
après qu’elle s’est fichée dans la seconde planchette.

5. Des électrons sont accélérés par une différence de potentiel
de 240 kV. Déterminez l’énergie et la vitesse d’un électron en
utilisant la relation classique pour l’énergie cinétique. Étant
donné que la vitesse des électrons est relativement proche de
celle de la lumière, déterminez la masse, la quantité de mou-
vement et la vitesse en accord avec les relations relativistes.
La masse de l’électron est de 9.11·10–31 kg.

2.0 m
3.0 g

400 m/s

750 g 747 g

FIGURE 8.50
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L’objectif de ce chapitre est, en premier lieu d’introduire et de préciser la notion de
force et de l’appliquer à quelques situations particulières. Nous montrerons que la no-
tion de force apparaît lorsque l’on rapporte un flux de quantité de mouvement à un ob-
jet. Une force sert à mesurer l’intensité du flux de quantité de mouvement à travers la
surface d’un objet ou son apport ou retrait par rayonnement à l’intérieur de tout le
volume d’un corps. On introduit des forces lorsque l’on isole un système du reste du
monde avec lequel il échange de la quantité de mouvement. Ensuite, nous introduirons
la notion de moment d’une force lié aux flux de moment cinétique qui apparaissent
dans des systèmes en rotation. Nous consacrerons les dernières sections à la mécani-
que des fluides.
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Dans cette section, nous montrons qu’une partie des résultats trouvés et formulés au
chapitre 8 énoncent, sous une forme un peu différente, les lois fondamentales de la dy-
namique de translation formulées par NEWTON dans son ouvrage de 1687, Philoso-
phiae naturalis principia mathematica (fig. 9.1).

 

9.1.1 Flux de quantité de mouvement et lois de N

 

EWTON

Durant l’étude de cas de la section 8.2, nous avons découvert trois résultats particuliers
que nous avons récapitulés en fin de paragraphe, à la section 8.2.4. Dans le tableau 9.1,
nous comparons ces résultats avec l’énoncé des trois lois fondamentales de NEWTON.

Nous avons repris la formulation de la traduction du latin en français d’ÉMILIE MAR-

QUISE DU CHÂTELET qui, incitée et encouragée par VOLTAIRE, donna cette traduction
cinquante ans après la parution de l’original en tenant compte des progrès réalisés en-
tre-temps en analyse. Alors que NEWTON utilise essentiellement des concepts géomé-
triques, MADAME DU CHÂTELET utilise l’analyse avec la notation de LEIBNIZ. La
comparaison des deux formulations révèle que, lorsque nous parlons de flux de quan-
tité de mouvement, NEWTON utilise les termes de force ou d’action.

Pour établir le lien entre ces deux formulations, nous nous appuyons sur la deuxième
loi de NEWTON et la formulation de la dynamique du mouvement de translation, à sa-
voir l’équation de bilan de quantité de mouvement énoncée à la section 8.4.4, en ne
prenant en compte que les contributions par conduction et par rayonnement et en lais-
sant de côté les flux convectifs de quantité de mouvement.

Nous montrerons à la section 9.1.2 que la notion de force apparaît lorsque les flux de
quantité de mouvement sont rapportés aux éléments d’un système que l’on a isolés les
uns des autres, comme le montrent les figures 9.2 et 9.3. Les forces mesurent l’inten-
sité des flux de quantité de mouvement à travers la surface du système ou les apports
ou retraits par rayonnement à l’intérieur du volume de ce système.

FIGURE 9.1 Couverture de l’édition
originale des Principia en 1687 et de
la traduction française de la MAR-
QUISE DU CHÂTELET, parue en 1759.
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Le taux de variation de la quantité de mouvement d’un corps est donné par la relation:

 

(9.1)

où

 

Ip,cond et ΣΣΣΣp représentent respectivement la somme des flux de quantité de mouve-
ment par conduction et la somme des apports en mode radiatif.

Puisque nous faisons une distinction entre les flux par conduction ou par rayonnement,
nous devons établir la correspondance. À la somme

 

Ip,cond des flux de quantité de
mouvement par conduction, c’est-à-dire par contact entre les corps, correspond la
somme des forces dues au contact, représentée par le symbole

 

F :

 

(9.2)

Ces forces s’exercent à la surface des corps en contact.

Si nous admettons, pour des raisons de simplification, que le seul champ transmettant
de la quantité de mouvement par rayonnement est celui de pesanteur omniprésent, le
second terme du membre de droite devient:

 

(9.3)

Notons que ce terme peut être négligé si les autres forces ont une intensité beaucoup
plus importante, ce qui est par exemple le cas en présence de charges plongées dans
des champs électriques. L’adaptation de l’équation de bilan de quantité de mouvement
à la formulation de la deuxième loi de NEWTON donne:

 

TABLEAU 9.1

 

Comparaison N

 

EWTON

 

 - dynamique du mouvement de translation.

 

Énoncés de la section 8.2 Formulation de N

 

EWTON

S’il n’est soumis à aucune interaction,
c’est-à-dire en l’absence de flux de quantité
de mouvement, la vitesse d’un objet reste
constante (section 8.2.4).

Tout corps persévère dans l’état de repos ou
de mouvement uniforme en ligne droite
dans lequel il se trouve, à moins que quel-
que force n’agisse sur lui et ne le contraigne
à changer d’état.

Le taux de variation de la quantité de mou-
vement d’un corps est égal à la somme des
flux de quantité de mouvement
(équation (8.3)).

Les changements qui arrivent dans le mou-
vement sont proportionnels à la force
motrice, et se font dans la ligne droite dans
laquelle cette force a été imprimée.

Lorsque deux corps entrent en interaction,
les quantités de mouvement échangées sont
égales et de signes opposés (équation (8.5)).

L’action est toujours égale et opposée à la
réaction; c’est-à-dire, que les actions de
deux corps l’un sur l’autre sont toujours
égales et dans des directions contraires.
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(9.4)

Si l’on prend en compte le fait que:

 

(9.5)

nous retrouvons la formulation usuelle de cette loi:

 

(9.6)

qui est la loi fondamentale de la dynamique non relativiste.

Examinons maintenant les deux autres lois. Dans notre vision de la dynamique du
mouvement de translation, elles expriment des évidences.

La première loi, connue sous la dénomination de loi d’inertie, est un cas particulier de
la deuxième. Elle exprime le fait qu’en l’absence d’interaction, la quantité de mouve-
ment d’un objet ne change pas, ce qui entraîne la constance de sa vitesse. Cette loi avait
été énoncée par Galilée quatre-vingts ans avant que NEWTON la reprenne dans son
ouvrage. C’est une des découvertes fondamentales qui ont provoqué l’abandon de la
physique d’ARISTOTE que l’on appliquait depuis près de deux mille ans. Dans sa
vision, le mouvement devait être entretenu par l’application d’une force, et l’absence
de force entraînait la cessation du mouvement. Ce qu’il n’avait pas réalisé, c’est que cet
apport de quantité de mouvement servait à compenser les pertes dues aux frottements.

Nous ne devons pas chercher à trouver un énoncé équivalent à celui de la troisième loi
car, dans notre vision de la dynamique du mouvement, lorsqu’il y a transfert de quan-
tité de mouvement entre deux systèmes, l’intensité du flux entrant dans le second sys-
tème est égale mais de signe opposé à celle du flux sortant du premier système (ou
réciproquement). Mais cette loi est nécessaire dans la vision de NEWTON, parce que
les interactions entre des systèmes sont formulées au moyen des forces attribuées à
chacun des systèmes considérés isolément. Dans la section 9.1.2, nous allons établir
le lien entre la notion de force et celle de flux de quantité de mouvement, ce qui nous
permettra de comprendre pourquoi NEWTON devait impérativement énoncer cette troi-
sième loi.

 

9.1.2 Correspondance entre forces et flux de quantité de mouvement

Rappelons que le choix du référentiel détermine le signe des flux de quantité de mou-
vement. Ce choix est en général adapté au problème étudié. Nous avons constaté que
la quantité de mouvement positive – par rapport au système de référence choisi – qui
s’écoule à travers un objet a lieu dans le sens positif si l’objet est soumis à une contrain-
te en compression, dans le sens négatif s’il est soumis à une contrainte en traction.

Examinons l’exemple concret d’un objet suspendu au moyen d’une corde (fig. 9.2).
Nous choisissons un axe vertical orienté vers le bas, séparons le système en ses élé-
ments, l’objet et la corde, et considérons isolément chacun de ces éléments. Comme
nous l’avons dit plus haut, le champ de pesanteur de la Terre apporte de la quantité
de mouvement en mode radiatif, apport quantifié par le taux de source ΣΣΣΣp . Nous as-
socions à cette contribution une force dirigée vers le bas, la force de pesanteur m

 

g,
dont le module correspond à celui du taux de source ΣΣΣΣp. Comme l’objet est immobile,
il élimine la quantité de mouvement qu’il reçoit du champ de gravité à travers la corde
soumise à une traction, donc à un flux de quantité de mouvement dans le sens négatif.
Nous associons à ce flux de quantité de mouvement une force dirigée vers le haut, la
force de traction exercée par la corde, que nous désignons par

 

Ftraction et dont le
module correspond à l’intensité du flux sortant de l’objet. L’extrémité inférieure de

 �p F g= + m

  � �p a= =m mv

F g a+ =m m

Fsuspension

- Ftraction

+ z

Ftraction

mg

a.

b.

Σp

Ip

FIGURE 9.2 Illustration du lien en-
tre les flux de quantité de mouvement
et les forces: (a) système envisagé;
(b) séparation du système en ses élé-
ments et introduction des forces.
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la corde est tirée vers le bas par une force dont le module doit être égal à celui de la
force s’exerçant sur l’objet, vu qu’elle correspond au flux émergeant de l’objet et en-
trant dans la corde. Nous désignons cette force par –

 

Ftraction. Ces deux forces consti-
tuent la paire de forces opposées qui apparaissent dans la troisième loi de NEWTON.
Comme le flux de quantité de mouvement ne varie pas à l’intérieur de la corde – ce
qui est le cas parce que nous avons négligé son propre poids –, nous introduisons une
force dirigée vers le haut, de même module que les deux précédentes, que nous ap-
pelons Fsuspension. Il est important de noter que les deux forces qui s’exercent sur la
corde ne sont pas des paires d’action et de réaction.

Nous constatons que les forces n’apparaissent qu’à partir du moment où nous isolons
un élément d’un système de tous ceux avec lesquels il entre en interaction. L’examen
attentif de l’exemple nous permet d’énoncer la règle de correspondance suivante:

Cette règle donne toujours des résultats corrects, quel que soit le sens positif choisi.
Si, dans notre exemple, nous inversons le sens de référence (fig. 9.3), les flux de quan-
tité de mouvement sont inversés et le taux de source change de signe: la quantité de
mouvement positive – dirigée vers le haut – est amenée dans l’objet par la corde et éli-
minée – aspirée – par le champ de gravité. En revanche, le sens des flèches qui repré-
sentent les forces n’est pas influencé par ce changement de sens de référence positif.

9.1.3 Lien entre les phénomènes inductifs et les forces

Nous avons vu au chapitre 4 que les phénomènes inductifs étaient très souvent respon-
sables de l’apparition d’oscillations du système (oscillations d’un fluide entre deux ré-
servoirs, oscillations électriques en présence d’un condensateur et d’une self, etc.).
Quel est l’élément mécanique dont la présence pourra engendrer des oscillations d’un
système? C’est, bien évidemment, le ressort.

Loi de HOOKE pour un ressort. Si on étudie le comportement d’un ressort soumis à
une contrainte (en traction ou en compression), on constate que, pour autant que l’on
reste dans le domaine d’élasticité (domaine dans lequel la déformation est réversible),
la force qu’exerce le ressort est proportionnelle à son élongation x par rapport à sa po-
sition d’équilibre (fig. 9.4). Ce fait est énoncé en tant que loi.

À un flux de quantité de mouvement entrant dans un élément d’un système
ou à un taux de source positif correspond une force dirigée dans le sens de
référence positif; à un flux sortant de cet élément du système ou à un taux
de source négatif une force de sens opposé au sens de référence positif.

Le module de la force est égal à l’intensité du flux de quantité de mouve-
ment auquel elle est associée:

(9.7)F I= p, cond

Fsuspension

- Ftraction

+ z

Ftraction

mg

Σp

Ip

FIGURE 9.3 Illustration de l’effet de
l’inversion du sens de référence: les
flux et les taux de source de quantité
de mouvement sont inversés, mais
les sens des forces restent identiques.

F

F

0 x

x

x

FIGURE 9.4 Lorsque l’on allonge ou
comprime un ressort, en restant dans
le domaine d’élasticité, la force F
exercée par le ressort est proportion-
nelle à l’élongation x mesurée par
rapport à la position d’équilibre.

Pour de petits allongements ou compressions (c’est-à-dire pour autant
que l’on reste dans le domaine d’élasticité), la force exercée par un ressort
peut être exprimée par:

(9.8)F x x( ) = − ⋅k
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La constante positive k est appelée constante de rigidité du ressort et se mesure en
N m–1 ou kg s–1. x représente le vecteur d’élongation mesuré depuis la position d’équi-
libre du ressort (position correspondant à une déformation nulle). Le signe négatif in-
dique que la force est toujours dirigée vers la position d’équilibre, raison pour laquelle
on l’appelle force de rappel.

Quel lien y a-t-il entre l’énoncé ci-dessus et ce que nous avons écrit au sujet des phé-
nomènes inductifs, à savoir:

(9.9)

Appliquée à la quantité de mouvement, la relation ci-dessus devient:

Si, dans la loi de HOOKE, nous identifions la force au flux de quantité de mouvement
et dérivons cette relation par rapport au temps, nous obtenons:

Les deux énoncés sont équivalents si nous interprétons la constante de rigidité d’un
ressort comme l’inverse de son inductance.

(9.10)

Loi de HOOKE locale. Les matériaux solides possèdent tous une certaine élasticité et
leur comportement lorsqu’ils sont soumis à une contrainte peut être décrit, en première
approximation, par la version locale de la loi de Hooke. Pour l’obtenir, nous envisa-
geons par exemple une barre cylindrique de section A soumise à une traction de mo-
dule F (fig. 9.5). Si l’on reste dans les limites du domaine d’élasticité, l’allongement
dx d’un élément de longueur ∆x est directement proportionnel à la longueur originelle,
à l’intensité de la force de traction, et inversement proportionnel à la section:

Nous introduisons l’allongement relatif ε:

où σ représente la tension normale, en traction ou en compression, introduite au
moyen de l’équation (8.10) à la section 8.4.1. On tient compte de la particularité de
chaque matériau en introduisant la constante d’élasticité E ou module de Young.

 ∆ϕX L X XL I, = − ⋅ �

  ∆v = − ⋅Lp pI�

  
�I k

d x

dt
k

Lp = − ( ) = − ⋅ − ⋅
∆

∆ ∆v= v1

p

L
kp = 1

dx

A

∆x

A F

FIGURE 9.5 Loi de HOOKE locale:
sous l’effet d’une traction, un élé-
ment de longueur ∆x d’un barreau
cylindrique est allongé d’une lon-
gueur dx.

dx
x F

A
∝ ⋅∆

ε σ= ∝ = = =dx

x

F

A

I

A
jp

p∆

Dans un matériau élastique soumis à des contraintes en traction ou en
compression, l’allongement relatif ε est proportionnel à la tension σ:

(9.11)

La tension et le module de Young se mesurent en pascal.

σ ε= E
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CHAPITRE 9   EXEMPLES DE LOIS CONSTITUTIVES MÉCANIQUES

1. Qu’est-ce qui détermine le sens des flux de quantité de mouvement?

2. Quel est le lien entre les contraintes et le sens des flux de quantité de
mouvement?

3. Quel et le lien entre les flux de quantité de mouvement et les forces?

4. Comment détermine-t-on l’orientation des forces à partir des flux de
quantité de mouvement?

5. Est-ce que, dans la figure 9.2, les deux forces qui agissent sur le corps suspendu correspon-
dent à la paire action-réaction au sens de la troisième loi de NEWTON?

6. Quel est l’élément mécanique qui a des propriétés inductives?

1. Le sens des flux de quantité de mouvement est déterminé par les con-
traintes engendrées par ces flux et par le choix du système de référence.

2. Lorsqu’un objet est soumis à une contrainte en compression dans une
certaine direction, la composante de la quantité de mouvement s’écoule
dans le sens positif déterminé par l’axe correspondant du repère, dans
le sens négatif lorsqu’il est soumis à une traction.

3. Une force représente l’intensité du flux de quantité de mouvement à travers la surface d’un
corps.

4. À une composante donnée d’un flux entrant de quantité de mouvement correspond une
force orientée dans le sens positif par rapport à l’axe correspondant du repère. La flèche
associée à un flux sortant est orientée dans le sens négatif.

5. Non, les paires action-réaction correspondant à des flux de quantité de mouvement entre
deux corps. Chacune des deux forces est associée à l’un des deux corps en interaction, par
exemple l’objet suspendu et la corde à laquelle il est suspendu.

6. Le ressort est l’élément mécanique à caractère inductif. Son inductance est égale à l’inverse
de sa constante de rigidité.

9.2 LIEN ENTRE FORCES, ÉNERGIE ET PUISSANCE DU PROCESSUS

Une force est équivalente à un flux de quantité de mouvement entrant ou émergeant
d’un système, elle doit donc être également à l’origine d’un flux d’énergie.

Lorsque le matériau est soumis à un cisaillement, on désigne par τ la con-
trainte de cisaillement. La déformation est décrite par un angle de cisaille-
ment γ et le matériau est caractérisé par une grandeur appelée module de
cisaillement G. Dans ce cas, le modèle devient:

(9.12)τ γ= G

Q

R
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9.2  LIEN ENTRE FORCES, ÉNERGIE ET PUISSANCE DU PROCESSUS

9.2.1 Puissance d’un processus entraîné par l’action d’une force

Rappelons tout d’abord que la variation de l’énergie est énoncée au moyen d’une
équation de bilan:

(9.13)

où les IE,i représentent les intensités des flux d’énergie entrant dans le système ou en
sortant en compagnie des flux des grandeurs extensives propres aux phénomènes im-
pliqués. Un flux d’énergie est égal au produit du flux de la grandeur extensive X et de
la valeur du potentiel associé:

(9.14)

L’intensité d’un flux d’énergie transportée par le flux de quantité de mouvement Ip en
un point du système se déplaçant à la vitesse v sera donc égale à:

(9.15)

Notons que cette intensité du flux d’énergie dépend du choix du repère, la valeur de la
vitesse étant déterminée par ce choix. En revanche, en tant que produit scalaire, cette
grandeur n’est pas influencée par l’orientation des axes du repère.

La puissance du processus sera positive si le processus libère de l’énergie (c’est le cas
si le processus est spontané, c’est-à-dire lorsque la vitesse décroît), négative si le pro-
cessus lie (absorbe) de l’énergie (ce qui est le cas lorsque le processus est contraint et
entraîne une augmentation de la vitesse).

Peut-on affirmer que la puissance d’une force et la puissance du processus sont
identiques? La réponse doit être différenciée.

• C’est la cas si la quantité de mouvement est échangée avec le système de réfé-
rence (en général la Terre). À titre d’exemple, nous pouvons dire que la puis-
sance de la force de frottement qui sert à immobiliser un objet en mouvement
est égale à la puissance du processus de freinage.

• Ce n’est pas le cas si la quantité de mouvement est échangée entre deux systè-
mes en mouvement. Illustrons ce cas par un exemple.

 
�E IE i

i

=∑ ,

I IE X X X, = ⋅ϕ

   I I I IE x px y py z pz,p pI= = + +vi v v v

Lorsque le flux de quantité de mouvement entre dans ou émerge d’un
corps, on le représente par une force. Dans ce cas, on remplace les com-
posantes du flux de quantité de mouvement par les composantes de la for-
ce, et la relation (9.15) devient:

(9.16)

notion que l’on appelle la puissance de la force F.

La puissance du processus lié au flux de quantité de mouvement entre deux
niveaux de la vitesse v, toujours associé à un transbordement d’énergie,
est définie sans ambiguïté par:

(9.17)

   P( )F F= = + +vi v v vx x y y z zF F F

  Pproc = − ⋅∆v I p
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EXEMPLE 9.1. Puissance des forces agissant lors d’une collision.

Un glisseur sur rail à coussin d’air entre en collision avec un second glisseur qui se déplace en
sens opposé (fig. 9.6). Au moment de la collision, le premier se déplace dans le sens positif avec
une vitesse de module égal à 5 m s-1, le second en sens opposé à une vitesse de module égal à
3 m s-1. Le flux de quantité de mouvement du glisseur rapide vers le glisseur lent a, à cet instant,
une intensité de 25 N. Quel est la puissance libérée dans la zone d’impact lors de cette collision?

SOLUTION: Désignons par F1,2 la force attribuée au flux de quantité de mouvement entrant
dans le second glisseur et par F2,1 celle qui correspond au flux émergeant du premier glisseur
(fig. 9.6). Ces deux forces sont une paire d’action-réaction au sens de la troisième loi de
NEWTON. Les puissances respectives de ces deux forces sont:

Les puissances sont négatives, car les vecteurs force et vitesse sont de sens opposé dans chaque
cas.

Au moyen du bilan d’énergie, on peut égaler la puissance de chacune des forces avec la varia-
tion de l’énergie cinétique de chacun des glisseurs (à l’instant considéré, l’énergie cinétique du
premier diminue au taux de 125 W = 125 J s-1, celle du second au taux de 75 W). Pour le premier
glisseur, l’énergie s’écoule dans le même sens que la quantité de mouvement vers la zone d’im-
pact, alors que pour le second glisseur, elle s’écoule vers la zone d’impact dans le sens opposé
à celui de la quantité de mouvement. Les flux d’énergie associés (puissances des deux forces
considérées) et les taux de variation de l’énergie cinétique correspondants sont, dans cet exem-
ple, totalement différents de la puissance du processus libérée à cet instant dans la zone d’im-
pact, à savoir

Le diagramme de processus de la figure 9.7 met en évidence les flux d’énergie et la puissance
du processus. L’énergie libérée pourrait, dans le cas d’un choc parfaitement élastique, être tem-
porairement accumulée, par exemple dans un ressort ou dans un champ magnétique. Dans le cas
d’un choc parfaitement inélastique, une partie serait utilisée pour la déformation et le reste dis-
sipé par le production d’entropie.

B

9.2.2 Lien avec la notion de travail d’une force

Cette définition est tout à fait générale et permet de calculer le travail total, pour autant
que l’on connaisse l’évolution des deux facteurs vitesse et force au cours du temps. Le
travail, qui mesure l’énergie échangée lors du processus, est positif lorsque l’énergie
pénètre dans le système, négatif lorsqu’elle en émerge.

F1,2

v1

x

F2,1

v2

FIGURE 9.6 Instantané de la colli-
sion entre deux glisseurs. Les deux
forces forment une paire d’action-
réaction au sens de la troisième loi de
NEWTON.
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1
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= =

=

− ⋅ = −v

v

i 5 m s N W

22 1 2

1 25 75iF , = − − ⋅ = −3 m s N W

V = 0

Pproc

IE1

V1

V2

Ip

Zone
d’impact

Ip

IE2

FIGURE 9.7 Diagramme de proces-
sus de la collision des deux glisseurs.
L’énergie libérée par le processus
peut être accumulée dans un champ
lors d’une collision parfaitement
élastique ou, lors d’un choc totale-
ment inélastique, être en partie utili-
sée pour la déformation, le reste étant
dissipé par la production d’entropie.

  

Pp p= − ⋅ = − ⋅ = − − ⋅

= − −

( )∆ ∆v v v vx x x x x x xI F F. , ,2 1

3 m ss m s N W-1 -1− ⋅ =( )5 25 200

Il est usuel d’appeler travail W produit par la force F la variation de l’éner-
gie d’un objet engendrée par l’action de la force F. La variation de l’éner-
gie se calcule à partir de la puissance de la force, vu que la puissance
représente le flux d’énergie. Nous pouvons donc écrire:

(9.18)   W dt dt( ) ( )F F F= ⋅ = ⋅∫ ∫P vi



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 405

9.2  LIEN ENTRE FORCES, ÉNERGIE ET PUISSANCE DU PROCESSUS

Pour le cas particulier d’une force et d’une vitesse constantes, nous obtenons:

où ∆r représente le vecteur déplacement. Nous retrouvons donc la définition usuelle
du travail produit par une force constante F, à savoir qu’il correspond au produit sca-
laire du vecteur force et du vecteur déplacement.

9.2.3 Accumulation d’énergie dans les éléments capacitifs 
et inductifs

Rappelons que la masse représente la capacité d’un objet à accumuler de la quantité
de mouvement et que l’énergie accumulée par un objet en mouvement est son énergie
cinétique:

Au chapitre 4, nous avons découvert qu’un élément inductif était susceptible d’accu-
muler de l’énergie et nous avions déduit que cette énergie valait:

Pour un ressort, l’inductance est égale à l’inverse de la constante de rigidité, et le flux
de quantité de mouvement est identifiable à la force de rappel F = –k·x. L’introduction
de ces égalités dans la relation permet de montrer qu’un ressort comprimé ou étendu
de x par rapport à sa position d’équilibre accumule une énergie égale à:

1. Que représente la puissance de la force F?

2. Que représente la puissance du processus?

3. Qu’entend-on par le «travail d’une force»?

4. Quelles sont les possibilités d’accumulation d’énergie dans des systè-
mes soumis à des processus mécaniques?

5. Qu’entend-on par énergie potentielle?

1. La puissance associée à l’action d’une force F correspond au flux
d’énergie engendré par son action.

2. Alors que la puissance associée à l’action d’une force dépend du choix
du repère, la puissance du processus n’en dépend pas: elle est positive
si le processus est spontanée et libère de l’énergie, négative si le pro-
cessus est contraint et lie de l’énergie.

3. Ce qu’il est usuel d’appeler le travail d’une force correspond à la variation de l’énergie d’un
système engendrée par l’action de cette force.

  
W dt dtF F F F r( ) = ⋅ = ⋅ =∫ ∫v vi i i∆

 
E E m

p

mC = = =cin

1

2 2
2

2

v

E L IL X X= ⋅1

2
2

 
E L I

k
kx kxL p p= = ( ) =1

2

1

2

1 1

2
2 2 2� �

Q

R



406 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 9   EXEMPLES DE LOIS CONSTITUTIVES MÉCANIQUES

4. L’énergie peut s’accumuler sous forme capacitive, il s’agit alors de l’énergie cinétique pro-
portionnelle à la masse et au carré de la vitesse, et sous forme inductive, par exemple dans
un ressort tendu ou comprimé, l’énergie qui est proportionnelle au carré de l’élongation et à
la caractéristique élastique.

5. Ce qu’il est usuel d’appeler l’énergie potentielle est celle qui est associée à l’interaction
d’un système avec un champ, donc sous forme de rayonnement. Cette énergie n’est pas
accumulée dans l’objet qui est en interaction avec le champ, mais dans le champ. Au sens
large du terme, l’énergie potentielle est l’énergie accumulée dans un système, par exemple
l’énergie accumulée dans un ressort comprimé ou étendu. Cette énergie est aussi accumulée
dans un champ, par exemple le champ électrique de l’interaction entre les atomes du
ressort.

9.3 GRANDEURS CINÉMATIQUES

La cinématique est la partie de la mécanique qui traite de la description géométrique
du mouvement, sans se préoccuper des causes de ce mouvement. La cinématique crée
le lien entre l’espace et le temps. La dynamique relie les causes et les effets.

9.3.1 Système de référence et trajectoire

Imaginons une tasse de café posée sur une tablette dans un compartiment d’un train.
La tasse est-elle en mouvement ou immobile? Du point de vue du voyageur qui va boi-
re ce café, la tasse est immobile. En revanche, pour une personne qui regarde passer le
train sur un quai de gare, la tasse de café est en mouvement.

On doit conclure de cette observation que les notions physiques de mouvement et d’im-
mobilité sont des notions relatives. Elles n’ont de sens que si l’on définit précisément
par rapport à quel système de référence, ou référentiel, on veut décrire le mouvement.

On appelle trajectoire l’ensemble des points de l’espace atteints successivement par
un objet en mouvement ou mobile que nous désignerons par M (fig. 9.8). Il existe deux
manières de décrire géométriquement le mouvement d’un mobile.

Si la trajectoire est connue, on fixe sur la trajectoire une origine O et un sens arbitraire.
Il est usuel de désigner par s (spatium) la longueur d’arc de courbe comptée à partir de
l’origine O (fig. 9.9). Cette longueur est appelée abscisse curviligne ou élongation du
mobile. Le mouvement est alors décrit par une équation horaire (ou brièvement horai-
re) qui donne l’élongation du mobile en fonction du temps:

(9.19)

Lorsque la trajectoire n’est pas connue, ce qui est majoritairement le cas (on cherche
à déterminer la trajectoire à partir des causes du mouvement), on fixe la position du
mobile dans un repère, auquel on associe un système de coordonnées, à partir d’une
origine arbitraire O au moyen d’un vecteur position r qui varie en fonction du temps
(fig. 9.10). L’équation horaire prend la forme:

(9.20)

Si, par exemple, on choisit un repère orthonormé, l’horaire sera:

FIGURE 9.8 L’ensemble des points
atteints successivement par un objet
en mouvement, ou mobile M, est sa
trajectoire.

Trajectoire

M

Mobile

FIGURE 9.9 Repérage au moyen de
l’abscisse curviligne s.

s

O

M

s s t= ( )

FIGURE 9.10 Repérage au moyen
d’un vecteur position r dans un repè-
re orthonormé Oxyz.
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O
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Notons que cette seconde méthode peut également être utilisée lorsque la trajectoire
est connue.

9.3.2 Vitesse et accélération

Lorsque le mobile se déplace sur sa trajectoire, le vecteur position varie à la fois en
grandeur et en direction. Si l’on considère deux positions successives, à deux instants
séparés par un intervalle ∆t, le vecteur qui relie ces deux positions est le vecteur dé-
placement ∆r égal à la différence des vecteurs positions respectifs (fig. 9.11):

(9.21)

Notons que le module (ou la norme) du vecteur déplacement n’est pas égal à la varia-
tion de l’abscisse curviligne:

Ces deux grandeurs ne sont égales que si la trajectoire est rectiligne.

Vecteur vitesse. Le vecteur v de la vitesse instantanée indique à la fois le taux de
variation du vecteur position et la direction dans laquelle a lieu cette variation. On
l’obtient en déterminant la limite vers laquelle tend le quotient du vecteur déplacement
∆r et de l’intervalle ∆t considéré lorsque cette intervalle tend vers zéro:

(9.22)

En examinant la figure 9.11, on se rend compte que lors du passage à la limite, la di-
rection du vecteur déplacement ∆r se rapproche de celle de la tangente à la trajectoire.
Nous en concluons que le vecteur de la vitesse instantanée est tangent à la trajectoire
(fig. 9.12).

Vitesse scalaire. Dans la vie quotidienne, lorsque l’on parle de vitesse, on pense gé-
néralement au quotient de la distance parcourue et de la durée qui a été nécessaire pour
parcourir cette distance, qui n’est rien d’autre que la différence des abscisses curvili-
gnes finale et initiale. Il s’agit alors d’une «vitesse» moyenne. Pour obtenir la valeur
instantanée de cette vitesse particulière, que l’on appelle vitesse scalaire, il suffit d’ef-
fectuer le passage à la limite, comme pour le cas du vecteur vitesse. La vitesse scalaire,
dont nous allons montrer qu’elle est le module du vecteur vitesse, est égale à la dérivée
de l’abscisse curviligne par rapport au temps:

(9.23)

La figure 9.11 montre que, lorsque ∆t tend vers zéro, le module du vecteur déplace-
ment ∆r et l’accroissement de l’abscisse curviligne ∆s tendent à se rapprocher, ce qui
nous permet de conclure que:
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FIGURE 9.11 Vecteur déplacement
∆r et accroissement correspondant
de l’élongation ∆s.
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(9.24)

Sachant que le vecteur vitesse est tangent à la trajectoire, il est possible de donner une
signification géométrique au vecteur de module 1 qui apparaît dans l’équation (9.24).
Il s’agit d’un vecteur unitaire tangent à la trajectoire que nous désignons par utang:

Grâce à ce vecteur unitaire, nous pouvons écrire le vecteur vitesse en tant que produit
de la vitesse scalaire, qui n’est rien d’autre que le module du vecteur vitesse, et de ce
vecteur unitaire (fig. 9.13):

(9.25)

Vecteur accélération. Le vecteur vitesse peut varier de plusieurs manières: son mo-
dule peut varier, sa direction peut changer, le cas le plus courant étant la combinaison
de ces deux variations. Le taux de variation du vecteur vitesse, appelé vecteur accélé-
ration, est défini en tant que limite du taux de variation du vecteur vitesse lorsque l’in-
tervalle de temps ∆t tend vers zéro (fig. 9.14):

(9.26)

Il est usuel de décomposer le vecteur accélération en deux composantes, l’une tangen-
te et l’autre normale à la trajectoire. Ces deux composantes apparaissent naturellement
si nous appliquons la règle de dérivation du produit à l’expression (9.25) du vecteur
vitesse:

La variation ∆utang du vecteur unitaire doit être perpendiculaire à ce dernier, car si ce
n’était pas le cas, son module varierait. Cela signifie que le deuxième terme du vecteur
accélération est normal à la trajectoire, raison pour laquelle on l’appelle accélération
normale. Nous introduisons un second vecteur unitaire lié à cette accélération, le vec-
teur unorm qui, avec le vecteur utang détermine un plan appelé plan osculateur. Dans ce
plan, nous considérons ces deux vecteurs unitaires à deux instants successifs
(fig. 9.15). La variation du vecteur utang est proportionnelle à celle de l’angle ∆ϕ.
Comme il s’agit d’un vecteur unitaire, nous pouvons écrire:

D’autre part, nous voyons dans la figure 9.15 que ∆s = ρ·∆ϕ, où ρ est le rayon de cour-
bure du cercle osculateur (le cercle qui approxime la trajectoire sur le segment consi-
déré), ce qui entraîne:
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FIGURE 9.13 Expression du vecteur
vitesse en tant que produit de la vi-
tesse scalaire et du vecteur unitaire
utang.
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Après le passage à la limite, nous obtenons:

Le vecteur accélération est donc donné par:

(9.27)

Cette relation est indépendante du repère choisi et de la trajectoire envisagée; elle
révèle que, sur une trajectoire incurvée, un mobile est soumis à une accélération nor-
male dirigée vers l’intérieur de la concavité de la trajectoire.

9.3.3 Mouvement circulaire et coordonnées polaires

Lorsqu’un mobile se déplace sur une trajectoire circulaire, la manière la plus adéquate
pour décrire son mouvement est d’utiliser des coordonnées polaires r et ϕ (fig. 9.16).
Avant de considérer le cas particulier du mouvement circulaire, nous allons traiter le
cas général d’un mouvement plan décrit au moyen de coordonnées polaires.

Nous repérons la position du mobile au moyen d’un vecteur position r que nous
décomposons dans un repère orthonormé:

Nous introduisons deux vecteurs unitaires liés aux coordonnées polaires (fig. 9.17), à
savoir:

Nous pouvons exprimer les grandeurs cinématiques au moyen de ces deux vecteurs
unitaires. Le vecteur position est naturellement:

Le vecteur vitesse devient:
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FIGURE 9.16 Coordonnées polaires
r et ϕ et leur relation avec des coor-
données cartésiennes.
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(9.28)

alors que le vecteur accélération est donné par:

(9.29)

Trajectoire circulaire. Dans ce cas, r = R = const. D’autre part, on introduit un sym-
bole particulier pour le taux de variation de l’angle ϕ:

où ω est appelé vitesse angulaire. Si la vitesse angulaire n’est pas constante, il est
nécessaire d’introduire une accélération angulaire qu’il est usuel de désigner par α:

Vu que le rayon de la trajectoire est constant, la composante radiale de la vitesse est
nulle alors que sa composante tangentielle est égale à:

Cette vitesse n’est rien d’autre que la vitesse scalaire du mobile sur sa trajectoire cir-
culaire (fig. 9.18).

La composante radiale de l’accélération est:

(9.30)

Cette accélération est dirigée vers le centre de la trajectoire circulaire, raison pour
laquelle on l’appelle accélération centripète. Cette accélération correspond à l’accé-
lération normale de l’équation (9.27).

Au cas où la vitesse angulaire n’est pas constante (fig. 9.19), la composante tangen-
tielle de l’accélération vaut:
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FIGURE 9.18 Dans un mouvement
circulaire, le vecteur vitesse est tan-
gent à la trajectoire.
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FIGURE 9.19 Le vecteur accéléra-
tion a toujours une composante ra-
diale. Une composante tangentielle
n’apparaît que si la vitesse angulaire
n’est pas constante.
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(9.31)

Autant la vitesse angulaire ω que l’accélération angulaire α sont des vecteurs qui ont
été définis au chapitre 7 par les équations (7.14) et (7.16).

9.4 FORCES DE CONTACT

Lorsque deux systèmes sont en contact, ils peuvent échanger de la quantité de mouve-
ment par conduction. Les contraintes qui apparaissent permettent de déterminer le
sens des flux de quantité de mouvement et, par conséquent, le sens des forces qui se
manifestent.

Dans ce qui va suivre, nous étudierons le comportement dynamique d’objets étendus.
Comme nous limiterons notre étude à des situations où ils n’effectuent que des mou-
vements de translation, sans rotation, nous pourrons faire abstraction de leur extension
spatiale. Nous montrerons à la section 9.5 que le théorème du centre de masse permet
de traiter des objets uniquement en translation comme des points matériels.

9.4.1 Objet sur un plan horizontal

Au chapitre 8, nous avons établi que, si le sens positif va de haut en bas, le champ gra-
vitationnel transfère de la quantité de mouvement en mode radiatif au taux de source
ΣΣΣΣp et que l’objet évacue cette quantité de mouvement vers la Terre par conduction au
moyen d’un flux positif Ip (fig. 9.20a), car la conduction se fait à travers un milieu sou-
mis à une contrainte de compression.

Au taux de source du champ de pesanteur correspond une force que nous symbolisons
par un vecteur qui est appliqué au centre de masse de l’objet. Au flux de quantité de
mouvement vers la Terre correspond une force dirigée vers le haut qu’il est usuel d’ap-
peler force de soutien FS. Les deux flux (les deux forces) se compensent, s’équili-
brent. Nous pouvons donc énoncer un principe:

a a R
d

dt
R

d

dt
Rtang = = = =ϕ

ϕ ω α
2

2

FIGURE 9.20 Objet sur un plan
horizontal: (a) la quantité de mou-
vement apportée par le champ gravita-
tionnel (source à l’intérieur du
corps) s’écoule à travers sa base.
Les courants s’écoulent à travers le
matériel (conduction) et le corps
est soumis à une contrainte en
compression; (b) représentation de
flux et de taux de source de quantité
de mouvement au moyen de deux
forces.

O

+ z
mg

FS

Courants de quantité
de mouvement Ip

+ z

a. b.

Un objet est en équilibre lorsque la somme vectorielle de tous les flux et de
tous les taux de source de quantité de mouvement (de toutes les forces qui
agissent sur l’objet) est nulle:

(9.32) �p g Fp p= + = + =ΣΣ I m S 0
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Usuellement, on ne travaille pas directement avec les vecteurs, mais avec leurs com-
posantes que l’on obtient en projetant les vecteurs sur les axes d’un repère. Ici, seul un
axe vertical est nécessaire ; si nous l’orientons de haut en bas et l’appelons Oz
(fig. 9.20b), l’équation vectorielle ci-dessus devient une équation sur les composantes:

(9.33)

On en conclut que la quantité de mouvement verticale est constante. Comme elle était
nulle à l’instant t = 0 s, elle le reste.

9.4.2 Objet sur un plan incliné

La situation est la même que dans l’exemple précédent, à la différence près qu’une
partie de la quantité de mouvement qui s’écoule de l’objet vers la Terre le fait latéra-
lement, ce qui entraîne l’apparition de contraintes de cisaillement (fig. 9.21). C’est la
raison pour laquelle il est assez usuel de décomposer la force de soutien FS en deux
composantes (ce ne sont pas des projections), l’une perpendiculaire au plan incliné ap-
pelée force normale Fn , l’autre parallèle au plan incliné, Fpar (fig. 9.23).

La signification de cette composante parallèle dépend de la situation envisagée. Pour
la découvrir, on peut effectuer une expérience qui consiste à poser un objet sur un sup-
port (par exemple une planche), dont on augmente progressivement l’inclinaison par
rapport à l’horizontale (fig. 9.22). On observe que l’objet reste immobile tant que l’in-
clinaison est faible et qu’il se met à glisser si l’angle d’inclinaison devient supérieur à
une certaine limite.

Interprétation. Si l’objet reste immobile sur le plan incliné, la composante parallèle au
plan incliné doit être interprétée comme une force d’adhérence Fadh (fig. 9.24). L’ex-
périence permet de constater que cette force s’adapte à la situation: lorsque le plan est
horizontal, elle est nulle; si l’on incline le plan de plus en plus, elle croît progressive-
ment jusqu’à une valeur maximale de l’angle au-delà de laquelle l’objet se met à glis-
ser. Nous pouvons donc énoncer que le module de la force d’adhérence évolue entre
les deux limites suivantes:

(9.34)

La dernière égalité exprime le fait que la force d’adhérence maximale est proportion-
nelle à la force normale (si on presse sur l’objet, on pourra augmenter l’angle à partir

 �p mg Fz = − =S 0

FIGURE 9.21 Plan de situation
d’un objet posé sur un plan incliné.
La quantité de mouvement appor-
tée par le champ de pesanteur doit
s’écouler latéralement à travers la
base, ce qui provoque l’apparition
de contraintes de cisaillement.

+ z

FIGURE 9.22 Expérience destinée
à révéler la différence entre l’adhé-
rence et le frottement de glisse-
ment. L’objet se met à glisser
lorsque l’angle d’inclinaison de-
vient trop important.

α

Décomposition de FS

FS

Fn

Fpar

mg mg

FIGURE 9.23 Décomposition de la force de soutien exercée sur l’objet par le plan incliné en
une force normale et une force parallèle au plan incliné.

FIGURE 9.24 Dans le cas statique,
la force de soutien est décomposée
en une composante normale et une
composante tangentielle qui est la
force d’adhérence.

Fn

Fadh

mg

0 ≤ ≤ =F F Fadh adh, max adh nµ
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duquel il glisse). Le coefficient d’adhérence µadh tient compte de la texture des surfa-
ces en contact. On trouve une liste de valeurs dans les tables, où il est appelé coefficient
de frottement statique et est généralement désigné par µ0.

Lorsque l’objet glisse, la composante parallèle au plan doit être interprétée comme une
force de frottement sec Ffr (fig. 9.25).

Pour découvrir les propriétés de cette interaction, nous mesurons, au moyen d’un dy-
namomètre la force nécessaire pour entretenir le mouvement à vitesse constante d’un
objet qui glisse sur un plan horizontal en variant la grandeur des surfaces en contact,
la force normale, la vitesse et la nature des surfaces en contact. Cette expérience per-
met de montrer que, en première approximation, la force de frottement sec ne dépend
que de la pression que l’objet exerce sur son support, donc de la force normale, et de
la texture des matériaux en contact; elle ne dépend ni de l’aire des surfaces en contact,
ni de la vitesse relative de l’objet et du support.

(9.35)

Le coefficient µ est le coefficient de frottement sec (ou coefficient de frottement dyna-
mique). Les premières recherches sur les propriétés des frottements (tribologie), dont
le modèle ci-dessus est une version simplifiée, furent réalisées vers 1780 par Charles
Augustin COULOMB, que nous retrouverons dans les processus liés à l’interaction en-
tre charges électriques.

EXEMPLE 9.2. Mouvement sur un plan horizontal.

Une plaque de masse égale à 50 kg et de 1.0 m de longueur est posée, centrée, sur un bloc im-
mobile de masse double et de même longueur. On pousse la plaque avec une force de module
égal à 350 N, dirigée vers le bas sous un angle de 15° par rapport à l’horizontale (fig. 9.26). Le
coefficient de frottement de glissement entre la plaque et le bloc est de 0.50, entre le bloc et le
sol de 0.16. (a) À quelle distance du point de départ la plaque supérieure bascule-t-elle du bloc?
(b) Déterminer comment l’énergie se répartit dans le système. (c) Représenter les flux de quan-
tité de mouvement et d’énergie au moyen de diagrammes de processus.

F Ffr n= ⋅µ

FIGURE 9.25 Dans le cas dynami-
que, la force parallèle au plan incli-
né est la force de frottement de
glissement. Elle ne suffit plus à re-
tenir l’objet.

mg

Fn

Ffr

Lorsqu’un objet est posé sur un plan incliné, la force de soutien FS est dé-
composée en deux forces:

une force normale Fn, exercée par le plan sur lequel repose l’objet, per-
pendiculaire à la surface de contact (correspond à la composante perpen-
diculaire du flux de quantité de mouvement);

une force parallèle au plan incliné qui est:

Lorsque le plan est horizontal, la décomposition est la même.

dans le cas dynamique:

la force de frottement dynami-
que ou  frottement de glisse-
ment Ffr qui, en première
approximation, peut être ex-
primée par:

(9.36)

dans le cas statique:

la force d’adhérence Fadh, ou
force de frottement statique,
qui est une force variable:

(9.37)F Ffr n= ⋅µ 0 ≤ ≤ =F F Fadh adh, max adh nµ

FIGURE 9.26 Représentation du
système de l’exemple 9.2.

F
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SOLUTION: (a) Nous isolons chacun des corps du système et introduisons les forces qui agis-
sent sur chacun de ces éléments (fig. 9.27). La plaque supérieure est l’élément numéro 1, le bloc
l’élément numéro 2.

L’équation de bilan de la quantité de mouvement de la plaque supérieure est décomposée sui-
vant les directions horizontale et verticale:

(E.9.1)

(E.9.2)

Les forces agissant dans la direction verticale s’équilibrent, l’accélération verticale est nulle.

Pour le bloc, les équations de bilan de la quantité de mouvement sont:

(E.9.3)

(E.9.4)

L’interaction entre les deux éléments du système est exprimée par deux paires de forces qui sont
des couples d’action et réaction au sens de la troisième loi de NEWTON; leurs modules sont
égaux:

(E.9.5)

(E.9.6)

Finalement, les forces de frottement s’expriment au moyen de l’équation (9.36):

(E.9.7)

(E.9.8)

Exprimons encore la relation entre les masses:

(E.9.9)

Nous manipulons algébriquement ces équations afin d’obtenir les accélérations respectives de
chacun des deux corps. À partir de l’équation (E.9.2):

(E.9.10)

que nous substituons dans l’équation (E.9.7):

(E.9.11)

en tenant compte des relations (E.9.1) et (E.9.11), nous obtenons pour l’accélération de la pla-
que supérieure:

F Fn1α

Ffr.1 m1g

m2g

Fn2

Ffr.2

Fn1
*

Ffr.1
*

x

y

O

FIGURE 9.27 Séparation du systè-
me en ses composants et introduc-
tion des forces agissant sur chacun
de ceux-ci.

 
�p F F F m ax x x1 1 1 1= = − =∑ cos( )α fr.1

 �p F F F m g m ay y n y1 1 1 1 1 0= = − − = =∑ 1 sin( )α

 �p F F F m ax x x= = − =∑ 2 2 2fr.1 fr.2

*

 �p F F F m g m ay y n y2 2 2 2 2 0= = − − = =∑ 2 n1

*

F Ffr.1 fr.1

* =

F Fnn1 1

* =

F Fnfr.1 1= µ1

F Fnfr.2 = µ2 2

m m2 12=

F F m gn1 = +sin( )α 1

F F m gfr.1 = +( )µ1 1sin( )α

a
m

F F m g
x1

1

1 1

1
0 95= − +( )[ ] =cos( ) sin( ) .α αµ m s-2



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 415

9.4  FORCES DE CONTACT

De même, en combinant les relations (E.9.4), (E.9.5), (E.9.6), (E.9.10) ainsi que (E.9.9), nous
obtenons:

Ainsi, en vertu de l’équation (E.9.8):

ce qui donne finalement:

La plaque supérieure basculera lorsque la différence des distances parcourues ∆x12 sera égale à
0.5 m. Or:

L’intervalle de temps jusqu’au basculement vaut donc:

Durant cet intervalle, le bloc inférieur parcourt:

On peut vérifier que le bloc supérieur parcourt une distance de 0.87 m par rapport au sol.

(b) En vertu de l’équation (9.16), l’énergie injectée dans le système correspond à la puissance
de la force appliquée. Cette puissance est variable, vu qu’elle est proportionnelle à la vitesse:

Une partie de ce flux d’énergie sert à injecter la quantité de mouvement dans la plaque supé-
rieure. En vertu de l’équation (9.17), la puissance du processus de glissement de la plaque est:

L’énergie et la quantité de mouvement sont accumulées dans la plaque supérieure. Le flux
d’énergie restant IE in, IF 1,2 pénètre dans l’interface entre les deux éléments; il est égal à 276.20
W s–1 t, . La puissance du processus de frottement qui se déroule dans cette interface vaut:

L’énergie libérée par ce processus est dissipée et émerge du système avec l’entropie produite.
À la sortie de l’interface, le flux d’énergie entrant dans le bloc est réduit à 117.99 W s–1 t. Une
partie du flux de quantité de mouvement et d’énergie sert à faire glisser le bloc. La puissance de
ce processus est:

F F m g m g F m gn2 = + + = +sin( ) sin( )α α1 2 13
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a
m

F m g F m g

m

x 2

1

1 1 2 1

1

1

2
3

1

2

= + − +

=

( ) ( )[ ]µ µsin( ) sin( )α α

µµ µ µ µ1 2 1 2 13 0 41− + −( ) ( )[ ] =F m gsin( ) .α m s-2

∆ ∆ ∆ ∆x x x a a tx x12 1 2
1
2 1 2

2= − = −( )

∆
∆

t
x

a ax x

=
−

=
2

1 3612

1 2

. s

∆ ∆x a tx2
1
2 2

2 0 37= = . m

    I F a t FE x, cos cos .in 1 = = = = ⋅ ⋅ =( ) ( ) ( )P F Fvi v1 1 321 38α α W s-1 ⋅ t

  

Pgliss net 1 fr.11 1 0= − = − − −

= −

( ) ( )∆v vI p , cos( )F F

ax

α

11 1 1 45 18F F m g t tcos( ) sin( ) .α µ− + = − ⋅( )[ ]α W s-1

  

Pfr 1,2 net 1 fr.1= − = − −

= − − ⋅

( )
( )
∆v v vI p1 2 2

2 1

, F

a a tx x ⋅⋅ = − − + =( ) ( )F a a F m g tx xfr.1

-1W s2 1 1 1 158 21µ sin( ) .α ⋅⋅ t



416 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 9   EXEMPLES DE LOIS CONSTITUTIVES MÉCANIQUES

Le flux d’énergie IE in, IF 2, sol à travers l’interface entre le bloc inférieur et le sol est réduit à
101.50 W s–1 t, ce qui correspond à la puissance du processus de frottement:

À nouveau, l’énergie libérée est dissipée avec l’entropie produite.

On obtient les quantités d’énergie impliquées durant les processus par intégration:

On vérifie que la somme des énergies dissipées et des variations d’énergie cinétique est égale à
l’énergie injectée dans le système par la force appliquée.

(c) Les diagrammes de processus de la figure 9.28 montrent les flux de quantité de mouvement
et d’énergie, ainsi que les puissances relatives aux processus qui se déroulent dans la plaque su-
périeure et dans l’interface entre la plaque et le bloc inférieur.

Les diagrammes de processus pour le bloc inférieur et l’interface entre celui-ci et le sol sont ana-
logues.

B

EXEMPLE 9.3. Glissement sur un plan incliné à vitesse constante.

Pour quel angle d’inclinaison α un objet sur un plan incliné glisse-t-il vers le bas à vitesse
constante?

SOLUTION: Nous isolons l’objet et projetons les forces auxquelles il est soumis sur un repère
Oxy choisi de telle manière que l’un des axes (par exemple Ox) soit parallèle au plan incliné et
pointe vers le bas, afin que le mouvement ait lieu dans le sens positif (fig. 9.29). Pour chacune
des composantes, nous établissons l’équation de bilan de la quantité de mouvement:

(E.9.12)
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Pdiss 1,2

Pfr 1,2
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Π S

V1 V2

E
p1 IE, in 2

Ip, in 2

Couche
dissipativePlaque supérieure

Ip, in 1,2

FIGURE 9.28 Diagrammes de pro-
cessus relatifs aux flux de quantité
de mouvement et d’énergie pour la
plaque supérieure et l’interface en-
tre la plaque et le bloc. Les flèches
représentant les flux d’énergie et
les puissances ne sont pas à
l’échelle.

FIGURE 9.29 Traitement analyti-
que du problème par projection des
forces sur les axes d’un repère Oxy.
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(E.9.13)

Dans l’équation (E.9.12), la variation de la quantité de mouvement selon Ox est nulle, vu que
nous exigeons que la vitesse de glissement soit constante, et dans l’équation (E.9.13), la com-
posante de la quantité de mouvement perpendiculaire au plan ne varie pas. Le système ci-dessus
contient trois inconnues.L’équation manquante est la loi constitutive du frottement sec:

(E.9.14)

Nous calculons Ffr à partir de l’équation (E.9.12) et Fn à partir de l’équation (E.9.13) et substi-
tuons ces valeurs dans l’équation (E.9.14) pour obtenir:

d’où:

B

EXEMPLE 9.4. Vitesse maximale dans un virage.

Déterminer la vitesse maximale de franchissement d’un virage en arc de cercle de rayon R, sur
une route inclinée vers l’intérieur d’un angleα par rapport à l’horizontale, en fonction du coef-
ficient d’adhérence µadh.

SOLUTION: Le virage se déroule dans un plan horizontal, raison pour laquelle nous optons
pour un repère Oxy dont l’axe Ox est horizontal (fig. 9.30). En vertu de l’équation (9.30), les
composantes horizontales des forces en présence doivent produire l’accélération centripète qui
maintient le véhicule sur sa trajectoire. La vitesse maximale est atteinte lorsque la force d’ad-
hérence prend sa valeur maximale. Les projections des forces sur les axes donnent:

La résolution de ce système aboutit à:

B

9.4.3 Objet attaché à un ressort horizontal

Comme nous l’avons vu à la section 9.1.3, la présence d’un ressort dans un système
introduit un élément inductif qui est à l’origine d’un comportement oscillatoire. Illus-
trons ce cas par l’exemple d’un objet qui effectue des oscillations horizontales, accro-
ché à l’extrémité d’un ressort (lorsqu’il est suspendu, la pesanteur ne fait que déplacer
la position d’équilibre autour de laquelle oscille l’objet).

 
�p F F mgy y= = = −∑0 n cos( )α

F Ffr n= ⋅µ

F mg F mgfr n= = ⋅ =sin( ) cos( )α αµ µ

tan α µ( ) =

FIGURE 9.30 Forces agissant sur
un véhicule dans un virage incliné
vers l’intérieur.
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EXEMPLE 9.5. Comportement d’un objet attaché à un ressort sur un plan horizontal.

Analyser le comportement d’un objet de masse m, posé sur une surface horizontale et accroché
à l’extrémité d’un ressort: (a) en admettant un frottement nul; (b) en admettant un frottement
proportionnel à la vitesse; (c) en admettant un frottement sec.

SOLUTION: Nous commençons par énoncer les parties du modèle communes à chacun des
trois cas. Le modèle repose sur l’équation de bilan (fig. 9.31), énoncée pour la composante
horizontale:

(E.9.15)

complétée par la loi de capacité:

Le ressort est l’élément inductif du système, et son action est donnée par la loi de HOOKE énon-
cée à la section 9.1.3:

La loi de résistance varie selon le cas envisagé.

(a) Comme il n’y a pas de frottement, le second terme du membre de droite de l’équation de
bilan (E.9.15) disparaît. Nous exprimons le modèle en termes d’élongation instantanée, vu que
c’est la grandeur la plus facilement observable:

ou, après division par m et rassemblement des termes dans le membre de gauche:

À la section 4.8.2, nous avons montré que cette équation différentielle est celle de l’oscillation
libre dont la solution est une fonction sinusoïdale:

où est l’amplitude de l’oscillation libre dont la fréquence angulaire est donnée par:

L’amplitude et la constante de phase sont déterminées par les conditions initiales.

(b) Si le frottement est proportionnel à la vitesse, nous pouvons l’exprimer sous la forme:

L’équation différentielle devient:

Sa solution est une oscillation amortie représentée par l’équation:
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FIGURE 9.31 Un objet attaché à un
ressort et posé sur un plan horizontal
est soumis à deux forces: à celle du
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Comme nous l’avons montré à la section 4.8.3, la fréquence angulaire ωd de l’oscillation amor-
tie (damped) et le coefficient d’amortissement λ sont respectivement donnés par:

(c) La force de frottement sec, introduite à la section 9.4.2, est constante et son module est égal
à µmg. Mais le sens de cette force est toujours opposé à celui de la vitesse; il s’inverse donc à
la fin de chaque demi-oscillation, ce que nous pouvons exprimer par:

L’équation différentielle à résoudre devient:

Cette équation doit être résolue par tronçons en veillant à la continuité de l’élongation entre cha-
que tronçon. Plutôt que de le faire analytiquement, nous confions cette tâche à un logiciel de
modélisation des systèmes dynamiques.

La figure 9.32 montre l’évolution d’un système constitué d’une masse de 0.2 kg, accrochée à
un ressort dont la constante de rigidité est de 50 N m–1, pour un coefficient de frottement sec de
0.1. La décroissance de l’amplitude n’est plus exponentielle, mais linéaire, et l’objet s’immobi-
lise au bout d’un certain temps. Pour déterminer cet instant, nous nous basons sur le fait que
l’objet ne peut être mis en mouvement à partir de l’immobilité que si la force de rappel du res-
sort est supérieure à la force de frottement, c’est-à-dire si

Or, à la fin de chaque demi-période, la vitesse s’annule. Si à cet instant, l’élongation est infé-
rieure à la valeur limite donnée par la relation ci-dessus, l’objet s’immobilise. L’arrêt se produi-
ra donc toujours à la fin d’une demi-période, ce que confirme le graphique de la figure 9.32
obtenu par simulation: le point d’arrêt est situé à l’intersection d’une des droites enveloppantes
et de la courbe de l’élongation en fonction du temps.

B
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FIGURE 9.32 Oscillations avec frot-
tement sec: l’amplitude décroît li-
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kx mg> µ



420 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 9   EXEMPLES DE LOIS CONSTITUTIVES MÉCANIQUES

1. Quand peut-on traiter le mouvement d’objets étendus comme s’ils
étaient des points matériels?

2. Quelle est la marche à suivre pour analyser le mouvement de
translation?

3. Qu’est-ce qui différencie ce que l’on appelle le frottement statique de
celui que l’on appelle frottement dynamique?

4. Pourquoi doit-on éviter d’utiliser la notion de «force centripète»?

1. Lorsqu’ils effectuent uniquement des mouvements de translation, sans entrer en rotation.
Lorsqu’ils entrent en rotation, la répartition de la masse influence le mouvement.

2. Il faut tout d’abord isoler chacun des composants du système étudié, puis introduire les for-
ces qui s’exercent sur chacun de ces éléments. Les contraintes auxquelles sont soumis les
corps peuvent permettre de déterminer la direction et le sens des forces qui entrent en jeu.

3. Le frottement dynamique est, en première approximation, une force de module constant,
indépendante de la vitesse, due à l’interaction entre les surfaces de deux corps en contact
qui se déplacent l’un par rapport à l’autre. Ce que l’on appelle le frottement statique, ou
mieux, la force d’adhérence, est aussi due à l’interaction entre les surfaces des deux corps
en contact, mais cette force varie de telle manière que les deux corps ne se déplacent pas
l’un par rapport à l’autre. Cette force est variable et limitée vers le haut. Lorsque la limite
est atteinte, on passe au régime de frottement dynamique.

4. Pour qu’un corps puisse effectuer un mouvement périodique autour d’un centre, il est
nécessaire qu’il soit soumis à une force qui est dirigée vers ce centre. Cette force peut avoir
de multiples origines: il peut s’agir de la force de traction exercée par une ficelle à laquelle
est attaché un objet que l’on fait tournoyer, l’adhérence des pneus sur la route, la gravita-
tion, l’interaction électrique dans les atomes, etc. Ces forces engendrent une accélération
dirigée vers l’intérieur de la trajectoire, que l’on qualifie de centripète. Mais il est abusif de
donner le même qualificatif à la force qui est à son origine.

9.5 MOUVEMENT DU SOLIDE RIGIDE

Dans la section 9.4, nous avons admis que les objets envisagés n’effectuaient que des
mouvements de translation sans rotation, ce qui nous a permis de les traiter comme des
points matériels, sans tenir compte de leur extension. En revanche, lorsque les objets
peuvent effectuer un mouvement de rotation, il est nécessaire d’en tenir compte.

La quantité de mouvement d’un corps peut être exprimée au moyen de sa masse et de
sa vitesse. Mais comment définir la vitesse d’un corps étendu? Lors d’un mouvement
quelconque, chaque point d’un corps a une vitesse différente. Imaginons une sphère
roulant sur une surface plane (fig. 9.33), ou un ressort que l’on étend, et le problème
devient manifeste. C’est pourquoi nous devons d’abord trouver un point qui représente
le mouvement de translation d’un corps étendu

9.5.1 Centre de masse et ses caractéristiques

À la section 7.7.2, nous avons introduit le centre de masse d’un système discret en tant
que moyenne pondérée des vecteurs position de ses composants, les masses de ceux-
ci jouant le rôle des coefficients de pondération:

Q

FIGURE 9.33 Différents points
d’une sphère qui roule ont des vites-
ses différentes. Mais il existe un
point particulier du corps que nous
pouvons prendre pour représenter le
mouvement de translation.
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(9.38)

ou, pour un solide rigide:

(9.39)

De manière analogue, nous définissons la vitesse représentative d’un corps en tant que
moyenne pondérée des vitesses de ses parties. Cette vitesse correspond à la vitesse du
centre de masse, comme le montre le développement pour un système discret:

Lors de la dérivation du produit, la dérivée temporelle des masses est nulle, vu que
nous nous plaçons dans un contexte non relativiste. Pour un solide rigide, nous avons:

Grâce à l’introduction du centre de masse et de sa vitesse, la quantité de mouvement
d’un solide rigide peut être déterminée de la même manière que pour un point maté-
riel. Il faut y ajouter le moment cinétique pour tenir compte de la quantité de mouve-
ment due au mouvement de rotation. Rappelons que vitesse et quantité de mouvement
sont des grandeurs relatives dont la valeur dépend du référentiel dans lequel on les
mesure.

De manière analogue, on obtient pour l’accélération du centre de masse d’un système
discret:

ou, pour un solide rigide:

9.5.2 Théorème du centre de masse

Considérons un système constitué de points matériels qui sont soumis à des forces
extérieures. Pour chacun des composants de ce système, nous pouvons écrire:

La somme des forces extérieurs agissant sur le système est:
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EXEMPLE 9.6. Centre de masse du système Terre-Lune.

Où se trouve le centre de masse du système composé de la Terre et de la Lune? La distance
moyenne entre la Terre et la Lune est de 384 000 km, les masses des deux corps sont respecti-
vement de 6.0·1024 kg et 7.4·1022 kg. Admettez un observateur pour lequel le centre de masse
du système se déplace à une vitesse de 30 km s-1. Que vaut la quantité de mouvement du
système?

SOLUTION: Le centre de masse du système se situe sur la ligne reliant les centres de la Terre
et de la Lune. Introduisons un système de coordonnées (axes des x) coïncidant avec cette ligne
et ayant son origine au centre de la Terre. Nous avons donc x1 = 0 m et x2 = 3.84·108 m. À partir
de l’équation (9.38), nous trouvons que

Vu que le rayon de la Terre est d’approximativement 6400 km, le centre de masse du système
Terre-Lune est situé à l’intérieur de la Terre.

Pour cet observateur, la quantité de mouvement du système Terre-Lune est égale au produit de
sa masse totale et de la vitesse de son centre de masse (mesurée par rapport à cet observateur).
On obtient 182.2·1027 N·s.

B

9.5.3 Lien entre force et flux de moment cinétique 

Comme nous l’avons déjà mentionné à la section 7.3.2, les transferts de moment ciné-
tique sont souvent liés à l’action d’une force. Pour établir le lien entre une force et le
flux de moment cinétique, nous envisageons un disque susceptible de tourner autour
d’un axe fixe vertical et appliquons une force dont la ligne d’action ne passe pas par
l’axe. Comme l’objet ne peut pas se déplacer, la quantité de mouvement doit être éva-
cuée, et elle ne peut l’être que par l’axe de rotation qui assure le lien avec la terre. Ce
flux de quantité de mouvement fait apparaître des contraintes dans l’objet qui, ainsi
que nous l’avons appris à la section 8.4.1, sont des contraintes de cisaillement, vu que
la quantité de mouvement doit s’écouler latéralement. Ce sont ces contraintes qui sont
à l’origine de flux de moment cinétique. L’étude détaillée de ce processus révèle que
l’intensité du flux de moment cinétique est égale au produit du flux de quantité de
mouvement, donc de la force, et de la distance parcourue par ce flux.

Le produit du module de la force et de la distance entre l’axe de rotation et la ligne
d’action de la force, le bras de levier, est appelé module du moment M de la force F.
Il correspond au flux de moment cinétique engendré par l’action de la force (fig. 9.34):

(9.41)

Le centre de masse d’un système (ou d’un solide rigide) se déplace comme
s’il était un point matériel de masse égale à la masse totale M du système
(ou du solide rigide) soumis à la somme des forces extérieures.
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Comme la force se mesure en newton (N), les relations (9.41) et (9.42) impliquent que
le flux de moment cinétique se mesure en N m et que le moment cinétique lui-même
se mesure en N m s. Nous avons donc la correspondance: [IL] = Eu s-1 = N m et [L] =
Eu = N m s. L’introduction d’une unité particulière pour le moment cinétique, gran-
deur primitive servant à la description des processus rotatoires, s’impose d’autant plus
que du point de vue dimensionnel, elle est la même que celle de la puissance, et que
celle de ses flux correspond à celle de l’énergie.

Notons que le calcul de M à partir de sa définition n’est possible que si F et r sont
connus; or, ces informations sont rarement disponibles dans un cas concret. Considé-
rons par exemple un embrayage à friction; il est impossible de déterminer une force F
et un vecteur r uniques, ces deux grandeurs variant de manière continue sur toute la
surface de contact. De ce fait, il n’est pas possible de calculer le moment (le flux de
moment cinétique), on doit le mesurer.

La mesure du moment (de l’intensité du flux de moment cinétique) peut se faire au
moyen d’appareils dans lesquels on mesure l’ampleur de la torsion d’une tige soumise
au moment que l’on veut mesurer.

Dans la pratique, il est souvent question du couple (par exemple le couple exercé par
le moteur d’une voiture). D’où vient cette notion? Lorsque l’on veut faire tourner un
objet autour d’un axe, les forces que l’on applique pour le faire apparaissent toujours
par paires de sens opposé. Dans un certain nombre de situations, les deux forces du
couple sont exercées par la personne qui veut faire tourner l’objet autour de son axe
(robinet, vis à ailettes, comme dans la figure 9.35, etc.). Dans les autres cas (poignée
de porte, la plupart des leviers, etc.), la personne applique l’une des forces du couple,
l’autre force étant fournie par les appuis qui empêchent l’objet de s’échapper. Ainsi,
dans la situation illustrée par la figure 9.34, la seconde force du couple (qui n’apparaît
pas dans la figure) est exercée par l’axe de rotation pour maintenir le disque en place.

9.5.4 Mouvement quelconque d’un solide rigide

Le flux de moment cinétique engendré par l’action d’une force Fsur un ob-
jet susceptible d’entrer en rotation autour d’un axe (ou d’un point) est ap-
pelé le moment M de cette force. Le moment M (identique au flux de
moment cinétique) est un vecteur défini en tant que produit vectoriel du
vecteur r qui relie l’axe (ou du point) de rotation au point d’attaque de la
force et de cette force F:

(9.42)I M r FL = = ×

r⊥

Force F

Axe de
rotation

r

Moment IL = M

FIGURE 9.34 Relation entre une for-
ce unique et le flux de moment ciné-
tique correspondant, appelé
également moment de la force.

F

- F

FIGURE 9.35 Pour faire tourner les
ailettes d’un ouvre-boîte, il faut
appliquer un couple de forces.

Le mouvement général d’un corps peut toujours être considéré comme la
combinaison d’une translation de son centre de masse et d’une rotation
autour d’un axe instantané passant par le centre de masse (fig. 9.36). Le
mouvement général d’un solide est exprimé au moyen de deux équations
de bilan énoncées sous forme vectorielle:

(9.43)
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FIGURE 9.36 Décomposition du
mouvement général d’un corps en
une translation du centre de masse
et une rotation autour du centre de
masse.

Trajectoire du
centre de masse

Rotation autour du
centre de masse
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Dans ces équations de bilan, F représente la somme des forces extérieures responsa-
bles de la variation de la quantité de mouvement, et M est la somme des moments ex-
térieurs responsables de la variation du moment cinétique.

9.5.5 Puissance d’un processus entraîné par l’action d’un moment

De manière analogue à ce qui a été fait à la section 9.2.1, nous pouvons introduire les
grandeurs liées à l’énergie lors de processus de rotation. L’intensité d’un flux d’éner-
gie entraînée par un flux de moment cinétique en un point du système se déplaçant à
la vitesse angulaire ωωωω sera donc égale à:

(9.44)

Si l’on mesure le flux de moment cinétique par rapport à la surface d’un corps, ce flux
est représenté par un moment M dont les composantes se substituent à celles du flux
de moment cinétique, et l’on obtient la puissance du moment M:

(9.45)

À nouveau, la puissance du processus lié au flux de moment cinétique entre deux ni-
veaux de la vitesse angulaire ωωωω est définie sans ambiguïté par:

(9.46)

9.5.6 Rotation d’un solide autour d’un axe de direction constante

Nous allons illustrer différents cas au moyen d’exemples. Les deux premiers traiteront
le cas d’une rotation autour d’un axe fixe. Dans les exemples suivants, la rotation aura
lieu autour d’un axe mobile, mais de direction constante. Ces exemples mettent en évi-
dence la relation entre les mouvements de translation et de rotation.

EXEMPLE 9.7. Disque dont la rotation est entraînée par une cordelette enroulée.

Un disque de rayon R = 0.5 m et de masse M = 20 kg peut tourner autour d’un axe horizontal
fixe passant par son centre. On applique sur une cordelette de masse négligeable enroulée autour
du disque une force de traction verticale, dirigée vers le bas, de module T = 9.81 N (fig. 9.37).
Déterminer: (a) l’accélération angulaire du disque; (b) le module des forces d’appui.

SOLUTION: (a) Les forces agissant sur le système sont la force de pesanteur que nous considé-
rons comme agissant sur le centre de masse, les forces d’appui Fappui qui s’exercent sur l’axe et
la traction appliquée sur la cordelette. Comme l’axe du disque est fixe, la variation de la quantité
du mouvement est nulle:

(E.9.16)

L’équation de bilan du moment cinétique exprime la variation du moment cinétique due au mo-
ment engendré par la traction T:

 I I I IE x Lx y Ly z Lz,L I= = + +ωωi L ω ω ω

  P M M( ) = = + +ωωi ω ω ωx x y y z zM M M

 Pproc = − ⋅∆ω IL

FIGURE 9.37 La rotation d’un dis-
que dont l’axe repose sur des sup-
ports est entraînée par une cordelette
sur laquelle on exerce une traction.
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Nous avons remplacé le moment d’inertie du disque par son expression trouvée à la
section 7.7.4 et avons admis que le moment d’inertie de l’axe est négligeable. L’accélération
angulaire devient:

(b) Le module des forces d’appui s’obtient à partir de l’équation (E.9.16):

B

EXEMPLE 9.8. Disque dont la rotation est entraînée par une masse fixée à la cordelette.

On considère le même système que dans l’exemple 9.7, à la différence près que la force d’en-
traînement est produite par la force de pesanteur agissant sur une masse m = 1 kg (fig. 9.38).
Déterminer: (a) l’accélération angulaire du disque; (b) l’accélération linéaire de la masse; (c) le
module de la force de traction.

SOLUTION: (a) À l’équation de bilan de la quantité de mouvement du disque, il faut ajouter
celle de la masse m:

(E.9.17)

Pour le disque, nous reprenons les équations de l’exemple 9.7:

(E.9.18)

D’autre part, les accélérations linéaire et angulaire sont liées par la relation

(E.9.19)

En combinant les équations (E.9.17), (E.9.18) et (E.9.19), nous obtenons:

L’accélération angulaire du disque a diminué, parce que la force de pesanteur, dont le module
est égal à celui de la force qui était appliquée dans l’exemple 9.7, doit également entraîner la
masse m dont l’inertie s’ajoute à celle du disque. Cette augmentation de l’inertie du système
apparaît dans le dénominateur de l’expression servant à calculer l’accélération angulaire.

(b) L’accélération linéaire est donnée par:

(c) Le module de la force de traction devient:
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FIGURE 9.38 La rotation du disque
de la figure 9.37 est entraînée par une
masse attachée à la cordelette.
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La partie manquante du flux de quantité de mouvement dû à la pesanteur est emmagasinée dans
la masse suspendue à la cordelette.

B

EXEMPLE 9.9. Mouvement du yoyo.

Un yoyo (fig. 9.39) est constitué d’un disque central de rayon r = 5 cm et de masse m = 0.5 kg
auquel sont accolés deux disques de rayon R = 10 cm et de masses respectives M = 2 kg. Déter-
miner son accélération verticale lorsqu’il est abandonné à lui-même.

SOLUTION: La variation de la quantité de mouvement selon l’axe Ox est:

(E.9.20)

alors que celle du moment cinétique est:

(E.9.21)

Les accélérations angulaire et linéaire sont liées par la relation:

(E.9.22)

Nous exprimons le module de la traction T à partir de l’équation (E.9.21), tout en passant à l’ac-
célération linéaire au moyen de la relation (E.9.22):

Après substitution dans l’équation de bilan de la quantité de mouvement (E.9.20), nous obte-
nons pour l’accélération linéaire du yoyo:

B

EXEMPLE 9.10. Sphère dévalant un plan incliné.

À partir de quel angle limite α0 une sphère de rayon R et de masse m dévalant un plan incliné
se mettra-t-elle à glisser au lieu de rouler si le coefficient d’adhérence vaut µadh?

SOLUTION: Dans un référentiel dont l’axe Ox est parallèle au plan incliné et orienté vers le bas
(fig. 9.40), l’équation de bilan des composantes de la quantité de mouvement s’obtient par pro-
jection des forces sur les axes:

(E.9.23)

T m g ax= − =( ) 8 92. N

FIGURE 9.39 Yoyo constitué d’un
disque central de masse m autour du-
quel est enroulée la ficelle et auquel
sont accolés deux disques de
masse M.
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Seule la force d’adhérence produit un moment par rapport à un axe imaginaire passant par le
centre de masse:

(E.9.24)

En vertu de l’équation (9.34), nous savons que:

(E.9.25)

Si la sphère doit rouler sans glisser, les accélérations linéaire et angulaire sont liées par:

(E.9.26)

En combinant les relations (E.9.23), (E.9.24) et (E.9.26), nous obtenons:

La substitution de cette valeur dans l’équation (E.9.23) et la prise en compte de (E.9.25)
donnent:

ce qui entraîne:

L’angle limite est donné par:

Au-dessus de cette limite, la sphère roulera et glissera simultanément, vu que la force d’adhé-
rence ne suffira plus pour engendrer le moment permettant de rouler sans glisser.

B

EXEMPLE 9.11. Bobine récalcitrante.

Une bobine de fil repose sur une surface horizontale. On tire sur le fil qui forme un angle α avec
l’horizontale (fig. 9.41). Analyser le mouvement de la bobine en fonction de cet angle.

SOLUTION: Si nous désignons par T le module de la force de traction sur le fil, l’équation de
bilan pour les deux composantes de la quantité de mouvement devient:

(E.9.27)

Deux forces contribuent à la variation du moment cinétique:
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FIGURE 9.41 Lorsque l’on tire sur le
fil d’une bobine posée sur un plan
horizontal, son comportement
dépend de l’angle que le fil forme
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(E.9.28)

Si la bobine doit rouler sans glisser, alors:

(E.9.29)

En combinant les relations (E.9.27), (E.9.28) et (E.9.29), nous obtenons:

ce qui permet d’évaluer l’accélération angulaire:

Il y a trois situations possibles, en fonction du signe du numérateur:

Ce résultat peut être interprété en admettant que l’axe de rotation momentané passe par le point
de contact de la bobine sur le sol. Par rapport à ce point, le moment de la force de traction T est
positif, négatif ou nul, suivant que l’angle α satisfait, dans l’ordre, les conditions ci-dessus.

B

1. Pourquoi le mouvement du centre de masse est-il représentatif pour le
mouvement d’un système étendu ou d’un solide rigide?

2. Que peut-on dire de la vitesse du centre de masse d’un système isolé du
point de vue mécanique ? Quelle genre de mouvement le centre de
masse d’un tel système peut-il effectuer?

3. Comment doit-on traiter le mouvement quelconque d’un solide rigide?

1. Parce que le centre de masse d’un système (ou d’un solide rigide) se
déplace comme s’il était un point matériel de masse égale à la masse
totale du système (ou du solide rigide) soumis à la somme des forces
extérieures.

2. Être isolé du point de vue mécanique signifie qu’il n’y a aucun transfert
de quantité de mouvement de ou vers le système. Vu que la quantité de
mouvement ne peut être ni créée ni détruite (elle est conservée), celle

l’accélération angulaire et l’accélération linéaire sont positives; la
bobine roule vers la droite.

l’accélération angulaire et l’accélération linéaire sont négatives; la
bobine roule vers la gauche.

l’accélération angulaire est nulle; la ligne d’action de la force de trac-
tion T passe par le point de contact de la bobine avec le sol; la bobine
glisse sans rouler.
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du système demeure constante. Le mouvement d’un tel système est soit un mouvement rec-
tiligne à vitesse constante, soit le corps est immobile par rapport à l’observateur.

3. Ce mouvement peut être décomposé en un mouvement de translation du centre de masse
soumis à l’action de la somme des forces extérieures (flux de quantité de mouvement exté-
rieurs) et en un mouvement de rotation engendré par la somme des moments extérieurs
(flux de moment cinétique extérieurs). La combinaison des deux mouvement est exprimée
par la relation qui lie la vitesse de translation à celle de rotation.

9.6 ÉTUDE DU MOUVEMENT DE ROULEMENT

Dans cette section, nous étudions le mouvement de roulement sans glissement de cy-
lindres sur des supports plus ou moins mous. Contrairement au roulement sur des sur-
faces dures, l’objet s’enfonce dans le support, ce qui entraîne un décalage vers l’avant
du point de contact entre le support et l’objet en mouvement.

9.6.1 Expériences

Le modèle que nous allons développer est basé sur quatre versions d’une expérience
effectuée avec un cylindre plein (C) ou un segment de tuyau cylindrique (T) qui rou-
lent sur une surface horizontale sans glisser. Les objets sont mis en mouvement ma-
nuellement et roulent vers un capteur de mouvement (PASCO motion sensor PS-
2103A, fig. 9.42a) qui enregistre leurs vitesses en fonction du temps (fig. 9.42b).

Les objets ont des masses égales (m = 1.375 kg) et des rayons identiques (R = 0.04 m),
mais leurs moments d’inertie sont différents. Nous représentons ce moment d’inertie
par J = fmR2, où f est un facteur de forme que nous pouvons déterminer par une expé-
rience qui consiste à monter les cylindres de manière à ce qu’ils puissent tourner
autour d’un axe fixe. On leur applique un couple connu et on mesure l’accélération an-
gulaire. À partir des résultats obtenus, on peut évaluer les moments d’inertie. Les fac-
teurs de forme sont respectivement fC = 0.50 et fT = 0.83. Les tapis sont en feutre (F)
ou caoutchoutés (C). La combinaison des objets et des supports débouche sur quatre
expériences CF, CC, TF et TT.

Les enregistrements des vitesses des centres de masse effectués lors de l’expérience
apparaissent dans la figure 9.42b. Les comportements varient selon le type de surface.
Dans le cas du feutre (F), la vitesse décroît de manière quasi linéaire, alors que cette
décroissance est notablement non linéaire pour la surface caoutchoutée (C). Les don-
nées montrent également que les objets roulent brièvement vers l’arrière juste avant de
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FIGURE 9.42 Roulement sur des
surfaces déformables: (a) réalisa-
tion de l’expérience: un cylindre
(C) ou un segment de tuyau cylin-
drique (T) roulent sur un tapis en
feutre (F) ou sur un tapis caout-
chouté (C); (b) vitesses mesurées
en fonction du temps.
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s’immobiliser. Cette observation suggère que les objets en mouvement poussent de-
vant eux un renflement de la matière plus ou moins molle dont est constitué le support.
Il s’ensuit que le contact entre le cylindre et la surface de roulement n’est pas symétri-
que, ce dont il faudra tenir compte lors de l’élaboration du modèle.

9.6.2 Modélisation du mouvement de translation et de rotation

Pour l’élaboration du modèle, nous devons tout d’abord introduire les forces et les
couples qui se manifestent pendant le mouvement des objets (fig. 9.43).

Deux forces agissent sur l’objet, la force de pesanteur mg et la force de soutien FS
exercée par la surface. Cette dernière est dissociée en une composante verticale Fn qui
équilibre la force de pesanteur et une horizontale Fh responsable du freinage des objets
en mouvement. La déformation asymétrique du support déplace le point d’attaque P
de FS vers l’avant et vers le haut. Nous en tiendrons compte en introduisant dans le
modèle un paramètre D qui mesure le déplacement vers l’avant du point P.

Le mouvement de roulement est influencé par les moments Mn et Mh engendrés par
les composantes correspondantes de FS. Pour que le mouvement de rotation soit ra-
lenti, il faut que | Mn⎪> | Mh⎪.

Le premier élément à prendre en compte lors de l’élaboration du modèle est que les
objets roulent sans glisser, ce qui peut être exprimé par la proportionnalité de la vitesse
du centre de masse vCM et de la vitesse angulaire ω :

(9.47)

Vu que px = mvCM et L = Jω, où

(9.48)

est le moment d’inertie et f le facteur de forme du corps en rotation, l’équation (9.47)
débouche sur

La seconde égalité est aussi valable pour les taux de variation de la quantité de mou-
vement et du moment cinétique, ce qui nous procure une relation indépendante du
temps:

(9.49)

Les équations de mouvement ne sont rien d’autre que les équations de bilan de la quan-
tité de mouvement et du moment cinétique du corps en mouvement de roulement:
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FIGURE 9.43 Forces et moments:
(a) détermination des axes et des
sens positifs pour les forces et les
moments; (b) deux forces agissent
sur l’objet, la force de pesanteur mg
et la force de soutien FS exercée
par la surface. Cette dernière est
projetée sur les axes du repère.
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(9.50)

(9.51)

Les signes de ces moments apparaissent dans la figure 9.43b. Leurs composantes per-
pendiculaires au plan vertical dans lequel a lieu le mouvement de translation sont
respectivement:

(9.52)

(9.53)

où

(9.54)

est le cosinus de l’angle β qui apparaît dans la figure 9.44. Dans notre expérience, A
est pratiquement égal à l’unité, il n’en dévie que pour moins de un pour mille.

À première vue, il semble que nous soyons en présence de deux paramètres indépen-
dants, la composante horizontale Fh de la force de contact FS et le déplacement D.
Mais si nous substituons les relations (9.49), (9.52) et (9.53) dans l’équation (9.51), le
couplage entre la translation et la rotation entraîne:

(9.55)

ce qui nous laisse avec un seul paramètre libre, qui sera D.

Une relation équivalente qui décrit l’échange de moment cinétique, avec | Mn⎪> | Mh⎪,
peut être obtenue en introduisant (9.52) et (9.53) dans l’équation (9.55):

(9.56)
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Étant donné que le module de Fn est égal à mg et que , nous pouvons utili-
ser l’équation (9.55) pour déterminer le paramètre D à partir des relevés de la vitesse
des objets (fig. 9.42b). Vu que A est très proche de l’unité, nous obtenons:

(9.57)

Si notre modèle doit correctement rendre compte des observations, nous devons en at-
tendre un certain nombre de prédictions. Tout d’abord, la valeur de D doit être la même
pour le cylindre plein (C) et le segment de tuyau cylindrique (T) roulant sur la même
surface, vu que les rayons et les masses des deux objets sont identiques. Ensuite, la
relation entre D et la vitesse doit être non linéaire dans le cas de la surface caoutchou-
tée (C) et quasi linéaire pour le feutre (F), si l’on tient compte de la manière dont évo-
luent les vitesses. Enfin, on s’attend à ce que D ait une valeur notablement plus faible
pour le feutre que pour le caoutchouc, vu que le feutre se déforme moins fortement
que le caoutchouc.

La figure 9.45 illustre les résultats de l’analyse des données de la figure 9.42b. Nous
constatons que les trois prévisions sont réalisées, ce qui nous permettra d’exprimer les
relations constitutives décrivant le mouvement sur une surface donnée en tant que
fonction particulière de D(vCM).

L’ajustement aux données de la figure 9.45 par la méthode des moindres carrés au
moyen d’une fonction puissance donne les valeurs suivantes pour les
paramètres a et b:

Nous sommes maintenant en mesure de formuler l’équation différentielle qui modéli-
se le mouvement horizontal au moyen du taux de variation de la vitesse du centre de
masse et de la relation constitutive D(vCM). Il suffit de substituer la relation (9.57)
dans l’équation de bilan (9.50):

TABLEAU 9.2 Paramètres pour le roulement sur différentes surfaces

a / s b

Tapis caoutchouté, tuyau 1.78 · 10–3 2.55 · 10–1

Tapis caoutchouté, cylindre 1.87· 10–3 2.15 · 10–1

Tapis en feutre 5.75 · 10–4 2.44 · 10–2

F mh CM= �v

  
D f A R

m

mg

f R

g
= − +( ) ≈ −

+( )�
�v
vCM

CM

1

B

BB

B
BBB

BB
BBBB

BBB
BB

B

B

B

B
BBBBBBBBB

B
B
B

B

B
B

B

B
B

B

DDD
D

D

D
D
D
D

D
D
D
D

D

DDD

D

DD
DDDD

DD
D

D

DDD

D
D

D

DD

D

DDD

DDD
DD

DDDDDDDD
D
DD
D
DDDD

DDD
D
D

D
DD

DD
D

XXXX
X
X
XX
X
X
X
X
X
X
XXXX
X
XXXX
XX
X
XX

X
XXXX
X
X
XX
X

X
X
X
XXX
XXX
XXXXXX

XX
X
X
X
XXXXXX
X
XXXX
XX
XXX
XXXX
X
X
XXXX
XXXX
X
XXXXXXXX

XX
XXXX
XXXXXXX
X
X
XXXXX
XXXXX
XX
XX
XXX

XX
XX
XX
X
XXX
XXXXXXXXX
XXXXXXXXX
X
X
X
X
X

D
D

DDD
D
D

DD
D
D

D

DD
D
D
DDD
DDDD

DDD
D

D

D
DD
D

D
D
D
D

D
D
D
D
D
D
D
D
DDDD
DDDD
D
DD
DD

D
D
D
D
D
DD
D
D
D
D
DD
DD
D

DD
DD

0.0E+0

4.0E-4

8.0E-4

1.2E-3

1.6E-3

0 0.1 0.2 0.3 0.4

D
/m

Vitesse / m s-1

CC

TC

TF

CF

CC :

TC :

CF :

TF :

tuyau sur caoutchouc

cylindre sur caoutchouc

tuyau sur feutre

cylindre sur feutre

B

D

D

X

FIGURE 9.45 Détermination du
paramètre D en fonction de VCM à
partir des données expérimentales
de la figure 9.42b. L’analyse est ba-
sée sur l’équation (9.57). Les jeux
de données originaux ont été lissés
au moyen de la technique de la
moyenne mobile pour obtenir les
valeurs qui apparaissent dans la fi-
gure. Les résultats pour D sont très
proches pour les expériences CC et
TC d’une part, et pour CF et TF
d’autre part. Les fonctions utilisées
pour l’ajustement sont des fonc-
tions puissance.
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(9.58)

Nous avons utilisé l’approximation A = 1. Cette équation différentielle peut être inté-
grée numériquement, par exemple en utilisant STELLA en tant qu’intégrateur de cette
relation cinématique. La figure 9.46 permet de se rendre compte que le modèle que
nous avons obtenu donne des résultats très satisfaisants.

Mentionnons que l’équation différentielle (9.58) peut être intégrée analytiquement. La
solution est:

(9.59)

9.6.3 Transferts et dissipation d’énergie

Nous voulons maintenant étudier le rôle de l’énergie lors de processus qui couplent les
mouvements de translation et de rotation. Pour ce faire, nous utilisons les relations de
la section 9.5.5.

La figure 9.47 est une représentation graphique des interactions, transfert et dissipa-
tion d’énergie pour l’exemple considéré.
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Nous commençons l’analyse par la composante horizontale de la quantité de mouve-
ment. Nous voyons dans la figure 9.44 qu’elle quitte le corps au point P. La compo-
sante horizontale de la vitesse de ce point P est:

(9.60)

En vertu de l’équation (9.15), le flux d’énergie qui quitte le corps est donné par:

(9.61)

où Ip,h correspond à la composante horizontale de FS, à savoir Fh. Ce n’est qu’une tou-
te petite fraction du taux de variation de l’énergie du corps en conséquence de la va-
riation de px. Ce résultat doit être interprété de la manière suivante: lorsque la quantité
de mouvement px s’écoule à travers le corps vers la surface, elle le fait entre des va-
leurs élevées et des valeurs faibles de la composante horizontale de la vitesse; il y a
libération d’énergie et, selon l’équation (9.17), la puissance due à ce processus de
translation est égale à:

Concrètement

Cette énergie est utilisée pour pomper du moment cinétique dans le corps à un taux
égal au moment Mh correspondant au flux de moment cinétique IL,h. En d’autres ter-
mes, la puissance du processus de rotation PR1 doit être égale et opposée à PT1, ce que
confirme le calcul effectué à partir de l’équation (9.46):

Mais d’autre part, du moment cinétique s’échappe du corps à un taux égal au moment
Mn correspondant au flux de moment cinétique IL,n. Dans ce processus, le moment ci-
nétique tombe du niveau ω au niveau zéro de la vitesse angulaire, ce qui libère de
l’énergie à un taux égal à:

Cette énergie n’est pas libérée dans l’environnement, mais est utilisée pour pomper
dans le corps de la quantité de mouvement verticale à un taux donné par Ipn = Fn; la
quantité de mouvement passe du niveau négatif de la vitesse verticale au point P:
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(9.62)

au niveau zéro. La puissance de ce processus de translation doit être égale et opposée
à PR2:

Nous voyons que le couplage entre les transports de quantité de mouvement et de mo-
ment cinétique déplace de l’énergie d’un processus de translation vers un processus de
rotation et vice versa. Des transferts d’énergie du corps de ou vers l’environnement
n’ont lieu que lors de transferts de quantité de mouvement de ou vers l’environnement,
représentés par IE1 et IE2 dans la figure 9.47. Ils se produisent au point P qui se déplace
à la vitesse v(P). La première contribution a déjà été évaluée par l’équation (9.61), et
la seconde est égale à:

(9.63)

La somme de ces deux flux d’énergie est égale à:

ou, étant donné que :

(9.64)

Si nous intégrons ce flux d’énergie sur toute la durée du processus de roulement, nous
obtenons:

(9.65)

ce qui correspond à l’énergie totale, de translation et de rotation, que l’objet possédait
lors de sa mise en mouvement. Cette énergie est dissipée dans la couche de dissipation
introduite dans le modèle de la figure 9.47. Concrètement, cette couche de dissipation
est constituée par les supports plus ou moins mous sur lesquels se déplacent les objets.
Pour que l’énergie libérée soit dissipée, les matériaux dont sont constitués les supports
doivent réagir à l’apport de quantité de mouvement comme matériau viscoplastique:
le frottement interne entraîne la production d’entropie.

9.7 ÉLABORATION DE L’ÉQUATION D’ONDE

Abordons un exemple intéressant qui débouche sur le modèle du transport de quantité
de mouvement sous forme d’onde. On entend par onde une perturbation d’un milieu qui
se transmet de proche en proche dans l’espace, comme par exemple l’onde qui se forme
à la surface de l’eau lorsqu’on y jette un objet. Comme dans le cas des oscillations, ce
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transport sous forme d’onde est la conséquence de l’interaction entre l’accumulation et
le transport de la quantité de mouvement, où la relation constitutive pour le transport est
donnée par une inductance, alors que l’accumulation est décrite par la capacité en quan-
tité de mouvement du système. Le but de cette section est de décrire, au moyen d’une
équation différentielle, la dynamique du phénomène ondulatoire.

Pour simplifier l’analyse, nous envisageons un problème unidimensionnel, par exem-
ple une onde sonore qui se transmet dans un barreau métallique dont on a frappé une
des extrémités ou dans un fluide enfermé dans un long tuyau.

Établissons tout d’abord l’équation de bilan de la quantité de mouvement pour un élé-
ment du fluide (fig. 9.48) en négligeant la variation locale de la masse volumique due
au passage de la perturbation:

où ∆x et A sont respectivement la longueur et la section de l’élément de fluide. Pour
assurer le passage au continu, nous divisons l’équation ci-dessus par la longueur ∆x de
l’élément considéré et désignons par la masse par unité de longueur:

(9.66)

Il faut prendre en compte des caractéristiques du milieu dans lequel se propage la per-
turbation, à savoir sa résistance et son inductance. La résistance a pour conséquence
une atténuation de l’onde, et nous la négligeons pour simplifier l’analyse. En revanche,
nous l’avons vu lors de l’étude des oscillations, c’est l’inductance, couplée à la capa-
cité, qui est responsable de l’apparition des oscillations. La loi d’induction s’énonce:

est l’inductance linéique. Effectuons également la division par ∆x:

(9.67)

et faisons tendre ∆x vers 0 dans les équations (9.66) et (9.67) qui deviennent, de ce fait,
des équations aux dérivées partielles:

(9.68)
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FIGURE 9.48 Un fluide, par exemple
un gaz, est enfermé dans un long
tuyau. Chaque partie du fluide possè-
de une certaine capacité en quantité
de mouvement et une inductance
(c’est également le cas pour un bar-
reau solide). L’interaction de ces
deux propriétés fait qu’une perturba-
tion du milieu entraîne un transport
de quantité de mouvement sous
forme d’onde.
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(9.69)

Si nous dérivons respectivement (9.68) et (9.69) par rapport à t et par rapport à x, nous
obtenons:

(9.70)

(9.71)

La comparaison de (9.70) et (9.71) nous permet de poser:

(9.72)

La grandeur se mesure en kg m–1, et en s2 kg–1 m–1. L’inverse de leur produit
se mesure donc en m2 s–2 et représente le carré de la vitesse de propagation de l’onde
que nous désignerons dorénavant par c.

En conclusion:

Si nous réussissons à déterminer l’inductance du milieu à travers lequel se propage la
perturbation, nous sommes en mesure de déterminer la vitesse de propagation de cette
onde.

EXEMPLE 9.12. Vitesse du son dans un solide.

En utilisant les lois constitutives et les particularités matérielles d’un solide élastique, détermi-
nez la vitesse de propagation du son dans ce milieu.

SOLUTION: Dans un barreau cylindrique de section A, nous envisageons un élément de lon-
gueur ∆x dont la longueur varie de dx au passage de la perturbation (fig. 9.5). Pour pouvoir
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Si nous désignons par ξ(x,t) la fonction qui décrit la forme d’une pertur-
bation qui se propage (la grandeur en question peut représenter une pres-
sion, une tension électrique, etc.), celle-ci est la solution de l’équation
différentielle

(9.73)

que l’on appelle l’équation d’onde à une dimension. La vitesse de propa-
gation de l’onde est égale à:

(9.74)
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déterminer l’inductance par unité de longueur , nous partons de la version locale de la loi de
HOOKE (9.11):

ce qui entraîne, en vertu de la version globale de la loi de HOOKE (9.8) et de la relation (9.10):

Il s’ensuit, pour l’inverse de l’inductance par unité de longueur:

Pour l’inverse de la masse par unité de longueur nous trouvons:

À partir de l’équation (9.74), nous obtenons:

Cette vitesse est celle d’une onde caractérisée par le fait que la perturbation a lieu dans la même
direction que celle de la propagation de l’onde. De telles ondes sont dites longitudinales.

Si la perturbation est telle que le matériau est soumis à des contraintes de cisaillement, la per-
turbation a lieu dans une direction perpendiculaire à sa direction de propagation. On parle alors
d’ondes transversales. Dans ce cas, la vitesse de propagation dépend du module de
cisaillement:

À titre d’exemple, le module d’élasticité et le module de cisaillement de l’acier valent respecti-
vement 21·1010 N m–2 et 8·1010 N m–2, alors que la masse volumique vaut 7.7·103 kg m–3. À
partir de ces données, on obtient:

C’est de cette particularité des ondes dans les milieux solides que font usage les sismologues
pour localiser l’épicentre d’un tremblement de terre. Ils le font en mesurant, à différents endroits
du globe, le retard pris par la composante transversale de l’onde sismique. Ce retard permet de
déterminer la distance entre l’observatoire et l’épicentre. À partir des mesures d’au moins trois
observatoires, on peut localiser l’épicentre par triangulation.

B

Nous déterminerons la vitesse du son dans un gaz à la section 10.3 lorsque nous aurons
étudié la thermodynamique des gaz parfaits.

Lp

*

ε
σ

= = =
dx

x E

F

AE∆

AE

x

F

dx
k

Lp∆
= = =

1

1

L

x

L
AE

p p

*
= =

∆

Cp

*

1 1

C

x

m

x

x A Ap

*
= =

⋅ ⋅
=

∆ ∆
∆ρ ρ

c
C L

EA

A

E

p p

= = =
1
* * ρ ρ

c
C L

G

p p

= =
1
* * ρ

c clong, acier transv, acierkm s et k= =−5 2 3 21. . mm s−1



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 439

9.8  STATIQUE DES FLUIDES

9.8 STATIQUE DES FLUIDES

Ce qui distingue un fluide d’un solide, c’est qu’il ne peut pas maintenir une contrainte
de cisaillement pour une longue durée. Il échappe à la contrainte. Les liquides plus
épais, tels que le miel, se déplacent moins facilement que l’eau ou l’air, ce qui est dû
à leur viscosité prononcée. Il est usuel, dans un premier temps, d’idéaliser les fluides
en admettant qu’ils n’ont pas de viscosité, ce qui implique que les frottements internes
et avec l’environnement sont nuls. On les appelle des fluides parfaits. Dans ce cas,
l’absence de dissipation entraîne la conservation de l’énergie véhiculée par le fluide.

9.8.1 Équilibre hydrostatique

Lorsque les liquides sont immobiles, ils ne sont soumis à aucune contrainte de cisaille-
ment, même s’ils sont visqueux. Il s’ensuit que les contraintes sont toujours perpendi-
culaires à n’importe quelle surface envisagée à l’intérieur du fluide: cette contrainte
est la pression P. Elle est la manifestation d’un flux de quantité de mouvement.

Nous avons appris, à la section 1.5.1, qu’à la surface de la Terre la pression dans les
liquides variait de manière proportionnelle à la profondeur dans le liquide (fig. 9.49),
ce que l’on peut exprimer par:

(9.75)

où g représente l’intensité du champ de pesanteur. Cette équation est un cas particulier
d’une relation plus générale que nous allons développer.

Nous évaluons la force pressante nette sur un petit cube d’eau (fig. 9.50), force due à
la variation locale de la pression. Si nous introduisons un repère dont les axes sont pa-
rallèles aux arêtes du cube, la pression P engendre une force (un flux de quantité de
mouvement) de module égal à Fx (x) = P ·∆y∆z sur la face positionnée à l’abscisse x.
La pression à l’abscisse x + ∆x est

et la composante de la force pressante sur cette face est égale à

La composante de la force résultante selon Ox est donc égale à

En procédant de la même manière pour les autres faces du cube, nous obtenons les
composantes Fy = – (∂P/∂y)∆V dans la direction de l’axe Oy et Fz = – (∂P/∂z)∆V dans
la direction de l’axe Oz .

Nous introduisons la force par unité de volume ou densité volumique de force:

(9.76)
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Si d’autres forces sont présentes, par exemple la gravité, la force pressante les com-
pense pour assurer l’équilibre. Si cette force additionnelle peut être dérivée d’un po-
tentiel, c’est-à-dire si elle est conservative comme c’est le cas de la gravité, et que nous
désignons par ϕ le potentiel par unité de masse, alors la force par unité de masse est
égale à – grad(ϕ). Si ρ est la masse volumique, alors – ρgrad(ϕ) représente la densité
volumique de force, et la condition d’équilibre s’exprime par:

(9.78)

Cette équation est celle de l’équilibre hydrostatique. Si la densité varie de manière ar-
bitraire, l’équilibre ne peut pas s’établir et des courants de convection vont apparaître.
Au cas où la masse volumique ρ est une constante, c’est-à-dire si le fluide est incom-
pressible, l’équation (9.78) a pour solution:

Dans le cas de la gravité, ϕ = gz, ce qui correspond à l’équation (9.75). Une autre si-
tuation qui aboutit à un équilibre est donnée lorsque la masse volumique ρ dépend uni-
quement de la pression P. C’est le cas de la pression dans une atmosphère isotherme.

EXEMPLE 9.13. Variation de la pression dans une atmosphère isotherme.

Déterminer de quelle manière évolue la pression dans une atmosphère supposée isotherme, de
température T.

SOLUTION: Nous appliquons la loi des gaz parfaits ; P = ρRT et substituons cette valeur de ρ
ainsi que le potentiel gravitationnel spécifique ϕ = gz dans l’équation (9.78). La pression ne va-
riant que selon la direction verticale Oz, nous obtenons l’équation différentielle:

dont la solution:

est la diminution exponentielle de la pression que nous avions annoncée dans l’équation (1.23).

B

Dans un fluide, la densité volumique de force f est l’opposée du gradient
de pression:
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9.8.2 Poussée d’ARCHIMÈDE

Un objet plongé dans un fluide échange de la quantité de mouvement d’une part avec
le champ gravitationnel en mode radiatif et avec le fluide environnant par conduction.
Les forces pressantes s’exercent perpendiculairement à la surface du corps plongé
dans le fluide, et leur module augmente proportionnellement à la profondeur. Les com-
posantes horizontales de ces forces s’équilibrent. Mais les composantes verticales di-
rigées vers le haut sont supérieures à celles qui sont dirigées vers le bas et leur
résultante est dirigée vers le haut: c’est la poussée d’ARCHIMÈDE.

La détermination du module de la poussée d’ARCHIMÈDE est basée sur la réflexion
suivante: on isole en pensée un volume V du fluide. Ce volume est en équilibre dans
le fluide, ce que l’on interprète comme un équilibre entre la force de pesanteur d’une
part et la poussée d’ARCHIMÈDE d’autre part. La masse du volume isolé s’exprime à
partir de la masse volumique du fluide, ce qui permet de trouver le module de la pous-
sée d’ARCHIMÈDE.

EXEMPLE 9.14. Centrifugation.

Montrer qu’une centrifugeuse crée l’équivalent d’un champ de pesanteur horizontal et détermi-
ner de quelle manière évolue la pression.

SOLUTION: Les particules du fluide sont maintenues sur leur trajectoire circulaire horizontale
par une force horizontale. L’accélération centripète, donnée par l’équation (9.30), est équivalent
à la constante g du champ de pesanteur terrestre et son produit avec le rayon variable est égal
au potentiel par unité de masse de ce champ de pesanteur horizontal:

Le module de la pression est égal au produit de ce potentiel et de la masse volumique du fluide:

Cette pression varie avec le carré du rayon et de la fréquence de rotation. Au fond d’une éprou-
vette de 10 cm de longueur tournant à raison de 1000 tours par minute, les accélération et pres-
sion valent respectivement 112 g et 3.9 kbar.

Pour des centrifugeuses de laboratoire, les accélérations varient entre 400 et 2000 g pour des
vitesses de rotation variant entre 2000 et 10 000 tours par minute suivant le rayon de l’appareil.

B

Tout corps plongé dans un fluide est soumis à une poussée verticale ascen-
dante égale au poids du volume de fluide déplacé:

(9.79)

Cette poussée s’applique au centre de poussée, c’est-à-dire au centre de
masse du volume de fluide déplacé.

F gA fluide déplacé= −ρ V

ϕ π πω= = == ( ) ( )ra r f r fr rcentripète
2 2 22 4
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1. Une personne dans une barque photographie les berges du lac. Que fait
le niveau du lac si elle laisse tomber son appareil dans l’eau?

2. Comment les poissons font-ils pour flotter sans effort, quelle que soit la
profondeur à laquelle ils se trouvent?

1. Le niveau baisse. Dans la barque, l’appareil photo, dont la masse volu-
mique est plus importante que celle de l’eau, doit déplacer un volume
d’eau plus important que son volume propre pour rester en surface.

2. Ils peuvent influencer leur masse volumique grâce à un organe appelé
vessie natatoire. Il s’agit d’une sorte de poche dont ils peuvent contrô-
ler le volume en variant la quantité de gaz qu’elle contient. De cette
manière, ils peuvent adapter leur densité à celle de l’eau à la profon-
deur à laquelle ils se trouvent.

9.9 DYNAMIQUES DES FLUIDES PARFAITS INCOMPRESSIBLES

L’objectif de cette section et de la suivante est de modéliser le comportement dynami-
que des fluides. Nous commencerons par en établir les caractéristiques générales afin
de pouvoir faire la distinction entre les fluides réels et leur idéalisation, les fluides
parfaits.

9.9.1 Observations préliminaires

On appelle fluide un milieu matériel parfaitement déformable. Les fluides regroupent
notamment les gaz qui sont l’exemple de fluides compressibles, et les liquides, qui
sont peu compressibles. La compressibilité plus ou moins importante des fluides est
due au fait que leurs constituants interagissent entre eux. Cette interaction interne en-
traîne également l’apparition d’une autre caractéristique intrinsèque, la viscosité. Ces
deux caractéristiques intrinsèques ont des conséquences sur l’écoulement des fluides.

La description d’un écoulement se fait au moyen de lignes de courant dont nous pré-
ciserons plus bas la signification. Lorsque ces lignes de courant ne se croisent pas, on
parle d’écoulement laminaire (fig. 9.51).

Si cette organisation des lignes de courant disparaît, on passe du régime laminaire à
un écoulement turbulent (fig. 9.52). Nous verrons que le passage de l’un à l’autre dé-
pend essentiellement de la viscosité du fluide.

Q

R

FIGURE 9.51 Exemple d’écoule-
ment laminaire (glacier d’Aletsch,
Suisse). (Photo: Dirk Beyer (CC)).

FIGURE 9.52 Passage progressif
du régime laminaire au régime
turbulent.
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Dans cette section, nous allons modéliser le comportement dynamique des fluides par-
faits, c’est-à-dire sans viscosité. Il s’agit là d’une idéalisation qui permet d’obtenir un
certain nombre de résultats qui sont également valables pour les fluides réels. Nous
nous limiterons aux fluides incompressibles et ne considérerons que des écoulements
stationnaires, ce qui signifie que la structure du champ de vitesse n’évolue pas dans le
temps. Il est usuel de représenter ce champ de vitesse1 au moyen de lignes de courant
qui, dans le cas particulier, correspondent à la trajectoire suivie par les particules du
fluide.

9.9.2 Équation de continuité pour un fluide incompressible

Lorsqu’un fluide est incompressible, sa masse volumique est constante, ce qui impli-
que que, dans un écoulement à travers une conduite de section variable, le débit volu-
mique ne varie pas le long de la conduite. L’élément de volume ∆V qui traverse une
section durant un intervalle de temps ∆t est égal à A·∆x = A·v·∆t, où A est l’aire de la
section traversée, ∆x la longueur de l’élément et v la vitesse de l’écoulement à cet en-
droit. La constance du débit à deux endroits différents de la conduite (fig. 9.53) s’ex-
prime donc par:

(9.80)

Cette relation est appelée équation de continuité pour un fluide incompressible.

9.9.3 Théorème de BERNOULLI

L’exemple 8.6 nous a permis d’établir que la conservation de l’énergie implique que,
le long d’une ligne de courant d’un fluide incompressible et sans viscosité, la densité
d’énergie totale est constante:

Le terme ρgz représente la densité d’énergie due à la pesanteur. Si nous remplaçons le
potentiel du champ de pesanteur gz par un potentiel quelconque représenté par ϕ, l’ex-
pression, appelée équation de BERNOULLI, devient:

(9.81)

La valeur de la constante change généralement d’une ligne de courant à l’autre. Par
contre, si l’écoulement est irrotationnel, c’est-à-dire si les particules qui constituent le
fluide ou les objets entraînés par l’écoulement ne subissent pas de rotation, gardent
toujours la même orientation spatiale, comme les cabines de la grande roue du Prater
à Vienne (fig. 9.54), il n’est plus nécessaire de se placer le long d’une ligne de courant,
d’où:

(9.82)

1. Lorsque l’on parle d’un champ de vitesse, on donne à la notion de champ une signification
différente à celle que nous avons utilisée dans les chapitres précédents, à savoir celle d’un
système physique immatériel caractérisé par ses propriétés physiques telles que son éner-
gie, sa quantité de mouvement ou de moment cinétique, etc. Un champ de vitesse n’est pas
un système physique, c’est un objet mathématique qui sert à décrire la distribution spatiale
de la vitesse. Un champ de pression est un autre exemple de champ mathématique.

FIGURE 9.53 L’incompressibilité
entraîne la constance d’un volume
de fluide lorsqu’il se déplace dans
la conduite.

∆x1 = v1∆t

A1

v1
A2

v2

∆x2 = v2∆t

 A A1 1 2 2v v=

 1
2 ρ ρv2 + + =gz P const (ligne de courant)

 1
2 ρ ρϕv2 + + =P const (ligne de courant)

FIGURE 9.54 Lorsque la grande
roue du Prater à Vienne se met à
tourner, les cabines gardent tou-
jours le même orientation. Dans un
écoulement irrotationnel, les parti-
cules du fluide en rotation se com-
portent de la même manière que les
cabines: elles gardent toujours la
même orientation, elles ne tournent
pas sur elles-mêmes. (Photo:
David Monniaux (CC)).

 1
2 ρ ρϕv2 + + =P const (dans tout le fluide)
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À la différence de l’équation (9.81), la constante est la même dans tout le fluide. L’en-
semble des lignes de courant forme un tube de courant.

Lorsqu’un fluide parfait franchit un étranglement, sa vitesse doit augmenter en vertu
de l’équation de continuité. Si la conduite est horizontale, le deuxième terme de
l’équation (9.82) ne varie pas. La constance des deux autres termes implique que la
pression statique doit diminuer proportionnellement à l’augmentation de l’énergie ci-
nétique du fluide. Notons que l’hypothèse du fluide parfait implique que l’on retrouve
la même pression à la sortie de l’étranglement, vu qu’il n’y a pas de dissipation, faute
de viscosité.

EXEMPLE 9.15. Mesures de débit et de pression dans les écoulements.

En se référant à la figure 9.55, explicitez le fonctionnement des dispositifs suivants: (a) tube de
Venturi pour la mesure du débit volumique; (b) sonde de mesure de la pression statique; (c) son-
de de Pitot pour la mesure de la pression totale; (d) sonde de Prandtl pour la mesure de la pres-
sion dynamique.

SOLUTION: Tous les développements qui suivent sont basés sur l’équation (9.82) dans laquelle
le terme lié à la densité d’énergie potentielle est négligé, vu que les écoulements considérés se
déroulent horizontalement.

(a) En vertu de l’équation de BERNOULLI, nous avons:

La différence de pression dans le tube en U est donc:

À partir de l’équation de continuité (9.80), nous exprimons la vitesse à l’étranglement:

La différence de pression devient:

Comme le débit Q est égal à:

on observe que le tube de Venturi permet de réduire la mesure du débit à une simple mesure de
différence de pression.

(b) La sonde de pression est un tube arrondi à l’avant dans les parois duquel on a percé une
ouverture. Lorsque le tube est placé parallèlement aux filets de courant, le manomètre relié à
l’ouverture mesure la pression que relèverait un observateur entraîné par l’écoulement, ce que
l’on appelle la pression statique.
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FIGURE 9.55 Dispositifs de mesu-
re dans les écoulements: (a) tube de
Venturi pour la mesure du débit;
(b) mesure de la pression statique;
(c) mesure de la pression totale
(sonde de PITOT); (d) mesure de la
pression dynamique (sonde de
PRANDTL).
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(c) Au point d’arrêt A de la sonde de Pitot, la vitesse du fluide est nulle. En vertu de l’équation
de BERNOULLI, nous avons:

c’est-à-dire la somme de la pression statique et de la pression dynamique, donc la pression to-
tale.

(d) La sonde de Prandtl est une combinaison des deux sondes précédentes. L’application de
l’équation de BERNOULLI nous permet d’écrire:

donc:

La mesure de la vitesse d’écoulement du fluide:

est donc réduite à une mesure de différence de pression.

Les versions actuelles de ces sondes utilisent des manomètres reliés à des ordinateurs pour ef-
fectuer les mesures.

B

9.9.4 Écoulement potentiel

Lorsqu’un écoulement est irrotationnel, on peut montrer que le vecteur vitesse est le
gradient d’un potentiel multidimentionnel:

(9.83)

où ϕ (r) représente le potentiel de vitesse.

Même s’ils sont une idéalisation, les écoulements potentiels, ou les combinaisons
d’écoulements potentiels, permettent de modéliser des écoulements de manière assez
proche de la réalité. Seuls les configurations les plus simples peuvent être résolues
analytiquement. Dans ce cas, la technique la plus élégante est d’utiliser des fonctions
complexes, plus précisément des transformations conformes2. Avec cette option,
l’écoulement autour d’un cylindre peut être représenté en tant que superposition d’un
écoulement parallèle et d’un écoulement dipolaire (fig. 9.56).

Les deux points sur l’axe de symétrie horizontal sont des points de stagnation qui cor-
respondent à une vitesse d’écoulement nulle. Notons que, dans ce modèle, l’écoule-
ment est symétrique par rapport à un axe vertical, ce qui est une conséquence de
l’hypothèse du fluide parfait, absent de viscosité. Mais dans certaines circonstances,
par exemple lorsque les vitesses sont très faibles, ce modèle est très proche de la réalité
(fig. 9.57).

2. L.V. BEWLEY (1963), Two-Dimensional Fields in Electrical Engineering, Dover Publica-
tions, New York.

 P PPA = =+ 1
2

2ρv ∆

 P PA = + 1
2

2ρv

 ∆P P P= − =A
1
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2ρv

 
v =

2 ⋅ ∆P

ρ

 v = [ ]grad ϕ( )r

FIGURE 9.56 Représentation d’un
écoulement potentiel autour d’un
cylindre au moyen de lignes de
courant.

FIGURE 9.57 Visualisation d’un
écoulement réel autour d’un cylin-
dre. Les lignes de courant sont ren-
dues visibles par de l’encre
(FRAUENFELDER/HUBER, Physik,
fig. 6.32, tous droits réservés).
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9.9.5 Superposition d’un écoulement potentiel et d’un tourbillon

On appelle tourbillon un écoulement dont les lignes de courant sont des cercles con-
centriques tels que celui de la figure 9.58. Suivant la manière dont la vitesse varie, un
tel écoulement peut être irrotationnel ou pas. Pas exemple, si la vitesse varie de ma-
nière inversement proportionnelle à la distance de l’axe de rotation, l’écoulement est
irrotationnel.

Si l’on superpose l’écoulement de la figure 9.58 à celui de la figure 9.56, les lignes de
courant se resserrent au-dessus de l’obstacle alors qu’elle s’en écartent en dessous. Les
points d’arrêt migrent en dessous de l’obstacle (fig. 9.59). A la section suivante, dans
l’exemple 9.18, nous reviendrons sur la réalisation d’un tel écoulement et sur ses con-
séquences, en parlant de l’effet MAGNUS.

9.10 DYNAMIQUES DES FLUIDES VISQUEUX

Dans la section précédente, nous avons étudié le comportement des fluides parfaits,
une approximation que le grand physicien et mathématicien John von Neumann ap-
pelle de l’eau sèche. Nous allons nous approcher de la réalité en prenant en compte la
viscosité inhérente à tous les fluides.

9.10.1 Frottement dans les fluides

Notre expérience quotidienne nous permet de constater que tout déplacement dans un
fluide, qu’il soit liquide ou gazeux, ou tout écoulement d’un fluide, est soumis à une
résistance. Nous attribuons cette résistance à la viscosité des fluides.

Lors de la modélisation des écoulements, il est nécessaire de distinguer les deux types
de régimes que nous avons mentionnés à la section 9.9.1:

• Le régime laminaire: l’écoulement ou le déplacement dans le fluide a lieu de
telle manière que les lignes de courant (trajectoires suivies par les particules
du fluide) ne se croisent jamais (fig. 9.51). On peut alors appliquer au fluide un
modèle de couches adjacentes qui glissent les unes contre les autres (comme
les cartes d’un jeu que l’on étale sur une table).

• Le régime turbulent: il apparaît lorsque le déplacement ou l’écoulement se fait
à une vitesse supérieure à une certaine vitesse critique. Au delà de cette
vitesse, les frottements internes sont tels qu’il y a apparition de tourbillons.
Dans cette situation, les dissipations d’énergie sont beaucoup plus importantes
qu’en régime laminaire.

Frottement en régime laminaire. La figure 9.60 montre une expérience possible pour
déterminer la paramètre qui détermine l’intensité des forces de frottement dans un flui-
de visqueux. Dans un récipient 1, on place un cylindre 2 pouvant tourner autour de son
axe sans frottement notable. Entre les deux cylindres, dont les rayons sont pratique-
ment les mêmes, on introduit un liquide jusqu’à une hauteur h. On entraîne le cylindre
intérieur au moyen d’une force de module F choisi de telle sorte que la vitesse de ro-
tation soit constante. On peut alors constater que la force d’entraînement est directe-
ment proportionnelle à l’aire de contact A du fluide avec le cylindre, à la vitesse v,
inversement proportionnelle à l’épaisseur ∆x de la couche de fluide. Si ces paramètres
sont maintenus constants, elle varie en fonction du fluide considéré.

Interprétation: à cause de sa viscosité, le fluide adhère à la paroi mobile qui l’entraîne
dans son mouvement. À l’opposé, il adhère à la paroi fixe, ce qui implique que la vi-
tesse d’écoulement varie d’une paroi à l’autre. La vitesse d’écoulement évolue comme

r

v(r)

FIGURE 9.58 Écoulement tour-
billonnaire.

FIGURE 9.59 Superposition d’un
écoulement potentiel et d’un écou-
lement tourbillonnaire.

h
A

F

∆x

FIGURE 9.60 Expérience servant à
déterminer le comportement d’un
fluide en régime laminaire. Le flui-
de pris en sandwich entre deux cy-
lindres est entraîné par le
mouvement du cylindre intérieur.
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si le fluide était constitué de couches adjacentes qui glissent les unes par rapport aux
autres (fig. 9.61a)I. Ce phénomène de cisaillement est dû au fait que la quantité de
mouvement s’écoule latéralement dans le fluide (dans la figure 9.61b, le mouvement
a lieu horizontalement, mais la quantité de mouvement injectée dans les couches su-
périeures doit s’écouler verticalement vers la terre).

La prise en compte des résultats de l’expérience et leur interprétation nous permettent
d’énoncer:

À partir de cette loi générale, on peut déduire des lois spécifiques.

Couche limite. On appelle couche limite la couche de fluide entraînée (de manière dif-
férentielle, c’est-à-dire variant d’un endroit à l’autre comme le montre la figure 9.62)
par un objet en mouvement dans un fluide ou retenue par un obstacle. On comprend
facilement que l’épaisseur de cette couche croît avec les dimensions linéaires de l’obs-
tacle et la viscosité du fluide et décroît avec la masse volumique du fluide et sa vitesse.
La modélisation de ce phénomène permet de montrer que cette couche limite a pour
ordre de grandeur:

(9.85)

où L représente une dimension linéaire caractéristique de l’obstacle.

L’analyse de la répartition spatiale d’écoulements débouche sur des équations diffé-
rentielles dans lesquelles la variable temporelle est remplacée par une ou plusieurs va-
riables spatiales. Les conditions initiales sont alors remplacées par des conditions aux
limites. L’exemple 9.16 illustre ce genre de situation.

EXEMPLE 9.16. Établissement de la loi de HAGEN-POISEUILLE.

Un fluide de masse volumique ρ et de viscosité dynamique η s’écoule à travers une conduite
cylindrique de longueur l dont le rayon R est inférieur à l’épaisseur d de la couche limite. En
admettant que l’écoulement est laminaire, déterminez (a) le profil des vitesses d’écoulement;
(b) l’intensité du flux volumique total et la valeur de la résistance à l’écoulement; (c) comment
la résistance à l’écoulement dépend de la vitesse moyenne de l’écoulement.

SOLUTION: (a) Nous devons tenir compte du fait que la vitesse d’écoulement est variable, nulle
sur les parois, maximale sur l’axe du cylindre. Considérons un volume de fluide trouvant place
dans un cylindre de rayon r (fig. 9.63). La force de frottement interne qui s’exerce sur le man-
teau du cylindre de fluide est donnée par la loi de NEWTON. Dans notre repère, elle se projette
négativement:

Transport de quantité de mouvement

v

v

x∆x
∆v

a.

b.

FIGURE 9.61 Modèle de couches
adjacentes: (a) le fluide pris en
sandwich entre les deux plaques
adhère à la plaque mobile et à la
plaque fixe; il s’établit un gradient
de vitesse entre les deux plaques;
(b) la quantité de mouvement injec-
tée dans le fluide par la plaque
supérieur s’écoule à travers le
fluide.

La force de frottement interne entre deux couches de fluide d’aire A sépa-
rées par une distance ∆x et qui ont une vitesse relative ∆v est, après pas-
sage à la limite, donnée par:

(9.84)

Le coefficient de proportionnalité η, qui se mesure en Pa·s, est appelé coef-
ficient de viscosité dynamique du fluide. Le facteur dv/dx, qui décrit la va-
riation locale de la vitesse, est le gradient de vitesse. Un fluide qui obéit à
la loi ci-dessus (loi de NEWTON) est dit newtonien.

 
F A

d

dxfr = η v

δ

FIGURE 9.62 Lorsqu’un fluide
s’écoule le long d’une paroi fixe ou
autour d’un obstacle, la vitesse sur
la paroi ou sur l’obstacle est nulle.
On appelle couche limite la couche
de fluide à l’intérieur de laquelle la
vitesse passe de la valeur nulle
à la valeur de l’écoulement non
perturbé.

 
δ η

ρ
∝ L

v

r
R

dr

l

P1

P2

FIGURE 9.63 Pour déterminer le
flux volumique total, il est néces-
saire de tenir compte de la variation
radiale de la vitesse. On le fait en
subdivisant l’écoulement en cylin-
dres annulaires d’épaisseur dr.
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En régime stationnaire, elle est équilibrée par la force pressante due à la différence de pression
entre la section d’entrée et celle de sortie. Cette force se projette positivement:

En égalant ces deux équations, nous trouvons:

L’intégration de chacun des membres donne:

La valeur de la constante d’intégration C est obtenue en exigeant que la vitesse d’écoulement
soit nulle au niveau de la paroi, donc pour r = R. Nous obtenons:

Le profil des vitesses est parabolique, ce que confirme la figure 9.64.

(b) Le flux volumique n’est pas constant sur toute la section, vu que la vitesse d’écoulement va-
rie. Nous devons donc l’évaluer en sommant tous les flux volumiques élémentaires dIV à travers
les cylindres annulaires compris entre r et r + dr (fig. 9.63):

Le flux total s’obtient par intégration:

La dernière égalité est la loi de résistance hydraulique. Nous en déduisons que la résistance à
l’écoulement d’un fluide de viscosité h transporté à travers une conduite cylindrique de longueur
l et de diamètre D inférieur à la double épaisseur de la couche limite est donnée par :

C’est la loi de HAGEN-POISEUILLE que nous avons utilisée dans le premier chapitre, à la
section 1.7.2. La relation que nous venons de démontrer explique l’observation que nous avions
faite au chapitre 1, à savoir que la pression diminue linéairement le long d’une conduite qui
transporte un fluide en régime laminaire.

(c) Pour savoir comment la force de frottement dépend de la vitesse d’écoulement, nous partons
de la loi de résistance:
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FIGURE 9.64 Visualisation du pro-
fil parabolique de la répartition des
vitesses d’un écoulement laminaire
dans une conduite de diamètre infé-
rieur au double de l’épaisseur de la
couche limite (FRAUENFELDER /
HUBER, Physik, fig. 6.56, tous
droits réservés).
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Comme nous l’avons dit plus haut, la force de frottement est compensée par la force pressante,
ce qui nous permet d’écrire (en ne travaillant que sur les modules):

Nous pouvons remplacer l’intensité du flux volumique par le produit de l’aire de la section et
d’une vitesse d’écoulement moyenne; il en résulte:

ce qui nous permet de conclure qu’en régime laminaire, la force de frottement visqueux est pro-
portionnelle à la vitesse moyenne d’écoulement et à la longueur l de la conduite:

C’est pour cette raison que, le long d’un oléoduc, on doit introduire des stations de pompage
régulièrement espacées afin de maintenir une pression suffisante pour entretenir le courant.

B

Loi de Stokes. De manière analogue à ce qui a été fait dans l’exemple 9.16, on peut
trouver que:

Dans un viscosimètre à bille, on mesure la vitesse de chute stationnaire d’une bille de
diamètre connu pour déterminer la viscosité du fluide dans lequel elle tombe. Les
gouttelettes de brouillard sédimentent en régime laminaire. Elles sont donc soumises
à une force de frottement donnée par la loi de Stokes. Il en va de même des particules
en suspension dans un fluide; pour augmenter la vitesse de sédimentation et pour les
séparer en fonction de leur masse volumique, on a recours à la centrifugation, comme
le montre l’exemple 9.14.

EXEMPLE 9.17. Détermination de la vitesse de chute stationnaire en régime laminaire.

Déterminer la vitesse de chute stationnaire d’une bille sphérique de rayon égal à 0.5 cm et de
masse égale à 1.4 g dans une huile de masse volumique égale à 850 kg m-3 et dont le coefficient
de viscosité vaut 0.188 Pa·s.
SOLUTION: La bille est soumise à trois forces: la pesanteur, la poussée d’ARCHIMÈDE et le
frottement visqueux. La vitesse stationnaire correspond à l’état d’équilibre:
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La force de frottement exercée sur une sphère de rayon R qui se déplace à
une vitesse de module v dans un fluide de viscosité η est donnée par

(9.86)

pour autant que l’écoulement du fluide autour de la sphère reste laminaire.
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Nous obtenons pour la vitesse stationnaire:

B

9.10.2 Similitude dynamique et nombre de REYNOLDS

L’étude générale du passage du régime laminaire au régime turbulent (fig. 9.65) est
possible grâce à la théorie des similitudes dynamiques.

Cette théorie permet entre autres de résoudre des problèmes aérodynamiques à partir
de modèles réduits (essais en soufflerie). Le modèle réduit doit satisfaire à trois critè-
res de similitude:

• similitude géométrique: le modèle doit être une reproduction géométrique
exacte (échelle réduite) de l’original;

• similitude cinématique: le profil des vitesses d’écoulement autour du modèle
est semblable à celui de l’original, le rapport des modules des vitesses entre
l’original et le modèle est une constante;

• similitude dynamique: le rapport des forces et des pressions aux points corres-
pondants est égal à un facteur d’échelle constant.

Les similitudes peuvent être exprimées au moyen de nombres sans dimension (nombre
de REYNOLDS, de Froude, de Mach, de Strouhal, etc.). Le choix de l’un ou de l’autre
de ces nombres dépend de la particularité du processus auquel on s’intéresse.

Le nombre de REYNOLDS est celui qui est le plus souvent utilisé. Il exprime le rapport
des forces d’inertie et des forces dues à la viscosité. Si nous désignons par r la masse
volumique du fluide, par v∞ la vitesse d’écoulement loin de l’obstacle, par L une di-
mension caractéristique de l’obstacle ou de l’écoulement et par η la viscosité dynami-
que du fluide, la densité de flux convectif de quantité de mouvement est égale au
produit de la masse volumique et du carré de la vitesse. Le flux convectif lui-même est
égal au produit de la densité de flux et de l’aire L2 de la section à travers laquelle il
s’écoule. La force de frottement due à la viscosité est, en vertu de la loi de NEWTON

égale au produit de la viscosité, du gradient de vitesse que nous approximons par v∞/L
et de l’aire L2 de la surface à travers laquelle la quantité de mouvement s’écoule laté-
ralement, créant une contrainte de cisaillement. Nous avons donc:

(9.87)

Vu que la section à travers laquelle s’écoule la quantité de mouvement est la même
pour les deux forces mises en rapport, le nombre de REYNOLDS peut également être
interprété comme le rapport de flux convectif de quantité de mouvement et de son flux
diffusif (la viscosité contraint la quantité de mouvement de diffuser latéralement à tra-
vers le fluide).

Deux écoulements sont équivalents s’ils ont le même nombre de REYNOLDS. On re-
marque que, pour un nombre de REYNOLDS constant, les dimensions linéaires de
l’obstacle et la vitesse de l’écoulement sont inversement proportionnelles. Cela expli-
que pourquoi il faut donner aux souffleries de grandes dimensions, pour qu’elles puis-
sent accueillir des modèles suffisamment grands. En effet, si la vitesse de l’air devient
trop grande, on ne peut plus le considérer comme incompressible.
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me laminaire au régime turbulent a
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Ce nombre de REYNOLDS critique n’est pas une constante, mais peut varier suivant les
circonstances (rugosité des parois, conditions à l’injection, etc.) Par exemple, on trou-
ve dans la littérature pour l’écoulement dans une conduite cylindrique de diamètre D
un nombre de REYNOLDS critique égal à 2320 (en fait, ce nombre peut varier entre
2200 et 40000). Cela signifie que pour de l’eau (h = 1.21·10-3 Pa·s) dans un tube cy-
lindrique de dimension L = D = 2 cm, la vitesse critique devient égale à 14.0 cm s-1.
Le banal robinet du lavabo nous permet de vérifier quotidiennement cette estimation:
s’il est peu ouvert, l’eau s’écoule dans un filet clair et lisse; s’il est fortement ouvert,
l’eau s’écoule en régime turbulent.

Pour une sphère plongée dans un écoulement, le nombre de REYNOLDS critique est ap-
proximativement de 10. La figure 9.66 montre comment le profil de l’écoulement évo-
lue en fonction de ce nombre et comment le passage au régime turbulent se fait
progressivement.

9.10.3 Résistance et frottements en régime turbulent

La figure 9.66 montre également comment se forment les tourbillons: à cause des frot-
tements dans la couche limite, les particules de fluide proches de l’obstacle perdent de
l’énergie et s’accumulent derrière l’obstacle (zone de fluide mort). Ces masses sont
mises en mouvement de rotation par le frottement des couches voisines et sont chas-
sées de la zone de fluide mort par l’arrivée de nouvelles particules.

La formation des tourbillons (leur mise en mouvement) se fait aux dépens de l’énergie
cinétique du fluide en mouvement. Les forces de frottement en régime turbulent crois-
sent donc avec le carré de la vitesse. Des expériences répétées et l’étude théorique per-
mettent de montrer qu’elles sont proportionnelles à la grandeur ρv2/2 que l’on appelle
la pression dynamique (on vérifie en effet que cette expression a la dimension d’une
pression), et qu’elles dépendent de la géométrie de l’objet.

Le passage du régime laminaire au régime turbulent se fait à une certaine
vitesse, appelée vitesse critique vcrit , à laquelle on associe un nombre de
REYNOLDS critique

(9.88)
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FIGURE 9.66 (a) Mise en évidence
du passage progressif du régime la-
minaire au régime turbulent en
fonction du nombre de REYNOLDS
(FRAUENFELDER / HUBER, Physik,
fig. 6.59, tous droits réservés). (b)
Pour un nombre de REYNOLDS net-
tement au-dessus de la valeur criti-
que, les tourbillons qui se forment
derrière l’obstacle sont chassés de
la «zone de fluide mort» par l’arri-
vée de fluide et se détachent, for-
mant un traînée de tourbillons dont
le sens de rotation alterne. Cette
traînée est appelée sillage tour-
billonnaire de VON KARMAN.
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La force de résistance dans un écoulement turbulent est donnée par:

(9.89)

Dans cette relation, Aapp est appelé la section apparente de l’obstacle. Cx
est un nombre sans dimension, appelé coefficient de traînée, qui dépend de
la forme géométrique de l’objet (symbolisée par j), de la forme de l’écou-
lement (caractérisée par le nombre de REYNOLDS Re), ainsi que de la ru-
gosité de la surface (caractérisée par la hauteur de rugosité relative ε): 

(9.90)

 F C Afr, turb x app= ρv2

2

C fx , Re,= ( )ϕ ε
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La figure 9.67 de l’exemple 9.18 montre comment cette valeur évolue pour une sphè-
re, autant en fonction du nombre de REYNOLDS que de sa texture.

EXEMPLE 9.18. Trajectoire d’une balle de tennis de table.

Analysez la trajectoire d’une balle de tennis de table en fonction de sa vitesse de rotation:
(a) évaluez la plage des valeurs du nombre de REYNOLDS pour une vitesse de module variant de
1 m s-1 à 50 m s-1; (b) spécifiez les forces agissant sur la balle et déterminez le module de cha-
cune de ces forces pour une vitesse moyenne de module égal à 10 m s-1, et une vitesse de rota-
tion de 20 tr s-1; (c) modélisez le système et simulez son comportement pour différentes valeurs
et divers sens de la vitesse de rotation.

SOLUTION: (a) Dans l’équation (9.87), nous introduisons les valeurs de la masse volumique
de l’air égale à 1.2 kg m-3, le diamètre de la balle égal à 40·10-3 m, et la viscosité dynamique de
l’air égale à 1.8·10-5 Pa s-1, ce qui donne, pour la plage de vitesses considérées:

Dans ce domaine, le coefficient de traînée est pratiquement constant, de valeur égale à 0.5.

(b) Pendant son vol, la balle est soumise à trois forces: la force de pesanteur FG:

la résistance de l’air FTraînée:

où uv est le vecteur unitaire associé au vecteur vitesse. Le coefficient de traînée Cx varie en
fonction du nombre de REYNOLDS.

La troisième force est l’effet MAGNUS FMagnus, dont l’expression varie d’un auteur à l’autre.
Nous adoptons la version suivante3:

où uω × uv est le produit vectoriel des vecteurs unitaires liés respectivement à la vitesse de ro-
tation et à la vitesse de translation. Ce produit rend compte du fait que l’effet MAGNUS s’exerce
perpendiculairement aux deux vecteurs de vitesse. Le coefficient Cz est le coefficient de

3. ROBINSON G. and ROBINSON I. (2013): The motion of an arbitrary rotating spherical pro-
jectile and its application to ball games, Physica Scripta 88, Number 1.

2 6 103 5. ⋅ < ⋅Re < 1.4 10

FIGURE 9.67 Coefficient de traî-
née en fonction du nombre de REY-
NOLDS pour une sphère lisse (tennis
de table) ou rugueuse (tennis,
baseball).
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portance; il varie en fonction du rapport entre vitesse de rotation et vitesse de translation. Ce
rapport, appelé coefficient de spin S:

est le quotient de la vitesse circonférentielle et de la vitesse de translation.

Si nous prenons une vitesse moyenne de module égal à 10 m s-1, et une vitesse de rotation de
20 tr s-1, le coefficient de spin est égal à 0.25, ce qui correspond à une valeur de 0.26 pour le
coefficient de portance. Les valeurs respectives des modules des forces entrant en jeu sont, à
l’instant initial:

(c) Pour modéliser le comportement dynamique de la balle, nous nous plaçons dans un repère
Oxyz avec l’axe Ox coïncidant avec l’axe de la table, l’axe Oy parallèle au filet et l’axe Oz per-
pendiculaire à la table, dirigé vers le haut. L’origine est placée sur la ligne de fond, au milieu de
la largeur et au niveau de la table.

La figure 9.68 montre la composante suivant Oz du modèle. La grandeur Coeff représente le
facteur commun à la force de traînée et à l’effet MAGNUS, à savoir Aapp·ρv2/2.

Le modèle a servi à simuler, dans un premier temps, la trajectoire d’une balle frappée 50 cm
derrière la ligne de fond et 25 cm au-dessus du niveau de la table, sous un angle positif de 15°,
dans l’axe de la table, avec une vitesse initiale de module égal à 7 m s-1. Le paramètre variable
est la vitesse de rotation imprimée à la balle de telle manière que le vecteur ωωωω ait une seule com-
posante non nulle, parallèle à Oy.

La trajectoire la plus courte, qui frôle le filet, correspond à une rotation avant de 10 tours par
seconde, un coup que l’on appelle topspin. La rotation est provoquée par une frappe près du pôle
nord de la balle, et l’adhérence entre la balle et le revêtement de la raquette imprime la rotation à
la balle. La circulation engendrée par cette rotation est opposée à l’écoulement de l’air au-dessus
de la balle alors qu’elle va dans le même sens en dessous. La pression est plus élevée au-dessus,
et l’effet MAGNUS va dans la même direction et le même sens que la force de pesanteur.
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FIGURE 9.68 Modèle du compor-
tement dynamique d’une balle de
tennis de table. La figure ne montre
que la composante suivant Oz.
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FIGURE 9.69 Trajectoires d’une
balle de tennis de table: la vitesse
initiale et l’angle de départ sont les
mêmes, la vitesse de rotation varie
en valeur et en sens. 1: rotation
avant de 10 tr s-1; 2: aucune
rotation; 3: rotation arrière de
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La trajectoire numéro 2 correspond à une frappe dans le voisinage de l’équateur, ce qui n’im-
prime que peu ou pas de rotation à la balle. Seule la force de pesanteur la fait redescendre sur la
table.

Lorsque le joueur frappe la balle près du pôle sud (on parle de balle coupée), il engendre une
rotation arrière. Les écoulements d’air sont inversés par rapport au topspin, et l’effet MAGNUS

est opposé à la force de pesanteur. La trajectoire est allongée.

Le tableau ci-dessous récapitule les paramètres les plus significatifs de chacune de ces trajec-
toires.

Il est rare que le vecteur ωωωω n’ait qu’une seule composante non nulle. Dans un tel cas, l’effet
MAGNUS s’exerce également en dehors d’un plan vertical, ce qui entraîne une déviation latérale
de la trajectoire. À titre d’exemple, considérons un coup où la rotation imprimée à la balle est
caractérisée par un vecteur ωωωω parallèle au plan Oyz. Les paramètres sont énumérés dans le ta-
bleau ci-dessous et les deux projections de la trajectoire apparaissent dans la figure 9.70.

Dans le tennis de table de haut niveau, les joueurs sont souvent très éloignés de la table, autant
en profondeur que latéralement: ils ne peuvent ramener la balle sur le table qu’en lui imprimant
une forte rotation, ce qui engendre des trajectoires fortement incurvées, comme le montre
l’exemple de la figure 9.71.

B

Résumé du chapitre

Si la grandeur extensive fondamentale en mécanique est la quantité de mouvement p,
l’équation de bilan est: , où Ip,cond et ΣΣΣΣp représentent respectivement
la somme des flux de quantité de mouvement par conduction et la somme des apports
en mode radiatif. Cette équation de bilan correspond à la deuxième loi de NEWTON, si
nous faisons correspondre à la somme des flux de quantité de mouvement par conduc-
tion la somme F des forces dues au contact entre des corps et si nous assimilons l’ap-
port par rayonnement à la force de pesanteur mg. L’équation de bilan devient

. Sachant que le taux de variation de la quantité de mouvement est
, on retrouve la forme usuelle de l’équation de mouvement du point

matériel.

Coup vrot / t s-1 tvol / s vimpact/ m s-1 Apogée / m

1 Topspin 10 0.41 5.55 0.38

2 Sans effet 0 0.47 5.37 0.40

3 Coupé -10 0.58 5.09 0.46

Coup vrot / t s-1 tvol / s vimpact/ m s-1
Apogée / m

Déviation / m

4
Sidespin y: 8, z: 10 0.45 5.86

0.42

5 0.22

FIGURE 9.70 Trajectoire d’une
balle de tennis de table frottée laté-
ralement (sidespin). 4: vue
latérale; 5: vue verticale. 0
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FIGURE 9.71 Le sidespin peut ser-
vir à ramener sur la table une balle
fortement déportée latéralement.
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Qu’en est-il des deux autres lois? La première est un cas particulier de la deuxième et
les deux énoncés sont équivalents si l’on tient compte de la correspondance entre for-
ces et flux de quantité de mouvement. La troisième, la loi d’action et de réaction, est
nécessaire dans la vision de NEWTON parce que les interactions entre les systèmes sont
formulées au moyen de forces attribuées à chacun des systèmes considérés isolément.
Si en revanche l’interaction est modélisée au moyen d’échange de quantité de mouve-
ment, il n’est pas nécessaire d’énoncer une loi particulière, puisqu’il est évident que
l’intensité du flux émergent du premier système est égale et opposée à celle du même
flux entrant dans le second système.

Comme les équations sont énoncées par rapport à un repère, il est nécessaire d’énoncer
une règle de correspondance entre les flux et les forces. À un flux de quantité de mou-
vement entrant dans un élément d’un système ou à un taux de source positif corres-
pond une force dirigée dans le sens de référence positif, à un flux sortant de cet élément
du système ou à un taux de source négatif une force de sens opposé au sens de réfé-
rence positif.

Un flux de quantité de mouvement entraîne un flux d’énergie donné par le produit sca-
laire du potentiel (la vitesse) et de l’intensité du flux. Si l’on substitue une force au flux
de quantité de mouvement, le flux d’énergie correspond à la puissance de cette force:
P(F) = v·F. La puissance du processus lié au flux de quantité de mouvement entre
deux niveaux de la vitesse v, toujours associé à un transbordement d’énergie, est défi-
nie sans ambiguïté par: Pproc = –∆v·⏐Ip⏐et ne dépend pas du choix du référentiel. La
puissance du processus sera positive si le processus libère de l’énergie (c’est le cas
lorsque le processus est spontané, c’est-à-dire lorsque la vitesse décroît), négative si le
processus lie (absorbe) de l’énergie (ce qui est le cas lorsque le processus est contraint
et entraîne une augmentation de la vitesse).

Lors des interactions, les systèmes peuvent accumuler de l’énergie, soit sous forme ca-
pacitive en tant qu’énergie cinétique EC = 1/2 mv2, soit sous forme inductive, par
exemple dans un ressort EL = 1/2 kx2.

Lorsque deux objets sont en contact et échangent de la quantité de mouvement, on peut
décomposer la force associée à ces flux de quantité de mouvement en deux composan-
tes, la première perpendiculaire à la surface de contact, la force normale Fn, la seconde
parallèle à la surface de contact, la force de frottement sec ou dynamique Ffr en cas de
mouvement réciproque, ou la force d’adhérence Fadh ou force de frottement statique
en l’absence de mouvement réciproque. En première approximation, la force de frot-
tement est proportionnelle à la force normale: Ffr = µ Fn. Par contre, la force d’adhé-
rence évolue entre deux limites: 0 ≤ Fadh ≤ Fadh, max = µadh Fn. Si la limite supérieure
est dépassée, le système bascule en régime dynamique.

La présence d’éléments inductifs dans un système, par exemple un ressort, peut entraî-
ner l’apparition d’oscillations.

Le mouvement d’un solide rigide peut être décomposé en un mouvement de transla-
tion de son centre de masse que l’on traite comme celui d’un point matériel :

, où F représente la somme des forces extérieures, et une rotation autour
d’un axe instantané passant par le centre de masse: , où M est la somme
des moments extérieurs.

Pour un fluide parfait (sans viscosité), la pression P varie avec le potentiel ϕ. L’équa-
tion de l’équilibre hydrostatique: grad (P) = – ρ grad (ϕ) permet d’évaluer la pression
en fonction des variations du potentiel, pour autant que l’on connaisse les variations
de la masse volumique du fluide. Un objet plongé dans un fluide subit une poussée
orientée dans la direction de la pression décroissante, la poussée d’ARCHIMÈDE.

Le débit volumique d’un fluide parfait incompressible qui s’écoule à travers une con-
duite de section variable Ai est constant, ce qui est énoncé par l’équation de continuité

�p I Fp= =
�L I M= =L
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A1v1 = A2v2. En outre, l’équation de BERNOULLI: ρv2/2 + ρϕ + P = const exprime la
conservation de l’énergie. Le potentiel ϕ est égal à gz dans le cas de la pesanteur.

Les frottements dans les fluides visqueux influencent leur comportement dynamique.
On distingue deux régimes: les écoulements laminaires dans lesquels les lignes de
courant ne se croisent jamais, et au-delà d’une certaine vitesse critique, les écoule-
ments turbulents caractérisés par l’apparition de tourbillons.

En régime laminaire, la force de frottement entre les couches de fluides d’aire A est
donnée par la loi de NEWTON: Ffr = ηA·dv/dx, où η est le coefficient de viscosité dy-
namique. En général, les effets de la viscosité se manifestent essentiellement dans le
voisinage des obstacles ou des parois des conduites, à l’intérieur de ce que l’on appelle
une couche limite d’épaisseur δ ∝ √(ηL /ρv), où L est une dimension linéaire caracté-
ristique de l’obstacle.

Le passage du régime laminaire au régime turbulent se fait à une certaine vitesse, la
vitesse critique vcrit , à laquelle on associe un nombre de REYNOLDS critique défini
par Recrit = ρv∞,crit L/η, où v∞ représente la vitesse d’écoulement non perturbée. La
force de frottement en régime turbulent est donnée par: Ffr,turb = Cx Aapp ρv2/2. Aapp
est la section apparente de l’obstacle, Cx le coefficient de traînée.
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Problèmes
1. Une personne tire un bloc sur le sol à vitesse constante au

moyen d’une corde (fig. 9.72). Choisissez la direction posi-
tive dans le sens du mouvement. (a) Identifiez le circuit fermé
au travers duquel s’écoule la composante horizontale de la
quantité de mouvement. (b) Déterminez les flux de quantité
de mouvement et leurs signes relativement au bloc, à la per-
sonne et au sol. (c) Interprétez ces flux de quantité de mouve-
ment en termes de forces. (d) Il existe plusieurs relations
entre ces flux (forces). Lesquelles ont-elles à voir avec la troi-
sième loi de NEWTON? Qu’expriment les autres relations?

2. Une corde de longueur L, de section A, de masse par unité de
longueur λ constante, est suspendue à un crochet. Établissez
l’équation de bilan de la quantité de mouvement pour un petit
segment de la corde et déduisez-en l’équation différentielle
pour le cas continu. Déterminez la densité de courant de
quantité de mouvement dans la corde en fonction de la positi-
tion. Quelle est la relation de cette grandeur par rapport à la
contrainte mécanique dans la corde?

3. Une balle de tennis est posée au sommet d’un ballon de foot-
ball. On les laisse tomber ensemble. Les masses respectives
sont de 442 g et 56 g. Le diagramme de la figure 9.89 montre
les positions des centres des deux objets en fonction du
temps. La résistance de l’air peut être considérée comme
négligeable. (a) Isolez chacun des deux objets pour la durée
du rebond sur le sol et identifiez toutes les forces auxquelles
ils sont soumis. Admettez que la balle de tennis est en contact
avec le ballon durant le rebond. (b) Déterminez les valeurs de
la vitesse et de la quantité de mouvement juste avant et juste
après le rebond. (c) Combien de quantité de mouvement est
échangée avec le sol durant le rebond? Si la durée du rebond
est de 4 ms, que vaut l’intensité moyenne de la force entre le
ballon et le sol? (d) Combien d’énergie a été dissipée? (e) En
l’absence de dissipation, la quantité de mouvement échangée
serait-elle plus grande, égale, ou plus faible que dans le cas
réel?

+ x

FIGURE 9.72
Problème 1
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FIGURE 9.73
Problème 3

4. Deux glisseurs équipés d’aimants glissent l’un vers l’autre
sur un rail à coussin d’air. Ils se repoussent lorsqu’ils se rap-
prochent l’un de l’autre. Comme le flux d’air est relativement
faible, le frottement est notable. La figure 9.74 montre l’évo-
lution des vitesses respectives en fonction du temps. Les
masses des glisseurs 1 et 2 sont respectivement de 0.868 kg et
0.618 kg.

(a) Laquelle des deux courbes d’évolution de la vitesse (a ou
b) est-elle relative au glisseur plus léger ? Pourquoi ? (b)
Admettez une force de frottement constante de coefficient de
frottement dynamique µ. Déterminez la valeur de ce coeffi-
cient de frottement à partir des données expérimentales. (c)
Déterminez l’intensité de la force de répulsion lorsque la dis-
tance entre les deux glisseurs est minimale. (d) Selon quel
mode l’échange de quantité de mouvement se déroule-t-il?

5. Le comportement du tampon d’un wagon de chemin de fer a
été simulé au moyen d’un modèle. Le wagon, de masse égale
à 10 t, se déplace horizontalement et bute contre un obstacle
fixe à une vitesse de module égale à 5 m s-1. Les propriétés
élastiques du tampon sont modélisées comme un ressort
linéaire de longueur égale à 0.50 m. Le frottement interne est
considéré comme une force constante de même intensité en
compression et en détente. La figure 9.75 montre l’évolution
de l’accélération durant le rebond sur l’obstacle.

(a) Le ressort du tampon ne peut pas être comprimé sur une
longueur supérieure à sa longueur propre, même si on
néglige le frottement interne. (a) Quelle doit être la valeur
minimale de la constante d’élasticité du ressort pour que cela
soit possible ? (b) En en tenant pas compte du frottement
interne, déterminez la durée de la collision. (c) Quelle est la
raison de l’apparition du segment vertical entre les deux moi-
tiés de la courbe de variation de l’accélération? (d) Détermi-
nez la valeur de la force d’amortissement.
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6. Un bloc de masse égale à 2.0 kg glisse vers le bas d’un plan
incliné. Il est soumis à un frottement dynamique de coeffi-
cient égal à 0.30. Un ressort de constante d’élasticité égale à
2000 N m-1 est fixé à l’avant du bloc (fig. 9.76).

Lorsqu’il percute la paroi, le bloc est repoussé vers le haut et
redescend un certain nombre de fois. Le diagramme de la
figure 9.77 montre l’évolution de la position (ligne traitillée)
et du module de la vitesse (ligne continue) du bloc.

(a) Déterminez et dessinez les forces qui agissent sur le bloc
avant la collision avec la paroi, puis durant la collision (lors-
que le bloc est encore en train de descendre). (b) À partir du
graphique, déterminez la valeur de l’accélération avant la
collision. (c) Quelle est l’inclinaison du plan? (d) Quelle est
la valeur maximale de l’accélération? (e) Pourquoi le graphi-
que de la vitesse présente-t-il un coude aux instants 1.7 s et
2.6 s?

7. Un cycliste franchit un virage de rayon égal à 64 m à une
vitesse dont le module est donné par l’équation v= ct + d
avec c = 1.0 m s-2 et d = 4.0 m s-1. La masse totale du vélo et
du cycliste est de 50 kg. Considérez l’instant t = 4 s.

(a) Déterminez module et direction de l’accélération du
cycliste. (b) Dans la plan de la trajectoire, dessinez toutes les
composantes horizontales des forces qui agissent sur le vélo
et le cycliste. (c) Déterminez la valeur de la résistance de l’air
sachant que la cycliste a une section apparente de 1.0 m2 et
que le coefficient de traînée vaut 1.0. La masse volumique de
l’air est de 1.0 kg m-3. (d) Quelle doit être la valeur de la
force d’adhérence entre le sol et les roues ? Quelle est la
direction de cette force? Quelle doit être la valeur minimale
du coefficient d’adhérence pour éviter le dérapage? (e) Que
vaut le taux de dissipation d’énergie?

8. Une automobile de masse égale à 1000 kg se déplace dans un
virage plan de rayon égal à 200 m à une vitesse dont le
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FIGURE 9.76
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Problème 6

module croît linéairement de 36 km h-1 à 72 km h-1 en 5 s. La
surface apparente du véhicule est de 3.0 m2. La densité de
l’air et le coefficient de traînée sont respectivement de
1.2 kg m-3 et 0.5.

(a) Quelle distance le véhicule parcourt-il durant ces 5 s? (b)
Déterminez le module du vecteur d’accélération ainsi que
l’angle qu’il forme avec le rayon instantané 3 s après le début
du mouvement considéré. (c) À l’instant t = 5 s, le véhicule
atteint une plaque de verglas. Quel va être le mouvement du
véhicule (direction et accélération initiale)?

9. Un personne de masse égale à 60 kg est tirée à vitesse cons-
tante par un skilift le long d’une pente inclinée de 30°. Le
câble de traction est parallèle à la pente; il est tendu est peut
être modélisé comme une tige rigide. Le câble qui tire le
skieur forme un angle de 45° avec le câble de traction. Sa
masse et celle de la sellette sont négligeables. Le mécanisme
monté sur le câble de traction a une masse de 15 kg. Le coef-
ficient de frottement dynamique entre la neige et les skis vaut
0.20.

(a) Quelles sont les forces qui agissent respectivement sur la
personne et sur le mécanisme de traction? (b) Que vaut le
module de la force exercée par le câble de traction sur le
mécanisme de traction? (c) Que vaut le module de la force
exercée par la sellette sur la personne tractée?

10. Un bidon d’eau de masse égale à 10 kg est suspendu à une
corde de masse négligeable enroulée autour d’un treuil cylin-
drique de masse égale à 20 kg et de rayon égal à 6.0 cm. Ce
dispositif est fixé à la margelle d’un puits de 10 m de profon-
deur. On laisse aller la manivelle du treuil et le bidon plonge
vers le bas. En négligeant le frottement du treuil, déterminez
combien de temps durera la chute.

45°

30°

FIGURE 9.78
Problème 9

FIGURE 9.79
Problème 10
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11. Un yoyo de masse égale à 1.0 kg et de moment d’inertie égal
à 0.0025 kg m2 descend vers le bas, retenu par une ficelle
longue de 1.0 m enroulée autour de l’axe de 2.5 cm de rayon.

(a) Déterminez et dessinez les forces et les couples qui agis-
sent sur le yoyo et énoncez les équations de bilan de la quan-
tité de mouvement et du moment cinétique. (b) Déterminez
l’accélération du centre de masse. (c) Énoncez l’équation de
l’évolution de z(t) pendant la première descente. (d) En négli-
geant l’influence des frottements, esquissez le plus précisé-
ment possible le diagramme z-t du mouvement du centre de
masse pour une durée correspondant à quatre fois le temps
que dure la première descente. (e) Que vaut l’énergie cinéti-
que totale du yoyo à l’instant où il a déroulé la moitié de la
ficelle?

12. Un volant dont le moment d’inertie vaut 10.0 kg m2 est
entraîné par un moteur et freiné par un frein à friction. Ce
frein a une caractéristique de type ohmique.

Le couple délivré par le moteur croît linéairement dans le
temps selon la loi : IL (t) = at + b, avec a = 1.0 Nm s-1 et
b = 10.0 Nm. On observe que la vitesse angulaire du volant
varie comme le montre la figure 9.82.

z

FIGURE 9.80
Problème 11
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Problème 12

(a) Déterminez l’accélération angulaire et la valeur du cou-
ple moteur à l’instant t = 0 s. Que vaut le flux de moment
cinétique à travers le frein à friction? (b) Déterminez le flux
de moment cinétique à travers le frein à friction à l’instant
t = 5.5 s. (c) À partir de ces deux valeurs, déterminez la
caractéristique ohmique du frein à friction. Quelle est la
résistance de ce frein?

13. Un cylindre homogène de rayon égal à 5.0 cm et de masse
égale à 1.0 kg roule sans glisser vers le bas d’un plan incliné
de 30°. À partir de l’immobilité, il couvre une distance de 1.5
m en une seconde. La résistance de l’air peut être négligée.
(a) Que valent les modules de l’accélération linéaire et de
l’accélération angulaire? (b) Déterminez la valeur de la com-
posante de la force parallèle à la surface. (c) En quel point la
force normale agit-elle sur le corps? En d’autres termes, de
combien le point d’attaque de cette composante de la force
exercée par la surface sur le cylindre doit-elle être déplacée
vers l’avant par rapport à l’axe du cylindre?

14. Il s’agit de dimensionner le balancier d’une montre mécani-
que. Le ressort associé au balancier a une constante d’élasti-
cité égale à 1.78·10-7 N m-1. La période d’oscillation du
balancier doit être égale à une seconde. Le balancier consiste
en un tore fin. Le métal dont il est constitué a une densité de
7300 kg m-3. Le diamètre d du tore est de 1.0 mm. (a) Quel
devra être le rayon r du balancier ? (b) L’amplitude de
l’oscillation du balancier, qui est de 50° en régime station-
naire, décroît de 20% en 10 périodes si elle n’est pas entrete-
nue. Combien d’énergie doit être emmagasinée dans le
ressort d’entraînement si on le remonte une fois par jour?

15. Un cylindre de masse égale à 10 kg et de rayon égal à 6 cm
est posé sur un plan incliné de 30° alors qu’il tourne dans le
sens antihoraire à une vitesse angulaire de module égal à
100π s-1(fig. 9.84). Le cylindre se met à glisser sur la surface.
Le coefficient de frottement dynamique entre le cylindre et la
surface vaut 0.2.

(a) Quels sont les forces et les moments auxquels est soumis
le cylindre? (b) Que valent les accélérations linéaire et angu-
laire du cylindre? (c) Après combien de temps le cylindre se
mettra-t-il à rouler au lieu de glisser?

r
d

FIGURE 9.83
Problème 14
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FIGURE 9.84
Problème 15
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16. Un cylindre métallique de masse égale à 0.50 kg est attaché à
un élastique et roule sans glisser sur un plan incliné de 30°
dans un mouvement oscillant (fig. 9.85). Le graphique de la
figure 9.86 montre l’évolution de la vitesse de l’axe en fonc-
tion du temps. La résistance de l’air et le frottement dynami-
que peuvent être ignorés; l’amortissement observé est dû à la
dissipation dans l’élastique.

(a) Isolez le cylindre et introduisez les forces et moments
auxquels il est soumis.

(b) Formulez les équations de mouvement et les lois constitu-
tives.

(c) Quelle est l’intensité de la force exercée par l’élastique à
l’instant t = 3 s?

17. Un pendule de torsion (fig. 9.87) est
constitué d’une tige horizontale de
moment d’inertie Itige inconnu. La
tige est fixée en son milieu sur un
axe entraîné par un ressort spiral de
constante de torsion D également
inconnue. Deux disques de masse m
égale à 200 g chacun peuvent être
déplacés sur la tige. Leur épaisseur
peut être négligée. On veut détermi-
ner les deux paramètres inconnus
au moyen d’une expérience consis-
tant à mesurer la durée de la période en fonction de la dis-
tance d entre l’axe de rotation et la position de chaque disque.
Les résultats des mesures apparaissent dans le tableau 9.3.

(a) Exprimez le moment d’inertie total du pendule de torsion.
(b) Exprimez la période T de l’oscillation en fonction du
moment d’inertie et de la constante de torsion. (c) Montrez
que si on reporte dans un graphique le carré de la période T
en fonction du carré de la distance d, les points sont alignés

Élastique

Cylindre

x

FIGURE 9.85
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TABLEAU 9.3
Problème 17

d / cm T / s

8.0 1.92

12.0 2.56

16.0 3.24

20.0 3.96

sur une droite. Estimez les paramètres de cette relation
linéaire au moyen de la méthode des moindres carrés. (d) À
partir des résultats obtenus en (c), déterminez les valeurs du
moment d’inertie de la tige et de la constante de torsion.

18. Un fluide est confiné entre les parois de deux cylindres con-
centriques (fig. 9.88). L’espace entre les cylindres est très
étroit. Le cylindre intérieur est mis en rotation et on mesure
le couple et la vitesse angulaire. Déterminez la viscosité du
fluide à partir des données expérimentales (masse, couple,
vitesse angulaire).

19. Un liquide de masse volumique égale à 920 kg m-3 s’écoule
dans une conduite dont le diamètre décroît de 3.0 cm à
1.5 cm (fig. 9.89). La vitesse de l’écoulement à la petite sor-
tie est de 4.82 m s-1. (a) Calculez les valeurs des flux convec-
tifs de quantité de mouvement aux deux extrémités. (b) La
pression du fluide à l’entrée est de 1.10 bar. Calculez la
valeur du flux conductif de quantité de mouvement à l’entrée.
Comparez les valeurs des flux convectif et conductif.

20. Évaluez la force nécessaire pour maintenir en place la con-
duite du problème précédent. La pression de l’air environ-
nant est de 1.0 bar. Admettez un écoulement non dissipatif.

21. Une plaque d’aire égale à 0.50 m2 est tirée horizontalement
sur une surface horizontale. Une couche d’huile d’épaisseur
égale à 4.0 mm permet de réduire les frottements. Une force
de 25 N est nécessaire pour entraîner la plaque avec une
vitesse constante de module égal à 1.0 m s-1. Que vaut le
coefficient de viscosité dynamique de l’huile?

FIGURE 9.87
Problème 17

FIGURE 9.88
Problème 18

+ x

FIGURE 9.89
Problème 19
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22. Une petite bille d’acier de masse
égale à 2.09 g, de 4.0 mm de rayon,
s’enfonce dans de l’huile de colza
de densité égale à 920 kg m-3. La
profondeur en fonction du temps,
donnée par le tableau 9.4, a été
déterminée à partir d’un film.

(a) Utilisez les données expérimen-
tales pour déterminer le module de
la vitesse de la bille en fonction du
temps et reportez les valeurs dans
un diagramme v-t. Suivant quel
fonction la vitesse évolue-t-elle ?
Déterminez les paramètres de cette
fonction au moyen d’un ajustement
selon la méthode des moindres car-
rés.

(b) Énoncez les équations nécessai-
res pour la modélisation du mouve-
ment de la bille. Admettez que la
traînée est proportionnelle au
module de la vitesse de la bille,
avec un facteur de proportionnalité
f. Montrez que ces équations peu-
vent être combinées pour aboutir à
l’équation:

(c) Déterminez la valeur du coefficient de proportionnalité f.

TABLEAU 9.4
Problème 22

t / s z / cm

0 0

0.04 0.5

0.08 1.6

0.12 3.9

0.16 6.4

0.20 9.3

0.24 12.3

0.28 15.5

0.32 18.6

0.36 21.9

0.40 25.1

0.44 28.3

0.48 31.5

0.52 34.7

  m mg r g f�v v= − −4
3

3π ρhuile
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Dans le chapitre 5, nous avons étudié la réponse au chauffage et refroidissement de
corps à volume constant et le changement de phase de substances telles que l’eau, ce
qui nous a permis de découvrir des lois constitutives simples. En nous limitant à des
processus à volume constant, nous avons exclu les gaz de notre étude. Dans ce chapi-
tre, nous allons étendre notre analyse à des corps dont le volume et la température peu-
vent varier simultanément. Le gaz parfait et le rayonnement du corps noir serviront
d’exemple de tels matériaux.

 

10.1 R

 

ELATIONS

 

 

 

FONDAMENTALES

Nous commençons par formuler les équations de bilan relatives à des fluides dont le
volume varie lors de processus de chauffage ou de refroidissement et ajoutons les re-
lations relatives aux transferts d’énergie lors de ces processus.

 

10.1.1 Équations de bilan et relations énergétiques

Un volume d’air est beaucoup plus intéressant du point de vue thermodynamique
qu’un solide, vu qu’il couple les processus thermiques de chauffage et de refroidisse-
ment à des processus mécaniques de compression ou de détente. Ce couplage amène
de nouveaux effets qui peuvent être compris pour autant que nous arrivions à claire-
ment distinguer les processus sous-jacents (fig. 10.1).

 

É

 

quations de bilan relatives aux fluides parfaits. Vu qu’un fluide couple les proces-
sus thermiques et hydrauliques, nous devons formuler deux équations de bilan, l’une
pour l’entropie, l’autre pour le volume.

Pour ce qui concerne l’entropie, nous devons d’abord examiner les éventuelles irréver-
sibilités. Dans un gaz, il y a deux sources de production d’entropie. La première résul-
te de la diffusion de l’entropie lors du chauffage ou du refroidissement. Nous
admettrons que nous avons affaire à des corps uniformes et que l’entropie se répartit
sans résistance, donc sans production due à son transport. La seconde source possible
d’entropie serait due au frottement interne du fluide lors des processus de compression
ou de détente. Nous traitons ce cas de manière similaire; nous admettons que les frot-
tements internes sont négligeables.

FIGURE 10.1 Diagramme de pro-
cessus d’un fluide parfait soumis
simultanément à un chauffage ou re-
froidissement et une compression
ou détente. Chauffage signifie trans-
fert d’entropie et compression im-
plique destruction de volume. ΠV
est le taux de production du volume.

Système

T p

p

Is
S

IE, therm
E

T IE, compr

ΠV

V

Un fluide parfait est caractérisé par l’absence d’irréversibilité:

(10.1)

Pour un tel fluide, l’équation du bilan d’entropie est:

(10.2)

Π ΠS S, ,transmission de chaleur frottement+ = 00

 �S IS=
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Seul le chauffage ou le refroidissement peuvent entraîner des variations d’entropie
dans le modèle envisagé ici.

Dans ce chapitre, nous n’envisagerons pas de transfert de matière à travers les limites
du système. Comme nous considérons un matériau compressible, le volume n’est pas
conservé; il y a création de volume lors de la détente et destruction de volume lors de
la compression, raison pour laquelle nous introduisons un taux de production ΠV.
Ainsi:

 

(10.3)

 

Relations liées à l’énergie. Dans l’équation de bilan de l’énergie, nous devons pren-
dre en compte les deux processus auxquels peut être soumis un fluide, à savoir le
chauffage ou le refroidissement et la compression ou la détente. L’équation de bilan
de l’énergie fera donc apparaître deux flux:

 

(10.4)

IE, therm représente le flux d’énergie qui accompagne le transfert d’entropie lors du
chauffage ou du refroidissement. En vertu des relations énoncées au chapitre 5, ce flux
est égal à:

 

(10.5)

Nous devons encore évaluer le travail de compression d’un fluide. On comprime ce
fluide au moyen d’un piston qui se déplace à vitesse constante

 

v dans un cylindre im-
mobile (fig. 10.2). La quantité de mouvement est immédiatement évacuée (le cylindre
est immobile). Mais l’énergie amenée par le flux de quantité de mouvement est accu-
mulée dans le fluide comprimé. Évaluons le flux d’énergie mécanique:

 

(10.6)

Or, le taux de variation du volume correspond à son taux de production. Nous pouvons
donc conclure:

 

(10.7)

Le signe négatif devant le dernier terme des équations (10.6) et (10.7) indique que le
fluide reçoit de l’énergie durant la compression (taux de variation et production de vo-
lume négatifs) et qu’il en perd durant la détente pour la raison inverse. En résumé:

Nous pouvons maintenant élaborer les relations constitutives du fluide parfait.

 �V V= Π

 
�E I IE E= +, ,therm compr

I TIE S, therm =

+ x

IE Ip

Limites du système

v = 0v

FIGURE 10.2 Lors de la compres-
sion d’un fluide, de l’énergie est in-
troduite dans le système par
l’intermédiaire d’un processus mé-
canique. Durant la détente, l’énergie
s’échappe du système.

   I AP PVE , compr = • = • = = −v vI FP v �

I PE V, compr = − Π

Lors du processus de chauffage ou de refroidissement d’un fluide parfait,
la variation de son énergie est due aux flux d’entropie et aux variations de
son volume. Le taux de variation de l’énergie est donné par:

(10.8) �E I I TI PE E S V= + = −, ,therm compr Π
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Notre expérience nous enseigne qu’un fluide se dilate ou s’échauffe lorsque son entro-
pie augmente, à l’exception de l’eau entre 0°C et 4°C. Nous n’allons considérer ici
qu’un fluide parfait au sens des équations (10.1) et (10.2). Il n’y a pas de production
d’entropie et la variation de l’entropie est uniquement due au flux de chauffage ou de
refroidissement.

 

Compression ou détente isotherme d’un fluide parfait. Le problème qui se pose
lors d’une compression ou détente isotherme est qu’il faut refroidir ou chauffer pen-
dant le processus, ce qui veut dire que l’entropie ne fait pas ce qu’elle fait usuellement
dans les solides ou liquides, à savoir provoquer un abaissement ou une élévation de la
température. L’entropie peut provoquer deux phénomènes:

 

• elle peut provoquer un changement de volume sans variation de température;
dans ce cas, elle ne se manifeste pas de manière usuelle; on peut donc la quali-
fier de latente, ce dont nous tiendrons compte par l’introduction d’un paramè-
tre Λ que nous appellerons entropie latente;

 

• elle peut entraîner une variation de température (variation du niveau thermi-
que), ce dont nous tiendrons compte au moyen de l’introduction d’un paramè-
tre K qui est la capacité entropique que nous avons introduite au chapitre 5.

Venons-en au premier cas de la compression ou détente isotherme (fig. 10.3). Nous
décrivons le processus par la relation:

 

(10.9)

Le paramètre ΛV est l’entropie latente par rapport au volume ou entropie latente de
détente. Il nous indique combien d’entropie il faut fournir pour provoquer une détente
d’une unité de volume. Comme nous ne considérons que des fluides parfaits, le taux
de variation de l’entropie correspond au flux d’entropie:

 

(10.10)

L’entropie échangée lors de ce processus isotherme, qui correspond à la variation de
l’entropie accumulée, se calcule par intégration du flux d’entropie entre l’instant ini-
tial ti et l’instant final tf :

 

(10.11)

ou

 

(10.12)

Cette variation de l’entropie ne peut être évaluée que si nous connaissons la valeur de
l’entropie latente. Elle est très difficile à mesurer, vu que les gaz absorbent très peu
d’entropie par rapport à l’appareil qui sert à effectuer la mesure. Heureusement, la re-
lation entre l’entropie et la puissance due à la chute de celle-ci entre deux températures
nous permettront de déterminer l’entropie latente du fluide parfait à partir d’arguments
théoriques (section 10.3.4).

 

Chauffage du fluide parfait à volume constant. Nous considérons maintenant le
deuxième effet que peut avoir l’apport d’entropie dans un fluide parfait, à savoir une

T

V

Chauffage

Refroidissement

FIGURE 10.3 Diagramme T-V du
chauffage/refroidissement isother-
me d’un fluide parfait. Il y a une ex-
ception notable au comportement
esquissé ci-dessus, celui de l’eau
entre 0°C et 4°C (son entropie laten-
te est négative dans ce domaine).
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variation de température uniquement. Ce phénomène ne peut avoir lieu qui si l’on en-
ferme le gaz dans un récipient imperméable.

Pour le traitement de ce processus, nous introduisons, comme dans le cas du chauffage
des solides ou des liquides, la capacité entropique à volume constant que nous dési-
gnons par KV. Le taux de variation de l’entropie est donné par:

 

(10.13)

Ici, l’indice V sert à indiquer qu’il s’agit d’un chauffage à volume constant, ce qui n’est
pas le cas pour les équations (10.9) à (10.12) où l’indice signifie qu’il s’agit d’une en-
tropie latente par rapport au volume.

Comme il s’agit d’un fluide parfait, nous pouvons écrire:

 

(10.14)

Comme dans le cas du chauffage isotherme, il est instructif de représenter le processus
dans un diagramme T-V (fig. 10.4). En général, la capacité entropique est une fonction
à la fois du volume et de la température du corps. Nous pouvons déterminer la quantité
d’entropie échangée durant le chauffage isochore:

 

(10.15)

ou encore:

 

(10.16)

Pour les mêmes raisons que dans le cas de l’entropie latente, la détermination expéri-
mentale de la capacité entropique est délicate. Dans ce cas, nous résoudrons le problè-
me en recourant à une combinaison de méthodes théoriques et expérimentales
(section 10.3.6).
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FIGURE 10.4 Diagramme T-V du
chauffage/refroidissement isochore
d’un fluide compressible parfait.
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Lors du processus de chauffage ou refroidissement d’un fluide parfait, la
variation de son entropie est due aux flux d’entropie qui provoquent des
variations du volume et de la température:

(10.17)

Les flux d’entropie sont:

(10.18)

L’entropie échangée lors d’un tel processus est donnée par:

(10.19)
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1. Comment un gaz réagit-il à la chaleur (entropie)?

2. Quelle est la signification de l’entropie latente pour un fluide qui n’est
pas soumis à un changement de phase?

3. Que représente la capacité entropique à volume constant?

4. L’air de notre atmosphère est chauffé par le Soleil. Ce processus est-il
proche d’un chauffage à volume constant ou plutôt à pression
constante?

1. La température et le volume peuvent varier individuellement ou simul-
tanément.

2. C’est l’entropie qui provoque une variation de volume à température
constante, rapportée à l’unité de volume.

3. C’est l’entropie qui provoque une variation de température à volume
constant, rapportée à l’unité de température.

4. Chauffage à pression constante.

10.3 THERMODYNAMIQUE DU GAZ PARFAIT

Le gaz parfait est un système dont la température et le volume peuvent varier. Ces deux
grandeurs sont liées à une troisième propriété, la pression du gaz.

10.3.1 Équation d’état du gaz parfait

Nous avons énoncé la relation entre ces trois grandeurs à la section 6.5.1:

(10.20)

Rappelons que cette relation est valable pour toutes les substances dans un état de di-
lution suffisante (par exemple pour une substance telle que du sel dilué dans de l’eau),
et que les gaz réels s’approchent du comportement du gaz parfait si leur température
est élevée et leur densité basse. Seule l’expérience peut déterminer si ces critères sont
satisfaits. Ce que l’on peut retenir, c’est qu’une température suffisamment éloignée du
point de liquéfaction du gaz est considérée comme une température élevée.

Il est quelquefois utile d’écrire l’équation d’état du gaz parfait en termes de masse
volumique plutôt que de volume:

(10.21)

10.3.2 Nouvel énoncé de la relation constitutive

Souvent, le chauffage a lieu à pression constante. Il est donc utile d’exprimer le chauf-
fage au moyen d’une expression qui fait intervenir la pression et la température:
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(10.22)

Les nouvelles grandeurs constitutives sont appelées respectivement entropie latente
par rapport à la pression ou entropie latente de compression et capacité entropique à
pression constante. Il est aisé, pour un gaz parfait, d’établir le lien avec les mêmes
grandeurs liées au volume. Pour cela, nous utilisons la dérivée par rapport au temps de
l’équation des gaz parfaits:

(10.23)

ce qui nous permet de remplacer le taux de variation du volume V dans l’équation
(10.18):

(10.24)

Si nous comparons cette dernière expression avec l’équation (10.22) qui fait intervenir
la pression, nous trouvons que:

(10.25)

(10.26)

Ces relations sont particulièrement importantes, parce qu’elles permettent de détermi-
ner les entropies latentes (qui sont difficiles à mesurer) à partir des capacités qui sont
plus simples à mesurer.

10.3.3 Énergie échangée lors d’une compression isotherme

Avant de pouvoir déterminer les relations constitutives du gaz parfait, nous devons dé-
terminer l’énergie échangée lors d’une compression isotherme. Nous insérons l’équa-
tion de bilan de volume (10.3), ainsi que l’équation d’état du gaz parfait (10.20) dans
la forme générale (10.7) de l’énergie échangée lors de la compression d’un fluide
parfait:

Nous intégrons sur un intervalle de temps:

ce qui donne finalement:

(10.27)
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On remarquera que le résultat ne dépend que du rapport du volume final au volume
initial, et pas de leurs valeurs individuelles. Ainsi, quel que soit le volume initial, un
doublement du volume d’une mole de gaz à température ambiante entraînera l’émis-
sion d’une énergie de 1.7 kJ dans le milieu ambiant.

10.3.4 Relations constitutives du gaz parfait

Le gaz parfait est décrit au moyen de trois fonctions, la pression (10.20), l’entropie
latente (10.9) et la capacité entropique (10.13). Nous connaissons la première de ces
trois fonctions, mais pas les deux autres. Il est possible d’obtenir des informations sup-
plémentaires sur la base de considérations théoriques, en reprenant les réflexions de
CARNOT qui ont été abordées à la section 5.8.3 (fig. 5.55).

Considérons un cycle dans lequel les adiabatiques sont très courtes:

(10.28)

Comme le montre la figure 10.5, ce choix entraîne que:

ce qui nous permet de négliger le travail produit durant les phases adiabatiques du
cycle. Le travail effectué durant un tel cycle est donc uniquement produit durant la
phase isotherme. L’énergie échangée durant la compression et la détente dans un cycle
de CARNOT est donc, selon l’équation (10.27), après avoir remplacé TB par T:

(10.29)

Étant donné que la puissance d’un processus thermique est donnée par:

(10.30)

nous pouvons écrire que le travail total effectué lors du cycle est donné par:

(10.31)

Si nous comparons les deux derniers résultats, nous voyons que l’entropie fournie par
le foyer (source chaude) doit être:

(10.32)

D’autre part, en vertu de l’équation (10.12), l’entropie absorbée durant la détente iso-
therme est égale à:

(10.33)

La comparaison nous permet de conclure que l’entropie latente du gaz parfait est don-
née par:
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FIGURE 10.5 Cycle de CARNOT du
gaz parfait. Les lignes incurvées
sont les adiabatiques (dont les lon-
gueurs ont été exagérées pour des
raisons de lisibilité, contrairement à
ce qui est supposé dans le texte).
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(10.34)

En résumé, la relation entre l’entropie et l’énergie détermine l’une des grandeurs cons-
titutives du gaz parfait. On remarquera que l’entropie latente est proportionnelle à la
densité molaire; la quantité d’entropie qu’un gaz peut accumuler est proportionnelle
à la quantité de matière et inversement proportionnelle au volume occupé.

10.3.5 Processus adiabatiques et capacités entropiques du gaz parfait

À la section 5.2.3, nous avons vu que la température d’un fluide compressible peut être
augmentée uniquement par compression, sans qu’il soit nécessaire de le chauffer
(fig. 10.6). De tels processus, au cours desquels il n’y a pas de chauffage, sont dits
adiabatiques.

Description qualitative. Lors d’un processus adiabatique, il n’y a ni chauffage, ni re-
froidissement (pas d’échange d’entropie avec l’extérieur), ce qui veut dire que les flux
donnés par l’équation (10.18) sont nuls:

(10.35)

ce qui nous permet de conclure:

(10.36)

C’est la relation fondamentale des processus adiabatiques pour des fluides simples.
Nous pouvons résoudre cette équation différentielle si nous connaissons le rapport de
l’entropie latente et de la capacité entropique du fluide.

Recherche de la solution de l’évolution adiabatique du gaz parfait. Nous utilisons
l’équation des gaz parfaits (10.20) pour éliminer le taux de variation de la température
dans l’équation qui exprime le flux d’entropie. À partir de sa dérivée par rapport au
temps, nous obtenons:

(10.37)

La dernière égalité a été obtenue grâce à la substitution:

Nous substituons le taux de variation de la température dans l’expression du flux d’en-
tropie (10.35), dont nous savons qu’il est nul, puisqu’il s’agit d’un processus
adiabatique:

(10.38)
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FIGURE 10.6 Diagrammes T-V et T-
S d’une compression et d’une déten-
te adiabatique. Le terme adiabati-
que signifie que l’entropie ne peut
pas franchir les limites du système.
La température de la plupart des
fluides, tels que le gaz parfait, dé-
croît à la suite d’une détente adiaba-
tique. Cette courbe est typique pour
le gaz parfait.
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Mais, en vertu des équations (10.25) et (10.26):

(10.39)

Posons maintenant:

(10.40)

Ce rapport est le coefficient ou exposant adiabatique. Il vient alors, après division de
(10.38) par T /KV:

(10.41)

Cette équation différentielle ne peut être intégrée que si l’on connaît les capacités res-
pectives, ou au moins leur rapport γ.

Différents types de mesures, qui ne nécessitent pas la mesure de quantités d’entropie,
indiquent tous que, pour un gaz parfait, le rapport des capacités entropiques doit être
constant:

(10.42)

D’autre part, cette constante est supérieure à 1, ce qui signifie qu’il faut plus d’entropie
pour élever la température du gaz parfait d’un degré dans un processus isobare que
dans un processus isochore. Une expérience qui permet de mesurer ce rapport est pré-
sentée à la section 10.3.7. La propagation du son dans un gaz parfait (exemple 10.3)
est un processus qui permet également d’effectuer cette mesure.

L’intégration de l’équation différentielle donne:

(10.43)

En utilisant la loi des gaz parfaits (10.20), on peut la réécrire en utilisant d’autres
variables:

(10.44)

ou encore:

(10.45)

Il est essentiel de se souvenir que les différentes formes de l’équation de la transfor-
mation adiabatique ne sont valables que pour le gaz parfait.

10.3.6 Capacités entropiques et énergétiques du gaz parfait 

Rassemblons les relations que nous avons établies, à savoir les équations (10.25),
(10.26), (10.34) et (10.40):
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En substituant les trois dernières relations dans la première, nous obtenons:

Donc:

(10.46)

(10.47)

Les capacités entropiques du gaz parfait sont donc inversement proportionnelles à sa
température. Nous montrerons dans l’exemple 10.1 qu’il existe une relation simple en-
tre les capacités molaires:

(10.48)

Cette relation n’est valable que pour un gaz parfait.

Coefficients de température de l’énergie et de l’enthalpie. Normalement, les pro-
duits des capacités entropiques et de la température sont utilisés pour calculer les
quantités d’énergie échangées durant les processus de chauffage / refroidissement. Ils
sont définis comme suit:

(10.49)

(10.50)

Nous appellerons la première grandeur coefficient de température de l’énergie et la
seconde coefficient de température de l’enthalpie. L’origine de ces noms sera expli-
quée à la section 10.4.1. Traditionnellement, elles sont appelées capacité thermique à
volume constant et capacité thermique à pression constante.

Pour les rendre indépendantes de la quantité de matière ou de la masse, on divise ces
grandeurs par la quantité de matière ou la masse. Il est alors usuel des les appeler res-
pectivement chaleur molaire ou chaleur spécifique. Cette dénomination date du milieu
du XIXe siècle, époque où la thermodynamique fut construite sur la base de l’énergie,
notion qui venait d’être découverte et qui fut assimilée, de manière incorrecte, à la
grandeur qui rend les corps plus chauds. En fait, l’énergie, comme nous l’avons vu
dans toute la physique, sert à coupler des processus de nature diverse et, comme le
révèle la théorie de la relativité, à augmenter la masse des objets (et donc à courber
localement l’univers, là où elle est concentrée).
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Valeurs des coefficients de température. Comme les capacités entropiques du gaz
parfaits sont inversement proportionnelles à la température, les coefficients de tempé-
rature (les capacités thermiques) doivent être constants. La théorie quantique prédit
que le coefficient de température molaire de l’énergie prend des valeurs discrètes:

(10.51)

Le facteur f est le nombre de degrés de liberté. Pour un gaz monoatomique, ce nombre
est égal à 3 à toutes les températures, pour un gaz diatomique il vaut 5 à température
ambiante, alors qu’il vaut 7 pour des molécules plus grosses. Les valeurs pour les gaz
que l’on trouve dans la nature s’approchent plus ou moins de ces valeurs pour la tem-
pérature ambiante, mais s’en éloignent vers le haut lorsque la température augmente.
Par contre, les gaz rares, qui sont monoatomiques, ont une valeur constante.

c fR fV = =1

2
3 5 7, , ,

L’équation de bilan lors du chauffage d’un fluide parfait peut être formu-
lée en fonction de la température et du volume ou de la pression:

Pour un gaz parfait, les entropies latentes et les capacités entropiques sont
respectivement:

Les capacités énergétiques (thermiques) correspondantes sont:

En régime isotherme, l’énergie échangée lors du chauffage sert à faire va-
rier le volume:

Lors de processus adiabatiques (sans échange d’énergie), l’équation
d’état du gaz peut être reformulée de différentes manières:

où γ, le coefficient adiabatique, constant pour un gaz parfait, est égal à:
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EXEMPLE 10.1. Coefficient de température du gaz parfait.

(a) Exprimez la capacité entropique molaire à pression constante en termes de capacité entropi-
que à volume constant et utilisez ce résultat pour exprimer le coefficient de température molaire
de l’enthalpie: (b) Calculez la valeur du coefficient de température de l’enthalpie pour un gaz
monoatomique tel que l’hélium. Comparez le résultat en utilisant la valeur du rapport des capa-
cités entropiques qui vaut 1.66 pour l’hélium.

SOLUTION: (a) La relation entre les capacités entropiques donnée par l’équation (10.26), dans
laquelle nous substituons la valeur de l’entropie latente de l’équation (10.34), permet d’écrire:

L’équation d’état du gaz parfait a été utilisée à la dernière étape. Pour les quantités molaires,
nous obtenons:

(b) Comme l’hélium est un gaz monoatomique, le nombre de degrés de liberté est égal à 3. En
outre, à partir de l’équation (10.48), nous obtenons:

et donc:

À partir de l’équation (10.50), cette valeur devient:

B

10.3.7 Modèle dynamique du gaz parfait

Nous sommes maintenant en mesure de créer un modèle dynamique d’une certaine
quantité de gaz parfait de manière relativement simple. Comme par le passé, nous
énonçons d’abord les équations de bilan de l’entropie et du volume auxquels nous ad-
joignons les lois constitutives, à savoir les relations concernant le chauffage du gaz,
équation (10.17) et l’équation d’état (10.20). Il est évident que nous avons encore
besoin des relations constitutives du gaz, c’est-à-dire l’entropie latente (10.34) et la
capacité entropique. Pour cette dernière, nous choisissons la forme (10.46) en utilisant
le coefficient adiabatique en tant que paramètre du modèle.

Lorsque nous aurons établi le modèle basé sur ces relations, nous pourrons l’appliquer
à des cas concrets tels que l’expérience de Ruechardt pour mesurer l’exposant adiaba-
tique et à la propagation du son dans un gaz (cas unidimensionnel).

Modèle de base. Considérons un corps gazeux de quantité de matière fixe n dont les
valeurs initiales du volume et de la température sont connues (si ce sont la pression et
la température qui sont connues, cela correspond à une seconde forme du modèle dans
laquelle c’est la forme (10.22) de l’équation de chauffage qui est prise en compte). Les
processus de chauffage ou de refroidissement ainsi que de compression ou de détente
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sont gouvernés par l’environnement, ce qui signifie que le modèle doit pouvoir prédire
les valeurs du volume, de l’entropie, de la température et de la pression en fonction du
temps.

Les équations de bilan de volume et d’entropie contiennent le taux de production du
volume ainsi que les flux d’entropie dus au chauffage ou au refroidissement (fig. 10.7).
Les autres éléments du modèle sont la relation (10.17) qui exprime le lien entre la tem-
pérature et le volume avec l’entropie, ainsi que l’équation d’état.

Expérience de RÜCHARDT. Une expérience simple permet de mesurer le coefficient
adiabatique γ donné par l’équation (10.40), c’est-à-dire le rapport des capacités entro-
piques. Une grosse bouteille remplie d’air est surmontée d’un col cylindrique étroit
(fig. 10.8a). Lorsqu’on laisse tomber à l’intérieur de ce cylindre une bille de diamètre
choisi de manière à ce que l’air ne puisse pas s’échapper latéralement et que les frot-
tements soient peu importants, elle oscille verticalement un certain nombre de fois jus-
qu’à ce que la dissipation interrompe son mouvement (fig. 10.8b).

Le modèle de ce processus consiste en deux parties, la première concernant l’air em-
prisonné en dessous de la bille et la seconde pour la bille elle-même. Le modèle dyna-
mique pour la partie gazeuse est celui de la figure 10.7, alors que pour la bille, il suffit
de reprendre le modèle standard du mouvement de translation tel que nous l’avons ren-
contré au chapitre 8. Il y a quatre processus qui contribuent à faire varier la quantité
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de mouvement de la bille: la gravité, la pression de l’air P1 et P2 en dessus et en des-
sous de la bille et les frottements. Nous calculons la vitesse à partir de la quantité de
mouvement.

La partie intéressante du modèle combiné est l’interaction entre le mouvement de la
bille et la dynamique de l’air. Lors du mouvement oscillant de la bille, le volume de
gaz emprisonné est alternativement comprimé et dilaté. Le taux de production de
volume est proportionnel à la vitesse:

(10.52)

où A est la section de la bille et v la vitesse de la bille (positive lorsqu’elle descend).
La seconde interaction va de l’air à la bille: la variation de la pression de l’air provoque
une variation de la force pressante qui s’exerce depuis le bas sur la bille:

(10.53)

La figure 10.9 montre le diagramme du modèle complet. Les deux parties, à savoir la
dynamique de l’air et celle de la bille interagissent grâce au couplage entre la vitesse
et le taux de production du volume d’une part et de la pression de l’air et la force pres-
sante sur la bille d’autre part.

La simulation du modèle et la comparaison avec les données expérimentales
(fig. 10.10) peuvent être utilisées pour déterminer le coefficient adiabatique de l’air,
sachant que les autres paramètres tels que le volume d’air dans la bouteille et les
valeurs initiales de la température et de la pression sont mesurés lors de la réalisation
de l’expérience. Le meilleur ajustement est obtenu pour une valeur de 1.40 pour le
coefficient adiabatique, ce qui concorde avec d’autres mesures ainsi qu’avec les résul-
tats prédits par l’équation (10.51).

Si l’on admet que le processus est adiabatique (IS = 0) dans la partie inférieure gauche
de la figure 10.9 et que les frottements sont négligés, le résultat est une oscillation har-
monique, vu que les amplitudes de variation du volume sont faibles comparées au
volume total d’air (raison pour laquelle le volume contenu dans la bouteille doit être
important, comparé à celui qui est emprisonné dans le col cylindrique). La période des
oscillations et le coefficient adiabatique sont couplés, ce qui permet de calculer
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simplement ce dernier. Même en l’absence de frottements, le transfert d’entropie de et
vers l’air contenu dans la bouteille provoque un amortissement de l’oscillation. C’est
un exemple intéressant qui montre que la dissipation dans une partie du système affec-
te le comportement d’un élément différent du système.

Propagation du son dans l’air. La propagation du son est une autre application inté-
ressante de la dynamique d’un gaz. Dans ce cas, on envisage de l’air emprisonné dans
un long tube cylindrique avec une source sonore à l’une des extrémités. Les ondes
sonores sont des ondes de pression longitudinales.

1. Quelle observation de la vie quotidienne permet de comprendre que la
capacité entropique à pression constante doit être supérieure à la capa-
cité entropique à volume constant?

2. Comment, dans un diagramme TS, la courbe relative au chauffage d’un
gaz parfait à volume constant se différencie-t-elle de celle relative au
chauffage à pression constante?

3. Pourquoi un gaz que l’on comprime rapidement s’échauffe-t-il?

4. Lorsque de l’air s’élève dans l’atmosphère, est-ce un processus isotherme ou adiabatique?

5. On laisse tomber dans un tube de verre dont l’extrémité inférieure est fermée une bille en
acier qui épouse parfaitement les parois du tube. L’air est comprimé. Considérez que le pro-
cessus de compression est isotherme ou adiabatique. Quand l’air est-il le plus comprimé?

6. Une pompe à vélo s’échauffe lorsque l’on comprime rapidement l’air qu’elle contient. Cela
signifie-t-il que la compression n’est pas adiabatique?

7. L’équation (10.35) nous indique que, lors d’un processus adiabatique, la température d’un
volume de gaz doit atteindre une valeur maximale lorsque le volume est le plus petit possi-
ble. Pourquoi? Pourquoi cela n’est-il plus vrai si le gaz est chauffé ou refroidi durant la
phase de compression ou de détente?

8. Le volume de l’eau diminue lorsqu’on la chauffe entre 0°C et 4°C. Qu’est-ce que cela nous
indique au sujet de l’entropie latente de l’eau? Quel en est la conséquence pour une adiaba-
tique de l’eau dans un diagramme TV?

1. Il faut moins d’entropie pour élever la température de l’air à volume
constant qu’à pression constante.

2. La courbe relative au chauffage à pression constante est la moins pen-
tue.

3. Parce que l’entropie contenue dans le gaz est comprimée dans un
volume plus pet i t . Formel lement , ce fa i t es t expr imé par
l’équation (10.35).

4. C’est un processus proche d’un processus adiabatique.

5. La compression isotherme débouche sur une plus grande variation du volume, parce que
l’entropie est évacuée.

6. La compression est quasi-adiabatique, ce qui entraîne l’échauffement de l’air. Mais l’air
transfère une partie de son entropie à la pompe, c’est un refroidissement non adiabatique.

7. La condition dV/dt = 0 entraîne dT/dt = 0. Par contre, si IS ≠ 0, cette condition n’est plus
valable.

8. L’entropie latente par rapport au volume est positive lorsque la température est supérieure
à 4°C et négative entre 0°C et 4°C, ce qui signifie que les adiabatiques passent par un
minimum.

Q

R
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EXEMPLE 10.2. Variation de l’entropie du gaz parfait.

Calculez la variation de l’entropie du gaz parfait en fonction du volume et de la température en
admettant que l’entropie latente et la capacité entropique sont connues.

SOLUTION: En vertu de l’équation (10.17), le taux de variation de l’entropie du gaz est liée au
taux de variation du volume et de la température par l’intermédiaire de l’entropie latente et de
la capacité entropique à volume constant, données respectivement par les équations (10.34) et
(10.49):

Après intégration, nous obtenons:

La variation de l’entropie ne dépend pas des valeurs initiales du volume et de la température,
mais du rapport de leurs valeurs au début et à la fin du processus.

B

EXEMPLE 10.3. Vitesse du son dans un gaz parfait.

(a) Déterminer la formule servant à calculer la vitesse du son dans un fluide sur la base de la
théorie développée au chapitre 9, section 9.7. (b) Utilisez ce résultat pour obtenir la vitesse du
son dans l’air pour des ondes en régime respectivement isotherme et adiabatique.

SOLUTION: (a) Nous procédons de la même manière que dans l’exemple 9.12. L’inverse de la
masse par unité de longueur reste identique:

La forme de la loi d’induction est inchangée:

où P représente la pression. La variation de vitesse est due aux variations de volume:

Donc:

Un fluide étant mieux caractérisé par sa masse volumique que par son volume, nous passons à
la dérivée par rapport à ρ:
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Mais:

Donc:

et:

Il s’ensuit:

pour le carré de la vitesse de propagation du son dans un fluide simple.

(b) Dans le cas adiabatique, la relation entre la pression et la densité du fluide est donnée par
l’équation (10.43):

La dérivée de cette expression débouche sur:

Pour obtenir la dernière égalité, nous avons fait usage de la loi des gaz parfaits (10.20).
Finalement:

Dans la cas isotherme, le résultat est:

La valeur numérique pour la vitesse du son dans de l’air à 25°C est d’environ 290 m s–1, alors
que l’on mesure une valeur supérieure d’environ vingt pour cent. La différence entre la théorie
basée sur un processus isotherme et les mesures ont amené LAPLACE à proposer que les ondes
sonores sont adiabatiques. La confrontation des données et de la théorie débouche sur une va-
leur de 1.4 pour l’exposant adiabatique de l’air.
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10.4 ÉNERGIE ET ENTHALPIE

Maintenant que nous avons établi l’équation d’état du gaz parfait et déterminé ses
grandeurs constitutives, entropie latente et capacité entropique, nous pouvons énoncer
les relations relatives à son énergie et à l’enthalpie, une grandeur liée à l’énergie.

10.4.1 Énergie et enthalpie du gaz parfait

Sachant comment l’entropie d’un gaz parfait dépend du volume et de la température,
nous voulons découvrir comment l’énergie du gaz parfait dépend de ces paramètres,

Relation fondamentale de GIBBS pour les fluides parfaits. Nous substituons les ex-
pressions pour les transferts d’énergie (10.5) et (10.7) dans l’équation de bilan de
l’énergie (10.4):

ou, après prise en compte des équations des bilans d’entropie et de volume:

(10.54)

Cette relation est la forme dynamique de la relation fondamentale de GIBBS pour un
fluide qui peut être chauffé ou comprimé. Elle est analogue à la relation (5.24),
section 5.5.2, pour les corps qui ne peuvent subir que du chauffage et du refroidisse-
ment. Elle ne met en relation entre elles que des grandeurs propres au système et ne
fait pas mention des processus. Même si elle a été établie sur la base de processus ré-
versibles de fluides parfaits, on peut montrer qu’elle est également applicable aux pro-
cessus irréversibles de systèmes uniformes1.

Relation liée à l’énergie. Nous sommes maintenant en mesure de démontrer un résul-
tat surprenant: l’énergie du gaz parfait ne dépend que de la température. En d’autres
termes, les valeurs du volume et de la pression n’ont aucune influence sur l’énergie.
Nous introduisons dans l’équation (10.54) le taux de variation de l’entropie donné par
la relation:

(10.55)

La forme de l’entropie latente (10.34) entraîne la disparition du premier terme. Ainsi:

1. FUCHS H.U. (2010): The Dynamics of Heat, Springer, New York, chapitre 10.
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La variation de l’énergie du gaz parfait donnée par:

(10.56)

implique que son énergie ne dépend que de la température:

(10.57)
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La linéarité est due au fait que CV = TKV est constant pour le gaz parfait. Nous com-
prenons maintenant pourquoi CV est appelé coefficient de température de l’énergie. Ce
résultat est important, puisqu’il nous permet de calculer l’évolution de processus aux-
quels est soumis le gaz parfait en termes de température uniquement.

Enthalpie. Nous avons déjà été confrontés au fait que, parfois, le changement de
variables peut se révéler utile. Nous réécrivons la relation (10.54) en y intégrant le taux
de variation de l’entropie donné par l’équation (10.22):

(10.58)

Si nous additionnons le terme d(PV)/dt à cette relation, nous obtenons:

La nullité du contenu de la parenthèse à l’avant-dernière ligne est une conséquence de
l’équation du gaz parfait.

Il n’est pas possible de donner une signification intuitive à cette grandeur. Son utilité
découle de l’équation (10.60). La même équation permet de comprendre pourquoi CP
est appelé coefficient de température de l’enthalpie.

L’enthalpie fait partie d’une catégorie de fonctions de l’énergie, introduites pour faci-
liter certains calculs. Ces fonctions sont appelées potentiels thermodynamiques. À
côté de l’enthalpie, citons l’enthalpie libre et l’énergie libre de GIBBS.

10.4.2 Transfert d’énergie lors de chauffage ou de refroidissement

Ce qui précède nous permet de calculer la valeur de l’énergie échangée lors de chauf-
fage ou de refroidissement à volume constant ou à pression constante. Dans le premier
cas, nous avons

ou
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La variation de la grandeur appelée enthalpie, définie par:

(10.59)

est égale à:

(10.60)

pour le gaz parfait.
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(10.61)

Cette relation découle du fait qu’à volume constant, il n’y a aucun échange d’énergie
dû à une compression ou une dilatation.

Nous effectuons le même calcul dans le cas d’une pression constante:

ou

(10.62)

Nous voyons donc que, si le chauffage se déroule à pression constante, l’énergie trans-
férée n’est pas totalement accumulée dans le système, elle n’est pas égale à la variation
de l’énergie du corps, mais à celle de son enthalpie.

1. Un volume d’air subit un variation adiabatique. Pourquoi le modèle de
fluides développé dans cette section nous dit-il que l’entropie de ce
corps doit rester constante?

2. Quelle est la forme fondamentale de GIBBS pour des processus isother-
mes du gaz parfait?

3. Pourquoi le rapport des coefficients de température de l’enthalpie et de
l’énergie est-il égal à celui des capacités entropiques à pression constante et à volume
constant?

4. La température d’un corps évolue de T1 à T2 durant une compression adiabatique. Que vaut
la variation d’énergie du gaz? Pourquoi pouvons-nous utiliser le coefficient de température
de l’énergie CV pour effectuer ce calcul?

5. Un volume de gaz est chauffé à pression constante. Qu’advient-il de l’énergie absorbée par
le gaz à la suite du chauffage? Quelle est la part de cette énergie stockée dans le gaz?

6. L’enthalpie d’un gaz varie de – 10 kJ. Combien d’énergie a été transférée par le processus
de chauffage/refroidissement à pression constante?

1. Les processus auxquels sont soumis les matériaux modélisés dans cette
section sont réversibles.

2. 0 = TdS/dt – PdV/dt.

3. CP/CV = TKP/TKV .

4. ∆E = CV (T2 – T1). À partir de l’équation (10.34) et de celle du gaz par-
fait, on obtient ΛV = P/T que l’on substitue dans l’équation (10.55).
Alternativement, CV est le coefficient de température de l’énergie, et l’énergie du gaz par-
fait ne dépend que de la température.

5. Une partie est émise vers l’environnement en conséquence de la détente. L’énergie stockée
est égale à l’énergie absorbée diminuée de la partie P∆V émise vers l’environnement.

6. – 10 kJ.

E C T TVéch,therm = −( )2 1

 I E I E PV H C TE E P, therm ,compr= − = + = =� � � � �

E Héch,therm = ∆
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EXEMPLE 10.4. Chauffage isotherme du gaz parfait.

Déterminez l’énergie échangée par un gaz parfait lors d’un chauffage isotherme, ce qui revient
à calculer l’énergie apportée pour la réalisation des variations de volume. Utilisez les résultats
pour montrer que l’énergie du gaz parfait doit rester constante durant un processus isotherme.

SOLUTION: Comme la température ne varie pas durant le processus, il suffit de multiplier la
quantité d’entropie absorbée par la température pour obtenir l’énergie échangée par l’intermé-
diaire du chauffage:

À la section 10.3.3, nous avons calculé l’énergie échangée lors du processus de compression.
L’équation (10.27) donne la même valeur que celle que nous venons de trouver, mais de signe
opposé. Étant donné que la variation de l’énergie est égale à la somme des énergies transférées,
cette variation est nulle.

B

EXEMPLE 10.5. Énergie échangée lors de processus isochore, isotherme et adiabatique.

Comparez les processus suivants: (1) doublement adiabatique du volume d’une mole d’air à
partir des conditions standard et (2) refroidissement isochore suivi d’un chauffage isotherme qui
permet de passer du même état initial au même état final qu’en (1). (a) Tracez les processus dans
un diagramme T-V. (b) Calculez l’énergie échangée en conséquence des processus thermique et
mécanique pour chacune des étapes. (c) Déterminez la variation de l’énergie en (1) et (2) res-
pectivement.

SOLUTION: (a) La représentation graphique des deux processus apparaît dans la figure 10.11.

(b1) Pour un gaz parfait avec un rapport des capacités entropiques constant, la relation entre le
volume et la pression lors d’un processus adiabatique est donnée par l’équation (10.43):

Si nous exprimons la pression à partir de cette relation, nous pouvons calculer l’énergie échan-
gée à la suite d’une compression ou d’une détente:

Pour des conditions standard, les valeurs de la température et de la pression sont respectivement
0°C et 1 bar. Aux mêmes conditions, le volume du gaz parfait est égal à 22·10-3 m3, et le rapport
des capacités entropiques vaut 1.4 pour l’air. Ainsi, l’énergie échangée est égale à:

Pour une détente adiabatique, l’énergie échangée par l’intermédiaire du processus thermique est
nulle: Etherm = 0 J.

(b2) Nous numérotons les étapes isochore et isotherme par 1 et 2 respectivement. L’énergie
échangée par le fluide dans la partie isochore est nulle:
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L’équation (10.27) nous permet d’évaluer l’énergie échangée lors du processus de détente iso-
therme. Sa valeur numérique est:

C’est l’équation (10.45) qui a permis de déterminer que la température tombe à la valeur 207 K
lors du doublement adiabatique du volume, ce qui est également le cas lors du refroidissement
isochore. Durant ce dernier processus, l’énergie échangée à cause du refroidissement est:

Le coefficient de température de l’énergie a été calculé au moyen de l’équation (10.51) pour
f = 5.

L’énergie échangée durant le chauffage isotherme est calculée au moyen de l’équation (10.19).
Étant donné que l’entropie latente du gaz parfait est nR/V en vertu de l’équation (10.34), nous
obtenons:

(c) Si nous additions les contributions des étapes (1) et (2), nous obtenons la même valeur:

C’est ce qui était attendu: la variation de l’énergie ne dépend pas des détails du processus. En
revanche, l’énergie échangée dépend du type de processus.

B

10.5 RAYONNEMENT DU CORPS NOIR EN TANT QUE FLUIDE SIMPLE

Il existe un autre système physique simple qui présente un grand intérêt pour la
thermodynamique: le rayonnement thermique qui peut se répandre aussi bien à travers
l’espace que dans les corps. Dans sa forme la plus simple, le champ radiatif peut, du
point de vue thermodynamique, être décrit en utilisant très peu de variables. Le rayon-
nement contient de l’entropie; on peut s’en rendre compte en observant un objet qui
se refroidit uniquement par l’intermédiaire du rayonnement. Comme l’entropie ne
peut pas disparaître, elle doit être transportée hors de l’objet par le rayonnement, ce
qui veut dire que le rayonnement lui-même constitue un système thermique. En fait,
le rayonnement thermique piégé dans une cavité se comporte exactement comme un
simple fluide uniforme comparable au gaz parfait. On l’appelle couramment un gaz de
photons. Il possède une certaine quantité d’entropie et d’énergie, et sa pression et sa
température prennent des valeurs bien définies. Dans cette section, nous allons étudier
le gaz de photons.

Si l’entropie et la pression du rayonnement sont relativement modestes dans notre
quotidien, ces grandeurs jouent un rôle prépondérant en astrophysique, où elles sont à
l’origine de phénomènes à l’intérieur des étoiles et dans l’Univers en tant que tout. Le
transport de l’entropie par rayonnement peut être important, même à des températures
basses. Nous étudierons ce phénomène au chapitre 11.
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10.5.1 Rayonnement thermique et corps noir

Les corps peuvent émettre et absorber du rayonnement électromagnétique. Si ces pro-
cessus se produisent parce que le corps est chaud, on parle de rayonnement thermique.
Une cavité peut être remplie d’un rayonnement qui est continuellement absorbé et réé-
mis par les parois qui l’entourent, qui ont une température T (fig. 10.12). Si le champ
est uniforme, nous pouvons attribuer la même température au rayonnement qui est ap-
pelé rayonnement du corps noir. Un corps est considéré comme noir s’il est un absor-
beur parfait du rayonnement. C’est le cas d’une cavité avec une petite ouverture; le
rayonnement qui y pénètre a très de peu chances d’en ressortir, ce qui nous permet de
considérer le trou comme un absorbeur parfait.

10.5.2 Énergie, pression et chauffage du rayonnement du corps noir

Au moyen de mesures effectuées sur le rayonnement émanant de corps noirs, nous
pouvons déduire une relation entre la température du rayonnement et la densité d’éner-
gie du gaz de photons. On trouve que l’intensité du rayonnement provenant de l’ouver-
ture dans la figure 10.12 ne dépend ni de la nature des parois, ni de la taille ou de la
forme du corps émetteur. La température du corps est le seul paramètre influençant le
rayonnement du corps noir. En conséquence, la densité d’énergie du champ uniforme,
c’est-à-dire la grandeur

(10.63)

ne dépend que de la température du champ de rayonnement enfermé dans la cavité:

(10.64)

V est le volume du gaz de photons, E est son énergie qui est pour l’instant une fonction
inconnue de la température.

Une autre information essentielle concerne la pression du gaz de photons. La théorie
électromagnétique nous apprend que le rayonnement transporte de la quantité de mou-
vement. Même si la pression du rayonnement est faible, elle peut être mesurée. La
théorie et l’expérimentation démontrent que la pression du gaz de photons est égale au
tiers de la densité d’énergie:

(10.65)

Cette relation sera justifiée au chapitre 14, exemple 14.8. Comme la densité d’énergie
est une fonction de la température uniquement, cela est vrai aussi pour la pression.
Nous venons d’établir l’équation d’état du rayonnement thermique qui est comparable
à l’équation du gaz parfait. Nous allons l’utiliser pour découvrir d’autres propriétés du
rayonnement du corps noir.

Avant de pouvoir déterminer les grandeurs constitutives, nous devons étudier le chauf-
fage du gaz de photons. Nous modélisons le rayonnement thermique du corps noir
comme un système spatialement uniforme, ce qui implique que nous lui attribuons des
valeurs uniques de la température et de la pression. Nous admettons que le volume de
la cavité de la figure 10.12 peut varier. En conséquence, les variables indépendantes
nécessaires pour décrire les propriétés du rayonnement sont le volume et la tempéra-
ture, tout comme dans le cas de fluides simples. C’est pour cette raison que nous pou-
vons définir l’entropie latente par rapport au volume et la capacité entropique à
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FIGURE 10.12 Cavité contenant du
rayonnement thermique. Le gaz de
photons peut interagir avec les pa-
rois de la cavité ou avec un corps
noir à la température T, qui est éga-
lement la température du gaz de
photons. Le rayonnement qui fran-
chit le trou de la cavité sera complè-
tement absorbé, raison pour laquelle
on dit que le trou agit comme un
corps noir. Réciproquement, du
rayonnement émis par cette ouver-
ture est appelé rayonnement du
corps noir.
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volume constant du gaz de photons. La procédure est la même que celle que nous
avons appliquée pour le gaz parfait à la section 10.3. Nous allons également admettre
que le gaz de photons ne peut subir que des opérations réversibles. Comme dans le cas
du gaz parfait, l’entropie dépend du volume et de la température avec l’entropie latente
et la capacité entropique comme facteurs respectifs, et le chauffage se déroule comme
décrit par l’équation (10.18).

Vu qu’il est semblable à un fluide simple qui ne peut échanger de l’énergie que par
l’intermédiaire de processus thermiques et mécaniques, le système est régi par la
même relation fondamentale de GIBBS, à savoir l’équation (10.54). C’est une consé-
quence directe des bilans d’entropie et d’énergie du champ de rayonnement, et de la
relation entre le chauffage et le taux de transfert d’énergie, qui est équivalente à
l’équation (10.5).

10.5.3 Relations constitutives du gaz de photons

Nous devons maintenant déterminer l’entropie latente et la capacité entropique du gaz
de photons, et avec elles la densité d’entropie et d’énergie. Nous pouvons obtenir l’in-
formation manquante à partir des relations constitutives (10.64) et (10.65) si nous en-
visageons un cycle de CARNOT auquel on soumet le rayonnement à l’intérieur de la
cavité, comme nous l’avons fait pour le gaz parfait à la section 10.3.4. Le gaz de pho-
tons passe à travers un cycle de CARNOT dont les adiabatiques sont très courtes
(fig. 10.5): l’énergie libérée par une machine de CARNOT idéale est égale à

(10.66)

où Séch est la quantité d’entropie absorbée à la température de la source chaude, TH =
T+∆T. D’autre part, l’énergie échangée par le fluide durant la détente peut être facile-
ment calculée à partir de la pression, qui reste constante durant les étapes isothermes,
et par la variation du volume. Les étapes adiabatiques ne contribuent pas de manière
significative à l’échange d’énergie, vu qu’elles ont été choisies très courtes. Pour la
même raison, les variations de volume sont pratiquement les mêmes pour chacune des
deux étapes isothermes (fig. 10.5). En tenant compte du fait que la pression du gaz de
photons est égale au tiers de la densité d’énergie, ce que nous démontrerons dans
l’exemple 14.8, et si nous approximons la différence des pressions, nous obtenons

(10.67)

Les expressions dans les équations (10.66) et (10.67) doivent être égales, ce qui per-
met d’évaluer l’entropie ajoutée dans un cycle de CARNOT. Cette grandeur est aussi
égale à l’entropie latente intégrée sur le volume. Pour cette raison, l’entropie latente
par rapport au volume doit être égale, pour le gaz de photons, à

(10.68)

Nous introduisons le taux de variation de l’entropie dans la relation fondamentale de
GIBBS (10.54) et remarquons que l’énergie E est le produit de la densité d’énergie et
du volume. Vu que la densité d’énergie est fonction uniquement de la température, son
taux de variation ne dépendra que de celui de T. Ces considérations permettent d’énon-
cer le résultat suivant:
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(10.69)

ou

(10.70)

Vu que le volume et la température peuvent varier de manière indépendante, chacun
des facteurs apparaissant de l’équation (10.70) doit être égal à zéro. Le membre de
droite donne une équation différentielle pour la densité d’énergie en fonction de la
température, dont la solution est:

(10.71)

ou

(10.72)

Cette relation est la loi de STEFAN-BOLTZMANN ; a est la constante de rayonnement,
dont la valeur est 7.56·10-16 J m-3 K-4, Cette constante a une grande importance, non
seulement pour les grandeurs relatives au gaz de photons, mais lorsque l’on doit cal-
culer l’énergie associée au rayonnement de corps chauds (section 11.3).

Nous pouvons maintenant déterminer l’entropie latente ainsi que la capacité entropi-
que du gaz de photons. Nous utilisons l’équation (10.68) pour évaluer la première
grandeur. Nous obtenons la seconde si nous posons que le facteur du membre de gau-
che de l’équation (10.70) est égal à zéro. Les grandeurs constitutives du gaz de pho-
tons sont donc:

(10.73)

(10.74)

Finalement, le taux de variation du contenu en entropie du rayonnement peut être ex-
primé au moyen de ces grandeurs constitutives. Si nous intégrons l’équation (10.74)
le long d’un chemin simple dans le diagramme T-V de la figure 10.13, nous obtenons
l’entropie du rayonnement du corps noir:

(10.75)

EXEMPLE 10.6. Rayonnement à l’intérieur d’une étoile.

La matière et le rayonnement coexistent à l’intérieur d’une étoile. Lorsque la température est
élevée, le gaz est complètement ionisé, ce qui en fait un gaz parfait, même lorsque la densité est
élevée. Le rayonnement peut contribuer pour une part considérable à la pression à cause de la
température élevée. (a) La matière à l’intérieur d’une étoile de la séquence principale est com-
posée de 70% d’hydrogène et de 30% d’hélium en masse. Calculez la pression totale de la ma-
tière et du rayonnement au centre d’une étoile de 15 masses solaires, en admettant que la
température et la densité ont des valeurs respectives de 34·106 K et 6.2·103 kg m-3. Évaluez le
rapport β de la pression due au gaz et de la pression totale. (b) Exprimez le chauffage du gaz
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parfait plus rayonnement en termes de pression du gaz Pgaz et de la pression radiative Prad. (c)
Déterminez l’expression pour la capacité entropique totale en termes de capacité entropique du
gaz parfait et de la fraction β de la pression due au gaz.

SOLUTION: (a) Nous utilisons la forme (10.21) de l’équation d’état du gaz parfait pour calculer
la pression. Pour ce faire, nous devons connaître la masse molaire du gaz à l’intérieur de l’étoile.
Comme la matière est complètement ionisée, à chaque mole d’hydrogène correspond une mole
d’électrons, et à chaque mole d’hélium deux moles d’électrons. Si nous désignons par la frac-
tion massique de l’hydrogène, nous avons

ce qui donne une valeur de 0.615·10-3 kg mol-1 pour la masse molaire moyenne. Les pressions
sont respectivement:

et

Le rapport β de la pression du gaz à la pression totale est de 0.89, ce qui signifie que 11% de la
pression totale est due au rayonnement. Il existe des conditions dans l’univers sous lesquelles
le rayonnement est à l’origine d’une fraction encore plus importante de la pression totale.

(b) Il faut chauffer simultanément la matière et le rayonnement. Nous devons donc additionner
les relations exprimant le chauffage de chacune des composants:

À partir des relations constitutives (10.34), (10.46), (10.73) et (10.74), ainsi que (10.65) et
(10.71), nous obtenons:

(c) Le facteur qui multiplie le taux de variation de la température dans l’équation précédente est
la capacité entropique totale du mélange de gaz et de rayonnement:

Sachant que P = Pgaz + Prad, βP = Pgaz et (1 - β)P = Prad, nous obtenons:
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Pour β = 1 cette expression correspond à la capacité entropique du composant gazeux unique-
ment.

B

10.6 EFFET MAGNÉTOCALORIQUE

L’étude d’un certain nombre de système magnétiques révèle qu’il peut exister un cou-
plage entre les propriétés magnétiques et thermiques. Dans le cas le plus simple, lors-
qu’un tel système est chauffé, autant sa température que sa magnétisation ou
aimantation varient simultanément. Les propriétés de certaines substances parama-
gnétiques ont permis d’atteindre des températures très basses au moyen de la déma-
gnétisation adiabatique. Nous allons utiliser les concepts introduits essentiellement à
la section 10.3, lors de l’étude de la thermodynamique du gaz parfait pour illustrer un
tel processus.

10.6.1 Échange d’énergie dans les systèmes magnétiques

Considérons, à titre d’exemple concret, une substance paramagnétique remplissant
l’intérieur d’un long solénoïde. Si nous enclenchons le courant à travers cette bobine,
le champ magnétique qui s’établit magnétise la substance qui occupe l’intérieur. Ce
processus provoque naturellement un transfert d’énergie vers le corps magnétisé.

La théorie relative à l’électromagnétisme (chapitres 13 et 14) permet de montrer que
le taux de transfert d’énergie lors d’un processus magnétique peut être exprimé, de
manière analogue au cas électrique, en tant que produit d’une tension magnétique
Umagn et d’une intensité du courant magnétique Imagn

2:

(10.76)

La tension magnétique et le courant magnétique sont définis par:

(10.77)

(10.78)

Ces définitions sont semblables à celles des grandeurs électriques correspondantes. C
et S sont respectivement la courbe le long de laquelle est intégrée l’intensité H du

2. HERRMANN F. et G.B. SCHMID (1986): The POYNTING vector field and the energy flow
within a transformer. Am. J. Phys. 54, 528-531.
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champ magnétique et la surface sur laquelle on intègre le taux de variation du flux ma-
gnétique B. On se rend compte que, dans cette analogie, le flux magnétique joue le
rôle de la grandeur extensive magnétique, et que son taux de variation remplace la den-
sité de flux j de la charge électrique. Notons que les unités de mesure sont échangées:
la tension magnétique et l’intensité du courant magnétique se mesurent respective-
ment en ampère et en volt.

Adaptons ces grandeurs au cas particulier considéré. La tension magnétique dans le
champ uniforme du solénoïde est égale à:

(10.79)

où L est la longueur de la bobine. Comme la densité du flux magnétique B est censée
être constante sur toute la section A de la bobine, l’intensité du courant magnétique
devient:

(10.80)

de sorte que le flux d’énergie magnétique est égal à:

(10.81)

où V est le volume de la bobine. En présence de substance paramagnétique dans le
champ, la densité de flux magnétique peut être exprimée par:

(10.82)

où M est l’aimantation totale du corps. Si nous ne considérons que le corps en tant
que système étudié et négligeons le champ dans l’espace vide, le courant d’énergie
magnétique associé à la magnétisation de la substance paramagnétique a pour
intensité:

(10.83)

Il est intéressant de comparer cet exemple avec la compression d’un fluide. La puis-
sance liée à la compression d’un fluide, donnée par l’équation (10.7), et celle relative
à l’aimantation d’un corps impliquent le taux de production ou le taux de variation
d’une grandeur extensive plutôt que le transfert d’une grandeur telle que la charge ou
la masse. Visiblement, il existe des processus physiques au cours desquels il n’y a pas
de transport de grandeurs, mais plutôt une variation de leur valeur à l’endroit où elles
se trouvent. De tels processus peuvent être interprétés en termes de création ou de des-
truction de la grandeur impliquée.

10.6.2 Équation d’état d’une substance paramagnétique

Les substances paramagnétiques manifestent un couplage entre les propriétés thermi-
ques et magnétiques semblable à celui entre les propriétés mécaniques des fluides et
des grandeurs thermiques, comme nous avons pu l’observer dans les cas du gaz parfait
ou du rayonnement. L’équation d’état du gaz parfait exprime la relation entre tempé-
rature, volume et pression du fluide. Dans le cas d’une substance paramagnétique, les
grandeurs extensives et intensives correspondant au volume et à la pression sont res-
pectivement l’aimantation M et l’intensité H du champ magnétique. L’équation
d’état thermique d’une substance paramagnétique peut être énoncée sous la forme:

 U Lmagn = H

  I Amagn = �B

  I VE , magn = HB�

 B H M= +( )µ0

  I VE , magn = µ0HM�
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(10.84)

C* est la constante de CURIE. Cette relation explicite le couplage entre les propriétés
magnétique et thermique.

Dans le cas du gaz parfait, la seule connaissance de l’équation d’état s’est révélée in-
suffisante pour une description complète du système. Nous avons eu besoin d’infor-
mations supplémentaires telles que les mesures d’une capacité entropique ou du
rapport des capacités entropiques, ou de connaître la forme de l’énergie du système.
L’expression de l’énergie du système en termes de température et d’autres variables
est appelée équation d’état calorique. Pour des substances paramagnétiques, on mon-
tre que l’énergie ne dépend que de la température3:

(10.85)

où A, B et D sont des constantes. L’énergie dépend uniquement de la température,
comme dans le cas du gaz parfait.

10.6.3 Chauffage d’une substance paramagnétique

Lorsqu’une substance manifeste un couplage magnétocalorique, ses propriétés ther-
miques et magnétiques peuvent évoluer lors du chauffage. D’autre part, il est égale-
ment possible d’observer des processus réversibles, auquel cas nos pouvons exprimer
la loi constitutive relative au chauffage sous la forme:

(10.86)

Les grandeurs constitutives ont des significations semblables à celles relatives aux
fluides. Le facteur qui multiplie le taux de variation de la température doit être une
capacité entropique que nous appelons capacité entropique à aimantation constante.
L’autre facteur est l’entropie latente par rapport à l’aimantation. Nous allons montrer
qu’avec l’équation d’état et celle relative à l’énergie, nous pourrons déterminer ces
grandeurs. Comme dans le cas des fluides, nous utilisons la grandeur:

(10.87)

appelée coefficient de température de l’énergie. Comme dans les sections relatives à
la thermomécanique, où nous avons également utilisé la pression en place du volume,
il est pratique d’exprimer le chauffage au moyen de la grandeur magnétique intensive,
à savoir l’intensité H du champ magnétique:

(10.88)

Avec l’équation d’état (10.84), nous obtenons les relations suivantes entres les diffé-
rentes grandeurs constitutives:

3. L’atteinte de températures basses est discutée en détail dans ZEMANSKY M.W., R.H. DITT-
MAN (1981): Heat and Thermodynamics, 6th ed. McGraw-Hill, Singapore, chapitre 18.
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(10.89)

(10.90)

10.6.4 Énergie et forme fondamentale de GIBBS

Comme l’énergie du corps peut varier en conséquence de processus magnétique et
thermique, son équation de bilan a la forme:

(10.91)

dont les termes sont:

(10.92)

 (10.93)

Le raisonnement appliqué à la section 10.1.1 au cas du gaz parfait peut également
l’être à celui de processus thermique et magnétique. En substituant les relations
(10.92) et (10.93) dans l’équation de bilan de l’énergie (10.91), nous obtenons la for-
me fondamentale de GIBBS analogue à celle de l’équation (10.54):

(10.94)

Cette équation exprime le fait que si l’entropie d’un corps est augmentée à magnétisa-
tion constante, son énergie augmente également. Il en va de même si l’aimantation est
augmentée à température constante. La relation fondamentale de GIBBS est relative
uniquement aux propriétés du corps, mais ne se réfère pas aux grandeurs qui sont
échangées au cours de processus magnétocaloriques.

Mais les lois que nous avons énoncées jusqu’ici nous permettent de tirer quelques con-
clusions importantes au sujet des propriétés de substances paramagnétiques. Tout
d’abord, leur énergie ne dépend que de la température, ce qui s’applique également
aux taux de variation correspondants:

(10.95)

Si nous substituons cette relation dans la forme fondamentale de GIBBS et tenons
compte du fait que le taux de variation de l’entropie est exprimé au moyen de la capa-
cité entropique et de l’entropie latente, nous avons:

(10.96)

et pouvons conclure que l’entropie latente par rapport à l’aimantation est:

(10.97)
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Ce résultat implique que si nous diminuons l’aimantation d’une substance en régime
isotherme, elle absorbe de l’entropie. Les équations (10.95) et (10.85) permettent de
calculer la capacité entropique à aimantation constante. Pour des températures qui ne
sont pas trop basses (en pratique, quelques dizaines de kelvins), l’expression (10.85)
pour l’énergie du corps peut être approximée. On obtient ainsi l’approximation suivan-
te pour la capacité entropique4:

(10.98)

où A* est une constante. Nous sommes maintenant en mesure d’effectuer les calculs
relatifs à des processus magnétocaloriques et aux grandeurs associées.

10.6.5 Accès aux basses températures

Il est possible d’atteindre des températures basses en utilisant de l’hélium liquide. Ce
procédé ne permet pas de descendre en dessous de 1 K. Les techniques actuelles utili-
sent des substances paramagnétiques pour abaisser encore plus la température. Le pro-
cessus est le suivant: une substance paramagnétique dont la température est proche de
1 K est aimantée lentement à température constante. En vertu de la relation:

(10.99)

valable pour les processus isothermes, le corps émet de l’entropie durant cette étape
(fig. 10.14). Durant la seconde étape, l’aimantation est réduite trop rapidement pour
que de l’entropie puisse être transférée, ce qui correspond à un processus adiabatique
(segment vertical dans la figure 10.14). En vertu de l’équation (10.88), l’équation de
bilan pour ce processus adiabatique est:

(10.100)

Vu que l’entropie latente est négative, la température diminue en même temps que l’in-
tensité du champ magnétique. C’est ainsi que l’on obtient des températures basses au
moyen de la désaimantation adiabatique.

EXEMPLE 10.7. Désaimantation adiabatique.

Déterminez la température finale atteinte au moyen de la désaimantation adiabatique à partir de
la température initiale et de l’intensité du champ magnétique. Évaluez la valeur numérique pour
l’exemple suivant: la substance est de l’alun de chrome avec une constante de CURIE

C* = 2.31·10–5 m3 K mol–1 et une capacité entropique constante A* = 0.15 J K mol–1. Quelle est
la température finale atteinte si l’on commence le processus à une température et une intensité
du champ respectives de 1.0 K et 2.0 ·106 A m–1?

SOLUTION: Il suffit d’utiliser l’équation (10.88) pour le chauffage en posant IS = 0. Nous
avons en outre besoin de l’entropie latente et de la capacité entropique données respectivement
par les équations (10.97) et (10.98). Nous obtenons ainsi l’équation différentielle:

4. ZEMANSKY M.W., R.H. DITTMAN (1981).
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FIGURE 10.14 Refroidissement au
moyen de la désaimantation
adiabatique: le champ magnétique
est tout d’abord augmenté en mode
isotherme à une température relati-
vement élevée, ce qui provoque une
diminution de la quantité d’entropie
contenue dans le corps. Ensuite,
l’échantillon est démagnétisé en
régime adiabatique, ce qui entraîne
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Si nous faisons varier la température de Ti à Tf et simultanément l’aimantation de Mi à 0, la
solution de cette équation est:

Si nous remplaçons la magnétisation par l’intensité du champ à partir de l’équation d’état
(10.84), nous obtenons:

Pour ce cas, la valeur numérique est:

B

10.7 CHANGEMENTS DE PHASE

La chaleur ne sert pas seulement à rendre les corps plus chauds, ou à faire se dilater
l’air, c’est également l’ingrédient essentiel pour les changements de phase: nous avons
besoin d’entropie pour faire fondre la glace ou pour vaporiser de l’eau.

Cet apport d’entropie augmente la quantité d’entropie contenue dans le système. Nous
savons par expérience que la température d’une substance en train de fondre ou d’être
vaporisée (à pression constante) ne varie pas: l’entropie est utilisée uniquement pour
provoquer le changement de phase (fig. 10.15). La température de fusion (ou de vapo-
risation) est unique pour les substances et les conditions dans lesquelles se déroule le
processus.

10.7.1 Description d’un changement de phase

Pour illustrer ce qui se passe lors du changement de phase d’un fluide tel que la fusion,
la vaporisation ou la sublimation, nous allons considérer à titre d’exemple le chauffage
de 1 kg d’eau à partir de 0°C et à pression constante de 1 bar (fig. 10.16). La tempéra-
ture et l’entropie spécifique s croissent à partir de zéro (pour l’entropie ce choix est
arbitraire), comme le montre le premier segment de la courbe. Durant cette phase,
l’eau est qualifiée de liquide comprimé (en anglais: subcooled liquid). Comme l’eau
est quasi incompressible, cette courbe est approximée par la relation (5.32):

(10.101)
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FIGURE 10.15 Diagramme T-S
pour la fusion d’un mélange eau-
glace et la vaporisation de l’eau.
Durant les deux changements de
phase, la température reste constan-
te. Le diagramme ne donne qu’une
vision qualitative de la relation.
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Rappelons que pour l’eau, cP vaut approximativement 4200 J K-1 kg-1. À la tempéra-
ture de 100°C, l’eau se met à bouillir. Juste avant le début de l’ébullition, l’eau est un
liquide saturé. Durant le processus de vaporisation, la température reste constante, et
le fluide est constitué d’un mélange liquide-vapeur. Lorsque toute l’eau a été vapori-
sée, la température de la vapeur se met à croître à cause de l’apport d’entropie. On par-
le alors de vapeur surchauffée, alors que la vapeur que l’on obtient lorsque la dernière
goutte de liquide est vaporisée est appelée vapeur saturée. On peut également utiliser
l’équation (10.101) pour approximer la relation entre la température et l’entropie pour
le régime de vapeur surchauffée si l’on considère la vapeur comme un gaz parfait pos-
sédant un coefficient de température de l’enthalpie constant. À partir de la
figure 10.16, sa valeur moyenne entre 100°C et 200°C est d’environ 2000 J K-1 kg-1.

10.7.2 Équations de bilan lors d’un changement de phase

Lors d’un processus de fusion ou de vaporisation, il faut énoncer les équations de bilan
des trois grandeurs qui y participent. Il s’agit tout d’abord de l’entropie. Pendant tout
le processus, tel que celui qui est décrit ci-dessus, l’entropie qui est introduite dans le
système s’y accumule. Comme le processus est réversible, il n’y a pas de production
d’entropie dans le système. Nous pouvons donc écrire:

(10.102)

Lors du chauffage, il y a également de l’énergie qui est introduite par l’entropie. Mais
cette énergie ne reste pas complètement dans le système. Particulièrement lors de la
vaporisation, le volume du système croît très fortement. La vapeur doit repousser l’air
environnant, ce qui signifie qu’une partie de l’énergie est utilisée dans un processus
mécanique; on dit que la vapeur effectue un travail (fig. 10.17). L’équation de bilan de
l’énergie prend, de ce fait, la forme suivante (fig. 10.18):

(10.103)

Nous voyons que, lors de transitions de phase, il faut soigneusement faire la distinction
entre l’énergie introduite dans le système et la variation de l’énergie accumulée.

Il faut finalement prendre en compte le processus chimique qui se déroule lors de la
transition de phase: une des phases disparaît alors que l’autre apparaît; les équations
de bilan de quantité de matière ou de masse sont (nous considérons le processus de
vaporisation ou de liquéfaction d’eau, pour celui de fusion ou solidification, il suffit de
remplacer l’indice «vap» par «glace»):

(10.104)

10.7.3 Lois constitutives lors de transitions de phase

Entropie. Les lois constitutives lors de changements de phase sont particulièrement
simples: la quantité d’entropie nécessaire pour faire fondre ou vaporiser une substance
est proportionnelle à la masse (ou à la quantité de matière) transformée:

(10.105)
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FIGURE 10.17 Lors de la vaporisa-
tion, l’entropie introduite reste dans
le système, alors qu’une partie de
l’énergie est utilisée pour la détente
du gaz.

Eau et vapeur

Teau

Is
S

IE, therm
E

Teau IE, méc

Πn, eau Πn, vapeur

FIGURE 10.18 Diagramme de pro-
cessus de vaporisation d’eau.
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Les grandeurs Πm et Πn représentent respectivement le taux de production de la masse
ou de quantité de matière de liquide lors d’une fusion ou de vapeur lors d’une vapori-
sation, et mprod et nprod sont respectivement la masse et la quantité de matière de la
substance produite. Le facteur lfus ou lvap est appelé entropie latente de fusion spécifi-
que ou entropie latente de vaporisation spécifique, selon le processus considéré
(tableau 10.1 et tableau 10.2). Les mêmes grandeurs barrées sont les entro-
pies latentes molaires correspondantes. Comme nous l’avons déjà mentionné à la
section 10.2, le terme latent exprime le fait que l’entropie fournie n’affecte pas la tem-
pérature du système durant la transition de phase.

Énergie. Vu que le processus est réversible, nous pouvons calculer le courant d’entro-
pie et la quantité d’entropie échangée à partir de l’équation (10.105). Le processus se
déroulant à température constante, on peut obtenir, au moyen d’une simple multipli-
cation par la température de fusion ou de vaporisation, le courant d’énergie ou la quan-
tité d’énergie échangée Eéch, therm lors du chauffage ou du refroidissement. Comme le
changement de phase se déroule également à pression constante, nous pouvons con-
clure que l’énergie ajoutée correspond à la variation de l’enthalpie du fluide:

(10.106)

Le facteur ∆hfus ou ∆h vap est l’enthalpie de fusion spécifique (chaleur latente de fu-
sion) ou enthalpie de vaporisation spécifique (chaleur latente de vaporisation).

TABLEAU 10.1 Entropie et enthalpie de fusion à 1 bar.

Température Entropie 
spécifique

Entropie 
molaire

Enthalpie 
spécifique

Enthalpie 
molaire

Tfus /

K

lfus / 

Ct kg-1

lfus /

Ct mol-1
∆∆∆∆hfus /

J kg-1

∆∆∆∆Hfus/

J mol-1

Aluminium 933 448 12.1 3.97·105 10720

Cuivre 1356 151 9.68 2.05·105 13120

Fer 1808 153 8.58 2.70·105 13800

Mercure 234 50.2 10.1 0.11·105 2300

Or 1336 49.2 9.69 0.65·105 12943

Platine 2042 54.4 10.6 1.11·105 22170

Plomb 600 38.4 7.94 0.25·105 4770

Tungstène 3695 52.6 9.67 1.92·105 35300

Eau 273 1220 22.0 3.33·105 6010

TABLEAU 10.2 Entropie et enthalpie de vaporisation à 1 bar.

Température
Entropie 
spécifique

Entropie 
molaire

Enthalpie 
spécifique

Enthalpie 
molaire

Tvap /

K

lvap / 

Ct kg-1

lvap/

Ct mol-1
∆∆∆∆hvap /

J kg-1

∆∆∆∆Hvap/

J mol-1

Aluminium 2742 4000 108 10.9·106 2.94·105

Cuivre 2840 1672 107 4.781·106 3.06·105

Fer 3023 2107 118 6.31·106 3.54·105

l lfus vapou

E h m h T léch, therm vap prod vap vap vapoù= =∆ ∆
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Il est important de noter que, alors que l’entropie qui a été fournie pour le changement
de phase est contenue dans la nouvelle phase, ce n’est pas le cas de l’énergie, tout au
moins pour une partie de celle-ci. En effet, le changement de phase est généralement
accompagné d’une variation du volume, particulièrement importante lors de la vapo-
risation, et ce processus entraîne un échange d’énergie avec l’environnement
(fig. 10.19). La quantité d’énergie échangée peut être calculée. Vu que les transitions
de phase se déroulent également à pression constante, nous pouvons écrire:

(10.107)

P est la pression qui règne dans le fluide et ∆V la variation de volume du système.

Lien entre entropie et enthalpie molaire. Le fait que la vaporisation à température et
pression constantes soit réversible implique que l’entropie ajoutée au liquide sera pré-
sente dans la vapeur (fig. 10.20). L’entropie latente l due à la transition de phase peut
donc être exprimée au moyen des entropies du liquide et de la vapeur:

(10.108)

Pour décrire le changement de phase en termes d’énergie échangée (fig. 10.18), il suf-
fit de tenir compte du fait que l’énergie échangée correspond selon l’équation (10.106)
à la variation de l’enthalpie du fluide. Une partie de cette énergie sert à augmenter
l’énergie interne, alors que le reste est émis lors de la détente du fluide. Ainsi, la varia-
tion de l’entropie et celle de l’enthalpie (l’enthalpie latente de vaporisation) sont liées
par:

(10.109)

Il est naturellement possible d’énoncer la même relation en termes de grandeurs spé-
cifiques.

EXEMPLE 10.8. Vaporisation d’eau dans un récipient isolé.

De l’eau est vaporisée au moyen d’un thermoplongeur dans un récipient isolé, comme le montre
l’expérience de la section 5.1.6. La puissance constante du thermoplongeur est de 438 W et la
température d’ébullition est de 98.1°C. a) Déterminer le taux de variation de la masse, sachant

Mercure 630 453 91 0.29·106 0.57·105

Or 3080 558 110 1.65·106 3.25·105

Platine 4100 538 105 2.30·106 5.10·105

Plomb 2020 4250 880 8.59·106 17.8·105

Tungstène 5830 755 139 4.36·106 8.02·105

Eau 373 6055 109 2.30·106 0.41·105

TABLEAU 10.2 Entropie et enthalpie de vaporisation à 1 bar.

Température
Entropie 
spécifique

Entropie 
molaire

Enthalpie 
spécifique

Enthalpie 
molaire

Tvap /

K

lvap / 

Ct kg-1

lvap/

Ct mol-1
∆∆∆∆hvap /

J kg-1

∆∆∆∆Hvap/

J mol-1

Système

T

Is

IE, therm

T

IE, méc

ΠV
P

FIGURE 10.19 Diagramme de pro-
cessus de chauffage d’un corps à la
température T. Une partie de l’éner-
gie qui est apportée au système avec
l’entropie est utilisée pour provo-
quer le changement de volume et ne
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les masses mesurées aux temps t = 0 s et t = 600 s sont respectivement 0.930 kg et 0.810 kg. b)
Déterminer le taux de production d’entropie. c) Déterminer les valeurs de l’entropie de vapori-
sation spécifique et de l’enthalpie de vaporisation spécifique. d) Élaborer un modèle dynamique
du processus de vaporisation.

SOLUTION: a) À partir du graphique de la figure 5.8, nous obtenons une approximation du taux
de variation de la masse:

b) Le taux de production d’entropie est évalué à partir de (5.20):

c) En nous basant sur l’équation (10.105), nous trouvons:

Ces valeurs sont légèrement inférieures à celles qui apparaissent dans les tables, mais dépendent
fortement de l’approximation du taux de variation de la masse.

d) Le modèle est basé sur deux éléments fondamentaux, le bilan d’entropie de l’eau et de la va-
peur qui prend en compte l’apport par le thermoplongeur et les pertes vers l’environnement et
le bilan des masses donné par (10.104).

Si l’on tient compte des pertes à travers l’isolation, c’est en choisissant lvap = 6160 J K-1 kg-1

que l’on obtient la meilleure adéquation du modèle aux données expérimentales; la valeur de
l’enthalpie de vaporisation devient 2.29·106 J kg-1 (fig. 10.21).

B

10.7.4 Diagramme T-s de l’eau

Lorsque l’on chauffe une certaine quantité d’eau à pression constante, trois processus
se déroulent en séquence. Tout d’abord, l’apport d’entropie entraîne une augmentation
de la température selon les lois découvertes à la section 5.5, équation (5.32). Lorsque
la température d’ébullition est atteinte, l’eau se transforme en vapeur; durant ce proces-
sus, l’entropie du mélange d’eau et de vapeur continue à croître à température constante
(fig. 10.16 et 10.22). Finalement, lorsque toute l’eau a été transformée en vapeur, la
température du gaz continue à croître si l’apport d’entropie se poursuit. Le diagramme
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température-entropie de ce processus est représenté dans la figure 10.22 pour diverses
valeurs de la pression.

Notons quelques points intéressants. Tout d’abord, les mesures indiquent que la quan-
tité d’entropie nécessaire pour vaporiser 1 kg d’eau diminue lorsque la pression aug-
mente. Mais, à l’inverse, la quantité d’énergie nécessaire pour ce processus diminue
lorsque la pression augmente, car la température de vaporisation augmente avec la
pression et l’énergie est proportionnelle à la fois à l’entropie et à la température.

Les segments horizontaux des courbes T-s déterminent une surface en forme de clo-
che, ce qui permet de diviser le diagramme T-s en trois zones, la première à gauche de
la cloche pour la phase de liquide comprimé, la deuxième à droite pour la vapeur sur-
chauffée et la zone de la cloche elle-même qui représente le mélange de liquide et de
vapeur (fig. 10.23). La phase liquide occupe une bande très étroite le long de la ligne
de liquide saturé; cela est dû au fait que les propriétés de l’eau liquide ne dépendent
pas fortement de la pression. Ce n’est que pour des pressions de l’ordre de centaines
ou de milliers de bars que les propriétés de l’eau liquide s’éloignent fortement de cel-
les de l’état saturé. La courbe qui délimite la cloche est divisée en deux parties: la par-
tie gauche correspond aux états de liquide saturé (liquide sur le point de se vaporiser)
et la partie droite montre les états de vapeur saturée (vapeur pure sur le point de con-
denser). Les deux segments se rejoignent au sommet de la cloche en un point dénom-
mé point critique. La dernière série de points de la figure 10.22 montre que, lorsque la
pression est supérieure à la pression critique de 220.9 bar, la vapeur ne condense plus
lorsqu’on la refroidit à pression constante, tant que l’on est au-dessus d’une tempéra-
ture critique de 374.14°C, ce qui correspond à une entropie spécifique de 4.43 Ct kg-1.

D’autre part, on voit que l’eau bout à des températures plus basses si la pression est
faible. La température d’ébullition de 100°C est valable pour une pression de 1 bar. La
pression associée à une certaine température d’ébullition est appelée tension de
vapeur. Cette grandeur sera introduite à la section 10.8.3.

10.7.5 Relations pression-température pour les changements de phase

La majorité des observations faites au sujet de la vaporisation peuvent être reprises tel-
les quelles pour la fusion ou la sublimation. Des quantités spécifiques d’entropie sont
nécessaires pour ces transformations (ou sont récupérées lors du processus inverse);
l’énergie nécessaire est liée à cette grandeur par la température du changement de pha-
se. Tant que le processus se déroule à pression constante, la température reste constan-
te. Dans chacun des cas, la pression ne dépend que de la température à laquelle a lieu
le changement.

FIGURE 10.22 Diagramme T-s du
chauffage et de la vaporisation de
1 kg d’eau à pression constante. Les
courbes sont données pour différen-
tes valeurs de la pression.
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Le cas de la congélation de l’eau est particulièrement intéressant. Nous savons déjà
(exemple 6.5) que des variations de pression influencent le point de fusion. D’autre
part, cet effet est responsable du fait que l’eau qui gèle peut fendre la pierre: lorsqu’elle
atteint une température légèrement inférieure à 0°C, l’eau gelée engendre une pression
gigantesque, ce qui implique que la courbe représentant la relation pression-
température pour la fusion ou la congélation a une pente négative, contrairement à ce
qui est le cas pour la vaporisation et, en fait, pour tout ce que l’on rencontre par ailleurs
dans la nature.

Une relation pression-température analogue existe pour la sublimation. Les trois cour-
bes se rencontrent en un point unique, le point triple, où les trois phases coexistent. La
figure 10.24a montre le diagramme de phase pour le cas exceptionnel de l’eau et la
figure 10.24b pour celui des autres substances.

1. Lors de la condensation de la vapeur, qu’advient-il de l’entropie de la
vapeur, de l’eau et de l’environnement?

2. Les lois constitutives pour le changement de phase (10.104) ont été for-
mulées en termes de taux de production et/ou de destruction de la phase
participant au processus. Le taux de production d’une phase est-il tou-
jours égal au taux de variation de la quantité de matière de cette
substance?

3. Le courant d’entropie qui apparaît dans l’équation (10.105) est-il égal au taux de variation
de l’entropie du système qui subit le changement de phase?

4. Pour faire fondre de la glace, on apporte de l’entropie au système. Qu’advient-il de l’éner-
gie qui accompagne le flux d’entropie?

1. L’entropie de la vapeur et de l’eau prises ensemble diminue, celle de
l’environnement augmente.

2. Seulement s’il n’y a pas une partie de la substance qui franchit les limi-
tes du volume de contrôle.

3. Oui, car le changement de phase est un processus réversible.

4. L’énergie apportée contribue pour une part à faire varier l’énergie du
système, une autre part est liée à la variation du volume.

T

P

T

P

Solide

Liquide

Vapeur

Point
critique

Point
critique

Point
triple

Point
triple

Vapeur

LiquideSolide

a. b.FIGURE 10.24 Diagrammes de
phase: (a) pour l’eau; (b) pour toute
autre substance. Ces diagrammes
expriment la relation entre la pres-
sion et la température lors des chan-
gements de phase solide-liquide,
liquide-vapeur et solide-vapeur. Au
point triple, qui correspond à des va-
leurs uniques de la pression et de la
température, les trois phases coexis-
tent. À des températures (et pres-
sions) supérieures au point critique,
le liquide et la vapeur ne peuvent
pas être distingués.
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10.8 POTENTIEL CHIMIQUE ET CHANGEMENT DE PHASE

Nous l’avons découvert au chapitre 6 (section 6.4.2 et 6.4.3), les changements de pha-
se peuvent être traités comme des réactions chimiques. Si, à une température et une
pression données, le potentiel chimique d’une phase est plus élevé que celui d’une
autre, la substance passera de la première à la seconde phase. Nous allons, dans cette
section, montrer comment l’utilisation des potentiels chimiques peut servir à com-
prendre les phénomènes liés aux changements de phase.

10.8.1 Fusion et vaporisation en tant que réactions chimiques

Les changements de phase peuvent être envisagés comme une catégorie particulière
de réactions chimiques, gouvernées par les mêmes lois que celles que nous avons étu-
diées au chapitre 6 en nous servant des valeurs du potentiel chimique. Ainsi, en con-
sultant les valeurs du tableau 6.2, on voit qu’aux conditions standard, la valeur du
potentiel chimique de l’eau liquide est inférieure à celles de la glace et de la vapeur,
ce qui implique que la glace et la vapeur doivent passer à l’état liquide à 25°C et une
pression de 1 atm.

Les valeurs des potentiels chimiques et des coefficients de température du tableau 6.2,
ainsi que l’équation (6.27), permettent d’approximer les valeurs des températures des
points de fusion et de vaporisation en exigeant que les potentiels chimiques des deux
phases considérées soient égaux, pour autant que la pression reste constante:

(10.110)

C’est ainsi que, dans l’exemple 6.4, nous avons trouvé une température de 274.6 K
pour le point de fusion de la glace, ce qui est acceptable, puisqu’il s’agit d’une ap-
proximation linéaire.

10.8.2 Influence de la pression sur la valeur du point de fusion

Pour déterminer comment la pression fait varier le point de fusion (ou de vaporisa-
tion), il faut tenir compte à la fois de l’influence de la pression et de la température.
Cela implique que, par exemple, l’égalité des potentiels chimiques au point de fusion
est exprimée par:

(10.111)

Si nous choisissons la température de fusion de la glace (à pression normale P0) com-
me température de référence T0, les potentiels de référence de la glace et de l’eau sont
les mêmes. Nous obtenons ainsi:

(10.112)

L’introduction des valeurs numériques converties pour 0°C (exemple 6.5) révèle que
le taux de variation ∆P/∆T = – 136.2 bar K-1, ce qui signifie que le point de fusion de
la glace décroît lorsque la pression augmente et permet de justifier la pente négative
du segment solide-liquide du diagramme de phase de la figure 10.24a. Ce résultat re-
marquable, qui n’est valable que pour l’eau et peut-être pour une ou deux autres
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substances, est dû au fait que le coefficient de pression de la glace est plus grand que
celui de l’eau. En effet, la température de fusion augmente généralement avec la pres-
sion car, si la phase solide a une plus grande densité, le volume molaire et le coeffi-
cient de pression sont plus petits. Cette affirmation est également vraie pour la
température de vaporisation qui augmente lorsque la pression augmente. Pour ce
changement de phase, l’eau a le même comportement que les autres substances, com-
me nous allons le montrer dans la section suivante.

10.8.3 Pression de vapeur

Lorsque deux phases d’une substance coexistent (par exemple la phase liquide et la
phase gazeuse), la situation est comparable, pour une température donnée, à celle d’un
fluide et de sa vapeur enfermés dans un récipient isolé (fig. 10.25a). Comme le volume

et l’énergie sont constants, les seuls changements possibles sont la transformation de
liquide en vapeur (ou l’inverse) et la production d’entropie. En vertu de
l’équation (6.56), le taux de production d’entropie est donné par:

(10.113)

Les échanges entre les deux phases se poursuivront jusqu’à ce que l’équilibre soit at-
teint, c’est-à-dire lorsque les potentiels chimiques des deux phases seront égaux:

(10.114)

En nous servant des valeurs du tableau 6.2, nous pouvons estimer celle de la pression
de vapeur à la température de 25°C. Il faut toutefois convertir les potentiels aux valeurs
de la pression inconnue. Si nous traitons la vapeur d’eau comme un gaz parfait et l’eau
liquide comme un fluide incompressible, nous avons:

(10.115)

Lorsque l’on introduit des valeurs numériques, on se rend compte que le terme relatif
à la pression du liquide est très petit comparé aux autres termes, ce qui veut dire que
la pression du liquide n’influence que très peu le résultat (comme on peut le voir sur
le graphique de la figure 10.25b). Si l’on néglige ce terme, la solution de
l’équation (10.115) donne:

(10.116)
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FIGURE 10.25 Pression de vapeur:
(a) lorsque les deux phases coexis-
tent, la substance passe d’une phase
à l’autre en fonction de la
température; (b) potentiels chimi-
ques des phases liquide et gazeuse;
celui du liquide ne varie pratique-
ment pas, ce qui veut dire que c’est
la dépendance par rapport à la tem-
pérature de celui de la phase gazeu-
se qui détermine si celle-ci va
condenser ou si le liquide va s’éva-
porer. L’égalité des deux potentiels
détermine la pression de vapeur
pour la température donnée.
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L’insertion des valeurs du tableau 6.2 donne, pour la pression de vapeur de l’eau à
25°C, une valeur de 3150 Pa, ce qui est proche de la valeur mesurée de 3169 Pa. On
peut obtenir une première approximation de l’évolution de la pression de vapeur en
fonction de la température au moyen de l’équation (10.116) en ajustant les potentiels
chimiques à la température. Mais les valeurs correctes doivent être mesurées, car les
fluides n’obéissent pas à des lois constitutives simples. La courbe de tension de vapeur
pour l’eau est représentée dans la figure 10.26. Notons que cette courbe a un début et
une fin. Cette dernière n’apparaît pas dans le graphique: c’est le point critique alors
que le point initial est le point triple de la substance.

Nous pouvons maintenant donner une interprétation de la courbe en forme de cloche
de la figure 10.23. Les points de cette courbe sont ceux qui correspondent à la condi-
tion d’équilibre chimique (10.114) entre le liquide et la vapeur.

Dépendance de la pression de vapeur par rapport à la température. Pour obtenir
cette dépendance à partir de la relation (10.116), il faut connaître les potentiels chimi-
ques de chacune des deux phases en fonction de la température et de la pression. Les
relations en question sont5:

(10.117)

Le terme relatif à la pression dans le potentiel chimique de la phase liquide et les ter-
mes où apparaissent les coefficients de température de l’enthalpie sont relativement
petits comparés à ceux liés à l’entropie et peuvent être négligés en première approxi-
mation. L’égalité des potentiels chimiques à l’équilibre donne finalement:

(10.118)

Nous pouvons utiliser cette relation pour calculer la température à laquelle la pression
de vapeur correspond à la pression standard de 1 atm. Avec les valeurs du tableau 6.2,
nous obtenons une température de 97°C, ce qui est suffisamment proche de la valeur
correcte, vu les approximations effectuées.

1. Lorsque l’on évapore de l’eau, quelles parts respectives de l’entropie et
de l’énergie apportée retrouve-t-on dans la vapeur?

2. Que peut-on affirmer au sujet des valeurs des potentiels chimiques du
liquide et de la vapeur (ou du solide et du liquide) le long de la fonction
pression-température séparant les phases dans les diagrammes de phase
PT de la figure 10.24?

3. Dans le diagramme TS du passage de la phase liquide à la phase vapeur de la figure 10.23,
en quels points ou le long de quelles lignes les potentiels chimiques du liquide et de la
vapeur sont-ils égaux?

4. Si la courbe de pression de vapeur de l’eau doit être calculée sur la base des modèles de
fluide incompressible et de gaz parfait, quelles relations faut-il utiliser?

5. Fuchs H.U. (2010): The Dynamics of Heat, Springer, New York, section 8.4.
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1. Toute l’entropie, mais seulement une partie de l’énergie.

2. Ils sont égaux.

3. Le long de droites horizontales, correspondant à une température T
constante, dans la zone de coexistence du liquide et de la vapeur.

4. L’équation (10.117).

EXEMPLE 10.9. Variation de la tension de vapeur et enthalpie de vaporisation.

(a) Exprimez l’approximation (10.118) pour la pression de vapeur en fonction de la température
au moyen de l’entropie de vaporisation. Utilisez la température de vaporisation à 1 atm en tant
que référence. (b) Déterminez la pression de vapeur et le potentiel chimique standard de la va-
peur de mercure à 25°C.

SOLUTION: (a) À une pression de 1 atm et avec la température de vaporisation correspondante
en tant que valeur de référence, les potentiels chimiques standard de la vapeur et du liquide sont
égaux. Si nous utilisons la relation (10.109) entre l’entropie et l’enthalpie de vaporisation,
l’équation (10.118) se réduit à:

Ce résultat implique que la mesure de l’enthalpie de vaporisation fournit une information fon-
damentale sur un fluide envisagé comme un gaz parfait.

(b) Nous utilisons le résultat que nous venons d’obtenir avec Tvap = 630 K et 57 kJ mol–1 pour
l’enthalpie de vaporisation. Il s’ensuit:

ce qui correspond à une tension de vapeur de 0.54 Pa. Nous pouvons utiliser cette valeur pour
calculer le potentiel chimique du mercure gazeux à 25°C et 1 atm à partir de
l’équation (10.116):

sachant que le potentiel chimique du mercure liquide aux conditions standard est nul par con-
vention. Nous obtenons ainsi une valeur de 30.0 kG, comparée à la valeur des tables qui est de
31.84 kG.

B

Résumé du chapitre
Lorsqu’ils sont soumis à des apports ou à des retraits de chaleur, les fluides répondent
par des variations simultanées de la température et du volume. Nous considérons des
fluides parfaits, donc sans viscosité et dans lesquels la chaleur se répartit uniformé-
ment sans résistance, ce qui implique qu’il n’y a pas de dissipation.

L’équation de bilan de l’entropie est donc celle d’un processus réversible, à savoir:
. Le taux de production du volume sert à exprimer les variations de
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10.8  POTENTIEL CHIMIQUE ET CHANGEMENT DE PHASE

volume. L’équation de bilan de l’énergie tient
compte des deux processus.

Lors de l’établissement des lois constitutives pour un fluide parfait, on envisage deux
cas extrêmes, le chauffage isotherme, au cours duquel l’apport d’entropie ne provoque
que des variations de volume, et le chauffage isochore, où seule la température évolue.

Dans le cas du chauffage isotherme, la variation de l’entropie est : . Le
paramètre ΛV est l’entropie latente par rapport au volume ou entropie latente de
détente.

Lorsque l’apport d’entropie a lieu à volume constant, son taux de variation est donné
par la relation: . Le paramètre KV est la capacité entropique à volume
constant.

Le processus général de chauffage du fluide parfait est la réalisation simultanée des
deux cas considérés, ce que l’on modélise par: . On peut aussi
énoncer l’équation de bilan en termes de pression et de température: .
Le paramètre ΛP est l’entropie latente par rapport à la pression ou entropie latente de
compression.

L’énergie échangée au cours d’un processus isotherme ne dépend que du rapport du
volume final au volume initial. Lors de processus adiabatiques, ou isentropiques,
l’équation d’état du gaz parfait devient . L’exposant γ = KP /KV est le
coefficient adiabatique. Il est constant dans le cas d’un gaz parfait.

À partir de l’équation d’état du gaz parfait PV = nRT, il est possible de déterminer les
relations entres les quatre paramètres intervenant dans les équations de bilan. Les ca-
pacités entropiques sont proportionnelles à l’inverse de la température, ce qui impli-
que que leurs produits avec la température sont des grandeurs énergétiques constantes
que l’on appelle capacités thermiques en thermodynamique traditionnelle.

La température des objets peut varier à la suite d’absorption ou d’émission de rayon-
nement électromagnétique que l’on appelle alors rayonnement thermique. Un objet
qui absorbe toute l’énergie électromagnétique qu’il reçoit est un corps noir. À la tem-
pérature T, il émet un rayonnement auquel on attribue la même température. Ce rayon-
nement peut être considéré comme un gaz de photons que l’on peut traiter de manière
analogue à un gaz parfait. En procédant de la sorte, on établit que la densité d’énergie
du gaz de photons est proportionnelle à la quatrième puissance de la température, ce
qui est également le cas de son entropie latente de détente, alors que sa capacité entro-
pique à volume constant varie avec le carré de la température. Le contenu en entropie
du rayonnement du corps noir varie avec le cube de la température.

Dans certains matériaux paramagnétiques, on peut observer un couplage entre la tem-
pérature et l’aimantation, il s’agit de l’effet magnétocalorique. L’équation de bilan
peut être exprimée au moyen de l’aimantation M qui est la grandeur extensive inter-
venant dans ce processus: , ou au moyen de la grandeur inten-
sive associée, à savoir l’intensité H du champ magnétique: .
Les relations constitutives qui lient entre elles les entropies latentes et les capacités en-
tropiques peuvent être établies à partir de l’équation d’état thermique d’une substance
paramagnétique: , où C* est la constante de CURIE. L’effet magnétocalo-
rique peut être utilisé pour accéder à de très basses températures au moyen de la
désaimantation adiabatique.

Les changements de phase sont caractérisés par le fait que la température reste cons-
tante durant le passage d’un état à l’autre. Les équations de bilan doivent énoncer les
variations des trois grandeurs qui participent à un tel processus. Il s’agit d’abord de
l’entropie qui s’accumule dans le système ou s’en échappe: . Comme le pro-
cessus est réversible, il n’y a pas de production d’entropie. L’entropie introduit de
l’énergie dans le système ou en extrait. Une partie de cette énergie est utilisée dans un
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processus mécanique, ce qui apparaît dans l’équation de bilan: .
Enfin, il faut prendre en compte les processus chimiques en formulant les bilans des
quantités de matière (ou de masse): ,
ici pour le cas de vaporisation d’eau. Les lois constitutives sont simples, par exemples
pour la vaporisation, nous avons: , ou lvap représente
l’entropie molaire de vaporisation. Des relations équivalentes doivent être énoncées
pour l’énergie.

L’utilisation des potentiels chimiques permet d’envisager les transitions de phase com-
me des réactions chimiques particulières. Ainsi, en égalant les valeurs des potentiels
de deux phases d’une substance, il est possible de déterminer la température à laquelle
aura lieu le passage d’une phase à l’autre. De même, on peut déterminer l’influence de
la pression sur la température du changement d’état.

�E I IE E= +, ,therm méc

� �n nn n n neau , eau vap , vap , eauet avec= = = −Π Π Π Π ,, vap

�S I l S l nS n= = =vap vap prodouΠ ∆
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Exercices et problèmes
1. (a) Démontrez comment l’entropie molaire ou spécifique de

fusion (ou de vaporisation) peut être déterminée au moyen de
la mesure du flux d’énergie de chauffage, de la température
de fusion (ou de vaporisation) et du taux de variation de la
quantité de matière fondue (ou vaporisée). (b) Un mélange de
glace et d’eau est chauffé par un thermoplongeur et brassé
pour assurer des conditions homogènes. Si la puissance élec-
trique est de 50 W, 10 g de glace fondent en 67 s. Calculez
l’entropie spécifique de fusion de la glace.

2. Freon-12 est un fluide réfrigérant utilisé dans les réfrigéra-
teurs. Il absorbe l’entropie de l’espace à refroidir lors de son
évaporation à basse température. Lors de son évaporation à
–30°C, il absorbe un courant d’entropie de 4.0 Ct s–1. (a) À
quel taux le fréon liquide passe-t-il dans sa phase gazeuse?
L’entropie latente spécifique de vaporisation à –30°C est
égale à 680 Ct kg–1. (b) Que vaut l’enthalpie spécifique de
vaporisation du Freon-12 à cette température ? (c) À quel
taux pourrait-on produire de la glace dans ce réfrigérateur?

3. De l’eau est chauffée, partiellement vaporisée, puis évaporée
dans un verre ouvert posé sur une balance. L’évolution de la
température et de la masse de l’eau est représentée dans la
figure 10.27. Le thermoplongeur est débranché à t = 1600 s.
Les données expérimentales sont : température ambiante :
20°C; aire des parois du verre: 3.58·10–2 m2; coefficient de
transfert de l’entropie à travers les parois (de l’eau à l’air) :
0.039 Ct s–1 m–2 ; puissance du thermoplongeur : 304 W.
Considérez l’instant t = 1400 s. (a) Que vaut le taux de pro-
duction d’entropie du thermoplongeur à cet instant? (b) Que
vaut le flux massique de vapeur? (c) Quel est le flux d’entro-
pie à travers les parois du verre (le fond est bien isolé)? (d)
Déterminez l’entropie spécifique d’évaporation à partir des
données expérimentales.

4. Un ballon à air chaud flotte à une altitude de 2000 m dans
une atmosphère isotherme de température égale à 0°C. La
température de l’air à l’intérieur du ballon est de 250°C.
Déterminez le rayon du ballon sphérique en admettant que sa
masse est de 450 kg, passagers compris, et que la pression au
niveau de la mer est de 1 bar.

5. Une éprouvette de 10 cm de longueur est remplie d’air à la
température de 27°C. En gardant l’éprouvette ouverte, l’air
est chauffé à la température de 57°C. L’éprouvette est ensuite

Ñ
ÑÑ
ÑÑ
ÑÑÑ
ÑÑÑ
ÑÑÑ

ÑÑÑÑÑ

ÑÑÑÑÑÑ

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

ÑÑÑÑ

ÑÑÑ

ÑÑÑÑ
ÑÑÑÑ

ÑÑÑÑ
ÑÑÑÑ

ÑÑÑÑ
ÑÑÑÑÑ

ÑÑÑ
ÑÑÑÑ

Ñ

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

350

360

370

380

390

725

750

775

800

825

1000 1200 1400 1600 1800 2000

Te
m

pé
ra

tu
re

/K

M
as

se
/g

Temps / s

Masse

Température

FIGURE 10.27
Problème 3.

retournée et plongée dans l’eau en laissant 5 cm au-dessus du
niveau de l’eau comme le montre la figure 10.28. L’air
enfermé se refroidit à 27°C. A quelle distance au-dessus ou
au-dessous du niveau extérieur l’eau va-t-elle pénétrer dans
l’éprouvette sachant que la pression atmosphérique vaut
1 bar?

6. Lorsqu’un gaz parfait se dilate ou se contracte, il échange de
l’énergie en conséquence du processus mécanique. (a) Déter-
minez l’énergie échangée dans le doublement isotherme
d’une mole de gaz parfait à la température de 300 K. (b) Que
vaut l’entropie échangée?

7. Une grande bouteille remplie d’air est surmontée d’un col
cylindrique étroit (fig. 10.8a). Lorsqu’on laisse tomber à
l’intérieur de ce cylindre une bille de diamètre choisi de
manière à ce que l’air ne puisse pas s’échapper latéralement
et que les frottements soient peu importants, elle oscille verti-
calement un certain nombre de fois jusqu’à ce que la dissipa-
tion interrompe son mouvement (fig. 10.8b). Les oscillations
sont suffisamment lentes pour qu’on puisse les observer et
suffisamment rapides pour que le cycle de détente et com-
pression de l’air soit adiabatique. La taille de la bouteille est
telle que l’on peut admettre que la pression et le volume de
l’air qu’elle contient restent inchangés. Déterminez la fré-
quence de l’oscillation.

8. Exprimez l’énergie échangée lors de la détente adiabatique
du gaz parfait au moyen des températures, sachant que
l’énergie du gaz parfait ne dépend que de la température.

9. Pour déterminer le rapport des capacités entropiques, on peut
réaliser l’expérience de Clément et Désormes. L’air contenu
dans une grande bouteille est comprimé à une pression légè-
rement plus élevée que la pression extérieure, et la pression
interne est mesurée. On laisse s’échapper rapidement de l’air
à travers une valve pour ramener la pression à la valeur exté-
rieure. La température interne diminue, vu que le processus
est adiabatique. Finalement, on chauffe l’air lentement pour
ramener sa température à la valeur initiale et on mesure la
pression atteinte. (a) Esquissez un diagramme TV des deux
étapes. (b) Dérivez le rapport des capacités entropiques à par-
tir des valeurs de la pression. (c) Démontrez que l’énergie
échangée durant la première étape doit être égale, au signe
près, à celle qui est échangée durant la seconde étape.

10. Un fluide dont l’énergie ne dépend que de la température se
dilate en régime adiabatique; dans une seconde étape, sa tem-
pérature est ramenée à sa valeur initiale à volume constant.
On constate que, durant la phase de détente adiabatique, le
fluide échange une quantité d’énergie égale à 50 kJ. (a) Par
quel type de processus cet échange d’énergie est-il provoqué?
Quel est le signe de l’énergie échangée? (b) Y a-t-il échange
d’énergie durant l’étape isochore? Dans l’affirmative, par

x

FIGURE 10.28
Problème 5.
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quel type de processus, et combien? (c) Esquissez les étapes
dans un diagramme TS en admettant que l’entropie est con-
servée. Est-il possible de visualiser ∆E ou des quantités
d’énergie échangée dans ce diagramme?

11. Une quantité de 1.0 g d’eau est complètement vaporisée à
100°C et à la pression de 1.0 bar pour produire 1670 cm3 de
vapeur. Exprimez la variation de l’énergie de l’eau en termes
de variation d’entropie et de volume et déterminez sa valeur.

12. Comment l’énergie de l’eau varie-t-elle si elle subit une
détente isotherme à la température de 2°C? La réponse est-
elle différente à la température de 20°C?

13. Une masse de 20 kg d’air à 100°C et 1.0 bar est comprimée
en régime isotherme. (a) Combien d’énergie doit-on apporter
dans le processus mécanique si le volume doit être réduit à
10% de sa valeur initiale? (b) Quelle sera la valeur de la pres-
sion à la fin du processus? (c) Si la compression doit être réa-
lisée en 10 s à un taux de variation du volume constant,
comment la valeur de la puissance mécanique évolue-t-elle
en fonction du temps?

14. De l’air sec dévale d’une montagne située à 2500 m d’alti-
tude dans une vallée à 500 m d’altitude. La température de
l’air au sommet est de 4°C. Avant l’arrivée du vent, celle de
la vallée est de 16°C. De combien l’arrivée du vent dans la
vallée va-t-elle élever la température?

15. Pourquoi l’entropie du gaz parfait reste-t-elle constante lors
d’un processus adiabatique? Déterminez la forme particu-
lière des équations de bilan de l’entropie et de l’énergie pour
un tel processus. Qu’advient-il de l’énergie du gaz parfait
durant une détente adiabatique?

16. Esquissez la courbe relative à un processus isobare de l’air
dans un diagramme TS. Qu’advient-il de la courbe si le pro-
cessus se déroule à une pression plus élevée?

17. Un volume d’air est chauffé à pression constante. Quelle
fraction de l’entropie ajoutée reste à l’intérieur de ce
volume? Qu’en est-il de l’énergie ajoutée?

18. Considérez une quantité fixe d’air atmosphérique à la tempé-
rature de 15°C et une pression de 950 mbar. Le rayonnement
du Soleil est tel que cet air absorbe de l’énergie à un taux de
0.1 W. (a) Au début, le volume de cette quantité d’air est de
1.0 m3. Que valent la quantité de matière et la masse de cette
quantité d’air? (b) À quel taux l’entropie de ce volume d’aire
croît-elle à ce moment? (c) Quelle est la capacité entropique
à volume constant de cet air? Quelle est la capacité entropi-
que à pression constante? (d) Lors du processus envisagé, la
pression reste constante. À quel taux la température évolue-t-
elle au premier instant?

19. Une masse de 5 g d’air à une pression de 38 bar et une tem-
pérature de 650°C est chauffée à l’intérieur d’un cylindre par
la combustion d’un carburant injecté. L’énergie ajoutée par
ce chauffage est de 7.5 kJ. Le piston se déplace de manière à
maintenir la pression constante (cela correspond à une des
étapes du processus Diesel). Admettez que le carburant
injecté ne change pas les propriétés de l’air dans le cylindre.
(a) Combien d’énergie est échangée à la suite de la variation
du volume d’air? (b) Calculez la variation d’énergie du gaz.

20. Une bulle d’air de diamètre initial de 5.0 mm commence à
remonter vers la surface d’un étang à partir d’une profondeur
de 5 m. Du fond à la surface, la température de l’eau varie
linéairement de 6°C à 15°C. Admettez que la température de
la bulle évolue comme celle de l’eau environnante. Négligez
les effets de la tension superficielle. (a) Déterminez le diamè-
tre de la bulle peu avant qu’elle atteigne la surface. (b) Esti-
mez approximativement la quantité d’énergie échangée en
conséquence du chauffage durant la montée de la bulle.

21. Utilisez les lois de l’équilibre hydrostatique pour un colonne
de gaz s’étendant du centre du Soleil à sa surface afin d’esti-
mer la pression au centre. Le gaz au centre du Soleil est un
gaz parfait. Déterminez sa température à partir d’une gros-
sière estimation de la densité. Quelle est l’importance de la
contribution du rayonnement à la pression au centre du
Soleil?

22. Le gaz de photons peut être soumis à des processus adiabati-
ques et isothermes. (a) Exprimez la relation entre la tempéra-
ture et le volume du rayonnement du corps noir lors de
processus adiabatiques. Montrez que le rayonnement du
corps noir se comporte comme un gaz parfait avec un rapport
des capacités entropiques égal à 4/3. (b) Déterminez les
quantités d’énergie échangées en conséquence de variations
isothermes du volume et calculez la variation d’énergie du
gaz de photons.

23. Considérez le modèle fortement simplifié d’un gaz de parti-
cules sans interaction: N particules sont enfermées dans un
cube de longueur des côtés égale à L. Admettez qu’un tiers
des particules se déplacent dans chacune des directions paral-
lèles aux parois du cube. Toutes les particules ont le même
module de vitesse. (c) Montrez que la pression de ce gaz est
donnée par: P = 1/3 Nvp / V, où v et p sont respectivement le
module de la vitesse et la quantité de mouvement d’une parti-
cule, et V le volume du cube. (b) Appliquez ce résultat à un
gaz parfait de particules matérielles. Dérivez la relation entre
la pression et la densité d’énergie du gaz. (c) Dans le même
contexte, dérivez l’expression du coefficient de température
de l’énergie. À quel type de gaz la valeur de ce coefficient
est-elle relative? (d) Appliquez l’idée à un gaz de photons.
Montrez que la relation entre la pression et la densité d’éner-
gie est celle de l’équation (10.65).

24. De la vapeur d’eau surchauffée à une température de 300°C
et une pression de 30 bar subit une détente isentropique qui
se termine à une température de 100°C (un tel processus
pourrait se produire lors d’une détente adiabatique d’un
fluide parfait dans une turbine). (a) Calculez l’entropie spéci-
fique et l’enthalpie du fluide. (b) Déterminez la température
et la pression auxquelles le fluide commence à se condenser.
(c) Calculez la pression et la répartition du mélange de flui-
des à l’état final. Pour les calculs, utilisez des valeurs obte-
nues par interpolation dans les figures 10.22 ou fig. 10.29.

25. Le cycle de Rankine est un modèle des étapes que traverse le
fluide (eau et vapeur) dans une turbine à vapeur d’une cen-
trale thermique (ligne continue dans la figure 10.29). De 1 à
2, l’eau est chauffée. Simultanément, la pression est élevée à
60 bar. La poursuite du chauffage provoque une vaporisation
totale (2 à 3). Ensuite, on poursuit le chauffage de la vapeur à
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pression constante (3 à 4). De 4 à 5, la vapeur subit une
détente isentropique dans la turbine pour ramener la pression
à 1 bar. Finalement, la totalité du fluide est liquéfiée (5 à 1).
Dans ce qui suit, considérez 1 kg d’eau.

(a) Dans l’étape 3 à 4, considérez la vapeur comme un gaz
parfait de coefficient de température de l’enthalpie (chaleur
spécifique à pression constante) de 3000 J kg-1. Combien
d’entropie doit-on injecter dans le gaz pour que sa tempéra-
ture croisse comme le montre le diagramme ? Comparez
votre résultat avec le diagramme. (b) Combien d’énergie par
kilogramme d’eau est libérée du condenseur vers l’environ-
nement durant l’étape de 5 à 1 ? Quel est le flux d’énergie
vers l’environnement lorsque le flux massique du fluide dans
la centrale est de 800 kg s-1?
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FIGURE 10.29
Problème 25.
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Ce chapitre est consacré à l’approfondissement de l’étude des phénomènes de trans-
port que nous avons déjà rencontrés dans les chapitres précédents, à savoir la conduc-
tion, le rayonnement et la convection. Les premières sections traiteront de la
conduction et du rayonnement et seront illustrées par le transport de l’entropie. Les
dernières sections aborderont les processus de convection et nous confronteront avec
les systèmes ouverts.
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L’introduction des trois types de transport d’entropie, que l’on rencontre par ailleurs
dans d’autres domaines de la physique et des sciences naturelles, nous amènera à
généraliser l’équation de bilan de l’entropie et à mieux comprendre le rôle de la tem-
pérature dans les processus thermiques.

 

11.1.1 Transport d’entropie par conduction

Au chapitre 5, nous avons observé que la chaleur, l’entropie, migre de l’extrémité
chauffée d’une barre métallique vers l’extrémité froide, qu’elle passe à travers les
parois de récipients ou les murs d’une maison.

Dans chacun de ces exemples, il n’y a aucun transport de matière. L’entropie s’écoule
à travers les corps sans l’aide d’un corps qui la transporte, et elle s’écoule d’un corps
à l’autre s’ils sont mis en contact direct. Ce sont des exemples de conduction ou dif-
fusion de l’entropie.

 

Force d’entraînement. Les observations du chapitre 5 nous ont également révélé que
l’entropie s’écoule par conduction tant qu’il existe une différence de température entre
les corps qui échangent de la chaleur, et que le processus est spontané lorsque l’entro-
pie s’écoule de corps chauds vers des corps froids.

Nous avons observé ce type de comportement dans tous les domaines de la physique
que nous avons abordés: dans chaque cas, quelque chose s’écoule tant qu’il y a une
différence de potentiel en tant que force d’entraînement du processus. Par analogie,
nous interprétons le transport d’entropie par conduction de la manière suivante:

 

É

 

quation de bilan de l’entropie. Le transport d’entropie par conduction est un excel-
lent exemple de processus irréversible (section 5.7). Un corps qui conduit de l’entropie

Lors du transport par conduction, l’entropie s’écoule à travers les corps
des points de température élevée vers ceux de température plus basse. Le
processus dure tant qu’il y a une différence de température qui sert de for-
ce d’entraînement.
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en produit simultanément. Ce doit être le cas puisque, dans un processus stationnaire,
l’énergie qui entre dans le corps à température élevée en émerge à un niveau thermique
plus bas. Il s’ensuit que le courant d’entropie qui émerge du système doit être plus im-
portant que celui qui y a pénétré. Cela signifie que l’équation de bilan de l’entropie doit
contenir un terme qui prend en compte la production d’entropie:

 

(11.1)

Le terme IS, cond représente le flux net d’entropie transportée par conduction dans le
système considéré. Nous l’appellerons flux conductif d’entropie.

 

É

 

coulement à travers des surfaces. L’entropie qui s’écoule par conduction doit, à
un moment donné, s’écouler à travers la surface des corps. Si nous sommes intéressés
par l’écoulement à l’intérieur du corps, nous pouvons introduire des surfaces imagi-
naires entre deux éléments du corps qui sont en contact (fig. 11.1). Nous relevons cette
particularité parce qu’un corps peut absorber ou émettre de l’entropie par rayonne-
ment.

 

11.1.2 Transport d’entropie par les fluides: convection

Au lieu du climat tempéré dont elles jouissent, les régions septentrionales de l’Europe
auraient un climat beaucoup plus rude si elles ne bénéficiaient pas de l’apport du Gulf
Stream qui transporte de gigantesques quantités de chaleur du golfe du Mexique vers
le côtes occidentales de l’Europe. Il ne s’agit que d’un exemple parmi d’autres d’un
deuxième mode de transport de l’entropie qui est, dans ce cas, transportée par un mi-
lieu matériel en mouvement, tel que l’air qui s’élève au-dessus d’un radiateur chaud,
de l’eau chaude pompée dans les conduites d’un chauffage central. On parle dans un
tel cas de transport d’entropie par convection.

 

Force d’entraînement. Une différence de température entraîne la conduction d’entro-
pie, ce qui n’est pas le cas lors du transport par convection. Le flux convectif d’entro-
pie est causé par la force d’entraînement de l’écoulement qui transporte la chaleur;
nous savons qu’il s’agit d’une différence de pression engendrée par une pompe ou un
autre appareil ou processus:

On pourrait croire que, par exemple, l’ascension de l’air chaud au-dessus d’un radia-
teur est due à une différence de température. En fait, la circulation de l’air est due à
une différence de pression engendrée par le chauffage. La différence de température
est donc responsable du flux de manière indirecte.

 

Bilan d’entropie. Comme il s’agit d’un nouveau processus, nous devons en tenir
compte par l’introduction d’un nouveau terme dans l’équation de bilan de l’entropie,
celui qui prend en compte les courants convectifs:

 

(11.2)

À nouveau, nous sommes confrontés à un processus qui se déroule à la surface: les
substances, et avec elles l’entropie, s’écoulent vers ou hors de régions de l’espace à
travers des surfaces réelles ou imaginaires (fig. 11.2).

 
�S IS S= +, cond Π

Surface du corps

Surface interne
imaginaire

FIGURE 11.1 Flux conductif d’en-
tropie à travers des surfaces. De tel-
les surfaces peuvent être des
surfaces réelles de corps ou des sur-
faces imaginaires qui séparent des
parties internes du corps.

Lors d’un processus de convection, l’entropie est transportée par des
écoulements de substances. La force d’entraînement de ce processus est la
différence de pression à l’origine de l’écoulement de la substance maté-
rielle.

 �S I IS S S= + +, ,cond conv Π

Chauffage
conductif

Refroidissement
conductif

Transport convectif
à travers les limites
du système

Système

FIGURE 11.2 L’entropie peut tra-
verser les limites d’un corps par
conduction ou par convection. Dans
le premier cas, il n’y a aucun trans-
port de matière à travers la surface et
l’entropie s’écoule à travers la ma-
tière. Dans le cas de la convection,
une substance s’écoule à travers la
surface, entraînant avec elle l’entro-
pie qu’elle contient.
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Il faut relever un point important au sujet de l’identification du système sur lequel por-
te le bilan d’entropie. Jusqu’à présent, nous avions toujours affaire à des objets maté-
riels rigides qui n’échangeaient pas de matière avec leur environnement, que nous
continuerons à appeler des corps. En présence d’un écoulement de matière, la situation
se complique. Considérons par exemple un volume d’eau s’écoulant dans une rivière.
Nous pouvons continuer à le considérer comme un corps séparé du reste de la rivière
par une surface imaginaire qui se déplace et se déforme avec lui (fig. 11.3). Dans un
tel cas, le taux de variation de l’entropie (ou d’une autre fonction) dans
l’équation (11.1) se réfère à l’entropie du corps. C’est pour cette raison que cette
dérivée est appelée dérivée matérielle ou dérivée substantielle.

 

Volume de contrôle. Il est souvent plus commode d’établir le bilan par rapport à une
région de l’espace plutôt que par rapport à un corps identifiable (fig. 11.3). C’est par-
ticulièrement le cas lorsqu’il y a écoulement de matière. On isole une certaine région
de l’espace au moyen d’une surface imaginaire. Pour les distinguer des corps, on les
appelle respectivement volume de contrôle ou surface ce contrôle. Des flux peuvent
pénétrer dans la surface de contrôle, ce qui peut faire varier la quantité de matière
contenue dans le volume de contrôle. Il s’ensuit que le taux de variation apparaissant
dans l’équation (11.2) ne se réfère pas au corps mais au volume de contrôle (qui peut
être stationnaire ou en mouvement). La dérivée représente donc le taux de variation de
l’entropie du volume de contrôle. Cette dérivée est appelée dérivée locale.

 

11.1.3 Transport d’entropie par rayonnement

La chaleur qui provient du Soleil ne peut être transportée ni par conduction, ni par con-
vection, puisque l’espace qui nous sépare de notre étoile est vide. Le Soleil ne peut
donc éliminer les énormes quantités d’entropie qu’il produit que par rayonnement.

La chaleur qui est émise par des corps chauds peut être photographiée au moyen d’une
caméra ou d’un film sensibles au rayonnement infrarouge, de la même manière que les
photographies usuelles sont faites avec des caméras ou des films sensibles à la lumière
visible. Ce fait suggère que le médium qui transporte l’entropie est semblable à la
lumière. Il s’agit bel et bien de rayonnement électromagnétique dont les rayons X, la
lumière ultraviolette et visible, le rayonnement infrarouge et les ondes radio sont des
exemples.

 

Transport par l’intermédiaire du champ radiatif. Nous pouvons appeler ce mode de
transport rayonnement thermique. Il s’agit de l’écoulement d’entropie (ou d’autres
grandeurs) par l’intermédiaire d’un système physique non matériel, le champ électro-
magnétique. Ce transport s’effectue par l’intermédiaire du rayonnement qui peut
transporter des grandeurs telles que l’entropie, la quantité de mouvement et l’énergie
de manière semblable à des corps matériels. Nous pouvons formuler l’équation de
bilan de l’entropie pour le champ électromagnétique dans un volume de contrôle vide
par ailleurs (fig. 11.4):

 

(11.3)

Volume de contrôle
Corps

Maintenant

Plus tard

FIGURE 11.3 Un corps et un volu-
me de contrôle dans une situation
impliquant un écoulement de subs-
tances. Un corps se déplace et se dé-
forme avec l’écoulement. Un
volume de contrôle est une région
de l’espace, en mouvement ou sta-
tionnaire. En général, le volume de
contrôle peut accueillir des flux con-
vectifs. Dans cet exemple, le corps
et le volume de contrôle occupent
initialement la même région.

L’entropie peut être transportée par la lumière, qui est une onde électro-
magnétique (section 14.9). Tout corps chaud émet un rayonnement élec-
tromagnétique qui transporte de l’entropie.

Notons toutefois que la chaleur perçue par les corps qui absorbent du
rayonnement est essentiellement produite à l’intérieur même du corps.

Région de l’espace
occupée par le
le champ radiatif

Entropie

FIGURE 11.4 Entropie transportée
par le rayonnement dans l’espace
vide. Elle traverse le volume de con-
trôle sans qu’il y ait de variation de
température. �S ISchamp , rad=
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À nouveau, le flux d’entropie par l’intermédiaire du champ radiatif est un phénomène
de surface avec des courants qui s’écoulent à travers des surfaces imaginaires entou-
rant certaines régions de l’espace. La quantité d’entropie dans cette région varie à cau-
se de l’entropie transportée par le rayonnement (fig. 11.4).

Le flux d’entropie à travers l’espace vide n’est pas dissipatif. On peut en outre se de-
mander si une différence de température est nécessaire pour entraîner le flux d’entro-
pie par l’intermédiaire du champ radiatif. Ce n’est pas le cas. On associe la même
température au rayonnement qui quitte le Soleil et à celui qui arrive sur la Terre, ce qui
rend le transport d’entropie par le rayonnement très semblable au transport par con-
vection. Le seul mode de transport de l’entropie qui est entraîné par une différence de
température est le transport par conduction.

 

11.1.4 Interaction entre corps et champ

Dans la plupart des cas, on ne s’intéresse pas au transport d’entropie par l’intermédiai-
re du champ radiatif, mais plutôt à l’interaction entre les champs et les corps. Le
rayonnement du Soleil qui n’a pas été réfléchi dans l’espace pénètre dans l’atmosphère
à l’intérieur de laquelle il est partiellement absorbé, le reste atteignant la surface. Si-
multanément, l’air doit émettre de l’entropie, vu que sa température reste dans une pla-
ge limitée. L’absorption et l’émission de rayonnement ne se déroulent pas à l’endroit
où le rayonnement pénètre dans l’atmosphère, mais n’importe où en son sein, ce qui
signifie que le champ radiatif et l’atmosphère occupent simultanément la même région
de l’espace (fig. 11.5).

 

É

 

quation de bilan de l’entropie pour le corps et le champ. Nous allons procéder en
deux étapes. Nous envisageons tout d’abord le système combiné de matière et de
champ qui occupent la même région de l’espace (fig. 11.5a). Le système absorbe une
partie du rayonnement. Nous avons donc un flux radiatif d’entropie qui pénètre dans
le système ainsi qu’une production d’entropie en cas de dissipation car, comme nous
le verrons, l’absorption et l’émission d’entropie sont des processus irréversibles:

 

(11.4)

 

Sources dues à l’absorption et à l’émission. L’absorption et l’émission de rayonne-
ment sont des phénomènes volumiques. L’entropie surgit dans le matériau par l’inter-
médiaire du champ, ce qui signifie qu’il n’y a pas de courant à travers la matière
associé à ce type de transport. L’entropie apparaît en chaque point du corps considéré
avec une intensité qui dépend du degré d’interaction (fig. 11.5b). Si nous formulons
l’équation de bilan uniquement pour le corps, nous devons représenter cette interac-
tion au moyen d’un terme de source au lieu d’un courant:

 

(11.5)

Le terme ΣS,corps représente le taux d’apport d’entropie ou l’intensité de source d’en-
tropie, le taux net auquel l’entropie surgit dans ou émane du corps en conséquence de
l’interaction avec le champ. L’équation de bilan de l’entropie du champ doit être:

(11.6)

Si nous combinons les deux dernières équations, nous obtenons:

(11.7)

Corps

b.

Sources d’entropie
dans le corps

Entropie s’écoulant
à travers le champ

Corps et
champ

a.

FIGURE 11.5 La même région de
l’espace que celle de la figure 11.4
est maintenant remplie de matière,
par exemple de l’air: (a) le champ et
la matière occupent simultanément
la même région, ce qui implique que
leur interaction a lieu en tous les
points à l’intérieur du système; (b)
si nous ne considérons que le corps
matériel, nous devons introduire des
sources d’entropie où il absorbe du
rayonnement et des puits où il émet
de l’entropie vers le champ.

 �S IS S= +, rad Π

 �S Scorps , corps= Σ

 �S IS Schamp , rad , champ= + Σ

 � � �S S S IS S S= + = + +corps champ , rad , corps , champΣ Σ
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La comparaison avec l’équation (11.4) nous permet de conclure que le corps a absorbé
plus d’entropie que celle qui a été émise par le champ. La relation entre les deux in-
tensités de source et le taux de production d’entropie est donnée par:

(11.8)

où la production d’entropie résulte du transfert entre le champ et le corps (fig. 11.6).
Notons que nous faisons la distinction entre les sources d’entropie dues à la production
d’entropie et les contributions dues au transfert entre champ et corps.

Équation de bilan d’entropie générale. Si nous ajoutons à l’équation (11.2) les ter-
mes de source, nous obtenons

11.1.5 Bilan d’énergie

L’un des problèmes pratiques les plus importants de l’élaboration de la théorie du
transport de la chaleur est la détermination des flux et des termes de source d’entropie
dans l’équation de bilan (11.9). Il s’agit de découvrir les lois constitutives qui permet-
tent de calculer ces grandeurs dans des situations concrètes. C’est ici que la loi de con-
servation de l’énergie intervient. Les trois types de transport d’entropie sont
accompagnés de flux d’énergie. Il est donc nécessaire d’énoncer le bilan d’énergie
parallèlement à celui de l’entropie. Comme l’énergie est une grandeur conservée, la
quantité accumulée dans un corps ne peut varier que par l’intermédiaire de transport
vers ou hors du système. Dans les cas de conduction et de convection, l’énergie traver-
se les limites du système, ce dont on tiendra compte en termes de flux d’énergie
conductifs et convectifs. Dans le cas d’un apport radiatif, l’interaction entre les corps
et les champs fait apparaître des sources ou des puits d’énergie dans les corps et dans
les champs.

Le dernier terme de l’équation (11.10) est le taux de source ou l’apport d’énergie. Notons
que, dans cette même équation, nous n’avons pas pris en compte d’autres apports d’éner-
gie, par exemple d’origine mécanique. Dans les sections suivantes, nous traiterons quel-
ques aspects simples de chacun des trois modes de transfert de l’entropie.

Σ Σ ΠS S S, corps , champ+ =

Champ Corps

Composante
dissipative

Σ
S , corps

Σ
S , cham p

FIGURE 11.6 Lors de la modélisa-
tion du transfert radiatif, il faut déci-
der de l’endroit où placer la source
d’irréversibilité. La solution présen-
tée par les équations correspond à
son placement entre le champ et le
corps.

L’équation de bilan d’entropie générale pour un corps:

(11.9)

Cette relation exprime le fait que l’entropie d’un corps peut changer en
conséquence de trois types de transport, la conduction, la convection et le
rayonnement, auxquels s’ajoutent les effets de l’irréversibilité.

 
�S I IS S S S= + + +, cond , conv Σ Π

L’équation de bilan de l’énergie est donnée par:

(11.10)

Pour le champ radiatif seul, l’équation de bilan de l’énergie devient:

(11.11)

 �E I IE E Ecorps , conv , conv , champ= + + Σ

 �E IE Echamp , rad , champ= + Σ
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CHAPITRE 11   PHÉNOMÈNES DE TRANSPORT ET SYSTÈMES OUVERTS

1. Quelle est la force d’entraînement pour le transport d’entropie par
conduction? Laquelle est-ce pour les flux convectifs d’entropie?

2. Lorsque de l’eau chaude s’échappe d’un réservoir, il y a un courant
convectif d’entropie qui émane du système. Cela signifie-t-il que l’eau
du réservoir se refroidit?

3. Lorsque l’on a des flux et des sources d’entropie, l’entropie est trans-
portée d’un système à l’autre. Quelle est la différence (géométrique et spatiale) entre un
courant d’entropie et un taux de source d’entropie?

4. Les taux de source d’entropie et les taux de production d’entropie sont tous deux des gran-
deurs volumiques. Qu’est-ce qui les différencie?

5. Lorsqu’un volume d’air de l’atmosphère absorbe du rayonnement solaire, les taux de
source d’énergie du champ radiatif et de l’air sont-ils égaux? Les taux de source d’entropie
sont-ils égaux?

1. La différence de température. La différence de pression.

2. Non, l’entropie spécifique de l’eau contenue dans le réservoir reste la
même.

3. Le courant d’entropie est distribué sur la surface. Le taux de source
d’entropie et distribué sur le volume.

4. Dans le premier cas, l’entropie n’est pas produite, elle est simplement
transportée.

5. Oui dans les deux cas.

EXEMPLE 11.1. Flux d’entropie conductifs et convectifs.

On envisage de l’eau chaude s’écoulant à travers une conduite cylindrique (fig. 11.7). (a) Con-
sidérez une partie de la conduite comme un volume de contrôle fixe et non déformable (VC) et
déterminez tous les flux d’entropie qui franchissent la surface de ce volume de contrôle. (b) Ad-
mettez que l’eau contenue dans ce volume à un instant particulier constitue le système; quels
sont les flux d’entropie pour ce volume en mouvement?

SOLUTION: (a) Si la température de l’environnement est plus basse que celle de l’eau, il y a un
flux conductif d’entropie qui émane en direction radiale du volume de contrôle. Comme ce flux
est dirigé vers l’extérieur du volume de contrôle, il est affecté d’un signe négatif (symbolisé par
une flèche orientée dans le sens des x négatifs).

À cause des pertes à travers les parois de la conduite, l’eau qui pénètre dans le volume de con-
trôle est plus chaude que celle qui en émerge. Nous avons donc une force d’entraînement ther-
mique parallèlement à l’axe de la conduite. Ce processus est représenté par deux flux conductifs
d’entropie, positif à l’entrée, négatif à la sortie du volume de contrôle.

En outre, deux flux convectifs sont associés à l’écoulement de l’eau à travers le volume de con-
trôle. L’entropie contenue dans l’eau est transportée à travers la surface du système. Le flux en-
trant est positif, le flux émergent négatif. Ce dernier est moins important que le flux entrant.

(b) Si nous considérons le volume en mouvement, les parois du système le sont aussi
(fig. 11.7b). L’eau ne traverse pas ces parois, ce qui signifie qu’il n’y a plus de flux convectifs
d’entropie. Les flux conductifs restent les mêmes que dans la partie (a).

B

Q

R

x

fluxv

VC

Volume
d’eau

IS,conv
IS,conv

IS,cond

IS,condIS,cond

IS,cond IS,cond

IS,cond

a.

b.

FIGURE 11.7 Étude des flux d’en-
tropie accompagnant un écoulement
d’eau chaude à travers une
conduite: (a) flux relatifs à un volu-
me de contrôle VC fixe; (b) flux re-
latifs à un volume d’eau en
mouvement.
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11.2 CONDUCTION D’ENTROPIE

Après avoir exprimé de manière générale les bilans relatifs au transport de l’entropie
et de l’énergie, nous allons étudier en détail chacun des trois modes de transport, en
commençant par la conduction.

11.2.1 Loi de FOURIER pour la conduction d’entropie 

Quels sont les facteurs qui influencent la conduction de l’entropie? En premier, la cha-
leur ne migrera d’un endroit à l’autre que s’il existe un gradient de température entre
ces deux endroits. D’autre part, la matériau à travers lequel migre l’entropie aura cer-
tainement une influence sur l’intensité du flux de chaleur, ce que nous exprimerons au
moyen d’un paramètre appelé conductivité entropique.

Loi de FOURIER pour un bloc de matière. Pour motiver cette loi, nous empruntons
les idées à l’électricité où nous avons formulé la relation qui régit la circulation de la
charge dans un conducteur, la loi d’OHM1. Nous considérons la conduction d’entropie
à travers un bloc de matière, comme le montre la figure 11.8. Nous admettons que
l’entropie s’écoule dans une seule direction et que la distribution du courant est uni-
forme dans un plan perpendiculaire au flux, la situation la plus simple possible.

Nous savons déjà que le courant d’entropie doit dépendre de la différence de tempéra-
ture entre les extrémités du corps et d’une conductance qui dépend de la géométrie de
l’objet et des propriétés du matériau dont il est composé. Pour une différence de tem-
pérature donnée, l’intensité du courant doublera si nous doublons la section A. En
outre, nous nous attendons à ce que cette intensité soit diminuée de moitié si nous dou-
blons l’épaisseur du bloc. Ce que nous pouvons exprimer par:

(11.12)

Le facteur kS exprime la propriété conductrice du matériau et est appelé conductivité
entropique de la substance. Nous venons d’énoncer la forme intégrée de la loi de FOU-

RIER de la conduction. La conductivité entropique dépend du matériau du corps et de
la température. Cette dépendance est mise en évidence pour certaines substances dans
le tableau 11.1 et dans la figure 11.9.

1. Historiquement parlant, le chemin est inverse. Joseph FOURIER a formulé cette loi en 1822
dans sa Théorie analytique de la chaleur, alors que Georg OHM s’est inspiré des idées de
FOURIER pour énoncer en 1827 la loi qui porte son nom.

TABLEAU 11.1 Conductivité de quelques matériaux.

Substance Conditions
Conductivité 

(entropie)
Conductivité 

(énergie)

kS / W K–2 m–1 kE / W K–1 m–1

Gaz à pression

atmosphérique

Air 200 K 9.05 · 10–5 0.0181

300 K 8.73 · 10–5 0.0262

400 K 8.41 · 10–5 0.0337

x

T T+ T
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x

x x

Δ

xΔ

Δ

+

FIGURE 11.8 Flux unidirectionnel
d’entropie à travers un bloc de ma-
tière. La distribution du courant à
travers un plan perpendiculaire à la
direction x est supposée uniforme.
La différence de température entre
les deux faces est la force d’entraî-
nement du flux d’entropie.I x k
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x
TS S( ) = −

∆
∆

0

1

2

3

Cuivre
Aluminium

SiO2

Hélium

1 2 3

–�2

–�1

–�4

–�3

lo
g

k S
W

K
m

2
1

−
−

(
)

log T K( )

FIGURE 11.9 Évolution de quel-
ques conductivités entropiques kS
en fonction de la température. Les
valeurs de la conductivité énergéti-
que kE sont égales au produit de kS
et de la température (fig. 11.10).
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Hélium 200 K 5.89 · 10–4 0.1177

CO2 250 K 5.16 · 10–5 0.0129

300 K 5.53 · 10–5 0.0166

H2O vapeur 400 K 6.52 · 10–5 0.0261

500 K 6.76 · 10–5 0.0339

600 K 7.03 · 10–5 0.0422

Liquides saturés

Mercure 293 K 2.97 · 10–2 8.69

Eau 273 K 2.02 · 10–3 0.552

293 K 2.04 · 10–3 0.597

313 K 2.01 · 10–3 0.628

333 K 1.96 · 10–3 0.651

353 K 1.89 · 10–3 0.668

373 K 1.82 · 10–3 0.680

Métaux liquides

Sodium 366 K 0.232 84.96

Solides à 20°C

Aluminium 0.70 204

Brique de construction 0.0024 0.7

Bronze (75% Cu, 25% Sn) 0.089 26

Argile 30°C 0.0043 1.3

Béton (parpaing) 0.0026 0.76

Cuivre 1.32 386

Fibre (pour isolation) 0.00016 0.048

Verre (fenêtre) 0.0027 0.8

Laine de verre 0.00013 0.038

Granit 0.0058–0.014 1.7–4.0

Fer 0.25 73

Plomb 0.12 35

Calcaire 100–300°C 1.3

Papier 30°C 3.6 · 10–5 0.011

Pyrex 30°C 0.0046 1.4

Caoutchouc vulcanisé 30°C 4.3 · 10–5 0.013

Sable 30°C 8.9 · 10–5 0.027

Grès 40°C 0.0058 1.83

TABLEAU 11.1 Conductivité de quelques matériaux.

Substance Conditions
Conductivité 

(entropie)
Conductivité 

(énergie)

kS / W K–2 m–1 kE / W K–1 m–1
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Forme différentielle de la loi de FOURIER. Les hypothèses sur lesquelles nous avons
basé l’élaboration de la relation (11.12) régissant la conduction de la chaleur à travers
un bloc de matière sont trop grossières. En effet, l’observation révèle que la tempéra-
ture varie d’un point à l’autre dans un matériau traversé par un flux d’entropie. D’autre
part, nous avons découvert à la section 5.7 que la conduction est un processus
dissipatif: l’écoulement d’entropie à travers la matière entraîne une production d’en-
tropie, occasionnant une augmentation de l’intensité du courant dans le sens de l’écou-
lement. Nous devons donc pouvoir préciser à quel endroit s’applique
l’équation (11.12).

Ces difficultés peuvent être éliminées en recourant à une description continue du phé-
nomène. Dans un premier temps, nous introduisons une mesure de la distribution du
courant sur la surface qu’il traverse au moyen de la densité de courant d’entropie jS:

(11.13)

Cette grandeur se mesure en Ct m-2 s-1. Nous pouvons maintenant énoncer la:

Cette relation est analogue à la relation (2.22), énoncée à la section 2.6.1, relative à la
conduction de l’électricité, et celle que nous rencontrerons au chapitre 12 lorsque nous
étudierons l’apparition de contraintes lors de la conduction de la quantité de mouve-
ment à travers la matière.

Il nous manque encore la loi constitutive relative à la production d’entropie, mais nous
allons auparavant nous intéresser aux flux d’énergie qui accompagnent le processus de
conduction de la chaleur.

Acier 1.0% C 0.15 43

20% Ni 0.065 19

Tissus biologiques 30°C

Graisse 0.00066 0.20

Muscle 0.0014 0.41

Tungstène 0.556 163

Bois Balsa 0.00019 0.055

Sapin 0.00038 0.112

Chêne 0.00057 0.166

TABLEAU 11.1 Conductivité de quelques matériaux.

Substance Conditions
Conductivité 

(entropie)
Conductivité 

(énergie)

kS / W K–2 m–1 kE / W K–1 m–1

I A jS S=

Loi de conduction de l’entropie dans une dimension:

(11.14)

kS est la conductivité entropique et dT/dx le gradient de température.

j k
dT

dxS S= −
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11.2.2 Écoulements d’entropie et d’énergie lors de la conduction

Le courant d’énergie qui accompagne toujours le flux conductif d’entropie peut être
calculé en adaptant au cas continu l’équation (5.18) énoncée à la section 5.4.2:

(11.15)

où jE représente la densité de courant d’énergie. Nous introduisons une conductivité
énergétique (conductivité thermique) définie par:

(11.16)

Les valeurs de la conductivité énergétique apparaissent dans le tableau 11.1 pour un
certain nombre de substances ainsi que dans la figure 11.10.

11.2.3 Production d’entropie lors de la conduction

Tous les phénomènes que nous avons abordés nous ont révélé que la conduction d’une
grandeur extensive (semblable à un fluide) est un processus dissipatif, qui engendre
une production d’entropie. Nous allons déterminer de deux manières différentes le
taux de production lors de la conduction de l’entropie.

Dissipation. Nous savons que lorsque l’entropie passe d’un niveau de température
élevé à un niveau de température plus bas, elle libère de l’énergie qui est dissipée. À
partir de ce que nous avons étudié à la section 5.7.1, nous savons que:

où TB est la température basse à laquelle l’entropie émerge du bloc. Nous amplifions
cette relation par ∆x pour obtenir:

(11.18)

Dans le cas continu, on introduit une densité de taux de production πS que l’on obtient
en divisant les deux termes de l’équation (11.18) par le volume du bloc:

(11.19)

Le produit TπS représentera donc la densité de dissipation à l’intérieur du bloc due au
processus de conduction.

Bilans simultanés d’entropie et d’énergie. Nous allons maintenant utiliser une déri-
vation qui se révélera utile dans de nombreuses applications. L’approche précédente

j TjE S, therm =

k TkE S=

Loi de FOURIER formulée en termes de courant d’énergie thermique:

(11.17)j k
dT

dxE E, therm = −
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FIGURE 11.10 Évolution de quel-
ques conductivités énergétiques
(thermiques) kE en fonction de la
température. Les conductivités en-
tropiques correspondantes apparais-
sent dans la figure 11.9.
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nécessite de connaître la quantité d’énergie dissipée ainsi que la température à laquelle
cette dissipation a lieu. Si nous ne possédons pas ces informations, ou si elles sont peu
sûres, nous pouvons recourir à une méthode indirecte qui utilise les bilans d’entropie
et d’énergie pour déterminer le taux de production d’entropie.

Considérons un élément résistif tel que le bloc de la figure 11.8; la figure 11.11 repré-
sente le diagramme de processus correspondant. Les équations de bilan d’entropie et
d’énergie sont respectivement:

La nullité des sommes est due au fait que nous admettons que l’élément résistif n’em-
magasine ni entropie, ni énergie. Les flux d’entropie et d’énergie sont liés entre eux
par les relations:

Le taux de production d’entropie peut être évalué:

(11.20)

Nous avions trouvé ce résultat à la section 5.7.1 en admettant connaître le taux de dis-
sipation.

11.2.4 Détermination des conductances et résistances

Nous avons introduit à la section 5.6.1 la conductance (ou son inverse, la résistance)
globale pour la transmission de la chaleur à travers une série de couches. La définition
débouche sur un couche unique dont la conductance est donnée par:

(11.21)

La résistance d’une telle couche est donc:

(11.22)

Le coefficient global de transmission de l’entropie (5.35) peut être calculé à partir de
la relation ci-dessus et tout peut être converti en grandeurs relatives à l’énergie (5.37).
Comme nous l’avons montré à l’exemple 5.5, autant les conductances que les résistan-
ces peuvent être calculées pour des couches composites. Il est usuel de le faire pour
des résistances ou conductances relativement à l’énergie en admettant qu’elles sont in-
dépendantes de la température. Pour des couches en série, nous avons alors:

(11.23)
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FIGURE 11.11 La transmission
d’entropie due à une chute de tem-
pérature est dissipative: il y a pro-
duction d’entropie supplémentaire.
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et pour des couches en parallèle:

(11.24)

Ces résultats ne sont que des approximations, vu que nous savons, comme le montrent
les valeurs du tableau 11.1, que les conductances thermiques dépendent de la tempé-
rature. Si l’on veut effectuer les calculs en prenant en compte la production d’entropie,
il faut utiliser les résultats de l’exemple 5.5. Toutefois, si les différences de tempéra-
ture sont relativement faibles, on peut utiliser l’équation (11.23).

11.2.5 Modèle dynamique de la conduction dans une barre de cuivre

Un modèle dynamique de la conduction à travers une longue barre de cuivre va nous
permettre de mettre en évidence l’utilité des hypothèses sur lesquelles est basée la loi
de FOURIER. Un exemple de données expérimentales est présenté à la figure 5.7 de la
section 5.1.5: une barre de cuivre plongée dans un bain d’eau glacée à une extrémité
est chauffée électriquement à l’autre extrémité. On observe que la température dimi-
nue avant l’enclenchement du chauffage. Après son enclenchement, la température
s’élève plus rapidement dans les régions proches du chauffage.

Même si nous ne disposons pas encore des outils pour traiter le système comme un
milieu continu, nous pouvons élaborer une modèle basé sur des systèmes uniformes
en divisant la barre de cuivre en plusieurs éléments. Nous envisageons chaque élément
comme un accumulateur d’entropie ayant sa température propre que nous associons
au centre de l’élément (fig. 11.12a). Le matériau entre deux centres est considéré com-
me un élément conductif (ou résistif) entre deux unités accumulatrices.

La longueur et la section d’un élément définissent la géométrie dont nous avons besoin
pour calculer la capacité entropique (section 5.5) des éléments et les conductances
selon l’équation (11.21). Le modèle peut être simulé en utilisant des conditions initia-
les et des conditions aux limites adéquates.
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FIGURE 11.12 Modélisation de la
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1. Quelle est l’intensité d’un courant d’entropie à travers une paroi de grès
de 10 m par 10 m et de 0.5 m d’épaisseur si la différence de tempéra-
ture est de 20°C?

2. Admettez des résistances entropiques constantes et indépendantes de la
température pour deux couches disposées en série. Pourquoi ne peut-on
pas simplement les additionner pour obtenir la résistance totale?

3. Considérez deux barres telles que celle de la figure 11.12a constituées de deux matériaux
différents. Elles sont géométriquement identiques et ont des conductivités et des capacités
entropiques spécifiques égales. Le second matériau a une densité supérieure. En quoi le
comportement du second matériau va-t-il différer de celui que montre la figure 11.12c?

4. Les températures ont été mesurées en 8 points sur la barre de cuivre de la figure 11.12. Cela
implique-t-il que le modèle dynamique doit comprendre 8 éléments?

1. 25 W K-1.

2. À cause de la production d’entropie.

3. Le second matériau réagira plus lentement aux changements.

4. Non, la structure du modèle ne dépend pas de la manière dont ont été
recueillies les données expérimentales.

EXEMPLE 11.2. Fusion d’un bloc de glace isolé par de la fibre de verre.

Un cube de glace de volume égal à 1 m3 est enfermé dans une caisse isolée par une couche de
fibre de verre épaisse de 10 cm. Le tout est placé dans un environnement à 30°C. Estimez le
temps que mettra le cube de glace pour fondre complètement.

SOLUTION: On peut traiter la fibre de verre comme une couche plane de 6 m2 d’aire. Selon le
tableau 11.1, la conductance entropique de la fibre de verre est de 1.3·10-4 W K-2 m-1. Il s’ensuit
que le courant d’entropie de l’environnement vers le cube de glace vaut:

Le cube de glace a une masse de 910 kg. L’entropie latente spécifique lfus vaut 1220 J K-1 kg-1

(tableau 10.1, section 10.7.3). L’entropie latente du bloc de glace est donc de 1.1·106 J K-1. Le
temps nécessaire pour apporter cette entropie au volume est:

ce qui correspond approximativement à 60 jours. Le modèle suppose que l’eau de fonte reste à
la température de 0°C, transmet facilement l’entropie et ne constitue pas un isolant supplémen-
taire à côté de la couche de fibre de verre.
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EXEMPLE 11.3. Chauffage d’un circuit intégré2.

Un chip de silicium est fixé sur une surface isotherme appelée le header. Le sommet du chip est
couvert par une alimentation qui dissipe l’énergie à un taux de 50 W. Trente fils d’or mince con-
nectent le sommer au header. Supposez que l’entropie circule à travers le chip seulement de haut
en bas. Quelle sera la température du sommet du chip en régime stationnaire si la température
du header est maintenue à 25°C?

Le chip a une surface de 0.51 cm par 0.51 cm. Il est constitué de trois couches. La première est
en silicium de 0.051 cm d’épaisseur. La base du chip est une couche d’or épaisse de 0.010 cm.
Entre les deux se trouve une couche d’oxyde de silicium de 0.00013 cm d’épaisseur. Les con-
ductivités thermiques par rapport à l’énergie sont respectivement 88 W K-1 m-1, 312 W K-1 m-1

et 0.157 W K-1 m-1. Les fils d’or mesurent 0.130 cm de long est ont un diamètre de 0.0254 cm.

SOLUTION: Ce dispositif peut être représenté par un circuit thermique avec des éléments en
parallèle et en série (fig. 11.13). Une force d’entraînement thermique est maintenue aux bornes
du circuit. Nous devons évaluer la résistance thermique totale que ce circuit oppose aux cou-
rants d’entropie et d’énergie. La résistance du chip est:

Ce dispositif est branché en parallèle avec trente fils identiques. L’inverse de la résistance totale
est donc:

ce qui correspond à une résistance thermique de 0.461 K W-1. Le flux d’énergie étant connu,
nous pouvons calculer la force d’entraînement thermique, c’est-à-dire la différence de tempéra-
ture entre le sommet et la base du chip:

La température au sommet du chip est de 48°C. Elle serait de 53°C sans les fils d’or.

B

11.3 TRANSFERT D’ENTROPIE PAR RAYONNEMENT

Nous voulons découvrir de quelle manière un corps rayonne la chaleur dans son envi-
ronnement. Alors même que le rayonnement est un phénomène complexe, un cas peut
être traité de manière relativement simple, l’émission et absorption de rayonnement
par un corps opaque. L’absorption et l’émission de rayonnement sont des processus
volumique, comme nous l’avons découvert à la section 11.1, mais l’émission par un
corps opaque ressemble à un rayonnement émanant d’une surface.

2. RIDGELY P. (1987): Life in the heart of the computer: A bit of thermal physics. The Physics
Teacher 25, 276-279.
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FIGURE 11.13 Chip de silicone pris
en sandwich entre une alimentation
qui dissipe de l’énergie et un header
maintenu à une certaine température
pour le refroidissement.
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À l’intérieur du volume occupé par le corps, le rayonnement est constamment émis et
réabsorbé à un taux tel que le résultat net est un flux de chaleur des points chauds vers
les points froids (fig. 11.14a). Comme nous admettons que le corps est opaque, le
rayonnement que nous percevons à l’extérieur émane d’une mince couche à la surface
du corps. Si nous traçons une surface imaginaire entourant le corps, le rayonnement
émis traverse cette surface, transporté par le champ radiatif (fig. 11.14b).

11.3.1 Émission hémisphérique par la surface d’un corps noir

Nous allons commencer par étudier le rayonnement émis par la surface d’un corps
noir. Rappelons qu’il s’agit d’un corps qui absorbe tout le rayonnement qui l’atteint.
À la section 10.5, nous avons étudié le rayonnement d’un tel corps, en admettant que
ce rayonnement était confiné dans une cavité. Si les couches superficielles d’un corps
opaque ont des propriétés telles qu’elles émettent un rayonnement de corps noir, celui-
ci sera le même que s’il provenait d’une cavité enfouie dans le corps (fig. 11.15). Nous
avons exprimé par les équations (10.72) et (10.75) comment l’énergie et l’entropie de
ce rayonnement dépendent de la température. Le taux d’émission du rayonnement
émanant de la surface doit avoir la même dépendance de la température.

Ces deux expressions ne sont valables que pour un rayonnement de corps noir. L’exi-
tance énergétique se mesure en W m-2, l’exitance entropique, en W m-2 K-1. La cons-
tante σ est la constante de STEFAN-BOLTZMANN. Sa valeur est 5.67·10-8 W m-2 K-4. Elle
est liée à la constante de rayonnement a, introduite à la section 10.5.3, par la relation:

(11.27)

où c est la vitesse de la lumière.

Notons une différence importante entre ce type de transport et le transport par conduc-
tion ou diffusion. Lors de conduction ou diffusion, les grandeurs extensives qui mi-
grent le font dans une seule direction. En revanche, le rayonnement se répand dans
toutes les directions. Pour obtenir les deux exitances ci-dessus, nous devons intégrer
la densité d’énergie et d’entropie du rayonnement sur le demi-espace qui surmonte la
surface, d’où la dénomination hémisphérique.

Si les exitances sont constantes sur une surface, les courants d’entropie et d’énergie
sont obtenus en multipliant les exitances par l’aire de la surface A:

Limite du
système

Limite du
système

Corps

Σ s

Corps et champ

Is

Champ

a.

b.

FIGURE 11.14 Rayonnement éma-
nant de la surface d’un corps
opaque: (a) il y a un échange cons-
tant de rayonnement entre la matière
et la champ dans le volume occupé
par le corps ; (b) à l’extérieur du
corps, on ne perçoit que le rayonne-
ment transporté par le champ. Ce
rayonnement provient d’une couche
extrêmement mince à la surface du
corps matériel.

Tsurface

Rayonnement

FIGURE 11.15 Le rayonnement du
corps noir émanant des couches su-
perficielles d’un corps noir opaque
est le même que celui qui provien-
drait d’une cavité dans un tel corps.

Le taux hémisphérique d’émission d’énergie du corps noir ou la puissance
émissive hémisphérique du corps noir, ou encore exitance hémisphérique
du corps noir MCN (anciennement émittance) mesure la quantité d’énergie
émise par la surface d’un corps noir par unité de temps et par unité de sur-
face. La loi qui régit cette émission d’énergie est:

(11.25)

Le taux d’émission d’entropie est exprimé par:

(11.26)

 MCN = σT 4
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(11.28)

(11.29)

Il est important de noter que la relation (5.18) entre les courants d’entropie et d’énergie
qui s’applique au chauffage ou au refroidissement d’un corps ne s’applique plus lors
de flux radiatifs. Dans ce dernier cas, le chauffage et le refroidissement sont modélisés
par des sources et des puits d’entropie et d’énergie liés entre eux par
l’équation (11.34).

11.3.2 Flux net d’énergie pour un corps noir rayonnant

En général, les flux exprimés par les équations (11.28) et (11.29) ne sont pas des flux
nets, vu que le corps considéré peut encore absorber de la chaleur d’un autre objet qui
rayonne vers lui. Pour calculer le flux net d’énergie, nous imaginons un petit corps noir
immergé dans la cavité d’un autre corps noir dont la paroi est à la température Tparoi
(fig. 11.16). Comme le rayonnement est isotrope, un point de la surface du corps en-
fermé reçoit du rayonnement venant de toutes les directions au même taux.

Comme un corps noir absorbe tout le rayonnement incident, le flux net d’énergie éma-
nant du morceau de matière à la température T à l’intérieur de la cavité est:

(11.31)

À la section 11.4.3, ce résultat sera étendu à des corps autres que des corps noirs.

11.4 ABSORPTION ET ÉMISSION DE RAYONNEMENT

Comme nous l’avons discuté à la section 11.1.4, les corps peuvent émettre ou absorber
du rayonnement. Il s’agit de processus volumiques pour la description desquels nous
utilisons des taux de source. Nous voulons établir la relation entre les taux de source
et les taux de production d’entropie d’une part, et les taux de sources d’énergie accom-
pagnant ces processus d’autre part.

11.4.1 Chauffage et refroidissement par absorption et émission

Nous allons utiliser le modèle du corps uniforme à la température T et envisager le cas
où ce corps émet de l’entropie et de l’énergie vers le champ qui occupe la même région
de l’espace; le raisonnement s’applique également au cas de l’absorption. S’il n’y a

 
I A ATS S, rad CN= − = −M ,

4

3
3σ

 I A ATE , rad CN= − = −M σ 4

Tparoi

T

FIGURE 11.16 Interaction entre
deux corps noirs. Une cavité, dont la
paroi est à la température Tparoi, sert
de conteneur du rayonnement du
corps noir. Le petit corps placé à
l’intérieur est à la température T.

La quantité d’énergie reçue par unité de temps et unité de surface par un
corps noir plongé dans le rayonnement d’un corps noir est:

(11.30)

La grandeur E CN est appelée éclairement énergétique ou irradiance du
corps noir.

 ECN paroi
4= σT

  I A A T TE , rad, net CN CN paroi
4= − −( ) = − −( )M E σ 4
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pas d’autre mode de transfert, les taux d’émission de ces deux grandeurs sont égaux
aux taux de variation de l’entropie et de l’énergie du corps:

(11.32)

(11.33)

Dans un modèle de processus uniformes, ces processus sont réversibles, non dissipa-
tifs. Comme c’est le cas ici, les taux de variation ci-dessus sont liés par une relation
fondamentale de GIBBS semblable à la relation (5.24), ce qui implique que les taux de
source vérifient l’équation:

(11.34)

Ce résultat, qui est valable pour le corps matériel illustré par la figure 11.17, ne tient
pas compte du fait que de l’entropie est produite en conséquence de l’émission (ou de
l’absorption) de rayonnement. Cela n’affecte pas le bilan d’entropie et d’énergie du
corps matériel, vu que notre modèle tient compte de l’irréversibilité par l’adjonction
d’un élément entre le corps et le champ (fig. 11.6). Pour le corps, l’émission de chaleur
vers un champ a le même effet que le refroidissement par conduction provoqué par le
contact d’un corps uniforme avec son environnement.

Nous allons maintenant prendre en compte la production d’entropie due à l’émission
ou l’absorption de rayonnement. En présence de l’irréversibilité, les taux de source
d’entropie pour le corps et pour le champ ne sont pas les mêmes, comme nous l’avons
exprimé par l’équation (11.8):

(11.35)

À partir de l’équation (11.34), nous obtenons une relation correspondante pour
l’énergie:

(11.36)

Envisageons le cas particulier de l’absorption d’un rayonnement qui ne transporte
aucune entropie. Dans ce cas, toute l’entropie servant à chauffer le corps doit avoir été
produite, ce qui rend le processus totalement irréversible. Toute l’énergie apportée par
le rayonnement a été dissipée, et l’équation (11.36) est équivalente à l’équation (5.20)
qui met en relation le taux de dissipation d’énergie et le taux de production d’entropie.

En résumé, nous pouvons interpréter l’émission et l’absorption d’entropie en termes
de refroidissement ou de chauffage des corps. La différence avec les cas traités au
chapitre 5, à savoir le chauffage par l’intermédiaire de courants conductifs est que
nous avons affaire aux taux de source d’entropie et d’énergie (11.34), au lieu des flux
donnés par l’équation (5.18). Rappelons que dans ce modèle, l’irréversibilité est asso-
ciée à un élément particulier placé entre le corps et le champ (fig. 11.6).

11.4.2 Émission, absorption et production d’entropie

Notre prochaine tâche consiste à déterminer le taux de production d’entropie lors de
l’émission et de l’absorption de rayonnement.

Irréversibilité de l’émission. Considérons le cas de l’émission: le taux auquel le
corps émet l’entropie vers le champ est inférieur à celui auquel elle émane de la

 
�S S= Σ

 
�E E= Σ

Σ ΣE ST=

Limites du
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Corps

Σ s

Σ E

FIGURE 11.17 Un corps et un
champ radiatif occupent la même
région de l’espace (le champ n’est
pas visualisé). L’émission de rayon-
nement signifie que le corps perd de
l’entropie et de l’énergie (et éven-
tuellement d’autres grandeurs) en
tous les points à l’intérieur du
champ.
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surface du corps (fig. 11.14). Pour le démontrer, nous envisageons le modèle d’un
corps uniforme à la température T pour lequel la relation:

(11.37)

est valable. En vertu des équations (11.28) et (11.29), nous pouvons écrire:

ce qui entraîne:

(11.38)

Le flux d’entropie qui émane du corps est supérieur à ce qui a été émis par le corps
vers le champ radiatif, ce qui implique que de l’entropie a été produite dans le volume
occupé par la matière rayonnante.

Irréversibilité de l’émission et absorption pour deux corps en interaction. Envi-
sageons la situation décrite par la figure 11.16: les parois d’une cavité entourent un
corps plus petit. Nous admettons que les deux surfaces sont des corps noirs et que le
corps enfermé est le plus chaud, avec une température T1 et une aire A. Le flux d’éner-
gie du petit corps vers les parois qui l’entourent est donné par l’équation (11.31), dans
laquelle T2 est la température de l’enceinte. Nous pouvons évaluer le taux de produc-
tion d’entropie dans les deux interfaces radiatives entre les corps et le champ, comme
le montre la figure 11.6. À partir de l’équation (11.36), nous trouvons:

Les taux de source s’annulent mutuellement, vu que l’entropie émise par le corps
chaud vers le champ est transportée par ce champ et est absorbée par le second corps.
Vu que ΣE2 est égal à –ΣE1, il s’ensuit:

(11.39)

Puisque T1 > T2, cette expression est positive, vu que ΣE1 est négatif. En nous servant
du flux d’énergie donné par l’équation (11.31), nous pouvons évaluer le taux de pro-
duction d’entropie:

(11.40)

Cette expression est positive si l’un des deux corps est plus chaud que l’autre et s’an-
nule s’ils ont la même température. Il n’est pas nécessaire de savoir lequel des deux
corps est le plus chaud. L’émission et l’absorption d’entropie entre des corps à des
températures différentes sont toujours dissipatives.
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Surface éclairée par le Soleil. Nous allons nous intéresser au cas de la couche super-
ficielle d’une corps noir à la température T exposé à la lumière du Soleil (fig. 11.18).
L’entropie apportée par le rayonnement solaire est totalement absorbée, ce qui engen-
dre une production d’entropie de taux ΠS1. Le rayonnement solaire est pratiquement
un rayonnement de corps noir, ce qui veut dire que le flux d’entropie sur la couche su-
perficielle du corps est, en vertu des équations (11.28) et (11.29):

(11.41)

où E CN est l’irradiance de la surface et TSoleil la température à la surface du Soleil.
C’est également la température du rayonnement. Si le corps n’absorbait que de la lu-
mière, l’équation de bilan de l’entropie serait:

ce qui implique que le taux de production d’entropie devient

Finalement:

(11.42)

représente le taux de production d’entropie due à l’absorption de la lumière solaire.
Cette expression peut devenir négative si T s’approche de TSoleil, ce que nous savons
être impossible. Mais nous n’avons considéré que l’absorption du rayonnement et
nous devons encore tenir compte de la production d’entropie due à l’émission.

Comme le corps exposé à la lumière solaire est à la température T, il émet un courant
d’entropie égal à:

(11.43)

Comme nous l’apprend l’équation (11.38), un quart de ce courant provient de l’entro-
pie produite, et pas de l’entropie émise:

(11.44)

Le taux total de production d’entropie nous permet de faire une observation intéres-
sante. Si nous sommons les deux contributions et posons T = TSoleil, nous obtenons:

qui doit être nul, vu que nous avons admis que les deux corps sont à la température du
Soleil. Si nous acceptons cette conclusion, nous voyons que E doit être égal à ,
ce qui signifie que nous pouvons amener un corps à la température du Soleil pour
autant que la rayonnement incident ait la même intensité qu’à la surface du Soleil, ce
que l’on peut obtenir en concentrant la lumière du Soleil.
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A
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FIGURE 11.18 Flux d’entropie et
taux de production d’entropie pour
la couche superficielle d’un corps
exposé à la lumière du Soleil.
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11.4.3 Propriétés radiatives de surfaces grises

Nous n’avons traité jusqu’ici que le cas du rayonnement du corps noir. Nous allons
maintenant nous intéresser à des surfaces qui n’absorbent qu’une partie du rayonne-
ment incident, que l’on appelle pour cette raison des surfaces grises.

Absorptivité des surfaces grises. Nous avons besoin de deux grandeurs pour décrire
les propriétés absorptives d’une surface. La première, l’irradiance E qui mesure le flux
d’énergie incidente par unité de surface, a été introduite à la section 11.3.2.

Pour un corps noir, α = 1. Quelquefois, on introduit également la réflectivité ou facteur
de réflexion ρ pour tenir compte de la part d’énergie qui n’a pas été absorbée et a donc
été réfléchie (fig. 11.19). Les deux grandeurs sont logiquement liées entre elles par la
relation:

(11.46)

Loi de KIRCHHOFF. Comment le rayonnement d’une surface grise se différencie-t-
il de celui du corps noir? Nous considérons à nouveau le rayonnement dans une cavité.
Le rayonnement dans cette cavité est celui d’un corps noir, quelle que soit la constitu-
tion de ses parois; le seul facteur qui détermine les propriétés de ce rayonnement est
la température des parois. Il s’ensuit que l’irradiance est égale à l’exitance (11.25):

(11.47)

Nous introduisons un corps d’absorptivité α dans cette cavité (fig. 11.20). Un état sta-
tionnaire sera atteint après un certain temps, et la température du petit corps sera égale
à celle du rayonnement de la cavité. L’exitance de ce corps correspondra à la part ab-
sorbée de l’irradiance. L’exitance du corps plongé dans la cavité sera donc égale au
produit de son absorptivité et de l’exitance du corps noir:

(11.48)

C’est une forme de la loi de KIRCHHOFF qui stipule que l’exitance d’un corps est une
fraction égale au produit de son absorptivité α et de l’exitance d’un corps noir à la
même température.

Si nous introduisons l’émissivité ε du corps en tant que fraction de l’exitance d’un
corps noir à la même température:

(11.49)

nous pouvons reformuler la loi de KIRCHHOFF en affirmant que l’émissivité est égale
à l’absorptivité. En général, les valeurs de l’absorptivité (et donc de l’émissivité) dé-
pendent de la température de la surface (fig. 11.21). Le tableau 11.2 donne les valeurs
pour quelques matériaux.

Pour caractériser l’absorption du rayonnement par une surface grise, on
introduit le taux d’absorption d’énergie par unité de surface A, ainsi que
l’absorptivité ou facteur d’absorption α. Ces deux grandeurs sont liées à
l’irradiance du corps noir par la relation:

(11.45) A E= α CN
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Flux énergétique net d’un corps gris plongé dans un rayonnement de corps noir.
Si le petit corps enfermé dans la cavité a une température T différente de celle du
rayonnement, le taux d’absorption d’énergie n’est pas égal au taux d’émission. Le taux
de source net d’énergie rayonnée est donné par:

(11.50)

où A est l’aire de la surface du corps plongé dans la cavité. Comme la puissance émis-
sive est donnée par la loi de KIRCHHOFF, et comme l’irradiance dans la cavité est égale
à l’exitance des parois, nous obtenons:

(11.51)

Ce taux est la différence entre les taux d’émission et d’absorption, calculés pour une
surface de corps noir selon l’équation (11.49) et multipliés par l’absorptivité de la sur-
face. Ce résultat nous permet de calculer le flux énergétique émanant d’une surface
grise d’aire A à la température T, plongée dans un rayonnement de température Tparoi:

(11.52)

L’absorptivité a été remplacée par l’émissivité. Rappelons que ce résultat n’est valable
que si le corps est plongé dans une cavité. Lorsque la géométrie est différente, on en
tient compte par l’introduction d’un facteur de forme.

TABLEAU 11.2 Émissivités et absorptivités solaires.

Substance Émissivitéa

Absorptivité 
pour le 

rayonnement 
solaire

ε α

Aluminium Poli 0.03 0.09

Anodisé 0.84 0.14

Feuille 0.05 0.15

Brique Rouge 0.93 0.63

Béton 0.88 0.60

Terre Champ labouré 0.75

Feuille métal galvanisé Propre, neuf 0.13 0.65

Oxydé, abîmé 0.28 0.80

Verre, fenêtre 0.92

Glace Lisse 0.97

Peinture Noir 0.98 0.98

Blanc, acrylique 0.90 0.26

Blanc, oxyde de zinc 0.93 0.16

Papier Blanc 0.95 0.28

Grès 0.85

Neige Poudreuse, fraîche 0.82 0.13

Granuleuse 0.89 0.33

Suie, charbon 0.95

 I AE , rad = − −( )M Eα

 
I A T TE , rad CN CN paroi= − ( ) − ( )⎡⎣ ⎤⎦α M M

I A T TE , rad paroi
4= − −( )ε σ 4
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11.4.4 Absorbeurs et émetteurs sélectifs

Selon la loi de KIRCHHOFF, l’émissivité d’une surface est égale à son absorptivité
(section 11.4.3). Pourquoi y a-t-il deux colonnes dans le tableau 11.2?

Si l’émissivité est égale à l’absorptivité, la loi de KIRCHHOFF implique que tous les
corps doivent atteindre la même température en régime stationnaire, quelles que soient
les valeurs de ces grandeurs égales. Nous savons que ce n’est pas le cas. Par exemple,
lorsqu’elles sont exposées au Soleil, des surfaces noires s’échauffent plus rapidement
que des surfaces blanches.

En fait, la loi de KIRCHHOFF s’applique, mais de manière différenciée selon le type de
rayonnement: α et ε sont égaux, mais leur valeurs varient en fonction de la longueur
d’onde de la lumière.

Considérons un corps complètement entouré d’air. L’air agit comme un environne-
ment de type corps noir, ce qui implique que l’interaction par l’intermédiaire du rayon-
nement entraîne un flux d’énergie donné par l’équation (11.52). Une interaction
supplémentaire est due à la lumière solaire. Si AS est l’aire effective de la surface ex-
posée au Soleil, ES et αS, respectivement l’irradiance de la lumière solaire et l’absorp-
tivité de la surface, le taux d’absorption sera:

(11.53)

Si nous tenons encore compte de la convection entre le corps et l’air, l’équation de bi-
lan de l’énergie en régime stationnaire est:

(11.54)

Considérons le premier terme dû au rayonnement: vu que αS et ε ne sont généralement
pas égaux, la température stationnaire T du corps dépendra du rapport de l’émissivité
et de l’absorptivité pour le rayonnement solaire. Prenons pour référence un corps noir
parfait (α = ε = 1 pour toutes les longueurs d’onde) ou des corps pour lesquels αS = ε
à titre de référence. Un corps pour lequel αS/ε > 1 sera plus chaud que le corps de ré-
férence, et plus froid si αS/ε < 1.

11.4.5 Dynamique d’une lampe à incandescence

Examinons un système dynamique simple dans lequel intervient le rayonnement. Une
petite ampoule est connectée à une alimentation dont la tension croît très rapidement

Eau Profonde 0.96

Bois Sciure 0.75

Chêne, raboté 0.90

a. Pour une température approximative de 300 K.

TABLEAU 11.2 Émissivités et absorptivités solaires.

Substance Émissivitéa

Absorptivité 
pour le 

rayonnement 
solaire

ε α

 ΣΕ,abs S S S= α A E

 α ε σS S S air
4

airA A T T Ah T TE = −( ) + −( )4
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et décroît tout aussi rapidement. La tension aux bornes de l’ampoule et l’intensité du
courant sont mesurées en fonction du temps (fig. 11.22a). Lorsque l’on reporte ces
mesures dans un graphique courant-tension, on obtient pour le filament de tungstène
une caractéristique intéressante (fig. 11.22b), qui est passablement différente de celle
d’une lampe à incandescence obtenue en régime stationnaire (fig. 2.47, section 2.6.2).

La branche descendante de la caractéristique (partie 2 de la figure 11.22b) est proche
de la caractéristique en régime stationnaire. En revanche, la branche ascendante diver-
ge fortement des attentes. Cela est dû à la variation drastique de la température du
filament (et d’autres parties de l’ampoule) à la suite de la dissipation croissante puis
décroissante de l’énergie libérée lors du processus électrique et du rayonnement de
l’entropie. Au début du processus, le filament est encore froid, d’où une résistivité bas-
se. L’intensité du courant croît plus rapidement que lors des expériences standard au
cours desquelles la tension est augmentée très lentement et pas à pas. Après le pic de
dissipation, le filament est chaud et la caractéristique s’approche de celle des expérien-
ces en régime stationnaire.

La figure 11.23a montre le centre d’un modèle fortement simplifié du phénomène. Il
repose sur l’équation de bilan de l’entropie du filament de tungstène. Deux processus
essentiels se déroulent: de l’entropie est produite dans le filament et est rayonnée dans
l’environnement. L’entropie du filament définit sa température qui est utilisée pour ex-
primer les lois constitutives pour le taux de production et le taux de source d’entropie.
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Les détails du modèle concernent la résistivité et l’émissivité du tungstène qui varient
avec la température; la dépendance de la température n’a pas été prise en compte pour
la capacité entropique. L’équation de bilan de l’entropie pour le filament de tungstène
inclut le taux de production dû à la dissipation de l’énergie et un taux de source pour
le rayonnement:

(11.55)

Trois lois constitutives complètent le modèle: une relation température-entropie pour
le filament de tungstène (section 5.5), une autre pour le taux de production d’entropie
(section 5.4.3) et une dernière pour le rayonnement de l’entropie par le filament chaud.

Dans ce modèle, nous opérons avec une valeur moyenne de la capacité entropique K
obtenue de la manière suivante. La chaleur spécifique c du tungstène varie entre
130 J K-1 kg-1 et 180 J K-1 kg-1 dans la plage de températures allant de 300 K à
3000 K. Nous approximons la capacité entropique par:

(11.56)

Nous obtenons la masse m du filament en le considérant comme un cylindre dont nous
évaluons la longueur et le rayon r; cette dernière grandeur se révélera être un paramè-
tre inconnu critique dans le modèle. Avec une capacité entropique constante, la rela-
tion entre l’entropie et la température est simplement:

(11.57)

Le taux de production d’entropie est égal au quotient du taux de dissipation et de la
température du filament. Cette dernière valeur est tirée de l’équation (11.57) alors que
la première est égale à la puissance du processus électrique. La tension sur le filament
n’est qu’une partie de la tension mesurée Um, l’autre partie étant due aux connexions
en cuivre entre l’alimentation et le filament. On attribue à cette partie une résistance
constante (inconnue) R0, ce qui constitue une autre simplification du modèle:

(11.58)

où R et UT sont respectivement la résistance du et la tension sur le filament. L’intensité
du courant à travers l’ampoule est:

(11.59)

Avec ces deux grandeurs, nous pouvons calculer le taux de production d’entropie:

(11.60)

Nous obtenons la résistivité ρ du filament au moyen d’une fonction d’interpolation des
données de la figure 11.24. La résistance du filament est

(11.61)
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Selon l’équation (11.37), le taux de source d’entropie est égal au quotient du taux de
source d’énergie et la température. Le taux de source d’énergie est égal au flux d’éner-
gie donné par l’équation (11.52). Ainsi:

(11.62)

L’absorptivité α est égale à l’émissivité que l’on peut obtenir à partir des données re-
présentées dans la figure 11.21.

Le modèle est maintenant complet et peut être utilisé pour prédire l’intensité du cou-
rant et comparer cette simulation aux données expérimentales (fig. 11.23b). Le modèle
fournit également l’évolution de la température du filament. Cette évolution corres-
pond aux idées exprimées lors de l’analyse des données expérimentales: la tempéra-
ture croît d’abord lentement, puis reste élevée au-delà de l’extinction de la lampe.

Le très bon accord entre la simulation et les mesures ne doit pas être interprété comme
un signe de perfection du modèle. Il souffre d’un certain nombre de défauts mais per-
met une compréhension des phénomènes fondamentaux. Nous avons laissé de côté au
moins deux éléments importants. Il aurait fallu intégrer la dynamique électrique et
thermique des connexions en cuivre. En plus, le rayonnement émis par le filament est
intercepté partiellement par le verre de l’ampoule que nous aurions pu intégrer comme
élément supplémentaire du modèle. En outre, la capacité entropique ne devrait pas être
considérée comme constante, vu la grande étendue de la plage de températures. Enfin,
il faudrait mesurer les caractéristiques géométriques du filament de tungstène et des
fils de connexion pour obtenir un modèle plus fiable.

1. Pourquoi la mesure du flux d’entropie à travers le champ radiatif n’est-
elle pas un courant standard? Pourquoi la mesure du taux d’émission
d’un corps vers un champ (ou vice versa) est-elle un taux de source et
pas un courant?

2. Pourquoi la relation IE = TIS ne s’applique-t-elle pas au rayonnement à
travers le champ radiatif? La relation analogue est-elle valable pour les
sources et puits d’énergie et d’entropie lors de l’interaction par rayon-
nement entre des corps et des champs?

3. Quel argument simple permet de montrer que l’émission de rayonnement est dissipative?

4. La lumière solaire a une température approximative de 6000 K. La lumière rayonnée par
notre planète a une température proche de 300 K. Quel est le rapport de l’entropie par unité
d’énergie pour ces deux types de rayonnement?

5. Sachant qu’à l’équilibre la Terre rayonne autant d’énergie qu’elle en reçoit du Soleil, déter-
minez combien d’entropie est produite par la planète?

6. Imaginez une sphère dont le rayon correspond à la distance Soleil-Terre, centrée sur le
Soleil et considérez un mètre carré de cette surface traversé par la lumière solaire. Les
valeurs de M et de MS sont-elles les mêmes qu’à la surface du Soleil?

7. Considérez la surface opaque d’un corps chaud entouré d’air. On est en présence de rayon-
nement et de transfert d’entropie par convection. Les processus sont-ils en parallèle ou en
série?

8. Imaginez une planète sphérique sans atmosphère exposée à la lumière du Soleil. Elle attein-
dra une certaine température en régime stationnaire. Cette température dépendra-t-elle de
l’émissivité de sa surface?

9. Une plaque de métal galvanisé deviendra-t-elle plus chaude au soleil qu’une surface peinte
en noir?

ΣS T
A T T= −( )1 4α σ air

4

Q
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1. À partir d’un point de l’espace, le rayonnement s’écoule dans toutes les
directions. L’émission et l’absorption sont des processus volumiques.

2. Le rayonnement ressemble plus à un processus de convection: il
dépend de la densité de l’entropie stockée. Oui.

3. Le flux d’entropie qui émane du corps est plus grand (d’un facteur 4/3)
que le taux de source dans le corps.

4. 20.

5. 19 de 20 unités rayonnées sont produites.

6. Oui, la température est encore la même (équations (11.25) et (11.26)).

7. En parallèle.

8. Pas pour une surface grise. Oui pour une surface sélective.

9. Oui (tableau 11.2).

EXEMPLE 11.4. Température à la surface du Soleil.

Le rayonnement qui émane d’une mince couche superficielle du Soleil a des propriétés qui sont
presque semblables à celles d’un corps noir. (a) En utilisant la constante solaire (irradiance so-
laire totale) de 1370 W m-2, la distance Terre-Soleil de 1.5·108 km et le rayon du Soleil de
700 000 km, déterminez la température de sa surface. (b) Calculez le taux auquel l’entropie est
émise par la surface totale.

SOLUTION: (a) La constante solaire Ecs est la valeur du flux d’énergie normal par unité de sur-
face à la hauteur de la Terre. En utilisant cette valeur, nous calculons la puissance émissive du
Soleil, appelée sa luminosité L:

Puisque le Soleil est approximativement un corps noir qui n’absorbe aucun rayonnement de son
environnement, l’équation (11.29) s’applique à la relation entre la puissance émissive et la tem-
pérature, ce qui entraîne:

pour la température à la surface du Soleil.

(b) Le flux d’entropie émanant du Soleil à travers le champ radiatif est donné par:

B

EXEMPLE 11.5. Température à la surface de la Terre.

Modélisez la Terre en tant que (a) corps noir de température uniforme qui absorbe le rayonne-
ment solaire et émet du rayonnement vers l’espace: quelle est la valeur de la température attein-
te par la surface du corps en régime stationnaire? (b) Répétez l’opération pour une surface grise
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et (c) pour un corps noir qui n’absorbe que 70% de la lumière solaire à cause de la réflexion par
la neige et les nuages.

SOLUTION: (a) Nous pouvons utiliser l’équation (11.54) sans le terme lié à la convection et
pour une température de l’environnement de 0 K. Nous obtenons:

AS est l’aire de la projection plane de la sphère (un disque) et A est celle de la surface de la pla-
nète. Après substitution et résolution selon T, nous obtenons:

(b) Pour des corps qui ne sont pas noirs, nous avons:

Comme αS = ε pour des surfaces grises, la nouvelle situation aboutit au même résultat, c’est-à-
dire à une température de 279 K.

(c) Si la Terre rayonne comme un corps noir, alors ε = 1. Cependant, comme elle réfléchit 30%
du rayonnement incident, nous posons αS = 0.7. Nous avons alors:

Les trois valeurs sont trop basses. La température moyenne de notre planète est plus proche de
288 K. On obtient une valeur plus proche de la valeur observée en prenant en compte les vents
et l’effet de serre.

B

EXEMPLE 11.6. Coefficient de transmission de la chaleur par rayonnement.

À la section 5.6.1, les flux d’énergie thermique entre un corps et son environnement sont expri-
més au moyen des équations (5.38) pour la conduction et (5.40) pour la convection. Dans ces
équations de forme générale IE, therm = – Ah (T – Tamb), A représente l’aire de l’interface entre
le corps et son environnement et la grandeur h, appelée coefficient de transmission de la chaleur
(de l’énergie), englobe les caractéristiques thermiques des couches traversées ou de l’interface.

Écrivez l’équation (11.31) décrivant l’échange d’énergie entre un corps noir à la température T1
et son environnement à la température T2 dans une forme semblable afin de déterminer ce que
devient le coefficient de transmission de la chaleur par rayonnement.

SOLUTION: Il faut transformer le facteur formé par la différence des quatrièmes puissances des
températures afin de faire apparaître la différence des températures dans l’équation:

Le coefficient de transmission de la chaleur par rayonnement devient:

On voit que ce coefficient dépend fortement des températures impliquées dans le processus.
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Si de la convection intervient également dans le processus d’échange d’énergie, on est en pré-
sence de flux parallèles de chaleur. Le flux total d’énergie est alors égal à la somme du flux ra-
diatif et du flux convectif. Le coefficient global de transmission de la chaleur est égal à la
somme des coefficients respectifs.

B

11.5 PHÉNOMÈNES THERMIQUES DANS LES SYSTÈMES OUVERTS

Dans les sections précédentes, les systèmes envisagés sont des systèmes fermés qui
n’échangent pas de matière avec l’environnement. Lorsque de la matière entre dans ou
émerge d’un système par l’intermédiaire d’un écoulement, on a affaire à un système
ouvert. Pour nous familiariser avec les systèmes ouverts, nous allons étudier deux
exemples a échelle réduite. Dans le premier, de l’eau chaude s’écoule d’un premier
récipient vers un autre qui contient de l’eau froide et d’où le liquide peut s’écouler.
Dans le second, on observe l’évolution d’un volume d’eau chauffée électriquement.

Mélange d’eau chaude et froide dans un écoulement. Deux récipients métalliques
équipés d’un déversoir contiennent de l’eau. De l’eau chaude se déverse du premier

vers le second qui contient initialement une petite quantité d’eau froide; les niveaux
respectifs apparaissent dans la figure 11.25. Les liquides sont brassés continuelle-
ment. Le niveau du premier récipient diminue alors que celui du second augmente
tout d’abord avant de diminuer également. Les températures suivent une évolution
semblable.

Interprétation. L’évolution des niveaux correspond à ce que nous attendions, même si
elle peut être légèrement différente de ce que nous avons observé au chapitre 1 à cause
d’effets dus à la température qui influence la viscosité du liquide.

La partie thermique est nettement plus intéressante. La diminution de la température
dans le récipient 1 est due aux pertes vers l’environnement, qui ont deux origines: les
pertes à travers les parois du récipient et celles qui sont dues à l’évaporation. Toutefois,
la courbe d’évolution de la température n’est pas celle d’un simple refroidissement: le
taux de diminution de la température augmente dans le temps, ce qui peut être expliqué
par le fait que la masse du liquide diminue relativement rapidement durant les premiè-
res 500 secondes.

La température de l’eau du second récipient augmente tout d’abord grâce à l’apport
d’eau chaude, mais elle commence à diminuer avant même d’avoir atteint la même
valeur que celle du premier récipient. La raison est la même que pour le récipient 1.

Chauffage et vaporisation d’eau dans un récipient ouvert. Dans la seconde expé-
rience, on chauffe de l’eau au moyen d’un thermoplongeur électrique. L’eau est

Récipient 1

Récipient 2
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FIGURE 11.25 Mélange d’eau
chaude et froide en écoulement:
(a) l’eau chaude s’écoule du réci-
pient 1 vers le récipient 2 qui con-
tient une petite quantité d’eau
froide; (b) évolution des niveaux;
(c) évolution de la température.
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continuellement brassée et on mesure la température et la masse de l’eau dans le réci-
pient (fig. 11.26).

Le taux d’élévation de la température est légèrement plus élevé au début du processus.
Lorsque l’eau se met à bouillir, la température ne varie plus. À l’instant t = 1600 s, on
coupe l’alimentation du thermoplongeur et on laisse le liquide se refroidir.

La mesure de la masse du liquide permet de déterminer le flux de masse dû à l’évapo-
ration. Ce flux augmente fortement lorsque la température s’approche du point d’ébul-
lition et diminue de manière quasi symétrique après la coupure du chauffage.

Interprétation. L’augmentation de la température durant la première phase du chauf-
fage est un comportement classique. Le taux d’augmentation diminue légèrement par-
ce que les pertes deviennent plus importantes à cause de l’augmentation de la
différence de température entre l’eau et l’environnement.

L’évolution de la masse est due à l’évaporation qui augmente avec la température.
Mais il y a une différence fondamentale avec l’évaporation qui était aussi présente
dans la première expérience. Le fait de retirer de l’eau d’un récipient laisse normale-
ment la température inchangée. Ici, l’eau qui s’évapore emporte avec elle l’entropie
qu’elle contient en tant qu’eau chaude plus l’entropie nécessaire à la vaporiser. Nous
en concluons que les courants de matière transportent l’entropie qu’ils contiennent.

11.6 TRANSPORT PAR CONVECTION

Pour traiter le transport par convection de grandeurs extensives, nous commencerons
par étudier le transport d’une substance dissoute dans un fluide en mouvement, comme
par exemple du sel dissous dans de l’eau en train de s’écouler. Nous pourrons ensuite
appliquer l’image de la substance dissoute à la quantité de mouvement, à l’entropie et
à l’énergie.

11.6.1 Transport par convection de substances dissoutes

Considérons de l’eau salée qui franchit le limite d’un système (fig. 11.27) et imagi-
nons un petit domaine en amont de cette limite (rectangle en pointillé) dans lequel la
concentration molaire du sel est égale à . La quantité de sel contenue dans
cette région met une durée ∆t pour s’écouler hors du système, ce qui implique que le
courant de quantité de sel est . Comme le produit est égal au flux volumi-
que IV , le courant convectif de la quantité de substance dissoute In, conv est donné par:

(11.63)

FIGURE 11.26 Vaporisation d’eau:
(a) l’eau est chauffée au moyen d’un
plongeur électrique et brassée
continuellement; (b) évolution de la
masse et de la température.[[[[[[[

[[
[[
[[
[[
[[
[[
[[
[[
[[[
[[
[[[
[[[
[[[
[[[
[[[
[[[[
[[
[[[[
[[[[
[[[[[[
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[
[[[[[[[[[[[[[[

[[[[[
[[[[[
[[[[[
[[[[[[
[[
[[
[[

[

[
[[[[[
[
[
[

[

[[[
[

[

[[

[

[
[

[
[
[
[[[

[

[

[

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[240

280

320

360

400

0.0E+0

4.0E-5

8.0E-5

1.2E-4

1.6E-4

0 1000 2000 3000 4000

T
em

pé
ra

tu
re

/K

F
lu

x
m

as
si

qu
e

/k
g/

s

Temps / s

Flux massique

Température

a. b.

ASystème

Limite
du système

Fluide
s’écoulant

avec le
courant IV

In,conv

∆x

Substance
dissoute de

concentration c–

FIGURE 11.27 Un fluide (grisé)
transporte une substance diluée
(points) à travers les limites d’un
système.

c cA x∆

I cAn = v Av

I cIn V, conv , fluide=



540 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 11   PHÉNOMÈNES DE TRANSPORT ET SYSTÈMES OUVERTS

Dans cette relation, IV, fluide est basé sur le volume de la solution qui peut être différent
du volume du solvant.

Il est assez courant d’utiliser le flux massique Im du fluide au lieu du flux volumique.
Si nous utilisons la définition (6.14) de la fraction massique ws du soluté, nous obte-
nons une expression équivalente:

(11.64)

dans laquelle l’indice s se réfère au soluté et Im,fluide est le flux total de masse, solvant
et soluté.

Les relations (11.63) et (11.64) ne sont valables que si la concentration des substances
dissoutes est uniforme sur la surface traversée par le flux. Si ce n’est pas le cas, les ex-
pressions doivent être remplacées par une relation plus générale qui utilisent les den-
sités de flux jn et jV = v: 

(11.65)

Mélange de sel et d’eau dans un écoulement. Nous allons démontrer la simplicité
du concept de courants convectifs en modélisant une expérience au cours de laquelle
de l’eau fraîche et de l’eau salée sont mélangées (fig. 11.28). Deux récipients identi-
ques sont reliés par une conduite. Le second a un déversoir supplémentaire. Le pre-
mier récipient est rempli d’eau salée jusqu’à un niveau de 5 cm alors que le second
contient de l’eau fraîche à un niveau initial de 30 cm. L’eau s’écoule de ce récipient à
la fois vers le premier et vers l’extérieur. Lorsque le niveau s’élève dans le premier ré-
cipient, la concentration de sel diminue à cause de l’arrivée d’eau fraîche. À partir de
l’instant où les deux niveaux ont la même valeur (aux environ de 120 s), le flux s’in-
verse et de l’eau salée se mélange avec l’eau fraîche, et la concentration de sel croît
dans le second récipient.

Le modèle dynamique du système (fig. 11.28c) contient quatre stocks représentant les
quatre grandeurs extensives dont il faut tenir compte, à savoir le volume d’eau dans cha-
cun des récipients, ainsi que la quantité de sel dissoute dans l’eau de ces récipients. Nous
y ajoutons deux courants d’eau et deux courants convectifs de sel. Nous admettons que
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les concentrations de sel sont suffisamment faibles pour qu’elles ne modifient pas la den-
sité de l’eau, ce qui nous permet de traiter la partie hydraulique de manière indépendante
des propriétés chimiques de la même manière qu’au chapitre 1. Nous devons introduire
les concentrations molaires de sel et exprimer les flux convectifs de sel au moyen de ces
concentrations et de flux volumiques d’eau. Le courant de sel entre les deux récipients
dépend de la concentration dans le récipient 1 si l’eau s’écoule de celui-ci vers le réci-
pient 2 (après 120 s), et de la concentration dans le récipient 2 lorsque l’eau s’écoule dans
le sens inverse (avant 120s):

(11.66)

Le courant de sel émergeant du récipient 2 vers l’extérieur ne dépend que de la con-
centration de sel dans ce récipient. Ce modèle simple donne des résultats satisfaisants,
comme le montre la comparaison des résultats de la simulation et des données expéri-
mentales (fig. 11.29).

11.6.2 Courants convectifs de quantité de mouvement

À partir de l’équation (11.63), nous voyons qu’un courant convectif de quantité de
mouvement doit être égal à la densité volumique de quantité de mouvement p/V mul-
tipliée par le flux volumique IV. Ce produit peut être transformé pour obtenir le produit
de la densité massique de quantité de mouvement et du flux massique:

(11.67)

La quantité de mouvement par unité de masse du fluide est la quantité de mouvement
spécifique, elle est égale à la vitesse du fluide par rapport à l’observateur.

Ce flux de quantité de mouvement accompagne tous les flux convectifs. Nous ne les
avons pas pris en compte dans les applications étudiées jusqu’à présent. En revanche,
si la vitesse d’écoulement devient importante, il faut tenir compte de cette contribution
mécanique. Lors de l’établissement des bilans d’énergie, l’apport dû à la quantité de
mouvement devra être intégré.

11.6.3 Courants convectifs d’entropie

L’entropie accompagne toujours les écoulements de substances. Nous devons donc
déterminer combien d’entropie est contenue dans un volume de fluide. Pour pouvoir
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FIGURE 11.29 Résultats de la si-
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11.28 et comparaison avec les don-
nées expérimentales: (a) niveaux;
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le faire, nous introduisons la densité d’entropie ρS, l’entropie spécifique s et l’entropie
molaire . Pour des corps uniformes, ces grandeurs sont définies par:

(11.68)

La densité d’entropie et l’entropie spécifique sont liées par la relation:

(11.69)

où ρ est la densité massique usuelle. Si nous voulons pouvoir exprimer la densité d’en-
tropie d’un corps, nous devons pouvoir disposer d’une théorie constitutive telle que
celle des fluides incompressibles de la section 5.5 ou celle du gaz parfait de la
section 10.3.

Les flux convectifs d’entropie sont évalués de la même manière que les courants con-
vectifs de substances dissoutes. Une manière de visualiser la chose est d’imaginer que
les points de la figure 11.27 représentent des grains d’entropie dissoute dans le fluide.
Grâce à cette analogie, nous pouvons écrire:

(11.70)

Les deux autres manières d’exprimer un flux convectif d’entropie sont:

(11.71)

(11.72)

Ces relations pour les courants d’entropie ne sont valables que si les densités ou les
valeurs spécifiques sont constantes sur la surface traversée. Dans le cas contraire, on
doit utiliser les densités de flux.

Relations constitutives pour l’entropie d’un fluide. À la section 5.5, nous avons éta-
bli les relations pour l’entropie spécifique (ou molaire) d’un fluide. Dans le cas d’un
fluide incompressible, tel que l’eau, l’entropie molaire est:

(11.73)

avec . est le coefficient de température molaire de l’énergie (chaleur molaire
dans la thermodynamique traditionnelle), à ne pas confondre avec la concentration
molaire apparaissant dans les équations (11.63) et (11.65). On remarquera que l’entro-
pie ne dépend que de la température pour les fluides incompressibles, ce qui n’est pas
le cas pour les fluides compressibles tels que le gaz parfait:

(11.74)

Le facteur du logarithme du rapport des températures est le coefficient de température
molaire de l’enthalpie du gaz défini par l’équation (10.50). L’influence de la pression
(ou du volume) ne peut pas être découplée de celle des variations de température, com-
me c’est le cas pour les fluides incompressibles.
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11.7 TRANSPORT D’ÉNERGIE DANS LES SYSTÈMES OUVERTS

Les modèles des processus physiques utilisent les bilans des quantités de matière, de
la charge, de la quantité de mouvement ou du moment cinétique, et de l’entropie. À
eux seuls, les bilans ne suffisent pas: il faut être en mesure de formuler les lois cons-
titutives qui régissent les flux et les taux de production. C’est là qu’intervient la loi de
conservation de l’énergie: elle permet d’éliminer, parmi les lois constitutives possi-
bles, celles qui la contrediraient.

Courant convectif d’énergie. Nous envisageons une fluide chaud, sous pression, qui
pénètre dans un système (fig. 11.30). Il y a deux contributions au courant d’énergie.
En premier lieu, le fluide transporte de l’énergie accumulée en son sein; cette énergie,
en quelque sorte « diluée » dans le fluide, est représentée par les points dans la
figure 11.30. C’est l’énergie du fluide qu’un observateur emporté par le courant mesu-
rerait. Si, comme dans le cas de l’entropie, nous introduisons la densité d’énergie ρE,
l’énergie spécifique e et l’énergie molaire :

(11.75)

nous pouvons écrire la partie convective des flux d’énergie comme suit:

(11.76)

(11.77)

(11.78)

Courant d’énergie dû à l’écoulement d’un fluide sous pression. Il faut ajouter le
terme que nous avons introduit par l’équation (3.13), le flux d’énergie transporté par
un fluide sous pression:

(11.79)

À nouveau, nous pouvons convertir cette expression pour pouvoir l’utiliser avec des
flux massiques ou des flux de quantité de matière:

(11.80)

(11.81)

où υ = 1/ρ représente le volume spécifique et le volume molaire.

Courant d’énergie total dû à l’écoulement. Dans le cas que nous envisageons ici, un
liquide chaud sous pression, le courant d’énergie total est la somme des deux contri-
butions évoquées ci-dessus. Exprimé au moyen du courant de quantité de substance,
il devient:

(11.82)

La somme correspond à l’enthalpie molaire du fluide. Cette grandeur a été
introduite à la section 10.4.

Limite
du système

Fluide
s’écoulant avec

le courant Im

IE,conv

Énergie dans le fluide,
énergie spécifique e

Le fluide a
la pression P

à l’entrée

IE,fluide

FIGURE 11.30 Un fluide (grisé)
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(points) à travers les limites d’un
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Pour pouvoir formuler une loi constitutive pour un courant concret, nous devons dis-
poser des informations constitutives relatives à l’énergie d’un fluide. Pour un fluide in-
compressible, nous avons

(11.83)

alors que pour un gaz parfait, l’énergie molaire est

(11.84)

Dans les deux cas, eréf = 0. Rappelons que, pour le gaz parfait

(11.85)

où R est la constante des gaz parfaits. Cette relation a été établie à la section 10.3.6.

11.8 BILANS DANS LES SYSTÈMES OUVERTS

Lors de la formulation des bilans relatifs à un processus se déroulant dans un système
ouvert, à côté des bilans concernant les grandeurs qui nous intéressent directement,
telles que l’entropie ou la quantité de mouvement si nous modélisons des processus
thermiques ou mécaniques, nous devons prendre en compte le bilan des substances
qui, en s’écoulant, transportent l’entropie, la quantité de mouvement ou la charge.

S’il s’agit par exemple d’un système hydraulique, il faudra d’abord énoncer l’équation
de bilan du volume accumulé dans le système:

(11.86)

Dans un système ouvert, il faut ajouter les flux convectifs aux processus qui sont res-
ponsables de la variation des grandeurs accumulées. Une telle relation a par exemple
été formulée pour la quantité de mouvement au moyen de l’équation (8.11) à la
section 8.4.4:

(11.87)

et pour l’entropie par l’équation (11.9) à la section 11.1.4:

(11.88)

La discussion de la section précédente relative au transfert d’énergie dans les systèmes
ouverts montre que l’équation de bilan de l’énergie doit être formulée de manière lé-
gèrement différente. Nous devons prendre en compte tous les termes(11.82) relatifs à
l’écoulement, et pas seulement les termes associés exclusivement aux flux convectifs,
à savoir les équations (11.76) à (11.78). L’équation de bilan de l’énergie aura donc la
forme:

(11.89)
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1. Pourquoi l’action de vider de l’eau chaude hors d’une cuve ne change-
t-elle pas la température de l’eau restant dans la cuve alors que l’action
de verser de l’eau froide dans une cuve contenant de l’eau chaude fait
baisser la température?

2. Quelle est la quantité de mouvement spécifique d’un fluide?

3. Pourquoi ne suffit-il pas de ne prendre en compte que l’énergie stockée
dans un fluide (l’énergie interne e) lorsque l’on calcule le courant d’énergie dû à l’écoule-
ment d’un fluide vers ou hors d’un système?

4. Imaginez que vous comprimez un ressort pour le faire entrer dans une boîte qui représente
le volume de contrôle pour l’analyse. Considérez le courant d’énergie dû au ressort entrant
dans la boîte, c’est-à-dire le courant d’énergie dû à l’«écoulement» du ressort à travers la
surface du volume de contrôle. Y a-t-il une partie du courant total d’énergie qui est assimi-
lable au courant d’énergie stockée (eIm, fluide dans l’équation (11.77))? Y a-t-il une partie
assimilable au terme PvIm dans l’équation (11.80)?

5. Pourquoi n’est-il pas nécessaire de faire la distinction entre les coefficients de l’énergie et
de l’enthalpie CV et CP dans le cas d’un fluide incompressible, comme dans
l’équation (11.83)?

6. Considérez deux réservoirs communicants avec un déversoir supplémentaire tels ceux de la
figure 11.28. Il y a une faible quantité d’eau chaude dans le réservoir 1 et une grande quan-
tité d’eau froide dans le réservoir 2. Comment la température de l’eau dans chacun des deux
réservoirs va-t-elle évoluer dans le temps?

1. Dans le premier cas, l’entropie spécifique ne varie pas, alors qu’elle
diminue dans le second cas.

2. Sa vitesse.

3. La pression, et éventuellement la vitesse et le potentiel gravitationnel
peuvent contribuer à l’énergie du fluide.

4. Respectivement le flux d’énergie emmagasinée dans le ressort com-
primé et le flux d’énergie dû à l’action de pousser le ressort à l’intérieur de la boîte.

5. Parce qu’ils sont égaux si le volume de la substance ne varie pas.

6. T1 commencera par diminuer alors que T2 restera constante. Puis T1 ne variera plus alors
que T2 diminuera.

EXEMPLE 11.7. Courants convectifs d’eau.

De l’eau, dont la température est de 50°C, s’écoule à travers un tuyau de diamètre égal à 5 cm.
Le flux massique est de 10 kg s-1. Calculez la valeur (a) du courant convectif d’entropie et (b)
du courant convectif de quantité de mouvement et comparez-le avec le courant conductif de
quantité de mouvement engendré par une pression de 1 bar.

SOLUTION: (a) Si nous choisissons de baser nos calculs sur le flux massique, nous devons éva-
luer l’entropie spécifique du fluide qui est donnée par:

Le flux convectif est obtenu à partir de l’équation (11.71):
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Lors du calcul de l’entropie spécifique, nous avons arbitrairement attribué une valeur nulle à
celle du niveau de référence. Il en découle que nous ne pouvons pas attribuer une valeur absolue
à la valeur trouvée ci-dessus, ce qui serait également le cas si nous voulions évaluer des courants
d’énergie dus à l’écoulement. Ce problème est usuellement résolu en considérant les flux en-
trant et sortant par rapport au même point de référence, comme le montre l’exemple 11.8.

(b) Nous devons connaître la vitesse d’écoulement pour pouvoir calculer le courant convectif
de quantité de mouvement. Nous l’obtenons à partir du flux massique et de la section de la
conduite:

Le courant de quantité de mouvement est le produit de la quantité de mouvement spécifique (la
vitesse) et du flux massique:

Si la pression de l’eau vaut 1 bar, le courant convectif de quantité de mouvement est une fraction
importante du flux conductif de quantité de mouvement qui vaut:

B

EXEMPLE 11.8. Courant convectif d’entropie net et flux d’énergie transportés par de l’air.

Considérez un courant d’air de 100 mol s-1 s’écoulant à travers un dispositif technique. La pres-
sion et la température à l’entrée sont respectivement de 2 bar et 400 K. À la sortie, ces valeurs
sont tombées respectivement à 1 bar et 300 K. Négligez les termes relatifs à l’énergie cinétique.
(a) Calculez le courant convectif net d’entropie et (b) le courant net d’énergie dû à l’écoulement
de l’air à travers le dispositif. (c) Une telle situation est-elle possible?

SOLUTION: (a) L’entropie molaire de l’air peut être approximée au moyen du modèle du gaz
parfait en utilisant l’équation (11.74) avec un coefficient de température de l’enthalpie de 7/2 R
(selon les résultats de l’exemple 10.3, l’exposant adiabatique de l’air est proche de 1.4). Les va-
leurs de référence n’entrent pas en compte, vu que nous calculons une différence:

(b) Comme nous évaluons une différence, les valeurs associées au niveau de référence se com-
pensent. Nous calculons le flux net d’énergie au moyen des équations (11.82), (11.84) et
(11.85), ainsi que l’équation d’état du gaz parfait:
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(c) Il faut établir les bilans d’entropie et d’énergie pour savoir si un tel processus est réalisable.
Nous admettons être en régime stationnaire. Comme il y a un afflux net d’entropie, l’air doit
être refroidi par un courant d’entropie d’intensité égale à – 261 Ct s-1. Si nous admettons une
température moyenne de 350 K, le courant conductif d’énergie associé est approximativement
de – 100 kW.

B

11.9 SYSTÈMES OUVERTS AVEC EFFETS MÉCANIQUES

Il existe des systèmes ouverts dans lesquels des effets mécaniques jouent un rôle qui
ne peut pas être négligé lors de la modélisation de leur comportement dynamique.

11.9.1 Équations de bilan

La figure 11.31 contient les termes supplémentaires, dus aux effets mécaniques, qui
devront être pris en compte dans les équations de bilan.

Il s’agit des quatre grandeurs extensives qui participent au processus, à savoir la quan-
tité de matière, l’entropie, le volume et la quantité de mouvement. Les équations de
bilan sont celles de la section 11.8, adaptées au processus étudié. Ainsi, nous pouvons
avoir par exemple:

(11.90)

La deuxième équation relative à l’entropie exprime le fait que le fluide transporte de
l’entropie et qu’il y peut y avoir chauffage, ce qui est représenté par un flux conductif
d’entropie. Nous avons admis qu’il n’y a pas de dissipation. Le troisième terme expri-
me les éventuelles variations de volume dues à la compression (ou détente) si on est
en présence d’un fluide compressible. L’équation de bilan de la quantité de mouve-
ment contient un terme relatif à la convection, ainsi qu’à l’interaction avec un champ,
par exemple le champ de pesanteur. Un terme lié à la conduction qui tient compte de
l’état de compression ou de détente du fluide (particulièrement important pour les gaz,
peut être négligé pour les liquides) n’a pas été intégré dans cette équation de bilan.

L’équation de bilan de l’énergie intègre toutes les contributions dont il est question ci-
dessus:

FIGURE 11.31 Fluide transportant
de l’entropie et de la quantité de
mouvement dans un système. Le
fluide à l’intérieur du système peut
être comprimé (ΠV) et chauffé
(IS,cond). Simultanément, il y a
échange de quantité de mouvement
lors d’interaction avec un champ
(Σp).Surface ouverte

du système
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(11.91)

11.9.2 Relations constitutives et courant d’énergie

Un des apports importants provient de l’énergie (spécifique ou molaire) du fluide. En
plus du terme appelé énergie spécifique e ou molaire , il y a l’énergie du fluide en
mouvement, calculée par unité de masse ou de quantité de matière. L’énergie cinétique
par unité de masse est simplement la moitié du carré de la vitesse. L’énergie par unité
de quantité de matière est égale à:

(11.92)

où est la partie intrinsèque de l’énergie molaire du fluide, dite énergie interne mo-
laire. Cette partie représente l’énergie contenue dans le fluide lorsqu’il est immobile.

Au courant convectif d’entropie donné par l’équation (11.72), il faut ajouter un cou-
rant convectif de quantité de mouvement:

(11.93)

Dans l’évaluation des flux d’énergie il faut, dans l’équation (11.82), remplacer par
sa valeur donnée par la relation (11.92):

(11.94)

tenir compte du courant d’énergie lié au processus de compression ou de détente:

(11.95)

et du courant d’énergie mécanique:

(11.96)

11.9.3 Système ouvert en mouvement

Lorsque le système considéré est lui-même en mouvement, comme c’est le cas pour
une fusée, lors de l’énoncé du bilan de quantité de mouvement:

(11.97)

il faut tenir compte de la variation de la masse donnée par l’équation:

(11.98)

La variation de la quantité de mouvement devient:

(11.99)

Dans l’expression p = mv, il faut introduire les valeurs instantanées de la masse et de
la vitesse du système et veiller à distinguer rigoureusement cette vitesse v du système
de la vitesse d’écoulement du fluide vfluide. Les vitesses d’écoulement qui entrent dans
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le calcul des flux convectifs de quantité de mouvement doivent être mesurées dans le
même référentiel que le système, par rapport au même observateur (fig. 11.32). Si vrel
est la vitesse du fluide par rapport au système, la vitesse du fluide par rapport à l’ob-
servateur est donnée par:

(11.100)

et les flux convectifs de quantité de mouvement:

(11.101)

EXEMPLE 11.9. Tir vertical d’une fusée.

Déterminez analytiquement l’évolution de la vitesse d’une fusée (fig. 11.33) avec un débit mas-
sique Im constant et une vitesse d’éjection des gaz vrel également constante pendant toute la du-
rée du processus envisagé: (a) en l’absence de force extérieure; (b) lors d’un tir vertical; (c)
établissez le modèle de dynamique des systèmes correspondant.

SOLUTION: (a) Les équations de bilan de la quantité de mouvement et de la masse sont:

En vertu des équations (11.100) et (11.101), nous avons:

ce qui entraîne:

L’intégration de donne:

Dans cette relation, la masse est la masse instantanée:

(b) Lors d’un tir vertical, il faut prendre en compte l’influence de la gravité. Si on admet que
l’altitude atteinte est suffisamment faible pour que l’on puisse considérer la pesanteur comme
constante, l’évolution de la vitesse sera:

relation équivalente au taux de variation de l’altitude, v(t) = dz /dt , que l’on peut intégrer nu-
mériquement ou analytiquement. La figure 11.34 montre l’évolution de la vitesse et de l’altitude
pour une fusée de masse initiale totale m0 de 12 t, une masse de carburant de 9.6 t, une vitesse
d’éjection des gaz vrel de 2400 m s-1pour un débit massique Im de 120 kg s-1, ce qui donne une
durée de combustion de 80 s. Les valeurs de la vitesse et de l’altitude à la fin de la combustion
sont respectivement de 3078 m s-1 et 83.37 km.

Si l’on tient compte de la variation de g en calculant sa valeur au moyen de la loi de la gravita-
tion universelle, les valeurs finales sont alors 3099 m s-1 et 83.77 km.

Système

vfluide

v

Im

+ x

Observateur

vrel

FIGURE 11.32 Toutes les vitesses
doivent être exprimées par rapport
au même observateur. Pour celui-ci,
la vitesse du fluide est la somme
vectorielle de la vitesse du système
et de la vitesse relative du fluide par
rapport au système.
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FIGURE 11.33 Une fusée tirée ver-
ticalement est soumise simultané-
ment à la poussée engendrée par le
flux massique des gaz et à la gravité.
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(c) Les équations de bilan de la quantité de mouvement sont:

Pour obtenir la masse instantanée de la fusée, il faut tenir compte de l’évolution de la masse du
carburant:

à laquelle on ajoute la masse du lanceur.

L’altitude s’obtient par intégration de la vitesse instantanée.

La figure 11.35 montre le diagramme de dynamique des systèmes correspondant. Les valeurs
obtenues sont naturellement les mêmes que celle que donne la solution analytique.

B

EXEMPLE 11.10. Effets inductifs dans l’écoulement des fluides.

Justifiez les relations énoncées à la section 4.5.1 au sujet de la loi d’induction
pour un fluide incompressible sans frottement.

SOLUTION: L’équation de bilan pour un fluide incompressible de masse volumique ρ qui
s’écoule sans frottement dans une conduite de section A et de longueur l (fig. 11.36) est:

Comme la section est constante et le fluide incompressible, nous avons v1 = v2; en outre, la
masse est constante ( ). Nous pouvons donc écrire:

et, si nous exprimons la vitesse en tant que quotient du flux volumique et de la section:
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FIGURE 11.35 Modèle de dynami-
que des systèmes du lancement ver-
tical d’une fusée sous l’hypothèse
d’une pesanteur constante.
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FIGURE 11.36 Les variations de la
vitesse d’écoulement dans la con-
duite sont à l’origine d’une différen-
ce de pression entre ses extrémités:
c’est le phénomène d’induction.
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Vu que V = Al, nous obtenons:

ce qui justifie l’énoncé de la loi d’induction par l’équation (4.2) et la valeur de l’inductance mé-
canique par l’expression (4.11) de la section 4.5.1.

B

11.9.4 Processus d’écoulement et potentiel chimique d’un fluide

L’utilisation du potentiel chimique permet de représenter d’une autre manière le flux
d’énergie qui accompagne un écoulement. À la section 6.6.1, nous avons affirmé que
les transports de substance était accompagnés d’un flux d’énergie donné par
l’équation (6.52): IE = µIn. Nous voulons déterminer quels sont les facteurs qui cons-
tituent le potentiel chimique d’un écoulement. Nous rassemblons les informations de
la section précédente dans l’équation de bilan de l’énergie:

En tant que facteur du flux de quantité de matière, le contenu de la première parenthèse
représente le potentiel chimique du fluide, ce qui entraîne:

(11.102)

avec

(11.103)

Les trois premiers termes représentent la partie intrinsèque du potentiel chimique d’un
fluide, alors que le quatrième prend en compte la contribution due à son écoulement.
L’équation (11.103) révèle que le potentiel chimique du fluide décroît lorsque sa vi-
tesse augmente.

Relation fondamentale de GIBBS. La relation fondamentale de GIBBS (11.102) peut
être exprimée au moyen des grandeurs molaires qui sont:

(11.104)

L’introduction de ces grandeurs dans l’équation (11.102) donne:

Comme n et sa dérivée temporelle peuvent varier de manière indépendante, l’égalité
ne peut être vérifiée que si les expressions entre crochets s’annulent. Le membre de
droite correspond au potentiel chimique de l’équation (11.103), alors que le membre
de gauche exprime la forme fondamentale de GIBBS au moyen de grandeurs molaires:
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(11.105)

1. Les termes et PΠV dans les équations (11.94) et (11.95) sont-ils
dus au même processus ou se réfèrent-ils à des phénomènes différents?

2. Lorsque l’on maintient un gaz sous pression, de la quantité de mouve-
ment s’écoule à travers sa surface. Pourquoi peut-on négliger les effets
mécaniques dans ce cas?

1. Ils se réfèrent à des processus différents, à savoir pousser le fluide
d’une part et le comprimer d’autre part.

2. Le maintien de la pression n’entraîne pas un mouvement du centre de
masse.

EXEMPLE 11.11. Équation de BERNOULLI.

À partir du bilan d’énergie, déduire l’équation de BERNOULLI pour un tube de courant sans frot-
tement, de section variable, dont les deux extrémités se trouvent à des hauteurs différentes
(fig. 11.37).

SOLUTION: Dans ce système ouvert, les flux d’énergie ont lieu à l’entrée et à la sortie, mais
pas à travers les parois (pas de frottement). De ce fait, les flux d’énergie entrant et sortant sont
égaux. Nous utilisons les résultats de la section 11.9.4, en remplaçant le potentiel chimique µ
par le potentiel gravitochimique µGC que nous avons introduit à la section 6.6.4 au moyen de
l’équation (6.58). Le flux d’énergie devient:

L’expression ci-dessus est constante le long de l’écoulement. Vu que, pour des fluides incom-
pressibles, l’énergie interne ne dépend que de la température, que celle-ci ne dépend que de l’en-
tropie, et que cette dernière est constante (pas de frottement), les termes u et Ts se compensent
lors de la formation de la différence. Nous avons donc:

Nous multiplions les deux termes par la masse volumique ρ pour obtenir:

C’est la loi de BERNOULLI pour un fluide parfait.

B
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FIGURE 11.37 La loi de conserva-
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BERNOULLI.
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EXEMPLE 11.12. Répartition de la pression dans une atmosphère isotherme.

Justifiez la relation (1.23) de la section 1.5.1 en déterminant de quelle manière la pression varie
dans une atmosphère isotherme.

SOLUTION: Une atmosphère isotherme est à l’équilibre, le potentiel gravitationnel est donc
constant:

La constance du potentiel gravitochimique implique que le potentiel chimique:

diminue linéairement avec l’altitude. Cette variation du potentiel chimique est due à la variation
de ses termes. Comme l’atmosphère est à l’équilibre et isotherme, son énergie interne et sa tem-
pérature ne varient pas; il n’y a pas de production d’entropie, et le terme cinétique est nul (pas
de convection). Nous avons donc:

Or, le volume molaire est constant. Nous obtenons:

Si nous envisageons l’atmosphère comme un gaz parfait: , la substitution de cette re-
lation dans l’équation précédente donne:

équation différentielle dont la solution est:

Cette relation est usuellement appelée formule barométrique.

B

11.10 IRRÉVERSIBILITÉ DANS LES SYSTÈMES D’ÉCOULEMENT

Quel que soit le système considéré, on y rencontre toujours des sources d’irréversibi-
lité. Les fluides en mouvement sont soumis à des frottements, mais également à des
processus irréversibles typiques qui se produisent dans des fluides au repos, tels que
absorption de rayonnement, réactions chimiques, diffusion de charge électrique, de
chaleur et de substances. Dans des systèmes d’écoulement, il existe un processus sup-
plémentaire qui produit de l’entropie, le mélange de fluides à différentes températures
et pressions, ce que nous allons étudier dans cette section.
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11.10.1 Analyse d’un chauffage à écoulement

Considérons un fluide tel que de l’air ou de l’eau qui s’écoule à travers une conduite
qui est chauffée. Le chauffage peut être d’origine solaire, comme dans les capteurs so-
laires thermiques, ou conventionnel par combustion de fuel ou au moyen de chauffage
électrique (fig. 11.38). Le flux d’entropie IS est accompagné d’un flux d’énergie IE,

therm. À l’entrée de la conduite, le fluide est à la température Tin et à la pression Pin, il
en émerge avec les valeurs respectives Tout et Pout.

Bilans en régime stationnaire. Si le chauffage fonctionne en régime stationnaire, les
équations de bilan de l’entropie et de l’énergie sont:

(11.106)

(11.107)

Dans le bilan d’énergie, le courant dû au chauffage est considéré comme connu. Les
expressions relatives au flux d’énergie sont données par les équations (11.82) et
(11.84):

ce qui revient à:

(11.108)

Fluides incompressibles. La dernière relation peut être adaptée au cas de fluides in-
compressibles tels que l’eau. Dans ce cas, le coefficient de température de l’énergie est
c, et les volumes molaires spécifiques sont identiques aux deux extrémités de la con-
duite. En régime stationnaire, le courant d’énergie dû au chauffage doit par conséquent
être égal à:

(11.109)

Nous pouvons maintenant déterminer le taux de production de l’entropie à partir de
l’équation (11.106):

Après substitution des équations (11.109) et (11.73), nous obtenons:

et finalement:

(11.110)

FIGURE 11.38 Chauffage à écoule-
ment : un fluide s’écoule à travers une
conduite (courant In). Le chauffage est
quantifié par IS , IE, therm. Le fluide pé-
nètre avec les valeurs (Tin ,Pin ) et
émerge à (Tout ,Pout).
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Gaz parfait. Pour un gaz simple, l’analyse se déroule de manière analogue. Nous uti-
lisons l’équation d’état des gaz parfaits, PV = nRT, ou Pυ = RT. L’équation (11.109)
devient:

Avec l’équation (11.85), nous obtenons:

(11.111)

Cette relation est intéressante, car elle nous apprend que si la température d’un volume
de gaz parfait passe de Tin à Tout et sa pression de Pin à t Pout , la quantité d’énergie
transférée ne dépend que de la différence de température multipliée par le coefficient
de température de l’enthalpie.

Évaluons maintenant le taux de production d’entropie pour ce processus:

L’insertion des relations constitutives donne:

Après substitution des relations (11.111) et (11.74), nous obtenons:

(11.112)

Mélange et production d’entropie dans les systèmes d’écoulement. L’application
à un chauffage à écoulement du bilan d’entropie avec taux de production nécessite une
explication. Si, dans une situation réelle, nous négligeons le frottement du fluide ou
d’autres processus produisant de l’entropie, il n’y a pas de dissipation dans le système.
Pourquoi avons-nous une production d’entropie dans l’équation de bilan?

La raison est due à la forme particulière du modèle utilisé. Contrairement à la situa-
tion réelle dans laquelle la température du fluide est une fonction de la position dans
la direction de l’écoulement, dans le modèle de la figure 11.38, nous admettons que
le fluide a une température unique T, celle que l’on mesure à la sortie de la conduite,
T = Tout. En d’autres termes, il y a dans la conduite un fluide chaud, bien mélangé,
auquel on ajoute du fluide froid à l’entrée. Ces deux fluides sont immédiatement
mélangés, ce qui entraîne une production d’entropie, processus que nous allons main-
tenant analyser.

11.10.2 Mélange et dissipation

Les systèmes de stockage de chaleur (d’entropie) par des fluides tels que l’eau ou des
gaz jouent un rôle important autant dans la vie quotidienne que dans le monde indus-
triel. Nous allons considérer le remplissage d’éléments de stockage pour présenter un
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modèle de système dynamique incluant des apports par convection. Cela nous permet-
tra de formuler les relations pour le taux de production d’entropie résultant du mélange
de fluides.

Nous envisageons un écoulement d’eau à la température Tflux vers un réservoir comme
le montre la figure 11.39. L’intensité du flux massique est Im. Une masse m d’eau à la
température T est déjà présente dans le réservoir. Cet afflux de fluide provoque une
augmentation de la masse, de l’entropie et de l’énergie dans le volume de contrôle. Le
mélange de deux fluides à différentes températures est un processus dissipatif. Nous
nous intéressons à l’évolution de la température en fonction du temps et du taux de
production d’entropie. Pour simplifier l’étude, nous supposons que la pression du flux
entrant est égale à celle du liquide dans le réservoir, ce qui nous permet de ne pas tenir
compte de la production d’entropie qui serait due au frottement engendré par la déten-
te du flux entrant.

Équations de bilan. Il y a une équation de bilan pour chacune des trois grandeurs ex-
tensives de notre modèle:

(11.113)

(11.114)

(11.115)

De possibles déperditions de chaleur du réservoir sont négligées. En tant que gran-
deurs extensives, l’entropie et l’énergie sont proportionnelles à la quantité de matière
contenue dans le système: S = ms et E = me (équations (11.68) et (11.75)). Leur évo-
lution dans le temps est donnée par la dérivée temporelle de ces produits:

(11.116)

(11.117)

Les lois constitutives pour les courants convectifs et pour les entropie et énergie spé-
cifiques de fluides incompressibles ont été établies aux sections 11.6.3 et 11.7. Après
avoir isolé le taux de production d’entropie à partir de l’équation (11.116), nous utili-
sons l’équation (11.71) pour remplacer IS, conv , l’équation (11.73) pour exprimer l’en-
tropie spécifique et remplaçons le taux de variation de la masse par Im. Le taux de
variation de l’entropie spécifique est remplacé par l’équation (11.105) dans laquelle la
contribution de la pression est négligée. L’équation (11.117) fournit le taux de varia-
tion de l’énergie spécifique, celle-ci étant exprimée par l’équation (11.83):

ce qui donne finalement:

FIGURE 11.39 Un liquide à la
température Tflux s’écoule vers
un réservoir contenant une masse
m du même liquide à la tempéra-
ture T. Le flux massique a une in-
tensité égale à Im .
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(11.118)

Ce résultat est équivalent à celui de l’équation (11.112) sans la prise en compte du ter-
me lié à la pression.

1. De l’air ou de l’eau s’écoule à travers à travers un chauffage à écoule-
ment libre (sans mélange ni frottement) ; pourquoi le processus est-il
réversible? Ne considérez que le fluide dans le chauffage en tant que
système. Pourquoi obtenons-nous un taux de production d’entropie non
nul dans notre analyse du chauffage écoulement de la figure 11.38 et
des équations (11.110) et (11.112)?

2. Pourquoi le terme relatif à la pression, présent dans l’équation (11.110)
est-il absent de l’équation (11.118)?

3. Comment le système de la figure 11.39 devrait-il être modifié pour inclure l’effet sur la pro-
duction d’entropie d’une différence de pression entre le fluide entrant et le fluide stocké?

1. Le transfert d’entropie est réversible car le fluide reçoit l’entropie à la
bonne température partout dans le système. Dans notre modèle, la dis-
sipation est due au fait que nous traitons le fluide en tant que système
uniforme.

2. Parce que le fluide entrant dans le système est à la même température
que le fluide déjà présent.

3. Il faudrait injecter le fluide à travers une vanne qui modifie la pression du fluide entrant.

11.11 ÉVAPORATION

L’évaporation est une vaporisation lente dans l’air environnant à partir d’une quantité
d’eau relativement grande. Nous allons consacrer cette section à l’étude de l’évapora-
tion et de la condensation de l’eau, et du mélange de la vapeur d’eau et de l’air d’un
point de vue dynamique. Ces processus sont importants, autant dans la nature (évapo-
ration à partir de la surface des océans, des sols, des plantes), dans le génie chimique
(où l’on fait s’évaporer des substances) que dans les tours de refroidissement ou dans
la climatisation de l’air.

11.11.1 Évaporation et diffusion de vapeur d’eau dans l’air

Envisageons un volume d’eau surmonté d’air immobile. Si l’air n’est pas saturé, le po-
tentiel chimique de l’eau est supérieur à celui de la vapeur d’eau, ce qui entraîne un
transfert supplémentaire de vapeur vers l’air. De ce fait, la concentration de la vapeur
sera plus importante dans les couches adjacentes à la surface du liquide que dans les
régions qui en sont éloignées. La vapeur va donc diffuser verticalement vers les ré-
gions où l’air est moins humide (fig. 11.40).

Le processus se poursuit jusqu’à saturation de l’air au-dessus du liquide. Usuellement,
cette vapeur est éliminée dans un espace ouvert, et l’évaporation se poursuit tant qu’il
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FIGURE 11.40 L’évaporation à par-
tir d’un volume d’eau peut être com-
prise comme la diffusion de vapeur
d’eau d’une couche d’air saturée
proche de la surface de l’eau vers
des endroits où l’air n’est pas saturé.
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reste du liquide. Notons que l’évaporation ne dépend pas du fait que l’eau est plus
chaude que l’air environnant. Elle peut également être présente si le liquide est plus
froid que l’air. Ce qui est nécessaire, c’est que la concentration de vapeur d’eau près
de la surface de l’eau soit plus élevée que pour les points plus éloignés de celle-ci.

Évaporation d’eau chaude: un modèle simple. On verse de l’eau chaude dans un
verre placé sur une balance. La surface libre de l’eau est à une distance d du bord du
verre (fig. 11.41a). On mesure la masse, la température de l’eau et de l’air ainsi que
l’humidité relative en fonction du temps. La température diminue (fig. 11.41c) à cause
du refroidissement dû essentiellement à l’évaporation: la masse d’eau diminue rapide-
ment lorsque la température est élevée pour s’approcher d’une valeur quasi constante
lorsque la température de l’eau est proche de celle de l’air (fig. 11.41b).

Si nous admettons que l’évaporation est due à la diffusion à travers l’air de la vapeur
à partir de la surface du liquide, nous pouvons énoncer une relation simple pour le flux
de la quantité de matière, comme à la section 6.7:

(11.119)

La grandeur représente la concentration de vapeur dans l’air aux positions respecti-
ves z = 0 et z = d. hvap est le coefficient de transfert pour la quantité de matière et A la
section à la surface de l’eau. Si nous traitons la vapeur en tant que gaz parfait, sa con-
centration est proportionnelle à sa pression partielle. De ce fait, l’équation (11.119)
devient:

(11.120)

Psat est la pression de saturation et ϕ l’humidité relative. Dans ce modèle simple, nous
admettons que la vapeur est toujours à la température de l’air Tair, même près de la sur-
face de l’eau qui est à la température Teau. Dans la couche qui surmonte le volume
d’eau, l’air est saturé. Le coefficient de transfert hvap dépend de la profondeur à laquel-
le se trouve la surface libre de l’eau et de la diffusivité de la vapeur dans l’air.

Si l’on utilise les valeurs mesurées de la température (fig. 11.41b) pour calculer le flux
de masse Im, vap = MvapIn, vap, qui émane de la surface de l’eau, nous obtenons la ligne
discontinue de la figure 11.42. À première vue, l’adéquation aux valeurs mesurées est
relativement bonne, mais exhibe un comportement différent. Il est donc nécessaire
d’inclure dans le modèle les variations spatiales des conditions dans le récipient.

Diffusion de vapeur dans l’air. Nous devons comprendre quels types de transport se
déroulent dans le colonne d’air surmontant le volume d’eau. Nous admettons que les
variations n’ont lieu que dans la direction verticale et que le processus est stationnaire.
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Il y a tout d’abord un flux conductif (diffusion) de vapeur d’eau que nous représente-
rons par une densité de courant jnvap (fig. 11.43). Dans ce mélange de gaz (vapeur
d’eau et air sec), si l’une des composantes diffuse dans une direction, l’autre doit le
faire dans la direction opposée si l’état est stationnaire. Nous avons donc une densité
de courant d’air sec représentée par jnair. Les intensités des flux sont indépendantes de
la position z, vu que nous considérons le régime stationnaire. Les deux densités sont
liées entre elles par:

(11.121)

Comme cet air ne peut pas s’accumuler à la surface de l’eau, nous devons admettre
l’existence d’un flux convectif d’air humide qui compense l’arrivée de l’air sec:

(11.122)

De la vapeur d’eau est transportée vers le haut par ce flux convectif d’air. Comme la
quantité de vapeur dans l’air correspond à la fraction molaire de la quantité d’air hu-
mide, nous avons:

(11.123)

car le courant d’air humide est égal à la somme des courants d’air et de vapeur. La den-
sité de courant de vapeur totale est la somme de la contribution diffusive (11.121) et
de la contribution convective (11.123), ce qui donne finalement:

(11.124)

Nous devons maintenant introduire les relations constitutives. La densité de courant
de vapeur par diffusion peut être reprise de la section 6.7.2:

(11.125)

La diffusivité de la vapeur d’eau dans l’air est d’environ 2.4·10-5 m2 s-1 à 300 K. La
concentration de vapeur d’eau peut être exprimée en termes de pression à partir de la
loi des gaz parfaits:

(11.126)

Dans des situations isothermes, la température est partout égale à la température am-
biante. Si nous substituons les équations (11.125) et (11.126) dans l’équation (11.124)
et intégrons l’équation différentielle du premier ordre entre z = 0 et z = d, en nous sou-
venant que les densités de courant sont constantes, nous obtenons:

(11.127)

A est la section du récipient, et Pvap, a et Psat sont respectivement la pression de vapeur
dans l’air loin du récipient (donnée par sa température et son humidité relative) et la
pression de saturation à la même température.
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Évaporation d’eau très chaude. Revenons à l’expérience décrite dans la figure 11.41.
L’eau est plus chaude que l’environnement pour toute la durée de l’expérience, ce qui
veut dire que nous n’avons pas des conditions isothermes, comme nous l’avons admis
dans le modèle ci-dessus. Si nous admettons que la colonne d’air au-dessus de l’eau
est à la température Tair et que l’eau est à la température Teau, nous pouvons utiliser la
relation (11.127) pour obtenir le résultat:

(11.128)

Il est intéressant de noter que la dépendance par rapport à la pression exprimée par cet-
te équation permet une bonne adéquation aux données expérimentales, comme le mon-
tre la ligne continue de la figure 11.42. Toutefois, pour assurer cette correspondance, il
a fallu multiplier l’intensité du courant apparaissant dans l’équation (11.128) par un
facteur proche de 10. Si la forme de l’équation (11.128) semble convenir pour décrire
l’évaporation d’eau chaude dans un récipient ouvert, l’intensité des flux est nettement
plus importante que ce que prédit le modèle. En outre, des expériences avec des pro-
fondeurs différentes n’ont pas révélé la dépendance par rapport à d attendue en vertu
des équations (11.127) et (11.128). La vapeur condense sur la paroi intérieur du réci-
pient et s’évapore à nouveau à différentes hauteurs et rejoint la vapeur émanant de la
surface du liquide. Cela pourrait expliquer les différences.

11.11.2 Refroidissement par évaporation

Le refroidissement par évaporation peut être envisagé de deux manières. D’une part,
les corps solides ou liquides se refroidissent si un liquide s’évapore de leur surface; la
transpiration en est un exemple quotidien. D’autre part, nous pouvons nous intéresser
à l’air qui est impliqué dans le processus et qui absorbe la vapeur; sa température di-
minue. Ce processus est utilisé dans le conditionnement de l’air. Nous allons illustrer
ce thème par l’étude du refroidissement d’eau froide dans un récipient ouvert.

Évaporation d’eau froide. De l’eau à la même température que l’environnement peut
se refroidir par évaporation si elle se trouve dans un récipient bien isolé ouvert au som-
met.

Ce phénomène est utilisé dans les climats secs et chauds pour rafraîchir l’eau en la
conservant dans des amphores dont on mouille la paroi extérieure et en utilisant des
éventails pour maintenir un courant d’air autour de ces récipients humides.
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Considérons une expérience et un modèle qui vont nous permettre de traiter ce genre
de situation. On verse de l’eau ayant approximativement la température ambiante dans
un récipient isolé, ouvert au sommet. On place le tout sur une balance et l’on mesure
l’évolution dans le temps de la température de l’eau et de l’air, et l’humidité relative
de l’environnement (fig. 11.44a et b). Dans notre modèle, nous devons prendre en
compte l’entropie et la masse de l’eau et l’entropie du récipient (la dynamique du ré-
cipient doit être prise en compte si nous voulons atteindre une bonne adéquation entre
le modèle et les données expérimentales (fig. 11.44b)).

(11.129)

(11.130)

Notons qu’il faudrait également tenir compte d’un courant conductif d’entropie allant
directement de l’eau à l’air ou vice versa, mais il se révèle que son influence peut être
négligée.

Quelles sont les lois constitutives? Vu que les différences de température sont faibles,
nous avons négligé la production d’entropie due au transfert conductifs, et nous avons
opéré avec des modèles de transport linéaires. En particulier, le flux d’eau s’évaporant
de la surface de l’eau dans le récipient est modélisé comme dans l’équation (11.120):

(11.131)

où ce sont les flux de masse qui sont pris en considération. Gm, vap est une conductance
liée au transport de masse. Les flux convectifs d’entropie sont formulés de manière
semblable. La température de l’eau dans son récipient peut être calculée à partir de son
entropie spécifique. Les grandeurs manquantes peuvent être calculées conjointement
avec les expressions pour la pression de vapeur et l’entropie spécifique de la vapeur.
Ainsi, la relation pour le courant d’entropie par évaporation est:

(11.132)

où svap représente l’entropie spécifique de la vapeur qui émane du volume d’eau. Le
modèle rend bien compte des données expérimentales (fig. 11.44b).

1. Sur quel type de raisonnement l’équation (11.119) est-elle basée?

2. Pourquoi les flux dans la figure 11.43 sont-ils indépendants de z?

3. Pourquoi est-il possible de négliger la production d’entropie dans le
modèle de la figure 11.44?

1. Sur le fait que l’évaporation est considérée comme un processus de dif-
fusion (donc de type conductif) de la vapeur d’eau à travers l’air,
comme la conduction de la charge ou de l’entropie.

2. Parce qu’il s’agit de flux unidimensionnels, en régime stationnaire,
d’espèces qui ne réagissent pas entre elles.
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3. Parce que les différences de température sont très faibles.

EXEMPLE 11.13. Transfert de masse et d’entropie lors du refroidissement par évaporation.

Utilisez les résultats de l’expérience de la figure 11.44 pour estimer (a) la conductivité pour la
masse lors du processus d’évaporation et (b) la conductivité globale d’entropie du récipient.

SOLUTION: (a) Nous nous basons sur la situation à t = 15000 s, lorsque les processus ont atteint
un état quasi-stationnaire. On observe dans la fig. 11.44a que le courant de masse est pres-
que constant avec une valeur de (0.184 kg - 0-165 kg) / 20000 s = 9.5·10-7 kg s-1. Nous
utilisons l’équation (11.131) pour calculer la conductivité de masse:

Les températures de l’air (21.5°C) et de l’eau (15°C) ont été lues dans la figure 11.44b et les
valeurs correspondantes de la pression de saturation ont été extraites d’une table.

(b) En régime stationnaire, le flux d’entropie par conduction est égal à celui qui est entraîné par
la vapeur:

Cette relation permet de trouver la conductivité globale d’entropie de l’eau vers l’environne-
ment. Pour la trouver, nous devons intégrer les lois constitutives dans cette équation de bilan:

ce qui entraîne:

L’entropie spécifique de la vapeur a été tirée d’une table.

B

Résumé du chapitre

Il existe trois modes de transport des grandeurs extensives. Toutes peuvent être trans-
portées par conduction ou par convection, mais certaines, telles que le moment cinéti-
que, la quantité de mouvement et l’entropie, peuvent également être transportées par
le rayonnement, c’est-à-dire l’interaction avec un champ (électromagnétique ou gra-
vitationnel). Ce chapitre approfondit l’étude de ces modes en les illustrant essentielle-
ment au moyen de l’entropie.

La forme générale du bilan qui prend en compte toutes les causes possibles de la va-
riation de l’entropie d’un système est: , où ΣS représente
le taux d’apport d’entropie, ou taux de source, auquel l’entropie pénètre ou émane
d’un corps au travers de son interaction avec le champ électromagnétique. ΠS est le
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taux de production d’entropie qui tient compte de l’irréversibilité des trois processus
de transport.

Les trois types de transport d’entropie sont accompagnés de flux d’énergie. La varia-
tion de l’énergie du corps est donnée par: , alors que
celle de l’énergie du champ est: .

L’écoulement de l’entropie par conduction est décrite au moyen de la loi de FOURIER:
jS = – kS · dT/dx où jS est la densité du courant d’entropie, kS la conductivité entropique
et dT/dx le gradient de température. Le courant d’énergie qui accompagne le flux con-
ductif d’entropie est égal à: jE, therm = – kE · dT/dx où kE = TkS est la conductivité éner-
gétique (ou thermique). La conduction est un processus dissipatif et la densité du taux
de production d’entropie est: πS = 1/T· kS (dT/dx)2 où T est la température basse à la-
quelle l’entropie émerge du système. Le produit TπS représente la densité de dissipa-
tion d’énergie.

Les corps peuvent être chauffés ou refroidis par l’intermédiaire du rayonnement élec-
tromagnétique qui est alors appelé rayonnement thermique. Même si l’émission par
un corps opaque ressemble à un rayonnement émanant d’une surface, l’absorption et
l’émission de rayonnement sont des processus volumiques qui se déroulent à l’inté-
rieur du corps sans franchissement préalable de sa surface: le corps et le rayonnement
coexistent au même endroit.

Le prototype d’un objet rayonnant est le corps noir, un corps qui absorbe tout le rayon-
nement qui l’atteint. Un corps noir est caractérisé par son taux d’émission hémisphé-
rique appelé exitance MCN, qui correspond à la quantité d’énergie émise par la surface
du corps par unité de temps et par unité de surface. Elle est donnée par MCN = σT 4,
où σ est la constante de STEFAN-BOLTZMANN. L’entropie rayonnée conjointement est
égale à MS, CN = 4/3 σT 3. Si les exitances sont constantes sur la surface, les courants
d’entropie et d’énergie émanant de ce corps noir sont le produit négatif des exitances
et de l’aire A de la surface.

Plongé à l’intérieur d’un corps noir dont les parois sont à la température Tparoi, un autre
corps noir à la température T absorbe de l’énergie à un taux donné par ,
où ECN est l’irradiance ou éclairement énergétique. Le flux net d’énergie émanant de
ce corps est .

L’absorption et l’émission de rayonnement par un corps provoquent son chauffage ou
son refroidissement. Ces processus sont irréversibles et engendrent donc une produc-
tion d’entropie. Pour deux corps noirs ayant des températures respectives T1 et T2 en
contact thermique par l’intermédiaire du rayonnement, le taux de production d’entro-
pie est donné par . Cette expression est
toujours positive (ou nulle si les deux corps ont la même température).

Les surfaces qui n’absorbent qu’une partie du rayonnement incident sont dites surfa-
ces grises. Elle sont caractérisées par leur taux d’absorption d’énergie par unité de
surface : A = αECN où α est l’absorptivité ou facteur d’absorption. On peut également
les caractériser par leur émissivité ε qui est le rapport de leur exitance à celle du corps
noir: M = εMCN. La loi de KIRCHHOFF stipule que l’émissivité est égale à l’absorpti-
vité. Un corps gris à la température T plongé dans le rayonnement d’un corps noir
dont les parois sont à la température Tparoi émet de l’énergie au taux :

. Les tableaux d’émissivité et d’absorptivité donnent des
valeurs différentes, parce qu’elles donnent l’absorptivité par rapport au rayonnement
solaire.

Contrairement aux systèmes fermés, les systèmes ouverts échangent de la matière
avec l’environnement. Cet échange peut se faire par l’intermédiaire d’écoulements, on
a alors affaire à un transfert par convection.

�E I IE E Ecorps , conv , conv , champ= + + Σ
�E IE Echamp , rad , champ= + Σ

ECN paroi
4= σT

I A A T TE , rad, net CN CN paroi
4= − −( ) = − −( )M E σ 4

ΠS A T T T T T T T T= ( ) ⋅ −( ) +( ) +( )σ 1 2 1 2

2

1 2 1
2

2
2

I A T TE , rad paroi
4= − −( )εσ 4
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Si l’écoulement transporte une substance dissoute, l’intensité du courant de la subs-
tance dissoute est généralement donnée en termes de quantité de matière: In,conv =
cIV,fluide où c est la concentration molaire de la substance. La quantité de mouvement
d’un écoulement est égale à Ip,conv = vIm,fluide. La vitesse v correspond à la quantité
de mouvement spécifique. L’entropie accompagne tous les écoulements de substances.
Les flux convectifs d’entropie peuvent être exprimés au moyen de la densité d’entro-
pie, de l’entropie spécifique ou molaire. Dans le dernier cas on a: IS,conv = sIn,fluide. Si
la grandeur transportée n’est pas constante sur la surface traversée par l’écoulement,
il faut utiliser les densités de flux.

Les écoulements transportent de l’énergie, divisée en deux contributions. La première
est l’énergie E qu’un observateur emporté par le courant mesurerait, et la seconde pro-
vient de la pression qui règne dans le fluide, soit PIV. Exprimée au moyen des gran-
deurs molaires, l’énergie transportée par l’écoulement est : IE, écoulement = (e +
Pυ)In,fluide, où υ est le volume molaire. Le contenu de la parenthèse est l’enthalpie
molaire h du fluide.

Les équations de bilan relatives à un processus se déroulant dans un système ouvert
doivent prendre en compte les grandeurs qui évoluent au cours du processus, mais éga-
lement les substances qui, par leur écoulement, transportent ces grandeurs vers ou hors
du système. Ce sera également le cas de l’équation de bilan de l’énergie qui aura la
forme: .

Lorsque, dans un écoulement, les effets mécaniques jouent un rôle non négligeable, ils
doivent être pris en compte dans les équations de bilan. Il peut s’agir par exemple
d’une variation de volume d’un gaz par compression ou détente: , ou de l’in-
teraction avec un champ: . Ces contributions supplémentaires apparaissent
dans le bilan d’énergie: . On tient compte de
l’irréversibilité inhérente à tous les processus au moyen du taux de production d’en-
tropie qui varie suivant la nature du fluide considéré.

�E I IE E E= + +, cond , écoulement Σ

�V V= Π
�p p= Σ

�E I I I IE E E E= + + +, écoulement , therm , compr , méc
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Exercices et problèmes
1. La lumière solaire traverse un gaz enfermé dans une long

cylindre. Le flux d’entropie à l’entrée et dans l’axe du cylin-
dre a une valeur de 5.0 W K-1. À l’extrémité opposée, la
valeur du flux émergent est de 4.0 W K-1. (a) Déterminez la
valeur du flux net d’entropie par rapport à la région de
l’espace occupée par le cylindre. (b) À quel taux (minimal)
l’entropie du corps est-elle en train de varier? (c) Quelle est
la valeur du taux de source d’entropie pour le champ? Que
vaut le flux d’entropie par rapport au cylindre?

2. Une barre de cuivre de 0.50 m de longueur et de section égale
à 10.0 cm2 a une température de 500 K à une extrémité et de
300 K à l’autre extrémité. Lorsque le flux de chaleur a atteint
le régime stationnaire, des mesures indiquent que la tempéra-
ture varie linéairement le long de la barre. (a) Déterminez le
gradient de température en prenant le sens de flux d’entropie
comme direction positive. (b) Estimez les densités de flux
d’entropie et d’énergie au centre de la barre en utilisant les
valeurs de la figure 11.9. Que vaut la conductivité
énergétique? (c) Divisez la barre en deux parts égales. Avec
le valeur obtenue en (b), déterminez ce que vaut le flux
d’entropie à la surface de séparation par rapport à la partie
dont provient l’entropie?

3. Un thermoplongeur dans une bouilloire est branché sur le
secteur à 220 V. Sa résistance électrique est de 160 Ω à la
température de 20°C ; le coefficient de température de la
résistivité est 4·10-3 K-1. Si le coefficient de transmission
entre le thermoplongeur et l’eau est de 100 W K-1 m-2 et
l’aire de sa surface égale à 0.020 m2, quelle sera la valeur du
flux d’énergie du thermoplongeur à l’eau? Comment le résul-
tat change-t-il si une couche minérale se forme autour du
thermoplongeur?

4. Montrez que le flux d’énergie transmis à travers un manteau
cylindrique de longueur L et de rayons intérieur et extérieur
r1 et r2 est donné par:

où h1 et h2 sont les coefficients de transfert de la chaleur inté-
rieur et extérieur. Les températures des fluides à l’intérieur et
à l’extérieur sont T1 et T2.

5. Un volume cylindrique de roche sous la surface du sol a été
chauffé uniformément à 50°C alors que le reste de la roche
est à une température de 10°C. Utilisez les valeurs moyennes
du granit pour les propriétés de la roche. (a) Utilisez le
modèle suivant pour les pertes de chaleur du domaine cylin-
drique vers l’environnement. Alors que les températures de la
zone de stockage et de l’environnement restent uniformes, la
chaleur s’écoule à travers un manteau cylindrique dont les
rayons intérieur et extérieur sont respectivement égaux à la
moitié et au double du rayon du cylindre de stockage. Esti-
mez le flux d’énergie dû aux déperditions de chaleur pour
une zone de stockage de 5.0 m de rayon et de 40 m de lon-
gueur. (b) Quelle devrait être la valeur du rayon pour que les
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pertes de chaleur durant une période d’une demi-année ne
dépassent pas le quart de l’énergie stockée dans la zone
cylindrique?

6. Une plaque métallique d’aire égale à 2.0 m2, dont le compor-
tement est sélectif, est posée horizontalement sur le sol. La
face en contact avec le sol est bien isolée. Dans la partie visi-
ble du spectre, l’absorptivité est égale à 0.90, dans l’infra-
rouge, l’émissivité vaut 0.30. La température ambiante est de
20°C. Le Soleil est à 50° au-dessus de l’horizon et 70% de
son rayonnement pénètre dans l’atmosphère et arrive au sol.
(a) En négligeant la convection, estimez la température
qu’atteindra la plaque métallique exposée au Soleil. (b) Cal-
culez cette température en prenant en compte le transfert de
chaleur par convection au-dessus de la plaque métallique.
Admettez un coefficient de transfert de chaleur par convec-
tion de 14 W K-1 m-2.

7. On observe le refroidissement d’eau dans une canette d’alu-
minium. Dans une première expérience, la canette est polie
(courbe 1 dans la figure 11.45). Dans la seconde expérience,
la canette est peinte en noir (courbe 2). Admettez que le
transfert par conduction de l’eau vers les parois de la canette
est extrêmement efficace. Données expérimentales: masse de
l’eau: 0.476 kg; aire de la surface de la canette: 0.0325 m2;
température ambiante : 21.6°C. (a) Déterminez le taux de
variation de l’entropie de l’eau dans la première expérience à
l’instant t = 500 s. (b) En admettant que le rayonnement est
négligeable lors de la première expérience, déterminez les
valeurs des coefficients de transfert par convection de l’entro-
pie et de l’énergie de la surface de la canette vers l’air. (c)
Utilisez les données de la seconde expérience pour détermi-
ner l’émissivité de la surface noire.

8. Considérez la Terre comme un corps uniforme. (a) À quel
taux l’entropie apparaît-elle dans l’atmosphère, la biosphère
et les océans de la Terre si nous leur attribuons la température
de 300 K? La constante solaire à l’extérieur de l’atmosphère
est de 1360 W m-2. Une fraction de 30% de ce rayonnement
est réfléchie dans l’espace. (b) Quelle est la valeur du flux
d’entropie par l’intermédiaire du champ radiatif juste avant
que le rayonnement soit absorbé ? (c) Que vaut le taux de
production d’entropie résultant de l’absorption? (d) Que vaut
le taux de production d’entropie global?

9. Un panneau photovoltaïque d’aire égale à 1.0 m2 est exposé à
un rayonnement solaire dont le flux d’énergie est égal à
800 W m-2. La température initiale du panneau et des cellu-
les est de 300 K. Le panneau a une capacité thermique (capa-
cité énergétique) de 1000 J K-1. Le coefficient d’absorption
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du panneau pour le rayonnement solaire est de 0.85. L’émis-
sivité du panneau pour le rayonnement thermique est égale à
1. L’énergie est émise directement vers l’air, le coefficient de
transfert de la chaleur est de 12 W K-1 m-2. L’efficacité élec-
trique du panneau décroît en fonction de la température selon
η = 0.15 – b(T – Tamb) avec b = 1.667·10-3 K-1. L’efficacité
est définie en tant que rapport de la puissance électrique et du
flux d’énergie du rayonnement solaire (et pas du taux
d’absorption). (a) Quelle est la puissance initiale? (b) Formu-
lez l’équation de bilan instantanée de l’énergie du panneau.
(c) Que vaut le taux initial de variation de la température? (d)
Déterminez la température stationnaire du panneau qui s’éta-
blit après un certain temps. (c) Esquissez aussi précisément
que possible la température et la puissance électrique du pan-
neau en fonction du temps.

10. Une bouteille de vin est placée dans un réfrigérateur dont la
température intérieure reste constante à 0°C. Combien de
temps faudra-t-il attendre pour que la température du vin
décroisse d’une valeur initiale de 20°C à la température dési-
rée de 8°C? Considérez le vin comme un système uniforme
de masse égale à 0.75 kg et utilisez les lois constitutives rela-
tives à l’eau. La bouteille est en verre de 5.0 mm d’épaisseur.
La hauteur et le diamètre du corps principal sont de 25 cm et
8 cm respectivement; négligez l’influence du fond et du gou-
lot et traitez le manteau comme une couche plane. Les coeffi-
cients de transfert par convection intérieur et extérieur sont
égaux à 200 W K-1 m-2 et 10 W K-1 m-2 respectivement.

11. Une citerne à eau sphérique à parois minces a un volume de
1.0 m3. L’eau contenue est maintenue à une température
constante de 60°C par un chauffage de puissance de 1.0 kW.
La température ambiante est de 15°C. Combien de temps
après le déclenchement du chauffage la température sera-t-
elle retombée à 40°C?

12. Un volume d’eau chaude de 1.0 m3 perd de la chaleur vers
l’environnement à une température constante de 20°C. La
température initiale de l’eau est de 80°C. Le produit du coef-
ficient de transfert de chaleur et de l’aire du la surface est de
60 W K-1. (a) Combien de temps faudra-t-il attendre pour que
la différence de température entre l’eau et l’environnement
tombe à la moitié de sa valeur initiale? (b) Que vaut le taux
de production d’entropie au tout début du processus? (c) Que
vaut la valeur totale de l’entropie produite du début du pro-
cessus jusqu’au refroidissement complet de l’eau? (d) Com-
bien d’énergie aurait pu être libérée par une machine de
CARNOT parfaite opérant entre l’eau et l’environnement lors
du refroidissement de l’eau?

13. Pour maintenir à 20°C la température intérieure d’un bâti-
ment situé dans un environnement à 0°C, la puissance de
chauffage nécessaire est de 5 kW. En l’absence de chauffage,
la température intérieure diminue chaque jour de 1/5 de la
différence de température par rapport à l’environnement. (a)
Déterminez le produit de l’aire de la surface et du coefficient
de transfert de chaleur total. (b) Déterminez la valeur du
coefficient de température de l’énergie (chaleur massique) en
modélisant le bâtiment en tant que système RC. (c) Si la tem-
pérature intérieure est de 12°C, quelle devrait être la puis-

sance de chauffage pour que la température s’élève de 1°C
par heure?

14. Un générateur d’énergie éolienne dont la section a une aire
de 75 m2 est exposé à des vents de vitesse égale à 50 km h-1.
Derrière le rotor, la surface d’écoulement augmente d’un fac-
teur 1.6. L’air peut être considéré comme un fluide incom-
pressible de densité égale à 1.2 kg m-3. Admettez que la
température reste constante. (a) Que vaut le flux purement
convectif d’énergie du vent qui traverse le générateur? (b) À
quel taux l’énergie est-elle transmise au rotor? (c) Le rotor
tourne à une fréquence de 0.5 Hz. Que vaut le courant de
moment cinétique à travers l’art de la roue du générateur?

15. De l’hydrogène est brûlé avec de l’oxygène dans le moteur
d’une fusée. Estimez la température des gaz éjectés, sachant
que la vitesse d’éjection est de 3000 m s-1.

16. Un réservoir sous pression en acier ayant une masse de 8 kg
et un volume de 6.0 litres contient 4.0 litres d’eau et 0.50 kg
de gaz d’azote à une température de 20°C. Le réservoir est
placé sur trois supports. Il y a une ouverture équipée d’une
valve au fond du réservoir. (a) Quelle est la pression du gaz?
(b) À quelle vitesse l’eau s’écoule-t-elle immédiatement
après l’ouverture de la valve? (c) Quel devrait être le diamè-
tre de l’ouverture pour que l’accélération initiale du réservoir
soit de 30 m s-2?

17. Un bidon ouvert en étain contient de l’eau chaude. L’eau peut
s’évaporer et s’écouler à travers un tuyau horizontal. (a) Le
processus thermique (écoulement d’entropie et variation de
température) influence-t-il le processus hydraulique, ou les
deux processus peuvent-ils être traités séparément? (b) Con-
sidérez l’eau contenue dans le bidon comme un système.
Énoncez l’équation de bilan de la masse dans la forme ins-
tantanée. (d) À partir de l’équation de bilan d’entropie,
démontrez que l’équation de variation de la température est
donnée par
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où m est la masse de l’eau contenue dans le système, T et
Tamb la température instantanée et la température ambiante
respectivement, κ la capacité entropique spécifique, GS la
conductance entropique, lvap l’entropie spécifique de vapori-
sation, Im, vap le courant de masse d’évaporation de l’eau.

18. Considérez le modèle suivant du chauffage de l’air dans une
pièce. En conséquence de l’apport d’entropie, l’air se dilate
et diffuse à travers les parois de telle manière que la pression
dans la pièce garde une valeur constante. En admettant une
puissance de chauffage

 

Pchauffage constante, et que l’air qui
reste dans la pièce ne perd pas de chaleur vers l’environne-
ment, montrez que la température de l’air croît selon la
relation

si l’on prend la valeur de 7/2R pour le coefficient de tempéra-
ture molaire de l’enthalpie de l’air.

19. Montrez que l’expression pour le flux total de vapeur d’eau
dans une colonne d’air humide au-dessus d’un volume d’eau
est donnée par l’équation (11.124).

20. Dérivez l’équation différentielle décrivant la diffusion de la
vapeur d’eau dans un récipient comme celui qui figure dans
la figure 11.41a et montrez que sa solution est donnée par
l’équation (11.127).
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Dans cet Interlude, nous souhaitons décrire trois exemples de systèmes thermiques uti-
lisés pour le chauffage, servant soit à fournir, soit à stocker de l’entropie. De manière
spécifique, nous examinerons les collecteurs solaires qui sont des systèmes à écoule-
ment ouverts, le stockage d’eau chaude et le stockage d’entropie au moyen de maté-
riaux à changement de phase (stockage d’entropie latente). Dans les trois cas, nous
allons élaborer des modèles qui nous permettront d’explorer ces dispositifs de manière
relativement détaillée. Le deuxième modèle — un collecteur solaire aérothermique —
nous permettra d’aborder le problème de l’optimisation.
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Les systèmes thermiques simples pour la production d’eau chaude consistent en des
capteurs solaires thermiques et un réservoir de stockage de l’eau chaude. Ils sont né-
cessairement des systèmes dynamiques, à la fois de manière intrinsèque à cause de
l’élément de stockage et extrinsèque du fait de l’influence de facteurs externes (rayon-
nement solaire et consommation de l’eau chaude).

 

IV.1.1 Capteurs solaires thermiques

Les capteurs solaires thermiques sont des objets qui absorbent une fraction de la lu-
mière solaire qui les atteint et, en conséquence, produisent de l’entropie. Si nous fai-
sons circuler un fluide sur l’absorbeur, nous pouvons exploiter une partie de l’entropie
qui a été créée (fig. IV.1). Nous n’allons considérer que des capteurs solaires sans
concentration qui, dans des conditions typiques, deviennent modérément chauds.

L’arrangement géométrique le plus simple consiste en un absorbeur plat, par exemple
une plaque métallique mince. On peut faire circuler un fluide (liquide ou air) à travers
une conduite rectangulaire sous l’absorbeur, le fluide en contact avec la surface entière.
Usuellement, le fond du collecteur est isolé et une couverture transparente, qui n’ap-
paraît pas dans la figure IV.1, est placée sur la plaque absorbante; les deux dispositifs

Absorbeur

Fluide

Isolation

Écoulement de fluide

Réflexion

Pertes

Gain

Rayonnement
solaire

FIGURE IV.1 Un collecteur plat
simple consiste en une plaque
absorbante incluant si possible
une couverture transparente
pour réduire les pertes dans la
partie supérieure. L’absorption
du rayonnement solaire provo-
que la production d’entropie
dans l’absorbeur. Un fluide qui
s’écoule sous la plaque emporte
une partie de l’entropie. La fi-
gure montre la géométrie la plus
simple possible pour l’absor-
beur et l’écoulement du fluide.
Les flèches épaisses symboli-
sent les flux d’énergie, les flè-
ches minces les flux d’entropie,
et les cercles représentent les
taux de production d’entropie.
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réduisent les déperditions d’entropie vers l’environnement. Les conduites transportant
le fluide dans le collecteur sont souvent différentes de ce que nous avons admis, et plus
compliquées, ce qui amène à des arrangements géométriques plus élaborés pour le
transfert de l’entropie entre l’absorbeur et le fluide. Il en sera question plus bas.

Le rayonnement solaire transporte de l’entropie et de l’énergie. Il contient relative-
ment peu d’entropie à cause de la température élevée de la lumière (proche de 6000
K). La plus grande partie de l’entropie qui servira à chauffer le collecteur et le fluide
aura été produite (le rapport entre l’entropie fournie et l’entropie produite est proche
de 1 à 20). La production d’entropie résulte de l’absorption (et de l’émission) du
rayonnement, du transfert de l’absorbeur au fluide et du frottement dans l’écoulement.

 

IV.1.2 Modèle dynamique d’un capteur solaire

L’exemple qui suit assemble un chauffe-eau à circulation et un réservoir de stockage
en un système simple mais techniquement intéressant (fig. IV.2). Les chauffe-eaux so-
laires consistent essentiellement en deux composantes: un collecteur et un réservoir
de stockage de l’eau chaude. Cela ne s’arrête pas là, mais du point de vue thermody-
namique, il fait sens de se contenter d’étudier ce système limité.

Le collecteur solaire – le chauffe-eau à circulation – consiste en un absorbeur du
rayonnement solaire (une feuille métallique plane), des conduites qui font circuler de
l’eau ou un mélange eau-glycol sous le collecteur afin de recueillir l’entropie, une pla-
que de verre sur la face antérieure pour réduire les pertes d’entropie de l’absorbeur
vers l’environnement ainsi qu’une isolation au dos afin de prévenir les déperditions de
chaleur. Le phénomène qui nous intéresse dans cette perspective est le chauffage d’un
fluide (relativement) froid lors de son passage le long d’une plaque chauffée
(section 11.10). Si nous considérons l’absorbeur et le liquide présent dans le collecteur
comme un corps unique ayant une température unique, nous devons prendre en comp-
te six processus: (1) absorption d’entropie et d’énergie amenées par le rayonnement,
(2) production d’entropie due à cette absorption, (3 et 4) flux convectifs d’entropie à
l’entrée et à la sortie, (5) production d’entropie due au mélange du liquide entrant dans
le collecteur et (6) transfert d’entropie vers l’environnement à travers la couverture en
verre (fig. IV.2).

Le réservoir devient même un système plus simple si l’eau est brassée continuellement
(dans la réalité, on préfère éviter le mélange et la production d’entropie qui
l’accompagnent; sans brassage, des couches de différentes températures apparaissent
dans le réservoir, un système passablement complexe à modéliser). De l’eau chaude

FIGURE IV.2 Haut: simple cap-
teur solaire thermique divisé en
deux corps uniformes: le col-
lecteur (absorbeur et liquide) et
le réservoir de stockage. Bas:
processus relatifs au collecteur
et au réservoir.

IS,conv

Réservoir

ΠS

Volume de
contrôle

ΠS
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IS,pertes

IS,èertesIS,rad

Flux

Flux

Volume de
contrôle
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entre en un point du réservoir et en émerge en un autre point à la température du liqui-
de brassé pour s’écouler vers le collecteur. Il y a production d’entropie due au mélange
d’eau chaude et froide ainsi qu’une déperdition de chaleur vers l’environnement. Les
consommateurs n’auront besoin d’eau chaude que pendant la journée, mais ce fait
n’est pas pris en compte dans le modèle dont le diagramme apparaît dans la
figure IV.3.

Mentionnons quelques-unes des relations constitutives les plus intéressantes relatives
aux processus qui apparaissent dans le diagramme de la figure IV.3. Le flux d’entropie
provenant du rayonnement solaire (ou plutôt la partie absorbée) est évalué comme
suit:

 

(IV.1)

(équations (11.28) et (11.29) du chapitre 11). TSoleil est la température superficielle du
Soleil, donc la température du rayonnement solaire. Acoll est l’aire de la surface du col-
lecteur,

 

E l’irradiance de cette surface et (τα) la fraction du rayonnement transmise à
travers le verre et absorbée par le collecteur.

Le taux de production d’entropie pour le collecteur consiste en deux termes relatifs à
l’absorption du rayonnement et au mélange du fluide entrant (le premier est la part la
plus importante (équations (11.42) et (11.110)):

 

(IV.2)

où c est la chaleur spécifique du liquide qui circule dans le système. L’irréversibilité
dans le réservoir, due au mélange (équation (11.118)) est calculée comme suit:

 

(IV.3)

Il reste à prendre en compte les deux flux convectifs d’entropie. Ils sont indépendants
et liés au flux provenant du collecteur et du réservoir respectivement (équations (11.71)
et (11.73)):

S coll S res

IS coll res

IS res coll

IS pertes res
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IS Soleil
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T res

T coll
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T Soleil
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FIGURE IV.3 Diagramme de dy-
namique des systèmes pour un
modèle simple d’un capteur so-
laire thermique. Il modélise les
relations énoncées dans le texte.
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(IV.4)

Nous devons nous assurer que le courant n’est enclenché que si la température du li-
quide dans le collecteur est plus élevée que celle dans le réservoir.

Le calcul des pertes d’entropie est standard (chapitre 11 et équations référencées ci-
dessus). Un certain nombre d’hypothèses ont été faites pour simplifier le modèle. La
plus importante est le modèle d’un collecteur uniforme (où tous les composants ont la
même température et que celle-ci ne varie pas dans le sens du courant), mélange com-
plet du liquide dans le réservoir, aucune perte venant des conduites, et aucune dissipa-
tion d’énergie provenant du pompage et de la production d’entropie due à la résistance
à l’écoulement. Si nous utilisons une fonction sinusoïdale simple pour l’irradiation
quotidienne

 

E(t) (la même pour chaque jour, ce qui peut se produire dans une période
de journées claires), et si nous choisissons une valeur constante pour le flux massique,
les températures du fluide dans le collecteur et dans le réservoir ont l’aspect donné par
la figure IV.4.

Ce genre de modèle peut être utilisé pour concevoir des systèmes de chauffage solaire.
En jouant avec les paramètres du système, on peut obtenir une certaine intuition pour
le dimensionnement adéquat du dispositif. De plus, si nous quantifions la production
d’entropie, nous avons les ressources pour minimiser l’irréversibilité, un sujet qui sera
abordé à la section IV.2.
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À la section 11.10, nous avons étudié les sources d’irréversibilité en évaluant la pro-
duction d’entropie dans un chauffage à écoulement ainsi que lors du mélange d’eau
chaude et froide. Un des objectifs que l’on cherche à atteindre lors de la conception de
nouvelles installations de chauffage est de minimiser la production d’entropie, car tou-
te production d’entropie diminue la puissance disponible. Nous allons aborder un
exemple qui démontre que nous pouvons atteindre un minimum d’irréversibilité lors
du fonctionnement d’un système alors même que des considérations énergétiques ne
prévoient pas un optimum.

Nous voulons déterminer si un capteur solaire refroidi à l’air doit être construit long
et étroit ou court et large. En termes pratiques, nous voulons savoir si nous devons con-
necter un certain nombre de capteurs en parallèle ou en série afin d’obtenir un effet
optimal1. Pour élaborer un modèle, nous allons considérer une conduite rectangulaire
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FIGURE IV.4 Résultats de la si-
mulation du modèle de la figure
IV.2. Les courbes correspon-
dent aux températures du col-
lecteur et de l’unité de stockage.
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mince et large à travers laquelle on pompe de l’air. La partie supérieure de la conduite
sert d’absorbeur du rayonnement solaire. La partie inférieure est parfaitement isolée.
Le collecteur fonctionnera de telle manière qu’il fournit de l’air à une température de
sortie imposée fixe pour une température d’entrée fixe donnée. Cela implique que nous
devons ajuster le flux massique d’air à travers le collecteur lorsque le rapport longueur
à largeur est modifié.

L’air sera traité en tant que gaz parfait ayant des chaleurs spécifiques constantes. Sauf
mention expresse, nous ne considérerons que des conditions stationnaires dans nos
modèles. Les modèles donneront une représentation spatialement homogène des sys-
tèmes. Cela signifie par exemple que la température de l’air dans le collecteur aura une
valeur unique correspondant à la température de sortie.

Dans les sections qui suivent, nous présenterons deux versions du même modèle. Le
premier adopte l’approche du design d’installations thermiques utilisées en
ingénierie: le design est formulé sur la base de considérations énergétiques et les ré-
sultats sont utilisés pour calculer le taux de production d’entropie global pour le sys-
tème entier. Le second aborde le problème de manière directe en exprimant les flux
d’entropie et les taux de production d’entropie pour chacun des processus irréversibles
pour trouver le minimum du taux total de production d’entropie. Ce modèle fournit un
exemple très intéressant d’une analyse basée sur la Seconde Loi, c’est-à-dire basée sur
l’entropie, et dans laquelle des considérations relatives à l’énergie ou à la puissance ne
permettent pas d’obtenir un résultat optimal.

 

IV.2.1 Bilan d’énergie

L’énoncé d’un bilan stationnaire de l’énergie pour l’absorbeur et l’air dans la conduite
demande de mettre en relation les températures et les flux d’énergie. Ces flux d’éner-
gie dans l’absorbeur et dans l’air apparaissent dans la figure IV.5.

En régime stationnaire, la somme des flux d’énergie par rapport à un système doit être
nulle. Dans le cas considéré, nous avons deux systèmes, l’absorbeur et l’air. Il y a trois
flux d’énergie relativement à l’absorbeur: le taux d’absorption d’énergie IE,abs, le flux
dû aux déperdition d’entropie IE,pertes, et le taux de transfert d’énergie à l’air IE,aa.
Pour ce système, le bilan d’énergie devient:

 

(IV.5)

1. La question a été abordée pour la première fois par OPPLIGER (1993). Nous allons présenter
une version simplifiée de son modèle.

IE,air in

Absorbeur

Air

IE,air outIE,pertes

IE,abs

IE,pompe

IE,aa

Tabs

Tair
Tamb

Environnement

CollecteurTair in

Tair

FIGURE IV.5 Un capteur solai-
re aérothermique est divisé en
deux systèmes séparés, l’absor-
beur et l’air. La figure montre
les flux d’énergie dans et entre
les deux systèmes.

0 = − −I I IE E E, , ,abs pertes aa
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Dans le cas de l’air, il prend la forme:

(IV.6)

Ici, IE,air in et IE,air out représentent les flux convectifs d’énergie transportés par l’air
entrant dans le collecteur et en émergeant. IE,pompe est égal à la puissance de la pompe
qui propulse l’air à travers la conduite du collecteur.

Lois constitutives pour les flux d’énergie. Nous avons besoin de lois constitutives
spécifiques pour pouvoir utiliser les bilans d’énergie des équations (IV.5) et (IV.6). Le
taux d’absorption d’énergie est communément exprimé en tant que fraction (τα) du
rayonnement solaire qui est le produit de l’irradiance E et de l’aire de la surface de
l’absorbeur:

(IV.7)

(τα) est le facteur de transmission-absorption de l’absorbeur, couverture de verre in-
cluse. Les pertes du collecteur vers l’environnement et le taux de transfert au fluide
dans la conduite sont exprimés en termes de différences de température et de conduc-
tance énergétique, qui est le produit du coefficient de transfert de chaleur et de l’aire
de la surface:

(IV.8)

(IV.9)

où

(IV.10)

Upertes et Uaa sont les coefficients de transfert dus aux pertes et au transfert vers le flui-
de. Dans notre modèle, ce dernier est une fonction qui croît linéairement avec le mo-
dule de la vitesse v. Pour obtenir la température de sortie souhaitée avec une
température d’entrée fixe, il faut augmenter la vitesse du fluide si la longueur du col-
lecteur augmente. Le fait que l’efficacité du transfert de chaleur augmente conjointe-
ment avec la vitesse de l’écoulement jouera un rôle important dans l’interprétation des
résultats.

L’équation (IV.6) mentionne le flux convectif net dû au transfert d’énergie par le flui-
de. En vertu de l’équation (11.111), pour un gaz parfait, il est:

(IV.11)

cp and Im sont respectivement la chaleur spécifique à température constant et le flux
massique de l’air. Il reste à calculer la puissance de pompage. Elle est déterminée à
partir d’un modèle de flux turbulent à travers la conduite rectangulaire. Ce modèle pré-
dit une diminution de la pression en fonction de la vitesse du fluide. Nous pouvons cal-
culer la puissance de pompage à partir de la diminution de pression ∆P et du flux
massique Im:

(IV.12)

0 = + − +I I I IE E E E, , , ,aa air in air out pompe

 I AE ,abs = ( )τα E

I AU T TE ,pertes pertes abs amb= −( )
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ρ est la masse volumique de l’air obtenue à partir de l’équation du gaz parfait. La puis-
sance de pompage augmente fortement lorsque le collecteur est rendu plus long et plus
étroit.

Les équations présentées jusqu’ici suffisent pour calculer les températures et les flux
d’énergie. Le flux convectif d’énergie total IE,conv = IE,air out – IE,air in et le gain net
IE,conv – IE,pompe sont particulièrement intéressants. Du point de vue de l’énergie, le
gain net nous indique combien d’énergie est fournie par le système. Sachant que nous
devons pomper plus fortement si le collecteur devient plus long et plus étroit, nous
pouvons nous attendre à une augmentation de l’énergie nette transportée par l’air
émergeant du collecteur si sa longueur augmente, ce que montre la courbe des cou-
rants d’énergie de la figure IV.6. Il n’y a pas d’indication de l’existence d’une valeur
optimale de la longueur du collecteur sur la base de considérations énergétiques.

IV.2.2 Bilans d’entropie

Un design optimal repose sur la condition de réversibilité minimale, c’est-à-dire de
production d’entropie minimale. Parfois, une production d’entropie minimale et des
valeurs énergétiques optimales peuvent coïncider, ce qui n’est pas le cas dans notre
exemple. Ce qui rend encore plus importante une analyse basée sur la Seconde Loi.

L’équation de bilan d’entropie est utilisée pour calculer le taux de production d’entro-
pie d’un système. En régime stationnaire, tous les flux d’entropie IS et le taux de pro-
duction d’entropie ΠS dans le système (fig. IV.7) doivent avoir une somme nulle:

(IV.13)

Si nous introduisons les lois constitutives respectives dans cette équation, nous obte-
nons, selon ce que nous avons établi au chapitre 11:

(IV.14)

R est la constante du gaz parfait et M sa masse molaire. Le premier terme représente
le flux d’entropie apporté par le rayonnement solaire (équation (11.41)), le deuxième
est le courant convectif d’entropie net transporté par l’air (équation (11.112)), et le
troisième est égal au courant d’entropie vers l’environnement. Le taux de production
d’entropie peut maintenant être calculé pour les processus stationnaires qui si dérou-
lent dans le collecteur (fig. IV.7). Le résultat démontre qu’il existe une condition pour
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FIGURE IV.6 Flux convectif
total d’énergie (ligne trai-
tillée), gain énergétique (ligne
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tion d’entropie (ligne conti-
nue) du système en fonction de
la longueur du collecteur. Les
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un design optimal: le taux de production d’entropie passe par un minimum pour une
certaine longueur du collecteur, comme le montre la figure IV.6.

IV.2.3 Modèle revisité

Nous adoptons maintenant une approche directe pour modéliser le collecteur. Pour le
faire, nous devons considérer tous les processus qui se déroulent et déterminer les
transferts d’entropie et les irréversibilités. Les processus impliqués sont: (1) l’absorp-
tion du rayonnement, (2) les pertes d’entropie vers l’environnement dues à la convec-
tion et au rayonnement, (3) le transfert d’entropie de l’absorbeur vers le fluide, (4) le
transfert convectif d’entropie et le mélange et (5) le frottement dans l’écoulement. La
figure IV.8 fait apparaître ces cinq sources de production d’entropie.

En régime stationnaire, les équations de bilan d’entropie pour l’absorbeur et l’air dans
la conduite prennent la forme:

(IV.15)

(IV.16)

Dans l’équation (IV.16), IS,conv est relatif au courant convectif d’entropie. Les flux qui
apparaissent dans les équations de bilan sont donnés par les relations constitutives qui
suivent. Selon l’équation (11.41), l’entropie transportée par le rayonnement solaire
est:
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FIGURE IV.7 Le système utili-
sé pour procéder à l’analyse se-
lon la Seconde Loi inclut le
collecteur et une partie de l’en-
vironnement, ce qui assure que
toutes les contributions à l’ori-
gine de production d’entropie
font partie du système.
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FIGURE IV.8 Transferts et
production d’entropie dans le
modèle d’un capteur solaire
aérothermique. Il y a cinq pro-
cessus, tous irréversibles.
Quatre sont associés avec des
transferts d’entropie et au
brassage, le cinquième est dû
au frottement dans l’écoule-
ment.
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(IV.17)

Le courant d’entropie qui va de l’absorbeur chaud vers l’air plus froid est déterminé
par le courant d’énergie associé et par la température de l’absorbeur:

(IV.18)

Les mêmes considérations permettent de calculer le flux d’entropie vers
l’environnement:

(IV.19)

Nous utilisons les équations (11.71) et (11.74) pour calculer l’expression pour le flux
convectif d’entropie:

(IV.20)

Finalement, nous déterminons les cinq taux de production d’entropie et leur somme.
Ces taux ont été calculés au chapitre 11, ce sont entre autres les équations (11.42),
(11.39) et (11.112):

 (IV.21)

 (IV.22)

(IV.23)

 (IV.24)

(IV.25)

Le taux de production d’entropie total est la somme de ces cinq termes:

(IV.26)

Les grandeurs énergétiques relatives peuvent être calculées sur la base des grandeurs
entropiques et des températures. Les résultats du modèle sont ceux qui ont déjà été
présentés dans la figure IV.6: il existe un minimum de la production d’entropie pour
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un certain rapport de la longueur à la largeur du collecteur. Alors que l’apport d’éner-
gie augmente de plus en plus avec l’augmentation de la longueur du collecteur, les
considérations relatives à l’irréversibilité révèlent l’existence d’un design optimal.

Ce comportement peut être compris simplement. La valeur basse du courant d’énergie
pour de petites longueurs est due à des pertes thermiques élevées ; sa croissance
continue avec l’augmentation de la longueur est la conséquence de l’accroissement du
coefficient de transfert de la chaleur entre l’absorbeur et le fluide. Si on allonge le col-
lecteur, le flux d’air doit être augmenté pour maintenir la température de consigne à la
sortie. Même si la performance thermique s’améliore avec l’augmentation de la lon-
gueur, de longs collecteurs (c’est-à-dire des collecteurs disposés en série) sont, à la
base, chauffés par la pompe plutôt que par le Soleil. L’analyse de l’irréversibilité nous
apprend qu’une telle stratégie ne doit pas être poursuivie.

IV.3 STOCKAGE DE CHALEUR LATENTE

Les changements de phase jouent un rôle important dans la nature et dans les machi-
nes. Une mise en œuvre simple de ce phénomène est réalisée dans les systèmes de
stockage de chaleur (entropie) latente qui sont destinés à avoir un rôle de support dans
les systèmes de chauffage et refroidissement. Le stockage de la chaleur et du froid peut
améliorer considérablement le fonctionnement et l’efficacité de tels systèmes. L’ex-
pression «stockage de froid» signifie préparer un espace froid, un espace plus froid
que l’environnement, qui est en mesure d’absorber de l’entropie.

L’eau est le support préféré pour le stockage et le transport de l’entropie dans les
applications domestiques et industrielles. La quantité d’entropie qui peut être stockée
par unité de masse et unité de température est donnée par la capacité entropique spé-
cifique. Imaginons avoir besoin d’entropie à des températures entre – 10°C et + 10°C.
Si H2O était liquide dans cette fourchette, la quantité d’entropie qui pourrait être stoc-
kée dans un kilogramme de la substance serait approximativement de 300 Ct
(section 5.5). Comme il y a un changement de phase dans cette plage de température,
l’entropie absorbée par 1 kg d’eau entre – 10°C et + 10°C est augmentée de l’entropie
latente, à savoir 1200 Ct. Ainsi, grâce à l’inclusion de la transition de phase, l’eau
serait cinq fois plus efficace en tant que matériau de stockage d’entropie dans la four-
chette de température envisagée.

C’est l’idée qui est mise en pratique dans les systèmes de stockage de la chaleur qui
font usage de matériaux à changement de phase (MCP) qui passent par fusion et soli-
dification2. Un MCP doit répondre à une certain nombre de critères pour convenir à ce
type d’application. Tout d’abord, la plage de température doit être adéquate (pour de
l’eau chaude à usage domestique, nous désirons une température de fusion entre 50°C
et 60°C). Afin que l’entropie puisse entrer dans le système ou en émerger suffisam-
ment rapidement, la conductivité du matériau doit être aussi élevée que possible, et ce
matériau doit conserver ses propriétés pour un grand nombre de cycles de fusion et
solidification. Finalement, on souhaiterait que l’entropie latente et la capacité entropi-
que soient suffisamment élevées afin que les dimensions de l’élément de stockage res-
tent raisonnables.

Modèle dynamique pour un petit système expérimental. Nous allons élaborer un
modèle dynamique pour expliquer le phénomène observé lorsque de la paraffine

2. De tels systèmes sont étudiés et élaborés dans l’ingénierie de l’énergie renouvelable; voir
DUFFIE and BECKMAN (1991), sections 8.8 and 13.7.
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liquide dans des tubes de cuivre plongés dans de l’eau chaude refroidit dans l’environ-
nement. Une expérience démontre l’effet de la solidification de la cire (fig. IV.9).

L’idée pour ce modèle est assez simple. Nous avons deux corps, la cire et l’eau, que
nous traitons comme des systèmes spatialement homogènes. Cela est aisément réalisé
dans le cas de l’eau par un brassage, ce qui n’est pas possible pour la cire liquide. En
enfermant le MCP dans un grand nombre de tubes de cuivre à parois fines entourés
d’eau, nous pouvons nous approcher de l’idéal de conditions homogènes. Comme la
quantité de cuivre est faible et vu que sa température suivra celle de la cire et de l’eau,
cet élément ne sera pas pris en compte dans le modèle. Comme l’eau se refroidit, sa
température tombe en dessous de celle de la cire qui perdra de l’entropie au profit de
l’eau. Si on laisse de côté le changement de phase, le modèle est celui que nous avons
rencontré à la section 5.7. Il est semblable à celui de la figure 5.46 pour deux corps, la
cire et l’eau, en contact thermique, avec un écoulement supplémentaire d’entropie
pour le second élément de stockage, l’eau. Si nous négligeons la production d’entropie
due au transfert de la cire à l’eau, la partie centrale du modèle a la structure apparais-
sant dans la figure IV.10a.

Les équations de bilan d’entropie pour la cire et l’eau sont déterminées par les proces-
sus qui se déroulent:

(IV.27)
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Nous admettons que la cire se refroidit de manière réversible pendant que l’eau reçoit
de l’entropie provenant de la cire et en perd vers l’environnement. De l’entropie est
produite dans l’eau à cause du brassage mécanique. La figure IV.10a présente le dia-
gramme de système du modèle proposé.

Les lois constitutives pour les grandeurs liées aux flux et taux de production apparais-
sant dans les équations (IV.27) sont connues: Elles ont été établies au chapitre 5. Ce
sont:

(IV.28)

Pour calculer la température de l’eau, nous utilisons la relation (5.32) entre la tempé-
rature et l’entropie spécifique valables pour des matériaux ayant des chaleurs spécifi-
ques constantes. Cette approche simple ne convient pas pour la température de la cire
à cause du changement de phase, ce qui nous amène à la nouveauté dans ce modèle du
refroidissement de la cire. Plutôt que d’énoncer trois expressions analytiques pour la
relation température–entropie pour la paraffine liquide, en phase de solidification et
solide, nous créons un diagramme température–entropie spécifique pour ce matériau
(fig. IV.10b) et l’insérons dans le diagramme de dynamique des systèmes. Il suffit de
calculer l’entropie spécifique de la cire, s = S/mcire, à partir de l’entropie stockée dans
le MCP. Avec cette valeur, nous pouvons lire la température dans le diagramme Ts.

Comme nous l’avons vu lors de l’étude du changement de phase à la section 10.7, le
modèle est complété par l’équation de bilan de la cire liquide et par la loi constitutive
pour le taux de destruction du matériau:

(IV.29)

(IV.30)

où lfus,cire est l’entropie latente de fusion spécifique de la cire. Il faut naturellement
s’assurer de n’appliquer l’équation (IV.30) que durant la période où la température de
solidification a été atteinte, et seulement aussi longtemps qu’il reste de la paraffine li-
quide.

Comme le démontre la figure IV.11, le modèle fonctionne assez bien si nous rendons
la conductance entropique GS,cire-eau pour le transfert d’entropie de la cire à l’eau
dépendante de l’état de la paraffine dans les tubes. Nous choisissons de lui attribuer
une valeur élevée pour la paraffine liquide et une valeur basse pour sa forme solide.
Nous admettons que la transition se fait de manière linéaire, proportionnellement à la
masse de cire liquide restante durant la phase de solidification. La température de
fusion–solidification a été placée à 52°C dans le modèle, en accord avec la valeur
moyenne des données pour différentes types de paraffine. Notez l’apparition d’un seg-
ment horizontal dans la courbe de température de la cire dans le résultat de la simula-
tion du modèle.

En fait, la cire est une substance relativement complexe qui ne fond ou ne se soli-
difie pas à une température bien définie. C’est un matériau composé de différentes
sortes de paraffine, ce qui signifie que les composantes fondent ou se solidifient à
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des températures légèrement différentes. Pour cette raison, la fonction qui présente
un plateau à 52°C dans la figure IV.11 ne représente pas très bien la température
réelle de la cire. Il aurait été compliqué d’inclure cet effet dans un modèle simple.
Le résultat basé sur des hypothèses simplificatrices est encourageant, et ce modèle
peut servir de base pour élaborer des prototypes.
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Jusqu’à maintenant, les équations de bilan et les équations relatives à des processus,
par exemple celles qui expriment les flux, les taux de source et les taux de production
ont été énoncés dans leur forme intégrale, ce qui signifie qu’elles s’appliquaient à l’en-
tier du système considéré. Même des exemples simples, tels que celui du flux de cha-
leur dans une barre métallique (section 5.1.5, fig. 5.7) ou la migration de la chaleur
dans un cylindre métallique (section 5.7.2) montrent que les systèmes sont rarement
uniformes. Les grandeurs considérées sont distribuées dans l’espace. Il est donc né-
cessaire de passer d’une description intégrale à une description locale des processus,
ce que réalise la physique des milieux continus. Les équations qui décrivent la distri-
bution locale des grandeurs physiques sont appelées les équations de champ de ces
grandeurs. Alors que, dans les chapitres précédents, nous devions connaître les condi-
tions initiales pour décrire l’évolution temporelle des processus, nous devrons y ajou-
ter les conditions aux limites du domaine considéré pour pouvoir décrire l’évolution
locale des grandeurs participant au processus.

Dans ce qui va suivre, nous élaborerons les rudiments de cette théorie sans prétention
de rigueur mathématique. Même si nous appliquerons, pour des raisons de simplicité,
les résultats trouvés à des cas unidimensionnels, les équations des champs des gran-
deurs extensives telles que masse, quantité de mouvement, entropie, et des potentiels
associés, seront implicitement contenues dans les relations utilisées.

Nous savons que les équations de bilan fondamentales de grandeurs extensives, même
en forme locale, ne suffisent pas pour élaborer des modèles de processus continus. Il
faut leur adjoindre les lois constitutives qui sont liées aux caractéristiques matérielles
des processus envisagés. Après avoir établi les équations de bilan des grandeurs fon-
damentales en version locale, nous étudierons la conduction de la chaleur et celle de
l’électricité pour illustrer l’application de la théorie.
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Pour illustrer le passage de systèmes homogènes à des systèmes continus et pour in-
troduire quelques notions mathématiques simples, nous allons examiner une version
simplifiée de la migration des sauterelles.

Nous admettons que les sauterelles vivent dans une couche très mince sur le sol, ce qui
constitue un domaine à une dimension (fig. 12.1). Même s’il ne s’agit pas d’un espace
tridimensionnel, nous appelons volume l’aire d’une région à l’intérieur de cette cou-
che, et surface les limites de ce domaine. À l’intérieur de cette couche, le nombre de
sauterelles varie localement, mais leur nombre est suffisamment grand pour que nous
puissions admettre que la masse des insectes est distribuée de manière continue, mais
variable, dans l’espace.

Les insectes qui volent ne font plus partie de leur espace, mais de l’air au-dessus de
leur domaine que nous considérons comme un «hyperespace» qui leur permet de dis-
paraître en un point et de réapparaître en un autre sans se mouvoir dans le domaine;
cela correspond à notre description des processus radiatifs. Dans le domaine lui-même,
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les insectes peuvent se déplacer dans n’importe quelle direction, et ils peuvent être em-
portés par un courant d’eau s’il y a une rivière dans une partie de leur espace. Ces deux
processus correspondent à ce que l’on appelle respectivement la conduction et la
convection en physique. À côté de ces processus de transport, les insectes peuvent naî-
tre et mourir. Tous ces processus pris ensemble sont à l’origine des variations du nom-
bre d’insectes dans le domaine considéré, ce que l’on formule au moyen de l’équation
de bilan des sauterelles.

 

12.1.1 Densités des sauterelles et des grandeurs liées aux processus

Comme les grandeurs considérées varient d’un point à un autre, leurs valeurs seront
exprimées au moyen de fonctions qui varient dans le temps et dans l’espace.

 

Densité des sauterelles. Comme nous avons admis que le nombre de sauterelles ne
variait que dans une seule dimension, leur répartition dans l’espace sera décrite par
une densité désignée par ρS(x,t). Le nombre de sauterelles contenu dans un élément de
l’espace tel que celui de la figure 12.1 sera donné par:

 

(12.1)

A est l’aire (côté) de l’élément qui s’étend de x1 à x2 et

 

V est son volume bidimension-
nel.

 

Transports conductifs. Les insectes franchissent la surface de l’élément en x1et x2
(fig. 12.2). Un tel transport est décrit au moyen de courants conductifs. Comme le
nombre d’insectes franchissant la frontière de l’élément varie le long de cette frontière
(perpendiculairement à la direction des x), le processus est décrit au moyen d’une den-
sité de courant

 

 jS définie sur la ligne de largeur A. Comme les insectes ne franchissent
pas nécessairement la frontière perpendiculairement à celle-ci, la composante en di-
rection des x s’obtient en formant le produit scalaire du vecteur de densité de courant
et du vecteur unitaire normal à la surface et l’intensité du courant net de sauterelles à
travers une surface

 

S s’obtient en intégrant cette composante sur cette surface; pour la
surface en x1 nous avons:

 

(12.2)
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FIGURE 12.1 Sauterelles dans
une couche unidimensionnelle à
l’intérieur de laquelle il n’y a
aucune variation perpendiculai-
rement à la direction selon x. Les
insectes peuvent se mouvoir
dans la direction x aussi bien
dans le sens positif que dans le
sens négatif. Ils peuvent entrer
dans leur domaine à partir de la
couche d’air qui le surmonte ou
quitter leur domaine pour rejoin-
dre cet «hyperespace». Une par-
tie du domaine (élément) a été
singularisée pour pouvoir for-
muler les équations de bilan des
sauterelles. Les nuances de gris
indiquent la densité des sauterel-
les, , les flèches symbolisent les
processus. A est la largeur du do-
maine perpendiculairement à x,
et x1 et x2 dénotent les extrémi-
tés du segment choisi pour l’ana-
lyse.
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La pratique mathématique standard oriente le vecteur unitaire normal vers l’extérieur
de la surface. Comme nous comptons positivement un flux entrant et négativement un
flux émergent, nous devons faire précéder l’intégrale d’un signe négatif. Dans notre
cas extrêmement simplifié, les intensités des courants sont égales à jSxA en x1 et à –
jSxA en x2 (fig. 12.2b). Le courant conductif net est la somme des deux contributions:

 

(12.3)

 

Naissance et mort. Le processus de naissance et mort a de grandes similitudes avec
les réactions chimiques qui amènent à l’apparition ou à la disparition de substances,
ce que nous avons décrit à la section 6.3.4 au moyen de l’équation (6.19). Nous intro-
duisons un taux de production de sauterelles ΠS(t) mais, comme le processus peut va-
rier spatialement à l’intérieur du volume

 

V considéré, nous devons avoir recours à une
densité de taux de production πS. Le taux de production sur ce volume s’obtient par
intégration:

 

(12.4)

 

12.1.2 Une première équation de bilan des sauterelles

Nous sommes maintenant en mesure d’énoncer une version partielle de l’équation de
bilan pour l’élément considéré. Le nombre de sauterelles dans l’élément varie à cause
de la migration au sol (conduction) et de naissance et mort (production), ce qui donne
l’équation de bilan suivante:

 

(12.5)

où nS, IS,net et ΠS sont donnés respectivement par les équations (12.1), (12.3) et (12.4).
Deux de ces termes sont des intégrales de volume, mais le second, relatif au courant,
est une intégrale de surface. Il est toutefois possible de transformer une telle intégrale
de surface en une intégrale de volume. Dans le cas unidimensionnel que nous traitons,
le courant net est proportionnel à la différence des densités de courant aux extrémités
de l’élément. Cette différence peut être obtenue en tant qu’intégrale dans la direction
des x du taux de variation spatiale de jx(x):

ou

 

(12.6)

La dérivée partielle de la densité de courant qui apparaît sous l’intégrale est la premiè-
re composante d’un vecteur que l’on appelle la divergence du vecteur de densité de
courant. Cette notion sera précisée à la section 12.2.4.

Nous substituons les équations (12.1), (12.4) et (12.6) dans (12.5):
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Comme l’élément considéré est fixe, nous pouvons transformer la dérivée temporelle
de l’intégrale du membre de gauche en:

Il s’ensuit que:

ou

L’intégrale ne peut être nulle pour n’importe quelle valeur de x et t que si l’expression
contenue dans les crochets s’annule, ce qui entraîne:

 

(12.7)

Nous avons obtenu la forme locale de l’équation de bilan des sauterelles. Il s’agit
d’une équation aux dérivées partielles pour la densité, la densité de flux et la densité
du taux de production.

 

12.1.3 Quelques lois constitutives simples

Nous savons que la seule équation de bilan ne permet pas de modéliser le comporte-
ment dynamique d’un système, qu’il est nécessaire d’associer des lois constitutives ou
lois de comportement qui décrivent les spécificités du système considéré. Nous propo-
sons deux relations les plus simples possible pour le taux de production et la densité
de flux.

 

Mort des sauterelles. Nous admettons que durant la période qui nous intéresse, il n’y
a aucune naissance de sauterelles, uniquement des décès. L’une des idées les plus sim-
ples est d’admettre que le nombre de décès est proportionnel au nombre d’insectes vi-
vants dans les système, ce qui s’énonce par:

 

(12.8)

où fd est un facteur qui décrit à quelle vitesse la population décroît, de manière analo-
gue au processus de désintégration radioactive modélisée à la section 6.8.4.

 

Mouvement des insectes. On observe en biologie des comportements semblables à
ceux qu’on trouve en physique et en chimie. Nous admettons que les sauterelles ont
tendance à migrer vers les régions où leur densité est moindre, ce qui peut être décrit
simplement du point de vue mathématique. En effet, la pente de la courbe d’évolution
de la densité des sauterelles est proportionnelle à l’intensité du flux d’insectes d’une
région vers l’autre (fig. 12.3). La grandeur qui mesure cette pente est le gradient de la
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FIGURE 12.3 La pente de la
courbe d’évolution de la densité
des sauterelles détermine l’in-
tensité du flux de diffusion des
insectes.
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densité. Nous admettons que le courant conductif de sauterelles est proportionnel à ce
gradient:

(12.9)

Le facteur k est une sorte de conductivité ou de coefficient de diffusion semblable à
ceux qui apparaissent à la section 6.7 traitant de la diffusion et de l’osmose. Le signe
négatif assure que le courant est dirigé vers les régions de densité moindre. Malgré le
fait que le gradient ressemble à la divergence unidimensionnelle de l’équation (12.7),
les deux grandeurs sont des objets mathématiques différents: la divergence opère sur
des vecteurs, le gradient sur des grandeurs scalaires.

Équation de champ pour la densité. La substitution des lois constitutives dans
l’équation de bilan aboutit à une équation aux dérivées partielles pour la densité:

(12.10)

En physique des milieux continus, une telle équation est appelée une équation de
champ. Pour pouvoir résoudre une telle équation différentielle, il est nécessaire de
connaître les conditions initiales et les conditions aux limites. La condition initiale
pourrait par exemple spécifier la distribution de la densité au temps initial. Dans le cas
simple considéré ici, il faut connaître les conditions aux limite du domaine, à savoir
pour x = 0 et x = L. On pourrait par exemple spécifier la valeur de la densité aux deux
extrémités du domaine, ou celle des flux , voire un mélange des deux.

12.1.4 Processus radiatifs et convectifs

Pour conclure cet exemple introductif, nous allons décrire comment nous pouvons
traiter les deux autres types de processus, à savoir le rayonnement et la convection des
sauterelles. Le premier sera assimilé au vol des sauterelles, le second peut être envisa-
gé comme ce qui advient si les sauterelles sont emportées par une rivière ou le vent.

Processus radiatif. Lorsqu’un insecte s’envole vers l’«hyperespace», il disparaît du
domaine, alors qu’il y apparaît s’il s’y pose. Ce processus est très semblable à celui du
rayonnement que nous avons décrit au moyen du taux de source Σ au chapitre 11. Le
passage au cas continu consiste à introduire une densité de taux de source σ. Le taux
de source des sauterelles dans l’élément de la figure 12.1 est donné par l’intégrale de
volume de la densité du taux de source:

(12.11)

La différence entre cette équation et l’équation (12.4) relative au taux de production
réside dans le fait que dans le cas du rayonnement, les insectes arrivent d’un espace
différent, alors que dans la production, ils surgissent dans le domaine à partir de rien.

Transport par convection. La différence entre un flux conductif et un flux par con-
vection est que ce dernier fait intervenir la vitesse v d’écoulement du courant qui en-
traîne les sauterelles. Si nous admettons que la densité des sauterelles dans ce courant
est égale à ρS,conv, nous pouvons utiliser les idées développées à la section 11.6.1
(fig. 11.27 et l’équation (11.65)). Dans notre cas unidimensionnel, le courant convec-
tif est donné par IS,conv, = AρS,convv. La densité de flux convectif jS,cond est égale à:
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(12.12)

La vitesse d’écoulement pourrait être obtenue à partir d’un modèle de l’écoulement du
fluide. Il est fréquent qu’un modèle dans lequel apparaissent des processus convectifs
soit un modèle couplé qui fait intervenir les caractéristiques de la grandeur transportée
et du fluide transporteur.

Forme générale de l’équation de bilan des sauterelles. Nous ajoutons les termes
liés au processus de rayonnement et de convection à notre équation de bilan provisoire.
La forme intégrée de l’équation de bilan complète est:

(12.13)

Nous appliquons la même procédure que celle qui a amené l’équation (12.7) pour
obtenir:

(12.14)

soit la forme locale la plus générale de l’équation de bilan des sauterelles.

Dans les sections suivantes, nous allons formaliser et généraliser les notions que cet
exemple nous a permis d’introduire en les appliquant à quelques-unes des grandeurs
qui sont apparues dans les chapitres précédents, à savoir la masse, l’entropie et la
quantité de mouvement.

12.2 DENSITÉS ET DENSITÉS DE FLUX

Au chapitre 11, dans le cadre de l’étude des phénomènes de transport, nous avons
énoncé le bilan d’entropie d’un corps au moyen de l’équation (11.9):

(12.15)

Cette relation, qui exprime le fait que l’entropie d’un corps peut changer en consé-
quence de trois types de transport, la convection, la conduction et le rayonnement, ain-
si que des effets de l’irréversibilité, fait apparaître sous forme intégrale le taux de
variation de la grandeur extensive et des flux, taux de source et taux de production res-
ponsables de cette variation.

Pour adapter ces relations à un système non uniforme, les équations de bilan et les lois
constitutives doivent être formulés localement. Cette forme locale fait intervenir les
densités des grandeurs impliquées.

12.2.1 Densités de grandeurs extensives

La densité ρQ d’une grandeur extensive Q indique de quelle manière elle est distribuée
dans l’espace. Si la densité est constante, la quantité contenue dans un volume donné
est égale au produit de la densité et du volume. En revanche, si la densité est variable
(fig. 12.4), on obtient la valeur de la quantité contenue dans un volume V par intégra-
tion de la densité sur le volume:

 jS,conv S,conv= ρ v
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FIGURE 12.4 La densité d’une
grandeur nous informe sur sa
distribution dans l’espace. Si
cette densité est variable locale-
ment, nous devons intégrer la
distribution sur le volume occu-
pé pour obtenir la quantité de
cette grandeur contenue dans le
système.
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Appliquons cette relation aux diverses grandeurs extensives rencontrées dans les cha-
pitres précédents.

Entropie. L’entropie d’un système est donnée par:

(12.19)

où s est l’entropie spécifique que nous avons introduite par la relation (5.25).

Quantité de mouvement. Pour un mouvement dans une seule dimension, nous
obtenons:

(12.20)

La vitesse v de la matière en mouvement représente sa quantité de mouvement spéci-
fique. Vu que la quantité de mouvement est une grandeur vectorielle, nous devons gé-
néraliser l’équation (12.20) sous forme vectorielle:

(12.21)

Dans un repère cartésien, les composantes sont:

(12.22)

Lorsque l’on travaille avec les composantes cartésiennes de la quantité de mouvement,
on peut les considérer comme trois grandeurs scalaires indépendantes les unes des
autres que l’on peut traiter comme la masse ou l’entropie.

Si ρ représente la masse volumique d’une grandeur Q, et q = Q/m sa den-
sité spécifique, alors la densité volumique ρQ de cette grandeur est expri-
mée par:

(12.16)

Il s’ensuit que la quantité de la grandeur Q contenue dans un volume V est
donnée par:

(12.17)

ou

(12.18)
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12.2.2 Densités de flux

La densité jQ du flux d’une grandeur extensive Q sert à mesurer la distribution du cou-
rant à travers une surface S, tout comme la densité de cette grandeur décrit sa distribu-
tion dans l’espace. Un flux a une intensité, une direction et un sens, il s’agit donc d’un
vecteur. Pour pouvoir attribuer un signe à la densité de flux, il est nécessaire d’orienter
la surface qu’il traverse au moyen d’un vecteur n, de norme égale à l’unité, normal à
cette surface. Lorsque la surface S est fermée, le vecteur normal définit l’orientation
positive de la surface lorsqu’il pointe vers l’extérieur du corps qu’elle entoure
(fig. 12.5). Si la surface S est ouverte, le vecteur normal peut être choisi arbitrairement.

L’intensité du flux dépendra de sa densité et de l’orientation des lignes de courant par
rapport à la surface traversée. Comme cette orientation est variable, on découpe la sur-
face en éléments ∆A suffisamment petits pour que la densité de flux puisse être consi-
dérée comme constante sur cet élément (fig. 12.6). On se rend compte que l’intensité
est maximale lorsque les vecteurs n et jQ sont parallèles et nulle s’ils sont mutuelle-
ment perpendiculaires, c’est-à-dire si le flux est parallèle à la surface. L’intensité du
flux sera donc proportionnelle au produit scalaire des deux vecteurs et à l’aire de l’élé-
ment de surface.

Dans les chapitres précédents, nous avons attribué un signe positif à l’intensité des flux
entrant dans un domaine. Il s’ensuit que le lien entre l’intensité et la densité du flux
sera donné par:

(12.23)

L’équation (12.15) met en évidence la distinction entre les courants conductifs, qui
s’écoulent à travers la matière, et les courants convectifs qui s’écoulent avec la matiè-
re. L’intensité d’un courant convectif peut être exprimée en tant que produit du courant
de masse Im et de la valeur spécifique q de la grandeur transportée:

(12.24)

Le flux de masse est égal au produit de la densité du matériau et du flux volumique.
Cette dernière grandeur s’obtient par intégration sur la surface traversée de la densité
du flux volumique qui est égale à la vitesse d’écoulement. Pour alléger l’écriture, nous
remplaçons l’expression ndA par le vecteur dA. Ainsi:

(12.25)

FIGURE 12.5 Le vecteur normal n
définit l’orientation positive de la
surface entourant un corps lorsqu’il
pointe vers l’extérieur.
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Élément de
surfaceFIGURE 12.6 La répartition des li-

gnes de courant traversant une sur-
face détermine la densité de flux à
travers cette surface. La densité de
flux d’une grandeur scalaire est un
vecteur dont la direction est tan-
gente aux lignes de courant.
L’orientation de ce vecteur par rap-
port au vecteur n perpendiculaire à
cette surface doit être prise en
compte lors de l’évaluation du flux
à travers la surface.
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On déduit que la densité de flux volumique est égale à la vitesse de l’écoulement:

(12.26)

et que la densité de flux de masse de la grandeur Q est le produit de sa densité et de la
vitesse d’écoulement:

(12.27)

Il s’ensuit que la densité de flux convectif d’une grandeur Q est donnée par le produit
de sa valeur spécifique et de la densité de flux de masse:

(12.28)

Densité de flux massique. Il n’y a pas de flux conductif de masse, ce qui implique
que l’intensité du flux massique est donnée par l’équation (12.27):

(12.31)

Densité de flux d’entropie. Comme l’entropie est une grandeur scalaire, comme la
masse ou la charge électrique, il suffit de substituer sa valeur spécifique dans la relation
(12.29):

(12.32)

Densité de flux de quantité de mouvement. À la section 8.4, nous avons découvert
que le flux de quantité de mouvement en mode conductif entraîne l’apparition de con-
traintes au sein de la matière dans laquelle il s’écoule. La quantité de mouvement est
une grandeur vectorielle, ce qui implique que l’on doit rattacher à chacune de ses com-
posantes une densité de flux qui est aussi une grandeur vectorielle.

Pour simplifier l’élaboration de la relation exprimant la densité de flux de la quantité
de mouvement, nous ne considérons qu’une des composantes de la quantité de mou-
vement. Par exemple, pour la composante selon Ox, sa valeur spécifique est la compo-
sante correspondante de la vitesse. Nous avons donc:

(12.33)

Les trois composantes de ce vecteur de densité de flux sont:

 jV = v

 jm = ρv

 jQ q.conv = ρv

Si jQ,cond représente la densité du flux conductif, la densité de flux totale
sera

(12.29)

et l’intensité du flux total devient:

(12.30)

 j jQ Qq= +ρv , cond

   
I qQ Q= − +( )∫ ρv j dA, cond i

S

 jm = ρv

 j jS Ss= +ρv , cond

  j jpx x px= +ρv v , cond
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(12.34)

La signification des composantes est la suivante: jpxx représente la densité de flux de
la composante selon Ox de la quantité de mouvement s’écoulant dans la direction Ox,
alors que jpxy est la densité de flux de la même composante s’écoulant dans la direction
Oy.

Le traitement des deux autres composantes du vecteur de densité de flux se fait de ma-
nière analogue. On obtient ainsi neuf composantes de ce que l’on appelle le tenseur de
densité de flux de la quantité de mouvement. Les composantes du tenseur sont dispo-
sées dans une matrice dont chacune des lignes contient les trois composantes d’un des
vecteurs de densité de flux. Les composantes de l’équation (12.34) constituent la pre-
mière ligne du tenseur de densité de flux de la quantité de mouvement.

12.2.3 Densités de taux de source et de taux de production

À côté des flux conductif et convectif, l’équation de bilan de l’entropie (12.15) con-
tient également un terme de source et un terme de production, représentés par leurs
taux respectifs.

Le taux de source ΣQ indique à quel taux la grandeur extensive Q apparaît ou disparaît
à l’intérieur d’un corps ou d’un domaine. Dans le cas continu, ce taux peut varier lo-
calement, ce qui rend nécessaire l’introduction d’une densité locale que nous désigne-
rons par σQ.

Rappelons que seule l’entropie admet un taux de production strictement positif ou nul.

12.2.4 Transformation d’une intégrale de surface en intégrale de volume

Les équations de bilan qui apparaîtront à la section suivante mettent en relation la va-
riation d’une grandeur à l’intérieur d’un système et les flux de cette grandeur à travers
les surfaces qui englobent ce système. Pour obtenir la variation totale, nous serons
amenés à intégrer la densité de la grandeur sur le volume du système et celle des flux
sur les surfaces traversées. La conversion de l’intégrale de surface en une intégrale de
volume nous permettra d’établir la forme locale des équations de bilan.

Cette conversion d’intégrale, qui sera démontrée à la section 13.3.2 du prochain cha-
pitre, est applicable à tout champ vectoriel C. La variation locale de son intensité est
égale à la somme des variations de ses composantes, que l’on appelle sa divergence:
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Le lien entre le taux de source et sa densité est:

(12.35)

où fQ est le taux de source spécifique.

Pour le taux de production, on procède de manière analogue:

(12.36)
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(12.37)

En vertu du théorème de la divergence, ou théorème de GAUSS, le flux total du champ
C à travers la surface qui englobe le domaine envisagé est égal à l’intégrale de la
divergence de ce champ sur le volume du domaine:

(12.38)

12.3 BILANS EN NOTATION LOCALE

Lors du passage de systèmes uniformes à des systèmes qui ne le sont pas, les équations
de bilan telles que celle qui est énoncée par l’équation (12.15) doivent être formulées
de manière locale. Nous allons le faire pour les grandeurs extensives que nous avons
rencontrées jusqu’ici.

12.3.1 Bilan de masse

La première des grandeurs semblables à un fluide dont nous devons énoncer le bilan
serait la quantité de matière. Dans la pratique des sciences de l’ingénieur, il est usuel
d’utiliser plutôt la masse, tant qu’il n’y a pas de réactions chimiques à l’intérieur du
matériau considéré. Partant de la formulation intégrée de l’équation de bilan de la
masse:

(12.39)

nous remplaçons la masse par son intégrale sur un volume de contrôle V , tel que celui
de la figure 12.8 pour le cas unidimensionnel, et le flux par l’intégrale de sa densité sur
la surface S qui enferme le volume de contrôle, comme nous l’avons exprimé au
moyen de l’équation (12.23). Après substitution de la relation (12.27), nous obtenons:

(12.40)

Au moyen du théorème de la divergence, nous transformons l’intégrale sur la surface
du membre de droite de l’équation (12.40) en une intégrale sur le volume enfermé:

Après avoir appliqué la dérivée temporelle à l’intégrande du membre de gauche de la
relation (12.40) et rassemblé les termes, nous obtenons:

L’intégrale doit être nulle pour un volume arbitraire, ce qui n’est possible que si l’in-
tégrande de la dernière expression est nul. Nous obtenons finalement:

  
div C( ) =

∂
∂

+
∂
∂

+
∂
∂

C C C
x y z

x y z

   
CidA

S V

∫ ∫= ( )div C dV

 �m Im=

   

d

dt
dVρ ρ

V S
∫ ∫= − vidA

   
ρ ρv vidA

S V
∫ ∫= ( )div dV

  
∂
∂

+ ( ) = ∂
∂

+ ( )⎡
⎣⎢

⎤
⎦⎥

=ρ ρ ρ ρ
t

dV dV
t

dV
V V V

div divv v 0



594 PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE

CHAPITRE 12   EXTENSION AUX MILIEUX CONTINUS

12.3.2 Bilan d’entropie

L’entropie est une grandeur scalaire comme la masse, ce qui veut dire que la version
locale de l’équation de bilan sera semblable. Si nous ne prenons pas en compte l’ap-
port d’entropie par rayonnement, la forme intégrée de l’équation de bilan est:

(12.43)

Sa version locale devient:

(12.44)

Nous transformons l’intégrale de surface du deuxième terme du membre de gauche en
une intégrale de volume au moyen du théorème de la divergence et rassemblons tous
les termes:

(12.45)

L’intégrale doit être nulle, quel que soit le volume considéré, ce qui impose la nullité
de l’intégrande. La forme locale de l’équation de bilan de l’entropie, sans prise en
compte du rayonnement, devient:

(12.46)

12.3.3 Bilan de quantité de mouvement

Le bilan de quantité de mouvement peut être établi de manière analogue à celui des
grandeurs qui précèdent, à la différence près que la quantité de mouvement est une
grandeur vectorielle, ce qui implique que sa densité de flux conductif est un tenseur,
comme nous l’avons vu à la section 12.2.2. Cette particularité rend l’établissement de
l’équation de bilan dans sa forme la plus générale extrêmement complexe. Toutefois,
on rencontre couramment des flux unidimensionnels de quantité de mouvement, et
nous allons nous baser sur une telle situation pour établir une version de l’équation de
bilan de la quantité de mouvement dans une seule dimension.

Bilan de masse:

(12.41

Cette équation de bilan de la masse est usuellement appelée équation de
continuité. Explicitement:

(12.42
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Considérons un fluide non visqueux qui s’écoule dans une conduite verticale, de haut
en bas (fig. 12.7). L’écoulement transporte en mode convectif une composante unique
du flux de quantité de mouvement. La même composante de la quantité de mouvement
qui s’écoule à travers le fluide implique qu’il est soumis à des contraintes de tension
ou de compression dans la même direction. Nous complétons l’analyse par l’adjonc-
tion d’un taux de source qui prend en compte l’apport de quantité de mouvement par
l’intermédiaire du champ de pesanteur.

Nous rassemblons toutes ces contributions en une formulation intégrale de l’équation
de bilan de la quantité de mouvement:

(12.47)

où p représente (pour l’instant) la composante selon Oz de la quantité de mouvement.
Après introduction des densités de flux correspondantes, nous obtenons:

(12.48)

Nous appliquons le théorème de la divergence sur cette composante:

L’intégrande doit être nul, ce qui entraîne que la forme locale de l’équation de bilan
de la quantité de mouvement pour un écoulement strictement unidimensionnel est:

(12.49)

La généralisation à trois dimensions implique la prise en compte du caractère vectoriel
de la densité du flux de quantité de mouvement. Les trois composantes de l’équation
de bilan de la quantité de mouvement sont:

(12.50)

Chacune de ces trois équations a elle-même trois composantes. Ces neuf composantes
peuvent être rassemblées en une seule expression si l’on utilise le tenseur du flux de
quantité de mouvement dont il a été question à la section 12.2.2.

Dans le cas d’un flux unidimensionnel de l’équation (12.49), la densité de flux
conductif de quantité de mouvement correspond à l’état de compression du fluide, ce
qui implique:

(12.51)

Si le fluide est visqueux, un terme supplémentaire apparaît dans la densité de flux con-
ductif.

+ z

Σ p

Ip,cond

Ip,conv

v

FIGURE 12.7 Écoulement à travers
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de quantité de mouvement due à
l’interaction du fluide avec le
champ de pesanteur.
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Le terme de source est la conséquence de l’interaction avec le champ de pesanteur. La
densité de source est donc:

(12.52)

ce qui implique que le taux de source spécifique fQ introduit dans l’équation (12.35)
correspond à l’intensité g du champ de pesanteur. L’influence de champs différents de
celui de pesanteur peut être prise en compte de manière analogue.

12.3.4 Dérivée matérielle ou particulaire

Dans la forme locale des bilans, les dérivées qui apparaissent dans les équations sont
des dérivées partielles, ce qui veut dire que, par exemple, la dérivée par rapport au
temps est effectuée à une position fixe. Cette manière d’énoncer les équations de bilan
de grandeurs extensives est appelée description eulérienne.

Une autre manière de présenter les équations de bilan consiste à envisager un volume
de contrôle fermé qui se déplace avec le courant. Considérons par exemple une des
composantes de l’équation du bilan d’entropie (12.46) et évaluons les dérivées tempo-
relles des produits:

ou

La composante correspondante de l’équation du bilan de masse (12.41) implique que
le contenu de la seconde paire de crochets est nul. Dans cette nouvelle version de
l’équation de bilan d’entropie:

(12.53)

les flux convectifs ont disparu. On introduit généralement un nouvel opérateur
différentiel:

(12.54)

que l’on appelle dérivée matérielle ou dérivée particulaire. L’équation (12.53) peut
être réécrite:

(12.55)

Dans cette version de l’équation du bilan, appelée description lagrangienne, le taux
de variation dans le temps de la grandeur s correspond à celui que mesurerait un
observateur emporté par le fluide, alors que dans la description eulérienne, l’observa-
teur est à un endroit fixe.
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12.4 LIEN AVEC L’ÉNERGIE

Comme l’énergie participe à tous les processus, il est carrément impossible de présen-
ter une version universelle de son équation de bilan. Nous ne considérerons donc que
le lien avec les trois grandeurs dont il est question dans les sections précédentes, ce qui
revient à traiter le cas d’un fluide caloporteur.

12.4.1 Densité d’énergie et densité de flux d’énergie

Nous considérons un fluide qui s’écoule à travers un volume de contrôle unidimen-
sionnel comme celui de la figure 12.8. De l’énergie est transportée à travers les faces
du volume par la masse, l’entropie et la quantité de mouvement et peut également y
être stockée. Comme l’énergie ne peut pas être produite, nous devons établir les rela-
tions correspondant à la densité d’énergie dans le fluide, densité des flux d’énergie à
travers la surface et densité de sources d’énergie due à des apports par rayonnement.

Densité d’énergie d’un fluide. Un fluide contient une certaine quantité d’énergie qui
dépend de son état déterminé par les valeurs de la température, de la pression et de sa
vitesse. Il est usuel d’écrire la densité d’énergie du fluide en tant que somme de deux
termes, la densité d’énergie interne et la densité d’énergie cinétique due à son mouve-
ment. Si nous utilisons les valeurs spécifiques, nous avons:

(12.56)

Dans cette expression, e représente l’énergie spécifique, alors que u correspond à
l’énergie interne spécifique ou partie intrinsèque de e. Le second terme est l’énergie
cinétique spécifique. L’énergie d’un fluide en mouvement peut donc être écrite en tant
que:

(12.57)

Densité de courant d’énergie. Dans un premier temps, nous allons étudier les apports
d’énergie en mode convectif et en mode conductif:

(12.58)

Ces grandeurs sont des vecteurs dans le cas général. L’apport par convection est dû à
l’énergie stockée par le fluide qui franchit les limites du système. La densité de flux
d’énergie est le produit du flux massique et de l’énergie spécifique du fluide:

(12.59)

Pour l’apport d’énergie par conduction, nous nous limitons aux contributions thermi-
ques par chauffage ou refroidissement, ou mécanique par échange conductif de quan-
tité de mouvement:

(12.60)

Le premier terme sera explicité suivant le processus considéré. Le second terme est lié
au flux conductif de quantité de mouvement et à la vitesse du fluide lors du franchis-
sement des limites du système:

+ x

Volume de contrôle

FIGURE 12.8 Flux unidimension-
nel à travers un volume de contrôle
ouvert et stationnaire.
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(12.61)

Rappelons qu’en trois dimensions les deux facteurs du produit sont des vecteurs et
qu’il s’agit alors d’un produit scalaire. Nous rassemblons les contributions des proces-
sus pris en compte pour obtenir:

(12.62)

Sources d’énergie. L’apport direct d’énergie à l’intérieur d’un corps ou d’un volume
de contrôle est dû à l’interaction avec les champs. Nous le prenons en compte en
introduisant une densité de source d’énergie telle que:

(12.63)

L’introduction de l’interaction gravitationnelle et de l’absorption de rayonnement dans
la densité de source d’énergie entraîne:

(12.64)

où fp = g est le taux de source spécifique de quantité de mouvement (la force volumi-
que spécifique) et r le taux d’absorption spécifique d’énergie apportée par le rayonne-
ment.

12.4.2 Bilan d’énergie

La version intégrée

(12.65)

peut être exprimée localement au moyen des densités de flux et de taux de source:

(12.66)

Le théorème de la divergence permet de transformer l’intégrale de surface en une
intégrale de volume. Après avoir rassemblé tous les termes dans l’intégrale de volume,
qui doit être nulle, nous obtenons:

Tout ou partie des équations de bilan de masse, d’entropie, de quantité de mouvement
et d’énergie va servir de base à la description d’écoulement de fluides ou de contraintes
dans les solides.
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EXEMPLE 12.1. Accumulation d’énergie dans un lit de galets (pebble bed).

Un lit de galets (pebble bed) consiste en un ensemble de pierres, billes, etc. enfermées dans un
conteneur. Un gaz caloporteur traverse le système, soit pour y amener la chaleur (et l’énergie)
pour permettre son accumulation, soit pour l’en extraire afin de la transporter où elle est utilisée.

Déterminez, pour le cas unidimensionnel, les équations différentielles pour la température de
l’air insufflé et celle des galets en fonction du temps et de la position axiale. Admettez un
conteneur de longueur L et de section A (fig. 12.9). Désignez par e la partie vide (inoccupée par
les galets) du volume du conteneur, et par A* l’aire de la surface des galets. Par mesure de sim-
plification, admettez qu’il n’y a pas de déperdition de chaleur vers l’environnement, que la tem-
pérature des galets est uniforme et que l’on peut négliger la contribution cinétique dans le bilan
d’énergie.

SOLUTION: Pour l’air, nous devons d’abord formuler les équations de bilan. Vu que le proces-
sus se déroule dans une seule dimension, l’équation de bilan de la masse (12.41) est:

(E.1)

Dans l’équation de bilan de la quantité de mouvement, la densité de flux de quantité de mouve-
ment en mode conductif est la pression P, ce qui implique que cette équation devient:

Mais tous les termes de cette équation de bilan sont nuls, vu que nous admettons que la vitesse
et la pression ne varient pas.

La densité de taux de source de l’énergie tient compte du fait que nous modélisons les effets du
transfert d’entropie et d’énergie de l’air aux galets en tant que source (ou puits) à l’intérieur du
volume. L’équation de bilan de l’énergie privée du terme de l’énergie cinétique devient:

En vertu de l’équation de bilan de la masse (E.1), la somme des deuxième et troisième termes
est nulle, ce qui entraîne:

(E.2)

Sachant que le processus se déroule à pression constante, nous introduisons l’enthalpie spécifi-
que

dans l’équation de bilan de l’énergie (E.2):

Autant la pression que la vitesse sont constantes, ce qui implique que le bilan d’énergie se réduit
à:

A

L

FIGURE 12.9 Dimensions du lit de
galets.
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σE est le taux de transfert d’énergie de l’air aux galets par unité de volume d’air. Désignons par
h’ le coefficient de transfert de chaleur. σE devient alors:

où h* est le produit du coefficient de transfert de chaleur entre l’air et les galets et de l’aire des
galets par unité de volume. Avec l’enthalpie spécifique:

nous obtenons:

Nous introduisons le flux massique d’air à travers le système Im = eAvρ. L’évolution de la tem-
pérature de l’air est donnée par:

Si nous avions admis que la température des galets varie localement, nous devrions recourir à
une version étendue de l’équation (12.96) avec prise en compte du taux de source d’énergie.
Comme nous admettons que la température des galets est spatialement uniforme, il s’agit ici
d’un processus de chauffage uniforme modélisé par les versions locales des équations de la
section 10.4.2

Ici, σE doit être calculé par rapport au volume des galets:

L’évolution de la température des galets est donnée par:

Les lits de galets sont utilisés dans les réacteurs nucléaires modulaires à lit de boulets dont le
principe est illustré dans la figure 12.10. Le matériau fissile est enfermé dans des microbilles
d’environ un millimètre de diamètre enrobées de plusieurs couches de graphite. Le graphite sert
de modérateur. Les microbilles sont compressées pour former une sphère de la taille d’une balle
de tennis enrobée d’une nouvelle couche de graphite. La chaleur produite est recueillie par un
gaz semi-inerte tel que l’hélium et amenée vers l’échangeur de chaleur qui chauffe l’eau afin de
produire la vapeur qui entraîne la turbine. Le principe de base consiste en l’intégration continue
des sphères de combustible par le haut du réacteur et à leur retrait par le bas pour contrôle et
éventuelle réinsertion.

La sécurité est augmentée par rapport aux réacteurs traditionnels, vu que le caloporteur est un
gaz rare ni nocif, ni inflammable, ni explosif. D’autre part, les températures de sortie élevées
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(750°C) permettent une efficacité augmentée. En revanche, la puissance globale est réduite, la
taille des réacteurs ne permet pas de dépasser une puissance d’environ 100 MW.

B

12.5 CONDUCTION THERMIQUE

À côté des flux convectifs de grandeurs extensives, les flux conductifs de ces grandeurs
jouent un rôle important dans la nature et dans les processus techniques. Ainsi, la cha-
leur migre à travers la croûte terrestre à la fois par convection mais également par con-
duction. Dans toutes les applications techniques, l’énergie électrique est transportée
majoritairement en mode conductif.

Dans ce qui va suivre, nous allons traiter de la conduction de l’entropie dans une di-
mension puis, dans la section suivante, nous traiterons du couplage entre deux proces-
sus en l’illustrant par l’étude de processus thermoélectriques.

12.5.1 Bilan stationnaire de conduction d’entropie dans 
un corps continu

Nous envisageons le flux dans une dimension d’entropie en mode conductif, par exem-
ple le flux d’entropie dans une barre métallique (fig. 12.11), comme celui qui a été trai-
té précédemment (chapitre 5, section 5.1.5, fig. 5.7). Dans un premier temps, nous
considérons la conduction de l’entropie en régime stationnaire sans apport d’entropie
(la bougie est éteinte). Cela implique que, dans l’équation (12.15), le taux de variation
de l’entropie, les flux convectifs et le taux de source s’annulent, ce qui nous laisse:

(12.68)

Vu qu’il n’y a pas de flux convectif, nous avons représenté le flux conductif par IS pour
alléger l’écriture.Comme il s’agit d’un flux unidimensionnel, la densité du courant
conductif d’entropie se réduit à sa composante selon Ox que nous désignerons par jS.
Selon l’équation (12.2), le flux total à travers la surface fermée du volume de contrôle
sera donné par:

(12.69)

De manière analogue, nous évaluons le taux de production d’entropie due à la conduc-
tion d’entropie dans le système au moyen de la densité du taux de génération d’entro-
pie πS que nous intégrons sur le volume, vu que la production d’entropie est un
processus volumique:

(12.70)

Nous transformons l’intégrale de surface (12.69) en une intégrale de volume, comme
nous l’avons fait à la section 12.2.4:

ce qui nous permet d’écrire:
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FIGURE 12.11 Courant dans une
dimension à travers un corps dans
une direction parallèle à l’axe du
corps: lien entre les flux d’entropie
et la densité de courant d’entropie.
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(12.71)

L’intégrale ne peut être toujours nulle que si l’intégrande l’est aussi, ce qui entraîne:

(12.72)

C’est la version locale de l’équation du bilan d’entropie pour un flux conductif station-
naire d’entropie dans une dimension. Cette relation est valable en tous les points du
système. Elle exprime le fait que le taux de variation spatial du flux d’une grandeur
non conservée dépend du taux auquel cette grandeur est produite en chaque point.

12.5.2 Bilan stationnaire pour la conduction et l’apport d’entropie

L’apport d’entropie, par exemple par l’intermédiaire de la bougie qui chauffe la barre
métallique de la section 5.1.5, fig. 5.7, est représenté par le taux de source ΣS, et
l’équation intégrée, dans le cas stationnaire, a pour forme:

(12.73)

En procédant de la même manière qu’à la section précédente, nous obtenons:

(12.74)

où σS représente la densité du taux de source d’entropie.

12.5.3 Bilan dynamique de conduction d’entropie

Lors d’un processus de transport d’entropie stationnaire, le système évacue par l’in-
termédiaire des flux émergents l’entropie qui lui a été apportée par les flux entrants, la
production et les apports tels que le rayonnement. En revanche, les propriétés physi-
ques du système, décrites par exemple par la capacité entropique et l’entropie latente,
peuvent être à l’origine de variation du contenu d’entropie du système. Dans ce cas,
l’équation de bilan contient le taux de variation de l’entropie, ce qui rend le processus
dynamique:

(12.75)

Le contenu en entropie du système sera représenté par la densité entropique ρS et son
taux de variation sera donné par:

Comme nous considérons la conduction à travers des corps stationnaires, le volume
considéré n’évolue pas dans le temps, ce qui nous permet de placer la dérivation tem-
porelle sous l’intégrale:
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(12.76)

En remplaçant les termes du membre de droite de l’équation (12.75) par l’intégrale de
leurs densités correspondantes et en procédant de le même manière que dans les sec-
tions précédentes, nous obtenons:

L’intégrale ne peut être toujours nulle que si l’intégrande est nul, ce qui implique:

(12.77)

Nous avons obtenu la version locale de l’équation du bilan d’entropie dynamique pour
le processus de conduction avec apport d’entropie. Il s’agit d’une équation différen-
tielle partielle, vu qu’elle porte sur la variable temps et la variable spatiale x. Le pre-
mier terme représente le stockage d’entropie, le deuxième la conduction d’entropie,
alors que les termes du membre de droite représentent respectivement la production et
l’apport d’entropie.

1. Quelles grandeurs introduit-on pour décrire (a) la distribution de
l’entropie à l’intérieur d’un corps ; (b) la distribution d’un courant
d’entropie à travers une surface; (c) la distribution d’un taux de produc-
tion d’entropie à l’intérieur d’un corps?

2. L’orientation de la surface d’un corps est censée être comptée positive-
ment vers l’extérieur. Comment doit-on procéder pour s’assurer que le
courant d’entropie soit compté positivement pour un courant qui pénè-
tre dans le corps?

3. Pourquoi, dans le cas de conduction d’entropie stationnaire dans une seule dimension, la
divergence de la densité du courant d’entropie n’est-elle pas nulle?

4. Qu’est-ce qui distingue les taux de source d’entropie des taux de production d’entropie?

1. (a) La densité d’entropie ρS; (b) la densité de courant d’entropie jS (un
vecteur); (c) la densité de taux de production d’entropie πS.

2. Il faut introduire un signe négatif dans l’intégrale de surface, comme
dans l’équation (12.69).

3. À cause de la production d’entropie inhérente à la conduction.

4. Un taux de source représente un apport d’entropie qui vient d’ailleurs,
par exemple du rayonnement.

12.5.4 Relations constitutives pour la conduction dans une dimension

Nous savons que l’entropie s’écoule d’endroits chauds vers des endroits froids, ce qui
implique que la température des corps qui sont le siège de cet écoulement varie d’un
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endroit à l’autre. L’objectif de cette section est d’obtenir la description du champ de
température.

Lorsqu’un corps conduit de l’entropie, il peut subir des changements de volume ou de
forme, et des parties peuvent se déplacer les unes par rapport aux autres. La descrip-
tion de tels processus est éminemment complexe, raison pour laquelle nous allons li-
miter notre étude au cas le plus simple, la conduction d’entropie à travers un corps sans
déformation, c’est-à-dire à l’étude de la conduction pure. De ce fait, la seule variable
indépendante à côté du temps sera la température qui variera dans le temps et dans
l’espace.

Trois relations supplémentaires sont nécessaires pour compléter le modèle de la con-
duction thermique: une expression qui relie le flux d’entropie aux variations spatiales
de la température, une deuxième qui exprime la relation entre la température et la
densité d’entropie et la loi de conservation de l’énergie appliquée aux processus
thermiques.

Loi de FOURIER de la conduction d’entropie. À la section 11.2.1, nous avons
déjà établi quels sont les facteurs qui déterminent les flux conductifs d’entropie, ce que
nous avons exprimé au moyen de l’équation (11.14) que nous reprenons ici:

(12.78)

où kS est la conductivité entropique. Si l’on imagine le champ de température, c’est-à-
dire sa répartition spatiale, la loi de FOURIER exprime le fait que l’intensité du flux
d’entropie est liée à la variation locale de la température, variation que l’on appelle le
gradient de température.

Le lien entre le flux d’entropie et le flux d’énergie associé, que nous avons énoncé à la
section 11.2.2, est:

(12.79)

où jE représente la densité de courant d’énergie. Si nous introduisons une conductivité
énergétique (conductivité thermique) définie par:

(12.80)

la loi de FOURIER peut être formulée en termes de courant d’énergie thermique:

(12.81)

Les valeurs de la conductivité énergétique apparaissent dans le tableau 11.1 pour un
certain nombre de substances.

Équation de bilan de l’énergie lors de la conduction thermique. Si nous ne tenons
compte que de la conduction d’entropie, il ne reste qu’un terme dans l’équation de bi-
lan des flux d’énergie:

(12.82)

Comme pour les autres grandeurs, cette équation de bilan globale peut être transfor-
mée pour être applicable au cas continu. Nous le faisons au moyen de la densité
d’énergie ρE et de la densité de flux conductif d’énergie thermique jE pour obtenir:
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(12.83)

Nous allons montrer comment cette équation de bilan local de l’énergie, couplée avec
le lien entre les flux d’entropie et d’énergie (12.79), va nous permettre de déterminer
la densité de production d’entropie (12.72).

Production d’entropie lors de la conduction thermique. Vu que la conduction d’en-
tropie est accompagnée d’une production d’entropie, nous avons besoin d’une expres-
sion pour le terme de production dans l’équation de bilan de l’entropie. Nous allons
résoudre le problème pour le cas stationnaire.

Nous sommes toujours dans le cas unidimensionnel, et nous combinons les équations
de bilan d’entropie et d’énergie. À partir de l’équation (12.79), nous obtenons:

(12.84)

En vertu du bilan stationnaire d’énergie, cette expression s’annule, ce qui implique:

(12.85)

La comparaison avec l’équation (12.72) montre que la densité du taux de production
d’entropie lors de la conduction prend la forme:

(12.86)

Donnons une interprétation imagée de ce résultat. D’où vient l’énergie nécessaire pour
la production d’entropie lors de la conduction thermique? Nous nous servons de
l’image hydraulique que nous avons utilisée à la section 5.8 lors de l’étude des machi-
nes thermiques, celle de l’entropie qui tombe d’un niveau élevé vers un niveau bas.
Lors de cette chute, l’entropie libère de l’énergie pour entraîner un autre processus.
Dans le cas de la conduction pure, aucun processus mécanique, électrique ou d’autre
nature n’est entraîné.

Lors de la conduction d’entropie, l’énergie libérée entraîne un processus thermique.
En quelque sorte, l’entropie qui s’écoule à travers le corps a été «enrichie» d’une
quantité supplémentaire d’entropie. Nous pouvons comparer la conduction thermique
à d’autres processus qui ont la même propriété fondamentale. Le courant de charge
électrique à travers une résistance, l’écoulement d’un gaz tel que la détente de l’air,
ou encore le flux de quantité de mouvement entre deux corps qui frottent l’un contre
l’autre sont des exemples d’une classe de processus au cours desquels une partie de
l’énergie libérée entraîne la production d’entropie. Comme nous avons l’habitude de
dire que les frottements produisent de la chaleur, il est possible d’interpréter la pro-
duction de chaleur lors de la conduction comme une sorte de «frottement thermique».
Comme dans les autres cas, le taux de production d’entropie est donné par le quotient
du taux auquel l’énergie est dissipée et de la température à laquelle le processus a
lieu: le terme jS dT/dx dans l’équation (12.86) est la densité du taux de dissipation
d’énergie.

Équation du champ de température. Nous savons que, dans un corps qui conduit
l’entropie, la température change d’un point à l’autre et dans le temps si nous consi-
dérons un processus non stationnaire. Nous allons développer l’équation du champ de
température dans le cas stationnaire. Elle résulte de la combinaison de l’équation de
bilan de l’entropie et de la loi constitutive liée à la conduction, la loi de FOURIER.
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Nous l’énonçons en utilisant le coefficient de conductivité énergétique kE:

(12.87)

Évaluons la dérivée spatiale de cette équation:

qui, selon l’équation de bilan de l’entropie (12.72), correspond à la densité du taux de
production d’entropie. Après remplacement dans l’équation (12.86) de la densité de
flux par la loi de FOURIER, cette grandeur devient:

La comparaison avec l’équation de bilan de l’entropie donne:

ce qui est équivalent à:

(12.88)

Nous avons obtenu l’équation du champ de température dans le cas de la conduction
thermique stationnaire.

Apport d’énergie et d’entropie. Dans le cas de conduction stationnaire avec apport
d’entropie, l’équation de bilan de l’énergie prend une forme simple. En l’absence de
sources d’énergie, le taux de variation spatiale de la densité de flux d’énergie est nul,
vu que l’énergie est une grandeur conservée. En revanche, dans le cas considéré, nous
avons des sources d’énergie, ce qui nous amène à l’équation de bilan de l’énergie
suivante:

(12.89)

Nous savons qu’un apport d’entropie à un corps à une température particulière doit
être accompagné d’un apport d’énergie correspondant. Dans les chapitres 5 et 11, nous
avons découvert que la relation fondamentale de GIBBS stipule que, dans un corps
homogène, l’énergie croît à un taux qui est égal à T multiplié par le taux d’accroisse-
ment de l’entropie. Nous en déduisons que le lien entre la densité du taux de source
d’entropie et celui d’énergie est:

(12.90)
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Équation du champ de température avec apport d’entropie. Nous pouvons mon-
trer que l’équation (12.90) est correcte en établissant l’équation du champ de tempé-
rature à partir de l’équation de bilan de l’entropie avec apport (12.74), combinée avec
la loi de FOURIER et l’équation (12.86), ce qui donne:

(12.91)

Nous en déduisons l’équation du champ de température en présence de sources
d’entropie:

(12.92)

La même équation de champ, dérivée à partir de l’équation de bilan de l’énergie,
devient:

(12.93)

Elle ne peut être équivalente à l’équation (12.92) que si la relation entre les sources
d’entropie et les sources d’énergie est donnée par l’équation (12.90).

1. Si l’on considère l’équation de bilan (12.77), combien de relations
constitutives faut-il énoncer, et lesquelles, pour compléter le modèle de
conduction dépendante du temps?

2. Pourquoi y a-t-il un signe négatif dans la loi de FOURIER (12.78) pour
la conduction? Peut-on comparer cette expression à la loi d’OHM pour
la conduction de la charge électrique? Quelle est la formule multidi-
mensionnelle de la loi de FOURIER?

3. Le taux de production d’entropie de l’équation (12.86) est-il toujours non négatif?

4. Quelle condition la conductivité énergétique kE doit-elle vérifier pour que le gradient de
température soit constant dans un processus de conduction unidimensionnelle, en régime
stationnaire et sans apport?

1. Quatre, à savoir (a) pour la densité d’entropie; (b) pour la densité de
courant d’entropie ; (c) pour la densité du taux de production
d’entropie; (d) pour la densité du taux de source d’entropie.

2. L’entropie s’écoule dans le sens de la température décroissante. Oui, la
conductivité entropique est remplacée par la conductivité électrique. La
forme multidimensionnelle: jS = – grad(T) fait intervenir le vecteur de
densité de flux d’entropie et le gradient multidimensionnel de la tempé-
rature.

3. Oui, il suffit d’introduire la loi de FOURIER pour le vérifier.

4. kE doit être constant, ce qui implique que la conductivité entropique kS dépend de la tempé-
rature.
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EXEMPLE 12.2. Gradient de température dans une barre métallique.

(a) En admettant que la conductivité énergétique kE est indépendante de la température, déter-
miner la répartition de la température dans une longue barre. Les valeurs de la température aux
faces supérieure et inférieure de la barre sont respectivement Ts et Ti. (b) Que devient la solution
si la conductivité entropique kS est constante?

SOLUTION: (a) Si la conductivité énergétique est constante, l’équation de champ (12.88)
implique que le gradient de température est constant et que:

ce qui veut dire que la température est une fonction linéaire de la position dans la barre:

où L est la longueur de la barre et x est mesuré à partir de la face chaude.

(b) Si la conductivité entropique ne dépend pas de la température, la conductivité énergétique
est proportionnelle à la température:

Dans ce cas, l’équation du champ de température implique que le produit de la température et
du gradient de température est constant:

L’intégration de cette équation différentielle donne:

Les conditions aux limites sont les même que dans le premier cas.

B

EXEMPLE 12.3. Équation du champ de température pour une symétrie sphérique.

Déterminer l’équation du champ de température dans le cas de conduction stationnaire pour un
écoulement à symétrie sphérique, puis la température en fonction du rayon pour une coque
sphérique pour une conductivité énergétique kE indépendante de la température.

SOLUTION: Comme dans l’exemple précédent, nous utilisons le bilan d’entropie. Pour des
conditions stationnaires, l’équation de bilan pour une coque sphérique devient:

Si nous insérons les valeurs de l’aire des surfaces sphériques et divisons le résultat par le volume
de la coque sphérique 4πr2∆r, nous obtenons:

En ne gardant que les termes linéaires en ∆r et ∆j, et après passage à la limite ∆r → 0, l’équation
différentielle pour le bilan en coordonnées sphériques devient:
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ou encore

Pour obtenir l’équation du champ de température, nous substituons la loi de FOURIER pour la
densité du flux d’énergie, ce qui donne:

Si kE est indépendant de la température, cette équation différentielle donne le résultat suivant.
La première intégration nous indique que le produit du carré de la variable radiale et du gradient
de température doit être une constante que nous désignons par –B. Il s’ensuit que la température
est inversement proportionnelle à la variable radiale r. La seconde intégration fournit une
seconde constante A, ce qui permet d’exprimer qu’à l’intérieur de la coque sphérique, la tempé-
rature évolue selon:

Les constantes A et B sont déterminées par les conditions aux limites.

B

EXEMPLE 12.4. Température dans une barre chauffée de manière interne.

Une barre de longueur L, dont la conductivité énergétique kE est constante, conduit la chaleur
uniquement dans la direction axiale. Elle est reliée à des réservoirs d’entropie dont les tempéra-
tures sont maintenues constantes aux valeurs T0 et TL aux extrémités respectives x = 0 et x = L.
Nous admettons que T0 ≥TL. La barre est chauffée de manière interne à un taux de source
d’énergie constant; cela pourrait être dû à une source radioactive, comme dans l’exemple pré-
cédent. (a) Déterminer la répartition de la température en fonction de la position en régime sta-
tionnaire. (b) Serait-il possible d’observer un minimum de la température de l’intervalle 0 ≤ x ≤
L? (c) Déterminer sous quelle condition la température peut diminuer de manière monotone de
T0 à TL. (d) Quelle est l’alternative?

SOLUTION: (a) Dans les conditions de la donnée, l’équation différentielle pour l’évolution
locale de la température est:

(E.5)

avec les conditions aux limites

La solution de l’équation (E.5) est une fonction quadratique, à savoir:

(E.6)
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On remarque facilement que, pour un taux de source nul, la solution est identique à celle que
nous avons donnée dans l’exemple 12.2, où la température est une fonction linéaire de la
position.

(b) Une fonction quadratique a un extremum. Dans le cas étudié, la dérivée seconde de la tem-
pérature par rapport à la position, c’est-à-dire – σE/kE, est négative, ce qui signifie que l’extre-
mum est un maximum, pas un minimum. On ne pourrait avoir un minimum que s’il y avait un
puits d’énergie dans la barre au lieu d’une source.

(c) Pour que la température puisse décroître de manière monotone à partir de la valeur à l’extré-
mité chaude, le maximum de la fonction quadratique ne doit pas être situé dans la plage de va-
leurs 0 ≤ x ≤ L. Nous trouvons la position du maximum en exigeant la nullité de la dérivée
première de l’équation (E.6), ce qui donne:

Comme T0 – TL est positif, la position du maximum ne peut pas être supérieur à x = L/2. Pour
que le maximum soit positionné en dehors du domaine occupé par la barre, la valeur de sa po-
sition doit donc être négative, ce qui entraîne:

Nous comprenons intuitivement que le taux de source ne doit pas être trop grand si l’on veut
que l’entropie soit encore transportée du réservoir chaud vers le réservoir froid.

(d) L’alternative est que le maximum de température soit situé dans l’intervalle 0 ≤ x ≤ L/2.
Dans ce cas, le gradient de température est nul ou positif à l’extrémité de la barre en contact
avec le réservoir chaud. L’entropie ne circulera plus du réservoir vers la barre, mais plutôt du
point de température maximale situé dans la barre vers les deux extrémités de la barre. Cela se
produit si:

c’est-à-dire si le taux de source d’énergie devient très grand. Lorsque les valeurs du taux de
source augmentent, le point du maximum de température se déplace vers le milieu de la
barre. Il est important de se souvenir que ces considérations ne sont valables qu’en régime
stationnaire.

B

EXEMPLE 12.5. Flux de chaleur à travers le manteau terrestre avec apport d’entropie.

Nous admettons que pratiquement toute l’entropie qui émerge de la surface de la Terre est pro-
duite par la désintégration radioactive dans le manteau. Calculez la température à la base du
manteau en admettant que toute l’entropie est transportée en mode conductif. La limite entre le
manteau et le noyau est située à une profondeur de 3400 km et le rayon de la Terre est égal à
6400 km. Admettez une conductivité énergétique constante égale à 1 W K–1 m–1. Le gradient
de température à la surface est de 0.06 K m–1. Admettez que la température de surface est de
0°C.

SOLUTION: Nous pouvons obtenir l’équation différentielle par la répartition de la température
dans une symétrie sphérique en procédant comme nous l’avons fait dans l’exemple 12.3. Com-
me nous admettons l’existence de sources d’entropie, l’équation de bilan de l’énergie devient:
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Après insertion de la loi de FOURIER, nous obtenons l’équation du champ de température:

si la conductivité énergétique est constante. Il est possible de simplifier cette équation grâce à
une transformation de variables:

ce qui donne:

La solution particulière de cette équation est proportionnelle à la troisième puissance du rayon
alors que la solution homogène est une fonction linéaire. La solution complète est donc:

La prise en compte des conditions aux limites:

donne pour la répartition radiale de la température le résultat suivant:

Il manque la valeur de la densité de production d’énergie due à la désintégration radioactive. Ce
taux correspond au flux d’énergie à travers la surface de la Terre, ce que l’on peut calculer à
partir du gradient de température et de la conductivité. Si nous divisons cette grandeur par le
volume de la croûte, nous obtenons:

Avec les valeurs numériques, la fonction de répartition de la température devient:

Si nous substituons la valeur du rayon à la limite entre le noyau et le manteau, nous obtenons
une température de 120 000 K. C’est une valeur qui est beaucoup trop élevée qui empêcherait
le manteau de rester solide. Nous avons fait des hypothèses fortement simplifiées au sujet de la
conductivité et de la distribution des sources d’entropie. D’autre part, il est hautement improba-
ble que l’entropie puisse être transportée à travers le manteau terrestre uniquement par conduc-
tion. En fait, il existe un mécanisme bien plus efficace, la convection.
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12.6 CONDUCTION DÉPENDANTE DU TEMPS

Nous avons déjà établi l’équation de bilan de l’entropie pour une conduction dépen-
dant du temps au moyen de l’équation (12.77), de laquelle nous supprimons le terme
d’apport d’entropie. Nous avons besoin de trois lois constitutives pour pouvoir résou-
dre cette équation, à savoir la densité, la densité de flux et la densité du taux de pro-
duction d’entropie. Nous avons déjà énoncé les deux dernières lors de l’étude des
processus stationnaires. La loi de FOURIER (12.78) détermine la densité de flux alors
que la densité du taux de production d’entropie est donnée par l’équation (12.86). Il
nous reste à développer une relation entre entropie et température pour le cas continu.

12.6.1 Relation capacitive

Nous limitons notre étude à un conducteur rigide. Le stockage d’entropie est décrit au
moyen de la capacité entropie K du corps rigide dans la loi de capacité exprimée dans
l’équation (5.27), à la section 5.5.4. Nous devons simplement transformer la définition
originale de la capacité entropique. Pour un corps uniforme, nous le faisons de la ma-
nière suivante:

(12.94)

Nous obtenons la densité de capacité entropique en multipliant la capacité entropique
spécifique ks par la masse volumique:

(12.95)

Ces grandeurs peuvent varier selon les conditions locales.

12.6.2 Équation du champ de température

Si nous substituons la loi de capacité (12.95), la loi de FOURIER (12.78) et la densité
du taux de production d’entropie dans l’équation de bilan (12.77), nous obtenons,
après quelques manipulations algébriques, l’équation du champ de température pour
une conduction dépendante du temps:

(12.96)

Nous avons utilisé les grandeurs relatives à l’énergie en lieu et place des grandeurs re-
latives à l’entropie. La grandeur c est le coefficient de température spécifique de l’éner-
gie (chaleur massique dans la thermodynamique traditionnelle).

Le résultat est une équation différentielle partielle pour la température en fonction du
temps et de la position. Il peut être très difficile, voire impossible d’obtenir une solu-
tion analytique. Dans les cas pratiques, on utilise fréquemment des méthodes numéri-
ques pour calculer la solution, qui dépend naturellement des conditions initiales et des
conditions aux limites. Les théories relatives à ces techniques vont largement au-delà
des objectifs de cet ouvrage. L’objectif de cette section était de montrer comment on
peut utiliser l’équation de bilan de l’entropie et les lois constitutives dans des situa-
tions relativement complexes.
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EXEMPLE 12.6. Pénétration de la chaleur dans les couches supérieures du sol.

Quel effet ont les variations périodiques de la température à la surface de la Terre? Jusqu’à quel-
le profondeur peut-on remarquer des variations journalières ou annuelles de température dont
l’amplitude est de 15°C?

SOLUTION: Nous avons besoin d’un modèle simple de la pénétration de la chaleur dans les
couches supérieures du sol. Nous admettons que le sol a une température constante (dans le
temps et dans l’espace) en l’absence de variation à la surface. Nous modélisons le sol en tant
que corps avec une surface plane, d’extension infinie vers le bas (fig. 12.12). Nous admettons
que le matériau a des propriétés physiques constantes. Ces hypothèses réduisent le problème à
celui du transport de chaleur par conduction dans une dimension, que nous pouvons décrire au
moyen de l’équation (12.96)

La deuxième version est valable pour une conductivité constante. Le facteur qui multiplie la dé-
rivée spatiale de la température est la diffusivité thermique α. Nous pouvons formuler l’équation
du champ de température comme suit:

avec

La condition à la surface du sol est donnée par:

Pour résoudre l’équation différentielle, nous admettons que la solution est séparable:

L’équation différentielle devient alors:

L’égalité des deux membres relatifs chacun à une seule variable ne peut être satisfaite que si
chaque membre est égal à une constante K, ce qui implique:

Nous avons maintenant deux équations différentielles ordinaires avec des solutions simples:
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FIGURE 12.12 Modèle de sol en
tant que corps avec une surface pla-
ne, d’extension infinie vers le bas.
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Finalement, la solution de l’équation différentielle partielle devient:

La condition à la surface du sol devient:

Il est indiqué de passer maintenant dans le domaine complexe. Chacune des parties réelle et
imaginaire d’une fonction complexe est solution de l’équation différentielle. Nous remplaçons
K = ω par K = iω, ce qui donne:

pour la partie réelle. Cette relation peut être transformée:

Il faut choisir le signe négatif pour éviter que la température augmente avec la profondeur.

Le graphique de la figure 12.13 montre la solution pour une variation périodique de la tempé-
rature de surface avec une période d’une année et une amplitude de 15°C. Les courbes corres-
pondent à différents moments de l’année indiqués en fraction d’année. On a admis une
diffusivité thermique du sol de 5.0·10–7 m2 s–1. On voit que la perturbation décroît vers quel-
ques degrés à une profondeur d’approximativement 5 m. Une variation journalière n’est perçue
qu’à une profondeur environ 20 fois moindre que pour les fluctuations annuelles.

Les changements climatiques s’étendent sur des périodes qui se comptent en millions d’années.
Dans un tel cas, les variations se répercuteraient jusqu’à des profondeurs de plusieurs kilomè-
tres. Les courbes sont semblables si la variable de profondeur est proportionnelle à la racine car-
rée de la période de fluctuation.
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12.7 THERMOÉLECTRICITÉ

Nous avons abordé les processus thermoélectriques d’un point de vue uniforme dans
l’interlude III. Nous voulons développer une description correspondante pour les sys-
tèmes continus. Cette section permettra entre autres de présenter une dérivation sim-
plifiée de la relation entre les coefficient SEEBECK et PELTIER.

12.7.1 Observations

Deux observations vont nous permettre d’élaborer une description formelle de l’effet
thermoélectrique. Tout d’abord, nous pouvons mesurer le gradient du potentiel élec-
trique qui apparaît aux bornes d’un appareil thermoélectrique soumis à un gradient de
température. En outre, si de l’électricité s’écoule à travers un tel appareil, un flux d’en-
tropie accompagne le courant électrique.

Coefficients thermoélectriques. Nous allons commencer par introduire le coefficient
SEEBECK ε et le coefficient PELTIER α. Le premier établit la relation entre le gradient
de température et le gradient du potentiel électrochimique µec en circuit ouvert:

(12.97)

grad est le symbole du gradient multidimensionnel introduit par la relation (9.77) à la
section 9.9.4. Cette relation exprime ce que nous apprend l’utilisation des thermocou-
ples. Une différence de température de 1 K provoque l’apparition d’une différence de
potentiel électrochimique de ε volts aux bornes de l’appareil.

µec est le potentiel électrochimique (des porteurs de charge dans le matériau) par char-
ge d’une mole de porteurs de charge, c’est-à-dire le quotient du potentiel électrochi-
mique µEC introduit par l’équation (6.83) et de la constante de FARADAY F. Si l’on
peut négliger l’influence de différences de concentration et de la dépendance de la
température de la partie chimique du potentiel, µec est égal au potentiel électrique me-
suré en volts. C’est le cas lorsque l’on utilise un voltmètre pour mesurer la tension sur
un dispositif thermoélectrique.

Le coefficient PELTIER α est le facteur qui détermine le couplage entre les courants de
charge et d’entropie1. On observe que, même en régime isotherme, de l’entropie est
transportée à travers un système de refroidissement thermoélectrique (module
PELTIER) si un courant électrique de densité jQ le traverse, ce que l’on peut exprimer
par:

(12.98)

j est le vecteur de densité de courant (d’entropie et de charge électrique respective-
ment). Cette équation exprime le fait qu’un courant électrique emporte α unités d’en-
tropie lorsqu’il n’y a pas de différence de température. Il faut noter que le courant
d’entropie de l’équation (12.98) est non dissipatif, contrairement à la conduction d’en-
tropie causée par un gradient de température.

1. Dans la présentation traditionnelle, basée sur l’énergie, c’est le produit Tα qui est appelé
coefficient PELTIER.

grad gradµ εec( ) = − ( )T

j jS Q= α
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12.7.2 Hypothèses

Les lois que nous allons utiliser pour modéliser un processus thermoélectrique sont,
d’une part, les bilans d’entropie et de charge électrique (ou du nombre de particules de
porteurs de charge) et le bilan d’énergie auquel nous aurons intégré l’expression pour
le courant total d’énergie en termes de flux d’entropie et de charge. Les lois constitu-
tives pour les courants de charge et d’entropie qui nous seront fournies par des expé-
riences seront traitées à la section 12.7.3.

Nous ne formulerons les équations que pour le cas unidimensionnel où les écoule-
ments ont lieu dans la direction axiale d’une barre de matériau conducteur. En outre,
nous n’envisagerons que le cas stationnaire.

Équations de bilan d’entropie et de charge. L’équation de bilan de l’entropie en ré-
gime stationnaire est:

(12.99)

et de celui de la charge électrique:

(12.100)

x représentant la seule variable indépendante. Les sources possibles d’entropie n’ont
pas été incluses.

Équation de bilan de l’énergie. L’équation de bilan de l’énergie en régime station-
naire est simple à formuler: la divergence de la densité du flux d’énergie total est nulle:

(12.101)

Le courant total d’énergie jE peut être décomposé en deux termes liés respectivement
à l’entropie et à la charge:

(12.102)

ce qui correspond à notre image de l’entropie et de la charge en tant que transporteurs
d’énergie.

12.7.3 Lois constitutives

Nous généralisons la relation (12.97) pour tenir compte du courant électrique qui cir-
cule dans le générateur thermoélectrique:

(12.103)

σ est la conductivité électrique du matériau. Si nous combinons les deux termes du
membre de droite, nous obtenons un potentiel thermo-électrochimique µtec = µec + εT
qui entraîne le courant électrique:

(12.104)
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La seconde relation constitutive est une généralisation de l’équation (12.98) pour tenir
compte d’un gradient de température:

(12.105)

où kS est la conductivité entropique du matériau. L’équation (12.105) suggère que le
courant d’entropie est constitué d’un terme non dissipatif et d’un terme dissipatif. Si
l’on substitue la relation (12.103) dans l’équation (12.105), on peut résumer les lois
constitutives par:

(12.106)

Il est usuel de représenter ces relations sous forme matricielle:

(12.107)

Les relations de réciprocité d’Onsager affirment que la matrice des coefficients est sy-
métrique, ce qui entraîne:

(12.108)

relation que nous allons démontrer de différentes manières dans les sections suivantes.

12.7.4 Production d’entropie

Nous substituons la relation (12.102) dans l’équation de bilan de l’énergie (12.101),
tout en prenant en compte les équations de bilan d’entropie et de charge:

ce qui entraîne:

(12.109)

Les termes du membre de droite représentent respectivement la puissance thermique
et la puissance électrique des processus. Comme ceux-ci ont des parties non dissipati-
ves, seule la somme des deux termes peut être égale à la densité du taux de production
d’entropie. Un seul terme, pris pour lui-même, ne représente pas une partie du taux de
production d’entropie. Si nous substituons les lois constitutives (12.103) et (12.105),
après quelques manipulations algébriques, nous voyons que:

(12.110)
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Le premier et le dernier termes sont les parties non dissipatives de la puissance respec-
tivement électrique et thermique. Comme ils ne contribuent pas à la production d’en-
tropie, leur somme s’annule dans l’équation (12.110). Ce n’est possible que si:

(12.111)

Le taux de production d’entropie devient:

(12.112)

Cela correspond à ce que nous savons au sujet de la dissipation due à la conduction
d’entropie et de charge électrique.

12.7.5 Puissance des processus thermoélectriques

Nous considérons maintenant le cas de la génération de puissance thermoélectrique.
Une différence de température permet à un courant d’entropie de s’établir, ce qui en-
traîne un processus électrique et deux processus dissipatifs. La densité de la puissance
du processus thermique ptherm est donnée par:

(12.113)

ce que nous pouvons exprimer au moyen des équations (12.103) et (12.105):

(12.114)

Interprétons les termes du membre de droite. Le troisième est le taux de dissipation dû
à la conduction thermique. Le premier est le taux de dissipation dû à la conduction de
la charge électrique, pour autant que α = ε. Si cette égalité est valable, le deuxième
terme représente la puissance non dissipative du processus électrique consistant à en-
traîner un courant électrique à travers le gradient de potentiel électrochimique. Ces
identifications nous permettent de conclure une nouvelle fois que les coefficients
SEEBECK et PELTIER doivent être égaux.

12.7.6 Potentiel thermoélectrique et transport thermoélectrique

Les résultats des deux sections précédentes s’appuient sur la distinction entre les par-
ties irréversibles et les parties non dissipatives de l’effet thermoélectrique. Résumons
le déroulement du processus

1. Les transports de charge et d’entropie sont couplés, comme l’exprime la relation
(12.98). Il en résulte une partie non dissipative du courant total d’entropie, la par-
tie dissipative étant due à la conduction:

(12.115)

2. C’est ce couplage, c’est-à-dire le transport non dissipatif d’entropie, qui est à
l’origine du gradient thermoélectrique:
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(12.116)

Dire que la deuxième affirmation est une conséquence de la première revient à dire que
l’énergie libérée par le transport non dissipatif d’entropie correspond à l’énergie ren-
due disponible pour le processus thermoélectrique:

(12.117)

Une fois encore, ce résultat implique l’égalité des coefficients de SEEBECK et de
PELTIER. Les étapes présentées ici peuvent être considérées comme une simple des-
cription de la thermoélectricité.

1. Quel genre d’expérience pourrait servir à justifier l’équation (12.98)?

2. Pourquoi doit-on utiliser le potentiel électrochimique plutôt que le
potentiel électrique pur lorsque l’on traite des phénomènes
électrochimiques?

3. Quel est la signification du potentiel thermo-électrochimique introduit
dans l’équation (12.104)?

4. Dans le commentaire relatif à l’équation (12.105), il est affirmé qu’il y a deux transports
différents d’entropie. Que représentent ces transports?

5. Si nous considérons le refroidissement thermoélectrique, quelle sont les origines du trans-
port d’entropie dans un module PELTIER? Quelle condition doit être réalisée pour que le
refroidissement puisse avoir lieu?

6. En quel sens l’équation (12.112) est-elle évidente?

7. Pourquoi le premier et le quatrième termes du membre de droite de l’équation (12.110)
représentent-ils des processus non dissipatifs? Pourquoi cela signifie-t-il qu’ils ne contri-
buent pas à la production d’entropie?

1. Placer un élément PELTIER en tant que séparation entre deux volumes
d’eau à la même température et mesurer le taux de variation des tempé-
ratures en fonction de l’intensité du courant IQ.

2. Parce que les charges électriques circulent à travers différents maté-
riaux.

3. Il ajoute au potentiel électrochimique le prise en compte de l’influence
de la température.

4. Un transport non dissipatif de charge et d’entropie d’une part et un processus de conduction
dissipatif d’autre part.

5. Le transport couplé d’entropie et de charge dans un sens et le processus de conduction dans
le sens opposé. Le transport couplé doit être plus important que la conduction.

6. Elle contient les deux termes qui quantifient l’irréversibilité de la conduction de l’entropie
d’une part et de la charge d’autre part.

7. Le facteur jQ dT/dx peut être positif ou négatif, ce qui signifie qu’il est lié à des processus
non dissipatifs. Or, la dissipation implique la production d’entropie.
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CHAPITRE 12   EXTENSION AUX MILIEUX CONTINUS

Résumé du chapitre

Le passage au continu devient nécessaire lorsque les systèmes envisagés ne sont pas
uniformes, c’est-à-dire lorsque les grandeurs qui les caractérisent varient localement.
Ce fait contraint de passer de la forme intégrale des équations à leur forme locale qui
remplace les grandeurs et leurs flux par les densités des grandeurs et celles de leurs
flux.

La distribution dans l’espace d’une grandeur extensive Q peut être exprimée au moyen
de sa densité ρQ ou de sa valeur spécifique q telle que q = Q/m. Le lien entre les deux
densités et ρQ = ρq où ρ est la masse volumique. La valeur de la grandeur Q contenue
dans un volume V s’obtient par intégration: .

Lorsque la grandeur considérée est une grandeur vectorielle, il faut introduire une den-
sité pour chacune de ses composantes. À titre d’exemple, la densité de la composante
suivant Ox de la quantité de mouvement est égale à ρvx. La vitesse v de la matière en
mouvement représente sa quantité de mouvement spécifique.

La densité jQ du flux d’une grandeur extensive Q sert à mesurer la distribution du cou-
rant à travers une surface S. Un flux a une intensité, une direction et un sens, il s’agit
donc d’un vecteur. Pour pouvoir attribuer un signe à la densité de flux, il est nécessaire
d’orienter la surface qu’il traverse au moyen d’un vecteur n, de norme égale à l’unité,
normal à cette surface. Lorsque la surface S est fermée, le vecteur normal définit
l’orientation positive de la surface lorsqu’il pointe vers l’extérieur du corps qu’elle en-
toure. Si la surface S est ouverte, le vecteur normal peut être choisi arbitrairement.

Vu que nous attribuons une valeur positive à l’intensité d’un flux entrant dans un do-
maine, le lien entre cette intensité et la densité de flux associée sera donnée par la
relation: , où ndA a été remplacé par le vecteur dA pour
alléger l’écriture.

Étant elle-même une grandeur vectorielle, la densité de flux d’une grandeur vectorielle
telle que la quantité de mouvement aura neuf composantes, trois pour chacune des
trois composantes de la grandeur vectorielle. Ces neuf composantes sont celles du ten-
seur de la densité de flux.

Pour les taux de source et les taux de production, les densités sont respectivement σQ
et πQ. On obtient les taux respectifs par intégration sur le volume considéré.

Les équations de bilan établissent le lien entre la variation d’une grandeur à l’intérieur
d’un système et les flux de cette grandeur à travers les surfaces qui englobent le systè-
me. Comme ces grandeurs varient localement, nous devons, pour obtenir la variation
totale, intégrer la densité de la grandeur sur le volume et la densité des flux sur les sur-
faces traversées. Le théorème de GAUSS ou théorème de la divergence permet de trans-
former l’intégrale de surface en une intégrale de volume. Ce théorème fait intervenir
un opérateur différentiel, appelé divergence du champ vectoriel C. Il est défini par:
div(C) = ∂Cx /∂x + ∂Cy /∂y +∂Cz /∂z. Le théorème de GAUSS: .

La forme locale de l’équation de bilan de la masse est: ∂ρ /∂t + div(ρv) = 0. Cette re-
lation est appelée équation de continuité. Celle de l’entropie, sans prise en compte du
rayonnement, est: ∂/∂t(ρs) + div(sρv + js,cond) = πs, où s est l’entropie spécifique et
πs la densité du taux de production d’entropie.

Le fait que la densité de flux de quantité de mouvement soit un tenseur peut rendre ex-
trêmement complexe l’établissement de l’équation de bilan dans sa forme la plus gé-
nérale. Pour le cas de l’écoulement d’un fluide parfait, la première composante de
l’équation de bilan est: ∂/∂t(ρvx) + div(ρvxv + jpx,cond) = σpx. Cette équation a trois
composantes, et il en va de même pour les deux autres composantes.

Q dV qdVQ= =∫ ∫ρ ρ
V V
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S S
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L’équation de bilan de l’énergie devient: ∂/∂t[ρ(u + 1/2 v2)] + ∂/∂x[ρv(u + 1/2 v2)
+vjp,cond + jE,therm ] = ρ (fpv + r). Le contenu du premier crochet représente la densité
d’énergie du fluide. Le premier terme du second crochet est l’apport énergétique des
flux convectifs. Le membre de droite représente les densités de source dues à l’inte-
raction gravitationnelle et à l’absorption de rayonnement.

À titre d’exemple, nous avons considéré le processus de conduction d’entropie dans
un corps unidimensionnel. L’équation de bilan est: ∂ρs/∂t + ∂js/∂x = πs + σs , où les
deux termes du membre de gauche représentent respectivement le taux de variation de
la densité d’entropie et de la densité de flux d’entropie, alors que les termes du membre
de droite sont les densités des taux de production et de source.

Les lois constitutives sont basées sur la loi de FOURIER: jS = – kS dT/dx, où kS est la
conductivité entropique. En termes de courant d’énergie thermique: jE = – kE dT/dx,
avec kE = TkS. L’équation de bilan de l’énergie pour la conduction est: ∂ρE/∂t + ∂jE/∂x
= 0. La densité du taux de production d’entropie est donnée par: πS = – 1/T ·jS ·dT/dx.

L’équation du champ de température est: d/dx (kE ·dT/dx) = 0 dans le cas stationnaire
sans apport d’entropie et d’énergie, et d/dx (kE ·dT/dx) = – TσS = – σE s’il y a apport
d’entropie et d’énergie.

L’effet thermoélectrique est dû au couplage d’un processus thermique et d’un proces-
sus électrique. Il se manifeste d’une part par l’effet SEEBECK qui lie entre eux les gra-
dients du potentiel électrochimique et de la température: dµec/dx = – ε dT/dx, où µec
est le potentiel électrochimique molaire et ε le coefficient SEEBECK. L’effet PELTIER

consiste en un couplage entre les courants d’entropie et de charge: jS = α jQ ; α est le
coefficient PELTIER. L’application des lois constitutives: jQ = –σ dµtec/dx, où µtec=
µtec+ εT est le potentiel thermo-électrochimique, et jS = αjQ – kS dT/dx permet de dé-
montrer que α = ε. Le taux de production d’entropie : πS = 1/T · kS (dT/dx)2 +
1/T · jQ

2/σ se compose de la dissipation due à la conduction d’entropie et de charge
électrique.
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Questions et problèmes
1. Basez-vous sur le modèle de migration de sauterelles pour

montrer que, sur des bases purement mathématiques, il n’est
pas possible de faire la distinction entre des densités de taux
de production et des densités de taux de source. En quoi ces
densités se distinguent-elles?

2. Reformulez les équations de bilan du modèle spatialement
continu de la migration des sauterelles en termes de modèle
uniforme. Pour le faire, divisez l’espace unidimensionnel en
un certain nombre d’éléments. Incluez la migration terrestre
ainsi que les naissances et les décès. (a) Esquissez le dia-
gramme du modèle de dynamique des systèmes correspon-
dant. (b) Écrivez les équations pour un élément de ce modèle
de pseudo-éléments finis. (c) Comparez ces équations à cel-
les du cas continu. Le modèle uniforme peut-il être dérivé du
modèle continu, ou vice versa? (d) Dans le cas uniforme, il
apparaît qu’il est impossible de faire la distinction entre les
flux (conductifs) et les taux de naissance et de décès sur des
bases mathématiques. Pourquoi ? Quelle est donc la
différence?

3. Considérez l’équation (12.10) du modèle de migration des
sauterelles. (a) Reformulez l’équation pour une conductivité
constante et une absence de naissances et décès. (b) Quelle
sera la solution de cette équation pour le cas stationnaire
(indépendant du temps)? Combien de conditions aux limites
faut-il formuler, et quelles sont-elles? Comment la solution
dépend-elle des conditions aux limites particulières que l’on
a choisies?

4. Dans l’équation (12.10) du modèle de migration des sauterel-
les, admettez maintenant une valeur non nulle du taux de
décès. Admettez que ce taux est indépendant du temps et de
l’espace. Quelle sera la solution stationnaire de cette équa-
tion pour une conductivité constante? Combien de conditions
aux limites faut-il formuler, et quelles sont-elles?

5. Ajoutez de la nourriture en tant que nouvelle espèce dans le
modèle unidimensionnel de migration des sauterelles. La res-
source en nourriture ne peut pas se déplacer, elle ne peut
qu’être produite ou détruite. (a) Formulez l’équation de bilan
de la nourriture pour le cas continu à la fois dans l’espace et
dans le temps. (b) Écrivez des relations constitutives possi-
bles pour la production de nourriture (par exemple croissance
logistique) et pour sa destruction (consommation) et ajoutez-
les aux équations de bilan.

6. Montrez qu’une composante de l’équation de bilan générale
de la quantité de mouvement doit prendre la forme:

Écrivez chacune des neuf composantes du tenseur.

7. Montrez que la formulation (12.55) de l’équation de bilan de
l’entropie semble ne représenter que le cas du transport pure-
ment conductif d’entropie. La loi exprimée par la relation
(12.55) exclut-elle le phénomène de convection ? Pouvez-
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vous expliquer le pourquoi de la dénomination « dérivée
matérielle» donnée à l’opérateur dans l’équation (12.54)?

8. Écrivez l’équation de bilan de la masse en utilisant la dérivée
matérielle. Faites de même pour le cas simple du transport de
quantité de mouvement dans une dimension.

9. Dans le cas unidimensionnel, gradient et divergence ont le
même aspect. Expliquez leurs différences et explicitez-les
dans le cas multidimensionnel.

10. Énoncez la forme tridimensionnelle de la dérivée matérielle,
autant dans la forme indépendante des coordonnées qu’en
coordonnées cartésiennes.

11. Considérez un véhicule plat contenant de l’eau et se dépla-
çant horizontalement. L’eau s’écoule par un trou au fond du
véhicule. Déterminez les densités de flux et les flux de quan-
tité de mouvement par rapport à un volume de contrôle sta-
tionnaire.

12. Les extrémités d’un cylindre de cuivre de 0.50 m de longueur
et de 0.05 m de diamètre sont à des températures constantes
de 373 K et 273 K respectivement. L’entropie ne circule que
dans la direction de l’axe. La conductivité énergétique du
cuivre, de 384 W K-1 m-1, peut être considérée comme cons-
tante. Calculez : (a) la densité de flux d’énergie, (b) le flux
d’énergie et (c) les densités de production d’entropie aux
extrémités du cylindre. (d) À partir de la densité de produc-
tion d’entropie en fonction de la position, déterminez le taux
de production d’entropie dans la barre de cuivre. Montrez
que le résultat est égal au courant net d’entropie.

13. Dérivez l’équation de champ de la température lors du pro-
cessus de conduction stationnaire sur la base de l’équation de
bilan de l’énergie au lieu du bilan d’entropie.

14. Selon le tableau 11.1, la conductivité entropique de l’eau
dépend moins de la température que sa conductivité énergéti-
que. (a) Si l’on admet que la première grandeur est constante
lors du processus de conduction à travers une couche d’eau
en régime stationnaire, le gradient de température doit-il être
plus important à la face chaude ou à la face froide? (b) Mon-
trez que l’équation de champ de la température doit avoir la
forme:

15. Calculez (a) la densité de source d’énergie et (b) la densité de
production (ou de source) de l’entropie dans un échantillon
de 1 kg d’uranium enrichi à la température de 300 K. L’ura-
nium a une masse volumique de 18 950 kg m-3. L’échantillon
contient 97% d’uranium 238 et 3% d’uranium 235. L’énergie
libérée lors de la désintégration d’un noyau est approximati-
vement de 4.2 MeV et 4.6 MeV respectivement. Les demi-
vies respectives des deux isotopes sont de 4.5·109 années et
7.8·108 années.

16. Considérez la conduction de la chaleur à travers la croûte ter-
restre modélisée comme une couche plane d’épaisseur L.
Admettez la présence de sources d’entropie, de densité de
taux de source σΕ , distribuées régulièrement dans le maté-
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riau, et une conductivité énergétique constante kE . (a) Mon-
trez que le profil de la température de la base vers la surface
de la croûte est donnée par

pour un flux d’énergie jE (0) à la base de la croûte et une tem-
pérature de surface égale à TL. (b) Déterminez comment le
gradient de température juste en dessous de la surface dépend
des paramètres matériels de la croûte. (c) Évaluez le gradient
de température à la surface pour une croûte de 50 km d’épais-
seur, une conductivité énergétique de 2.5 W K-1 m-1, une
densité de taux de source de 1.25·10-6 W m-3 et un flux
d’énergie nul à la base.

17. Refaites les calculs afin de déterminer le profil stationnaire de
température d’une couche de matière telle que la croûte ter-
restre du problème 16, mais pour un taux de source d’énergie
qui décroît de manière exponentielle à partir de la surface.
Les conditions aux limites sont à nouveau un flux d’énergie
fixe à la base et une température de surface donnée.

18. Montrez que l’équation de champ de la température pour un
dispositif thermoélectrique en régime dynamique est donnée
par:

où ρél est la résistivité électrique, et ρ et c sont respective-
ment la masse volumique et la chaleur spécifique du maté-
riau. kE est la conductivité énergétique. (a) Quelles sont les
suppositions au sujet des propriétés matérielles du dispositif?
(b) Utilisez un raisonnement qualitatif pour justifier l’équa-
tion en identifiant la signification de ses parties. (c) Donnez
une dérivation formelle basée sur les équations formulées
dans les Sections 12.7.2 et 12.7.3.

19. Les courants d’énergie thermique aux extrémités chaude et
froide de générateurs thermoélectriques sont généralement
écrits comme suit:

c et f sont associés aux extrémités chaude et froide respecti-
vement. (a) Quelles sont les suppositions au sujet de la con-
ductance énergétique GE ? (b) Dérivez ces expressions en
utilisant les lois de la conduction thermique. Montrez que les
termes ±RIQ

2/2 sont une conséquence des hypothèses parti-
culières utilisées. (c) Utilisez ces équations pour obtenir la
puissance et l’efficacité du générateur.
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La vision de NEWTON d’une action à distance1 qui se transmet de manière instantanée
a été remplacée, à partir du premier quart du XIXe siècle, par celle d’un effet qui se
propage de proche en proche à travers l’espace et qui, de ce fait, ne peut être instanta-
né. Cette manière de voir a été introduite par Michael FARADAY pour expliquer les
phénomènes électriques et magnétiques, puis élaborée mathématiquement par James
Clerk MAXWELL durant le troisième quart du même siècle. FARADAY postula que l’es-
pace n’est pas simplement le cadre inerte dans lequel ont lieu les phénomènes physi-
ques, mais qu’il est lui-même un système physique qui participe activement à ces
processus. Dans la vision de FARADAY, la présence de matière (masse, charge, etc.)
structure l’espace et lui donne des propriétés physiques supplémentaires. Un tel systè-
me physique est un champ. Un champ est tout autant un système physique avec ses
particularités propres telles que quantité de mouvement, moment cinétique, état de
tension, etc., qu’un objet en mouvement , un volume de gaz enfermé dans un récipient
ou tout autre système qui peut faire l’objet de notre intérêt.

L’objectif de ce chapitre est de présenter et d’illustrer cette notion de champ que,
d’ailleurs, nous avons déjà utilisée dans chacun des chapitres précédents. Notons que
la physique moderne tente de décrire la nature uniquement au moyen de ce concept,
en y ajoutant un certain nombre d’ingrédients tels que la physique quantique2.

 

13.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

Nous allons reprendre quelques observations de certains chapitres précédents et les
compléter afin de nous familiariser avec des processus au cours desquels des objets in-
teragissent sans être en contact.

 

13.1.1 Phénomènes électriques

Illustrons les phénomènes électriques en reprenant quelques observations du
chapitre 2. Rappelons que nous avons attribué les phénomènes électriques au fait que
les objets qui interagissent portent une «charge électrique» qui peut être positive ou
négative. Il s’agit d’une grandeur physique qui permet d’expliquer et de quantifier ces

1. Cette vision ne le satisfaisait pas du tout, comme le démontre une lettre de 1692 à BENT-
LEY, dans laquelle il affirme: «Gravity should be innate, inherent and essential to Matter,
so that one body may act upon another at a distance thro’ a Vaccum without the Mediation
of any thing else, by and through which their Action and Force may be conveyed from one
to another, is to me so great an Absurdity that I believe that no Man who has in philosphical
Matters a competent Faculty of thinking can ever fall into it. Gravity must be caused by an
Agent acting constantly according to certain laws; but whether this Agent be material or
immaterial, I have left to the Consideration of my readers.»

2. Le corps théorique appelé théorie quantique des champs (Quantum Field Theory, QFT)
propose d’envisager autant le rayonnement que la matière comme étant des états excités
d’un champ, le champ quantique.
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phénomènes. Une entité telle que l’électron n’est pas la charge élémentaire, il est por-
teur de la charge élémentaire négative. D’ailleurs, il existe d’autres entités qui portent
une fraction (un tiers ou deux tiers) de la charge élémentaire ou de son opposé: ce sont
les quarks, les constituants des particules que l’on appelle les hadrons.

 

Interaction entre objets électrisés. Nous disposons de deux sphères métalliques, la
première fixe, l’autre mobile, suspendue à un fil. Nous pouvons les charger, par exem-
ple au moyen d’une source de haute tension.

 

• Lorsque les deux sphères portent des charges de signes opposés, nous consta-
tons que la sphère suspendue se rapproche de la sphère fixe.

 

• Lorsque les deux sphères portent des charges de même signe, la sphère mobile
s’éloigne de la sphère fixe.

Interprétation: L’interaction entre les objets chargés se manifeste sans qu’un contact
soit nécessaire. Comme nous nous en sommes rendu compte à la section 2.1.9, le com-
portement des deux charges n’est pas le résultat d’une «action à distance», mais est
provoqué par la présence d’un champ électrique.

 

Champ électrique. Tous les objets qui portent une charge électrique sont entourés
d’une «aura» par l’intermédiaire de laquelle ils interagissent. Cette «aura» est le
champ électrique.

 

Champ électrique et phénomène d’influence. Il est possible d’électriser des objets
par frottement ou au moyen d’une source de tension. Ce n’est pas la seule manière de
procéder; un phénomène, appelé influence électrique, permet d’obtenir le même effet.

Nous répétons l’expérience de la figure 13.1, mais en ne chargeant pas la sphère sus-
pendue. Nous constatons que, quelle que soit la charge de la sphère fixe, la sphère mo-
bile est attirée vers elle.

Interprétation. La seule explication possible est que le champ électrique de la sphère
A (admettons qu’elle soit chargée positivement) agit sur la charge de la sphère B de
telle façon que le côté proche de A devient majoritairement négatif à cause de l’attrac-
tion qui s’exerce entre charges de signes opposés, l’autre majoritairement positif, la
sphère B restant globalement neutre (fig. 13.2). Ce phénomène de redistribution des
charges est la polarisation, et la sphère mobile et devenue un dipôle électrique. Les
charges négatives de B étant plus proches des charges positives de A que ses charges
positives, l’attraction dominera.

+ - + +

a. b.

FIGURE 13.1 Interaction entre
charges électriques: (a) les charges
de signes opposés se rapprochent
l’une de l’autre; (b) les charges de
même signe s’éloignent l’une de
l’autre.

Des objets chargés électriquement sont entourés d’un champ électrique.
Lorsque ces objets portent des charges de même signe, le champ électrique
les écarte l’un de l’autre; lorsqu’ils portent des charges de signes opposés,
le champ électrique les attire l’un vers l’autre.
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+

A

B

FIGURE 13.2 Manifestation du
phénomène d’influence: par l’in-
termédiaire de son champ électri-
que, la sphère A polarise la sphère
B, qui est alors attirée dans les ré-
gions du champ le plus intense.
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Une seconde expérience permet de montrer qu’il est possible de séparer des charges
par l’intermédiaire du phénomène d’influence.

Nous chargeons par exemple une sphère fixe positivement. Nous amenons deux pla-
ques métalliques neutres dans le voisinage de la sphère chargée en nous assurant qu’el-
les sont en contact (fig. 13.3). Par l’intermédiaire du phénomène d’influence, le champ
de la sphère sépare les charges de telle façon que la plaque proche de la sphère présen-
tera une plus grande concentration de charges négatives, alors que la plaque éloignée
de la sphère présentera une plus grande concentration de charges positives. Le système
des deux plaques accolées constitue un dipôle électrique.

Nous séparons les deux plaques pendant qu’elles sont encore dans le champ électrique
de la sphère chargée, puis nous les éloignons de cette dernière. En utilisant l’électros-
cope, nous pouvons vérifier qu’elles portent la même charge, mais de signe opposé. Il
est donc possible de séparer les charges d’un dipôle électrique.

 

13.1.2 Phénomènes magnétiques

Les phénomènes magnétiques sont connus depuis l’Antiquité: le nom vient de Magné-
sie, une ville grecque sur le fleuve Méandre, en Anatolie, au bord de la mer Égée; on
trouve dans cette région un minerai qui a la faculté d’attirer des morceaux de fer.

 

Quelques exemples. Les objets aimantés font partie de notre vie quotidienne. On les
trouve dans les fermetures magnétiques d’armoires, de sacs à main ou d’étuis, ils ser-
vent à maintenir des documents sur des tableaux d’affichage, etc. Dans ces exemples,
l’objectif est atteint soit au moyen d’un aimant en face d’un élément en fer, soit au
moyen de deux aimants qui se font face.

Les aimants peuvent prendre différentes formes. La figure 13.4 montre un aimant droit
et un aimant en U. Les extrémités sont les pôles de l’aimant et, pour des raisons histo-
riques (la première application pratique est la boussole inventée par les Chinois), ces
pôles portent les noms des pôles terrestres. Dans la figure, l’extrémité de la partie co-
lorée (en général en rouge) est le pôle nord qui, s’il s’agit d’un aimant droit suspendu
en son centre de gravité, s’oriente à peu de chose près vers le pôle Nord géographique.

Nous approchons un aimant en fer à cheval d’un tas de clous (fig. 13.5). Les clous sont
attirés par les deux pôles de l’aimant. Cette attraction s’exerce également sur des ob-
jets contenant du nickel ou du cobalt. Ces trois métaux ont une propriété que l’on ap-
pelle ferromagnétisme. Les autres métaux ont des propriétés magnétiques différentes
et les effets sont trop faibles pour se manifester de manière visible.

 

Interaction entre aimants. Lorsque l’on rapproche deux aimants, on observe qu’ils
s’attirent si les deux pôles opposés se font face, alors qu’ils se repoussent lorsque les
pôles de même nom se font face.

Interprétation: Il y a similitude entre le comportement des objets électrisés et des ob-
jets magnétisés. Les objets magnétisés interagissent: les pôles opposés s’attirent, les
pôles identiques se repoussent.

C’est cette répulsion entre pôle de même nom qui a été utilisée à la section 8.2 lors de
l’étude de la collision élastique entre deux glisseurs sur un coussin d’air (fig. 13.6). On
observe que les deux glisseurs se comportent comme si l’espace entre eux était occupé
par un milieu élastique qui se serait comprimé dans la phase d’approche et dilaté dans
la phase d’éloignement.

On appelle influence électrostatique le phénomène de séparation des char-
ges, de polarisation, par l’intermédiaire d’un champ électrique.

FIGURE 13.3 Séparation de charge
au moyen du phénomène d’influen-
ce. La paire de plaques métalliques
se polarise dans le champ de la
sphère. Lorsqu’on les sépare, on
obtient deux plaques portant des
charges de signes opposés.

+
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+
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FIGURE 13.4 Aimant droit et
aimant en U. La partie colorée est
ce que l’on appelle le pôle nord.

FIGURE 13.5 Attraction
magnétique: les aimants attirent
des clous en fer; les deux pôles de
l’aimant exercent l’attraction.

FIGURE 13.6 Quelques séquences
de l’enregistrement de la collision
de deux glisseurs sur un rail à cous-
sin d’air. La répulsion est assurée
par des aimants montés à l’avant de
chacun des glisseurs.
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Charge magnétique. Si nous prenons deux aimants en U identiques et que nous op-
posons les pôles de l’un aux pôles opposés de l’autre de manière à former un anneau,
cet ensemble n’attire plus le fer (fig. 13.7): les pôles se sont neutralisés, comme dans
le cas de la neutralisation des charges électriques. Lors de ses études des phénomènes
électriques et magnétiques, dont il publia les résultats entre 1785 et 1791, Charles
Augustin de COULOMB, inspiré par l’analogie entre les deux phénomènes, conclut que
l’attraction ou la répulsion entre deux corps magnétisés est due au fait qu’ils portent
des charges magnétiques3 qu’il appelle des molécules magnétiques. Les surfaces des
pôles d’un aimant sont les endroits où cette charge magnétique s’accumule
(fig. 13.8a). Se basant sur le fait que lorsqu’on brise un aimant, quelle que soit sa taille,
on obtient à chaque fois un nouvel aimant avec deux pôles opposés (fig. 13.8b), il con-
clut que chaque molécule a deux pôles inséparables.

L’observation de neutralisation de l’aimantation amène à conclure que, tout comme la
charge électrique, la charge magnétique, que nous désignerons par qm, peut prendre
des valeurs opposées, que l’on appelle positives ou négatives. Par convention, les do-
maines occupés par des charges positives sont des pôles nord, les domaines chargés
négativement sont des pôles sud. L’aiguille aimantée d’une boussole s’oriente en di-
rection Nord-Sud. Par convention, le pôle positif pointe vers le pôle Nord géographi-
que. Comme nous avons constaté que les pôles de signes opposés s’attirent, nous
devons en conclure qu’en vertu de cette convention, le pôle Nord géographique est
chargé négativement, ce qui en fait un pôle sud magnétique.

L’expérience de neutralisation de l’aimantation au moyen de deux aimants identiques
nous permet de tirer un autre conclusion: un aimant contient autant de charges magné-
tiques positives que négatives.

Alors qu’un corps peut porter une charge électrique nette non nulle (bien qu’extrême-
ment faible), ce ne sera jamais le cas pour un corps magnétisé. Cette différence essen-
tielle a pour conséquence que l’on peut avoir des courants électriques (flux de charges
électriques), mais jamais de courants de charge magnétique4.

 

Champ magnétique. Comme dans le cas des objets électrisés, les objets magnétisés
interagissent sans qu’un contact soit nécessaire. L’interaction a lieu comme si tous les
objets qui portent une charge magnétique étaient entourés d’une «aura» par l’intermé-
diaire de laquelle ils interagissent. Cette «aura» est le champ magnétique.

3. Il est important de noter que ce que nous appelons charge magnétique ne doit pas être con-
fondu avec le monopôle magnétique. La charge magnétique que nous introduisons ici est
un concept théorique qui permet d’expliquer et de quantifier le phénomène de magnétisa-
tion. En revanche, un monopôle magnétique serait une particule magnétisée, comme un
électron est une particule électrisée; l’électron n’est pas une charge électrique (un concept
théorique) mais une particule qui porte une charge électrique. Nous verrons que la présence
de cette charge magnétique aux pôles d’un aimant est la conséquence d’un phénomène de
polarisation analogue à la polarisation électrique.

4. C’est une conséquence du fait qu’il n’y a pas de monopôle magnétique.

FIGURE 13.7 Neutralisation de la
charge magnétique: lorsque les pô-
les opposés de deux aimants identi-
ques se font face, les aimants
n’attirent plus le fer; leurs charges
magnétiques se sont neutralisées.
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FIGURE 13.8 Inséparabilité des di-
pôles magnétiques: (a) la charge
magnétique s’accumule aux pôles;
(b) lorsque l’on brise un aimant en
deux, on obtient deux nouveaux
aimants, les dipôles magnétiques
sont inséparables.

La charge magnétique totale d’un aimant est toujours nulle, c’est-à-dire
que la charge positive a la même valeur absolue que la charge négative.

Des objets magnétisés sont entourés d’un champ magnétique. Lorsque ces
objets portent des charges de même signe, le champ magnétique les écarte
l’un de l’autre; lorsqu’ils portent des charges de signes opposés, le champ
magnétique les attire l’un vers l’autre.
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Influence magnétique. Lorsque l’on approche un objet en fer (par exemple un clou,
fig. 13.9) d’un pôle d’un aimant (le contact n’est pas nécessaire), cet objet devient lui-
même un aimant, avec deux pôles. On peut s’en convaincre par le fait qu’il est lui-
même capable d’attirer un autre objet en fer.

Interprétation. Ce phénomène est semblable à celui que nous avons observé dans le
cas électrique et doit être interprété de la même manière: le champ magnétique d’un
des pôles de l’aimant (admettons qu’il s’agisse d’un pôle positif) agit sur les charges
magnétiques du clou de telle façon que le côté proche de l’aimant devient majoritaire-
ment négatif à cause de l’attraction qui s’exerce entre charges de signes opposés,
l’autre majoritairement positif, l’objet restant globalement neutre (fig. 13.9). Ce phé-
nomène de redistribution des charges est la polarisation, et le clou est devenu un
dipôle magnétique. Les charges négatives de B étant plus proches des charges positi-
ves de A que des siennes, l’attraction dominera.

 

Dureté magnétique. Lors de l’expérience de la figure 13.9, le clou que nous avons ap-
proché de l’aimant est lui-même devenu un aimant, puisqu’il est capable d’attirer un
autre clou. Toutefois, cette aimantation disparaît dès qu’il est éloigné de l’aimant. Des
objets qui ont un tel comportement sont des matériaux magnétiques doux. Ils se lais-
sent magnétiser facilement, mais perdent tout aussi facilement leur magnétisation. Le
fer est le représentant de cette catégorie de matériaux.

En revanche, les aimants permanents sont fabriqués à partir de matériaux magnétiques
durs. Ce sont par exemple des céramiques produites à partir d’oxyde de fer (ferrite) ou
d’autres alliages contenant du fer, du nickel ou du cobalt.

 

Courant électrique et champ magnétique. Le physicien danois Hans Christian
ŒRSTED découvrit en 1820 qu’une aiguille de boussole placée parallèlement à un fil
conducteur était déviée lorsqu’un courant électrique circulait dans ce fil conducteur
(fig. 13.10). S’appuyant sur cette découverte, André-Marie AMPÈRE réalise de nouvel-
les expériences qui l’amènent à élaborer une Théorie mathématique des phénomènes
électro-dynamiques uniquement déduite de l’expérience. La quintessence de cette
théorie est que les «les propriétés des aimants sont dues à des courants électriques cir-
culaires dans des plans perpendiculaires à leur axe» (fig. 13.11).

 

13.1.3 Phénomènes électromagnétiques

Dans les chapitres 5, 10 et 11, nous avons affirmé que l’entropie pouvait être transpor-
tée par rayonnement, l’apport de chaleur par la lumière du Soleil est l’exemple connu
du tous.

Nous montrerons au chapitre 14 que la lumière, qui transporte entre autres de l’entro-
pie, consiste en des vibrations du champ électromagnétique, une combinaison des
champs électrique et magnétique qui se propagent sous forme d’onde. Ce sont ces-
ondes qui nous apportent l’entropie produite dans le Soleil.

 

13.1.4 Phénomènes gravitationnels

La pesanteur est le phénomène qui fait partie de notre vie quotidienne et auquel nous
ne pouvons pas échapper. Les objets tombent au sol ou y retombent si on les lance vers
le haut, comme s’ils étaient liés à la Terre par une sorte de milieu élastique attractif.

 

Mouvement planétaire. En 1666, alors qu’il s’était réfugié dans son village natal de
Woolsthorpe pour échapper à la peste qui sévissait à Londres, Isaac NEWTON, alors
âgé de 23 ans, réalisa que la chute des corps à la surface de la Terre et le mouvement
de la Lune (et des planètes) avaient la même cause: la Lune tombe continuellement

FIGURE 13.9 Influence
magnétique: un objet en fer proche
d’un aimant attire d’autres objets
en fer, Il est devenu aimanté sous
l’influence du champ magnétique
de l’aimant.

FIGURE 13.10 Partie d’un bas-
relief de A. Bundgaard montrant
l’expérience réalisée par ŒRSTED
en 1820 au cours de laquelle il
découvrit qu’un courant électrique
circulant dans un conducteur dévie
une aiguille de boussole, qu’il doit
donc être la source d’un champ
magnétique. (Source:
europeana.eu (CC)).

FIGURE 13.11 Vision ampérienne
du magnétisme: les propriétés des
aimants sont dues à des courants
électriques circulaires.
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vers la Terre, mais comme elle a une vitesse propre tangentielle, cette chute vers la
Terre incurve sa trajectoire de telle manière que celle-ci devient quasi circulaire.

Masse en tant que charge gravitationnelle. Comme nous l’avons fait pour les pro-
cessus électriques et magnétiques, nous attribuons l’origine du processus d’attrac-
tion gravitationnelle à la présence d’une «charge gravitationnelle» que nous avons
déjà rencontrée: ce n’est rien d’autre que la masse d’un objet5. Contrairement aux
charges électriques ou magnétiques, qui peuvent se neutraliser, il n’y a qu’une sorte
de charge gravitationnelle, la masse est toujours positive et l’interaction est toujours
attractive. Un objet ne peut pas être gravitationnellement neutre, et il n’y a pas de
dipôle gravitationnel. En outre, le phénomène d’influence que nous avons révélé
autant pour les phénomènes électriques que magnétiques ne se manifeste pas dans le
cas de la gravitation.

Champ gravitationnel. L’interaction gravitationnelle se fait sans contact. Elle a lieu
comme si tous les objets qui portent une charge gravitationnelle étaient entourés d’une
«aura» par l’intermédiaire de laquelle ils interagissent. Cette «aura» est le champ gra-
vitationnel.

1. Quelles sont les caractéristiques communes des interactions électri-
ques, magnétiques et gravitationnelles?

2. À quoi est due la présence de ces trois champs statiques?

3. Quelle est la différence entre la charge électrique et la charge
magnétique?

1. Les trois interactions ne résultent pas d’une «action à distance», mais
sont transmises par des champs qui occupent l’espace dans lequel sont
plongés les objets. Ce que l’on observe est l’interaction entre les objets
et les champs.

2. Le champ électrostatique est attaché aux charges électriques, le champ
magnétostatique est attaché aux pôles des aimants ou est engendré par
la circulation d’un courant électrique, le champ gravitationnel est atta-
ché à la masse.

3. La charge électrique est une propriété physique liée à certains objets tels que les électrons,
les protons ou d’autres particules matérielles. Il existe deux sortes de charge électrique que
l’on qualifie de positive ou négative. Ce que nous appelons la charge magnétique est un
concept qui permet d’expliquer et de quantifier le phénomène de magnétisation, en analogie
avec le concept de charge électrique : on attribue à chaque pôle d’un aimant des charges
magnétiques de signes opposés. Alors qu’un objet peut porter une charge électrique non
nulle, un objet magnétisé a toujours une charge magnétique totale nulle, parce que les char-
ges magnétiques apparaissent toujours en paires de signes opposés, en dipôles magnéti-
ques. Il n’est pas possible d’isoler un objet ou une particule qui porterait une charge
magnétique unique positive ou négative.

5. Rappelons que nous avons montré à la section 8.8 que la masse d’un objet et son énergie
intrinsèque représentent la même grandeur.

Q

R
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13.2 CARACTÉRISTIQUES ET DESCRIPTION DES CHAMPS

Les champs sont omniprésents en physique. Nous allons maintenant préciser ce qui les
caractérise, de quelle manière on peut les décrire et en établir des modèles.

13.2.1 Champ en tant que système

Les observations de la section 13.1 ont révélé que les entités que nous avons respecti-
vement appelées champ électrique, magnétique, électromagnétique ou gravitationnel:

• peuvent transporter et accumuler de la quantité de mouvement, vu qu’ils sont
les médiateurs de forces;

• peuvent transporter et accumuler du moment cinétique;

• peuvent transporter et accumuler de l’entropie;

• peuvent transporter et accumuler de l’énergie;

• ont des propriétés élastiques, c’est-à-dire qu’ils sont le siège de tensions (en
traction ou en compression).

Ces observation montrent que les champs ont les mêmes propriétés que les systèmes
physiques que nous avons étudiés jusqu’ici (solide rigide, fluides parfaits, gaz parfait,
condensateur, etc.). Nous en concluons:

Très souvent, il y a confusion entre les champs physiques dont nous venons de préciser
la nature et les champs mathématiques qui servent à leur description.

Quelques exemples pour illustrer cette remarque. Dans une pièce, on peut rattacher à
n’importe quel point de l’espace une valeur bien déterminée de grandeurs physiques
telles que température, pression, etc. Chaque ensemble de valeurs est appelé respecti-
vement champ de température ou champ de pression. Ce sont des champs mathémati-
ques de type scalaire. La répartition des valeurs de l’intensité des champs
gravitationnel, électrique et magnétique est donnée par des champs mathématiques de
type vectoriel.

Pour mieux illustrer cette distinction, prenons un exemple. Un objet ne sera jamais
identique au point matériel (abstraction mathématique) dont nous nous sommes servis
pour en décrire le comportement cinématique. Il en va de même avec le système phy-
sique champ qui ne sera jamais identifiable aux fonctions de l’espace et du temps que
nous utilisons pour décrire son action sur des objets. Le point matériel et les fonctions
spatiales ne sont que des moyens mathématiques de description.

13.2.2 Description des champs statiques

On appelle champ statique un champ dans lequel les phénomènes de transport (de
quantité de mouvement, d’énergie, etc.) se font à une vitesse beaucoup plus grande (en

Un champ est un système physique tout comme un objet ou un fluide est un
système physique. Un champ peut accumuler, libérer et transporter des
grandeurs physiques extensives telles que quantité de mouvement, énergie,
entropie, etc. Cette faculté se manifeste par le fait qu’un champ peut inte-
ragir avec d’autres objets. Ce qui fait la différence entre le système physi-
que «objet ou fluide» et le système physique «champ» est que le second
est immatériel et n’est pas localisable, il occupe tout ou partie de l’espace.
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général la vitesse de la lumière) que celle des objets qui y sont plongés. Les champs
non statiques sont des champs d’ondes qui seront traités au chapitre 14, dans le cas du
champ électromagnétique.

Description graphique. La manière usuelle de visualiser la structure d’un champ est,
depuis FARADAY (fig. 13.12), d’introduire des lignes de champ qui indiquent dans
quelle direction et dans quel sens s’exercerait la force sur une charge témoin (électri-
que, magnétique, masse gravitationnelle, positive par convention). Ainsi, les lignes du
champ attaché à une sphère chargée positivement ont une structure sphérique et éma-
nent de la sphère; la figure 13.13 représente une coupe plane quelconque passant par
le centre de la sphère. Pour une sphère chargée négativement, le sens des lignes est in-
versé. Les lignes du champ électrostatique commencent sur des charges positives et
finissent toujours sur des charges négatives.

Cette manière de procéder est toutefois incomplète. En effet, comme nous le montre-
rons à la section 13.5.2, un champ électrique est le siège de contraintes, à savoir de ten-
sions de traction dans le sens des lignes de champ, mais également de compression,
perpendiculairement à celles-ci. Nous pouvons visualiser la présence de ces dernières
tensions au moyen de surfaces orthogonales qui, nous le verrons, sont des surfaces
équipotentielles. La figure 13.14 réunit la représentation au moyen de lignes de champ
et de surfaces orthogonales.

Description mathématique. Il existe plusieurs manières de donner une représentation
mathématique de la structure d’un champ. La manière usuelle est d’introduire la no-
tion d’intensité du champ en tant que quotient de la force subie par une charge ou une
masse témoin et de cette charge ou de cette masse témoin. Comme la force est une
grandeur vectorielle, il en va de même pour l’intensité du champ qui sera une fonction
de la position dans l’espace, représentée par le vecteur position r. Ainsi, la répartition
de l’intensité d’un champ quelconque, que nous désignons par C, sera:

(13.1)

Ainsi, dans le cas d’une charge témoin électrique Q, nous aurons:

(13.2)

Principe de superposition. Nous verrons à la section 13.3.1, équation (13.7), que
l’intensité du champ attaché à une charge Q est proportionnelle à la valeur de cette
charge. Si nous doublons la valeur de la charge, l’intensité doublera elle aussi. Mais
cette opération de doublement de la charge peut être réalisée en mettant deux charges
identiques au même endroit, l’effet sera le même. Si les deux charges ne sont pas pla-
cées au même endroit, on peut calculer la contribution de chacune d’elles comme si
l’autre n’était pas présente, puis sommer vectoriellement les deux contributions. Cette
manière de faire peut s’étendre à un nombre quelconque de sources du champ envisa-
gé. Cela signifie que:

Considérons, à titre d’exemple, le champ engendré par deux charges électriques posi-
tives en un point P. Nous déterminons au moyen de l’équation (13.1) les vecteurs res-
pectifs d’intensité et formons le vecteur somme qui représente l’intensité totale

FIGURE 13.12 Visualisation de la
structure du champ magnétique
d’un barreau aimanté au moyen de
limaille de fer.

FIGURE 13.13 Représentation du
champ d’une sphère chargée au
moyen de lignes de champ. Les
lignes émanent de la sphère si
celle-ci est chargée positivement, y
convergent si elle est chargée
négativement.

FIGURE 13.14 Représentation du
champ d’une sphère chargée au
moyen de ligne de champ et de sur-
faces orthogonales.
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Lorsque plusieurs champs coexistent dans le même espace, leurs intensités
s’additionnent vectoriellement. Cette particularité des champs est appelée
principe de superposition. Elle est valable pour tous les champs.
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résultant de la superposition des deux champs. Les lignes de champ sont des courbes
telles que les vecteurs d’intensité leur sont tangents en tout point (fig. 13.15).

13.3 CHAMP ÉLECTROSTATIQUE

Dans les sections qui suivent, nous allons étudier le champ électrostatique pour élabo-
rer les outils servant à la description mathématique des champs statiques. Nous utili-
serons ces outils en les adaptant respectivement aux champs magnétique et
gravitationnel lorsque nous aborderons ces sujets.

13.3.1 Champ lié à une charge ponctuelle: loi de COULOMB

En utilisant une balance de torsion (fig. 13.16), inventée un siècle plus tôt par CAVEN-

DISH, Charles Augustin COULOMB établit en 1785 que le module F12 de la force
qu’exerce une charge ponctuelle Q1 sur une autre charge ponctuelle Q2 est proportion-
nel à chacune des charges et inversement proportionnel au carré de la distance r12 qui
les sépare:

(13.3)

Comme l’unité de la charge est fixée, la constante de proportionnalité k doit être dé-
terminée par l’expérience. Pour des raisons historiques, cette constante s’écrit:

(13.4)

où ε0 est la constante diélectrique ou permittivité du vide. Sa valeur

 (13.5)

est liée à la valeur de la perméabilité magnétique du vide µ0, fixée numériquement par
la définition de l’ampère, par la relation µ0ε0c2=1, où c est la vitesse de la lumière qui
a été figée dans le Système international à 299 792 458 m s-1.

En utilisant le vecteur r12 qui relie la charge Q1 à la charge Q2 (fig. 13.17), nous pou-
vons donner la forme vectorielle de la force s’exerçant sur la charge Q2:

(13.6)

où les charges doivent être prises avec leur signe. Un produit négatif correspond à une
attraction, un produit positif à une répulsion. Le vecteur ur est le vecteur unitaire dans
la direction de r12. C’est le quotient du vecteur r12 et de son module.

Si nous considérons la charge Q2 comme charge témoin plongée dans le champ élec-
trique attaché à la charge Q1, nous obtenons, à partir de l’équation (13.1) et après sup-
pression des indices, pour de l’intensité du champ attaché à une charge ponctuelle Q:

(13.7)

P

FIGURE 13.15 Superposition vec-
torielle des intensités: l’intensité
totale au point P est la somme des
vecteurs d’intensité respectifs. Le
vecteur de l’intensité totale est tan-
gent à la ligne de champ passant
par le point P.

FIGURE 13.16 Balance de
COULOMB.: illustration de la publi-
cation originale de 1785.
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FIGURE 13.17 Loi de COULOMB:
la force qui s’exerce entre deux
charges électrique dépend de la
grandeur et du signe des charges et
de la distance qui les sépare.
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Cette intensité se mesure en volt par mètre (V m-1). Par beau temps, la valeur moyenne
de l’intensité du champ électrique de la Terre varie entre 0 V m-1 et 200 V m-1. Par
temps d’orage, elle peut atteindre des valeurs de l’ordre de 15 à 20 kV m-1; mais les
éclairs peuvent se déclencher à partir d’une intensité de 2000 V m-1.

Le tableau 13.1 met en évidence la vaste plage de valeurs que peut prendre l’intensité
du champ électrique dans la nature ou dans quelques applications techniques.

13.3.2 Flux d’un champ vectoriel et théorème de GAUSS

Si nous entourons une charge d’une surface fermée (fig. 13.18), par exemple une sphè-
re, le nombre de lignes de champ qui traversent cette surface ne dépend ni des dimen-
sions de la surface, ni de la position de la charge à l’intérieur de la surface. Si la charge
se trouve en dehors de la surface, le nombre de lignes entrantes est égal à celui des li-
gnes sortantes. On en conclut que le nombre total de lignes de champ à travers une sur-
face fermée est proportionnel à la charge ou à la masse enfermée. Cette description
d’un champ vectoriel au moyen de lignes de champ évoque la notion de divergence ou
de convergence depuis ou vers les causes du champ, comme le ferait l’écoulement
d’un fluide depuis sa source ou vers un puits.

C’est sur cette analogie que repose la notion de flux d’un champ vectoriel:

Le flux total à travers une surface S s’obtient par intégration, après passage à la limite
d’éléments infinitésimaux:

(13.9)

Considérons le cas d’une charge ponctuelle Q dont l’intensité du champ est donnée par
la relation (13.7). Nous l’entourons d’une sphère imaginaire concentrique de rayon R.
Le flux du champ à travers la surface S de cette sphère imaginaire, dite surface gaus-
sienne) est alors:

TABLEAU 13.1 Quelques valeurs de l’intensité du champ électrique.

Champ particulier Intensité / V m-1

À la surface d’un noyau d’uranium 3·1021

À l’intérieur de l’atome d’hydrogène 5·1011

Valeur de rupture moyenne dans l’atmosphère 105

Près du tambour chargé d’une imprimante laser 103

Dans l’atmosphère, au niveau du sol 102

Dans les fils de cuivre des circuits d’une maison d’habitation 10–2

FIGURE 13.18 Le nombre de
lignes de champ traversant la surfa-
ce fermée ne dépend ni des dimen-
sions de la surface, ni de la position
de la charge se trouvant à
l’intérieur.

Un élément du flux ψ d’un champ vectoriel C est défini par:

(13.8)

où n est le vecteur normal rattaché à l’élément de surface ∆A (fig. 13.19).
La notation n ∆A = ∆A est introduite pour alléger l’écriture.

  ∆ ∆ψ = =C Ci in AA ∆∆

C

∆A

n

S

FIGURE 13.19 Surface S traversée
par le flux du champ vectoriel d’in-
tensité CCCC . La surface est divisée en
petits éléments d’aire ∆A à chacun
desquels on attache un vecteur nor-
mal n de norme égale à l’unité.

   
ψ C C= ∫ ∏ dA

S
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(13.10)

Dans la relation ci-dessus, le symbole d’intégrale encerclé indique que l’intégration a
été effectuée sur une surface fermée que nous avons désignée par S. Ce résultat est
l’énoncé mathématique de l’affirmation du début de la section, à savoir que le nombre
total de lignes de champ qui traversent une surface fermée, c’est-à-dire le flux total du
champ à travers une surface gaussienne, est proportionnel à la charge enfermée Q.

Même si le résultat ci-dessus a été obtenu à partir du cas particulier d’une charge ponc-
tuelle, il est valable de manière générale.

La forme intégrale (13.11) du théorème de GAUSS est particulièrement utile lorsqu’il
s’agit de déterminer l’intensité de champs produits par des distributions de charges qui
ont une certaine symétrie. Si ce n’est pas le cas, on doit avoir recours à sa version dif-
férentielle. Pour l’obtenir, on envisage un volume infinitésimal cubique dont les faces
sont perpendiculaires aux axes d’un repère orthonormé (fig. 13.20). La valeur du flux
entrant dans la face perpendiculaire à Ox est égale à:

Le flux émergent à travers la face opposée vaut:

Le flux total à travers les deux surfaces est la somme des ces deux contributions.

La différence entre les parenthèses représente la variation de l’intensité du champ E
suivant Ox. Comme le volume considéré est très petit, nous pouvons recourir à une ap-
proximation linéaire de cette grandeur au moyen du produit de son taux de variation
et de la distance ∆x, ce qui donne finalement:

Après avoir procédé de la même manière pour les quatre autres faces du volume infi-
nitésimal, nous obtenons le flux total à travers les parois de cet élément de volume:

     
ψ

πε πε
πE

E
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2
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Quelle que soit la configuration de la charge enfermée dans une surface
gaussienne, le flux total du champ électrique à travers cette surface est
proportionnel à la charge enfermée:

(13.11)

C’est la version intégrale du théorème de GAUSS.
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FIGURE 13.20 Élément de volume
pour l’établissement de la forme
différentielle du théorème de
GAUSS.
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Le contenu de la parenthèse représente le taux de la variation locale de l’intensité du
champ E (ou de tout champ vectoriel C).

Si l’on considère un domaine fini, le flux total est égal à la somme des flux calculés
sur chacun des éléments en lesquels nous avons décomposé ce domaine, ce que nous
obtenons en intégrant sur la surface enfermant le volume. Ce flux total correspond à
l’intégrale de la divergence sur tout le volume:

(13.13)

Cette relation est appelée théorème de la divergence ou théorème de GAUSS. Malgré le
fait que, pour l’établir, nous avons fait référence au champ électrique, elle est valable
de manière générale pour n’importe quel champ vectoriel C.

Dans la relation (13.11), nous exprimons la charge au moyen de sa densité ρ. Alors:

13.3.3 Intensité du champ d’un condensateur plan

Appliquons le théorème de GAUSS pour déterminer l’intensité du champ qui règne en-
tre les plaques d’un condensateur plan. Il faut d’abord réaliser que, pour autant que la
distance entre les plaques soit faible par rapport aux dimensions linéaires des plaques
( ), la charge se concentre uniquement sur la face intérieure des plaques du
condensateur et que, à part dans le voisinage des bords, cette répartition est uniforme.

Nous entourons une des plaques, par exemple la plaque positive, d’une surface imagi-
naire (fig. 13.21), et appliquons la relation (13.11) pour obtenir:

La grandeur appelée divergence de E, abrégée par divE:

(13.12)

exprime l’équation de bilan du flux d’un champ de vecteurs par unité de
volume. Une divergence positive signifie qu’il y a une «source» du champ
dans le volume considéré, alors que dans le cas contraire, il y a un «puits»
du champ dans ce volume. Il est usuel de dire qu’un champ dont la diver-
gence est non nulle est un «champ de sources».
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La version locale du théorème de GAUSS:

(13.14)

relie la distribution des sources du champ électrique à son intensité en tout
point de l’espace.

  
div E = ρ

ε0

d A<<

+Q –Q

E

Surface
gaussienne

A

d

FIGURE 13.21 Détermination de
l’intensité du champ électrique à
l’intérieur d’un condensateur plan.
La distance d entre les plaques est
beaucoup plus faible que les di-
mensions linéaires des plaques.



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 637

13.4  CHAMP ÉLECTROSTATIQUE ET POTENTIEL

(13.15)

13.3.4 Quelques configurations du champ électrostatique

La figure 13.22 illustre quelques configurations de champs électrostatiques. Chaque
champ est représenté à la fois au moyen de lignes de champ dont les extrémités sont
toujours sur des charges et de surfaces orthogonales qui sont toujours fermées.

EXEMPLE 13.1. Champ à l’intérieur d’un conducteur plongé dans un champ extérieur.

Pourquoi le champ électrostatique à l’intérieur d’un conducteur est-il nécessairement nul?

SOLUTION: Comme les charges électriques à l’intérieur d’un conducteur sont mobiles, elles
s’accumulent sur la surface, là où elles ont le plus de place. Elles s’arrangent jusqu’à ce que le
champ qu’elles produisent compense complètement, à l’intérieur du conducteur, le champ ex-
térieur. Cette condition entraîne la perpendicularité des lignes de champ à la surface du conduc-
teur, sinon les charges se déplaceraient sous l’influence de la composante tangentielle. En
conclusion, l’intérieur d’un conducteur plongé dans un champ électrostatique est libre de champ
et les lignes du champ extérieur sont perpendiculaires à sa surface (fig. 13.23).

B

13.4 CHAMP ÉLECTROSTATIQUE ET POTENTIEL

Dans cette section, nous allons développer une méthode qui permet de décrire un
champ, ici le champ électrostatique, au moyen de la distribution de l’énergie, une gran-
deur scalaire, plutôt qu’au moyen de l’intensité elle-même. Cette manière de procéder
apporte une simplification considérable du point de vue mathématique.

 
E cond. plan = <<( )Q

A
d A

ε0

a. b.

c. d.

FIGURE 13.22 Représentation de
quelques configurations du champ
électrostatique au moyen des lignes
de champ et des surfaces orthogo-
nales : (a) sphère chargée ou charge
ponctuelle; (b) doublet de charges
opposées; (c) doublet de charges
égales; (d) condensateur plan.

FIGURE 13.23 Lorsqu’un conduc-
teur est plongé dans un champ élec-
trostatique, l’intensité du champ est
nulle à l’intérieur du conducteur et
les lignes de champ sont perpendi-
culaires à sa surface.
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13.4.1 Potentiel du champ électrique

Considérons la distribution de l’intensité du champ engendré par une charge sphérique
positive Q. Nous savons qu’elle correspond (en dehors de la charge) à celle d’une char-
ge ponctuelle Q. Nous introduisons une charge témoin positive q à la position r0, me-
surée par rapport au centre de symétrie O (fig. 13.24). Sous l’effet du champ, cette
charge témoin est déplacée, le long d’une ligne de champ, à un autre endroit repéré par
le vecteur r1. Si cette position est plus éloignée de O que la position r0, le champ libère
de l’énergie dans ce déplacement. Calculons la quantité d’énergie libérée:

(13.16)

Nous montrerons à l’exemple 13.2 que le résultat que nous venons de trouver est éga-
lement valable si le déplacement n’a pas lieu le long d’une ligne de champ, mais selon
une trajectoire quelconque (fig. 13.25) et que la variation de l’énergie lors du déplace-
ment ne dépend que des extrémités du déplacement et pas de la trajectoire suivie.

Divisons l’énergie libérée par la charge q de la charge témoin pour obtenir l’énergie
par unité de charge:

(13.17)

Cette grandeur, représentée par le symbole ϕ, dépend uniquement de la charge Q et de
la distance (grandeur scalaire) par rapport à cette charge. Il s’agit d’une fonction de la
position r, au moyen de laquelle il est possible de décrire mathématiquement le champ
électrostatique de Q.

Si nous faisons varier le point d’arrivée r1 du déplacement, l’équation (13.18) déter-
mine le potentiel à une constante additive près. Celle-ci est déterminée par le choix ar-
bitraire du point r0. Nous pouvons fixer librement le niveau zéro du potentiel. Il est
usuel d’adopter la convention:

(13.19)

Ainsi, le potentiel d’une charge Q ponctuelle ou sphérique devient:

Q

O

q

r1

r0

FIGURE 13.24 Déplacement de la
charge témoin q de r0 à r1 dans le
champ engendré par la charge Q.
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FIGURE 13.25 La variation de
l’énergie ne dépend pas de la tra-
jectoire suivie mais uniquement
des extrémités du déplacement.
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La grandeur ϕ(r), proportionnelle à l’énergie par unité de charge (énergie
spécifique), définie par la relation

(13.18)

est le potentiel électrostatique. C’est une grandeur qui est associée à tout
point d’un champ physique. C’est un champ mathématique de type scalai-
re. Les potentiels obéissent au principe de superposition, un potentiel glo-
bal est égal à la somme (algébrique) des potentiels individuels. L’unité de
mesure du potentiel électrique est le volt (V).

  ϕ ϕ( ) ( )r r dr1 0
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1− = −∫ Ei
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(13.20)

La description d’un champ physique au moyen du potentiel est équivalente à sa des-
cription au moyen de la distribution des intensités E(r). L’une peut être calculée à par-
tir de l’autre. Nous avons établi la relation entre les deux en nous servant d’une charge
ponctuelle ou sphérique, mais le résultat obtenu est valable de manière générale (en
dehors de la charge considérée). La comparaison des équations (13.20) et (13.7) mon-
tre que l’intensité du champ électrique d’une charge ponctuelle est égale à l’opposé de
la dérivée par rapport à r du potentiel:

Cette relation justifie le fait que l’intenté du champ électrique se mesure en V m-1.
Dans un repère cartésien, la dérivation est effectuée par rapport à chacune des
coordonnées ; ces dérivées sont les composantes du vecteur gradient défini par la
relation (9.77). Ce vecteur est dirigé dans la direction de la plus forte variation du
potentiel.

Le signe négatif dans les deux équations est la manifestation du fait que l’intensité du
champ augmente lorsque le potentiel décroît. Au chapitre 2, lorsque nous avons étudié
le comportement des circuits électriques, nous avons découvert que le courant électri-
que conventionnel s’écoulait dans les conducteurs dans le sens du potentiel décrois-
sant. Comme la tension électrique U correspond à l’opposé de la différence de
potentiel, la tension entre deux points A et B du champ électrique correspond donc à:

(13.23)

La condition ϕ(r) = const définit une surface sur laquelle le potentiel est constant. En
variant r, on obtient une famille de surfaces, les surfaces équipotentielles. Les surfaces
équipotentielles du champ engendré par une distribution sphérique de charge sont des
sphères concentriques.

Les surfaces équipotentielles d’un champ sont toujours perpendiculaires aux lignes de
champ (fig. 13.26). La représentation graphique des surfaces équipotentielles au
moyen de lignes de niveau, comme dans une carte topographique, sont donc tout aussi
suggestives que les lignes de champ. Dans la figure 13.26, la distance qui sépare deux
lignes de niveau successives correspond toujours à la même variation du potentiel.

  
ϕ

πε
( )r dr= − =∫ Ei �

r

r Q

r0

1

4

1

0

 
E( )r = − =d

dr

Q

r

ϕ
πε
1

4 0
2

L’intensité du champ électrostatique est l’opposé du gradient du potentiel:

(13.21)

Les relations (13.18) et (13.21) s’impliquent mutuellement:

(13.22)

 E( ) ( )r r= − [ ]grad ϕ
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FIGURE 13.26 Représentation
graphique du champ électrique en-
gendré par une sphère chargée (ou
une charge ponctuelle) au moyen
des lignes de champ et des courbes
équipotentielles. Les deux ensem-
bles de courbes sont mutuellement
perpendiculaires.
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13.4.2 Puits et collines de potentiel

Les courbes équipotentielles peuvent être interprétées de manière analogue aux li-
gnes de niveau d’une carte topographique. Or, il est possible d’obtenir une vision
tridimensionnelle du paysage à partir d’une carte topographique. C’est sur cette
idée que repose la notion de puits (ou de colline) de potentiel. On construit un pay-
sage tridimensionnel à partir de la représentation bidimensionnelle de l’évolution
du potentiel.

Dans la représentation du potentiel électrostatique, les charges négatives engendrent
des puits (fig. 13.27), les charges positives des collines (fig. 13.28). Lorsque plusieurs
charges sont présentes, on obtient un «paysage» constitué de collines, de plaines et de
combes (fig. 13.29).

13.4.3 Circulation d’un champ

L’intégrale le long d’une courbe ou intégrale curviligne du produit scalaire du vecteur
d’intensité E(r) du champ électrique et du vecteur de segment infinitésimal de courbe
dl, telle que celles que nous avons rencontrées à partir de l’équation (13.16), est appe-
lée circulation Λ du champ E(r):

(13.24)

La valeur de la circulation du champ électrostatique est indépendante du chemin d’in-
tégration et ne dépend que de ses extrémités A et B, comme nous le verrons dans
l’exemple 13.2. Si, dans l’équation (13.24), les points de départ A et d’arrivée B du dé-
placement dans le champ coïncident, c’est-à-dire si le déplacement a lieu sur une cour-
be fermée que nous désignons par C, la valeur de la circulation est nulle.

Le fait que la nullité de la circulation d’un champ vectoriel entraîne celle de son rota-
tionnel et qu’il dérive d’un potentiel sera démontré à la section 13.8.1.

FIGURE 13.27 Puits de potentiel
engendré par une sphère portant
une charge négative. Ses bords
s’étendent à l’infini.

FIGURE 13.28 Colline de potentiel
engendrée par une sphère portant
une charge positive.

FIGURE 13.29 Paysage engendré
par un dipôle électrique, deux char-
ges de même valeur, mais de signes
opposés. Les lignes et les flèches
noires matérialisent la direction et
le sens des lignes de champ qui
s’orientent suivant la plus forte va-
riation du potentiel, le gradient.
(Figure: MikeRun (CC)).

  Λ = ∫ E( )r di l
A

B

La circulation d’un champ électrostatique le long d’une courbe fermée est
nulle:

(13.25)

Les champs qui ont cette propriété sont dits conservatifs, particularité liée
au fait que le champ dérive d’un potentiel scalaire (relation (13.22)). Elle
entraîne également que le rotationnel du champ électrostatique est nul:

(13.26)

Cette propriété implique que les lignes du champ électrostatique ne sont
pas fermées sur elles-mêmes.
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EXEMPLE 13.2. Particularité de la circulation du champ électrostatique.

Justifier le fait que la circulation du champ électrostatique est indépendante du chemin suivi et
ne dépend que des extrémités de la trajectoire: (a) au moyen d’arguments géométriques; (b) au
moyen d’arguments mathématiques.

SOLUTION: (a) Il est possible de substituer au chemin suivi une succession de marches d’es-
calier qui s’appuient sur la courbe et dont les flancs sont respectivement parallèles et perpendi-
culaires aux lignes de champ en chaque point de la trajectoire. Sur les flancs perpendiculaires
aux lignes de champ, la contribution à l’intégrale est nulle, vu que les vecteurs E(r) et sont
orthogonaux, leur produit scalaire est nul. La somme des segments des flancs parallèles corres-
pond à la longueur du chemin direct le long d’une ligne de champ.

(b) En chaque point de la trajectoire empruntée, nous pouvons décomposer le vecteur élémen-
taire dl en une composante parallèle et une composante perpendiculaire à la direction de l’in-
tensité E(r) du champ (fig. 13.30):

où uE est le vecteur unitaire dans la direction et le sens de l’intensité du champ au point consi-
déré. Les deux termes de cette décomposition correspondent aux flancs des marches d’escalier
évoquées dans la partie (a) de cet exemple.

La substitution de la décomposition du vecteur dl dans l’intégrale donne finalement:

ce qui démontre que la valeur de l’intégrale ne dépend pas du chemin d’intégration, mais uni-
quement de ses extrémités.

B

EXEMPLE 13.3. Intensité du champ et potentiel d’une sphère chargée.

Considérons une sphère de rayon R portant une charge Q. Déterminer l’intensité du champ élec-
trique et le potentiel à l’extérieur et à l’intérieur de la sphère: (a) en admettant que la sphère est
conductrice; (b) en admettant que la charge est répartie de manière uniforme sur tout le volume
d’une sphère non conductrice.

SOLUTION: (a) Pour appliquer le théorème de GAUSS, nous introduisons une sphère de rayon
variable r concentrique à la sphère chargée. À l’extérieur de celle-ci (r > R), l’application de la
relation (13.10) donne, en tenant compte du fait que les vecteurs E et r sont colinéaires:

dont nous tirons:

dl⊥

Q

O

P

B

A

dl⊥
dl

dl

uE

FIGURE 13.30 Décomposition du
vecteur élémentaire dl en une com-
posante parallèle et une composan-
te perpendiculaire à la direction du
champ E(r) au point considéré.
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Lorsque le rayon de la sphère gaussienne devient inférieur à R, la charge enfermée est nulle, il
en va de même pour le champ électrique. Il y a donc une discontinuité dans la valeur de l’inten-
sité du champ électrique lorsque l’on franchit la surface de la sphère (fig. 13.31a).

Pour le calcul du potentiel, nous utilisons la relation (13.22) en fixant le niveau de référence à
l’infini et en lui attribuant une valeur nulle. Ainsi, pour r ≥ R nous avons:

À l’intérieur de la sphère, le champ d’intensité nulle doit être le gradient d’un potentiel constant,
ce que confirme l’évaluation du potentiel selon l’équation (13.22)

Cette valeur correspond à celle du potentiel à la surface de la sphère (fig. 13.31b).

(b) Que la charge Q soit répartie uniformément sur la surface ou à l’intérieur de la sphère, cette
charge est la même, vue de l’extérieur de la sphère, ce qui implique que le champ extérieur a la
même intensité que dans le cas (a).

Si nous plaçons une sphère gaussienne à l’intérieur de la sphère chargée, la charge englobée par
cette surface est donnée par:

En vertu du théorème de GAUSS, nous avons:

ce qui entraîne:

soit une croissance linéaire de l’intensité du centre à la surface de la sphère (fig. 13.32a).

L’évolution du potentiel à l’extérieur de la sphère est la même que dans le cas (a). À l’intérieur
de la sphère, nous avons à nouveau:

L’évolution du potentiel est représentée dans la figure 13.32b.
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FIGURE 13.31 Sphère chargée en
surface: (a) évolution de l’intensité
du champ; (b) évolution du poten-
tiel. k = 1/(4πε0).

  
ϕ

πε πε
r R

Q

r
dr

Q

r

r r

≥ = − = − = − −( ) ⎡
⎣⎢∞ ∞∫ ∫Ei �

�
�

�
dr

4

1

4

1

0

2

0

⎤⎤
⎦⎥∞

=
r

Q

r4

1

0πε

  
ϕ

πε
r R r R r R

Q

R

R

R

r

< = − ≥ − < = =( ) ( ) ( )
∞∫ ∫E Ei � i �dr dr

4

1

0

consst

Q r R
Q

R
r Q

r

R
≤ = =( )

4 3
4 3

3

3
3

3π
π

     
E ∏ dA

S
�∫ = ⋅ =E 4 2

0

3

3
π

ε
r

Q r

R

 
E r R

Q

R
r≤ =( )

4 0

3πε

  

ϕ

πε π

r R r R r R

Q

R

Q

R

R

r

≤ = − ≥ − <

= −

( ) ( ) ( )
∞∫ ∫E Ei � i �dr dr

4

1

40 εε πε0

3

0

3

2 2

4

1 1

2

4

R
r dr

Q

R R

r R

Q

R

r

� �⋅ = −
−

=

∫
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

ππε0

3

2 23

2R

R r−

0
rR 2R 3R

E( )r

kQ
R2

kQ
r2

kQ
R3

r

0
rR 2R 3R

ϕ( )r

kQ
r

kQ
R3

3R2– r2

2

kQ
R

3
2

kQ
R

a.

b.

FIGURE 13.32 Sphère chargée
uniformément: (a) évolution de
l’intensité du champ; (b) évolution
du potentiel. k = 1/(4πε0).
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EXEMPLE 13.4. Potentiel et champ d’un dipôle électrique.

Déterminer le potentiel et en dériver l’intensité du champ électrique engendré par une paire de
charges de valeur Q et de signes opposés, séparés par distanceδ, que l’on appelle un dipôle élec-
trique. Se placer dans l’approximation dipolaire qui consiste à limiter l’étude à des points situés
loin du dipôle, c’est-à-dire à une distance r q δ.

SOLUTION: Autant le potentiel que le champ manifestent une symétrie axiale dont l’axe est
déterminé par les deux charges. Nous pouvons nous contenter d’effectuer les calculs dans un
plan quelconque qui contient les deux charges du dipôle. En vertu du principe de superposition,
le potentiel du dipôle (fig. 13.33) en un point P est égal à la somme des potentiels des charges
qui le constituent:

Si la distance δ est très petite par rapport à r, nous pouvons écrire:

Nous utilisons cette approximation, dite approximation dipolaire, et introduisons le module du
moment dipolaire p = Qδ (qui sera défini de manière formelle à la section 13.6.1) pour obtenir:

Sachant que, selon la relation (13.22), l’intensité du champ est égale au gradient du potentiel,
nous pouvons encore décider du choix du repère dans lequel nous allons l’évaluer. La présence
de l’angle θ suggère l’utilisation de coordonnées polaires (r, θ). La composante radiale du
champ dipolaire est égale à:

(E 13.1)

et sa composante transversale devient:

(E 13.2)

Les figures 13.34a et 13.34b visualisent respectivement les lignes de champ et la perpendicula-
rité entre celles-ci et les courbes de potentiel. Rappelons que les résultats ont été obtenus dans
l’approximation dipolaire, qui n’est plus du tout valable dans le voisinage des charges consti-
tuant le dipôle. Dans ce cas, l’aspect du potentiel et du champ est celui de la figure 13.22b.

Notons que si l’on se place sur l’axe du dipôle (θ = 0), la composante transversale s’annule et
la composante radiale est égale à:

(E 13.3)
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FIGURE 13.33 Dipôle électrique:
éléments servant à l’évaluation de
l’intensité du champ.
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électrostatique dans l’approxima-
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1. Quelles sont les caractéristiques d’un champ physique?

2. Qu’est-ce qu’un champ mathématique?

3. Que représente le flux d’un champ vectoriel?

4. Qu’exprime le théorème de GAUSS?

5. Que représente le potentiel d’un champ vectoriel tel que le champ élec-
trostatique et quel est son lien avec l’intensité du champ?

1. Un champ physique est un système qui, comme un objet matériel, peut
transporter et accumuler de la quantité de mouvement, du moment
cinétique, de l’entropie, de l’énergie, ainsi qu’être le siège de contrain-
tes. Il occupe tout ou partie de l’espace et peut interagir avec d’autres
systèmes physiques.

2. Un champ mathématique est une fonction qui donne la répartition spa-
tiale d’une grandeur physique. Celle-ci peut être une grandeur scalaire
telle que la température ou la pression, ou une grandeur vectorielle telle qu’une vitesse
d’écoulement ou l’intensité du champ électrique, magnétique ou gravitationnel. La repré-
sentation graphique des champs scalaires se fait au moyen de courbes qui relient les points
de même intensité, les courbes de niveau. Les lignes de champ servant à décrire les champs
vectoriels sont telles que les vecteurs d’intensité leur sont tangents en tout point.

3. Lorsque l’on représente un champ vectoriel au moyen de lignes de champ, leur densité dans
une région donnée est proportionnelle à l’intensité. La notion de flux sert à donner une
valeur à cette densité. Il est une mesure du nombre de lignes de champ qui traversent une
surface donnée à un instant donné. Il est proportionnel à l’intensité du champ, à l’aire de la
surface et dépend de l’orientation de cette surface par rapport aux lignes de champ.

4. La version intégrale du théorème de GAUSS indique que le flux total d’un champ à travers
une surface fermée est proportionnel à la somme des sources de ce champ enfermées dans
cette surface. La version différentielle exprime que la densité du flux (la variation locale de
l’intensité du champ, sa divergence) est proportionnelle à la densité locale des sources de ce
champ.

5. Le potentiel associé à un champ vectoriel exprime la variation de l’énergie spécifique lors
d’un déplacement d’un élément témoin dans le champ. Pour le champ électrostatique, cette
variation ne dépend pas du chemin suivi mais uniquement des extrémités de la trajectoire.
Cette particularité en fait un champ conservatif, c’est-à-dire un champ dans lequel le prin-
cipe de conservation de l’énergie est valable. Le potentiel est un champ scalaire. Un vecteur
d’intensité du champ est toujours orienté dans la direction de la plus forte variation du
potentiel, ce que l’on appelle le gradient du potentiel.

13.5 DENSITÉ D’ÉNERGIE ET CONTRAINTES DANS LE CHAMP ÉLECTRIQUE

Vu qu’un champ est un système physique, il contient de l’énergie et il est le siège
de contraintes. Nous allons déterminer la valeur de ces grandeurs pour le champ
électrostatique.

Q

R
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13.5.1 Répartition de l’énergie dans le champ électrostatique

Si nous déplaçons une des plaques d’un condensateur par rapport à l’autre, comme le
montre la figure 13.35, nous devons investir une certaine quantité d’énergie qui
s’écoule vers le champ du condensateur et s’y accumule. Selon la relation (9.16), ce
flux d’énergie correspond à la puissance de la force appliquée:

Si nous tenons compte de la définition du flux d’énergie: IE = dE/dt (pour le champ
électrique du condensateur) et de la vitesse: v = dx/dt, la relation ci-dessus devient:

L’énergie totale accumulée dans le champ électrique du condensateur lorsqu’une pla-
que a été déplacée de 0 à la distance d de l’autre s’obtient par intégration:

Le produit Ad représente le volume occupé par le champ entre les plaques du conden-
sateur (rappelons que nous avons considéré le champ en dehors du condensateur com-
me négligeable). En divisant le résultat obtenu par ce volume, nous obtenons l’énergie
volumique ou densité d’énergie. Même s’il a été obtenu à partir d’un cas particulier,
ce résultat est valable, quelle que soit la configuration du champ.

La densité d’énergie du champ électrique se mesure en J m-3. Or, 1 J m-3 = 1 Pa, ce qui
implique que la densité d’énergie correspond à une pression, ce que nous allons
confirmer dans la section 13.5.2 qui suit.

13.5.2 Contraintes dans le champ électrostatique6

Nous envisageons un condensateur plan et considérons la charge positive de la plaque
2 comme charge témoin dans le champ de la plaque 1 négative (fig. 13.36). Par l’in-
termédiaire du champ, la plaque 1 attire la plaque 2. Nous allons montrer qu’il existe
une tension dans la direction des lignes de champ et allons en déterminer la valeur.

En vertu de l’homogénéité du champ, la force totale sur la plaque 2 est donnée par:

où E1 est l’intensité du champ attaché à la plaque 1 seule, en l’absence de la plaque 2
(fig. 13.37). L’intensité E2 du champ attachée à la plaque 2 a la même valeur et le
même sens du côté qui fait face à la plaque 1, le sens opposé à l’extérieur des plaques.

6. G. FALK, G. HEIDUCK, G. BRUNO SCHMID: Impulsströme im elektromagnetischen Feld,
Konzepte eines zeitgemässen Physikunterrichts, Heft 5, Schroedel, Hannover, 1982.
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FIGURE 13.35 Pour évaluer
l’énergie accumulée dans le champ
électrique entre les deux plaques
d’un condensateur, il suffit de cal-
culer l’énergie à investir pour dé-
placer une des deux plaques
jusqu’à une distance d de l’autre.
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La densité d’énergie dans un champ électrique est donnée par:

(13.27)
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FIGURE 13.36 Condensateur plan
dont les plaques sont maintenues à
distance par l’intermédiaire de res-
sort fixés sur l’armature.
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FIGURE 13.37 Contribution de
chacune des plaques à l’intensité
totale du champ régnant entre les
plaques.
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La superposition de ces deux champs donne un champ homogène d’intensité E entre
les deux plaques et nulle à l’extérieur. Le champ de chacune des plaques contribue
pour moitié à l’intensité totale. Il s’ensuit:

Donc:

La valeur absolue de la charge portée par chacune des plaques est la même, c’est-à-
dire que Q2 = –Q1 = Q. Nous exprimons cette charge au moyen de l’intensité donnée
par la relation (13.15), à savoir Q = ε0AE et obtenons pour le module de la force:

Cette valeur ne représente pas que la force de la plaque 1 sur la plaque 2, mais celle
que la plaque 1 exerce sur la portion de champ qui se trouve à sa proximité immédiate.
C’est également la force que la partie gauche du champ exerce sur la partie droite. Or,
nous savons que la notion de force est équivalente à celle d’un flux de quantité de
mouvement.

Le fait que de la quantité de mouvement s’écoule à travers le champ (fig. 13.38) impli-
que que celui-ci est soumis à des contraintes mécaniques. Vu qu’une partie du champ
tire sur l’autre partie, il s’agit d’une tension de traction. La tension mécanique σx dans
la direction Ox , égale à l’opposé de la densité du flux de quantité de mouvement, soit
au quotient de la force par l’aire de la surface sur laquelle elle s’exerce . En conclusion:

C’est également vrai si les deux plaques portent des charges de même signe. Les lignes
de champ peuvent être obtenues en tant que superposition des champs de plaques
infiniment étendues (fig. 13.39). L’espace entre les plaques est quasi libre de champ;
il n’y a donc aucun flux de quantité de mouvement dans cette région. Or, nous obser-
vons que les plaques ont tendance à l’éloigner l’une de l’autre. Sachant que le champ
est essentiellement localisé à l’extérieur des plaques, nous devons conclure que l’éloi-
gnement des plaques est dû à une traction exercée par le champ depuis l’extérieur des
plaques. Cela n’est possible que si le champ à l’extérieur des plaques est lui aussi sou-
mis à une traction, ce qui justifie l’affirmation en début de paragraphe.

Vu que l’espace entre les charges de même signe est libre (ou quasi libre) de champ,
on doit admettre qu’il est plus correct de dire que des charges de même signe sont
tirées par le champ de manière à ce qu’elles s’éloignent l’une de l’autre, plutôt qu’il
ne les repousse l’une de l’autre.
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FIGURE 13.38 Circuit fermé du
flux de quantité de mouvement se-
lon l’axe x. Dans les ressorts et
dans le champ électrique règne une
tension de traction, dans la partie
inférieure de l’armature une ten-
sion de compression. Un champ électrique est en état de tension de traction dans la direction des

lignes de champ. Cette contrainte est proportionnelle au carré de l’inten-
sité du champ:

(13.28)
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FIGURE 13.39 Lorsque les deux
plaques portent la même charge, le
système est également soumis à
une contrainte en traction dans le
sens des lignes de champ.
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Sur la base de ces constatations, nous pouvons interpréter l’action du champ des dou-
blets de la figure 13.22. Dans le cas du doublet de la figure 13.22b, formé de deux
charges de signes opposés, la densité de lignes de champ est importante entre les
charges; celles-ci sont attirées l’une vers l’autre par le champ. En revanche, pour le
doublet de la figure 13.22c, formé de deux charges de même signe, la densité est plus
importante à l’extérieur de la configuration; les charges sont éloignées l’une de l’autre
par la traction exercée de part et d’autre par le champ électrique.

Mais le champ électrostatique est également le siège d’une tension mécanique perpen-
diculairement aux lignes de champ. Pour nous en convaincre, nous considérons à nou-
veau un condensateur à plaques parallèles et imaginons que les plaques sont
constituées de deux moitiés évidées qui s’imbriquent de manière télescopique l’une
dans l’autre (fig. 13.40). Si des ressorts sont montés à l’intérieur de ces plaques, ils
sont soumis à une traction (les deux moitiés des plaques ont tendance à s’écarter l’une
de l’autre), ce qui veut dire que la quantité de mouvement s’écoule, à l’intérieur des
plaques, dans le sens négatif. La quantité de mouvement ne pouvant circuler que si le
circuit est fermé (fig. 13.41), nous sommes obligés de conclure qu’elle circule dans le
champ électrique dans le sens positif, ce qui veut dire que ce flux engendre une tension
de compression.

On peut se demander s’il est possible d’avoir d’autres systèmes qui peuvent être sou-
mis simultanément à des tensions de traction et de compression. C’est tout à fait banal.
Lorsque l’on tord un torchon pour en évacuer l’eau, il est soumis simultanément à la
pression des mains qui le tiennent et à leur traction, ainsi qu’à des contraintes de
cisaillement dues à la torsion (fig. 13.42).

EXEMPLE 13.5. Pression et densité d’énergie dans une configuration sphérique.

Une charge Q est répartie selon une configuration sphérique de rayon R. (a) La charge est
répartie sur la surface conductrice de la sphère; évaluer la force qui serait nécessaire pour main-
tenir ensemble les deux hémisphères si l’on coupe la sphère en deux moitiés égales. (b) La char-
ge est répartie uniformément sur tout le volume; évaluer la valeur de l’énergie emmagasinée et
appliquer le résultat à un noyau atomique en utilisant le modèle de la goutte liquide. Appliquer
le résultat à la fission de l’uranium 235 après l’absorption d’un neutron. Comparer cette énergie
à celle des fragments résultant de la fission et commenter les résultats obtenus.

SOLUTION: (a) Le champ électrique engendré par les charges en surface exerce une traction
dans le sens des lignes de champ. La valeur de cette force pourrait être calculée en intégrant les
forces élémentaires qui s’exercent sur une surface élémentaire à partir de l’équation (13.28)
dans un repère à coordonnées polaires. Mais seule la composante de la force dans le direction
de l’axe perpendiculaire au plan de coupe des deux hémisphères doit être prise en considération,
vu que les autres composantes se compensent à cause de la symétrie de la configuration. Cela
correspond à évaluer la force de traction exercée par le champ sur la projection de l’hémisphère
sur le plan de coupe, donc sur un disque de rayon égal à celui de la sphère.

E

+–
y

FIGURE 13.40 Les ressorts à l’in-
térieur des plaques télescopiques
sont soumis à une traction.

y

FIGURE 13.41 Comme elle circule
en circuit fermé, la quantité de
mouvement doit circuler dans le
sens positif perpendiculairement
aux lignes de champ. Il y règne une
contrainte en compression.

Un champ électrique est en état de tension de compression perpendiculai-
rement aux lignes de champ, c’est-à-dire dans la direction des surfaces or-
thogonales ou surfaces équipotentielles.

(13.29)
 
σ ε σ ε

y z= − = −0 2 0 2

2 2
E E,

Pression

Traction

Torsion

FIGURE 13.42 Lorsque l’on tord
un torchon, il est simultanément
soumis à des contraintes en trac-
tion, compression et cisaillement.
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(b) Nous substituons dans l’expression (13.27) de la densité d’énergie la valeur du champ élec-
trique calculée dans l’exemple 13.3b pour obtenir l’énergie accumulée par intégration:

Dans le modèle de la goutte liquide du noyau atomique, on admet que la charge des protons est
répartie uniformément dans une sphère dont le rayon est approximé par la relation:

où r0 = 1.4·10–15 m et A est le nombre atomique du noyau considéré.

L’absorption d’un neutron produit un noyau d’uranium 236 (92 protons et 144 neutrons) de
rayon égal à 8.7·10–15 m. Son énergie électrostatique vaut 841 MeV.

En général, la fission produit des fragments asymétriques, par exemple du strontium 94 et du
xénon 140 et deux neutrons. Par mesure de simplicité, nous admettons que la fission produit
deux fragments identiques et deux neutrons, donc deux noyaux de palladium formés de 46 pro-
tons et 71 neutrons (qui n’existent pas dans la réalité). Le rayon de ces noyaux vaut 6.8·10–15 m
et leur énergie totale vaut 538 MeV. La variation d’énergie est de 303 MeV. Comment se répar-
tit cette énergie?

Les fragments emportent une énergie cinétique que l’on peut évaluer en calculant l’énergie due
à la répulsion entre deux charges ponctuelles séparées par le double du rayon des fragments, à
savoir d = 13.6·10–15 m. L’énergie cinétique emportée par les fragments vaut

ce qui correspond à 224.0 MeV.

L’essentiel du reste de l’énergie libérée a été utilisée pour surmonter l’interaction forte qui lie
entre eux les nucléons.

B

1. Quelles propriétés particulières du champ électrostatique confirment-
elles qu’il s’agit d’un système physique?

2. Quel est le lien entre l’énergie accumulée et l’intensité du champ
électrostatique?

3. Quelles sont les caractéristiques des contraintes qui apparaissent dans
le champ électrostatique?
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1. Le champ électrostatique est notamment le siège de contraintes, ce qui
implique qu’il transporte de la quantité de mouvement lors de l’interac-
tion entre des systèmes électrisés. Il accumule de l’énergie qui peut être
liée ou libérée lors de son interaction avec des corps électrisés.

2. La densité d’énergie accumulée dans un champ électrostatique est pro-
portionnelle au carré de son intensité (et donc au carré de la valeur des
charges qui en sont la source).

3. Le champ électrostatique est soumis à deux types de contraintes: en traction dans la direc-
tion des lignes de champ, et en compression dans la direction perpendiculaire aux lignes de
champ. La valeur de ces contraintes est égale à la densité d’énergie (au signe près).

13.6 CHAMP ÉLECTRIQUE EN PRÉSENCE DE MATIÈRE

Nous avons découvert à la section 2.5.2 que la présence d’un isolant augmente la
capacité d’un condensateur et voulons comprendre l’origine de ce phénomène.

13.6.1 Phénomène de polarisation électrique

C’est l’apparition ou la présence de dipôles électriques dans la matière qui est respon-
sable du phénomène. Un dipôle électrique est un système composé de deux charges
opposées à une distance δ l’une de l’autre (fig. 13.43). Si le vecteur δ relie la charge
négative à la charge positive, on appelle moment dipolaire la grandeur:

(13.30)

Lorsqu’il est plongé dans un champ électrique d’intensité E, un objet possédant un
moment dipolaire p subit un couple d’intensité

(13.31)

La plupart des substance sont constituées d’atomes ou de molécules dont le centre de
gravité de la charge positive du noyau coïncide avec celui de la charge négative des
électrons. Lorsque l’on plonge un morceau d’une telle substance dans un champ élec-
trique, ces centres de gravité se déplacent en sens opposé, et les atomes ou molécules
acquièrent un moment dipolaire induit. Ces dipôles induits sont pratiquement orientés
dans la direction du champ qui les a créés. Mais il existe également un grand nombre
de substance constituées de molécules qui ont un moment dipolaire permanent (molé-
cules constituées de deux atomes différents telles que l’acide chlorhydrique HCl ou de
plus de deux atomes différents dans une structure non linéaire, telles que la molécule
d’eau H2O). Généralement, ces dipôles ont une orientation aléatoire, même dans un
réseau cristallin (fig. 13.44 a). Lorsque l’on plonge un corps constitué de ces molécu-
les dans un champ électrique, ces dipôles sont partiellement orientés sous l’effet du
couple (13.31) engendré par le champ électrique (fig. 13.44 b).

La matière devient polarisée à la suite de l’orientation des dipôles induits ou perma-
nents dans la direction du champ externe. Il y a apparition d’une charge résultante
positive sur l’un des côtés du morceau de matière et d’une charge négative sur le côté
opposé dans la direction du champ (fig. 13.44 c). Cette propriété de la matière isolante
est mesurée au moyen de la polarisation P, qui est définie en tant que moment
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FIGURE 13.43 Définition du dipô-
le électrique.
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FIGURE 13.44 Polarisation de la
matière dans un champ électrique:
(a) orientation aléatoire des dipôles
permanents en l’absence de champ
électrique externe; (b) orientation
partielle des dipôles par l’intermé-
diaire du couple exercé par le
champ externe; (c) apparition
d’une charge résultante liée aux
extrémités du morceau de matière
dans la direction du champ externe.
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dipolaire par unité de volume, soit une densité superficielle de charge. Si n est le nom-
bre de dipôles (supposés parallèles) par unité de volume, alors la polarisation sera:

(13.32)

La polarisation d’une substance isolante entraîne l’apparition d’un champ électrique
à l’intérieur de la matière. C’est la raison pour laquelle les isolants sont également
appelés diélectriques (du préfixe grec dia qui signifie « à travers »). Nous allons
déterminer la modification du champ électrique en présence de matière polarisable en
nous basant sur la géométrie la plus simple possible, celle du condensateur à plaques
parallèles.

Nous considérons une plaque de matière isolante glissée entre les plaques d’un con-
densateur chargé, portant la charge Q qui produirait, en l’absence du diélectrique, un
champ d’intensité E0. Nous supposons que la polarisation P est uniforme, ce qui im-
plique que nous pouvons restreindre notre attention à la charge qui apparaît à la surface
du diélectrique. Si la matière de l’isolant n’est pas constituée de dipôles permanents,
alors, sur l’une des faces, les électrons se sont déplacés d’une distance δ dans le sens
opposé à celui du champ externe; sur l’autre face, ils se sont déplacés de la même dis-
tance vers l’intérieur, laissant une charge positive en surface (fig. 13.44 c). S’il s’agit
de dipôles permanents, δ représente la distance entre les deux charges du dipôle. Nous
voulons évaluer la densité superficielle σpol de la charge de polarisation.

Si A est l’aire de la plaque, n le nombre d’électrons par unité de volume, δ le déplace-
ment que nous admettons perpendiculaire à la surface et e la charge élémentaire, la
charge totale est égale au produit de ces grandeurs. En divisant cette valeur par l’aire
A, nous obtenons la densité superficielle de la charge de polarisation:

Mais cette valeur est égale au module du vecteur de polarisation P donné par la rela-
tion (13.32):

(13.33)

Nous désignons par σlibre la densité superficielle de la charge portée par les armatures
du condensateur plan, car ces charges peuvent se mouvoir librement dans le conduc-
teur. Notons que σpol disparaîtra si l’on décharge le condensateur. Nous appliquons le
théorème de GAUSS à la surface gaussienne S de la figure 13.45. L’intensité du champ
électrique E dans le diélectrique est égale à la densité de charge superficielle totale di-
visée par ε0. Comme σlibre et σpol ont des signes opposés, nous obtenons:

(13.34)

Il faut connaître la valeur de P afin de déterminer celle de l’intensité du champ E dans
le diélectrique. Dans les champs électrostatiques, elle est proportionnelle à E, ce que
l’on exprime par:

(13.35)

où la constante χ est la susceptibilité électrique du diélectrique. Après substitution,
nous obtenons pour E : 

 P = =n nqp δδ
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FIGURE 13.45 Modification du
champ électrique d’un condensa-
teur en présence de diélectrique.  
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(13.36)

La constante εr = 1 + χ, appelée permittivité relative ou constante diélectrique, est cel-
le qui apparaît dans la relation (2.18) donnant la capacité d’un condensateur plan dont
le volume est occupé par un diélectrique. À l’intérieur du diélectrique, le champ exté-
rieur E0 est réduit d’un facteur εr à cause de la polarisation du milieu (fig. 13.46).

Si nous isolons σlibre dans l’équation (13.34), nous obtenons:

(13.37)

Il est usuel d’introduire un nouveau champ vectoriel, le déplacement électrique, dont
l’intensité D est définie par:

(13.38)

La densité superficielle de charges libres est égale au déplacement électrique à l’inté-
rieur du diélectrique. L’origine de la dénomination de ce champ, due à MAXWELL, sera
expliquée à la section 14.5. L’intensité du déplacement électrique se mesure en As m-2.

Nous pouvons généraliser le théorème de GAUSS en prenant en compte les charges
liées par la polarisation. À partir de l’équation (13.34), nous obtenons:

(13.41)

ou, dans la version intégrale:

(13.42)

Les équations (13.37) et (13.38) impliquent:

(13.43)
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FIGURE 13.46 L’intensité du
champ dans lequel est plongé un
diélectrique est diminué d’un fac-
teur εr dans le diélectrique à cause
de la polarisation.

 σ εlibre = +0E P

 D E P= +ε0

Lorsque la matière est plongée dans un champ électrique d’intensité E,
l’apparition de charges de polarisation liées à la matière provoque la for-
mation d’un champ de polarisation d’intensité P à l’intérieur de la matiè-
re. On introduit une combinaison des champs E et P, le champ de
déplacement électrique D:

(13.39)

où χ , la susceptibilité du vide, et εr = 1 + χ , la permittivité relative ou
constante diélectrique sont des paramètres liés à la matière. La constante

(13.40)

est la permittivité absolue du milieu.
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où ρ représente la densité de charge libre. La version intégrale de cette relation est:

(13.44)

Cette relation exprime le fait que le flux du champ de déplacement diélectrique est égal
à la charge libre (à l’exclusion de la charge due à la polarisation) contenue dans la sur-
face envisagée.

13.6.2 Densité d’énergie du champ électrique en présence de matière

La modification de l’intensité du champ électrique en présence de matière entraîne une
modification conjointe de la densité d’énergie. Celle-ci devient:

(13.45)

EXEMPLE 13.6. Capacité d’un condensateur en présence de matière.

Comment évolue la capacité d’un condensateur à plaques parallèles lorsque l’on introduit un
diélectrique dans l’espace entre les plaques?

SOLUTION: Si le condensateur est débranché, la quantité de charges libres est constante. L’in-
troduction d’un diélectrique entraînera une diminution de l’intensité du champ électrique de E0
à E = E0/εr. La tension devient:

La capacité étant inversement proportionnelle à la tension, elle augmente à la valeur:

ce qui justifie la relation (2.18).

B

1. Comment sa manifeste l’interaction entre le champ électrique et la
matière?

2. Quelle est la différence entre un dipôle induit et un dipôle permanent?

3. Quelle est la conséquence de la polarisation de la matière plongée dans
un champ électrique?

1. L’interaction entre le champ électrique et la matière entraîne la polari-
sation de cette dernière. La polarisation peut se produire de deux
manières: soit par déplacement de charges libres donnant naissance à
un dipôle électrique macroscopique, soit par un alignement plus ou
moins prononcé des dipôles permanents ou induits à l’intérieur de la
matière, ce qui a pour conséquence l’apparition de charges liées à la
surface du corps polarisé.
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2. Dans certaines molécules, telles que la molécule d’eau, les centres de gravité des charges
positives (noyaux) et négatives (électrons) ne coïncident pas, ce qui en fait un dipôle perma-
nent. Dans les atomes et de nombreuses molécules, les deux centres de gravité coïncident,
mais si on les plonge dans un champ électrique, ces centres de gravité se séparent, donnant
lieu à l’apparition d’un dipôle induit.

3. La polarisation entraîne une réduction de l’intensité du champ électrique à l’intérieur de la
matière.

13.7 CHAMP MAGNÉTOSTATIQUE

Dans cette présentation du champ magnétostatique, nous allons nous appuyer sur les
théories élaborées pour le champ électrostatique dans les sections précédentes afin de
profiter de similitudes qui existent entre ces deux champs.

Une différence importante entre l’électrostatique et la magnétostatique réside dans le
fait que l’on n’a pas observé de porteur isolé de charge magnétique, ce qui serait un
monopôle magnétique. De ce fait, on ne peut opérer qu’avec des charges magnétiques
liées, résultant de la présence de dipôles, de manière analogue aux charges de polari-
sation dans les diélectriques, sujet traité à la section 13.6. D’un point de vue pratique,
la manipulation des charges magnétiques liées est nettement plus commode que dans
le cas électrique. Il est très difficile de conserver des dipôles électriques permanents,
vu qu’ils sont rapidement neutralisés par des charges libres. En revanche, l’inexistence
de porteurs de charges magnétiques libres rend très simple la conservation d’aimants
permanents.

Cette représentation du magnétisme qui opère avec la notion de charge magnétique,
que nous avons introduite à la section 13.1.2, est dite coulombienne. Elle va nous per-
mettre, lors de l’étude des propriétés d’objets aimantés, de découvrir une partie des
lois constitutives du champ magnétostatique. L’autre approche, dite ampérienne, due
à André-Marie AMPÈRE, attribue les phénomènes magnétiques à des courants circulai-
res à l’intérieur des objets magnétisés. Nous aborderons cette vision à partir de la
section 13.8.

13.7.1 Intensité du champ produit par un objet magnétique

Nous savons que la matière magnétique ou magnétisée est constituée de dipôles ma-
gnétiques que l’on ne peut pas séparer en deux porteurs de charge magnétique. Com-
me nous l’avons découvert à la section 13.1.2, il est néanmoins possible d’attribuer le
champ magnétique engendré par un objet aimanté à la présence de charges magnéti-
ques à la surface de l’objet. Cette grandeur, que nous désignons par qm, ne fait pas par-
tie de celles qui sont répertoriées par le Système international, elle se mesure en
ampèremètre (A m). L’apparition d’unités de mesure électriques pour des grandeurs
magnétiques sera justifiée à la section 13.8.4, lorsque nous aurons abordé le lien entre
les phénomènes électriques et magnétiques.

Par convention, la partie d’un objet magnétique ou magnétisé qui porte la charge po-
sitive est appelée usuellement pôle nord, celle qui porte la charge magnétique négative
est un pôle sud. Si l’on introduit dans un champ magnétique une charge magnétique
ponctuelle qm, réalisée par exemple par l’extrémité d’un aimant droit très long et très
fin (fig. 13.47), on observe que la force est proportionnelle à la charge (si l’on appro-
che deux aimants identiques, la force double).

qm

H

F

FIGURE 13.47 Détermination de
l’intensité du champ magnétique.
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L’analogie avec les observations faites en électrostatique nous permet d’affirmer
qu’une charge magnétique ponctuelle qm plongée dans un champ magnétique, en une
position repérée par le vecteur r, subit une force donnée par:

(13.46)

L’intensité du champ H est appelée intensité du champ magnétique ou intensité de
l’excitation magnétique. Cette intensité se mesure en A m-1. On peut la mesurer au
moyen d’une sonde de HALL dont nous expliquerons le fonctionnement dans
l’exemple 13.14.

La constante µ0 a été introduite dans la relation (13.46) afin d’être en accord avec les
conventions du Système international. Cette constante liée aux processus magnétiques
est la perméabilité magnétique du vide. Elle vaut:

(13.47)

Cette valeur est liée à la définition de l’ampère, sujet dont il sera question dans
l’exemple 13.12.

La notion de charge magnétique permet de définir le moment dipolaire magnétique de
manière analogue au cas électrique (fig. 13.43):

(13.48)

Le moment dipolaire magnétique se mesure en A m2. Nous verrons à la section 13.8.2
que les moments magnétiques peuvent être expliqués en termes de trajectoires micros-
copiques des électrons qui forment des boucles de courant. Le champ magnétique en-
gendré par une boucle de courant a la structure d’un champ dipolaire, et son intensité
est proportionnelle à l’intensité du courant et à l’aire de la boucle, ce qui justifie l’unité
de mesure du moment dipolaire magnétique.

Plongé dans un champ magnétique, un dipôle magnétique subit un couple donné par:

(13.49)

C’est un tel couple qui oriente vers le nord l’aiguille d’une boussole.

13.7.2 Aimantation

Nous avons découvert que les atomes ou molécules de certaines substances possèdent
un moment dipolaire électrique. Il en va de même dans le cas du magnétisme. Dans
certains cas, les dipôles magnétiques sont orientés de telle manière que leurs vecteurs
de moment dipolaire sont parallèles. Le corps possède alors un moment dipolaire
macroscopique non nul; un tel objet est un aimant. L’état magnétique de ce corps est
décrit au moyen de l’aimantation ou magnétisation M qui correspond, comme dans
le cas électrique, à la densité volumique de moments dipolaires magnétiques supposés
parallèles:

(13.50)

C’est un champ vectoriel dont l’intensité se mesure en A m-1, tout comme celle du
champ magnétique H. Le module de l’aimantation M correspond à la densité super-
ficielle de charge magnétique.

 F r r( ) ( )= µ0qmH

µ π0
7 64 10 1 2566 10= ⋅ = ⋅− −Vs A m Vs A m–1 –1 –1 –1.

m = qmδδ

 I mL = ×µ0 H

 M = nm
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De même que les charges liées aux extrémités d’un corps polarisé électriquement de-
viennent les sources d’un champ électrostatique d’intensité E, les charges magnéti-
ques liées aux extrémités d’un aimant sont les sources d’un champ magnétostatique
d’intensité H. Le formalisme mathématique est analogue à celui que nous avons ap-
pliqué au champ électrostatique. Dans la relation (13.41), version locale du théorème
de GAUSS, il suffit de remplacer E par H, P par µ0M et ρ par 0, vu qu’il n’existe pas
de charge magnétique libre, et ε0 par µ0. Nous obtenons ainsi:

(13.51)

ou encore:

(13.52)

L’équation (13.51) indique que le champ magnétostatique d’intensité H a ses sources
aux endroits où le champ d’aimantation M a ses puits. Autrement dit, le flux du
champ magnétique engendré par un aimant à travers une surface fermée S est propor-
tionnel à l’aimantation de ce dernier:

(13.53)

La grandeur Qm représente la charge magnétique totale enfermée dans la surface S. À
la constante µ0 près, le contenu de la parenthèse de l’équation (13.52) correspond à
une autre mesure de l’intensité du champ magnétique appelée induction magnétique
ou densité du flux magnétique B: 

(13.54)

En vertu de l’équation (13.51), nous avons:

(13.55)

La figure 13.48 illustre la configuration du champ magnétique d’un barreau aimanté
et d’un aimant en U. L’équation (13.51) implique la discontinuité des lignes de champ
aux pôles des aimants, là où sont localisées les charges magnétiques. À l’intérieur de
l’aimant, le champ magnétique H est opposé à l’aimantation M, raison pour laquelle
il est parfois appelé champ démagnétisant.

La nullité de la divergence du champ d’induction magnétique dans l’équation (13.55),
entraîne celle de son flux φB à travers une surface fermée:
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0
0µ

µ

 div H M+( ) = 0
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FIGURE 13.48 Configuration du
champ magnétique H d’un barreau
aimanté et d’un aimant en U. La
flèche à l’intérieur du barreau
aimanté indique le sens de l’aiman-
tation. Les trajectoires orthogona-
les représentent la structure du
potentiel magnétique scalaire.
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(13.56)

Cela signifie que ce champ n’a pas de sources et que, par conséquent, ses lignes sont
fermées sur elles-mêmes (fig. 13.49). C’est une conséquence du fait qu’il n’existe pas
de charge magnétique libre. Dans le vide, la configuration du champ magnétique H et
celle du champ d’induction magnétique B coïncident. À l’intérieur du matériau ma-
gnétique, ce dernier est opposé au champ H et sa configuration est différente.

13.7.3 Potentiel magnétique scalaire

Pour un champ magnétique statique H, l’intégrale est indépendante du che-
min d’intégration, tout comme c’est le cas en électrostatique. Nous pouvons donc dé-
finir un potentiel magnétique scalaire ϕm:

(13.57)

Cette relation implique également:

(13.58)

La figure 13.48 représente le lien entre l’intensité du champ et son potentiel scalaire
pour un barreau aimanté et un aimant en U. Le potentiel magnétique scalaire et la ten-
sion magnétique se mesurent en ampère.

13.7.4 Interaction entre le champ magnétique et la matière

Lorsque l’on plonge de la matière dans un champ magnétique, on observe des phéno-
mènes semblables à ceux que nous avons observés dans le cas électrique, à savoir la
création de moments magnétiques orientés dans la direction du champ, donc une
aimantation induite, et l’orientation de dipôles magnétiques permanents, donc une
aimantation d’orientation.

Aimantation induite. Nous plongeons une plaque de matière dans un champ magné-
tique homogène d’intensité H, par exemple dans l’entrefer étroit d’un aimant perma-
nent (fig. 13.50). La polarisation magnétique M engendre à l’intérieur du matériau un
champ d’intensité H′ qui se superpose au champ excitateur:

Comme dans le cas électrique, on a approximativement:

où la constante χm est la susceptibilité magnétique du matériau. L’intensité résultant
de la superposition des deux champs devient:

La nouvelle constante µr = 1 + χm est la perméabilité relative du matériau. Ce résultat
nous permet de réécrire la relation entre le vecteur d’induction magnétique défini par
l’équation (13.54) et le champ magnétique:

     
φB = =∫ B ∏ dA

S
� 0B

B

B

FIGURE 13.49 Configuration du
champ d’induction magnétique B 
d’un barreau aimanté. Les lignes de
ce champ sont toujours fermées sur
elles-mêmes. Hidr
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FIGURE 13.50 Matière magnétisa-
ble dans l’entrefer d’un aimant
permanent.
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13.7.5 Manifestations du magnétisme dans la matière

Il est possible d’exprimer les caractéristiques magnétiques d’un matériau soit au
moyen de la susceptibilité magnétique χm, soit au moyen de sa perméabilité relative
µr. Lors de l’aimantation d’un matériau par un champ magnétique, on peut observer
trois mécanismes majeurs que nous allons exposer brièvement.

Diamagnétisme. Lorsqu’on place un matériau dans un champ magnétique, il devient
aimanté de telle manière que M et H sont antiparallèles, ce qui implique que la sus-
ceptibilité est négative. Le phénomène est appelé diamagnétisme. Cette propriété est
commune à tous les matériaux. C’est un phénomène d’origine quantique qui peut être
expliqué par la modification du mouvement orbital des électrons autour du noyau ato-
mique. Le diamagnétisme se superpose à un éventuel paramagnétisme, mais est mas-
qué, car les valeurs négatives de la susceptibilité ne sont pas inférieures à –10–5.

Paramagnétisme. Alors que, dans beaucoup de substances, les électrons qui possè-
dent un moment magnétique sont disposés de telle manière que les atomes ou molé-
cules ont un moment magnétique nul, il existe des substances dont les atomes ou
molécules ont un moment magnétique non nul. Ces substances sont dites paramagné-
tiques. Lorsqu’on les introduit dans un champ magnétique, les moments magnétiques
sont orientés parallèlement à la direction de ce champ (comme l’orientation des dipô-
les électriques dans un diélectrique). La susceptibilité magnétique est positive et prend
des valeurs qui couvrent une plage allant de 10–6 à 10–3. Ces valeurs dépendent de la
température et augmentent lorsque la température diminue.

Ferromagnétisme. Certains matériaux sont constitués d’atomes qui possèdent un mo-
ment magnétique intrinsèque et ont la faculté de s’orienter parallèlement de manière
spontanée. Dans ces matériaux, l’aimantation peut être non nulle alors même qu’ils ne
sont pas placés dans un champ magnétique. À cause de cet effet collectif, l’aimanta-
tion M est très importante. Ces matériaux sont dits ferromagnétiques. En font partie
le fer, le nickel, le cobalt, et des alliages de ces éléments avec d’autres substances.

Un morceau ordinaire de fer n’a pas de moment magnétique. C’est la conséquence du
fait que l’orientation spontanée des dipôles magnétiques se fait par domaines, dits do-
maines de WEISS. Ces domaines sont orientés de manière aléatoire, de telle sorte que
l’aimantation totale est nulle. Mais lorsque l’on plonge un morceau de fer dans un

Lorsque la matière est plongée dans un champ magnétique d’intensité H,
il peut y avoir apparition de moments magnétiques orientés dans la direc-
tion du champ (aimantation induite) et/ou orientation de dipôles perma-
nents (aimantation d’orientation). Une aimantation d’intensité M
apparaît à l’intérieur de la matière. La combinaison des champs H et M
est le champ d’induction magnétique ou densité de flux magnétique B:

(13.59)

où χm , la susceptibilité magnétique du matériau, et µr = 1 + χm , la per-
méabilité relative sont des paramètres liés à la matière. La constante

(13.60)

est la perméabilité absolue du matériau.

 B H M H H H H H= +( ) = + = +( ) = =µ µ µ χ µ χ µ µ µ0 0 0 0 01m m r

µ µ µ= 0 r
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champ magnétique, les domaines qui sont déjà orientés en direction du champ crois-
sent aux dépens des autres.

L’évolution de l’aimantation en présence d’un champ magnétique externe dépend des
caractéristiques du matériau. Elle varie entre deux cas extrêmes, celui du matériau ma-
gnétique dur parfait et celui du matériau magnétique doux parfait. On représente gra-
phiquement l’évolution de l’aimantation M en fonction de l’intensité H du champ
magnétique externe dans lequel le matériau est plongé. Un matériau magnétique dur
parfait conserve l’aimantation imprimée lors de sa confection, indépendamment de
l’intensité du champ extérieur, et sa courbe d’aimantation serait une droite horizontale
(fig. 13.51). En revanche, l’aimantation d’un matériau magnétique doux est, s’il n’a ja-
mais été magnétisé, proportionnelle à l’intensité du champ extérieur. La pente de cette
droite est égale à la valeur de la perméabilité magnétique (fig. 13.52), ce qui implique
que cette droite coïnciderait avec l’axe d’aimantation. La figure 13.53 montre une con-
séquence de la facilité d’aimantation d’un matériau magnétique doux: lorsqu’on le
plonge dans un champ externe H, on observe l’apparition de charges magnétiques in-
duites à sa surface et celles-ci s’ordonnent de telle manière que le champ magnétique
externe ne pénètre pas dans la matériau, de manière semblable à ce qui se passe lors-
qu’un matériau conducteur est plongé dans un champ électrique (exemple 13.1).

Comment le phénomène d’écrantage du champ externe est-il décrit au moyen du
champ d’induction magnétique B? La conséquence de la reconfiguration des charges
magnétiques induites est que la pièce de métal doux «attire» les lignes du champ d’in-
duction magnétique. Cet effet est utilisé pour protéger certains espaces de la présence
de champs magnétiques: il s’agit d’un blindage magnétique réalisé au moyen d’une
structure fermée en mu-métal, constituée de couches successives de métal à haute per-
méabilité magnétique. Une telle structure joue, dans le domaine magnétique, le même
rôle que la cage de FARADAY dans le domaine électrique (fig. 13.54).

Lorsque l’on plonge un morceau de matériau ferromagnétique non magnétisé dans un
champ d’excitation magnétique d’intensité H croissante, on observe que la valeur M
de l’aimantation croît d’abord, mais de manière non linéaire, contrairement à ce qui
se passerait dans un matériau magnétique doux parfait. Lorsque la plus grande partie
des domaines de WEISS ont été orientés, la croissance de l’aimantation diminue jus-
qu’au moment où l’on a atteint la saturation, c’est-à-dire l’aimantation maximale. Si
l’on réduit l’intensité H du champ, on observe que la magnétisation ne suit pas la
même courbe; les domaines de WEISS ont tendance à garder leur orientation: cet effet
mémoire est un phénomène que l’on appelle hystérésis (du grec husterein «être en
retard»). Lorsque l’intensité du champ extérieur s’annule, l’échantillon possède enco-
re une certaine aimantation dite aimantation rémanente Mr. Si l’on inverse le sens du
champ excitateur, l’aimantation continue à diminuer jusqu’à s’annuler pour une valeur
du champ excitateur désignée par Hc, l’intensité du champ coercitif. Si l’on poursuit
la croissance de l’intensité du champ excitateur, l’aimantation inversée augmente jus-
qu’à atteindre la saturation. Lorsqu’on inverse à nouveau le sens du champ excitateur,
l’aimantation croît à nouveau, mais sur une courbe différente de la courbe initiale. On
obtient ainsi un cycle d’hystérésis (fig. 13.55). C’est cet effet de mémoire qui est uti-
lisé dans les supports d’archivage de données tels que bandes magnétiques, disques
souples et durs, etc. La différence entre les matériaux magnétiques doux et les maté-
riaux magnétiques durs se manifeste dans l’aspect de leurs courbes d’hystérésis
respectives : plus le matériau magnétique est doux, plus la courbe d’hystérésis est
étroite et tend à se rapprocher de l’axe d’aimantation. En revanche, pour un matériau
magnétique dur, cet courbe sera d’autant plus large que la dureté est importante

Chaque substance ferromagnétique perd son aimantation au-delà d’une températu-
re caractéristique pour la substance, la température de CURIE. Au-dessus de cette
température (770°C pour le fer), le matériau n’est plus ferromagnétique, il est
paramagnétique.

H

M

FIGURE 13.51 Courbe d’aimanta-
tion d’un matériau magnétique dur
parfait. L’aimantation ne dépend
pas de l’intensité du champ magné-
tique externe.

H

M

FIGURE 13.52 Courbe d’aimanta-
tion d’un matériau magnétique
doux parfait. La ligne discontinue
représente l’aimantation de satura-
tion.

FIGURE 13.53 Cylindre de fer
doux plongé dans un champ ma-
gnétique H: le champ magnétique
est nul à l’intérieur du cylindre.

H

H

FIGURE 13.54 Effet de blindage
magnétique: les lignes du champ
d’induction magnétique B sont
«attirées» à l’intérieur du blindage
en matériau magnétique doux.

B

B
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13.7.6 Densité d’énergie et tensions dans le champ magnétostatique

En utilisant les mêmes correspondances que celles de la section 13.7.2, nous pouvons
reprendre les résultats obtenus pour le champ électrostatique aux sections 13.5.1 et
13.5.2.

1. Quelle est la particularité de la notion de charge magnétique?

2. Quelle est la différence entre le champ d’excitation magnétique H et le
champ d’induction magnétique B?

3. Qu’est-ce que l’aimantation?

4. Quelles sont les propriétés et particularités de l’aimantation?

1. La notion de charge magnétique permet de décrire le champ magnétos-
tatique lié à la matière aimantée de manière analogue à celle du champ
électrostatique. La charge magnétique n’est pas liée à une particule
magnétisée, elle est associée à des dipôles magnétiques insécables.

2. Les deux champs coïncident à l’extérieur de la matière. À l’intérieur de
la matière, l’excitation magnétique H est opposée à l’aimantation M
alors que le champ d’induction magnétique B englobe cette dernière.
Les charges magnétiques sont les sources du champ H (discontinuité à la surface de la
matière magnétisée), alors que les lignes du champ B sont fermées sur elles-mêmes, ce qui
implique que ce champ n’a pas de sources.

3. L’aimantation (ou magnétisation) décrit l’état magnétique d’un corps. Elle correspond à la
densité volumique des moments dipolaires magnétiques. C’est un champ vectoriel. Le
module de l’aimantation correspond à la densité superficielle de charge magnétique.

4. L’aimantation décrit à la fois le comportement d’un matériau en présence d’un champ
magnétique extérieur et les propriétés des matériaux qui sont intrinsèquement magnétisés.
En présence d’un champ magnétique extérieur, suivant les propriétés du matériau, on peut

H

M

Mr

Hc

Ms

FIGURE 13.55 Cycle d’hystérésis:
lorsqu’un matériau ferromagnéti-
que est plongé dans un champ ma-
gnétique croissant, son aimantation
croît jusqu’à atteindre l’aimanta-
tion de saturation. Si l’on inverse le
champ externe, son aimantation ne
suit pas la même courbe, mais gar-
de une certaine mémoire. L’aiman-
tation prend du retard (hysterein)
sur les variations du champ exter-
ne.

Ainsi, la densité d’énergie est égale à:

(13.61)

Dans la direction des lignes de champ, il règne une tension de traction:

(13.62)

et perpendiculairement aux lignes de champ une tension de compression:

(13.63)

Comme les lignes du champ commencent ou finissent sur des pôles magné-
tiques, nous pouvons conclure que le champ magnétique d’intensité H
exerce une traction sur les pôles des aimants. Deux pôles de noms diffé-
rents sont donc tirés l’un vers l’autre par le champ magnétique, alors que
les pôles de même nom sont éloignés l’un de l’autre par ce champ.
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observer des comportements différents. Parmi ceux-ci, trois sont dominants: le diamagné-
tisme, propre à tous les matériaux, mais de très faible intensité, le paramagnétisme dans les
matériaux dont les atomes ont un moment magnétique, et le ferromagnétisme qui est un
paramagnétisme collectif qui se manifeste dans le fer, le cobalt et le nickel, ainsi que dans
des alliages adéquats.

13.8 COURANT ÉLECTRIQUE ET CHAMP MAGNÉTIQUE

Dans cette section, nous allons découvrir que les champs magnétiques sont engendrés
par des courants électriques et nous établirons la manière dont ils interagissent.

Dans la section précédente, nous avons introduit trois champs pour la description des
phénomènes magnétiques, H, M et B. Les deux premiers interviennent dans la des-
cription coulombienne de l’interaction entre la matière et un champ magnétique. Le
champ H peut être considéré comme celui appliqué à la matière, et le champ M com-
me la magnétisation de cette dernière. Le champ B rassemble, à la constante µ0 près,
la contribution du champ appliqué H et celle du matériau M. En dehors de la matière,
H et B coïncident. Le champ d’induction correspond à l’approche ampérienne du ma-
gnétisme qui, comme nous le confirmerons dans ce qui suit, attribue ce phénomène à
l’action de courants électriques.

Comme cette section est consacrée à l’étude de ce phénomène, nous utiliserons le
champ d’induction magnétique B pour quantifier l’intensité du champ magnétique.

13.8.1 Découverte d’ŒRSTED et lois de BIOT-SAVART et AMPÈRE

Nous avons mentionné à la section 13.1.2 que le physicien danois Hans Christian
ŒRSTED découvrit en 1820 qu’une aiguille de boussole placée dans le voisinage d’un
fil conducteur était déviée lorsqu’un courant électrique circulait dans ce conducteur.
Une étude détaillée du phénomène permit de déterminer que les lignes du champ ma-
gnétique sont fermées sur elles-mêmes; elles entourent le conducteur sous forme de
cercles concentriques situés dans un plan perpendiculaire au conducteur.

De nombreux chercheurs, notamment les physiciens André-Marie AMPÈRE, ainsi que
Jean-Baptiste BIOT associé au médecin Félix SAVART, réalisèrent un grand nombre
d’expériences pour modéliser le phénomène. Les deux derniers énoncèrent la même
année le résultat de leurs recherches. L’intensité B de l’induction magnétique engen-
drée par un courant stationnaire d’intensité I circulant dans un fil conducteur est égale
à:

(13.64)

où r est le vecteur reliant l’élément infinitésimal dl au point P et ur le vecteur unitaire
associé à r (fig. 13.56). Le produit vectoriel rend compte du fait que le vecteur B est à
la fois perpendiculaire à l’élément dl et au vecteur r. Le dénominateur 4π a été intro-
duit lors de l’établissement du Système international afin que les équations de MAX-

WELL aient une forme simple. Cette relation est connue en tant que loi de BIOT-SAVART.

L’application de cette loi permet de démontrer (exemple 13.8) que le module de l’in-
tensité B du champ magnétique engendré par un courant d’intensité I circulant dans
un conducteur rectiligne de longueur infinie (fig. 13.57) varie de manière inversement
proportionnelle au rayon r de cercles centrés sur le conducteur:
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FIGURE 13.56 Loi de BIOT-
SAVART: l’intensité en un point P
du champ magnétique engendré
par un courant d’intensité I circu-
lant dans un conducteur est égale à
la somme des contributions dues
aux éléments infinitésimaux de
longueur dl.

B(r)

j

r

FIGURE 13.57 Champ magnétique
engendré par un courant circulant
dans un conducteur rectiligne.
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(13.65)

Le vecteur d’intensité B du champ magnétique est en tout point tangent au cercle cen-
tré sur le conducteur et son sens est donné par la règle de la main droite: si elle enserre
le conducteur de telle manière que le pouce indique le sens du courant conventionnel,
les doigts pointent dans le sens du vecteur de champ.

Pour des configurations caractérisées par des symétries simples, on peut appliquer une
généralisation de ce résultat, une loi relative à la circulation du champ d’induction ma-
gnétique qui joue un rôle semblable à celui du théorème de GAUSS en électrostatique.

La version locale du théorème d’AMPÈRE sera développée dans l’exemple 13.10. Vu
que, selon l’équation (13.25), la circulation du champ électrostatique est nulle, son ro-
tationnel l’est aussi, ce qui justifie notre affirmation de la section 13.4.3:
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La circulation du champ d’induction magnétique le long d’une courbe fer-
mée C est donnée par la loi ou théorème d’AMPÈRE:

(13.66)

j est le vecteur de la densité de courant traversant la surface S délimitée
par la courbe fermée C et dA est le vecteur normal à l’élément infinitésimal
de surface dA.

Si la courbe d’intégration C entoure des conducteurs transportant des cou-
rants d’intensités diverses, comme dans la figure 13.58, la circulation du
champ engendré est égale à la somme algébrique des intensités des cou-
rants enlacés par la courbe C:

(13.67)

La version locale de la loi d’AMPÈRE s’exprime au moyen d’un opérateur
différentiel, le rotationnel:

(13.68)

Cette relation implique que les courants électriques sont les sources du
champ magnétique.

Le flux du champ magnétique à travers une surface fermée est nul (les li-
gnes de champ sont fermées sur elles-mêmes):

(13.69)

ou en version locale:

(13.70)

ce qui signifie qu’il n’y a pas de monopôle magnétique.
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FIGURE 13.58 La circulation du
champ magnétique le long d’une
courbe fermée est proportionnelle à
la somme des courants enlacés.
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(13.71)

13.8.2 Détermination de l’intensité de quelques configurations

Nous allons considérer deux configurations importantes, à savoir une boucle de cou-
rant à cause de son importance fondamentale et une bobine à cause de son application
technique.

Champ d’une boucle ou spire de courant. Le calcul général de la structure du
champ magnétique engendré par une boucle circulaire de courant n’est pas élémentai-
re. En revanche, il est aisé de déterminer l’intensité sur l’axe de la spire. Le calcul
effectué dans l’exemple 13.9 donne:

(13.72)

La parenthèse contient les éléments qui caractérisent la boucle, à savoir son aire et l’in-
tensité du courant. Cette partie est respectivement multipliée par la constante magné-
tique et par la dépendance spatiale de l’intensité du champ.

Dans l’exemple 13.4, l’approximation dipolaire du champ engendré par un dipôle
électrique donne pour l’intensité sur l’axe du dipôle:

(13.73)

une relation qui est semblable à l’équation (13.72). Cette similitude nous permet d’ad-
mettre que le champ magnétique le long de l’axe d’une spire de courant a une structure
identique au champ d’un dipôle électrique, pour autant que l’on soit suffisamment
éloigné des éléments qui engendrent le champ. C’est la raison pour laquelle une spire
de courant est appelée un dipôle magnétique.

Cette similitude nous permet de transposer les équations (E 13.1) et (E 13.2) pour l’in-
tensité du champ dipolaire magnétique en dehors de l’axe (fig. 13.59):

(13.74)

dans lesquelles le moment dipolaire magnétique associé à la boucle de courant est
défini par:

(13.75)

où A est le vecteur normal à la surface définie par la boucle de courant, de module égal
à l’aire de cette surface, et de sens positif défini par le sens du courant. Dans le Systè-
me international, cette grandeur se mesure en A m2. Si elle est définie à partir d’une
paire de charges magnétiques par la relation (13.48), il s’ensuit que la charge magné-
tique se mesure en A m.

Le mouvement des électrons dans un atome peut être considéré comme une boucle de
courant et constitue donc un dipôle magnétique. Suivant l’arrangement des orbites
électroniques, un atome peut avoir un moment dipolaire magnétique orbital ou non.
D’autre part, un moment magnétique est lié au spin des électrons; là aussi, l’atome
peut présenter un moment magnétique intrinsèque. Ces deux contributions s’ajoutent
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pour former le moment magnétique de l’atome. Ce sont ces moments magnétiques
atomiques qui sont à l’origine de l’aimantation d’une substance; ils correspondent à
ce que nous avons appelé la charge magnétique qm. Rappelons que, contrairement à ce
qui est possible dans le cas du dipôle électrique, on ne peut pas séparer les pôles d’un
dipôle magnétique.

 

Champ d’un solénoïde. En enroulant un fil conducteur traversé par un courant élec-
trique autour d’un support cylindrique, on obtient un champ magnétique important à
l’intérieur de cette bobine, vu que les champs dipolaires engendrés par chacune des
spires s’additionnent à l’intérieur de la bobine. Si la dimension de la section est négli-
geable par rapport à la longueur de la bobine, on l’appelle un solénoïde (terme créé par
AMPÈRE lors de ses recherches sur le magnétisme). Nous allons évaluer l’intensité du
champ magnétique à l’intérieur de ce système.

Le solénoïde de la figure 13.60 possède n spires par unité de longueur. Nous appli-
quons le théorème d’AMPÈRE en choisissant pour contour d’intégration le rectangle
PQRS. L’apport des côtés SP et QR à la circulation est nul, le champ leur étant per-
pendiculaire. Celui du côté RS est négligeable, le champ étant pratiquement nul à l’ex-
térieur du solénoïde. La contribution du côté PQ à la circulation est égale à

 

Ba. Le
courant traversant le rectangle est égal à naI. En vertu du théorème d’AMPÈRE, ces
deux grandeurs sont égales, ce qui entraîne:

 

(13.76)

où N représente le nombre total de spires et l la longueur du solénoïde.

 

EXEMPLE 13.7. Champ et aimantation d’un aimant toroïdal7.

Autour d’un tore constitué d’un cœur en fer de section carrée (fig. 13.61), de perméabilité µ, de
rayon R beaucoup plus grand que sa section, on enroule N spires jointives qui transportent un
courant d’intensité I. Que vaut l’intensité de l’aimantation

 

M à l’intérieur du fer?

SOLUTION: En vertu de la loi d’AMPÈRE (13.67).

l’intensité du champ magnétique est égale à

À partir de la relation (13.54), nous déduisons pour l’aimantation à l’intérieur du fer:

B

7. Les exemples 13.7 et 13.13 sont tirés de l’ouvrage Problems and Solutions on Electroma-
gnetism, edited by Lim Yung-kuo, © 2005 World Scientific (avec l’autorisation de World
Scientific).
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FIGURE 13.60 Champ magnétique
d’un solénoïde (bobine très longue
par rapport à son diamètre): le
champ est uniforme.
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EXEMPLE 13.8. Champ magnétique engendré par un courant rectiligne.

Déterminer, à partir de la loi de BIOT-SAVART, l’intensité du champ magnétique: (a) engendré
par un segment vertical de conducteur rectiligne en un point P d’où l’on voit les extrémités du
segment sous des angles respectifs α1 et α2 par rapport à l’horizontale, le point P se trouvant à
une distance R du segment qui transporte un courant d’intensité I ; (b) généraliser le résultat
pour un fil de longueur infinie.

SOLUTION: (a) En nous référant à la figure 13.62, nous obtenons pour le champ engendré en
P par l’élément de longueur infinitésimale dl situé au point M:

Pour obtenir l’intensité totale, nous intégrons ces contributions infinitésimales d’une extrémité
à l’autre du segment. La variable α s’impose de manière naturelle. Exprimons les autres varia-
bles en fonction de cette dernière et de la distance R:

Après substitution et simplification, nous obtenons:

L’intégration entre α1 et α2 donne:

(b) Si la longueur du conducteur tend vers l’infini, les angles α1 et α2 tendent respectivement
vers –π/2 et +π/2. L’introduction de ces valeurs et d’une distance variable r donne finalement:

(E 13.4)

Ce résultat justifie la relation (13.65). L’application du théorème d’AMPÈRE aurait permis de le
trouver plus simplement.

B

EXEMPLE 13.9. Champ magnétique sur l’axe d’une boucle circulaire (spire) de courant.

a) Déterminer l’intensité du champ magnétique engendré par un courant d’intensité I circulant
dans une bouche circulaire (ou spire) de rayon R, uniquement sur l’axe de la boucle. (b) Se pla-
cer dans l’approximation dipolaire qui consiste à limiter l’étude à des points situés loin du di-
pôle, c’est-à-dire à une distance z q R.
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FIGURE 13.62 Champ magnétique
engendré par un courant rectiligne:
éléments servant à la détermination
de l’intensité en un point P.
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SOLUTION: (a) En se référant à la figure 13.63 et en vertu de la loi de BIOT-SAVART (13.64),
l’intensité en P créée par l’élément infinitésimal situé en M est donnée par:

Le produit vectoriel des deux vecteurs unitaires est perpendiculaire au plan qu’ils définissent et
a une valeur égale à l’unité. Le champ élémentaire en P a donc pour module:

Cet élément de champ peut être décomposé en une composante perpendiculaire et une compo-
sante parallèle à l’axe Oz. Lors de l’intégration sur le pourtour de la spire, les composantes per-
pendiculaires auront une contribution nulle, vu qu’à chacune d’elles en correspond une
diamétralement opposée qui la compense. Ainsi, seules les composantes parallèles à l’axe
contribuent à l’intensité sur cet axe. Ces composantes sont proportionnelles à cos(θ) = R/r:

Nous obtenons la contribution totale au point P en intégrant sur le pourtour de la spire. Cette
intégrale est égale à la circonférence de la spire, à savoir 2πR. Ainsi,:

(E 13.5)

Comme r = (R2 + z2)3/2, l’intensité en n’importe quel point de l’axe de la boucle devient:

(E 13.6)

(b) Si la boucle représente un courant tel que R a z ≈ r (par exemple un courant microscopique
fermé à l’intérieur d’un atome produit par le mouvement d’un électron sur son orbite), la gran-
deur A = πR2 représente l’aire de la boucle. L’expression (E 13.5) peut s’écrire:

B

EXEMPLE 13.10. Version locale du théorème d’AMPÈRE.

Établir la forme différentielle du théorème d’AMPÈRE en procédant de manière analogue à celle
qui a été utilisée à la section 13.3.2 pour formuler la version locale du théorème de GAUSS.

SOLUTION: Sachant que le théorème d’AMPÈRE peut s’appliquer à un contour quelconque,
nous commençons par l’appliquer à un contour rectangulaire infinitésimal ABCD situé dans le
plan Oxy (fig. 13.64). La circulation sur cette courbe fermée, dans le sens indiqué par les flè-
ches, est égale à la somme de la circulation sur chacun des côtés du rectangle.

Sur le côté BC, parallèle à +Oy, nous avons:
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FIGURE 13.63 Champ magnétique
engendré par une boucle circulaire
de courant.
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Sur le côté DA, orienté dans le sens opposé, la contribution est égale à:

La contribution totale sur les côtés parallèles à Oy devient:

Comme le rectangle est très petit, nous pouvons recourir à une approximation linéaire de la va-
riation de l’intensité du champ magnétique entre les deux segments:

ce qui entraîne:

En procédant de manière analogue sur les segments parallèles à Ox, nous obtenons:

La circulation totale sur le contour du rectangle infinitésimal parallèle au plan Oxz est égale à:

Si nous désignons par dI le courant qui traverse le rectangle ABCD, nous pouvons l’exprimer
au moyen de la composante suivant Oz de la densité de courant j:

L’introduction des deux dernières relations dans le théorème d’AMPÈRE donne, après simplifi-
cation par dxdy:

ce qui représente la troisième composante de la forme différentielle du théorème d’AMPÈRE.

En procédant de manière analogue pour des rectangles infinitésimaux parallèles respectivement
aux plans Oyz et Ozx, nous obtenons les trois composantes de la forme locale du théorème
d’AMPÈRE. Nous les présentons sous forme vectorielle:

   
ΛDA D

A

= = − ′ = − ′∫ B Bi idl uy ydy dyB

 Λ ΛBC DA+ = − ′( )B By y dy

 
B B B

B
y y yd y

x
dx− ′ ≈ =

∂
∂

 
Λ ΛBC DA+ =

∂

∂

By

x
dxdy

 
Λ ΛAB CD+ = −

∂
∂
Bx

y
dxdy

   
ΛABCD

ABCD

= =
∂
∂

− ∂
∂

⎛

⎝
⎜

⎞

⎠
⎟∫ Bi� dl

B By x

x y
dxdy

dI j dyz zdA j dx= =

 

∂

∂
−

∂
∂

=
B By x

x y
jzµ0

 

∂
∂

−
∂

∂

∂
∂

−
∂
∂

∂

∂
−

∂
∂

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟

B B

B B

B B

z y

x z

y x

y z

z x

x y

⎟⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

µ

µ

µ

0

0

0

j

j

j

x

y

z



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 667

13.8  COURANT ÉLECTRIQUE ET CHAMP MAGNÉTIQUE

Le membre de droite contient le vecteur j de la densité de courant. Le membre de gauche fait
apparaître un nouveau vecteur, le rotationnel de B, que l’on écrit rot B. On obtient ainsi une
équation vectorielle, la forme locale du théorème d’AMPÈRE:

B

EXEMPLE 13.11. Champ magnétique engendré par le courant dans un câble coaxial.

Un câble coaxial très long consiste en deux conducteurs concentriques dont les dimensions sont
indiquées dans la figure 13.65. Le courant d’intensité I circule dans un sens dans le conducteur
central et dans le sens inverse dans le conducteur externe. En admettant que les courants sont
distribués uniformément dans les conducteurs, déterminer au moyen de la version locale de la
loi d’AMPÈRE l’évolution de l’intensité du champ d’induction magnétique: (a) à l’intérieur du
conducteur central; (b) dans l’espace entre les deux conducteurs; (c) à l’intérieur du conducteur
externe; (d) à l’extérieur du câble coaxial; (e) justifier pourquoi on peut obtenir ces résultats à
partir de la version intégrale et déterminer l’intensité dans le conducteur externe.

SOLUTION: En raison de la symétrie du dispositif et du champ magnétique qui en découle,
nous opérons en coordonnées cylindriques (r, θ, z). La forme différentielle (13.68) de la loi
d’AMPÈRE va nous permettre de déterminer l’intensité du champ magnétique à partir des densi-
tés locales de courant. En coordonnées cylindriques, le rotationnel devient:

Seule la composante Bθ est variable, et elle ne varie qu’en fonction de la coordonnée radiale.
La loi d’AMPÈRE se réduit à:

(a) Comme le courant est distribué uniformément sur la section du conducteur, sa densité est
égale au quotient de l’intensité I et de l’aire de sa section:

Donc

ce qui entraîne

 rot B = µ0 j

R1

R2

R3

FIGURE 13.65 Câble coaxial: le
courant circule dans un sens dans le
conducteur central et dans le sens
inverse dans le conducteur externe.
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où c1 est une constante d’intégration. Pour la déterminer, nous utilisons le fait que l’intensité du
champ magnétique est nulle sur l’axe du câble (pas de courant enlacé), ce qui implique que la
constante d’intégration est nulle elle aussi. Nous avons donc:

(b) En l’absence de courant dans ce domaine, le rotationnel est nul, donc

ce qui implique

À l’interface entre le conducteur central et l’espace intermédiaire, l’intensité du champ magné-
tique ne doit pas varier de manière discontinue:

Donc:

(c) Le sens du courant est inversé, la densité de courant devient:

L’équation différentielle est maintenant:

avec pour solution:

La continuité du champ magnétique en r = R2 permet de fixer la valeur de la constante c3:

d’où l’on obtient:

On trouve finalement:
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(d) En dehors du câble coaxial, la densité de courant est nulle. La continuité de l’intensité du
champ entraîne:

La figure 13.66 montre l’évolution de l’intensité en fonction du rayon r.

(e) La symétrie cylindrique du système considéré permet d’obtenir ces résultats à partir de la
version intégrale (13.67) de la loi d’AMPÈRE. Dans le cylindre externe, les courants enlacés sont
le courant intérieur I et le courant extérieur dont l’intensité varie en fonction du rayon selon:

La version intégrale de la loi d’AMPÈRE donne dans ce cas:

La valeur qui en découle est naturellement la même que celle que nous avons obtenue au point
(c) à partir de la version locale de la loi.

B

13.8.3 Forces sur les courants et les charges en mouvement

Lorsqu’il est «attaché» à un objet matériel, c’est-à-dire lorsque les sources d’un
champ sont attachées à un objet, ce champ exerce toujours des contraintes sur cet ob-
jet. Nous venons de voir qu’un conducteur traversé par un courant électrique est en-
touré d’un champ dont les lignes sont des cercles concentriques. En outre, à la
section 13.7.6, nous avons démontré que le champ magnétique exerce une traction
dans la direction des lignes de champ et une compression perpendiculairement à cel-
les-ci. Nous devons donc conclure que le champ magnétique exerce une pression sur
le conducteur et, par le fait même, sur le courant électrique transporté par le conduc-
teur.

Ainsi, si l’on envoie un courant électrique dans deux conducteurs rectilignes parallè-
les, on observe qu’ils se rapprochent si le courant a le même sens dans les deux
conducteurs, alors qu’ils s’éloignent si les courants sont antiparallèles.

Lorsque l’on dessine la répartition de l’intensité du champ créé par les courants en
question, on se rend compte que cette intensité est maximale de part et d’autre des
deux conducteurs si les deux courants sont parallèles. On en conclut que la pression
exercée par le champ magnétique pousse les deux conducteurs l’un vers l’autre. C’est
le champ magnétique qui exerce la force. Dans le cas de courants antiparallèles, l’in-
tensité du champ commun est maximale entre les deux conducteurs; ceux-ci sont donc
écartés l’un de l’autre par le champ magnétique.

Force de LAPLACE. L’intensité de l’interaction entre un champ magnétique et un
courant doit être déterminée par l’expérience. On peut, par exemple, suspendre au
moyen de fils conducteurs une barrette métallique dans l’entrefer d’un aimant; lors-
que la barrette est traversées par un courant, elle subit une force (fig. 13.67). L’analy-
se qui précède indique que la force du champ magnétique sur le courant s’exercera
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perpendiculairement à la fois au vecteur de l’induction magnétique B et au vecteur j
de la densité de courant. L’expérience révèle que la force est proportionnelle à l’in-
tensité I du courant, à l’intensité B du champ, à la longueur l de la partie du conduc-
teur plongée dans le champ magnétique. La force dépend également de l’angle ϕ
entre les vecteurs B et j ; elle est maximale si cet angle est droit, nulle si les deux vec-
teurs sont parallèles ou antiparallèles, donc proportionnelle à sin(ϕ). Ainsi:

Cette relation peut être mise sous forme vectorielle en introduisant le vecteur l de
même sens que j.

Force de LORENTZ . Un courant électrique est un flux de charges électriques en mou-
vement, et la force de LAPLACE est la résultante des forces qui s’exercent sur chacune
des charges qui constituent ce courant. Pour déterminer la force individuelle, nous
considérons un segment de conducteur rectiligne de longueur l, de section A, traversé
par un courant d’intensité I. Nous désignons par v la vitesse moyenne des charges in-
dividuelles Q et par n leur nombre par unité de volume.

L’intensité I est égale à:

Nous substituons cette valeur dans l’équation (13.77):

Comme les vecteurs v et l    sont parallèles, nous pouvons écrire vl    = lv. La force totale
est donc:

Nous pouvons admettre que la force agit de façon égale sur chacune des charges. En
divisant l’expression ci-dessus par le nombre total de charges nAl, nous trouvons que:

 F Il∝ B sin( )ϕ

Un conducteur de longueur l traversé par un courant d’intensité I subit,
lorsqu’il est plongé dans un champ d’induction magnétique d’intensité B,
une force, dite force de LAPLACE, donnée par:

(13.77) F = ×( )I l B

 
I

dQ

dt

d

dt
nQAl nQA

dl

dt
nQA= = ( ) = = v

  F l= ×( )nQAv B

  F = ×( )nQAl v B
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EXEMPLE 13.12. Force entre deux courants parallèles.

Déterminer l’intensité de la force agissant sur une paire de fils conducteurs rectilignes parallèles
de longueur infinie (pour pouvoir négliger les effets de bord).

SOLUTION: Nous considérons que le conducteur 2 se trouve dans le champ engendré par le
conducteur 1 (fig. 13.69) et appliquons l’équation (13.77). Comme tous les vecteurs sont mu-
tuellement perpendiculaires, elle devient: F = I2lB1. Comme

nous obtenons, pour la force par unité de longueur:

(E 13.7)

Nous savons déjà que les deux conducteurs sont poussés l’un vers l’autre par le champ si les
courants sont parallèles, écartés l’un de l’autre si les courants sont antiparallèles.

C’est cette force entre deux courants parallèles qui est utilisée pour la définition de l’ampère,
l’unité de l’intensité du courant électrique: «Un ampère est l’intensité d’un courant constant
qui, s’il est maintenu dans deux conducteurs linéaires et parallèles, de longueurs infinies, de sec-
tions négligeables et distants d’un mètre dans le vide, produit entre ces deux conducteurs une
force linéaire égale à 2·10–7 newton par mètre.»

Si, dans l’équation (E 13.7), nous isolons la perméabilité magnétique et substituons les valeurs
des grandeurs de la définition de l’ampère, nous obtenons:

B

EXEMPLE 13.13. Interaction entre deux courants à angle droit.

Deux fils conducteurs mutuellement perpendiculaires sont séparés par une distance d et trans-
portent des courants d’intensités respectives I1 et I2. Considérez, sur le second conducteur, un
segment de longueur l a d, symétrique par rapport à Oy, dont les extrémités ont les coordonnes

Un corps portant une charge Q qui se déplace à une vitesse v dans un
champ d’induction magnétique d’intensité B est soumis à une force

(13.78)

appelée force de LORENTZ (fig. 13.68).

Souvent, les champs électrique et magnétique sont présents simultané-
ment. Une particule portant la charge Q plongée dans ces champs intera-
gira avec les deux champs et subira une force donnée par:

(13.79)

  F = ×( )Q v B

  F = + ×( )Q E Bv

B

FLorentz
Q

v

FIGURE 13.68 Une particule de
charge Q en mouvement à la vites-
se v dans un champ d’induction
magnétique d’intensité B subit une
force qui est à la fois perpendicu-
laire au vecteur de champ et au vec-
teur vitesse, la force de LORENTZ.

B1(r)

r

I1

I2

F

FIGURE 13.69 Détermination de
la force entre deux courants rectili-
gnes parallèles.
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(–1/2, 1/2) (fig. 13.70a). (a) Déterminez la force et le couple exercés sur ce segment. (b) Si le
second segment peut tourner librement autour de l’axe Oy, quelle sera la configuration finale?

SOLUTION: (a) En vertu de l’équation (E 13.4), le champ d’induction magnétique engendré par
le courant d’intensité I1 est donné par:

Le passage des coordonnées cylindriques aux coordonnées cartésiennes est basé sur la similitu-
de des deux triangles qui apparaissent dans la figure 13.70b. Un segment infinitésimal situé en-
tre z et z + dz du conducteur transportant le courant d’intensité I2 subit la force de LAPLACE

donnée par l’équation (13.77):

La force agissant sur le segment considéré devient:

ce qui était attendu, vu la symétrie de la configuration et le fait que l’intégrande est une fonction
impaire de z.

Le couple élémentaire par rapport à l’axe de rotation coïncidant avec Oy est:

Le module du couple total devient:

Comme l a d, on peut développer tan-1(z/a) en série de Taylor autour de z = 0 et ne conserver
que le premier terme, ce qui donne:

On en conclut que si le second conducteur est libre de pivoter autour de l’axe Oy, il va se
retouver parallèle au premier conducteur de telle manière que les deux courants circulent
dans le même sens, ce qui correspond à un minimum de l’énergie emmagasinée dans le
champ magnétique.
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EXEMPLE 13.14. Effet HALL.

En 1875, le physicien américain Edwin Herbert HALL découvrit que, lorsqu’une plaque métal-
lique traversée par un courant dans le sens de la longueur était plongée dans un champ magné-
tique perpendiculaire à la plaque, une tension s’établissait entre les deux bords opposés de la
plaque. Expliquez le phénomène et évaluez la valeur de la tension pour une plaque de largeur b
et d’épaisseur d.

SOLUTION: Les porteurs de charges mobiles se déplacent dans le conducteur avec une vitesse
de drift moyenne v de même sens que le vecteur de densité de courant j (fig. 13.71). Ces charges
sont soumises à la force de LORENTZ FL = Q(v × Β) perpendiculairement à la direction du cou-
rant. Comme aucun courant ne peut circuler dans cette direction, ces charges électriques s’ac-
cumulent sur les bords du conducteur de telle manière qu’à l’équilibre, la force de LORENTZ FL
est compensée par une force électrique Fél = QΕH. La tension électrique qui s’établit entre les
deux bords du conducteur est la tension de HALL UH. L’égalité des modules des deux forces
entraîne:

Sachant que

nous obtenons

La tension de HALL est proportionnelle à l’intensité du champ d’induction magnétique, ce qui
permet de concevoir un appareil servant à mesurer l’intensité de ce champ. Cet appareil est une
sonde de HALL, dans laquelle les paramètres ρ, I et d sont contrôlés. La sonde est calibrée de
manière à ce que la tension mesurée soit convertie directement en tesla.

Réciproquement, si on plonge un plaque métallique traversée par un courant dans un champ
d’induction magnétique et que l’on mesure UH, Β, I et d, on peut déterminer la densité des char-
ges en mouvement. On obtient également le signe de ces charges en mouvement. C’est de cette
manière que l’on a découvert que, majoritairement, ce sont les électrons qui sont les porteurs de
charge dans les métaux, mais également que le courant électrique pouvait être porté par des
charges positives, les trous.

B

1. Qu’exprime la version intégrale du théorème d’AMPÈRE?

2. Quelle particularité du champ magnétique la version locale du théo-
rème d’AMPÈRE fait-elle ressortir?

3. Comment se manifeste l’interaction entre le champ électrique et les
charges ou courants électriques?

1. La version intégrale du théorème d’AMPÈRE indique que la circulation
du flux d’induction magnétique le long d’une courbe fermée est égale
(à un facteur près) à l’intégrale de la densité de courant traversant la
surface délimitée par cette courbe. Si la courbe encercle des conduc-
teurs, l’intégrale est remplacée par la somme algébriques des intensités.

b

d
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FIGURE 13.71 Effet HALL: lors-
qu’un courant circule dans une pla-
que plongée dans un champ
magnétique perpendiculaire à la
plaque, une tension apparaît entre
les bords opposés de la plaque.
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Le théorème d’AMPÈRE relie l’intensité du champ magnétique à ses sources, les courants
électriques.

2. La version locale du théorème d’AMPÈRE fait intervenir l’opérateur rotationnel qui donne
une mesure de la «rotation» du champ considéré. Il exprime la tendance qu’ont les lignes
de champ à tourner autour d’un point. La direction du vecteur rot est celle de l’axe de rota-
tion.

3. Le champ d’induction magnétique agit sur les courants par l’intermédiaire de la force de
LAPLACE et sur les charges en mouvement par l’intermédiaire de la force de LORENTZ. Ces
forces s’exercent perpendiculairement à la direction de mouvement des charges.

13.8.4 Unités de mesure des champs électrique et magnétique

L’objectif est de justifier les unités de mesure des divers champs et grandeurs qui leur
sont associées et de montrer comment elles sont liées entre elles.

Unités électriques. À partir de l’équation (13.2) qui introduit l’intensité du champ
électrique en tant que force par unité de charge, nous obtenons:

Le flux du champ électrique aura pour unité celle du produit de l’intensité du champ
et d’une surface, donc [ψ] = V m.

Le théorème de GAUSS (13.10) nous permet de déterminer l’unité de la permittivité du
vide:

En tant qu’énergie par unité de charge, le potentiel électrique se mesurera en volt; il
en va de même de la circulation du champ électrique: [ϕ] = [Λ] = V.

La densité d’énergie donnée par l’équation (13.27) a pour unité:

La densité d’énergie correspond donc à une pression, ce qui est naturellement le cas
des contraintes calculées à la section 13.5.2.

Finalement, la polarisation correspondant à une densité surfacique de charge, elle sera,
tout comme l’intensité du déplacement électrique, égale à une charge par unité de
surface: [Π] = [∆] = As m-2.

Unités magnétiques. Si l’on exprime la loi d’AMPÈRE (13.65) au moyen de l’excita-
tion magnétique Η, l’intensité du champ magnétique est proportionnelle au courant
entouré et inversement proportionnelle à la distance, d’où

La relation (13.51) implique que la magnétisation Μ se mesure également en A m–1.
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Vu que la valeur et les unités de la perméabilité magnétique du vide sont fixées, com-
me cela a été introduit dans l’exemple 13.12, le champ d’induction magnétique Β, dé-
fini par l’équation (13.54), se mesure en:

Le moment magnétique m défini par l’équation (13.75) se mesure en:

Si le moment magnétique défini par l’équation (13.48) a les mêmes unités, il s’ensuit
que la charge magnétique se mesure en:

Rappelons que cette grandeur ne fait pas partie de la nomenclature du SI et qu’elle ne
correspond pas à un monopôle magnétique.

Finalement, l’unité du potentiel magnétique scalaire et de la circulation magnétique
est le produit de l’unité du champ magnétique et d’une longueur: [ϕm] = [Λm] = A.

Le flux d’induction magnétique φB défini par l’équation (13.56) se mesure en:

13.9 VUE D’ENSEMBLE DES CHAMPS ÉLECTRIQUE ET MAGNÉTIQUE STATIQUES

TABLEAU 13.2 Équations relatives au champ électrostatique.

Version intégrale Version locale

Dans le vide

Le flux du champ électrique à travers une surface fermée est proportionnel à la charge
enfermée, c’est-à-dire que les charges électriques sont les sources du champ électrique
(équations (13.11) et (13.14)).

L’intensité E du champ électrostatique est égale et opposée au taux de variation du gradient
de son potentiel ϕ qui est un champ scalaire (équations (13.18) et (13.22)).
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La nullité de la circulation et du rotationnel du champ électrostatique implique le fait qu’on
peut lui associer un potentiel scalaire (équations (13.25) et (13.71)).

En présence de matière

La présence d’un diélectrique dans le champ électrique en modifie l’intensité à cause de
l’apparition de charges liées à la surface du diélectrique dues à la polarisation de ce dernier
(équations (13.42) et (13.41)).

L’intensité du champ de déplacement DDDD à l’intérieur d’un diélectrique est égale à la densité
superficielle de charges libres (équations (13.38), (13.44) et (13.43)).

TABLEAU 13.3 Équations relatives au champ magnétostatique.

Version intégrale Version locale

Champ engendré par un aimant

Le flux à travers une surface fermée du champ magnétique engendré par un aimant est pro-
portionnel à l’aimantation de ce dernier. Le champ magnétostatique d’intensité H a ses
sources aux endroits où le champ d’aimantation M a ses puits, et réciproquement
(équations (13.53) et (13.51)).

L’intensité H du champ magnétostatique engendré par un aimant est égale et opposée au
taux de variation ou gradient de son potentiel ϕm, qui est un champ scalaire
(équations (13.57) et (13.58)).

TABLEAU 13.2 Équations relatives au champ électrostatique.

Version intégrale Version locale
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13.10 CHAMP GRAVITATIONNEL

Nous sommes constamment soumis aux effets du champ gravitationnel et il est impos-
sible de s’en isoler, contrairement à ce qui est le cas du champ électrostatique au
moyen d’une cage de FARADAY ou du champ magnétostatique par un blindage. C’est
une des raisons pour lesquelles l’interaction gravitationnelle a été celle qui a été la pre-
mière à être étudiée et modélisée.

13.10.1 Un peu d’histoire

De tout temps, l’homme a été fasciné par le mouvement des corps célestes. Il a repéré
dans le ciel deux types d’objets: les étoiles fixes, qui ne se déplacent pas les unes par
rapport aux autres (mais effectuent deux révolutions: une première quotidienne, com-
me le Soleil, et une seconde annuelle), et des objets qui se déplacent par rapport à ce
fond immuable. Les Grecs ont appelé planètes (planétês: astre errant) ces vagabonds
du ciel.

Le champ d’induction magnétique d’intensité B englobe la contribution de l’aimantation
(équation (13.54)). Sa divergence est nulle, ce qui est une conséquence de l’inexistence
d’un monopôle magnétique qui serait le porteur d’une charge magnétique isolée
(équations (13.56) et (13.55)).

Champ engendré par un courant

Les courants électriques sont à l’origine de la circulation du champ magnétique
(équations (13.66) et (13.68)).

TABLEAU 13.3 Équations relatives au champ magnétostatique.

 B H M= +( )µ0

    
B ∏ dA

S
�∫ = 0

 div B = 0

   
Bi i� dl j dA

C S
∫ ∫= µ0  rot B = µ0 j

FIGURE 13.72 Trajectoires obser-
vées des planètes Mars et Saturne.
La première photo de la planète
Mars (en haut à droite) date du
31 janvier 2016, la dernière (en bas
à gauche) du 11 septembre 2016.
Le mouvement de rétrogradation
commence le 18 avril et se termine
le 28 juin. La durée entre deux pri-
ses de vue successives varie entre
six et dix jours. Les photos de la ré-
trogradation de Saturne ont été pri-
ses entre le 15 décembre 2015 et le
21 novembre 2016. (© Tunç Tezel).
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La première hypothèse concernant le mouvement des planètes était qu’elles décrivent
des cercles concentriques autour de la Terre; c’est un modèle géocentrique. Ce qui
était intrigant, c’est que certaines d’entre elles, particulièrement Mars, effectuaient des
mouvements tels que leur trajectoire comportait des segments rétrogrades; la planète
semblait rebrousser chemin (fig. 13.72). Cette particularité obligea les astronomes à
affiner progressivement le modèle qui fut amené à sa culmination aux environs de 140
après J.-C. par Claude PTOLÉMÉE d’Alexandrie (fig. 13.73). Dans ce modèle, les pla-
nètes se déplacent sur des cercles, les épicycles, dont le centre se déplace lui-même sur
un cercle plus grand, le cercle déférent. Le problème de l’inversion du mouvement des
corps célestes disparaît au prix de deux artifices (une tricherie au sens d’ARISTOTE qui
admettait que le seul mouvement possible pour des corps célestes est le mouvement
circulaire uniforme): PTOLÉMÉE admet que les cercles déférents sont décentrés par
rapport à la Terre, et que le mouvement circulaire des planètes est uniforme par rapport
à l’équant, le point symétrique de la Terre par rapport au centre du cercle déférent.

Dans le monde occidental, cette description, en complet accord avec la Bible, fut ad-
mise et professée comme correcte jusqu’au XVIe siècle. Il semble que certains astro-
nomes islamiques provenant de Maragha, au nord-ouest de l’Iran, aient déjà contesté
ce modèle à partir du IXe siècle. Mais c’est le chanoine polonais Nicolas COPERNIC

(1473-1543) qui, pour autant qu’on le sache, fut le premier à proposer de remplacer le
modèle de PTOLÉMÉE par le modèle héliocentrique. L’idée avait été formulée pour la
première fois au IIIe siècle avant J.-C. par l’astronome grec ARISTARQUE. On retrouve
dans l’ouvrage de COPERNIC des théorèmes qui avaient été formulés au XIVe siècle par
des astronomes de Maragha, AL-TUSI et AL-URDI, qui permettaient d’éliminer
l’équant en le remplaçant par un épicycle supplémentaire. L’hypothèse que COPERNIC

se soit inspiré des travaux des astronomes islamiques reste encore à vérifier.

L’astronome Johannes KEPLER (1571-1630), aidé entre autres par l’inventeur suisse
des antilogarithmes, Jost BÜRGI (1552-1632)8, tira profit des observations de Tycho
BRAHE (1546-1601), son prédécesseur à la cour de Prague, pour énoncer trois lois qui
sont une description cinématique du mouvement des planètes (fig. 13.74).

8. Dans ses Tables rudolphines, KEPLER écrivait en 1627 : «M’aidant dans les calculs, Justus
BYRGIUS a été conduit à ces mêmes logarithmes bien des années avant l’apparition du sys-
tème de NAPIER ; mais étant un homme indolent, et très peu communicatif, au lieu d’élever
son enfant pour le bien public, il l’a abandonné à la naissance.»

Il rend hommage à l’innovateur en mathématiques tout en regrettant sa réticence à publier,
sans doute due à sa mauvaise maîtrise du latin.

FIGURE 13.73 Modèle géocentri-
que de PTOLÉMÉE. Il ne peut rendre
compte des observations que grâce
à l’introduction de l’épicycle et de
l’équant.
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déférent

Equant

Terre

Planète

Epicycle

Cercle déférent

Boucle
rétrograde

Planète

Soleil

t1

t2

t3

t4

FIGURE 13.74 Loi des aires: les
aires balayées par le rayon qui relie
la planète au Soleil sont égales
pour des durées égales. Dans la fi-
gure, l’excentricité de l’ellipse est
fortement exagérée et la position
du Soleil, qui devrait se trouver
dans un des foyers, ne correspond
pas à la réalité.

Les planètes décrivent des orbites elliptiques dont le Soleil occupe l’un des
foyers.

Le vecteur position de chaque planète, par rapport au Soleil, balaie des
aires égales de son ellipse en temps égaux (loi des aires).

Les carrés des périodes de révolution sont proportionnels aux cubes des
grands axes des ellipses de révolution:

(13.80)

où k est une constante commune à toutes les planètes.

a kT3 2=
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C’est Isaac NEWTON (1642-1727) qui franchit l’étape suivante dans l’histoire de l’as-
tronomie. Il découvrit en 1666, alors qu’il avait quitté Cambridge pour fuir la peste et
s’était retiré dans son village natal de Woolworth, la loi de la gravitation universelle.

NEWTON réalisa que la Lune était continuellement en train de tomber vers le centre de
la Terre, mais que son mouvement de chute était compensé par son avancement et la
rotondité de la Terre. La force qui maintenait la Lune sur sa trajectoire devait donc être
de même nature que celle qui attirait les objets vers le sol mais, vu que les accéléra-
tions respectives variaient très fortement (2.7·10-3 m s-2 contre 9.81 m s-2), il en conclut
que la force d’attraction devait diminuer avec la distance. Le rapport de ces accéléra-
tions est approximativement l’inverse de celui du carré du rapport du rayon de la tra-
jectoire lunaire et de celui de la Terre. NEWTON émit donc l’hypothèse que la force
responsable variait avec le carré de la distance. Mais comme les données observation-
nelles dont il disposait à l’époque n’étaient pas assez sûres, il ne publia pas ses résul-
tats. Ce n’est que vingt ans plus tard, sous la pression d’Edmund HALLEY, qu’il les
rendit publics dans son ouvrage monumental: Philosophiae Naturalis Principia Ma-
thematica.

Pour déterminer de quelle façon la force d’attraction diminue avec la distance, NEW-

TON se servit de la troisième loi de KEPLER, partant de l’hypothèse que les forces d’at-
traction exercées par le Soleil sur les planètes étaient de même nature que celle que la
Terre exerçait sur la Lune.

Considérons une planète de masse m qui se déplace autour du Soleil avec une période
T sur une orbite circulaire de rayon r (l’excentricité des orbites planétaires est très fai-
ble, ce qui veut dire que les axes des ellipses peuvent être considérés comme des
rayons: a ≈ r). La force qui maintient la planète sur sa trajectoire peut donc s’exprimer
par:

Afin d’éliminer la période T, NEWTON l’exprime à partir de la troisième loi de KEPLER

(la longueur du demi grand axe a est remplacé par le rayon r): T2 = r3/k, ce qui donne,
pour la force exercée sur la planète:

Le facteur 4π2k est indépendant de la planète considérée; il ne dépend que des proprié-
tés du Soleil et mesure en quelque sorte sa puissance comme source d’attraction.
D’autre part, NEWTON supposa que cette attraction était universelle, ce qui l’amena à
formuler l’hypothèse la plus simple possible, à savoir que ce facteur était proportion-
nel à la masse M du corps attracteur, une conséquence de sa loi d’action et de réaction
qui, en fait, exprimait la conservation de la quantité de mouvement lors de cette
interaction:

Nous sommes maintenant en mesure d’énoncer la
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La première détermination expérimentale de la constante de gravitation fut réalisée en
1798 par Henry CAVENDISH (1731-1810). Son but était de «peser la Terre», ce qui sera
expliqué dans l’exemple 13.15. Il le fit au moyen d’une balance de torsion (fig. 13.76).
La valeur actuelle est:

(13.82)

Ajoutons que cette détermination de la constante de gravitation n’est pas l’unique
contribution de CAVENDISH. En consultant ses notes, on a réalisé qu’il avait, entre autres,
découvert la loi d’OHM en 1773, alors qu’OHM ne publia ses résultats qu’en 1827.

13.10.2 Intensité du champ et potentiel gravitationnel

La formulation newtonienne de l’interaction gravitationnelle est un modèle d’action à
distance (qui ne satisfait pas NEWTON, comme nous l’avons mentionné en tête de cha-
pitre). Ce modèle a été remplacé par celui du champ gravitationnel. Son intensité G est
définie de la même manière que dans le cas électrostatique, à savoir par le quotient de
la force subie par une masse témoin et de cette masse témoin, ce qui donne, pour le
champ engendré par une masse ponctuelle M située à l’origine, en un point P repéré
par le vecteur r (fig. 13.77):

(13.83)

Le principe de superposition est également applicable au champ gravitationnel, les in-
tensités des champs engendrés par plusieurs masses s’additionnent vectoriellement.

Au niveau de la surface du globe terrestre, l’intensité du champ gravitationnel est celle
du champ de pesanteur, à savoir g.

Comme c’est le cas pour le champ électrostatique et le champ magnétostatique, l’in-
tégrale est aussi indépendante du chemin d’intégration. Nous pouvons donc
définir un potentiel gravitationnel que l’on désigne par le symbole V:

(13.84)

ce qui permet d’obtenir l’intensité du champ par évaluation du gradient:

(13.85)

Dans le cas d’une masse sphérique ou ponctuelle, ce potentiel est donné par:

Loi de la gravitation universelle (fig. 13.75): deux masses ponctuelles m1
et m2 s’attirent mutuellement avec une force de module proportionnel à
chacune des masses et inversement proportionnel au carré de la distance
r qui les sépare. L’expression vectorielle de cette interaction est:

(13.81)

La constante de proportionnalité G est appelée constante de gravitation.
Elle doit être déterminée par l’expérience.

F F
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12 21= − = −G
m m

r r
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F12

F21

FIGURE 13.75 Loi de la gravita-
tion universelle.

FIGURE 13.76 Balance de CAVEN-
DISH (figure de la publication origi-
nale dans les Philosophical
Transactions of the Royal Society).

G = ⋅ −6 6726 10 11. N m kg2 –1

O

P

r

G(r)M

FIGURE 13.77 L’intensité du
champ gravitationnel d’une masse
centrée en O dépend de l’endroit où
on la mesure. Le vecteur d’intensité
est dirigé vers la masse qui engen-
dre le champ.
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(13.86)

De manière analogue à ce que nous avons montré pour le potentiel électrique, il est
possible de donner une représentation tridimensionnelle du potentiel gravitationnel.
Le «paysage» engendré sera, pour une collection de masses sphériques en interaction
gravitationnelle, une plaine percée de cuvettes, de puits plus ou moins profonds et plus
ou moins ouverts en fonction de la masse de l’objet sphérique qui l’engendre et du
rayon de cette objet. La figure 13.78 donne une idée de l’aspect de ce «paysage» pour
le système Terre-Lune (l’importance du puits engendré par la Lune est fortement exa-
gérée et la distance n’est pas à l’échelle).

13.10.3 Tensions et densité d’énergie dans le champ gravitationnel

Pour évaluer les tensions régnant dans un champ gravitationnel, nous envisageons le
champ gravitationnel de deux plaques parallèles de masse m, situation qui correspond
à celle du champ électrique engendré par deux plaques portant des charges de même
signe, cas que nous avons traité à la section 13.5.2, figure 13.39. Les lignes de champ
peuvent être obtenues en tant que superposition des champs de plaques infiniment
étendues. L’espace entre les plaques est quasi libre de champ; il n’y a donc aucun flux
de quantité de mouvement dans cette région. Sachant que les plaques ont tendance à
se rapprocher l’une de l’autre et que le champ est essentiellement localisé à l’extérieur
de celles-ci (figure 13.79), nous devons conclure que le rapprochement des plaques est
dû à une pression exercée par le champ depuis l’extérieur des plaques, ce qui doit être
également le cas pour le champ à l’extérieur des plaques.

Nous concluons donc:

La valeur de la pression σx qui règne dans le champ gravitationnel peut être calculée
de la même manière que dans le cas électrique. On trouve (le sens de la force a changé,
d’où le signe positif):

Vu que l’espace entre les masses est libre (ou quasi libre) de champ, on doit conclure
qu’il est correct de dire que le champ gravitationnel pousse les objets l’un vers l’autre
(ce n’est pas une attraction, mais c’est perçu comme tel).

Par une technique semblable à celle que nous avons utilisée à la section 13.5.2, nous
pouvons montrer que le champ gravitationnel est en état de tension de traction perpen-
diculairement aux lignes de champ. Les valeurs de ces tensions sont données sans dé-
monstration

De manière analogue, nous trouvons pour l’énergie accumulée dans le champ gravita-
tionnel lors de la séparation de deux plaques de matière:

V G
M

r
r( ) = −

FIGURE 13.78 Puits de potentiel
Terre-Lune. Les dimensions relati-
ves sont fausses: le puits de la Terre
est plus profond, celui de la Lune
l’est beaucoup moins, et la distance
Terre-Lune est fortement racour-
cie. (Figure: MikeRun (CC)).

G G

m m

G ≅0

FIGURE 13.79 Tensions dans le
champ gravitationnel: il règne une
pression dans le sens des lignes de
champ.

Un champ gravitationnel est en état de compression dans la direction des
lignes de champ et de traction perpendiculairement à celles-ci.
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Cette accumulation d’énergie ne s’accompagne pas, comme dans le cas électrique,
d’une création d’un champ mais, au contraire, de l’annihilation du champ entre les pla-
ques. Nous en tenons compte en disant que la densité d’énergie dans le champ gravi-
tationnel est négative. La densité d’énergie dans un champ gravitationnel est:

Une autre manière d’envisager cette densité d’énergie négative est de dire qu’il faut
investir de l’énergie pour libérer du champ gravitationnel une certaine région de
l’espace .

EXEMPLE 13.15. Peser la Terre.

Lors de son expérience avec la balance de torsion, l’objectif de CAVENDISH était de déterminer
la densité moyenne de la Terre, ce qui revient à peser la Terre. Justifiez cette affirmation et dé-
terminez la masse de la Terre.

SOLUTION: La force de pesanteur est le nom que l’on donne à la force de gravitation au voisi-
nage du sol. Si m est la masse d’un corps témoin, M la masse de la Terre et R son rayon, à la
surface de notre planète, nous avons:

d’où nous obtenons la masse de la Terre:

En fait, lors de son expérience, CAVENDISH a déterminé la valeur de la constante de gravitation
G qui était nécessaire pour effectuer les calculs ci-dessus. Il n’a jamais publié la valeur qu’il
avait obtenue, vu que ce n’était qu’une constante intermédiaire dans ses calculs.

B

Résumé du chapitre

Un champ physique est un système susceptible d’accumuler et de transporter certaines
grandeurs extensives, telles que quantité de mouvement, moment cinétique, entropie
et énergie. En dernière analyse, tous les phénomènes physiques sont la manifestation
de la présence de champs, et la physique tend vers une unification des interactions dans
laquelle ce concept joue un rôle fondamental. La modélisation des champs physiques
se fait au moyen de champs mathématiques.

Un champ physique, qui occupe tout ou partie de l’espace, a une structure qui peut être
visualisée au moyen de lignes de champ indiquant dans quelle direction et dans quel
sens s’exercerait la force sur un objet avec lequel il interagit. On peut également utiliser
des surfaces orthogonales aux lignes de champ; ce sont des surfaces équipotentielles.
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Lignes de champ et surfaces orthogonales sont les représentations graphiques des
champs mathématiques associés aux champs physiques.

La description mathématique d’un champ physique se fait au moyen de son intensité
définie en tant que quotient de la force subie par une charge ou masse témoin et de la
valeur de cette charge ou masse témoin. L’intensité est un vecteur qui est tangent aux
lignes de champ. Le principe de superposition énonce que lorsque plusieurs champs
coexistent au même endroit, leurs intensités s’additionnent vectoriellement.

Les charges électriques sont les sources du champ électrostatique. Une charge ponc-
tuelle (ou sphérique) Q engendre un champ d’intensité: ,
où ur est le vecteur unitaire dans la direction et le sens de r. Placée dans un champ d’in-
tensité E(r), une charge Q subit une force F(r) = Q ·E(r).

Le flux ψ d’un champ vectoriel «compte» le nombre de lignes de champ qui traversent
une surface S. On l’obtient par intégration des flux élémentaires à travers la surface
considérée: où dA est l’élément infinitésimal orienté de surface. Pour
le champ électrostatique, le flux à travers une surface fermée vaut: .
Cette relation est la version intégrale du théorème de GAUSS qui énonce que le champ
électrostatique est un champ de sources dont les sources sont les charges électriques.
La version locale du théorème de GAUSS est: div E = ρ /ε0; elle relie l’intensité locale
du champ à la densité de la charge à cet endroit.

On associe au champ électrostatique E(r) un potentiel scalaire ϕ(r) défini par l’inté-
grale curviligne . Il est usuel de poser: . Les
potentiels obéissent également au principe de superposition. L’intensité du champ
électrique dérive du potentiel par formation du gradient: . Les
surfaces équipotentielles sont orthogonales aux lignes de champ. Il est possible de vi-
sualiser l’évolution spatiale du potentiel au moyen de puits et collines de potentiel.

L’intégrale curviligne intervenant dans le définition du potentiel est appelée circula-
tion Λ du champ électrostatique. La circulation du champ électrostatique le long d’une
courbe fermée s’annule: , ce qui implique que la valeur de la cir-
culation entre deux points ne dépend que de l’intensité du champ en ces points et pas
du chemin suivi entre ces deux points.

En tant que système physique, le champ électrostatique contient de l’énergie dont la
densité est donnée par: ρE,él = 1/2·ε0E

2. Il est le siège de flux de quantité de mouve-
ment qui engendrent l’apparition de contraintes en traction dans la direction des lignes
de champ et en compression perpendiculairement à celles-ci. Ces contraintes ont tou-
tes une valeur absolue égale à celle de la densité d’énergie.

Lorsque l’on plonge un morceau de matière dans un champ électrique, on observe un
phénomène de polarisation due à l’orientation de dipôles électriques moléculaires in-
duits ou permanents. Cette polarisation se manifeste par l’apparition de charges super-
ficielles qui font que le morceau de matière devient un dipôle macroscopique auquel
on associe le vecteur de polarisation P dont le module est égal à la densité de charge
superficielle σpol. Dans le cas statique, P est proportionnel à E, donc P = ε0χE, où χ
est la susceptibilité électrique du diélectrique. À l’intérieur du diélectrique, l’intensité
du champ est réduite d’un facteur εr = 1 + χ ; la constante εr est la permittivité relative
ou constante diélectrique. Il est usuel d’introduire un nouveau champ qui englobe la
polarisation, le déplacement électrique D = ε0E + P = ε0εrE. La densité d’énergie de-
vient ρE,él = 1/2·ε0εrE

2 = 1/2·ED .

Il existe deux manières d’envisager le champ magnétostatique, les approches coulom-
bienne et ampérienne. COULOMB envisage le champ magnétique comme étant dû à la
présence de «charges magnétiques» qui sont en fait des dipôles magnétiques inséca-
bles. Cette vision se prête bien à la description du champ magnétique engendré par des

 E( ) / ( ) /r u= 1 4 0
2πε Q r r

ψ E = ∫ E
S

idA
E ∏ dA =∫ Q /

S� ε0

ϕ ϕ( ) ( )r r dr1 0
0

1− = −∫ Ei
r

r
ϕ( )r0 0→ ∞ =

E( ) ( )r r= − [ ]grad ϕ

ΛE E= =∫ ( )r di� l
C

0



 

684

 

P

 

HYSIQUE

 

, 

 

UNE

 

 

 

PRÉSENTATION

 

 

 

SYSTÉMIQUE

 

C

 

HAPITRE 

 

13   C

 

HAMPS

 

 

 

STATIQUES

 

 

 

ET

 

 

 

POTENTIEL

aimants. AMPÈRE attribue les phénomènes magnétiques à des boucles de courant mi-
croscopiques à l’intérieur des objets aimantés.

Les objets aimantés ont deux pôles. COULOMB admet que le pôle nord est l’extrémité
qui porte des charges magnétiques positives qm, le pôle sud des charges négatives. Un
aimant est donc un dipôle magnétique. COULOMB établit une loi de force qui peut
s’énoncer par

 

F(

 

r) = µ0qm

 

H(

 

r). Cette relation introduit l’intensité du champ magné-
tique

 

H et la constante µ0 appelée perméabilité magnétique du vide. Les charges aux
extrémités de l’aimant engendrent le champ extérieur

 

H et, à l’intérieur, son aimanta-
tion

 

M. Les lignes des deux champs émanent des charges positives et aboutissent sur
les charges négatives. Appliqué à ces deux champs, le théorème de GAUSS montre que
div

 

H = –div

 

M, ce qui implique que les sources de

 

H sont les puits de

 

M, et que la
divergence de leur somme est nulle. Ce constat justifie l’introduction d’une nouvelle
mesure du champ magnétique, l’induction magnétique ou densité de flux magnétique

 

B = µ0(

 

H +

 

M). Vu que la divergence de

 

B est nulle, les lignes de ce champ sont
fermées sur elles-mêmes.

La description de l’interaction entre le champ magnétique et la matière procède de ma-
nière analogue au traitement en électrostatique. Ainsi,

 

M = χm

 

H, où χm est la sus-
ceptibilité magnétique. Il s’ensuit que

 

B = µ0 (

 

H +

 

M) = µ0 (1 + χm)

 

H = µ0µr

 

H, où
µr est la perméabilité relative du matériau.

Toutefois, en présence d’un champ magnétique extérieur, suivant les propriétés du ma-
tériau, on peut observer des comportements différents qui peuvent être distingués au
moyen des valeurs de la susceptibilité magnétique. Parmi les comportements obser-
vés, trois sont dominants. Le diamagnétisme, propre à tous les matériaux, est caracté-
risé par une susceptibilité négative faible, pas inférieure à – 10–5. Le paramagnétisme
est le fait de matériaux dont les atomes ont un moment magnétique intrinsèque; la sus-
ceptibilité est positive, dans une plage allant de 10–6 à 10–3. Le ferromagnétisme est
un paramagnétisme collectif: les moments magnétiques s’orientent parallèlement de
manière spontanée. La susceptibilité prend des valeurs positives importantes, entre 50
et 10 000, voire au-delà. En outre, les matériaux ferromagnétiques sont caractérisés
par un effet mémoire, l’hystérésis.

La densité d’énergie du champ magnétique est, comme pour le champ électrique, pro-
portionnelle au carré de son intensité: ρE,m = 1/2

 

· µ0µr

 

H2 = 1/2

 

·

 

HB. De même, le
champ magnétique est soumis à des contraintes en traction dans le sens des lignes de
champ et en compression perpendiculairement à celles-ci. L’intensité de ces contrain-
tes a une valeur absolue égale à celle de la densité d’énergie.

Dans l’approche ampérienne, ce sont les courants électriques qui sont à l’origine des
champs magnétiques. L’élément infinitésimal d’intensité du champ d’induction

 

d

 

B
engendré par un courant d’intensité I est:

 

d

 

B(

 

r) = µ0I/(4π)

 

·(

 

dl

 

 ×

 

u

 

r)/r2, où

 

dl est un
segment infinitésimal du conducteur et

 

ur est le vecteur unitaire dans la direction de

 

r.
Il en découle que le module de l’intensité du champ engendré par un conducteur rec-
tiligne de longueur infinie est:

 

B(r) = µ0I/(2π r), constante sur des cercles centrés sur
le conducteur. Le pendant du théorème de GAUSS est le théorème d’AMPÈRE qui
évalue la circulation du champ magnétique sur une courbe fermée:

. Si la courbe enserre plusieurs conducteurs, la circulation
est proportionnelle à la somme ces intensités enlacées: . La ver-
sion locale du théorème d’AMPÈRE est:

 

rot 

 

B = µ0

 

j. Comme les lignes du champ sont
fermées sur elles-mêmes, son flux est nul: ou, en version locale:
div

 

B = 0.

Les courants et les charges en mouvement interagissent avec le champ magnétique. Un
courant d’intensité I subit une force, la force de LAPLACE, dont l’élément infinitésimal
est

 

dF = I (

 

dl

 

 ×

 

B), où

 

dl est un segment infinitésimal du conducteur. Une charge Q se
déplaçant à la vitesse

 

v est soumise à une force dite de LORENTZ:

 

F = Q (

 

v
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B).
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Le champ gravitationnel est engendré par les masses et il interagit avec elles. Comme
dans les cas précédents, on peut énoncer une loi de force: F(r) = GmG(r), où G est la
constante de gravitation. Ce champ a des propriétés analogues au champ électrostati-
que, à la différence près que les masses sont uniquement positives. On peut lui associer
un potentiel V(r) tel que: , avec une intégrale indépendante
du chemin d’intégration, ce qui implique que l’intensité du champ peut être obtenue
par évaluation du gradient du potentiel: G(r) = – grad [V(r)]. La densité d’énergie est
donnée par ρE,grav = –1/(8πG)G2. Le champ gravitationnel est en état de compression
dans la direction des lignes de champ et en état de tension de traction perpendiculai-
rement à celles-ci. L’intensité de ces contraintes a une valeur absolue égale à celle de
la densité d’énergie.

V V
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1. Deux plans infinis se coupent à angle droit. Ils portent des
charges électriques de densités respectives +σ et -σ. Détermi-
nez l’intensité et la direction du champ électrique en tout
point et esquissez les lignes de champ.

2. Un anneau de rayon R et de section négligeable porte une
charge +Q distribuée uniformément à sa surface. (a) Calculez
l’intensité du champ électrique et la valeur du potentiel au
centre du l’anneau. (b) Une charge -Q est contrainte de se
mouvoir sur l’axe de l’anneau. Montrez que cette charge
effectuera un mouvement harmonique pour de petits déplace-
ments perpendiculaires au plan de l’anneau.

3. On place une charge Q au centre d’une coque sphérique con-
ductrice de rayon intérieur R1 et de rayon extérieur R2, ainsi
qu’une charge de densité σ répartie uniformément sur la sur-
face externe. Déterminez l’intensité du champ électrique
dans les différentes régions de la sphère ainsi que la valeur de
la charge sur la face interne.

4. Une sphère métallique de rayon R1 est entourée d’une sphère
métallique concentrique de rayon R2. L’espace entre les deux
sphères est rempli d’un matériau dont la conductivité électri-
que σ varie proportionnellement à l’intensité du champ élec-
trique suivant la relation σ = kΕ, où k est une constante. On
maintient une différence de potentiel U entre les deux sphè-
res. Que vaut l’intensité du courant entre les sphères?

5. Une bulle de savon isolée de 1 cm de rayon est à un potentiel
de 100 V. Si son rayon se réduit à 1 mm, que vaut la variation
de l’énergie électrostatique?

6. En chaque sommet d’un carré de 10 cm de côté se trouve une
charge ponctuelle de 100 pC. Trois sont positives, la quatrième
négative (fig. 13.80). (a) Calculez la valeur du potentiel au
centre M du carré, le potentiel du niveau de référence situé à
l’infini étant nul. (b) Répétez le même calcul pour un point P
situé à mi-distance entre le point M et la charge négative. (c)
Pourquoi un ion de sodium, abandonné en M sans vitesse ini-
tiale, suivra-t-il une trajectoire le long de la droite MP? (d)
Quel sera en P le module de la vitesse acquise par ce ion?

7. Une sphère métallique de rayon R porte une charge Q. (a)
Que vaut sa capacité? (b) Comment évolue la densité d’éner-
gie en fonction de la distance r par rapport au centre de la

9. Les problèmes 1 à 5 et 7 à 11 sont tirés de l’ouvrage Problems
and Solutions on Electromagnetism, edited by Lim Yung-kuo,
© 2005 World Scientific (avec l’autorisation de World Scien-
tific).
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FIGURE  13.80
Problème 6

sphère? (c) Que vaut l’énergie totale du champ électrique?
(c) Que vaut l’énergie nécessaire pour charger la sphère en y
amenant des charges infinitésimales depuis l’infini? (e) On
établit une différence de potentiel U entre deux sphères con-
centriques de rayons respectifs R1 et R2. Comment doit-on
choisir le rayon R1 de la sphère intérieure afin que le champ
électrique proche de sa surface ait une intensité minimum?

8. Le conducteur intérieur d’un câble coaxial rempli d’air a un
diamètre de 0.5 cm et son conducteur extérieur a un diamètre
de 1.5 cm. Si le conducteur intérieur est à un potentiel de
+8000 V par rapport au conducteur extérieur mis à terre, (a)
que vaut la charge par unité de longueur du conducteur inté-
rieur, (b) que vaut l’intensité du champ électrique à r = 1 cm?

9. L’espace entre les deux conducteurs d’un câble coaxial très
long est rempli d’un matériau de constante diélectrique ε.
Les rayons respectifs des conducteurs sont R1 et R2. (a) Que
vaut la charge par unité de longueur sur les conducteurs lors-
que la différence de potentiel entre eux est égale à U, le con-
ducteur externe au plus haut potentiel ? (b) Quelle est
l’intensité du champ électrique entre les deux conducteurs?

10. Un condensateur à plaques parallèles séparées par une dis-
tance d est rempli par deux diélectriques différents 1 et 2. Ces
diélectriques ont des constantes diélectriques et des conducti-
vités respectives ε1, σ1 et ε2, σ2. Les épaisseurs des couches
de diélectriques sont respectivement d1 et d2. On établit une
différence de potentiel U entre les bornes du condensateur.
On peut négliger les effets de bord. (a) Que vaut l’intensité
du champ électrique dans chacun des deux matériaux? (b)
Que vaut l’intensité du courant circulant à travers le
condensateur ? (c) Que vaut la densité de charge totale à
l’interface entre les deux matériaux? (d) Que vaut la densité
de charge libre à l’interface entre les deux matériaux?

11. Un long câble coaxial est constitué d’un conducteur cylindri-
que interne plein de rayon R1 et d’un cylindre conducteur
externe mince de rayon R2. À l’une des extrémités, les deux
conducteurs sont connectés par une résistance et à l’autre
extrémité par une batterie. On mesure une différence de
potentiel U entre les deux conducteurs et un courant d’inten-
sité I. La résistance propre des conducteurs est négligeable.
(a) Déterminez l’intensité du champ électrique et du champ
d’induction magnétique entre les deux conducteurs, dans la
région R1 < r < R2. (b) Déterminez la densité par unité de
longueur de l’énergie électrique et de l’énergie magnétique
dans l’espace entre les deux conducteurs. (c) En admettant
que l’énergie magnétique dans le conducteur interne est
négligeable, déterminez l’inductance et la capacité par unité
de longueur.

12. À côté du solénoïde, une autre manière d’obtenir un champ
magnétique quasi uniforme utilise un dispositif constitué
d’une paire de bobines coaxiales de même rayon R, séparées
par une distance d (fig. 13.81). Ce dispositif est appelé bobi-
nes de HELMHOTZ. L’intensité du champ engendré sur l’axe
par une bobine comportant n spires par unité de longueur est
donnée par la relation (E 13.6) que l’on peut écrire sous la
forme:

 

B(z) = µ0nIR2/[2(R2+z2)3/2], où z mesure la distance
à partir du centre de la spire. Le courant circule dans le même
sens dans les deux bobines, leurs champs ont le même sens.
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Pour examiner la quasi-uniformité du champ autour de l’axe,
on tire profit du fait que, si en un point la dérivée seconde
d’une fonction s’annule sans changer de signe, cela signifie
que la fonction varie très peu au voisinage de ce point, son
graphique est plat. Considérez de petites variations δz de la
position autour du point O, c’est-à-dire aux abscisses respec-
tives d/2–δz et d/2+δz et montrez que si l’on exige que la
dérivée seconde par rapport à δz de ces deux contributions
s’annule après le passage la limite δz → 0, on obtient la con-
dition qui assure la meilleure uniformité possible, à savoir
d = R.

13. Jupiter met douze ans pour effectuer une révolution autour du
Soleil. La lune Ganymède orbite en 7.155 jours autour de
Jupiter. (a) En admettant que la trajectoire de Jupiter est cir-
culaire, déterminez le rayon de son orbite. La distance de la
Terre au Soleil est de 150·106 km. (b) Depuis la Terre, la dis-
tance maximale entre Ganymède et le centre de Jupiter est
vue sous une angle de 5.76 minutes d’arc. Déterminez le
rayon de l’orbite de Ganymède. (c) À partir des données de
Ganymède, déterminez la masse de Jupiter.

d
z

nInI

R
O

FIGURE  13.81
Problème 12
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Dans le chapitre 13, nous avons étudié les champs statiques. Ce chapitre est consacré
à l’étude des champs variables dans le temps et aux phénomènes qui accompagnent
ces variations.

 

14.1 O

 

BSERVATIONS

 

 

 

PRÉLIMINAIRES

Des expériences semblables à celles que nous allons évoquer furent réalisées autour
de 1830 simultanément par Michael FARADAY et Joseph HENRY.

 

14.1.1 Effet des variations du champ magnétique sur un circuit

Nous introduisons un aimant dans une bobine; un galvanomètre très sensible ou un os-
cilloscope couplé aux bornes de la bobine permet d’enregistrer une tension dite ten-
sion induite (fig. 14.1).

Lors du retrait de l’aimant, nous observons le même phénomène, à la différence près
que la tension a changé de polarité. D’autre part, nous notons que l’amplitude de la
tension dépend de la vitesse relative du mouvement de l’aimant et de la bobine de telle
manière que l’aire de la surface délimitée par la courbe tension-temps est la même lors
de l’introduction que lors du retrait (fig. 14.2).

Nous obtenons le même résultat si nous substituons à l’aimant une bobine reliée à une
alimentation (fig. 14.3); à l’introduction de l’aimant correspond la fermeture du cir-
cuit, à son retrait l’ouverture du circuit, c’est-à-dire respectivement l’augmentation et
la diminution de champ magnétique.

Interprétation. Si, dans chacune des expériences précédentes, le voltmètre a enregistré
une tension, c’est qu’il y avait un courant induit qui circulait dans le circuit. Or, nous
savons qu’un champ électrique est nécessaire pour mettre en mouvement les charges
d’un conducteur. Vu que les conducteurs considérés étaient des boucles, nous devons
conclure que les lignes de ce champ électriques étaient fermées sur elles-mêmes, ce
qui sera confirmé par l’expérience de la section 14.1.3. Comme les phénomènes enre-
gistrés ne se produisaient pas lorsque le champ était stationnaire, nous pouvons
conclure:

 

14.1.2 Mouvement d’une spire dans un champ magnétique

Nous formons une spire conductrice que nous relions à un galvanomètre très sensible
ou à un amplificateur de tension. Nous introduisons cette spire entre les pôles d’un

V

FIGURE 14.1 Phénomène d’induc-
tion : lorsque l’on introduit un
aimant dans la bobine ou qu’on le
retire, le voltmètre enregistre une
tension (d’après JOSEF SCHREINER,
Physik für die Oberstufe der
Mittelschulen).

Uind

t

FIGURE 14.2 La tension induite
dépend du sens et de la vitesse du
mouvement de l’aimant.

V+–

FIGURE 14.3 La fermeture du cir-
cuit de la bobine de gauche induit
une tension correspondant à l’in-
troduction, son ouverture au retrait
de l’aimant (d’après JOSEF SCHREI-
NER, Physik für die Oberstufe der
Mittelschulen).

Les variations du champ d’induction magnétique créent un champ électri-
que tourbillonnaire. Dans un circuit fermé, ce champ électrique induit est
à l’origine d’un courant induit.
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aimant permanent en veillant à ce que la surface de la spire soit perpendiculaire aux
lignes de champ (fig. 14.4). Nous enregistrons une tension et un courant induits dont
l’amplitude est proportionnelle à la vitesse du mouvement de la spire.

Lors du retrait de la spire, nous assistons au même phénomène, mais avec une inver-
sion de la tension induite. D’autre part, l’aire de la surface délimitée par la courbe ten-
sion-temps est la même que lors de l’introduction de la spire.

Si nous répétons ces deux expériences avec la surface de la spire parallèle aux lignes
du champ magnétique, nous n’enregistrons aucun effet. De même, nous n’enregistrons
aucun effet si nous appliquons la spire sur l’une des faces de l’aimant et la déplaçons
sur cette face en veillant à ce qu’elle ne dépasse les bords.

En revanche, nous enregistrons une tension alternative si nous faisons tourner la spire
autour d’un de ses diamètres à l’intérieur du champ magnétique stationnaire.

Interprétation. Nous constatons que nous n’enregistrons un effet que lorsque le flux
du champ d’induction magnétique qui traverse la spire ou la bobine varie dans le
temps. En combinant ce résultat avec celui de la section 14.1.1, nous pouvons donc
conclure:

 

14.1.3 Sens du courant et du champ électrique induits

Un anneau d’aluminium est suspendu de telle sorte qu’il est traversé par le noyau de
fer d’un électroaimant (fig. 14.5). L’électroaimant est alimenté et un interrupteur est
placé dans le circuit.

Lors de la fermeture du circuit, l’anneau est brusquement repoussé vers l’extérieur et
regagne lentement sa position d’équilibre sans la dépasser. Lors de l’ouverture du cir-
cuit, l’anneau est attiré vers l’intérieur, puis oscille autour de sa position d’équilibre
avant de s’immobiliser.

Interprétation. Désignons par I1 l’intensité du courant circulant dans le circuit de
l’électroaimant et par I2 celle du courant induit qui s’établit dans l’anneau d’alumi-
nium. Lors de la fermeture du circuit, la croissance du courant entraîne une croissance
du champ d’induction magnétique et du flux magnétique à travers la surface de l’an-
neau. Comme l’anneau est repoussé, nous devons conclure, en vertu de ce que nous
avons montré dans l’exemple 13.12, que le courant induit circule dans le sens opposé
à celui du circuit. Lors de l’ouverture du circuit qui provoque une décroissance du flux
magnétique, le courant induit circule dans le même sens que celui du circuit.

Comme le courant électrique circule toujours en suivant le sens des lignes du champ
électrique, cette expérience nous permet également de déterminer le sens des lignes du
champ électrique tourbillonnaire engendré par les variations temporelles du champ
d’induction magnétique (fig. 14.6). En conclusion:

V

B

FIGURE 14.4 Lorsque l’on intro-
duit la spire avec sa surface perpen-
diculaire aux lignes de champ, elle
est le siège d’une tension et d’un
courant induits. Lors du retrait, le
sens est inversé.

Toute variation du flux d’induction magnétique à travers une courbe fer-
mée est à l’origine d’une tension induite. Si la courbe fermée est un con-
ducteur, celui-ci est le siège d’un courant induit. La variation du flux peut
être soit la conséquence d’une variation du champ d’induction magnétique
d’intensité B (qui entraîne la création d’un champ électrique tourbillon-
naire d’intensité E), soit celle de la déformation du circuit ou de son dé-
placement relatif par rapport à un champ d’induction magnétique, soit les
deux.

+ –
I1

I2

FIGURE 14.5 Détermination du
sens du courant induit: lors de la
fermeture du circuit, l’anneau est
expulsé vers l’extérieur, lors de
l’ouverture, il est attiré (d’après JO-
SEF SCHREINER, Physik für die
Oberstufe der Mittelschulen).

B croissant

B
décroissant

a.

b.

B

E

B

E

FIGURE 14.6 Le champ électrique
tourbillonnaire a le même sens que
celui qu’aurait un courant induit
dans un boucle conductrice; son
sens est donné par la règle de la
main gauche.
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1. Quels sont les phénomènes qui provoquent l’apparition d’une tension
induite?

2. Quelles sont les différentes manifestations du phénomène d’induction?

3. Quel est le sens de circulation du courant induit et du champ électrique
tourbillonnaire?

1. Toute variation du flux d’induction magnétique peut être à l’origine de
l’apparition d’une tension induite. Cette variation du flux peut être pro-
duite de différentes manières : par une variation dans le temps de
l’intensité du champ d’induction magnétique, par variation de l’aire ou
de l’orientation d’une boucle conductrice, ou les deux à la fois.

2. Lors de la variation dans le temps de l’intensité du champ d’induction
magnétique, il y a apparition d’un champ électrique tourbillonnaire.
Lors de la variation du flux par la géométrie ou le mouvement, il y a apparition d’une ten-
sion et d’un courant induits dans une boucle fermée.

3. Le sens de circulation du courant et du champ tourbillonnaire induits est donné par la règle
de la main gauche.
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Le phénomène d’induction électromagnétique, découvert simultanément et étudié par
FARADAY et HENRY, est une découverte qui a façonné notre environnement. Sans ce
phénomène, toute les machines fonctionneraient avec des moteurs à vapeur ou à ex-
plosion, et de nombreux gestes quotidiens (allumer la lumière, enclencher un appareil,
regarder la télévision, téléphoner, surfer sur le Web, etc.) nous seraient inconnus ou en
tout cas moins fréquents.

 

14.2.1 Énoncé de la loi au moyen de la tension

Une barrette métallique est posée sur un conducteur métallique en forme de cadre
(fig. 14.7). Nous déplaçons la barrette à une vitesse constante de module

 

v

 

. La varia-
tion de la surface traversée par le champ d’induction magnétique d’intensité

 

B, per-
pendiculaire au plan du cadre, entraîne une variation de flux qui provoque
l’apparition d’une tension et d’un courant induit dans le circuit. L’origine du courant

Dans un circuit fermé, le courant induit par une variation du flux d’induc-
tion magnétique circule toujours dans un sens donné par la règle de la
main gauche: si le pouce de la main gauche pointe dans le sens de la va-
riation du flux d’induction magnétique, les doigts courbés indiquent le
sens de circulation du courant. Le sens du champ électrique tourbillonnai-
re, qui est présent même en l’absence d’un conducteur, est identique au
sens du courant induit.

Q

R

v
v ×BB

l

Iind ds

Eind

FLapl

FIGURE 14.7 Le déplacement du
conducteur mobile sur le cadre
conducteur dont la surface est per-
pendiculaire aux lignes du champ
magnétique provoque une variation
du flux magnétique, d’où l’appari-
tion d’une tension et d’un courant
induits.
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induit peut être expliquée par la force de LORENTZ qui s’exerce sur les charges libres
de la barrette.

Le courant induit d’intensité Iind est soumis, dans le champ d’induction magnétique, à
la force de LAPLACE. Cette force est opposée au sens du déplacement, s’opposant ainsi
à la variation du flux. La variation de l’énergie mécanique due au mouvement est égale
à celle de l’énergie électrique. Si nous désignons par

 

ds le déplacement élémentaire
effectué durant l’intervalle dt, nous avons:

Nous calculons la force de LAPLACE au moyen de l’équation (13.77) en tenant compte
du fait que le conducteur mobile de longueur l et le champ d’induction magnétique
sont perpendiculaires:

Le produit

 

Blds représente la variation du flux magnétique dφ

 

B réalisée durant l’inter-
valle dt. Nous pouvons donc écrire:

Si, dans l’expérience de la figure 14.7, on introduit une alimentation dans le circuit, le
courant circulant dans la barrette métallique est soumis à une force de LORENTZ qui le
met en mouvement: le montage est devenu un moteur.

 

14.2.2 Énoncé de la loi au moyen des champs

La tension induite dans le circuit de la figure 14.7 peut être exprimée au moyen du
champ électrique induit en tant qu’intégrale sur la courbe fermée déterminée par la
barrette et le cadre sur lequel elle se déplace. Si nous désignons par

 

C cette courbe fer-
mée, nous pouvons écrire:

Si nous désignons par

 

S la surface traversée par le champ d’induction magnétique et
par dA l’élément infinitésimal de surface, nous pouvons exprimer le flux en tant que
produit scalaire du vecteur de champ et de ce vecteur. Si nous supprimons l’indice
«ind» pour alléger l’écriture, nous obtenons la:

 

dE dE dt

F ds U I dt
méc él él

ind ind

= =
− ⋅ =

P

 − =I lds U I dtind ind indB

 − =d U dtφB ind

La tension induite dans une boucle conductrice est égale en intensité à la
vitesse de variation du flux magnétique qui la traverse:

(14.1)
 
U

d

dtind = −
φB

    
U

d

dtind ind= = −∫ E
C
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Dans le cas le plus fréquent où la variation temporelle du flux est due à celle du champ
et non pas au mouvement de la surface

 

S considérée, on peut permuter la dérivation et
l’intégration:

 

(14.3)

Un théorème d’analyse vectorielle, le théorème de Stokes1, permet de transformer,
dans le membre de gauche, l’intégration le long de la courbe fermée

 

C en une intégra-
tion sur la surface

 

S délimitée par cette courbe fermée:

Cette équation met en relation la vitesse de variation du champ d’induction magnéti-
que et l’intensité du champ électrique engendré par cette variation au même endroit.
Elle contient implicitement le résultat énoncé par l’équation (13.71), à savoir que la
circulation du champ électrostatique est nulle.

La relation spatiale entre le champ d’induction et le champ électrique induit se présen-
te comme deux anneaux fermés imbriqués l’un dans l’autre. Dans la figure 14.8, le
sens du champ électrique correspond à une augmentation de l’intensité du champ d’in-
duction magnétique.

 

EXEMPLE 14.1. Champs variables dans un solénoïde2.

Un très long solénoïde de rayon R, portant n spires par unité de longueur, est alimenté par un
courant variable I(t) = I0 sin(ωt). (a) Déterminez l’équation décrivant l’évolution temporelle de
l’induction magnétique à l’intérieur du solénoïde. (b) Déterminez l’intensité du champ électri-
que à l’intérieur et à l’extérieur du solénoïde (admettez que le champ d’induction magnétique
est nul à l’extérieur du solénoïde). (c) Représentez graphiquement la dépendance de l’intensité
du champ électrique à l’instant t = 2π/ω. Quel est l’aspect des lignes du champ électrique?

1. ARBENZ K., WOHLHAUSER A.: Compléments d’analyse. Presses polytechniques roman-
des, Lausanne, 1981.

2. Les exemples 14.1, 14.2 et 14.4 sont tirés de l’ouvrage Problems and Solutions on Electro-
magnetism, edited by Lim Yung-kuo, © 2005 World Scientific (avec l’autorisation de
World Scientific).

Forme intégrale de la loi d’induction:

(14.2)
   

E B
C S
� i i∫ ∫= − ∂

∂
dl dA

t

   
E

B

C S
� i i∫ ∫= − ∂

∂
dl dA

t

   
E E

B

C S S
� i i i∫ ∫ ∫= = − ∂

∂
dl dA dArot

t

Forme différentielle de la loi d’induction:

(14.4)
 
rot E

B= − ∂
∂t

B E

FIGURE 14.8 Lors du phénomène
d’induction, le champ d’induction
magnétique et le champ électrique
induit forment une paire d’anneaux
fermés imbriqués l’un dans l’autre.
Le sens du champ électrique induit
correspond ici à une augmentation
de l’intensité du champ d’induction
magnétique.
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SOLUTION: (a) À l’intérieur du solénoïde, le champ d’induction magnétique B est uniforme
dans la direction axiale (section 13.8.2). Donc, si l’axe Oz coïncide avec l’axe du solénoïde, on
a:

(b) Nous tenons compte de la symétrie axiale de la configuration et utilisons la loi d’induction
(14.3) pour déterminer l’intensité du champ électrique en fonction de la distance r par rapport
à l’axe du solénoïde.

Pour r < R, on a:

ce qui débouche sur:

Pour r > R, on a:

ce qui débouche sur:

(c) À l’instant t = 2π/ω, cos(ωt) = 1. À partir de là, on peut dessiner la figure 14.9 qui montre la
variation radiale du module de l’intensité du champ électrique. Les lignes du champ électrique
sont des cercles concentriques perpendiculaires à l’axe du solénoïde.

B

EXEMPLE 14.2. Tension induite dans une spire carrée.

Deux conducteurs parallèles, séparés par une distance d, transportent des courants égaux en
intensité I, mais de sens opposés. L’intensité varie au taux dI/dt. Une spire conductrice carrée
dont les côtés ont la longueur d se trouve dans le plan des deux conducteurs, à une distance d de
l’un des deux conducteurs, comme le montre la figure 14.10. (a) Déterminez la valeur de la ten-
sion induite dans la spire carrée. (b) Dans quel sens le courant induit circule-t-il?

SOLUTION: (a) À partir de la loi d’AMPÈRE (13.65), nous obtenons l’intensité du champ d’in-
duction magnétique engendré par chaque courant en fonction de la distance:

Le flux d’induction engendré par le courant du conducteur 1 est:

Ce flux pénètre dans la page. Pour le conducteur 2, nous obtenons:

 B( , ) ( ) sin( )z t nI t nI t= =µ µ ω0 0 0
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∂
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FIGURE 14.9 Évolution du modu-
le de l’intensité du champ électri-
que tourbillonnaire. k = µ0nI0ω/2.
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FIGURE 14.10 Configuration de
l’exemple 14.2.
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14.3  PHÉNOMÈNE DE SELF-INDUCTION

Ce flux émerge de la page. Le flux total:

émerge de la page. La tension induite dans la spire carrée est:

(b) En vertu de la loi de la main gauche, le courant induit circule dans le sens horaire, vu depuis
le dessus de la page.

B

14.3 PHÉNOMÈNE DE SELF-INDUCTION

Si l’intensité du courant dans un circuit fermé varie, le champ magnétique qui lui est
associé varie lui aussi. Il est donc plausible d’admettre que la variation du flux d’in-
duction magnétique provoquera l’apparition d’une tension et d’un courant induits dans
ce circuit. Une expérience permet de vérifier cette hypothèse.

Nous connectons en parallèle aux bornes d’une source deux lampes à incandescence.
Dans le circuit de l’une des deux, nous montons en série une bobine dans laquelle nous
introduisons un noyau de fer afin d’augmenter le champ d’induction magnétique et ses
variations. Un interrupteur est placé en série avec la source (fig. 14.11).

Lorsque nous fermons l’interrupteur, la lampe A s’allume immédiatement, alors que
la lampe B le fait avec un retard notable. Cela signifie que le courant dans la branche
B n’atteint pas immédiatement sa valeur stationnaire. Lorsque nous ouvrons l’inter-
rupteur, les deux lampes continuent à briller durant un certain temps, cela malgré le
fait qu’il n’y ait plus de source dans leur circuit. Le courant ne tombe pas immédiate-
ment à zéro.

On peut, en remplaçant la lampe B par une résistance de quelques dizaines d’ohms,
visualiser les variations du courant en mesurant la tension sur cette résistance au
moyen d’un oscilloscope (fig. 14.12).

Interprétation. L’expérience confirme l’hypothèse: lors de la croissance du courant, le
champ d’induction magnétique et son flux croissent proportionnellement, provoquant
l’apparition d’une tension induite. Le courant induit circule dans la bobine dans le sens
opposé à celui qui s’établit, jusqu’à ce que ce dernier ait atteint sa valeur stationnaire.
Lors de l’ouverture du circuit, la diminution du flux magnétique induit un courant qui
circule dans le même sens que celui qui est en train de diminuer; ce courant continue
à circuler durant un certain temps, malgré l’absence de source dans le circuit. L’éner-
gie qui est nécessaire pour maintenir ce courant provient du champ magnétique de la
bobine, comme nous l’avons montré à la section 13.7.6.

Nous devons nous baser sur une configuration pour laquelle nous savons calculer le
flux magnétique. Nous baserons le développement suivant sur le cas du champ unifor-
me d’un solénoïde dont les N spires sont parcourues par un courant variable d’intensité
I(t). À partir de l’équation (13.76), nous pouvons calculer le flux:
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FIGURE 14.11 Lors de la fermetu-
re de l’interrupteur, la lampe B s’al-
lume avec un retard notable. Le
courant met du temps pour s’établir
dans la branche contenant la bobine
avec un noyau de fer.

t

I(t)

OuvertureFermeture

FIGURE 14.12 Évolution de l’in-
tensité du courant dans la branche
de la lampe B lors de la fermeture
ou de l’ouverture de l’interrupteur
dans l’expérience de la
figure 14.11.
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Si le solénoïde contient un noyau de fer, l’expression doit être multipliée par la per-
méabilité relative µr du noyau. Appliquons la loi d’induction:

L’inductance d’un solénoïde longueur l contenant un noyau de fer est égale à:

(14.6)

où n est le nombre de spires par unité de longueur. Ce résultat justifie notre affirmation
de la section 4.5.2. Comme ce sont les bobines qui sont responsables de la majeure
partie de l’inductance d’un circuit, on les appelle souvent des selfs.

EXEMPLE 14.3. Mise en évidence de la tension induite due à une ouverture de circuit.

Dans le montage de la figure 14.13, la tension de la source ne peut pas dépasser quelques volts.
On y branche en parallèle une bobine avec un noyau de fer et une lampe à décharge fonctionnant
sur le réseau, qui ne s’allume donc que si la tension dépasse 100 à 150 V.

Lors de la fermeture de l’interrupteur, on n’observe aucune réaction. En revanche, lors de
l’ouverture du circuit, une des électrodes s’allume brièvement.

Interprétation: Lors de l’ouverture du circuit, le taux de variation de l’intensité devient très
grand et, si l’inductance est suffisante, la tension induite dépasse la tension d’allumage de la
lampe. On parle d’à-coup de courant de déclenchement ou d’extra-tension de rupture. L’étin-
celle que l’on observe lorsque l’on arrache la prise du réseau d’un appareil en fonctionnement
n’est autre qu’un arc électrique dû à la tension de self-induction. Si l’inductance est très grande,
l’arc peut faire fondre l’interrupteur (ou le disjoncteur), ce qui doit être évité et peut l’être, par
exemple par un violent jet d’air qui souffle l’arc.

B

14.4 EXEMPLES ET APPLICATIONS TECHNIQUES

Dans cette section, nous allons illustrer des applications de la loi d’induction qui font,
pour la plupart, partie de notre vie quotidienne, et sans lesquelles notre environnement
aurait un aspect très différent.
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Une variation de courant dans un circuit entraîne l’apparition d’une ten-
sion

(14.5)

qui s’oppose à la variation du courant. C’est le phénomène de self-induc-
tion. Le facteur de proportionnalité L est l’inductance du circuit.
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FIGURE 14.13 À-coup de courant
de déclenchement: lorsque l’on
ferme le circuit, la lampe à déchar-
ge ne s’allume pas, parce que la
tension de l’alimentation est trop
basse. En revanche, lors de l’ouver-
ture du circuit, une des électrodes
s’allume brièvement.
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14.4  EXEMPLES ET APPLICATIONS TECHNIQUES

14.4.1 Courants de FOUCAULT

Un disque de cuivre est suspendu de telle sorte qu’il peut tourner autour d’un axe
horizontal passant par son centre. Une partie de sa surface est placée entre les pôles
d’un électroaimant (fig. 14.14).

Lorsque la rotation du disque a lieu dans le champ d’induction magnétique, il est frei-
né, comme si le mouvement avait lieu dans de la mélasse. Si le disque plein est rem-
placé par un disque découpé en direction radiale, le freinage est beaucoup plus faible.

Interprétation. La masse métallique du disque peut être considérée comme une infinité
de circuits fermés. Toute variation du flux à travers cette masse y engendre des cou-
rants induits appelés courants de FOUCAULT (la dénomination allemande,
«Wirbelströme», c’est-à-dire «courants tourbillonnaires», décrit parfaitement la réa-
lité). Selon la règle de la main gauche, ces courants circulent dans un sens tel qu’ils
s’opposent la variation du flux qui les a produits: ils sont donc responsables d’une for-
ce de freinage. En feuilletant la masse métallique, on diminue la section et on augmen-
te par le fait même la résistance au passage du courant, ce qui permettra de réduire
fortement son intensité.

Les courants de FOUCAULT peuvent être utilisés pour le freinage des véhicules: on par-
le de frein à induction. Il s’agit de disques métalliques solidaires des roues qui tournent
entre les pôles d’électroaimants qu’on enclenche au moment du freinage.

L’effet Joule provoqué par les courants de FOUCAULT est utilisé dans les fours à
induction : un creuset conducteur est soumis à un champ d’induction rapidement
variable dans le temps; il s’échauffe très vite. Ce mode de chauffage est propre, car il
n’y a pas de gaz brûlés.

14.4.2 Principe du générateur et du moteur électrique synchrone

Le fonctionnement d’un générateur de courant alternatif, d’une dynamo, est expliqué
schématiquement dans la partie gauche de la figure 14.15 .

La spire d’aire A tourne à la vitesse angulaire constante ω dans le champ d’induction
magnétique d’intensité B. La variation du flux périodique induit dans la spire une ten-
sion que nous allons estimer.

Si l’élongation angulaire α est donnée par α = ωt, le flux est alors:

En vertu de la loi d’induction, nous avons:

B

FIGURE 14.14 Lorsqu’une portion
du disque conducteur tourne dans
le champ magnétique, son mouve-
ment est freiné.

FIGURE 14.15 Générateur-
moteur: la spire de gauche est en-
traînée mécaniquement en mouve-
ment de rotation à vitesse angulaire
constante; la variation du flux ma-
gnétique induit une tension et un
courant . Si ce courant est transpor-
té vers le système identique à droi-
te, ce dernier est soumis à un
couple engendré par les forces de
LAPLACE et se met à tourner de ma-
nière synchrone: c’est un moteur
électrique (d’après JOSEF SCHREI-
NER, Physik für die Oberstufe der
Mittelschulen).

—F
F

Fα α

Générateur Moteur synchrone

I I —F

  φ ωt A A t( ) = ⋅ ( ) = ⋅ ⋅ ( )B Bt cos
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En conclusion:

Un générateur permet de transférer l’énergie apportée par le moment cinétique du
mouvement de rotation sur le courant induit.

Si on relie les balais d’un système identique aux balais correspondants du générateur
(partie droite de la figure 14.15), un courant de même intensité circule dans le sens
inverse dans les spires de ce système. Les forces de LAPLACE engendrent un couple
qui fait tourner la boucle. Le système fonctionne comme un moteur synchrone.

14.4.3 Microphone et haut-parleur

Un microphone est constitué d’une membrane légère, chargée de vibrer comme le
tympan sous l’effet des ondes sonores. Cette membrane est reliée à une bobine qui est
introduite dans l’entrefer annulaire d’un aimant permanent (fig. 14.16).

À l’arrivée d’ondes sonores, les vibrations de la membrane sont transmises à la bobine
qui plonge plus ou moins profondément dans le champ d’induction magnétique. Les
variations de flux induisent une tension qui suit le rythme des ondes sonores et dont
l’amplitude correspond à l’intensité des sons. Pour pouvoir alimenter un haut-parleur,
cette tension doit être amplifiée.

De la même manière qu’un générateur peut être en principe transformé en moteur, un
microphone peut servir de haut-parleur. La différence réside dans les dimensions plus
importantes de la membrane. Lorsque la bobine est alimenté par le signal engendré par
le microphone, elle plonge plus ou moins profondément dans l’entrefer, entraînant la
membrane dont les vibrations génèrent des ondes sonores. Pour des raisons dues aux
particularités des phénomènes ondulatoires, on doit généralement avoir plusieurs
haut-parleurs (colonnes sonores) si l’on veut couvrir tout le spectre des fréquences
audibles par l’oreille humaine.

14.4.4 Transformateur

Un transformateur est constitué de deux bobines enroulées sur deux branches oppo-
sées d’un noyau de fer formant un circuit fermé (fig. 14.17). La bobine qui est reliée à
une source de courant alternatif est appelée enroulement primaire. Le champ magné-
tique alternatif engendré par ce courant est canalisé par le noyau de fer vers l’autre
bobine, que l’on appelle enroulement secondaire. Les variations du champ d’induction
magnétique y engendrent une tension induite proportionnelle au nombre de spires. Le

 
U t

d

dt
A t U t( ) = − = ( ) = ( )φ ω ω ωB sin ˆ sin

Le principe du générateur consiste en une boucle conductrice qui effectue
un mouvement de rotation à vitesse angulaire constante ω dans un champ
d’induction magnétique homogène. On enregistre aux bornes de la boucle
une tension induite sinusoïdale:

(14.7)

La tension de crête est atteinte lorsque le flux magnétique à travers la
boucle est nul.

U t U t( ) = ( )ˆ sin ω

Û

B

FIGURE 14.16 Microphone - haut-
parleur: les ondes sonores font vi-
brer la membrane reliée à une bobi-
ne plongée dans un champ
magnétique: la tension induite re-
produit le rythme des sons. Si l’on
envoie un courant variable dans la
bobine, elle plonge plus ou moins
profondément dans le champ
magnétique: le système est un
haut-parleur (d’après JOSEF
SCHREINER, Physik für die Obers-
tufe der Mittelschulen).

Primaire

U1 U2N1 N2

Secondaire

FIGURE 14.17 Transformateur: le
champ magnétique alternatif en-
gendré dans le primaire est canalisé
par le noyau de fer vers le secon-
daire où ses variations engendrent
une tension induite (d’après JOSEF
SCHREINER, Physik für die Obers-
tufe der Mittelschulen).
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14.5  LOI D’AMPÈRE-MAXWELL

noyau de fer est feuilleté, c’est-à-dire constitué de tôles de fer isolées les unes des
autres.

Dans le cas idéal, les lignes du champ d’induction magnétique sont toutes canalisées
dans le noyau de fer. Le flux d’induction est donc le même dans chacune des sections
du noyau. Si nous désignons par ϕ ce flux, et par N1 et N2 les nombres respectifs de
spires, nous avons:

Si le circuit secondaire est ouvert et que les résistances sont négligeables, on peut
admettre que la tension aux bornes est égale en amplitude à la tension induite. Nous
pouvons donc conclure:

Notons que ce résultat représente le cas idéal. Si le secondaire est en charge, il s’y pro-
duit une self-induction, et il y a une induction mutuelle du secondaire sur le primaire.
L’étude complète d’un transformateur n’est pas aussi simple que celle que nous avons
présentée.

14.5 LOI D’AMPÈRE-MAXWELL

La loi d’induction de FARADAY-HENRY lie les variations du champ d’induction
magnétique à l’apparition d’un champ électrique tourbillonnaire. Ces deux champs
sont couplés, raison pour laquelle on parle de champ électromagnétique. On suppose
que, lors de l’élaboration de la théorie de l’électromagnétisme, MAXWELL réalisa que
la loi d’induction devait avoir son pendant symétrique, à savoir que les variations d’un
champ électrique devaient engendrer un champ magnétique tourbillonnaire. C’est
même une nécessité, car la loi d’AMPÈRE (13.67), valable uniquement pour des cou-
rants stationnaires, peut être en contradiction avec la conservation de la charge électri-
que en présence de courants variables.

En s’appuyant sur un modèle mécanique, MAXWELL résolut le problème en ajoutant
deux termes à la loi d’AMPÈRE:

(14.9)

Pour donner une signification aux termes additionnels, nous examinons un circuit dans
lequel se trouve un condensateur en train de se charger. Cette justification n’a été
introduite que plusieurs années après la publication par MAXWELL de ses recherches
théoriques.
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Dans le cas idéal, les tensions aux bornes des enroulements d’un transfor-
mateur sont proportionnelles au nombre de spires:

(14.8)

Le rapport des nombres de spires est appelé rapport de transformation.
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Nous appliquons la nouvelle version du théorème d’AMPÈRE à la courbe C, de rayon r
(fig. 14.18). Dans un premier temps, la surface d’intégration est la surface S1, traversée
par la densité de courant j. Seul le premier terme du membre de droite livre une con-
tribution, car il n’y a ni flux électrique, ni diélectrique polarisable à ce niveau:

Le terme hérité de la loi d’AMPÈRE représente donc le courant électrique «ordinaire»,
celui qui est amené sur les plaques du condensateur par le fil conducteur.

Tout en gardant la courbe C fixe, nous déformons la surface S2, comme le montre la
figure 14.18. Lorsque la surface arrive à la hauteur de la plaque positive, l’intensité du
courant tombe à zéro, mais le champ magnétique ne disparaît pas. Nous envisageons
maintenant la situation où la surface d’intégration englobe la plaque positive, mais
qu’il n’y a pas de diélectrique entre les plaques. Seul le deuxième terme du membre
de droite de l’équation (14.9) contribue à l’intégration sur la surface S2, le membre de
gauche restant identique, puisque la courbe C est fixe:

En vertu du théorème de GAUSS, le flux du champ électrique est égal à la charge portée
par l’une des plaques du condensateur divisée par ε0. Le deuxième terme correspond
donc à un courant dont nous désignons l’intensité par Iflux, vu son origine.

Si l’espace entre les plaques est occupé par un diélectrique, le troisième terme donne:

Il représente l’intensité du courant engendré par le déplacement de charges de polari-
sation dans un diélectrique présent entre les plaques du condensateur.

MAXWELL rassembla les deux contributions supplémentaires à la loi d’AMPÈRE en un
courant d’intensité:

(14.10)

qu’il appela courant de déplacement. C’est pour cette raison que le champ:

que nous avons introduit par l’équation (13.38) est appelé déplacement électrique.

CS1

S2

r

j

FIGURE 14.18 Loi d’AMPÈRE-
MAXWELL: l’intégrale du champ
magnétique le long de la courbe C a
deux origines: le courant de densité
j traversant la surface S1 et le cou-
rant de déplacement traversant la
surface S2.
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La loi d’AMPÈRE-MAXWELL peut ainsi être exprimée de manière concise:

(14.11)

ou, en version locale:

(14.12)
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14.6  ÉQUATIONS DE MAXWELL

Considérée pour elle-même, l’équation (14.11) ne fait que compléter une loi connue,
la loi d’AMPÈRE, pour prendre en compte les processus impliquant des courants varia-
bles. Mais nous allons montrer à la section 14.9 que, combinée avec d’autres équa-
tions, elle implique l’existence d’ondes électromagnétiques.

14.6 ÉQUATIONS DE MAXWELL

Nous sommes maintenant en mesure de rassembler les équations qui décrivent de
manière générale les processus électromagnétiques. Elles sont le fruit d’un siècle de
recherche expérimentale et de réflexion théorique intensives. Même si finalement, ce
gigantesque labeur se résume à quatre équations fondamentales, il n’est pas inutile de
mentionner que, dans sa première version, la publication de MAXWELL contenait vingt
équations, qu’il réduisit à dix dans une publication ultérieure. Plusieurs mathémati-
ciens et physiciens ont participé à la formulation que nous utilisons aujourd’hui.

14.6.1 Équations de MAXWELL

Nous donnons les formes intégrales et locales en commentant leur signification.

TABLEAU 14.1 Équations de MAXWELL pour le champ électromagnétique.

Version intégrale Version locale

Le flux du champ électrique à travers une surface fermée est proportionnel à la charge
enfermée, c’est-à-dire que les charges électriques sont les sources du champ électrique
(équations (13.11) et (13.14)).

La circulation du champ électrique d’intensité E est égale à l’opposé de la variation tempo-
relle du flux du champ d’induction magnétique traversant la surface délimitée par la boucle
d’intégration (équations (14.2) et (14.4)).

Dans le vide, en l’absence de matière polarisable, la loi d’AMPÈRE-MAX-

WELL devient:

(14.13)

(14.14)
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14.6.2 Lois constitutives

Les équations de MAXWELL sont en quelque sorte les «équations de bilan» qui don-
nent la dynamique des champs électromagnétiques. Nous savons qu’elles ne permet-
tent de modéliser complètement cette dynamique que si on y adjoint les lois
constitutives qui relient les champs entre eux par l’intermédiaire des caractéristiques
telles que la permittivité, la perméabilité, la conductivité des milieux dans lesquels se
trouvent les champs.

Les sections 13.6 et 13.7.4 qui traitent de l’interaction de la matière et respectivement
des champs électrique et magnétique sont des exemples de telles lois constitutives.

14.7 FLUX D’ÉNERGIE ET DE QUANTITÉ DE MOUVEMENT DANS LE CHAMP 
ÉLECTROMAGNÉTIQUE

Lors des interactions observées à la section 14.1 entre des systèmes mécaniques et
électromagnétiques, il y a eu des transferts de quantité de mouvement et d’énergie. Ces
transferts n’ont pu s’opérer que par l’intermédiaire du champ électromagnétique.

Au chapitre 13, sections 13.5.1, 13.5.2 et 13.7.6, nous avons montré que les champs
électrostatique et électromagnétique emmagasinent de l’énergie et qu’ils sont le siège
de contraintes qui sont la manifestation de flux de quantité de mouvement.

Lorsque ces champs varient dans le temps, l’énergie et la quantité de mouvement va-
rient conjointement, à cause des variations de l’intensité. Nous voulons déterminer
comment les flux d’énergie et de quantité de mouvement dépendent des intensités des
champs.

Le flux du champ magnétique d’intensité B et sa divergence sont nuls. C’est une consé-
quence de l’inexistence d’un monopôle magnétique qui serait le porteur d’une charge
magnétique isolée (équations (13.56) et (13.55)).

Dans le vide, en l’absence de matière polarisable, ces équations deviennent

La circulation du champ d’induction magnétique d’intensité B est égale à la somme du
courant réel et du courant de déplacement (variation temporelle du flux électrique) traver-
sant la surface délimitée par la boucle d’intégration. Le rotationnel est un vecteur, perpendi-
culaire au plan déterminé par le champ magnétique, dont l’intensité varie en fonction des
valeurs locales de l’intensité du courant réel et de l’intensité des variations du courant de
déplacement (équations (14.11), (14.12), ainsi que (14.13) et (14.14)).

TABLEAU 14.1 Équations de MAXWELL pour le champ électromagnétique.

Version intégrale Version locale
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14.7.1 Densité d’énergie du champ électromagnétique

Les évaluation de la densité d’énergie que nous avons calculées dans le cas statique
restent valables lorsque les champs varient dans le temps.

Le champ électromagnétique est caractérisé par le fait que les vecteurs E et B coexis-
tent au même point de l’espace. De ce fait, la densité d’énergie est la somme de la con-
tribution électrique donnée par l’équation (13.45) et de la contribution magnétique
donnée par l’équation (13.61):

(14.15)

14.7.2 Densité de flux d’énergie dans le champ électromagnétique

En évaluant le taux de variation de la densité d’énergie du champ électromagnétique,
nous allons faire apparaître les termes qui sont responsables de son évolution.

Les dérivées temporelles du champ de déplacement électrique et du champ d’induc-
tion magnétique ont respectivement été exprimées au moyen de la loi d’AMPÈRE-
MAXWELL (14.12) et de la loi d’induction (14.4). En outre, la substitution à la dernière
égalité repose sur une identité de l’analyse vectorielle3. En résumé,

Pour pouvoir donner une interprétation physique des termes de la relation (14.16),
nous passons à la version intégrale dans un volume V, enfermé dans une surface S:

Nous utilisons le théorème de la divergence pour transformer le second terme du mem-
bre de droite en une intégrale sur la surface fermée entourant le volume considéré:

3. ARBENZ K., WOHLHAUSER A.: Compléments d’analyse. Presses polytechniques roman-
des, Lausanne, 1981.
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exprime la loi de variation de l’énergie du champ électromagnétique dans
sa forme locale.
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Le terme j•E représente la puissance délivrée à une unité de volume de matière char-
gée. En effet, la force exercée par le champ électromagnétique sur une particule de
charge Q est F = Q (E + v×B), et la puissance est F•v = QE•v. S’il y a N particules
par unité de volume, la puissance est NQE•v, ce qui est équivalent à j•E. Le terme j•E
représente donc l’énergie que libère le champ par unité de temps et par unité de volu-
me, donc une densité de flux d’énergie. Son intégrale sur le volume considéré corres-
pond donc à la puissance transmise à l’ensemble des charges comprises dans ce
volume. Si ces charges se déplacent librement dans l’espace, le terme correspond à la
variation de leur énergie cinétique. En revanche, s’il s’agit de charges circulant dans
un conducteur, la puissance injectée par le champ correspond au taux de dissipation
par effet Joule.

Le second terme du membre de droite correspond à la densité jE du flux d’énergie éma-
nant du volume considéré. La grandeur

(14.17)

est le vecteur de POYNTING, d’après John H. POYNTING qui élabora la théorie en 1884.
Vu qu’elle représente un flux d’énergie à travers une surface, elle se mesure en W m-2.
Sa direction est celle du flux d’énergie, son module l’intensité du flux. Son intégrale sur
la surface fermée englobant le volume considérée correspond à la puissance rayonnée
par le champ électromagnétique.

14.7.3 Quelques exemples de flux d’énergie

Nous allons découvrir que les chemins empruntés par l’énergie lors de processus élec-
tromagnétiques sont quelquefois étonnants.

Charge d’un condensateur. Nous considérons un condensateur à plaques circulaires
en phase de charge. Il règne entre les deux plaques un champ électrique quasi homo-
gène, mais qui est en train d’augmenter dans le temps. En vertu de la loi d’AMPÈRE-
MAXWELL (14.11), ce champ croissant est entouré d’un champ magnétique tourbillon-
naire dont les courbes fermées sont perpendiculaires au vecteur du champ électrique.
La figure 14.19 permet de se rendre compte que le vecteur de POYNTING (14.17) est
dirigé vers le centre du condensateur, parallèlement aux plaques. Contrairement à ce
que l’on pourrait supposer, l’énergie n’entre pas dans le condensateur par les con-
nexions conductrices, mais latéralement, entre les bords des plaques.

Courant dans un circuit électrique. Examinons comment l’énergie est transportée
lorsqu’un courant circule dans un circuit électrique. Nous considérons un courant con-
ventionnel de charges positives. Nous savons que le courant ne circule que si un champ
électrique s’établit à l’intérieur du conducteur pour entraîner les porteurs de charges.
Ce champ électrique ne peut pas être le fait de la batterie, celle-ci ne sert qu’à séparer
les charges. Il doit donc être engendré par des charges électriques qui se répartissent à
la surface du conducteur, les charges de surface. Ces charges de surface ont trois rôles
à remplir dans un circuit4: (1) maintenir le potentiel le long du circuit, (2) fournir le

4. JACKSON J. D.: Surface charges on circuit wires and resistors play three roles. Am. J. Phys.
64, 855-870, 1996.
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de charge, l’énergie entre latérale-
ment entre les plaques du
condensateur.
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champ électrique dans l’espace entourant le conducteur, et (3) assurer un flux de char-
ges confiné en générant un champ électrique à l’intérieur du conducteur.

Dans le circuit, la batterie joue le même rôle qu’aurait un condensateur que l’on
déchargerait au moyen du fil conducteur, à la différence près que les réactions chimi-
ques entretiennent la différence de potentiel en séparant les charges pour compenser
celles qui ont été introduites dans le circuit. Lors de la fermeture du circuit, un flux
quasi instantané va amener les charges à la surface du conducteur. Elle vont se répartir
de manière à remplir les trois rôles identifiés par JACKSON.

Examinons d’abord comment ces charges de surface génèrent le champ à l’intérieur
du conducteur tout en épousant sa forme. Ces charges ne sont pas réparties de manière
uniforme le long du circuit, car elles doivent également compenser les champs exté-
rieurs, entre autres le champ de type dipolaire engendré par la batterie. Dans la branche
connectée à la borne positive, elles sont majoritairement positives, dans la branche
connectée à la borne négative, elles sont majoritairement négatives. Dans les segments
courbes, la charge n’est pas répartie uniformément autour du conducteur, mais sa den-
sité s’adapte de part et d’autre en fonction du rayon de courbure et du champ ambiant.
Il est même possible d’avoir des charges d’un signe d’un côté et des charges de signe
opposé de l’autre côté du conducteur.

La figure 14.20, tirée d’une étude semi quantitative du phénomène5, montre comment
cette charge de surface se répartit dans un circuit, constitué d’une batterie et d’un con-
ducteur flexible, qui amène le courant électrique à deux résistances montées en série.
La densité des charges de surface est indiquée par l’épaisseur ou la noirceur des traits,
les 0 indiquent un changement de signe des charges de surface (seuls les segments
chargés positivement ont été indiqués par le signe +). On remarque que le champ élec-
trique interne épouse les contours du conducteur. Aux extrémités des résistances, la

5. MÜLLER R.: A semi quantitative treatment of surface charges in DC circuits. Am. J. Phys.
80(9), 782-788, 2012.
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FIGURE 14.20 Répartition des
charges de surface dans un circuit.
Le champ magnétique engendré
par le courant est perpendiculaire
au plan du circuit. Le champ élec-
trique est représenté par des flè-
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coïncident donc avec le champ de
POYNTING. Les 0 indiquent un
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de surface, leur densité est indiquée
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trait. La résistivité du fil conducteur
est de 0.25 Ωm.
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densité de charge de surface est beaucoup plus importante afin de compenser l’aug-
mentation de la résistivité dans ces segments.

Les lignes équipotentielles représentent également le champ de POYNTING. En effet,
le vecteur de POYNTING est perpendiculaire au vecteur du champ magnétique qui, dans
le cas présent, est perpendiculaire à la feuille (à l’intérieur du circuit, il émerge de la
feuille), et au vecteur du champ électrique, ce qui est le cas des lignes équipotentielles.
Elles montrent comment la densité du flux d’énergie se répartit à l’extérieur du con-
ducteur. Ces flux se répartissent de telle manière que l’énergie est injectée dans le con-
ducteur et dans les résistances de manière proportionnelle à leur résistivité pour y être
dissipée.

 

EXEMPLE 14.4. Charge d’un condensateur.

Un condensateur est constitué de deux plaques circulaires parallèles de rayon R séparées par une
distance d très petite par rapport au rayon. On charge le condensateur au moyen d’un courant
d’intensité I. Montrez, au moyen du vecteur de POYNTING, que le taux auquel le champ électro-
magnétique injecte de l’énergie dans le condensateur correspond au taux de variation de l’éner-
gie du champ électrostatique stockée dans le condensateur. Montrez que l’apport d’énergie est
égal à UI, où U est la tension entre les plaques.

SOLUTION: Nous introduisons des coordonnées cylindriques (r, θ, z), l’axe Oz coïncidant avec
l’axe de symétrie du condensateur (fig. 14.21). Lorsque la plaque positive porte la charge Q,
l’intensité du champ électrique entre les plaques est:

La variation de Q entraîne celle du champ électrique, ce qui provoque l’apparition d’un champ
magnétique entre les plaques. Nous appliquons l’équation (14.13) à l’espace entre les deux pla-
ques. Le premier terme du membre de droite est nul, et après division par µ0, nous obtenons:

ce qui entraîne

Le vecteur de POYNTING devient:

Le flux d’énergie pénètre dans le condensateur par les côtés. Le flux est:

L’énergie emmagasinée dans le champ électrique est le produit de la densité d’énergie et du vo-
lume entre les plaques:
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FIGURE 14.21 Lors du processus
de charge, l’énergie entre latérale-
ment entre les plaques du
condensateur.
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Son taux de variation est:

ce qui correspond au flux d’énergie IE.

La charge est égale au produit de la capacité et de la tension:

ce qui entraîne

Le flux d’énergie est bien égal au produit de la tension et de l’intensité.

B

14.7.4 Quantité de mouvement du champ électromagnétique

À partir du théorème de POYNTING, qui exprime la loi de conservation de l’énergie
dans le champ électromagnétique, il est possible de montrer6 que ce champ contient
de la quantité de mouvement dont la densité, désignée par g, est proportionnelle à la
densité du flux d’énergie:

(14.18)

Une expérience de pensée due à EINSTEIN va permettre de justifier cette relation. Dans
un wagon de chemin de fer immobile (fig. 14.22), de masse M et de longueur L, censé
se mouvoir librement, un rayonnement électromagnétique d’énergie E est émis à une
extrémité du wagon pour être absorbé à l’autre extrémité. La masse effective du rayon-
nement est m = E/c2. Comme le wagon n’est soumis à aucune interaction, le centre de
masse du système est stationnaire, ce qui n’est possible que si le wagon se déplace
d’une distance x dans un sens inverse à celui du rayonnement, de telle manière que:

Le recul du wagon doit être dû au fait que le rayonnement émis possède une quantité
de mouvement p. En vertu de la loi de conservation de la quantité de mouvement, le
wagon acquiert la même quantité de mouvement de sens opposé, et sa vitesse v est
égale à p/M. Le wagon roule à cette vitesse jusqu’à ce que le rayonnement atteigne
l’autre extrémité où l’absorption de la quantité de mouvement arrête le wagon. Le
temps de vol est égal à L/c, ce qui nous permet de déterminer le déplacement x:

6. JACKSON J.D.: Classical Electrodynamics. John Wiley & Sons, New York, 1962.
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On en déduit que le rayonnement possède une quantité de mouvement de module égal
à:

Comme la quantité de mouvement est proportionnelle à l’énergie, sa densité g sera
proportionnelle à la densité d’énergie:

Dans la dernière égalité, nous avons utilisé le fait que la densité de flux d’énergie est
égale au produit de la densité d’énergie et de la vitesse du flux, à savoir celle de la
lumière. L’équation (14.17) nous permet de conclure que la densité de quantité de
mouvement est:

Dans un repère cartésien Oxyz, la quantité de mouvement p est un vecteur défini par
ses trois composantes px, py, pz. Il en va de même pour sa densité g(r,t). L’écoulement
de chacune des composantes de la quantité de mouvement peut être représenté par un
vecteur jp. Il est usuel de rassembler ces trois vecteurs en un nouvel objet mathémati-
que, le tenseur de densité de flux de quantité de mouvement. Nous allons le découvrir
sur la base d’un exemple concret.

EXEMPLE 14.5. Vecteurs de densité de flux de quantité de mouvement.

Déterminer les trois vecteurs de densité de flux de quantité de mouvement: (a) dans le cas du
champ d’un condensateur à plaques parallèles de capacité C portant la charge Q et dont les pla-
ques ont une aire égale à A; (b) généraliser le résultat pour une direction quelconque.

SOLUTION: (a) Nous nous plaçons dans un repère orthonormé et désignons par a1, a2 et a3 les
vecteurs unitaires (fig. 14.23). Dans le cas étudié, le vecteur unitaire a1 est orienté perpendicu-
lairement aux plaques du condensateur, les vecteurs a2 et a3 correspondent à deux directions
mutuellement perpendiculaires parallèles aux plaques du condensateur. Vu la symétrie du sys-
tème, le vecteur de densité de flux de quantité de mouvement jp,a1 a la même direction que a1,
ce qui implique

Nous obtenons le flux de quantité de mouvement entre les plaques en dérivant l’énergie du
condensateur par rapport à la distance x entre les plaques:

La densité de flux est égale au quotient du flux et de l’aire A. Dans la direction a1 elle est donc:
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À la section 13.5.2, nous avons montré que le champ exerçait une traction sur les plaques dans
le sens des lignes de champ. Une densité de flux de quantité de mouvement négative correspond
donc à une traction.

Pour la deuxième composante, nous choisissons la direction selon Oy. Le flux de quantité de
mouvement qui maintient les plaques de la figure 13.40 est calculé de manière analogue:

Le produit zy correspond à l’aire A des plaques alors que xz est l’aire de la surface à travers la-
quelle s’écoule la quantité de mouvement dans la direction a2. Vu la symétrie du système envi-
sagé, le résultat est le même pour la troisième direction. Nous avons donc:

Une densité de flux positive correspond, en vertu des résultats de la section 13.5.2, à une pres-
sion dans la direction perpendiculaire aux lignes de champ.

(b) Pour une direction quelconque, déterminée par un vecteur unitaire a tel que:

la densité de flux de quantité de mouvement est, pour cet exemple, donnée par:

Ce résultat particulier peut être généralisé pour un champ quelconque sous la forme:

(E 14.1)

Cette relation est valable de manière générale, malgré le fait qu’elle ait été établie pour le champ
homogène du condensateur à plaques parallèles.

B

EXEMPLE 14.6. Tenseur de densité de flux de quantité de mouvement.

Utilisez l’équation (E 14.1) de l’exemple 14.5: (a) pour expliciter les trois vecteurs de densité
de flux de quantité de mouvement pour un champ électrique quelconque dans un repère
cartésien; (b) rassemblez les trois vecteurs dans une matrice; (c) vérifiez le résultat pour l’exem-
ple du champ du condensateur à plaques parallèles.

SOLUTION: (a) Dans l’équation (E 14.1), nous remplaçons le vecteur a par les vecteurs unitai-
res du repère orthonormé que nous exprimons par leurs composantes. Le vecteur selon Ox est:
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De manière analogue, nous trouvons pour les deux autres vecteurs:

(b) Chacun de ces trois vecteurs constitue une ligne de la matrice:

(E 14.2)

qui est la représentation matricielle du tenseur de densité de flux de quantité de mouvement pour
le champ électrique.

(c) Dans le cas du condensateur, seule la composante suivant Ox est non nulle. Il s’ensuit:

ce qui correspond naturellement aux résultats de l’exemple 14.5.

B

La densité de flux de quantité de mouvement dans un champ magnétique peut être ex-
primée à partir de la relation (E 14.1) en substituant µ0H (ou 1/µ0B) à ε0E. La densité
de flux de quantité de mouvement du champ électromagnétique, dans une direction dé-
terminée par le vecteur a, est donc égale à:

(14.19)
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et la matrice du tenseur de densité de flux de quantité de mouvement s’obtient en
additionnant, dans la matrice donnée par la relation (E 14.2), les composantes magné-
tiques à chacune des composantes correspondantes du champ électrique.

Ce tenseur est symétrique. Il est l’opposé du tenseur des contraintes de MAXWELL dont
les composantes diagonales sont les contraintes que nous avons introduites à la
section 13.5.2:

(14.20)

14.8 GÉNÉRALITÉS SUR LES ONDES

L’objectif de cette section est d’introduire les concepts généraux liés aux phénomènes
ondulatoires.

14.8.1 Observations préliminaires

Nous sommes confrontés, dans notre vie quotidienne ou quelquefois de manière ex-
ceptionnelle, à une catégorie de phénomènes qui, souvent mais pas toujours, portent
le nom d’onde. En voici quelques-uns:

• Les ondes qui se propagent à la surface de l’eau lorsque l’on y laisse tomber
un objet (fig. 14.24a).

• La vague qui atteint la rive d’un lac après le passage d’un grand bateau.

• Les mascarets qui sont des ondes qui remontent des estuaires, voire certains
grands fleuves, lors de fortes marées (fig. 14.24b), les raz-de-marée (tsuna-
mis), les vagues scélérates (vagues océaniques très hautes).

• La perturbation qui se déplace le long d’une corde attachée à une extrémité
lorsqu’on la frappe avec le tranchant de la main ou que l’on agite l’autre extré-
mité (fig. 14.24c).

• L’effet domino: la progression de la chute le long d’une rangée de pièces de
domino redressées lorsque l’on a fait tomber la première.

• La compression des soufflets entre les wagons qui se transmet d’un wagon à
l’autre lorsque l’on accouple un nouveau wagon à un train.

• Les ondes sonores dans les milieux gazeux, liquide et solide.

jp = −σσ

a. b.

c.

FIGURE 14.24 Exemples de phé-
nomènes ondulatoires: (a) onde à
la surface de l’eau; (b) mascaret
dans la baie de Morecambe, au
Royaume-Uni (Photo: Arnold
Price (CC)); (c) onde transversale
sur une corde attachée.
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• Les ondes sismiques.

• Les ondes lumineuses.

Ce qu’il y a de commun à tous ces exemples, c’est le fait qu’une perturbation locale
d’un milieu se propage dans l’espace depuis l’endroit où a eu lieu cette perturbation.

Nous pouvons d’ores et déjà constater l’existence de deux classes d’ondes en fonction
de la manière dont se déroule la perturbation par rapport au déplacement de celle-ci.
Dans le cas de l’effet domino, de la compression des soufflets entre les wagons, des
ondes sonores, la perturbation a lieu dans la même direction que celle de la propaga-
tion. On parle alors d’onde longitudinale (fig. 14.25a). Dans le cas de la corde frappée,
la perturbation a lieu perpendiculairement à la direction de propagation. On parle alors
d’onde transversale (fig. 14.25b). Nous verrons à la section 14.9.2 que les ondes élec-
tromagnétiques sont des ondes transversales. Les ondes sismiques sont un mélange
des deux catégories, alors que les ondes de surface ont un statut un peu particulier.

14.8.2 Description mathématique

La forme de la perturbation est décrite au moyen d’une fonction ξ de l’espace et du
temps, que l’on appelle l’élongation:

(14.21)

Comme le montrent les quelques exemples ci-dessus, la grandeur ξ peut représenter
une grande variété de grandeurs physiques telles que la pression dans un gaz, la défor-
mation d’un solide, l’intensité d’un champ électrique ou magnétique, etc.

On appelle onde toute perturbation d’un milieu qui se transmet de proche
en proche dans l’espace.

x

ξ
a. b.

FIGURE 14.25 Deux types
d’ondes: (a) onde longitudinale;
(b) onde transversale.

ξ ξ= ( )x y z t, , ,

x

ξ

x

v

v

t = 0 t = t

ξ x, 0( ) = f ′x( )

′x

ξ x, t( ) = f ′x( )
= f x −vt( )

t

FIGURE 14.26 Perturbation en
mouvement vers la droite à la vi-
tesse v, sans déformation.
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Afin de montrer comment prendre en compte la propagation sans déformation, nous
envisageons une perturbation de forme donnée par la figure 14.26, aux instants t = 0
et t. Nous admettons que la perturbation se déplace dans une dimension, dans le sens
positif, à une vitesse de module v. La fonction ξ (x,t) représente la perturbation, ici le
déplacement d’un point par rapport à la position d’équilibre.

Au temps t = 0, ξ (x, 0) = f (x′). Comme la perturbation se déplace à la vitesse v, nous
avons x′ = x – v t. Par comparaison, nous obtenons ξ (x,t) = f (x – v t). Si le déplace-
ment a lieu dans le sens négatif, la relation devient ξ (x,t) = f (x + v t). En conclusion:

Montrons qu’une fonction donnée par l’équation (14.22) est solution de l’équation
d’onde. Comme f est une fonction composée, nous devons appliquer la règle de déri-
vation en chaîne. Nous choisissons une onde qui se propage dans le sens positif. Si
nous posons u = x – vt, nous pouvons écrire = f (u), et les dérivées partielles sont res-
pectivement ∂u ⁄ ∂x = 1 et ∂u ⁄ ∂t = –v. Ainsi:

Les dérivées secondes sont:

En substituant d2ξ ⁄ du2 dans la seconde relation, nous obtenons l’équation (14.23), ce
qui démontre qu’une fonction de type ξ (x,t) = f (x – vt) est une solution de l’équation
d’onde, quelle que soit la forme de f.

14.8.3 Paramètres servant à caractériser une onde harmonique

Nous allons limiter notre étude à une onde sinusoïdale ou harmonique. Ce qui justifie
ce choix, c’est le fait qu’il existe un théorème, celui de FOURIER, qui montre que toute
fonction périodique peut être décomposée en une somme infinie de fonctions sinusoï-
dales. La figure 14.27 montre les premières étapes d’une telle synthèse au moyen

Une perturbation ondulatoire non amortie ξ (x,t) prend nécessairement la
forme:

(14.22)

La grandeur x – v t est la phase de l’onde et la vitesse v est la vitesse de
phase.

La superposition des deux fonctions est la solution générale de l’équation
différentielle que nous avons établie à la section 9.7, l’équation d’onde:

(14.23)

donnée ici pour une onde se propageant dans une dimension. Naturelle-
ment, si le déplacement a lieu dans un seul sens, on choisit une seule des
deux fonctions possibles.
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FIGURE 14.27 Premières étapes
de la synthèse d’un signal carré au
moyen d’une série de FOURIER.
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d’une série de FOURIER. Pour une fonction non périodique, la somme est remplacée
par une intégrale de FOURIER.

La fonction servant à représenter une onde harmonique est:

Pour déterminer la signification de la grandeur k, nous remplaçons, dans l’argument
du sinus, la valeur de x par x + 2π ⁄ k:

On voit donc que la longueur 2π ⁄ k représente la périodicité dans l’espace.

Au moyen de ces grandeurs, nous pouvons donner de nouvelles versions de la fonction
représentant une onde sinusoïdale:

Dans la dernière égalité, la grandeur

(14.27)

correspond à la fréquence angulaire ou pulsation de l’onde. Sachant, en vertu de la
relation (4.19), que ω = 2πf, où f est la fréquence à laquelle l’état physique varie en
chaque point atteint par l’onde, nous pouvons réécrire la relation ci-dessus et faire
apparaître une propriété importante des ondes:
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FIGURE 14.28 Longueur d’onde et
amplitude.

Dans l’équation d’une onde sinusoïdale ou harmonique

(14.24)

La grandeur ξ0 est l’amplitude de l’onde (fig. 14.28). L’argument du sinus
est la phase de l’onde, et la vitesse v est la vitesse de phase.

La grandeur

(14.25)

est la longueur d’onde (fig. 14.28). Elle représente la plus petite distance
séparant deux points du milieu de propagation qui oscillent en phase.

La grandeur

(14.26)

représente le nombre de longueurs d’onde comprises dans la longueur 2π.
Elle est appelée nombre d’onde. Elle se mesure en m–1.
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En tenant compte du fait que f = 1⁄T, où T est la période d’oscillation en chaque point,
nous pouvons donner une dernière version de l’équation de propagation d’une onde
sinusoïdale:

Cette version fait apparaître la double périodicité d’une onde: sa périodicité spatiale
exprimée par la longueur d’onde λ et sa périodicité temporelle exprimée par la période
T (temps minimal entre deux passages par la même phase d’un point atteint par l’onde
ou temps que met la perturbation pour se déplacer d’une longueur d’onde):

Notons que la notion de longueur d’onde ne s’applique pas qu’aux ondes sinusoïdales,
mais à n’importe quelle sorte de perturbation périodique, comme le montre la
figure 14.29.

Pour faire ressortir la double périodicité, nous concentrons notre attention sur un point
fixe, par exemple celui qui est situé en x = 0. L’équation devient:

ce qui représente une oscillation sinusoïdale du point situé en x = 0, dans une direction
perpendiculaire à celle de la propagation de l’onde s’il s’agit d’une onde transversale,
dans la direction de propagation s’il s’agit d’une onde longitudinale.

Si en revanche nous figeons le temps, ce qui correspond à prendre une photographie
de l’aspect momentané de l’onde, en posant t = 0, nous obtenons:

qui est l’équation de la situation représentée par les figures 14.21c et fig. 14.25.

EXEMPLE 14.7. L’onde sinusoïdale (ou harmonique) satisfait l’équation d’onde.

Vérifier que l’onde sinusoïdale satisfait l’équation d’onde (14.23).

SOLUTION: Les dérivées secondes par rapport au temps et à la coordonnée spatiale sont
respectivement:

La vitesse de propagation v d’une onde, sa longueur d’onde λ et sa fré-
quence f sont liées entre elles par la relation:

(14.28) v = λ f
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FIGURE 14.29 La longueur d’onde
caractérise n’importe quelle pertur-
bation périodique.
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Le quotient des deux dérivées est égal à v2, ce qui montre que l’onde harmonique est une solu-
tion de l’équation d’onde.

B

14.8.4 Ondes en deux ou trois dimensions

Une onde peut se propager dans des milieux de dimension variable. Comme nous
l’avons déjà observé à la section 14.8.1, certaines ondes sont unidimensionnelles :
c’est le cas de celles se propageant sur une corde. Notons toutefois qu’elle peut le faire
dans les deux sens: c’est le cas des ondes qui se forment sur les cordes des instruments
de musique.

Même si elle se propage uniquement dans la direction de l’axe des x, une onde peut
s’étendre dans l’espace. Dans ce cas, toute expression du type ξ (x,t) = f (x – vt) signi-
fie que, à l’instant t, la fonction prend la même valeur en tout point de l’espace de coor-
donnée x. Dans ce cas, cette expression représente ce que l’on appelle une onde plane
qui se propage perpendiculairement à l’axe des x . La figure 14.30 montre une surface
ou front d’onde d’une telle onde plane. Une onde plane peut aussi bien être longitudi-
nale que transversale voire, comme c’est le cas des ondes électromagnétiques, être
l’ensemble de deux ondes transversales qui vibrent dans des plans mutuellement or-
thogonaux (section 14.9.2).

La propagation d’une onde a généralement lieu dans plus d’une direction. C’est par
exemple le cas des ondes qui se propagent à la surface de l’eau. La figure 14.31 montre
des ondes de surface générées dans une cuve à ondes; l’onde plane est obtenue au
moyen d’un plongeur rectiligne qui touche à intervalles réguliers la surface de l’eau,
alors que le plongeur qui génère l’onde circulaire est ponctuel. Mais le cas le plus cou-
rant est celui d’ondes qui se propagent dans l’espace à trois dimensions; les ondes
cylindriques et sphériques sont l’extension dans l’espace des ondes circulaires en deux
dimensions. Notons que lorsqu’on est éloigné de la source, la courbure d’une onde
cylindrique ou sphérique devient négligeable, permettant de la considérer comme une
onde plane, ce qui justifie l’importance que nous accordons à ce type d’ondes.

14.8.5 Grandeurs physiques transportées par une onde

Il est important de réaliser qu’une onde, même dans un milieu matériel, ne transporte
pas de matière. Pour s’en convaincre, il suffit d’observer un bouchon qui flotte à la sur-
face d’un plan d’eau sur lequel se propage une onde: le bouchon oscille verticalement
sur place alors que l’onde se propage horizontalement. C’est l’état de mouvement qui
se propage, ce que l’on décrit au moyen de l’énergie et de la quantité de mouvement.

L’évaluation de ces deux grandeurs doit se faire en tenant compte du type d’onde
envisagé. Ce sera fait pour l’onde électromagnétique harmonique à la section 14.9.4.
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14.9 ONDES ÉLECTROMAGNÉTIQUES

Dans sa théorie, MAXWELL n’a pas seulement réussi à unifier l’électricité et le magné-
tisme mais, en révélant que ses équations impliquaient l’existence d’ondes électroma-
gnétiques, il a également unifié l’optique avec l’électromagnétisme.

14.9.1 Existence des ondes électromagnétiques

Comme nous l’avons déjà affirmé à la section 14.5, l’adjonction par MAXWELL du
courant de déplacement à la loi d’AMPÈRE a révélé l’existence d’ondes électromagné-
tiques. Nous allons montrer que la combinaison des équations de MAXWELL débouche
sur l’équation d’onde pour chacun des deux champs.

Nous nous plaçons dans l’espace libre de charges et de courants. Dans ce cas, les équa-
tions de MAXWELL deviennent:

Nous formons le rotationnel des deux équations portant sur le rotationnel en permutant
les dérivations temporelle et spatiale:

(14.29)

Nous utilisons l’identité vectorielle7:

où V est un champ vectoriel quelconque et ∆ le laplacien défini par:

Si nous tenons compte du fait que la divergence de chacun des deux champs est nulle,
il ne reste plus que le laplacien dans chacune des équations (14.29). Nous pouvons
donc écrire:

7. ARBENZ K., WOHLHAUSER A.: Compléments d’analyse. Presses polytechniques roman-
des, Lausanne, 1981.
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(14.30)

Nous avons obtenu l’équation d’onde pour chacun des deux champs, la perturbation
se propageant à la vitesse:

(14.31)

Cette équation s’applique naturellement à chacune des composantes des deux champs
envisagés.

14.9.2 Caractéristiques des ondes électromagnétiques

Nous avons découvert, à la section 14.7.2, que la densité du flux d’énergie dans le
champ électromagnétique était décrite au moyen du vecteur de POYNTING, qui montre
que l’énergie se propage dans une direction perpendiculaire à chacun des deux
champs. Il est donc plausible d’admettre par hypothèse qu’une onde électromagnéti-
que satisfaisant une relation telle que les équations (14.30) sera la composition des
deux champs électrique et magnétique vibrant en phase dans des plans perpendiculai-
res. Nous voulons vérifier cette hypothèse.

Nous envisageons une onde sinusoïdale se propageant dans la direction des x positifs,
une onde plane, et admettons que le champ électrique vibre dans la direction de l’axe
des y et le champ magnétique dans celle de l’axe des z. Nous avons donc:

Dans le cas d’ondes sinusoïdales, nous avons:

(14.32)

Les amplitudes E0 et B0 ne sont pas arbitraires, car elles doivent vérifier la loi de
FARADAY-HENRY et celle d’AMPÈRE-MAXWELL.

Les composantes correspondantes de la loi de FARADAY-HENRY donnent:

ce qui implique:

À partir de la loi d’AMPÈRE-MAXWELL, nous obtenons:
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d’où l’on tire:

ce qui confirme le résultat ci-dessus.

Cette relation entre les amplitudes est également valable pour les valeurs instantanées:

(14.33)

Cette équation implique également que les deux champs sont en phase. D’autre part,
si l’on introduit le vecteur k qui indique la direction et le sens de propagation, et dont
le module est donné par l’équation (14.26), on montre à partir des équations de MAX-

WELL que les vecteurs E, B et k forment un système de vecteurs orthogonaux orienté
positivement8.

La figure 14.32 montre l’onde électromagnétique donnée par les équations (14.32). Le
champ électrique oscille dans le plan Oxy et le champ magnétique dans le plan Oxz.
Une telle onde, caractérisée par le fait que les vecteurs de champ oscillent dans un plan
fixe, est dite polarisée linéairement. Le plan de polarisation est, par convention, celui
dans lequel oscille le champ électrique. Comme nous l’avons montré à la
section 14.8.4, il s’agit d’une onde plane.

Pour une onde sinusoïdale, l’état général de polarisation est la polarisation elliptique.
Dans ce cas, l’extrémité du vecteur E (et celle du vecteur B à angle droit) décrit, dans
sa projection sur un plan perpendiculaire à la direction de propagation, une ellipse en
un temps égal à la période T de la vibration. Ce mouvement est décrit en décomposant
le vecteur E suivant deux axes orthogonaux Oy et Oz:

8. JACKSON J.D.: Classical Electrodynamics. John Wiley & Sons, New York, 1962.
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Pendant que le vecteur E effectue un tour complet durant une période, il avance d’une
longueur d’onde le long de l’axe Ox. Son extrémité effectue donc un mouvement
hélicoïdal dont la figure 14.33 est la projection sur le plan Oyz. Lorsque le déphasage
entre les deux composantes est nul, celles-ci sont confondues et la polarisation est
linéaire. Si le déphasage est un multiple impair de π/2 (ou d’un quart de période), la
polarisation est circulaire.

14.9.3 Source d’ondes électromagnétiques: le dipôle de HERTZ

Il existe de nombreuses méthodes pour produire des ondes électromagnétiques. Nous
décrivons ici une des possibilités qui est particulièrement importante, autant du point
de vue physique que technique. Il s’agit du rayonnement du dipôle électrique ou dipôle
de HERTZ, qui est plus communément appelé une antenne linéaire. On peut s’en faire
une image en admettant que l’on fait subir aux deux charges d’une dipôle électrique
un mouvement de va-et-vient sinusoïdal, de telle manière que le moment dipolaire
évolue selon la relation:

(14.34)

Pour comprendre le mécanisme d’émission d’une onde électromagnétique par une
antenne linéaire, qui n’est rien d’autre qu’un conducteur formant un circuit ouvert par-
couru par un courant variable de haute fréquence, on peut analyser ce qui se passe lors-
que l’on déforme progressivement un circuit oscillant pour le transformer en une
antenne.

La figure 14.34a représente le circuit oscillant. Les deux champs n’existent simultané-
ment nulle part en dehors du circuit fermé. Le vecteur de POYNTING S n’a pas de com-
posante dirigée vers l’extérieur, il n’y a donc pas d’ondes électromagnétiques.

Lorsque l’on ouvre le circuit (fig. 14.34b), les champs électrique et magnétique peu-
vent se superposer partiellement, ce qui engendre un certain flux d’énergie vers l’ex-
térieur qui diminue rapidement avec la distance.

Lorsque le circuit est complètement ouvert sous forme d’antenne (fig. 14.34c), l’espa-
ce avoisinant est simultanément le siège des champs électrique et magnétique, et le
flux d’énergie S est dirigé vers l’extérieur: l’antenne émet une onde électromagnéti-
que. Le champ magnétique est celui qui est engendré par les variations du courant en
vertu de la loi d’AMPÈRE-MAXWELL, celui de la bobine est négligeable.

Pour révéler l’existence des ondes électromagnétiques, Heinrich HERTZ utilisa un cir-
cuit oscillant dans lequel une bobine à induction produisait une tension élevée (bobine
de Ruhmkorff) provoquant des étincelles entre deux petites sphères. L’éclatement de
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l’étincelle génère des ondes électromagnétiques dont HERTZ révéla la répartition
(fig. 14.35) et les propriétés lors de sa série d’expériences entre 1886 et 1888, au cours
de laquelle il découvrit également l’effet photoélectrique.

L’étude théorique du dipôle oscillant est un problème ardu. Nous nous contentons
d’énoncer les résultats les plus importants. Nous envisageons un dipôle de longueur δ
dont le moment dipolaire varie selon l’équation (14.34). La résolution des équations
de MAXWELL pour cette situation donne, en coordonnées sphériques (r, ϕ, J), pour une
distance r grande par rapport à la longueur d’onde (champ lointain) et pour une lon-
gueur d’onde grande par rapport à la dimension du dipôle (r q λ q δ):

(14.35)

Alors que l’intensité du champ du dipôle statique, tant électrique que magnétique, dé-
croît de manière inversement proportionnelle à r3, comme nous l’avons constaté dans
l’exemple 13.4 et la section 13.8.2, celle des deux champs du dipôle oscillant décroît
de manière inversement proportionnelle à r. C’est ce fait qui rend possible la transmis-
sion et la réception d’informations par l’intermédiaire d’antennes qui sont des dipôles
oscillants.

Les deux vecteurs de champ sont perpendiculaires à la direction de propagation r
(fig. 14.36). Vu qu’il est engendré par un courant parallèle à l’axe Oz, les lignes du
champ magnétique sont des cercles parallèles au plan Oxy. Les lignes du champ élec-
trique sont des boucles localisées dans les plans méridiens; l’inversion des lignes du
champ électrique a lieu aux endroits de faible intensité (fig. 14.37).

Les deux champs ont des intensités nulles pour J = 0 ou J = p, donc le long de l’axe
Oz, alors qu’elles sont maximales dans le plan Oxy (plan équatorial). La courbe exté-
rieure (ligne pointillée) de la figure 14.38 montre comment, pour une valeur constante
de l’éloignement r, l’amplitude varie en fonction de l’angle zénithal J .

14.9.4 Densité d’énergie, densité de quantité de mouvement de l’onde
électromagnétique harmonique

La densité d’énergie du champ électromagnétique est la somme des contributions des
deux champs qui le constituent. À partir des relations (13.27) et (13.61), et en tenant
compte de l’équation (14.33) et du lien entre ε0 et µ0, nous obtenons:

La substitution de la valeur donnée par l’équation (14.35) donne:

La densité d’énergie forme une onde harmonique de fréquence 2ω et de nombre
d’onde 2k.

L’énergie et la quantité de mouvement s’écoulent en direction radiale, vu que le vec-
teur de POYNTING est perpendiculaire aux deux champs (fig. 14.39). Ce dernier est:
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(14.36)

La densité de flux d’énergie forme elle aussi une onde harmonique de fréquence 2ω et
de nombre d’onde 2k. On constate que le flux d’énergie varie de manière inversement
proportionnelle au carré de la distance par rapport au dipôle, ce que nous attendions
en vertu de la loi de conservation de l’énergie, vu qu’elle se répartit sur la surface
d’une sphère. D’autre part, le flux d’énergie a une dépendance angulaire proportion-
nelle à sin2(J). Cette dépendance est représentée par la courbe continue de la
figure 14.38. L’intensité est maximale dans le plan équatorial et nulle dans l’axe du
dipôle.

L’équation (14.36) montre que la densité de flux d’énergie est proportionnelle à ω4, ce
qui veut dire que l’énergie rayonnée croît très fortement avec la fréquence d’oscilla-
tion du dipôle. Cette dépendance implique également que pour des fréquences faibles,
le dipôle ne rayonne pratiquement pas, on passe par des phases successives de géné-
ration puis d’annihilation du champ dipolaire statique, l’énergie oscillant dans le voi-
sinage du dipôle.

Lorsque l’on dérive deux fois l’équation (14.34) par rapport au temps, on obtient:

En intégrant sur une période le carré de cette accélération, on obtient:

ce qui implique que:

On voit donc que l’énergie rayonnée selon l’équation (14.36) est proportionnelle à
l’accélération de la charge. Ce résultat général implique qu’une particule chargée en
mouvement accéléré rayonne de l’énergie. Cette propriété explique notamment
l’émission de rayon X par les électrons freinés dans l’anode d’un tube à rayon X; on
parle de rayonnement de freinage ou Bremsstrahlung.

Cette même propriété empêche l’existence d’un atome modélisé en tant que système
dans lequel les électrons se déplaceraient sur des orbites circulaires ou elliptiques
autour du noyau. Comme il s’agit d’un mouvement accéléré, les électrons rayonne-
raient de l’énergie et finiraient par tomber dans le noyau. Seule la physique quantique
permet de modéliser correctement l’atome en adjoignant de nouvelles lois à celles de
l’électromagnétisme.

L’onde électromagnétique transporte de la quantité de mouvement dont la densité de
flux est donnée par l’équation (14.19), dans laquelle le vecteur a coïncide avec le vec-
teur de propagation de l’onde. Les termes mixtes sont nuls, ce qui implique que le vec-
teur de densité de flux de quantité de mouvement a pour module:
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Cette densité de flux de quantité de mouvement correspond à une pression appelée
pression radiative.

EXEMPLE 14.8. Étude de la pression radiative.

Etudier la pression engendrée par le rayonnement électromagnétique, (a) pour une incidence
normale sur une surface parfaitement réfléchissante; (b) pour une incidence oblique sur une sur-
face parfaitement réfléchissante; (c) pour une incidence isotrope; (d) pour une incidence isotro-
pe sur une surface parfaitement absorbante.

SOLUTION: (a) Si la surface est parfaitement réfléchissante, l’onde réfléchie acquiert une
quantité de mouvement égale et opposée à celle de l’onde incidente. La variation de la quantité
de mouvement est donc double, ce qui entraîne:

(b) Si J est l’angle entre la direction de l’onde incidente et la normale au plan sur lequel elle est
réfléchie, la quantité du rayonnement incident est proportionnelle à cos(J). En outre, la compo-
sante de la quantité de mouvement perpendiculaire au plan réfléchissant est aussi proportion-
nelle à cos(J). Le résultat de la partie (a) est donc pondérée par le facteur cos2(J):

(c) Le rayonnement isotrope est la superposition des ondes venant du demi-espace au-dessus du
plan réfléchissant. Il faut faire la moyenne de cos2(J) sur l’angle solide 2π correspondant à ce
demi-espace:

Il s’ensuit:

(d) Dans le cas d’une surface absorbante, la pression est réduite de moitié:

C’est ce résultat que nous avons énoncé à la section 10.5.2, dans le cadre de l’étude du rayon-
nement du corps noir.

B

Résumé du chapitre

Alors qu’en électrostatique les champs électrique et magnétique sont découplés, dès
que l’un d’eux varie dans le temps, il entraîne des effets sur l’autre. Dans les processus
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CHAPITRE 14   CHAMP ET ONDES ÉLECTROMAGNÉTIQUES

dépendant du temps, les deux champs sont intimement liés, on parle alors du champ
électromagnétique.

Toute variation du flux d’induction magnétique B entraîne l’apparition d’un champ
électrique tourbillonnaire E dont le sens est donné par la règle de la main gauche. Dans
une boucle conductrice, ce phénomène engendre une tension et un courant induits. La
tension induite est liée au champ tourbillonnaire par la relation ,
où représente la vitesse de variation du flux d’induction magnétique. Lorsqu’on
l’exprime uniquement au moyen des intensités des champs, la loi d’induction de
FARADAY-HENRY devient: , où est le taux de variation du flux
d’induction magnétique. La version locale de la loi d’induction est: .

L’établissement ou l’interruption d’un courant dans un circuit s’accompagne d’une va-
riation conjointe du champ magnétique engendré par les courants électriques. On ap-
pelle self-induction le phénomène d’induction engendré par ces variations. La tension
induite est proportionnelle au taux de variation de l’intensité du courant: .
Le coefficient L est l’inductance du circuit.

MAXWELL a adjoint un terme à la loi d’AMPÈRE afin de tenir compte des effets engen-
drés par des variations temporelles du champ électrique. La loi d’AMPÈRE-MAXWELL

devient . En l’absence de matière polarisable, le
champ électrique E remplace le champ D, d’où .

Les versions locales correspondantes sont respectivement et
.

La densité d’énergie du champ électromagnétique est la somme des contributions élec-
trique et magnétique: . La densité de flux d’énergie est donnée par

. Le vecteur S est le vecteur de POYNTING.

Comme le champ statique, le champ électromagnétique contient de la quantité de
mouvement dont la densité est: g = S/c2 = (E × H)/c2. À chacune des composantes de
la densité de mouvement correspond un vecteur de flux de quantité de mouvement qui
a trois composantes. La densité des flux de quantité de mouvement est donc représen-
tée par un tenseur jp qui a six composantes, car il est symétrique. Les termes sur la dia-
gonale de ce tenseur sont l’opposé des contraintes introduites au chapitre précédent.

Une onde est une perturbation d’un milieu qui se transmet de proche en proche dans
l’espace. La perturbation ξ est représentée par une fonction qui dépend à la fois de
l’espace et du temps: ξ = ξ (x, y, z, t). Si la perturbation n’est pas amortie, elle a, dans
une dimension, nécessairement la forme:ξ (x, t) = f(x ±vt). Le contenu des parenthè-
ses est la phase de l’onde, v est la vitesse de phase. Une telle fonction est la solution
générale de l’équation d’onde: ∂2ξ / ∂t2 = v2·∂2ξ / ∂x2.

L’onde sinusoïdale ou harmonique ξ (x, t) = ξ 0 sin[k(x – vt)] joue un rôle central en
vertu du théorème de FOURIER qui permet de représenter toute fonction périodique
comme une somme infinie de fonctions sinusoïdales. Si la fonction n’est pas périodi-
que, la somme est remplacée par une intégrale.

Les paramètres liés à l’onde harmonique sont la longueur d’onde λ qui représente la
périodicité dans l’espace, et le nombre d’onde k = 2π /λ, soit le nombre de longueurs
d’onde comprises dans la longueur 2π . La grandeur ω = kv = 2π f est la fréquence
angulaire ou pulsation de l’onde, et f (ou ν) la fréquence proprement dite. Il s’ensuit
que v = λf, la vitesse de propagation de l’onde est le produit de sa fréquence et de sa
longueur d’onde. Grâce à ces paramètres, l’argument du sinus peut être écrit de diffé-
rentes manières: k(x – vt) = 2π /λ(x – vt) = kx – ω t = 2π (x/λ – t/T). La période T est
l’inverse de la fréquence f.

Uind = = −∫ Ei �� dl
C

φB

�φB

E Bi �i� dl dA
C S∫ ∫= − �B

rot E = − �B

U LIind = − �

B Di i � i� dl j dA dA
C S S∫ ∫ ∫= +µ µ0 0

B Ei i �i� dl j dA dA
C S S

= +µ ε µ0 0 0

rot B D= +µ µ0 0j �
rot B E= +µ ε µ0 0 0j �

ρE = +[ ]1
2 ED HB

j SE = = ×E H
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14.9  ONDES ÉLECTROMAGNÉTIQUES

À partir des équations de MAXWELL, on peut déduire pour chacun des champs E et B
une équation d’onde, par exemple ∂2E / ∂t2 = c2∆E , où ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

est le laplacien et c2 = ε0µ0 est le carré de la vitesse de la lumière.

Dans l’onde électromagnétique, les intensités des deux champs sont liées entre elles
par la relation , ce qui implique qu’ils vibrent en phase, dans des plans perpen-
diculaires. Le vecteur représentant l’intensité du champ électrique peut vibrer en gar-
dant toujours la même direction, l’onde est dite polarisée linéairement. Le cas général
de la polarisation d’une onde plane est la polarisation elliptique: l’extrémité du vecteur
E se déplace sur une ellipse et fait un tour complet durant le temps que met l’onde pour
avancer d’une longueur d’onde. Les polarisations linéaire et circulaire sont des cas
particuliers de la polarisation elliptique.

Une source possible d’ondes électromagnétiques est le dipôle de HERTZ ou antenne
linéaire. Le moment dipolaire évolue selon la relation p(t) = p0 sin(ω t).

La densité d’énergie de l’onde harmonique est une onde harmonique de fréquence 2w ;
elle est proportionnelle à w4 et décroît avec le carré de la distance à l’émetteur. Il en
va de même de la densité du flux d’énergie, le vecteur de POYNTING. L’énergie rayon-
née est proportionnelle à l’accélération de la charge du dipôle. Il s’ensuit qu’une char-
ge accélérée rayonne de l’énergie, ce qui rend impossible pour un atome un modèle
semblable à un système solaire. L’onde électromagnétique transporte de la quantité de
mouvement. Le module du vecteur de densité de flux de quantité de mouvement est
jp = ε0E

2 = Prad. Cette densité de flux de quantité de mouvement correspond à une
pression, la pression radiative.

E B= c
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1. Un condensateur à plaques parallèles est constitué de plaques
circulaires. La tension entre les plaques, entretenue au moyen
de conducteurs sans résistance, varie en fonction du temps
suivant U(t) = U0 cos(ωt). La distance d entre les plaques est
beaucoup plus petite que leur rayon R, de sorte que les effets
de bord peuvent être négligés. (a) À l’aide des équations de
MAXWELL et d’arguments de symétrie, déterminez l’évolu-
tion temporelle de l’intensité des champs électrique et
magnétique entre les plaques. (b) Comment l’intensité du
courant dans les conducteurs et la densité du courant dans les
plaques varient-elles en fonction du temps?

2. Un condensateur à plaques parallèles est constitué de plaques
circulaires séparées par une distance d beaucoup plus faible
que leur rayon R, de sorte que les effets de bord peuvent être
négligés. L’espace entre les plaques est rempli d’un matériau
de constante diélectrique ε. La différence de potentiel entre
les plaques varie selon U(t) = U0 cos(ωt). (a) Déterminez
l’évolution temporelle de l’intensité et de la direction du
champ électrique entre les plaques et de la densité de charge
libre sur les plaques. (b) Comment l’intensité et la direction
du champ d’induction magnétique varient-elles en fonction
de la distance à l’axe du condensateur? (c) Calculez le flux
du vecteur de POYNTING au niveau des bords du condensa-
teur.

3. Un cylindre à paroi mince de rayon R et de longueur l porte
une charge caractérisée par sa densité de surface σ. Le cylin-
dre tourne autour de son axe avec une vitesse angulaire ω qui
croît lentement dans le temps suivant la relation ω (t) = kt, où
k est une constante. En négligeant les effets de bord, détermi-
nez (a) l’intensité du champ magnétique à l’intérieur du
cylindre; (b) l’intensité du champ électrique à l’intérieur du
cylindre ; (c) les énergies électrique et magnétique totales à
l’intérieur du cylindre.

4. Dans le dispositif de la figure 14.40, un conducteur de lon-
gueur infinie transporte un courant d’intensité I dans la direc-
tion des z positifs. Une spire conductrice rectangulaire, dont
le côté parallèle au fil conducteur a une longueur l, est con-
nectée à un voltmètre et s’éloigne du fil conducteur à une
vitesse de module

 

v.

9. Les problèmes sont tirés de l’ouvrage Problems and Solutions
on Electromagnetism, edited by LimYung-kuo, © 2005 World
Scientific (avec l’autorisation de World Scientific).

I

z
v

l V
a

b

r
1

r
2

FIGURE  14.40
Problème 4

a) Indiquez laquelle des bornes a ou b du voltmètre est posi-
tive. (b) Calculez la valeur affichée par le voltmètre en fonc-
tion des distances r1, r2 et de la longueur l.

5. Un solénoïde très long portant n spires par unité de longueur
transporte un courant dont l’intensité croît proportionnelle-
ment au temps : I(t) = kt. (a) Calculez l’intensité du champ
d’induction magnétique à l’intérieur du solénoïde. (b) Calcu-
lez l’intensité du champ électrique à l’intérieur du solénoïde.
(c) Considérez un cylindre imaginaire de longueur l et de
rayon égal à celui du solénoïde et dont l’axe coïncide avec
celui du solénoïde. Déterminez le taux auquel l’énergie pénè-
tre dans le volume entouré par ce cylindre et montrez qu’il
est égal à la dérivée temporelle de la grandeur 1/2 LI2, où L
est l’inductance de cette portion du solénoïde.

6. Une spire rectangulaire, de largeur a et de longueur b, tourne
autour de son axe de symétrie à une vitesse angulaire de
module ω dans un champ d’induction magnétique uniforme
ma i s don t l ’ i n t ens i t é va r i e dans l e t emps se lon

 

B(t) =

 

B0 sin(ω t). Le vecteur de champ est perpendiculaire
au plan de la spire à l’instant t = 0 (fig. 14.41). Déterminez la
valeur de la tension induite dans la spire et montrez que sa
fréquence est double de celle du champ.

7. Une spire rectangulaire de dimensions respectives a et b et de
résistance R pénètre avec une vitesse constante de module

 

v
dans un champ d’induction magnétique d’intensité

 

B, comme
le montre la figure 14.42. Déterminez le module, la direction
et le sens de la force qui s’exerce sur la spire en termes des
paramètres donnés.

8. On applique une force de module F pour entraîner une barre
conductrice de résistance R qui glisse sur un cadre conduc-
teur, comme le montre la figure 14.7. La barre part de
l’immobilité et se déplace dans un champ d’induction
magnétique constant d’intensité

 

B perpendiculaire au plan du
cadre. Admettez que les contacts sont sans frottement et que

b

a

ω

FIGURE  14.41
Problème 6

b

a

v

B

FIGURE  14.42
Problème 7
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l’inductance de la spire peut être négligée. (a) Déterminez le
module de la vitesse de la barre en fonction du temps. (b)
Déterminez l’intensité et le sens du courant en fonction du
temps.

9. Une spire rectangulaire parfaitement conductrice, de côtés de
longueurs respectives a et b, de masse m, d’inductance L, se
déplace à partir d’une vitesse initiale de module v0 dans son
plan, dans la direction de son plus grand côté, d’une région
libre de champ magnétique dans une région où règne un
champ d’induction magnétique uniforme d’intensité B0 per-
pendiculaire au plan du rectangle. Déterminez le mouvement
du rectangle en fonction du temps.

10. Une spire rectangulaire de dimensions a et b est abandonnée
à l’instant t = 0 juste au-dessus d’une région où règne un
champ d’induction magnétique d’intensité B (fig. 14.43). La
spire a une résistance R, une inductance L et une masse m.
Considérez ce qui se passe durant le temps où la spire a son
côté supérieur dans la région libre de champ magnétique. (a)
En admettant que l’inductance peut être négligée, mais pas la
résistance, déterminez l’intensité du courant induit et le
module de la vitesse en fonction du temps. (b) Déterminez
les mêmes valeurs en admettant que la résistance peut être
négligée, mais pas l’inductance.

b

a

g

B

FIGURE  14.43
Problème 10
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Toutes les forces dont il a été question au chapitre 9 se manifestent à l’interface entre
deux objets; elles apparaissent lorsque le transfert de quantité de mouvement se fait
par conduction, à l’exception de la pesanteur où le transfert de quantité de mouvement
se fait en mode radiatif.

Le but de ce chapitre est d’étudier un certain nombre de cas où ce transfert se fait sans
contact, c’est-à-dire en mode radiatif par l’intermédiaire des champs électrique,
magnétique et gravitationnel.
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ÉLECTRIQUE

Depuis la disparition des téléviseurs à tube cathodique, on ne rencontre plus beaucoup
d’appareils de la vie quotidienne qui utilisent l’interaction entre des charges et le
champ électrique. C’est la raison pour laquelle les exemples de cette section seront
tirés d’applications moins communes.

 

15.1.1 Interaction électrique: champ et potentiel

L’interaction entre une charge Q et un champ électrique d’intensité

 

E est donnée par
la relation:

 

(15.1)

L’intensité

 

E du champ électrique est liée au potentiel électrique ϕ par les relations:

 

(15.2)

et à la tension électrique ou différence de potentiel U par:

 

(15.3)

 

EXEMPLE 15.1. Comparaison de l’intensité des forces électrique et gravitationnelle.

Déterminez le quotient de la force qu’exercent l’une sur l’autre deux particules élémentaires,
par exemple deux protons, par l’intermédiaire du champ électrique d’une part et du champ gra-
vitationnel d’autre part.

SOLUTION: les deux protons portent la charge élémentaire e = 1.6·10-19 C. En vertu de la loi
de COULOMB, la force qu’ils exercent l’un sur l’autre est donnée par:

 F = QE

  ϕ ϕ ϕ( ) ( ) ( ) ( ) ( )r r r dr r r− = − ⇔ = − [ ]∫0
0

E Ei
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r
grad

  E( )r dri
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En revanche, ils s’attirent mutuellement avec une force donnée par la loi de la gravitation
universelle:

Le quotient des deux forces devient:

Si nous avions choisi des électrons, la valeur du rapport serait de 4.2·1042. Nous voyons donc
que l’interaction gravitationnelle est, au niveau microscopique, totalement négligeable et ne
contribue en aucune manière à la stabilité de la matière. Si nous ne ressentons pas l’interaction
électrique au niveau macroscopique, c’est parce que, en général, les objets sont électriquement
neutres, ce qui n’est pas le cas pour la gravitation. C’est la raison pour laquelle la gravitation est
la force dominante dans la vie quotidienne. De plus, c’est elle qui est responsable de la cohésion
du système solaire et des galaxies, et qui donne à l’univers sa structure.

B

Souvent, dans les applications pratiques, les champs électriques servent à accélérer les
particules chargées, à leur transmettre de l’énergie.

 

EXEMPLE 15.2. Vitesse et énergie acquises par un électron dans un champ électrique.

Déterminer l’énergie et la vitesse acquises par un électron initialement immobile qui franchit
une différence de potentiel de 1 V convenablement polarisée.

SOLUTION: Lors du franchissement de cette différence de potentiel, l’électron acquiert de
l’énergie aux dépens du champ électrostatique:

Cette quantité d’énergie correspond aux ordres de grandeur intervenant dans le monde atomique
et celui des particules élémentaires, raison pour laquelle on lui fait correspondre une nouvelle
unité, l’électronvolt, abrégé eV:

Connaissant la masse de l’électron, nous calculons sa vitesse à partir de l’énergie cinétique:

Dans les anciens téléviseurs à tube cathodique, la tension d’accélération des électrons pouvait
atteindre 30 kV. Pour une telle tension, la vitesse acquise est de 102 728 km s-1. Comme cette
vitesse est proche du tiers de celle de la lumière, on se trouve dans une situation où il faudrait
appliquer la théorie de la relativité restreinte pour obtenir un résultat correct. En effet, à cette
vitesse, la masse est augmentée d’environ 6%, ce qui n’est pas négligeable.
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EXEMPLE 15.3. Modèle simplifié de l’expérience de RUTHERFORD.

En 1904, J.J. THOMSON, qui avait révélé l’existence de l’électron en 1897, proposa un modèle
de l’atome consistant en une sphère électriquement neutre dans laquelle la charge positive est
répartie de manière uniforme dans la sphère, compensée par un nombre adéquat d’électrons dis-
tribués un peu comme les raisins de Corinthe dans un cake (plum pudding model). Entre 1909
et 1911, RUTHERFORD chargea deux de ses collaborateurs, GEIGER et MARSDEN, de mettre ce
modèle à l’épreuve de l’expérience en bombardant une mince feuille d’or au moyen de particu-
les α.

(a) Montrer au moyen d’un modèle que des particules α d’énergie égale à 4 MeV qui bombar-
deraient un tel atome ne seraient pas déviées de manière notable; on admettra que l’atome d’or
a un rayon r0 de 1.5·10–10 m et que sa charge répartie uniformément sur tout le volume corres-
pond à 79 charges positives élémentaires; (b) montrer ce que deviennent les résultats de l’expé-
rience si l’on admet que la charge positive est concentrée dans un domaine dont le rayon est
réduit à 10–15 m.

SOLUTION: (a) Lors de leur interaction avec les atomes d’or, les particules α peuvent être dé-
viées dans toutes les directions de l’espace. Pour l’analyse, nous considérons celles qui se dé-
placent dans un plan vertical passant par le centre d’un atome d’or. Pour permettre de
déterminer l’intensité de la force qu’exerce le champ électrique de la charge positive de l’atome
sur une particule α, nous devons tenir compte de la distance de la trajectoire par rapport au cen-
tre de l’atome (fig. 15.1). En effet, en vertu du théorème de GAUSS, la particule incidente n’est
soumise qu’à l’influence de la charge enfermée dans la sphère de rayon r à laquelle la trajectoire
est tangente. La charge perçue par la particule incidente est:

L’intensité de la force ressentie par la particule α dépend de la distance d qui la sépare du centre
de l’atome. La composante verticale de cette force, qui détermine la valeur de la déviation, est
donnée par:

La composante horizontale se calcule de manière analogue. Dans le modèle, un test logique dé-
termine la valeur de r: si |y | < r0 alors r = |y |, sinon r = r0.

Le modèle a été simulé pour 20 valeurs de l’ordonnée initiale de la trajectoire, à savoir de
–2.5·10–10 m à 2.5·10–10 m. Comme le montre la figure 15.2a, les particules α traversent l’ato-
me sans déviation notable. Une analyse des données de la simulation montre que la déviation
verticale la plus importante pour la particule qui frôle l’atome d’or est de 1.15·10–13 m, soit
moins d’un millième du rayon admis pour l’atome selon le modèle de THOMSON.

(b) Vu la petitesse du rayon de la région dans laquelle est concentrée la charge positive, on peut
la considérer comme une charge ponctuelle et se passer du test logique. Les composantes de la
force de COULOMB ressentie par la particule α se calculent de manière analogue, à la différence
près que la charge perçue est la charge totale de 79 charges élémentaires positives. Le modèle,
simulé pour 20 valeurs de l’ordonnée initiale de la trajectoire, de –1.5·10–13 m à 1.5·10–13 m,
donne les résultats illustrés par la figure 15.2b dans laquelle la taille du centre répulsif est 10
fois trop grande.

Si nous avions choisi la même échelle que dans la figure 15.2a, nous aurions obtenu une image
assez semblable, à savoir que la majorité des particules α traversaient la feuille d’or sans être
déviées. Mais une échelle pratiquement mille fois plus petite révèle que GEIGER et MARSDEN

ont observé que certaines particules étaient déviées de manière notable. Dans quelques rares
cas, des particules étaient déviées sous un angle supérieur à 90°.
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α

FIGURE 15.1 Évaluation de la
charge perçue par une particule α.
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Lorsqu’il prit connaissance de ces résultats, RUTHERFORD fut d’abord perplexe1, puis après
avoir effectué des calculs, il en conclut que l’essentiel de la masse d’un atome est concentrée
dans un volume extrêmement réduit qu’il appela le noyau de l’atome

B

15.2 FORCES ET MOUVEMENTS DANS LE CHAMP MAGNÉTIQUE 

Les exemples traités dans cette section seront également tirés d’applications scientifi-
ques, vu que l’une des rares manifestations de l’influence du champ magnétique dans
la vie quotidienne est son action sur l’aiguille d’une boussole.

15.2.1 Force de LORENTZ

À la section 13.8.3, nous avons découvert qu’un objet portant une charge Q qui se
meut dans un champ d’induction magnétique est soumis à une force qui est à la fois
perpendiculaire au vecteur de champ et au vecteur de vitesse, la force de LORENTZ:

(15.4)

Dans ce qui va suivre, nous allons découvrir comment on exploite la force de LORENTZ

à la fois pour guider des particules chargées ou pour confiner des plasmas ultra-chauds
dans la recherche sur la domestication de la fusion nucléaire.

1. «It was quite the most incredible event that has ever happened to me in my life. It was
almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came
back and hit you. On consideration, I realized that this scattering backward must be the
result of a single collision, and when I made calculations I saw that it was impossible to get
anything of that order of magnitude unless you took a system in which the greater part of
the mass of the atom was concentrated in a minute nucleus. It was then that I had the idea
of an atom with a minute massive centre, carrying a charge.» (Extrait d’un exposé de
RUTHERFORD donné en 1936, «The Development of the Theory of Atomic Structure»,
dans Background to Modern Science: Ten Lectures at Cambridge Arranged by the History
of Science Committee, 1936).
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FIGURE 15.2 Expérience de GEI-
GER et MARSDEN: (a) simulée pour
le modèle de THOMSON d’un atome
consistant en une sphère de charge
positive uniformément répartie: les
particules α ne sont pas déviées;
(b) lorsque la charge positive est
concentrée dans un volume mille
fois plus petit, les particules α qui
s’en approchent sont notablement
déviées, voire rebondissent vers l’ar-
rière (d’après HORST P. SCHECKER,
Physik - Modellieren, tous droits
réservés).
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15.2.2 Particule chargée dans un champ uniforme

Si les deux vecteurs v et B sont constants et mutuellement perpendiculaires, la trajec-
toire suivie par la particule chargée sera circulaire, vu que la force de LORENTZ s’exer-
cera toujours perpendiculairement à la trajectoire (fig. 15.3). On peut donc écrire:

dont nous pouvons déduire d’une le rayon de la trajectoire suivie:

(15.5)

ainsi que la vitesse angulaire:

(15.6)

qui se révèle être indépendante de la vitesse de la particule; les paramètres qui fixent
la vitesse angulaire sont la charge spécifique et l’intensité du champ d’induction
magnétique. Cette valeur porte le nom de fréquence cyclotron pour des raisons qui
seront données plus bas.

15.2.3 Spectromètre de masse

Le spectromètre de masse sert à séparer les particules chargées en fonction de leur
masse. Le principe de fonctionnement apparaît dans la figure 15.4.

Si des ions de masse m, portant la charge Q, sont accélérés entre une différence de
potentiel U, ils pénètrent dans la région où règne le champ d’induction d’intensité B
avec une vitesse de module tel que:

En combinant cette équation avec la relation (15.5):

nous obtenons:

(15.7)

Cette relation montre que le spectromètre de masse sépare les ions en fonction de leur
charge spécifique et donc, pour une même charge, en fonction de leur masse. C’est en
utilisant cette technique que les chercheurs ont découvert, dans les années 1920,
l’existence des isotopes.

B

FLorentz

Q v

FIGURE 15.3 Une particule char-
gée qui se déplace dans un champ
d’induction magnétique perpendi-
culairement aux lignes de champ
suit une trajectoire circulaire.
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FIGURE 15.4 Schéma de principe
du spectromètre de masse. Les par-
ticules de l’échantillon sont
d’abord ionisées puis accélérées
entre deux plaques qui servent éga-
lement de collimateur. Elles pénè-
trent dans une région dans laquelle
règne un champ d’induction ma-
gnétique d’intensité B, ce qui pro-
voque leur déviation dépendant de
leur masse vers un détecteur.

 
v2 2= Q

m
U

  
v=

Q

m
rB

 
Q

m

U

r
= 2

2 2B



 

734

 

P

 

HYSIQUE

 

, 

 

UNE

 

 

 

PRÉSENTATION

 

 

 

SYSTÉMIQUE

 

C

 

HAPITRE 

 

15   F

 

ORCES

 

 

 

ET

 

 

 

MOUVEMENTS

 

 

 

DANS

 

 

 

LES

 

 

 

CHAMPS

 

 

 

STATIQUES

 

15.2.4 Cyclotron

L’équation (15.6) montre que la fréquence angulaire d’une particule chargée orbitant
dans un champ d’induction magnétique ne dépend que de sa masse spécifique et de
l’intensité du champ magnétique. ERNEST LAWRENCE, en 1929, eut l’idée d’utiliser
cette particularité pour accélérer des particules en les confinant dans une région res-
treinte au moyen d’un champ magnétique, contournant ainsi les difficultés inhérentes
aux accélérateurs linéaires de type van de Graaff, difficultés dues aux tensions élevées
nécessaires.

L’idée de LAWRENCE consiste à placer la source qui émet les ions que l’on veut accé-
lérer dans une champ magnétique auquel on ajoute un champ électrique alternatif per-
pendiculaire à

 

B sur un diamètre de la trajectoire, en le faisant varier à la fréquence:

 

(15.8)

de façon à accélérer les ions chaque fois qu’ils traversent le diamètre. À chaque tra-
versée du champ électrique, les ions acquièrent une certaine quantité d’énergie qui est
multipliée par le nombre de traversées. Le champ électrique possédant les caractéris-
tiques nécessaires est obtenu grâce à deux boîtes ayant la forme de la lettre D (d’où
leur nom de dees) placées l’une en face de l’autre (fig. 15.5) et perpendiculaires au
champ

 

B. Les dees sont soumis à une tension alternative de fréquence f et d’amplitude
de l’ordre de la dizaine de kilovolts. L’ensemble du système est contenu dans une
chambre à vide.

La particule atteindra sa vitesse maximale lorsque le rayon de sa trajectoire correspon-
dra à celui du cyclotron:

 

(15.9)

L’énergie cinétique acquise par la particule émergente sera donc:

 

(15.10)

Cette relation révèle que l’énergie finale dépend des propriétés de la particule (sa char-
ge Q et sa masse m) ainsi que des particularités du cyclotron (intensité

 

B du champ et

 
f

Q

m
= =ω

π π2 2

B

FIGURE 15.5 Cyclotron: schéma
dessiné par ERNEST LAWRENCE fi-
gurant sur le brevet attribué en
1934. 1 et 2: dees; 3: un des pôles
de l’électroaimant servant à four-
nir le champ d’induction; 4: con-
nexion de la tension alternative
d’accélération.
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rayon R des dees), mais pas de la tension d’accélération. Si celle-ci est faible, la par-
ticule devra décrire un plus grand nombre de tours pour acquérir son énergie finale.

 

15.2.5 Vitesse de pénétration quelconque

Si la vitesse de la particule qui pénètre dans le champ n’est pas perpendiculaire au vec-
teur de champ, sa décomposition en une composante perpendiculaire (qui sera à l’ori-
gine d’un mouvement circulaire uniforme si le champ est homogène) et une
composante parallèle au champ qui ne sera pas influencée par l’interaction avec le
champ et restera constante permet de se rendre compte que la particule suivra une tra-
jectoire hélicoïdale à pas constant.

 

15.2.6 Mouvement d’une particule dans un champ inhomogène

Comme le montre l’équation (15.5), le rayon de courbure de la trajectoire – qu’elle
soit circulaire ou hélicoïdale – dépend de l’intensité du champ magnétique. Si la par-
ticule se dirige vers des régions de plus grande intensité, le rayon de l’hélice diminue.
Une étude détaillée du phénomène, à laquelle nous allons procéder, permet de montrer
que la composante de la vitesse parallèle au champ décroît au fur et à mesure que la
particule se rapproche des régions où règne une grande intensité, jusqu’à être réduite
à zéro et à inverser son sens; on parle de miroir magnétique. Ce phénomène est utilisé
pour le confinement des plasmas.

Pour illustrer ce comportement, nous allons étudier ce qui se passe lorsqu’une parti-
cule pénètre dans un champ inhomogène sous un certain angle. Nous considérons un
champ d’induction magnétique possédant une symétrie de révolution autour de l’axe
Oz, ce qui implique qu’il ne possède que les composantes axiale et radiale, respecti-
vement

 

Bz et

 

Br. Nous admettons que la composante

 

Bz varie de telle manière que

où L est la distance caractéristique d’évolution du champ; l’intensité doublant sur cette
distance. La figure 15.8 montre la structure d’un tel champ pour 0 ≤ z ≤ L. Cette struc-
ture se répète de manière symétrique pour –L ≤ z ≤ 0, engendrant ce que l’on appelle
une bouteille magnétique. À partir de la relation (13.55)

qui, exprimée en coordonnées cylindriques, devient:

nous obtenons

ce qui entraîne:
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En vertu de la symétrie, l’intensité du champ radial est nulle sur l’axe de symétrie, ce
qui implique que la constante C est nulle. Nous obtenons finalement:

que nous convertissons en coordonnées rectangulaires:

Nous pouvons maintenant énoncer l’équation de bilan de la quantité de mouvement
d’une particule de charge Q et de masse m plongée dans un tel champ en appliquant la
loi de LORENTZ:

Si l’on modélise ce processus au moyen d’un logiciel de dynamique des systèmes, on
obtient le comportement des particules chargées en mouvement dans un tel champ. La
figure 15.6 montre la partie du modèle relative au mouvement de la particule selon Ox.

Comme il ne s’agit que d’obtenir un résultat qualitatif, nous avons attribué aux para-
mètres constants du modèle, à savoir m, Q,

 

B0 et L, une valeur égale à l’unité. Une par-
ticule qui pénètre dans le champ en z = 0 sous un angle de 0.5 radian reste confinée
entre approximativement –0.55 et 0.55 unité de longueur, ce que montre la figure 15.7
établie sur la base des résultats de la simulation.

La figure 15.8 permet de comprendre pourquoi la particule rebrousse chemin. Dans la
région où l’intensité du champ augmente, la force de LORENTZ, qui est à la fois per-
pendiculaire au vecteur vitesse

 

v et au vecteur d’intensité du champ

 

B, possède une
composante Fz orientée dans le sens des z négatifs. Cette composante axiale croît au
fur et à mesure que la particule avance, ce qui entraîne une diminution progressive de
la vitesse axiale jusqu’à ce qu’elle s’annule et s’inverse. À partir de cet instant, la com-
posante axiale de la force de LORENTZ provoque une accélération. Lorsque la particule
franchit la position de départ z = 0, la composante axiale de la force de LORENTZ s’an-
nule et s’inverse, provoquant une répétition du processus de manière symétrique. La
particule est piégée dans la bouteille magnétique. Les particules qui pénètrent sous un
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FIGURE 15.6 Bilan pour la premiè-
re composante du flux de quantité de
mouvement pour une particule char-
gée en mouvement dans un champ
magnétique inhomogène.
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FIGURE 15.7 Trajectoire suivie
par une particule confinée dans la
bouteille magnétique du modèle de
la figure 15.6.

v

B

F F

Fz

FIGURE 15.8 Structure du champ
magnétique entre z = 0 et z = L et
décomposition de la force de
LORENTZ en une composante ra-
diale et une composante axiale.
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angle faible par rapport à l’axe du champ magnétique s’échappent de la bouteille
magnétique.

Des processus semblables se déroulent dans le champ magnétique terrestre qui nous
sert de bouclier de protection face au rayonnement cosmique. Il s’agit d’une douche
de particules chargées qui nous proviennent essentiellement du Soleil ainsi que de
l’espace intersidéral. Seules les particules qui tombent suivant l’axe magnétique ter-
restre atteignent la Terre sans être déviées. Toutes les autres décrivent une trajectoire
hélicoïdale. Comme l’intensité du champ augmente dans le voisinage de la Terre, plus
particulièrement aux pôles, seules celles qui ont une très grande énergie peuvent at-
teindre la surface avant d’être réfléchies par l’effet de miroir magnétique. Mais les par-
ticules qui ont été réfléchies peuvent rester piégées dans le champ magnétique, sans
pouvoir s’en extraire (bouteille magnétique). C’est majoritairement le cas pour les
électrons. Ces particules piégées dans le champ magnétique terrestre constituent ce
que l’on appelle les ceintures de VAN ALLEN, découvertes en 1958 lors du lancement
des premiers satellites artificiels. On sait maintenant que la Terre est entourée de deux
telles ceintures, une ceinture intérieure localisée entre 800 km et 4000 km au-dessus
de la surface, et une extérieure qui s’étend jusqu’à 60 000 km (fig. 15.9).

1. Qu’est-ce qui différence l’interaction de particules chargées avec les
champs électrique et magnétique?

2. Qu’en est-il au point de vue énergétique?

1. Le champ électrique exerce une force dans la direction des lignes de
champ, ce qui provoque une variation du module de la vitesse de la par-
ticule et éventuellement de sa direction. Le champ magnétique exerce
la force perpendiculairement au vecteur vitesse, ce qui entraîne un
changement de direction sans modification du module de la vitesse.

2. L’action du champ électrique provoque une variation de l’énergie ciné-
tique de la particule, celle du champ magnétique ne la modifie pas.

FIGURE 15.9 Représentation
schématique des ceintures de VAN
ALLEN de la Terre.
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15.3 FORCES ET MOUVEMENTS DANS LE CHAMP GRAVITATIONNEL

Alors que les champs électrique et magnétique sont prédominants dans le monde mi-
croscopique, le champ gravitationnel est celui qui est responsable de la cohésion et de
la dynamique des grandes structures.

15.3.1 Interaction, champ et potentiel gravitationnels

Comme dans le cas de charges dans un champ électrostatique, une masse m dans un
champ gravitationnel d’intensité G subit une force d’intensité:

(15.11)

L’intensité G du champ gravitationnel est liée au potentiel gravitationnel V par les
relations:

(15.12)

L’intensité du champ engendré en un point P(r) par une masse ponctuelle M (ou sphé-
rique en dehors de celle-ci) est égale à:

(15.13)

et son potentiel est donné par:

(15.14)

Dans le cas d’une masse ponctuelle ou sphérique, vu la symétrie radiale du potentiel
et du champ, seule la variable spatiale r doit être prise en compte:

15.3.2 Champ gravitationnel et orbites planétaires

Le comportement d’un corps placé dans le champ gravitationnel central d’une masse
M peut être modélisé par l’observation du mouvement qu’effectuerait une bille de
masse m que l’on lancerait dans le puits de potentiel engendré par la masse M
(fig. 15.11).
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FIGURE 15.10 L’intensité du
champ gravitationnel d’une masse
centrée en O dépend de l’endroit où
on la mesure. Le vecteur d’intensité
est dirigé vers la masse qui engen-
dre le champ.
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La trajectoire de la bille peut être envisagée comme une trajectoire virtuelle, alors que
la trajectoire réelle correspond à la projection, sur un plan perpendiculaire à l’axe du
puits, de la trajectoire virtuelle suivie par la bille de masse m dans le puits.

 

15.3.3 Vitesse initiale nulle

Examinons tout d’abord le cas simple de l’objet lâché du point P1 sans vitesse initiale
dans le champ gravitationnel du corps central. La trajectoire virtuelle est une chute
vers le fond du puits le long de la ligne de plus grande pente (trajectoire

 

① ). La trajec-
toire réelle suit une ligne de champ.

Si nous formulons l’équation de bilan de l’énergie totale de l’objet aux points P1 et P2,
nous obtenons:

Nous sommes donc en mesure de calculer le module de la vitesse acquise par l’objet
à la distance r2 du centre de masse du corps central:

Si, par exemple, le corps central est la Terre, le second étant un météorite provenant
d’un point P1 placé hors du champ gravitationnel terrestre, r1 tend vers l’infini et r2 est
égal au rayon terrestre RTerre. La vitesse de chute du météorite à la surface de la Terre
sera donc (si nous négligeons le freinage dû à la résistance de l’air):

6

1

1

2

2

3

3

4

4

5

5

6

M

M

P
1

P
2

FIGURE 15.11 Mouvements dans le
champ gravitationnel: ① chute
libre; ➁ tir horizontal; ➂ satellisa-
tion à vitesse minimale; ➃ satellisa-
tion entre vitesse de satellisation et
de libération (trajectoire elliptique);
➄ trajectoire parabolique correspon-
dant à la vitesse de libération; ➅ tra-
jectoire hyperbolique au-delà de la
vitesse de libération.
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Si nous inversons le raisonnement, nous pouvons conclure que cette vitesse est celle
que nous devons imprimer à un corps lancé verticalement de la surface de la Terre pour
qu’il puisse quitter le champ gravitationnel terrestre (émerger du puits de potentiel,
pour utiliser l’image que nous venons de créer). Cette vitesse est appelée vitesse de li-
bération. C’est, à peu de chose près, la vitesse que l’on doit imprimer à un objet que
l’on veut envoyer sur la Lune (en réalité, elle peut être légèrement inférieure, l’objet
ne devant être amené que jusqu’au «col de potentiel» que révèle la figure 13.78).

 

15.3.4 Vitesse initiale non nulle

Nous imaginons maintenant que l’objet est lancé du point P1 avec une vitesse initiale
non nulle, parallèle à la surface du corps central. Suivant le module de cette vitesse
initiale, il suivra l’une des trajectoires

 

➁ à

 

➅.

La trajectoire

 

➁ correspond à un jet horizontal dont la portée va augmenter avec le mo-
dule de la vitesse initiale; avec l’augmentation de cette vitesse initiale, on peut imagi-
ner que, dans le vide, l’objet pourrait spiraler plusieurs fois autour de la Terre avant de
tomber au sol.

Pour une vitesse critique dont nous allons calculer le module, la bille de notre modèle
resterait à hauteur constante dans le puits de potentiel, ce qui correspondrait à une tra-
jectoire circulaire autour de la Terre: l’objet est satellisé (trajectoire

 

➂). En égalant
l’accélération centripète que subit cet objet à l’intensité du champ gravitationnel:

nous obtenons le module de la vitesse minimale pour la satellisation sur une trajectoire
circulaire à une distance r1 du centre de la masse M:

Pour la Terre, la vitesse minimale de satellisation est celle que l’on obtient si on satel-
lise l’objet au niveau du sol:

Si nous augmentons le module de la vitesse initiale, la bille escaladera les parois du
puits de potentiel, et nous observons une trajectoire elliptique (trajectoire

 

➃). Avec
l’augmentation de la vitesse initiale, l’excentricité de l’ellipse deviendra de plus en
plus importante. Lorsque la vitesse initiale sera égale à la vitesse de libération, l’ellip-
se s’ouvrira pour devenir une parabole (trajectoire

 

➄ irréalisable dans la pratique, vu
qu’il s’agit d’un cas singulier). Au-delà de la vitesse de libération, la trajectoire est
hyperbolique (trajectoire

 

➅). C’est la trajectoire de la plupart des comètes qui ne font
qu’un passage dans le système solaire (Hyakutake, Hale-Bopp). Ce n’est pas le cas de
la comète de HALLEY qui a une trajectoire elliptique, vu qu’elle est un élément du sys-
tème solaire.
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Calculons l’énergie totale associée à un objet qui suivrait la trajectoire parabolique:

Il est simple de montrer que, au-dessous de cette vitesse critique, l’énergie totale du
système est négative, alors qu’elle est positive au-dessus. En conclusion, si l’on choisit
le niveau de référence du potentiel à l’infini, l’énergie totale d’une masse m dans le
champ gravitationnel d’une masse M est négative lorsque le système est lié, positive
lorsque la masse m s’est libérée du champ de la masse M.

 

EXEMPLE 15.4. Mouvement képlerien.

Modéliser le mouvement d’un corps dans le champ gravitationnel terrestre pour différentes vi-
tesses et conditions initiales: (a) lancement horizontal avec une vitesse initiale inférieure, mais
proche de la vitesse de satellisation; (b) vitesse initiale inférieure, mais proche de la vitesse de
libération; (c) objet se dirigeant vers la Terre à une vitesse supérieure à la vitesse de libération.

SOLUTION: (a) Comme la trajectoire se déroule dans un plan, nous nous plaçons dans un re-
père orthonormé Oxy dont l’origine coïncide avec le centre de la Terre (fig. 15.12). La dynami-
que est donnée par les équations (15.11) et (15.13). Le champ gravitationnel de la Terre échange
de la quantité de mouvement avec l’objet par un flux dont la composante selon Ox est:

C’est l’unique force qui s’exerce sur le corps. Un objet qui franchirait un point situé à 3000 km
d’altitude avec une vitesse parallèle au plan horizontal local de module égal à 5.86 km s–1 sui-
vrait une trajectoire qui l’amènerait à percuter la Terre après 56 minutes, soit un peu moins
d’une demi-révolution (fig. 15.14a). Le frottement de l’air qui aurait légèrement modifié la fin
de la trajectoire n’a pas été pris en compte, vu qu’il ne se manifeste de manière notable qu’en
dessous de 50 km d’altitude. Si l’on augmentait la vitesse initiale à 5.87 km s–1, en l’absence
d’atmosphère, l’objet effleurerait la surface du globale aux antipodes et effectuerait des révolu-
tions complètes.

(b) Le modèle est exactement le même, seules les conditions initiales sont différentes. Lancé
d’une altitude de 2000 km avec une vitesse parallèle au plan horizontal local de module égal à
9.50 km s–1, l’objet effectue des révolutions d’une durée de 64.6 heures sur une trajectoire
elliptique (fig. 15.14b). L’éloignement maximal par rapport au centre de la terre est de
155 000 km, le module de la vitesse est alors de 0.52 km s–1.

(c) L’objet se dirige vers la Terre d’un point situé à 400 000 km de distance. Le module de la
vitesse est alors de 2.64 km s–1. La trajectoire s’incurve dans le voisinage de la Terre, que l’objet
contourne sur une trajectoire hyperbolique. La distance minimale est de 10 625 km, le module
de la vitesse est alors de 8.94 km s–1(fig. 15.14c1), supérieur à la vitesse de libération. Les tra-
jectoires des particules alpha dans le voisinage du noyau des atomes d’or de la figure 15.2 sont
également des hyperboles. La seule différence est qu’elles sont la conséquence d’une interac-
tion de répulsion.

Lorsque la trajectoire de l’objet est plus éloignée de la Terre, elle demeure de forme hyperboli-
que, mais la courbure dans le voisinage de la Terre est beaucoup moins prononcée. À titre
d’exemple, la figure 15.14c2 montre un objet venant d’un point situé à 400 000 km de distance,
avec une vitesse de module égal à 1.75 km s–1. La distance minimale est de 56 516 km, le
module de la vitesse est alors de 3.90 km s–1.
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FIGURE 15.12 Repère orthonormé
d’origine coïncidant avec le centre
de la Terre.
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FIGURE 15.13 Diagramme de
dynamique des systèmes du mou-
vement képlerien pour une des
composantes de l’interaction.
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B

1. Pourquoi les astronautes flottent-ils dans la station spatiale?

2. Pourrait-on placer un satellite géostationnaire au-dessus d’un ville
européenne?

3. Pourquoi l’Agence spatiale européenne (ESA) a-t-elle placé le site de
lancement à Kourou, en Guyane française?

1. Tout comme la station spatiale, ils sont satellisés autour de la Terre. Or,
un objet satellisé est en chute libre vers le centre de la Terre, mais
comme il avance, sa chute est compensée par la rotondité de la Terre.

2. Un satellite géostationnaire doit nécessairement être placé dans le plan
équatorial pour pouvoir être synchrone avec le mouvement de rotation
de la Terre autour de son axe. Si on plaçait un satellite à l’altitude des
satellites géostationnaires ailleurs que dans le plan équatorial, il effec-
tuerait une rotation complète en 24 heures et ne passerait qu’une fois par jour au-dessus
d’un même point du globe.

3. Kourou est à 5° de l’équateur, ce qui est un avantage pour le lancement des satellites géos-
tationnaires. La distance au centre de la Terre augmente au fur et à mesure que l’on se rap-
proche de l’équateur, ce qui permet d’économiser de l’énergie lors du lancement. L’effet de
fronde dû à la rotation de la Terre est maximal à l’équateur, nul aux pôles.
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FIGURE 15.14 Trajectoires
képleriennes: (a) chute due à une
vitesse inférieure à la vitesse de
satellisation; (b) satellisation sur
une trajectoire elliptique à une vi-
tesse proche de la vitesse de
libération; (c1) approche sur une
trajectoire hyperbolique proche de
la Terre; (c2) trajectoire hyperboli-
que éloignée de la Terre. Dans les
deux derniers cas, la vitesse dans le
voisinage de la Terre est supérieure
à la vitesse de libération.
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L’objectif des sections qui suivent est d’étudier le comportement d’objets qui se dé-
placent dans l’espace interplanétaire, soumis à la seule action de la gravitation univer-
selle. Le problème de deux corps en interaction gravitationnelle a été traité à la
section 15.3. L’apparition d’un troisième corps rend les interactions tellement comple-
xes qu’il n’est plus possible d’obtenir une solution analytique (sauf au moyen d’un dé-
veloppement en une série qui converge très lentement et ne permet pas de prédire le
comportement du système2). Après NEWTON, qui ne disposait pas des outils mathéma-
tiques pour attaquer le problème, plusieurs mathématiciens, dont Léonard EULER, s’y
intéressèrent. Joseph Louis LAGRANGE proposa en 1772 la solution d’un cas particu-
lier où le troisième corps est de masse négligeable comparée à celle des deux autres:
c’est le problème à trois corps restreint.

Lors de l’étude du problème restreint, pour simplifier les équations, on se place dans
un référentiel qui tourne avec les deux corps les plus importants. C’est la raison pour
laquelle la première des sections qui suivent est consacrée à l’étude de ce qu’il advient
des relations cinématiques lors du changement de référentiel. Les sections suivantes
aborderont la théorie relative à la détermination des points de LAGRANGE, puis nous
modéliserons le comportement d’un corps positionné dans le voisinage du point L4.

Dans ce qui va suivre, nous admettons que toutes les vitesses sont faibles par rapport
à la vitesse de la lumière c, ce qui nous place dans un contexte non relativiste.

 

15.4.1 Référentiel inertiel et relativité galiléenne

À la section 8.2.4, nous avons découvert que, s’il n’est soumis à aucune interaction,
c’est-à-dire en l’absence de flux ou de sources de quantité de mouvement, la vitesse
d’un objet reste constante. Un référentiel qui a cette propriété est appelé référentiel
inertiel ou référentiel galiléen.

Nous envisageons un système inertiel S, muni d’un repère orthonormé Ox1x2x3, et un
second système qui se déplace relativement au premier, le système relatif R muni d’un
repère orthonormé (fig. 15.15). Le vecteur

 

r0 repère la position de l’origine
O′ du système relatif R dans le système S. La position d’un mobile M est repérée par
les vecteurs position respectifs

 

r et

 

r′ qui sont liés entre eux par la relation

 

(15.15)

Nous admettons que le système R se déplace à vitesse constante par rapport à S, c’est-
à-dire que

 

(15.16)

Nous montrerons à la section 15.4.3 que les accélérations mesurées dans chacun des
deux systèmes sont identiques, qu’elles soient mesurées dans S ou dans R, ce qui im-
plique que R est aussi un système inertiel.

Donc, si l’équation (15.16) est valable, on peut écrire l’équation (15.15) sous la
forme:

2. SUNDMAN, K.F., 1913, Mémoire sur le problème des trois corps, Acta Mathematica, 36,
105-179.

FIGURE 15.15 Lien entre la position
d’un mobile M repérée dans deux ré-
férentiels différents.
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(15.17)

ce que l’on appelle la transformation de Galilée, qui permet de transformer les équa-
tions du mouvement lors du passage d’un système inertiel à l’autre. L’égalité des ac-
célérations dans les deux systèmes implique qu’il n’est pas possible, au moyen
d’expériences de mécanique, de déterminer si un référentiel est immobile ou se dépla-
ce à vitesse constante. Ce ne l’est pas non plus si l’expérience a recours à une interac-
tion non mécanique.

 

15.4.2 Cinématique dans un référentiel en mouvement quelconque

Nous admettons maintenant que le système relatif R effectue un mouvement quelcon-
que, ce qui englobe la possibilité de rotation, donc d’un mouvement accéléré. Cette
rotation a lieu autour d’un axe passant par O′, dont la direction et le sens sont définis
par le vecteur ωωωω dont le module correspond à la vitesse de rotation du référentiel R.
Comme à la section 15.4.1, le vecteur

 

r0 repère la position de l’origine O′ du système
relatif R. La position d’un mobile M est repérée par les vecteurs position respectifs

 

r
et

 

r′ qui sont liés entre eux par la relation

 

(15.18)

Pour établir le lien entre les grandeurs cinématiques vitesse et accélération lors du pas-
sage d’un système à l’autre, nous exprimons les vecteurs position au moyen de leurs
composantes et des vecteurs unitaires associés:

Commençons par évaluer les dérivées temporelles des vecteurs dans le système relatif
R en mouvement. Comme nous admettons que ce référentiel peut effectuer une rota-
tion, nous devons tenir compte de la variation des vecteurs unitaires:

 

(15.19)

où d′/dt indique que la dérivation est effectuée dans le référentiel R. Comme nous
l’avons déjà constaté à la section 9.3.2, la variation d’un vecteur unitaire ne peut être
que perpendiculaire à ce dernier. Dans notre cas, cette variation est due à la rotation
du référentiel R caractérisée par le vecteur ωωωω. En tant que vecteur de vitesse angulaire,
le module de ωωωω correspond au taux de variation de l’angle de rotation, qui est le même
que celui de la variation de la direction du vecteur unitaire. Il est donc naturel de
conclure que

ce qui nous permet de réécrire la relation (15.19):
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dans laquelle

 

v′ représente la vitesse du mobile M mesurée dans R. Une dérivation
temporelle dans le référentiel S correspond donc à une dérivation temporelle plus une
rotation dans R, ce que nous pouvons exprimer au moyen d’un opérateur:

 

(15.20)

Si nous l’appliquons au vecteur ωωωω, nous obtenons:

ce qui implique que l’accélération angulaire est la même dans les deux référentiels.

Pour obtenir la dérivée seconde, nous appliquons deux fois l’opérateur (15.20):

Nous obtenons la vitesse et l’accélération du mobile calculée dans le référentiel S par
dérivation de la relation (15.15). Le vecteur vitesse devient:

Il est constitué de la vitesse d’entraînement de R par rapport à S augmentée de la vi-
tesse de translation et de rotation du mobile par rapport à R.

L’accélération dans S est donnée par:

 

(15.21)

 

15.4.3 Interprétation des résultats: dynamique dans un système
accéléré

Afin de comprendre la signification des termes de l’équation (15.21), nous appliquons
la loi fondamentale de la dynamique (9.6) dans chacun des deux systèmes. Un obser-
vateur placé dans le référentiel inertiel S enregistre l’accélération

 

a due à l’action de
la résultante

 

F des forces extérieures. Si la masse du mobile est égale à m, il vient:

 

(15.22)

En revanche, pour un observateur placé dans le référentiel accéléré R, l’accélération
relative

 

a′ doit être corrigée par les termes supplémentaires dus au mouvement relatif,
et l’application de la loi fondamentale de la dynamique donne pour lui:

 

(15.23)
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En examinant des cas particuliers du mouvement de R par rapport à S, nous allons
pouvoir interpréter les observations d’une personne se trouvant dans le système
accéléré R.

 

Système en mouvement à vitesse constante. Lorsque le référentiel R se déplace à
vitesse constante par rapport à S, tous les termes du membre de droite sont nuls, sauf

 

F, impliquant:

 

(15.24)

ce qui justifie notre affirmation du la section 15.4.1 au sujet de l’égalité des accéléra-
tions mesurées dans chacun des systèmes, égalité qui implique l’équivalence de systè-
mes qui se déplacent à vitesse constante, les systèmes inertiels ou galiléens.

 

Système en mouvement rectiligne accéléré. En admettant que la résultante des for-
ces extérieures est nulle, le seul terme qui subsiste dans le membre de droite est l’ac-
célération

 

a0 du système R. L’observation de la personne placée dans R s’exprime par:

 

(15.25)

Les deux systèmes ne sont plus équivalents. L’observateur perçoit une accélération
opposée à l’accélération du système dans lequel il se trouve. S’il est par exemple dans
un véhicule qui est en train de démarrer, il percevra une accélération dirigée vers l’ar-
rière qui le plaquera contre le dossier de son siège. Si, au contraire, le véhicule freine,
il sera emporté vers l’avant. Il interprétera ces observations comme dues à l’action
d’une force. En fait, il s’agit d’un effet d’inertie. Tant qu’une force externe n’agira pas
sur lui, il conservera son état de mouvement, l’immobilité par rapport au sol au démar-
rage ou la vitesse acquise lors du freinage. Pour qu’il puisse suivre le mouvement du
véhicule, il faut qu’une force lui apporte ou lui retire de la quantité de mouvement: le
dossier du siège le fera au démarrage, la ceinture de sécurité et le frottement sur le
siège au freinage.

Il est usuel de désigner par forces d’inertie ou forces fictives ou forces apparentes ou
pseudoforces les effet dus à l’inertie dans un système accéléré. Pour bien les différen-
cier des forces au sens de la section 9.1.2, nous les désignerons par effet d’inertie.

 

Système en rotation. À nouveau, pour simplifier l’analyse, nous admettons que la
résultante des forces extérieures est nulle. Comme la vitesse

 

v′ est nulle, l’effet
CORIOLIS l’est aussi et il ne reste qu’un terme dans l’effet d’entraînement. Ainsi, la
perception de l’observateur dans le système accéléré est exprimée par:

 

(15.26)

Nous montrerons dans l’exemple 15.5 que l’accélération perçue est radiale, dirigée
vers l’extérieur. C’est la raison pour laquelle on désigne cet effet d’inertie par effet cen-
trifuge. Dans un véhicule qui prend un virage vers la gauche, un passager sera plaqué
sur la portière droite par l’accélération centrifuge. Cette accélération centrifuge, dont
nous verrons que le module est égal à ω2r′, est égale et opposée à l’accélération cen-
tripète (9.30) nécessaire pour permettre au véhicule de suivre une trajectoire circulai-
re. Cette dernière accélération est le fait d’une force extérieure, par exemple
l’adhérence des pneus sur la route.

Au cas où la vitesse angulaire n’est pas uniforme, l’observateur percevra un effet
supplémentaire:

m m′ = =a F a

m m′ = −a a0

m m m′ = − × × ′( )⎡⎣ ⎤⎦ =a r aωω ωω centrifuge
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(15.27)

L’accélération –αααα ×

 

r′ , dite accélération d’EULER, est opposée à l’accélération tangen-
tielle donnée par l’équation (9.31). Placée sur un cheval de bois d’un carrousel qui
démarre, une personne sera rejetée vers l’arrière du cheval, alors qu’elle aura tendance
à tomber vers l’avant lors du freinage.

 

Translation dans un système en rotation. Quelle est la trajectoire d’un projectile
lancé par un canon fixé au centre d’un disque en rotation, qui est par le fait même un
référentiel accéléré R? Vue d’un référentiel inertiel S, la trajectoire du projectile est
rectiligne. Mais pour un observateur placé dans le référentiel accéléré R, cette trajec-
toire est incurvée.

En effet, vu du référentiel accéléré, le projectile est soumis à deux accélérations dues,
d’une part, au mouvement de rotation du référentiel et, d’autre part, à la vitesse relative
du projectile par rapport au référentiel.

Si nous nous référons à l’équation (15.23), en admettant que les forces extérieures sont
nulles et que la vitesse angulaire du référentiel R est constante, nous voyons qu’il sub-
siste deux termes, à savoir l’accélération centrifuge et celle de CORIOLIS:

 

(15.28)

Le produit vectoriel de deux vecteurs est un troisième vecteur qui est perpendiculaire
aux deux premiers. La force de CORIOLIS est donc normale au vecteur vitesse et n’est,
de ce fait, pas associée à un flux d’énergie.

 

EXEMPLE 15.5. Projectile lancé dans un référentiel en rotation: modèle dynamique.

Depuis le centre d’un plateau de rayon R tournant dans le sens antihoraire avec une vitesse
angulaire constante de module ω, on lance un projectile avec une vitesse de module

 

v de ma-
nière à atteindre une cible entraînée à la périphérie du plateau (fig. 15.16). Élaborer le modèle
dynamique correspondant afin de déterminer la trajectoire observée dans le référentiel tournant.

SOLUTION: Dans le référentiel tournant, le projectile est soumis simultanément aux effets cen-
trifuge et de CORIOLIS donnés par l’équation (15.28).

Pour l’élaboration du modèle dynamique, nous devons calculer chacune des composantes des
deux forces d’inertie qui se manifestent. La force centrifuge pour un système en rotation avec
une vitesse angulaire constante a pour composantes:

ce qui confirme notre affirmation précédente au sujet de la direction, du sens et du module de
cette force.

Évaluons l’effet CORIOLIS, à nouveau dans un système en rotation avec une vitesse angulaire
constante:

m m m′ = − × × ′( ) − × ′⎡⎣ ⎤⎦ = +( )a r r a aωω ωω αα centrifuge Euler

 m m m′ = − × × ′( ) − × ′⎡⎣ ⎤⎦ = +( )a r a aωω ωω ωω2 v centrifugre Cor

FIGURE 15.16 On lance un projec-
tile pour qu’il atteigne une cible
fixée à la périphérie d’un plateau
tournant à une vitesse de module ω.
Lors du lancement, la cible se trou-
ve à la position 1. Pour tenir comp-
te du déplacement de la cible, il
faut anticiper sa position au
moment de l’impact (position 2).
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La figure 15.17 ci-dessous montre la partie du modèle dynamique où sont exprimées les com-
posantes respectives des forces ressenties dans le système tournant.

Le modèle a été simulé avec des valeurs égales à l’unité pour le rayon R, la masse m et la vitesse
du projectile. La vitesse angulaire w a la même valeur que l’angle q à l’unité près.

La figure 15.18 montre les trajectoires perçues dans le référentiel accéléré pour différentes
valeurs de la vitesse angulaire du plateau tournant. Pour accentuer les effets, on a admis que les
vitesses du projectile et du plateau en rotation sont du même ordre de grandeur.

L’exemple 15.6 permet d’expliquer quels sont les facteurs qui déterminent la forme de la tra-
jectoire perçue dans le référentiel tournant.

B

EXEMPLE 15.6. Projectile lancé dans un référentiel en rotation: étude analytique.

Analyser la trajectoire : (a) du point de vue d’un observateur inertiel ; (b) du point de vue
d’une observateur placé sur le plateau; (c) déterminer l’importance relative des composantes
des effets centrifuge et de CORIOLIS et les représenter graphiquement pour trois points de la
trajectoire.

SOLUTION: (a) Dans le système inertiel, l’analyse est simple, la trajectoire est rectiligne. Il suf-
fit de prendre en compte le fait que la cible se déplace et anticiper l’endroit où elle se trouvera
lorsque le projectile atteindra la périphérie du plateau. Si v représente le module de la vitesse
du projectile, le temps de vol est ∆tvol = R/v. Durant ce temps, le plateau balaie un angle θcible

= ω∆tvol = ωR/v. Si le lanceur est pointé sous cet angle par rapport à la ligne de visée vers la
cible, le projectile touchera la cible à la position 2 (fig. 15.16). Dans un repère cartésien, la
position instantanée du projectile est donnée par:

Nous avons introduit la troisième composante parce que nous en aurons besoin lors de la for-
mation des produits vectoriels intervenant dans le calcul des accélérations.

(b) Dans le repère en mouvement, la position instantanée est donnée par l’équation (15.15):

Comme la position est mesurée au moyen de l’angle, nous avons:

p x
Fcentr x Fcor x

m

v x

omega

x
x point

omegam

p y
Fcentr y Fcor y

m

v y

omega

y
y point

omegam
v x

v y

FIGURE 15.17 Modèle
dynamique: composantes des ef-
fets centrifuge et de CORIOLIS dans
le système tournant.

FIGURE 15.18 Trajectoires per-
çues par un observateur emporté
par le plateau tournant. Les trajec-
toires correspondent à des angles
de lancements θcible respectifs de
45°, 90° et 135°. Les points sur les
trajectoires correspondent à des in-
tervalles de temps égaux.
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Pour se rendre compte de la manière dont l’observateur accéléré perçoit cette trajectoire
(fig. 15.18), il faut se souvenir que, pour lui, la cible est immobile. Le projectile n’est pas lancé
en direction de la cible, mais sous l’angle θcible. À cause du mouvement de son référentiel, il
perçoit une trajectoire incurvée, comme si le projectile la corrigeait pour atteindre l’objectif.
Cette courbure de la trajectoire n’est qu’apparente, elle est due au fait que le mouvement de
rotation du plateau sur lequel se trouve l’observateur rapproche sa ligne de vision de la trajec-
toire rectiligne du projectile.

Nous savons que la forme de la trajectoire perçue par l’observateur accéléré est due à l’effet cen-
trifuge provoqué par la rotation du plateau et à l’effet CORIOLIS provoqué par le mouvement
relatif du projectile par rapport à ce même plateau tournant.Vu du référentiel accéléré, le vecteur
vitesse change constamment de direction, mais son module augmente également à cause des
accélérations centrifuge et de CORIOLIS que nous allons évaluer.

Nous utilisons le résultat de l’exemple 15.5 pour évaluer l’accélération centrifuge

ce qui est une accélération de même direction et de même sens que le vecteur position, donc
dirigée vers l’extérieur de la trajectoire.

Pour pouvoir calculer l’accélération de CORIOLIS, nous devons évaluer la vitesse

 

v′ dans le
référentiel accéléré en tant que dérivée du vecteur

 

r′ :

Son produit vectoriel avec le vecteur ωωωω donne l’accélération de CORIOLIS que nous évaluons en
nous servant du résultat de l’exemple 15.5:
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(c) Le premier terme de l’accélération de CORIOLIS a un module constant égal à 2ω

 

v. Le vecteur
est perpendiculaire au vecteur position instantané et dirigé vers l’intérieur de la trajectoire. Le
second terme a un module double de celui de l’accélération centrifuge et il est opposé à cette
dernière. Nous constatons donc que l’accélération de CORIOLIS non seulement annule l’accélé-
ration centrifuge par l’intermédiaire du second terme, mais engendre une accélération résultante
dirigée vers l’intérieur de la trajectoire (fig. 15.19).

B

 

EXEMPLE 15.7. Manifestation des effets d’inertie à la surface de la Terre.

Expliquez pourquoi, dans l’hémisphère Nord, un cyclone (zone de basse pression) tourne dans
le sens antihoraire, alors qu’un anticyclone (zone de haute pression) tourne dans le sens horaire.

SOLUTION: Envisageons tout d’abord une zone de haute pression et plaçons-nous sur une
«Terre plate» pour simplifier l’analyse. En l’absence de rotation de la Terre, la pression élevée
chasserait les masses d’air en direction radiale (flèches pointillées dans la figure 15.20a). Vue
d’une position située dans l’hémisphère Nord, la rotation de la Terre s’effectue dans le sens anti-
horaire, le vecteur ωωωω sort du plan. L’accélération de CORIOLIS,

 

aCor = –2ωωωω ×

 

v, est un vecteur
perpendiculaire au vecteur vitesse

 

v, agissant de telle manière que la déviation est toujours
orientée vers la droite dans le sens du déplacement. Ainsi, pour un vent orienté vers le sud, l’ac-
célération de CORIOLIS sera orientée vers l’ouest. L’effet global de ces déviations est une mise
en rotation des masses d’air dans le sens horaire. Dans le cas d’une zone de basse pression, les
vents se dirigent vers la dépression (fig. 15.20b), et la déviation vers la droite engendre un mou-
vement global de rotation dans le sens antihoraire.

Vue d’une position située dans l’hémisphère Sud, la rotation de la Terre s’effectue dans le sens
horaire, l’accélération de CORIOLIS s’inverse, la déviation a lieu vers la gauche. Le sens de
rotation des masses d’air est lui aussi inversé.
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FIGURE 15.19 Vecteurs des accé-
lérations centrifuge et de CORIOLIS,
ainsi que ceux de l’accélération ré-
sultante à trois instants différents
pour le cas d’un angle de lance-
ment de 90°.
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FIGURE 15.20 Sens de rotation
des masses d’air sur la Terre: (a)
anticyclone; (b) cyclone.
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EXEMPLE 15.8. Écoulement de l’eau dans un lavabo.

On entend souvent dire que l’eau d’un lavabo se vide en tournant toujours dans le même sens.
Est-ce le cas?

SOLUTION: Si c’était le cas, le sens de rotation devrait être celui d’une dépression, donc anti-
horaire. Pour déterminer si cela est possible, il suffit de calculer la valeur de l’accélération de
CORIOLIS. Nous devons tenir compte de la latitude, vu que la composante horizontale de l’ac-
célération dépend de celle-ci. Nous nous plaçons à une latitude moyenne φ de 45°. Le module
de la vitesse angulaire est égal au quotient de 2π et de la durée du jour. En admettant une vitesse
radiale de l’écoulement de 1 m s–1, nous obtenons:

Pour un lavabo de 50 cm de diamètre, le déplacement latéral à la hauteur de la bonde serait de
5 dixièmes de millimètre, pour autant qu’il n’y ait aucune autre perturbation de l’écoulement.
Pour avoir un effet notable, il faudrait que le lavabo ait un diamètre d’au moins 1 kilomètre. La
rotation observée a un sens aléatoire. Elle est engendrée par des perturbations incontrôlables au
moment de l’ouverture de la bonde.
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Comme évoqué dans l’introduction de la section 15.4, il n’est pas possible de donner
une description exacte du mouvement de trois corps en interaction gravitationnelle.
Joseph Louis LAGRANGE proposa en 1772 une solution pour le cas particulier où le
troisième corps a une masse m négligeable comparée aux masses M1 et M2 des deux
autres corps, ce qui implique que sa présence ne perturbe pas le mouvement de ces
deux corps.

 

15.5.1 Points de L

 

AGRANGE

 

É

 

noncé du problème. La démarche de LAGRANGE consiste à chercher les solutions
des équations qui maintiennent les trois corps à une distance constante les uns des
autres. Si

 

r1 et

 

r2 sont les vecteurs qui repèrent les positions des masses M1 et M2 par
rapport à l’origine du référentiel située au centre de masse CM (fig. 15.21), la force
totale perçue par la troisième masse m est donnée par3:

 

(15.29)

Les deux vecteurs

 

r1 et

 

r2 varient dans le temps, vu que les deux masses M1 et M2
tournent l’une autour de l’autre. Il serait possible d’obtenir les solutions pour

 

r1(t) et

 

r2(t) en résolvant le problème à deux corps, puis de rechercher les solutions pour
l’équation de mouvement:

3. Cette version de la théorie est reprise du document «The LAGRANGE Points» créé par NEIL.
J. CORNISH pour WMAP Education (WILKINSON Microwave Anisotropy Probe).
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FIGURE 15.21 Repérage de trois
corps en interaction
gravitationnelle: si le troisième
corps a une masse m beaucoup plus
faible que celle des deux autres, on
parle du problème à trois corps
restreint.
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(15.30)

en exigeant que les positions relatives des trois corps restent fixes. Ce sont ces solu-
tions stationnaires que l’on appelle les points de LAGRANGE.

La méthode la plus simple pour trouver ces solutions stationnaire consiste à se placer
dans un référentiel tournant dans lequel les deux masses importantes ont des positions
fixes. L’origine de ce nouveau référentiel est placée au centre de masse des deux mas-
ses importantes et une vitesse angulaire de module ω donnée par la troisième loi de
KEPLER (13.80) dans laquelle la constante k a été remplacée par G(M1 + M2)/(4 π2):

 

(15.31)

où R = r1 + r2 représente la distance fixe entre les deux masses. Le prix à payer pour
l’introduction d’un référentiel non inertiel est qu’il faut tenir compte des effets d’iner-
tie. Dans le référentiel tournant à la vitesse angulaire de module ω, en vertu de
l’équation (15.23), la force devient:

 

(15.32)

où les deux termes supplémentaires représentent respectivement l’effet centrifuge et
l’effet CORIOLIS.

Dans le référentiel en mouvement, les effets d’inertie manifestent comme des forces
volumiques, telles que la pesanteur, la gravitation, les forces électromagnétiques, qui
se transmettent par l’intermédiaire de champs auxquels on associe un potentiel dont
elles sont le gradient. Il s’ensuit que la force donnée par l’équation (15.32) peut être
obtenue en tant que gradient généralisé d’un potentiel généralisé dont la figure 15.22
représente l’aspect pour une vitesse nulle du troisième corps.

 

Recherche des points L1 à L3. Pour ce faire, on se place dans un référentiel cartésien
dont l’origine coïncide avec le centre de masse et on introduit la masse réduite par rap-
port à la deuxième masse plus faible:

Il n’est pas possible de trouver une solution exacte du problème. Par contre, si l’on ad-
met que la masse réduite est très faible, µ

 

a 1, et si R représente la distance entre les
deux masses M1 et M2, la solution peut être approximée par:

 

(15.33)

 

EXEMPLE 15.9. Position des trois premiers points de LAGRANGE du système Soleil – Terre.

Pour le système Soleil – Terre, la masse réduite µ vaut approximativement 3·10–6, et la distance
R est égale à une unité astronomique, à savoir 1 UA ≈ 1.5·108 km, ce qui implique que le premier
et le deuxième points de LAGRANGE sont situés à environ 1.5 million de kilomètres de part et
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d’autre de la Terre, sur la droite qui relie la Terre et le Soleil. Le troisième point, diamétralement
opposé à la Terre, est en orbite autour du Soleil sur une trajectoire de diamètre faiblement su-
périeur à celui de la trajectoire de la Terre.

B

 

Recherche des points L4 et L5. Pour la localisation des deux points restants, il faut
se rendre compte qu’il s’agit de compenser l’effet centrifuge qui agit radialement vers
l’extérieur par la composante opposée de l’attraction gravitationnelle exercée par les
deux masses. En procédant de la sorte, on se rend compte que le point d’équilibre doit
être situé à égale distance de chacune des deux masses. En outre, la composante tan-
gentielle doit s’annuler, ce qui implique que les points d’équilibre doivent être situés
à la distance R de chacune des deux masses, donc au sommet d’un triangle équilatéral
dont la base est donnée par le segment qui relie les deux masses M1 et M2. Les points
L4 et L5 sont situés de manière symétrique par rapport à cette base.

(15.34)

15.5.2 Stabilité des points de LAGRANGE

L’équilibre en chacun des points de LAGRANGE est-il un équilibre stable? Dans le cas
d’un référentiel inertiel, il suffit d’examiner la structure du potentiel pour savoir si les
poins d’équilibre correspondent à des vallées, des collines ou des cols pour savoir
quelle est la qualité de l’équilibre. Ce critère ne suffit pas lorsque le potentiel dépend
de la vitesse, comme c’est la cas ici. Il faut alors procéder à une analyse de stabilité.
La procédure consiste à linéariser l’équation de mouvement en chacun des points
d’équilibre et à examiner comment évolue sa solution pour de petits déplacements par
rapport au point d’équilibre.

Cette analyse, dont nous ne reproduirons pas les détails, donne les résultats qui sont
exposés dans les paragraphes qui suivent.

Stabilité de L1 et L2. L’examen mathématique révèle que ces deux points sont situés
sur des selles du potentiel, ce qui implique qu’ils sont instables du point de vue dyna-
mique. Si l’on positionne un objet dans le voisinage de ces points, il s’en éloigne au
bout de quelques mois, sauf si l’on procède à des corrections de trajectoire qui néces-
site relativement peu de carburant, vu que le potentiel est extrêmement plat dans le voi-
sinage des points.

Les agences spatiales placent des engins spatiaux en ces deux points. Le satellite d’ob-
servation SOHO (Solar and Heliospheric Observatory, dont la mission est d’observer
la surface du Soleil) gravite depuis 1996 autour de L1. Le successeur du télescope spa-
tial Hubble, le James Webb Space Telescope, a été lancé le 25 décembre 2021 et placé
en orbite autour de L2.

Stabilité de L3. Le point L3 a les mêmes caractéristiques de stabilité que les points L1
et L2. Mais comme il est situé à l’opposé de la Terre par rapport au Soleil, il est invi-
sible et n’est pas utilisé.

Stabilité de L4 et L5. L’analyse de la stabilité autour de ces deux points donne un ré-
sultat surprenant. Alors que ces points correspondent à des maxima locaux du poten-
tiel généralisé – ce qui impliquerait un équilibre instable –, ils sont en fait stables.
Cette stabilité est due à l’effet CORIOLIS. Une masse qui serait placée initialement dans
le voisinage de L4 ou L5 aurait tendance à descendre vers le bas de la colline de
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potentiel. En le faisant, elle acquiert de la vitesse, l’effet CORIOLIS se manifeste en la
renvoyant en orbite autour du point de LAGRANGE. Cet effet est comparable à la for-
mation d’un ouragan à la surface de la Terre: lorsqu’une masse d’air s’évacue vers une
zone de basse pression, elle se met en rotation à cause de l’effet CORIOLIS et un tour-
billon stable apparaît.

15.6 SATELLISATION AUTOUR DU POINT L4 DE JUPITER

Les points de LAGRANGE L4 et L5 du couple Soleil-Jupiter sont occupés par des cen-
taines d’astéroïdes auxquels les astronomes qui les ont découverts ont donné des noms
de héros de la guerre de Troie rapportée dans l’Iliade d’Homère. Les astéroïdes qui
orbitent autour du point L4, en avance sur Jupiter, portent des noms de guerriers grecs,
alors que ceux qui sont situés autour de L5 sont associés au camp troyen.

On ne place pas d’engins en ces points à cause de l’encombrement par les astéroïdes,
mais nous allons étudier comment se comporte un objet qui est placé dans le voisinage
de L4.

15.6.1 Élaboration du modèle

Nous étudierons le mouvement du corps autour de L4 tout d’abord vu d’un système
inertiel, puis vu du système tournant lié au couple Soleil-Jupiter.

Trajectoire dans un système inertiel. Nous nous plaçons dans un référentiel d’inertie
dont l’axe Ox coïncide initialement avec la droite qui relie Jupiter au Soleil et dont
l’origine est située au centre de masse CM des deux astres (fig. 15.23).

Introduisons d’abord les grandeurs géométriques. Nous déterminons la distance dSJ
entre le Soleil et Jupiter au moyen de la troisième loi de KEPLER (15.31):

Les modules des vecteurs position des deux planètes sont:

et les positions instantanées du Soleil et de Jupiter, ainsi que le vecteur qui les relie,
varient selon:

La position du point de LAGRANGE L4 est donnée par:

FIGURE 15.23 Repérage d’un ob-
jet en interaction avec le système
Soleil - Jupiter dans un référentiel
inertiel.
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Si la position de l’objet est repérée par le vecteur:

ses positions relativement aux deux planètes et au point de LAGRANGE L4 sont don-
nées par les vecteurs:

Le comportement dynamique de l’objet de masse m est dû à son interaction avec le
Soleil et Jupiter, interaction décrite par la deuxième loi de NEWTON. La variation de la
quantité de mouvement de l’objet est donnée par:

(15.35)

La figure 15.24 montre la partie du modèle qui exprime, pour chacune des composan-
tes, la dynamique du système exprimée par la relation (15.35).

Le comportement de l’objet autour du point de LAGRANGE L4 a été simulé pour deux
vitesses du corps: tout d’abord avec une vitesse initiale de module égal à 13.03 km s–1,
proche de la vitesse orbitale moyenne de Jupiter, puis avec une vitesse initiale plus
importante, de module égal à 13.37 km s–1. La durée de la simulation correspond à
317 années terrestres, soit 26.4 années joviennes. Quel que soit le module de sa vitesse
initiale, l’objet orbite autour du Soleil sur une orbite proche de celle de Jupiter avec une
durée de révolution proche de celle de sa planète mère. La figure 15.25a montre que,
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FIGURE 15.24 Modèle dynamique
d’un objet en interaction gravita-
tionnelle avec le couple Soleil -
Jupiter: bilan de quantité de mou-
vement dans un référentiel inertiel.
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dans le premier cas, le corps reste dans le voisinage du point de LAGRANGE, alors que
dans le second cas, il peut s’en éloigner très fortement, puisque le rayon maximal de sa
trajectoire est plus important que la distance entre le Soleil et Jupiter (fig. 15.25b).

Seul le passage dans un référentiel tournant va nous permettre de comprendre ce qui
se passe en détail.

Trajectoire dans le référentiel tournant. Nous reformulons le modèle dans un réfé-
rentiel tournant solidaire du couple Soleil - Jupiter dans lequel les deux astres ont une
position fixe sur l’axe Ox (fig. 15.26).

Les grandeurs géométriques sont inchangées. Les positions du Soleil et de Jupiter sont
maintenant données par:

Les autres relations géométriques ne sont pas modifiées par le changement de référen-
tiel. La prise en compte des effets d’inertie fait apparaître deux termes supplémentaires
dans l’équation de bilan de la quantité de mouvement:

(15.36)

Les composantes des deux effets d’inertie ont été calculées dans l’exemple 15.5 et
peuvent être intégrées dans le modèle de la figure 15.24 au moyen de deux flux sup-
plémentaires de quantité de mouvement pour chacune des composantes. Le modèle a
été simulé pour quatre valeurs de la vitesse initiale.

La figure 15.27a montre comment la trajectoire de la figure 15.25a apparaît lorsqu’on
l’observe à partir du référentiel tournant. L’objet est abandonné sans vitesse initiale
dans le voisinage du point de LAGRANGE L4. Pour interpréter le comportement obser-
vé, il faut se souvenir que, en vertu de la loi des aires, un objet en orbite autour du So-
leil qui s’en rapproche acquiert une plus grande vitesse, alors que s’il s’en éloigne, sa
vitesse diminue. Réciproquement, si sa vitesse augmente, il se rapprochera du Soleil,
alors qu’il s’en éloignera si sa vitesse diminue.

FIGURE 15.25 Comportement
d’un corps autour du point de
LAGRANGE L4 pour une durée de
317 années terrestres, vu d’un sys-
tème inertiel: (a) module de la vi-
tesse initiale proche de celui de la
vitesse orbitale de Jupiter; (b) mo-
dule de la vitesse initiale supérieur
de 340 m s–1 par rapport à la vites-
se orbitale de Jupiter.
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FIGURE 15.26 Repérage d’un ob-
jet en interaction avec le système
Soleil - Jupiter dans un référentiel
Oxy tournant.

L4

M

S J

y

xO ≡ CM

m

rS

rL4 r

rJ

rrel L4

r rS
S

S
S J

J

J

,=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x

y
r

x

y
1
0

==
⎛

⎝
⎜

⎞

⎠
⎟rJ

1
0

  

�p F F F F

r

r

= + + +

= − −

S J centrifuge Cor

S
rel S

rel S

Gm m Gm3 JJ
rel J

rel J

m m m
r

r
r3 2− × ×( ) − × ′( )ωω ωω ωω v



PHYSIQUE, UNE PRÉSENTATION SYSTÉMIQUE 757

15.6  SATELLISATION AUTOUR DU POINT L4 DE JUPITER

Dans le cas envisagé, le point de départ est situé plus haut (par rapport au Soleil) que
l’orbite de Jupiter, ce qui implique que l’objet a une vitesse plus faible que ce dernier:
la distance entre les deux diminue, l’attraction gravitationnelle augmente, ce qui pro-
voque une augmentation du module de la vitesse. L’objet gagne progressivement une
orbite plus proche du Soleil, ce qui l’éloignera de sa planète mère. Mais maintenant,
l’attraction de cette dernière le freine, il rejoint progressivement une orbite plus haute
jusqu’à rebrousser chemin pour se rapprocher à nouveau de Jupiter, et le cycle recom-
mence. Ce mouvement observé dans le repère solidaire des corps célestes de grande
masse est appelé mouvement de libration.

L’aspect et l’amplitude de ce mouvement de libration dépend à la fois du module et de
l’orientation du vecteur vitesse au moment du début de la simulation. Dans l’exemple
traité, une des composantes de la vitesse est toujours nulle alors que l’autre passe de
0 m s–1 (figure 15.27a) à 20 m s–1 (figure 15.27b), puis à 50 m s–1 (figure 15.27c) et
enfin à 150 m s–1 (figure 15.27d). L’amplitude du mouvement de libration est respec-
tivement augmentée d’un facteur égal à approximativement 3, 7 et 27.

Si l’on continue à augmenter cette composante de la vitesse, l’amplitude du mouve-
ment de libration augmente de telle manière que la séparation entre l’objet et Jupiter
devient égale au diamètre de l’orbite jovienne. Dans l’exemple traité, c’est le cas lors-
que cette composante particulière de la vitesse a une valeur de 406 m s–1. Dans ce cas,
l’objet séjourne longuement autour du point de LAGRANGE L3 avant de retourner vers
Jupiter. Si la composante de la vitesse passe à 407 m s–1 , une augmentation infime,
l’objet quitte le voisinage du point L3 pour atteindre le point L5 avant d’inverser le
sens de marche. La figure 15.28 montre le comportement de l’objet lorsque cette

FIGURE 15.27 Comportement
d’un corps autour du point de
LAGRANGE L4 pour une durée de
317 années terrestres, vu du systè-
me tournant solidaire du couple
Soleil - Jupiter: (a) module de la
vitesse initiale nul; (b) module de
la vitesse initiale de 20 m s–1;
(c) module de la vitesse initiale de
50 m s–1; (d) module de la vitesse
initiale de 150 m s–1. Le point de
LAGRANGE L4 est signalé par le
point noir.
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composante particulière de la vitesse est de 500 m s–1. Une telle orbite est appelée
orbite en fer à cheval (horseshoe orbit).

Un astéroïde baptisé 2002 AA29 a été découvert le 9 janvier 2002. Il s’agit d’un corps
dont le diamètre varie entre 20 et 100 mètres. Il tourne autour du Soleil sur une orbite
très semblable à celle de la Terre et sa période de révolution est exactement la même
que celle de la Terre. On dit d’un tel objet qu’il est en résonance 1:1 avec la Terre. Vue
de la Terre, sa trajectoire est une orbite en fer à cheval. Le point de sa trajectoire le plus
proche de la Terre (à environ 6 millions de kilomètres) a été atteint le 8 janvier 2003.
Depuis, il s’éloigne de la Terre et sera à nouveau à une distance minimale, à l’autre
extrémité du fer à cheval le 11 juillet 2097.

Résumé du chapitre

Dans les applications techniques, le champ électrique sert essentiellement à accélérer
des particules chargées. C’est le cas des dispositifs qui injectent les particules dans un
accélérateur (l’équivalent des canons à électrons des tubes cathodiques des anciens
téléviseurs). Dans l’accélérateur, des cavités radiofréquence fournissent l’énergie
nécessaire pour l’accélération des paquets de particules et leur focalisation au moyen
de champs électriques oscillants, dont la fréquence doit être adaptée à l’évolution de
la vitesse des particules.

Le champ magnétique sert essentiellement à guider les particules sur la trajectoire sou-
haitée, vu que la force qu’il exerce est perpendiculaire au vecteur vitesse. Les applica-
tions sont le spectromètre de masse et les accélérateurs de particules circulaires tels
que cyclotron, synchrotron et leurs avatars. Une configuration particulière de champ
magnétique inhomogène permet de piéger des particules dans des bouteilles magnéti-
ques ou des tores; c’est une technique utilisée dans la recherche sur la fusion contrô-
lée, dans des installations de type Tokamak.

Le champ gravitationnel est le vecteur de l’interaction entre les masses. Il dicte le com-
portement dynamique des planètes du système solaire, mais est également à l’origine
de la structure de l’Univers et de la cohésion des corps matériels qui le constituent ain-
si que de leur évolution. La modélisation au moyen d’un puits de potentiel permet de
déterminer qu’un objet plongé dans le puits de potentiel d’un corps de masse M et de
rayon R peut avoir des comportements différents suivant sa vitesse par rapport à ce

FIGURE 15.28 Orbite en fer à
cheval (horseshoe orbit) d’un
corps placé initialement dans le
voisinage de L4. Le module de la
vitesse est de 500 m s–1 supérieur
à la vitesse orbitale de Jupiter.
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corps. On détermine de cette manière deux vitesses caractéristiques: la vitesse de sa-
tellisation vsatellisation = √(GM/R) et la vitesse de libération vlibération = √(2GM/R).
Pour la Terre, ces deux vitesses sont respectivement 7.9 km s–1 et 11.2 km s–1.

Le champ gravitationnel ne peut pas être contrôlé comme les champs électrique et
magnétique, mais il maintient les satellites sur leur trajectoire. En orbite basse (500 km
à 2 000 km), les satellites servent aux télécommunications, à l’imagerie terrestre, à la
météorologie, au renseignement. En orbite moyenne (entre 2 000 km et 36 000 km),
ils servent à la navigation (GPS, Glonass, Galileo). En orbite géostationnaire (à
36 000 km) ils servent à la communication.

Les satellites d’observation du Soleil et de l’Univers sont généralement «parqués» en
des positions particulières appelées points de LAGRANGE. Un point de LAGRANGE est
une position de l’espace dans un système à deux corps en mouvement orbital l’un
autour de l’autre, où leurs champs de gravité se combinent de manière à fournir un
point d’équilibre à un troisième corps de masse négligeable, de telle façon que les
positions relatives des trois corps restent fixes. Pour un système donné, il existe cinq
points de LAGRANGE, L1, L2 et L3, situés sur la droite déterminée par les deux corps,
et deux autres, L4 et L5, au sommet d’un triangle équilatéral dont les extrémités de la
base sont les deux corps massifs. Les trois premiers sont instables, le deux derniers
sont stables, même s’ils correspondent à un maximum local du potentiel, grâce à l’ef-
fet CORIOLIS.

Lorsque l’on place un objet en l’un des deux points instables L1 ou L2 (ce sont des
cols dans le puits de potentiel), il a tendance à s’en éloigner, ce que l’on peut contre-
carrer au moyen de corrections de trajectoire relativement peu gourmandes en carbu-
rant, le potentiel étant pratiquement plat dans le voisinage de ces points. Un objet placé
dans le voisinage de L4 ou L5 orbite autour du corps central avec une période proche
de celle de la planète mère, mais en passant par des phases d’avance et de retard sur
celle-ci. Il peut s’en éloigner fortement ce qui, vu du système des deux corps massifs,
donne une trajectoire formée de boucles s’enroulant autour de l’orbite de la planète
mère. Ce phénomène est appelé mouvement de libration. L’amplitude du mouvement
de libration dépend des conditions initiales. Dans certains cas, ce mouvement peut
déboucher sur une orbite en fer à cheval: l’objet quitte son point de LAGRANGE, s’ap-
proche de sa planète mère puis s’en éloigne pour rejoindre l’autre point de LAGRANGE

en passant au voisinage de L3 et retourner au point de départ pour recommencer ce
mouvement de manière cyclique.
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Problèmes4

1. Un objet ponctuel portant une charge de 1.0 As et de masse
égale à 1.0 kg passe par un point P avec une vitesse de
module égal à 1.0 m s-1 suivant Ox. En ce point, l’intensité du
champ électrique est de 1.0 V m-1 suivant Oy, et celle du
champ d’induction magnétique de 2.0 T suivant Oy. Détermi-
nez les composantes de la force subie par cet objet.

2. Une particule chargée est abandonnée à partir du repos. On
observe qu’elle se met en mouvement sur une trajectoire
incurvée. Peut-on affirmer que, dans cette région de l’espace,
on est en présence d’un champ électrique E, ou d’un champ
d’induction magnétique B, ou des deux? Admettez que, en
dehors des éventuelles forces électrique et/ou magnétique,
aucune autre force n’agit sur la particule et que les champs,
s’ils sont présents, sont uniformes.

3. Une particule chargée se trouve dans une région de l’espace
occupée par un champ d’induction magnétique uniforme B,
orienté suivant Oz. Décrivez le futur mouvement de la parti-
cule si sa vitesse initiale est (a) nulle, (b) de module égal à
1.0 m s-1, orientée suivant Oz; (c) de module égal à 1.0 m s-1,
orientée suivant Oy.

4. Une particule chargée se déplace dans une région de l’espace
dans laquelle sont présents un champ électrique orienté per-
pendiculairement à son vecteur vitesse et un champ d’induc-
tion magnétique à la fois perpendiculaire à son vecteur
vitesse et au vecteur du champ électrique. Montrez qu’il
existe une vitesse particulière pour laquelle la somme des
forces s’annule. Quelle est la relation entre le module de cette
vitesse et les intensités respectives des deux champs? Un tel
dispositif, appelé filtre de vitesse, est une des manières per-
mettant de déterminer la vitesse d’une particule inconnue.

5. Un modèle (incorrect) de l’atome d’hydrogène l’envisage
comme un système constitué d’un électron en mouvement
sur une orbite circulaire de rayon égal à 0.05 nm autour du
proton à une vitesse de module égal à 2.2·106 m s-1. La masse
du proton étant pratiquement 2000 fois supérieure à celle de
l’électron, on peut admettre qu’il est stationnaire et que le
centre de l’orbite électronique coïncide avec le centre de
masse du proton. (a) Traitez l’électron en mouvement comme
une boucle de courant et calculez l’intensité de ce courant.
(b) Évaluez l’intensité du champ magnétique engendré au
centre de l’atome par le mouvement de l’électron. (c) Le pro-
ton est-il soumis à une force non nulle due au champ magné-
tique engendré par le mouvement de l’électron ? (d)
L’électron est-il soumis aux effets d’un champ magnétique
engendré par le proton ? (e) L’électron subit-il des effets
engendrés par son propre courant? (f) Y a-t-il une interaction
d’origine électrique agissant entre le proton et l’électron ?
Dans l’affirmative, évaluez son intensité. (g) Même question
relativement à une interaction d’origine gravitationnelle. (h)
Laquelle ou lesquelles de ces trois forces possibles contri-

4. Les problèmes 1 à 5 proviennent de B. CROWELL, B. SHOT-
WELL, Problems in Introductory Physics (CC).

buent-elles de manière significative à maintenir l’électron
autour du proton?

6. Une longue barre rigide tombe verticalement dans un champ
gravitationnel dont l’intensité croît linéairement vers le bas.
(a) Calculez l’accélération du corps au moyen de l’équation
de mouvement. (b) Déterminez la densité de courant de
quantité de mouvement dans la barre en fonction de la posi-
tion. Référez-vous à l’exemple 8.2 pour établir l’équation de
bilan de la quantité de mouvement pour le cas continu.

7. Un véhicule ouvert se déplace en dessous d’une pluie verti-
cale (fig. 15.29). Simultanément, le véhicule perd de l’eau
par un trou au plancher avec un débit égal à celui de la pluie.
Établissez l’équation de mouvement du véhicule et détermi-
nez sa vitesse en fonction du temps en admettant que les frot-
tements sont négligeables.

8. Une fusée Scout X1 de la NASA, de masse totale égale à 16 t
est sur la rampe de lancement. Après la mise à feu, 220 kg de
gaz sont éjectés chaque seconde à une vitesse de module égal
à 2100 m s-1. La résistance de l’air est négligeable. (a)
Écrivez l’équation de mouvement de la fusée en tant que sys-
tème. Pourquoi le taux de variation de la quantité de mouve-
ment n’est-il pas égal au produit de la masse et de
l’accélération? (b) Que vaut le module de l’accélération au
début du lancement? Quelle est sa valeur après 40 s? (c) Que
vaut le module de la vitesse 40 s après l’allumage?

9. Un petit corps de masse égale à 0.50 kg se déplace sur une
trajectoire elliptique. Les longueurs des grand et petit axes de
l’ellipse sont respectivement a = 4 m et b = 2m. Si l’on place
l’origine du système de coordonnées au centre de l’ellipse, la
position du corps est repérée par les fonctions x(t) = a cos(ct)
et y(t) = b sin(ct), avec c = π/10 s-1. (a) Que vaut la période
du mouvement et à quelle valeur correspond un intervalle de
temps dans la figure? (b) Déterminez les valeurs maximale et
minimale du module de la vitesse. (c) Que vaut l’accélération
à l’instant où le corps franchit l’axe Oy? (d) Déterminez la
force qui agit sur l’objet quatre secondes après le franchisse-
ment de l’axe Oy.

10. Un satellite tourne autour de la Terre sur une trajectoire ellip-
tique. Au point le plus proche de la Terre (périgée), il est à
deux rayons terrestres du centre de la Terre, et le module de
sa vitesse est de 6457 m s-1. Au point le plus éloigné (apo-
gée), cette distance vaut quatre rayons terrestres. Le rayon de
la Terre vaut 6.4·106 m. Le satellite a une masse de 1000 kg.
(a) Que vaut le module de la vitesse du satellite à l’apogée?

FIGURE  15.29
Problème 7
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(b) Quels sont le module et la direction de l’accélération du
satellite en ce même point ? (c) Déterminez la valeur de
l’énergie cinétique du satellite aux deux points extrêmes de
sa trajectoire. (d) Déterminez l’énergie du champ gravitation-
nel en ces mêmes points. (e) Évaluez la somme de ces deux
énergies en chacun des points. Qu’observez-vous?

11. Une fusée se déplace dans l’espace très loin de tout champ
gravitationnel à une vitesse de module constant v0 par rap-
port à un observateur. Les moteurs sont allumés et le flux de
masse émergeant de la fusée est constant. La vitesse d’éjec-
tion des gaz est égale à v0 par rapport aux moteurs. (a) For-
mulez l’équation de mouvement de la fusée par rapport à
l’observateur. (b) Résolvez cette équation.
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Dans les chapitres précédents, nous avons été confrontés à des grandeurs qui peuvent
être stockées et aux bilans qui nous permettent d’exprimer leur accumulation. Nous
avons découvert la nécessité de lois constitutives (particulières au système) pour dé-
crire les processus qui déterminent la variation de la grandeur accumulée dans un sys-
tème. La réunion des équations de bilan et des lois constitutives constitue les modèles
des processus dynamiques.

Nous voulons maintenant résumer ce que nous avons découvert tout en élargissant la
forme et l’utilisation des équations de bilan. Nous allons décrire le rôle des équations
de bilan et des lois constitutives. En outre, nous allons considérer le côté mathémati-
que de manière plus approfondie et discuter le processus de modélisation en détail.
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Dans les chapitres précédents, nous avons vu que les processus sont accompagnés de
l’accumulation de certaines grandeurs. En fait, la dynamique des processus est une
conséquence directe de cette accumulation. C’est pourquoi les processus d’accumula-
tion et les bilans qui leur sont associés ont une importance centrale en physique. Re-
considérons ce que nous savons déjà pour pouvoir élargir notre réflexion au sujet de
l’accumulation et de sa comptabilisation en général.

 

16.1.1 Récapitulation des acquis de la physique

Nous avons postulé l’existence d’une grandeur accumulable pour chacun des domai-
nes abordés jusqu’ici (tab. 16.1). À côté de chacune de ces grandeurs, l’énergie, qui
peut également être accumulée, apparaît dans tous les processus.

 

TABLEAU 16.1

 

Grandeurs physiques accumulables.

 

Domaine Grandeur qui 
s’accumule

Courant ou taux de production 
ou taux de source associés

Hydraulique Volume Flux volumique

Électricité Charge Courant électrique

Thermodynamique Entropie
Courant et/ou taux de produc-

tion d’entropie

Changement chimique Quantité de substance
Courant et/ou taux de produc-

tion de substance

Rotation Moment cinétique Flux de moment cinétique

Translation Quantité de mouvement
Flux et/ou taux de source de

quantité de mouvement

Tous les domaines Énergie Flux d’énergie
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La variation de la grandeur accumulée dans un système peut être provoquée de diffé-
rentes manières: tout d’abord par les flux qui entrent dans le système ou en émergent.
En hydraulique, en électricité et lors des processus de rotation, ces courants qui traver-
sent les limites du systèmes sont les seules contributions qui déterminent la vitesse à
laquelle varie le contenu du système. Les trois premiers exemples du tableau 16.2 il-
lustrent ces trois cas.

Lors de processus thermiques ou chimiques, les variations du contenu du système peu-
vent être provoquées par des flux de la grandeur extensive, mais également par la pro-
duction de celle-ci, dans les deux cas, ou par sa destruction dans le cas des réactions
chimiques (l’entropie ne peut pas être détruite). Les quatrième et cinquième exemples
du tableau 16.2 illustrent ces deux cas.

 

TABLEAU 16.2

 

Exemples d’équations de bilan.

 

Exemple Équations de bilan

Équation de bilan non stationnaire du
volume de liquide dans un réservoir:

Équation de bilan stationnaire de la charge
dans un nœud d’un circuit électrique:

Équation de bilan non stationnaire du
moment cinétique lors du lancement d’un

volant:

Équation de bilan stationnaire de l’entropie
dans une machine thermique:

V

IV2

IV1

V̇ I IV V= +1 2

IQ1

IQ2

IQ3

0 1 2 3= + +I I IQ Q Q

IL

L L̇ IL=

Machine
thermique

IS2
TH

TB

IS1 ΠS

0 1 2= + +I IS S SΠ
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La variation de la quantité de mouvement d’un objet en translation peut se faire par
l’intermédiaire de courants de quantité de mouvement, mais également par l’intermé-
diaire de champs, apport qui est représenté par son taux de source. L’avant-dernier
exemple du tableau 16.2 illustre cette situation.

Le tableau 16.2 montre les différentes manières de formuler une équation de bilan.
Tout d’abord, une équation de bilan peut être énoncée dans sa forme instantanée (les
six premiers exemples du tableau) ou intégrée (le dernier exemple). En outre, nous
utilisons le bilan de grandeurs dans des situations stationnaires ou dynamiques (non
stationnaires). Rappelons qu’un état est dit stationnaire lorsque les grandeurs aux-
quelles l’on s’intéresse ne varient pas dans le temps. Dans le cas contraire, on parle
de dynamique.

Dans les exemples du tableau 16.2, nous n’avons pas pris en compte le fait que la
variation de la grandeur extensive peut être provoquée par des flux convectifs, c’est-à-
dire que la grandeur en question est amenée dans le système ou en est extraite par un
flux de matière.

Dans la section 16.1.2, nous allons présenter des processus d’accumulation dans des
domaines différents de la physique pour étayer les différentes manières de faire varier
le contenu d’un système qui ont été présentées dans le tableau 16.2.

Équations de bilan non stationnaires des
ions et des atomes participant aux processus

se déroulant dans une batterie:

Équation de bilan non stationnaire de la
quantité de mouvement d’un objet en chute

dans un milieu résistant:

Forme intégrale de l’équation de bilan non
stationnaire de l’énergie lors de la décharge

d’une sphère:

 

TABLEAU 16.2

 

Exemples d’équations de bilan.

 

Exemple Équations de bilan

IQV

Zn2+

SO4
2–

Cu
Zn

SO4
2–Cu2+ ,

Paroi poreuse
 

� �

� �

n n

n n
Zn Zn Zn Zn

Cu Cu Cu C

2 2

2

+ +

+

= = − = −

= = − = −

Π Π
Π Π

uu2+

pΣ

Ip

 �p I p p= +Σ

E éch

E

∆E E= éch
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16.1.2 Processus d’accumulation dans des systèmes biologiques 
et sociaux

Il n’y a pas que les grandeurs physiques qui peuvent être accumulées. Le monde autour
de nous foisonne de grandeurs accumulables (ou assimilables à un fluide). Nous y
sommes confrontés dans les processus biologiques, industriels, sociaux et d’autres en-
core. En examinant des exemples tirés d’autres domaines, nous allons pouvoir en ap-
prendre plus sur la formulation des équations de bilan.

Des exemples de grandeurs qui peuvent être accumulées sont les espèces biologiques
et une partie des choses créées par les êtres humains. Ainsi, des insectes, de la végéta-
tion, des éléphants, des maisons, des automobiles, etc., contribuent à agrandir la liste
des grandeurs qui peuvent faire l’objet d’un bilan. Il suffit de découvrir les différentes
façons dont le nombre d’individus d’une espèce ou d’objets particuliers peut varier
pour obtenir la forme adéquate des équations de bilan.

Considérons un exemple facile pour mettre en évidence quels sont les points fonda-
mentaux de l’énoncé du bilan d’une grandeur extensive (assimilable à un fluide). Le
système est un pays et ses habitants en sont le contenu. Nous allons montrer que le
contenu du système peut varier de quatre manières différentes. La première façon est
représentée par le processus le plus évident, les naissances et les décès, alors que les
autres constituent différents modes de transport.

En l’absence d’autres processus, les taux de naissance et de décès déterminent à quelle
vitesse évolue le nombre d’habitants d’un pays (fig. 16.1). On pourrait avoir l’impres-
sion qu’il n’y a aucune différence entre les taux de naissance et de décès et le taux de
variation du nombre d’habitants dans un pays – même dans un système fermé –, qu’il
s’agit de deux termes différents pour exprimer la même entité. Il n’en est rien; pour
s’en convaincre il suffit de voir qui mesure chacune de ces deux grandeurs (tab. 16.3).
Les naissances et les décès sont enregistrés par les offices d’état civil, alors que le con-
tenu du système ou ses variations sont déterminés par recensement. Dire que les taux
de naissance et de décès déterminent à quelle vitesse le nombre d’habitants évolue
dans un pays n’est pas une affirmation banale et évidente; c’est l’expression d’une hy-
pothèse sur la manière dont fonctionne la nature, c’est une loi de la nature.

Une simple réflexion nous convainc de la différence fondamentale entre naissances et
décès d’une part, et migration d’autre part. Les naissances et les décès sont des pro-
cessus qui se déroulent à l’intérieur du système, alors que la migration est une interac-
tion entre le système et son environnement. La migration fait également varier la
population dans d’autres systèmes, alors que les naissances et les décès n’affectent que
le système considéré. La différence entre les trois modes de transport est plus subtile.
C’est la raison pour laquelle nous voulons examiner attentivement comment les per-
sonnes peuvent entrer dans ou quitter le système.

 

TABLEAU 16.3

 

Qui mesure quoi?

 

Grandeur Mesurée par…

Nombre d’habitants Recensement

Naissances et décès Offices d’état civil

Personnes franchissant la frontière à pied Autorité d’immigration à la frontière

Personnes franchissant la frontière en train
ou en voiture

Autorité d’immigration à la frontière

Personnes arrivant ou partant en avion Autorité d’immigration à l’aéroport

Nombre de personnes

Taux de natalité net

Π

FIGURE 16.1 Bilan de la population
d’un pays fermé. Le nombre de per-
sonnes ne peut changer que par l’in-
termédiaire des naissances et des
décès. Le taux de natalité net (taux de
natalité moins taux de mortalité) dé-
termine à quelle vitesse le nombre de
personnes varie.
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Tout d’abord, les personnes peuvent franchir la frontière à pied. Deuxièmement, elles
peuvent être transportées en train ou en voiture. À nouveau, s’il n’y a que ces proces-
sus, le taux auquel les personnes franchissent la frontière, que l’on appelle les courants
ou les flux, détermine à quelle vitesse le nombre de personnes évolue dans le pays. En
consultant le tableau 16.3, nous voyons que ces grandeurs sont mesurées de manière
totalement différente des taux de naissance ou décès. Malgré le fait que les deux
modes de transport aient le même effet sur la population du pays, nous devons les dis-
tinguer l’un de l’autre, parce que dans le second cas, nous devons prendre en compte
le nombre de trains et de voitures qui franchissent les limites du système. On rencontre
également de tels mécanismes de transport dans des systèmes physiques. Il suffit de
penser à l’entropie. Nous savons tous qu’elle peut s’écouler à travers les corps en pas-
sant à travers leurs limites; mais elle peut également pénétrer dans le système en fran-
chissant ses limites, transportée par de la matière à l’intérieur de laquelle elle réside.
Dans le premier cas, le système ne reçoit que de l’entropie, dans le second de l’entro-
pie et de la matière. Nous avons donné à ces deux modes de transport des noms
différents: le transfert à travers la matière est appelé la conduction, alors que le trans-
port avec la matière est appelé la convection (fig. 16.2).

Le troisième mode de transport de personnes est l’avion. Il permet d’arriver directe-
ment dans le système (ou de le quitter) sans avoir à franchir la frontière. En principe,
on peut ainsi arriver directement en n’importe quel point du système (fig. 16.3).

À nouveau, nous devons faire une distinction entre ce processus et ceux que nous
avons déjà rencontrés et qui contribuent également à faire évoluer la population. Il
s’agit clairement d’une interaction entre le système et son environnement, contraire-
ment aux naissances et aux décès. Mais ce mode de transport doit également être dis-
tingué des trains et des voitures qui ne peuvent amener des personnes directement en
un point quelconque du système. Le transport aérien permet d’entrer dans le système
par la troisième dimension sans avoir à franchir la frontière. Alors que nous avons
décrit les transports terrestres en termes de courants ou de flux dont nous devons con-
naître la distribution à la frontière, le troisième mode de transport nécessite de connaî-
tre la distribution par rapport au «volume» du système. On dit de grandeurs qui
apparaissent à l’intérieur d’un système ou en disparaissent sans en avoir franchi les
limites qu’elles ont des sources ou des puits. Si seuls ces processus sont présents, le
taux de source net détermine à quelle vitesse la population évolue. Pour récapituler ce
qui précède, nous pouvons affirmer que les taux de naissance et de décès, les flux con-
ductifs et convectifs, ainsi que les taux de source, nous renseignent exactement et
totalement sur ce qui se passe à l’intérieur du système (fig. 16.4).

Malgré la similitude entre les processus de production et ceux qui sont dus à des sour-
ces — la production entraîne l’apparition d’une source à l’intérieur du système —, il
y a une différence fondamentale entre les deux phénomènes: les quantités produites

Nombre de personnes

Taux de natalité net

Courant de conduction

Courant de convection

I

I

Π

FIGURE 16.2 Le nombre de person-
nes varie à la suite des naissances et
des décès, de personnes arrivant à
pied (conduction), en voiture ou en
train (convection). L’étude des phé-
nomènes de transport d’entropie
nous a familiarisés avec les termes de
conduction et de convection.

Transport aérien
(directement dans le système)

Système
bidimensionnel

Transport terrestre
(à travers les frontières

du système)

FIGURE 16.3 Contrairement au
transport terrestre, le transport aérien
peut amener les personnes directe-
ment à l’intérieur du système sans
devoir franchir la frontière.

Nombre de personnes

Taux de natalité net

Courant de conduction

Courant de convection

Taux de source net

I

I

Π

Σ

FIGURE 16.4 Bilan généralisé
incluant trois types de transport ainsi
que la production/destruction.
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ne pénètrent pas dans le système en s’écoulant à partir d’un autre système duquel elles
disparaîtraient.

 

16.1.3 Le processus général d’accumulation

L’exemple du nombre de personnes vivant dans un pays nous a permis d’examiner un
cas très général d’accumulation. La production et les trois types de transport représen-
tent tous les processus qui sont susceptibles d’influencer la quantité d’une grandeur
extensive (assimilable à un fluide) à l’intérieur d’un système. Il s’ensuit que la forme
la plus générale d’un bilan peut être exprimée de la manière suivante:

Beaucoup de grandeurs extensives ne varient que par l’intermédiaire d’une partie de
ces quatre processus (tableau 16.4). Par exemple, de grands bâtiments ne peuvent ni
migrer, ni être transportés; seule la construction ou la démolition peuvent en faire va-
rier le nombre.
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Les intensités de courants dus à la conduction et à la convection, les taux de source et
les taux de production représentent toutes les grandeurs nécessaires pour décrire les
processus qui sont à l’origine des phénomènes dynamiques. Si elles sont mises en re-
lation avec le taux de variation du contenu du système comme nous l’avons mentionné
à la fin de la section 16.1, nous obtenons la forme la plus générale du bilan.

 

TABLEAU 16.4

 

Manières de faire varier le contenu d’un système.

 

Grandeur S’écoule 
d’elle-même 

 

a

a. En physique, on parle de transport par conduction.

 

Transport 
par d’autres 

moyens

 

b

b. En physique, on parle de transport par convection.

 

Sources Production

Humains Y Y Y Y

Baleines vivantes Y Non Non Y

Voitures Y Y Y Y

Grands bâtiments Non Non Non Y

Arbres Non Y Y Y

Étoiles Y Non Non Y

Charge électrique Y Y Non Non

Entropie Y Y Y Y

Il existe quatre types de processus qui déterminent à quelle vitesse varie le
contenu d’un système à n’importe quel instant: la production, le flux con-
ductif, le flux convectif et les sources. La somme de tous les taux de pro-
duction, de tous les flux dus à la conduction et à la convection et tous les
taux de sources est égale au taux de variation du contenu du système.
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16.2.1 Forme instantanée de l’équation de bilan

Comme nous l’avons vu dans les applications précédentes, établir le bilan d’une gran-
deur accumulable signifie mettre en relation ce qui survient à l’intérieur du système
avec les grandeurs qui décrivent les processus de transport et de production:

La partie gauche de cette relation est spécifiée au moyen du taux de variation du con-
tenu du système, alors que la partie droite est déterminée par les flux, taux de source
et taux de production. La forme générale d’une équation de bilan a donc la structure
suivante:

Si nous exprimons cette relation avec des grandeurs formelles, nous obtenons une
équation qui énonce le bilan de la grandeur X.

Ici, «net» signifie que le terme en question représente la somme de toutes les contri-
butions du processus considéré. Comme nous l’avons déjà fait remarquer à plusieurs
reprises, une équation de bilan ne sert pas de définition de l’un des membres de l’équa-
tion, c’est l’une des hypothèses les plus fondamentales sur la manière dont fonctionne
la nature. Notez que la forme instantanée du bilan est valable à n’importe quel instant
durant le déroulement des processus.

Il y a deux façons d’utiliser des équations de bilan pour calculer des grandeurs:

• Tous les processus sont spécifiés. Dans ce cas, on peut calculer le taux de
variation à partir duquel le comportement du système peut être calculé.

• Le comportement du système est connu, c’est-à-dire que l’on connaît l’évolu-
tion de son contenu en fonction du temps. À partir de là, nous pouvons calcu-
ler le taux de variation du contenu. Si tous les processus sont spécifiés à
l’exception d’un seul, ce dernier peut être déterminé.

EXEMPLE 16.1. Formes particulières de l’équation de bilan.

(a) Énoncez l’équation de bilan du nombre d’oiseaux sur les Galápagos avant que les humains
ne découvrent ces îles. (b) Énoncez l’équation de bilan pour une substance chimique soumise à
des réaction à l’intérieur d’un réacteur isolé. (c) Énoncez l’équation de bilan de l’eau d’un lac
donc le contenu est constant.

contenu du système processus{ } ↔ { }

taux de variation du contenu du système

f

{ } ↔
llux

taux de source

taux de production

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪⎪

⎭
⎪

Équation de bilan: Il y a quatre types de processus qui déterminent la
vitesse de variation du contenu d’un système: la production, le flux
conductif, le flux convectif et les sources. La somme de tous les taux de pro-
duction, de tous les flux dus à la conduction et à la convection et tous les
taux de source est égale au taux de variation du contenu du système.

(16.1) �X IX X X= + +, , ,net net netΣ Π
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SOLUTION: (a) Avant que les humains découvrent les îles Galápagos, les oiseaux pouvaient
vivre dans les îles ou les quitter, et y naître et y mourir. L’équation de bilan prend donc la forme

O représente le nombre d’oiseaux à n’importe quel moment. Le taux de source et le taux de
«production» sont respectivement la conséquence de l’immigration et de l’émigration des
volatiles et de leur naissance et de leur mort.

(b) Soit X la quantité instantanée de la substance considérée. Si le réacteur est isolé, aucun trans-
fert n’a lieu. Les seuls processus possibles sont ceux de production et de destruction dus aux
réactions chimiques:

(c) L’eau peut s’écouler vers ou hors du lac. Les précipitations et l’évaporation peuvent apporter
ou soutirer de l’eau. Tous les processus sont des transports à travers des surfaces, ce qui signifie
que nous n’avons à prendre en compte que des flux. Comme le contenu du lac est supposé être
constant, son taux de variation est nul. Il s’ensuit:

Pour que cette interprétation soit correcte, il est primordial de savoir avec précision où nous
situons les limites du système et de quelle manière nous traitons l’évaporation. Si nous consi-
dérons l’évaporation comme une réaction chimique qui transforme l’eau en vapeur, et si nous
admettons que ce processus a lieu à l’intérieur du système, nous devons remplacer le flux dû à
l’évaporation par un taux de production. Les variations du contenu du système restent naturel-
lement les mêmes, quelle que soit la manière dont nous interprétons les processus.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqB

EXEMPLE 16.2. À la recherche des éléphants manquants.

Dans un parc national en Afrique, les gardiens tiennent le décompte des éléphants qui y vivent,
et des naissances et morts, mais personnes ne dénombre ceux qui immigrent ou émigrent. On a
reporté dans la figure 16.8a le nombre d’éléphants pour les huit dernières années. Durant le
même période, le taux net de naissance a évolué graduellement de 250 à 330 par année. Déter-
minez le flux net dû à la migration en fonction du temps.

SOLUTION: Énonçons d’abord l’équation de bilan du nombre d’éléphants. Les éléphants peu-
vent naître et mourir, et ils migrent. Le taux de variation de leur nombre est donc donné par

 
�O O O= +Σ Π, ,net net

 
�X X= Π , net

0 = + + +I I I IV V V V, , , ,in out précipitations évapporation

FIGURE 16.5 Évolution d’une popu-
lation d’éléphants: (a) statistique des
animaux présents; (b) taux de varia-
tion déterminés à partir de la statisti-
que.
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Si nous connaissions le taux de variation du nombre d’éléphants, nous pourrions calculer le flux
migratoire, vu que le taux de naissance net est connu. Mais nous pouvons déterminer le taux de
variation à partir de la représentation graphique du nombre d’éléphants. Le résultat apparaît
dans la courbe médiane de la figure 16.8b; le taux de variation passe de 250 éléphants par année
à –100 E/a. Nous pouvons également reporter le taux de naissance connu dans le même graphi-
que (courbe supérieure).

Selon l’équation de bilan, le flux migratoire est simplement

En soustrayant la courbe supérieure de la courbe médiane, nous obtenons la courbe inférieure
de la figure 16.5b, donnant un flux migratoire passant de 0 E/a à – 430 E/a. Il y a donc toujours
plus d’éléphants qui ont quitté le parc que d’éléphants qui y sont entrés.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqB

EXEMPLE 16.3. Calculer un processus complet.

Nous nous intéressons à la nourriture consommée par certains micro-organismes dans un réac-
teur. La nourriture est injectée à un taux stationnaire de 12 kg/min. Le taux de consommation
varie selon le graphique de la figure 16.6a. En admettant que la quantité de nourriture initiale
était de 100 kg, déterminez la quantité de nourriture présente en fonction du temps.

SOLUTION: Nous avons besoin de l’équation de bilan de la quantité de nourriture pour pouvoir
déterminer cette valeur en fonction du temps. L’équation de bilan inclut le flux dû à l’approvi-
sionnement et le taux de destruction dû à la consommation:

La somme de IN et ΠN, qui est égale au taux de variation de la quantité de nourriture, peut être
calculée et représentée dans le graphique de la figure 16.6a. Lorsque nous avons le taux de
variation de la quantité de nourriture, N(t) peut être calculé par intégration ou en utilisant un
outil de dynamique des systèmes. Le diagramme et les équations correspondant à notre problè-
me apparaissent dans la figure 16.7. Le résultat est représenté dans la figure 16.6b.

I EE E= −˙ Π
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FIGURE 16.6 Consommation de nu-
triments dans un bioréacteur: (a) ap-
port et consommation; (b) quantité
de nutriments présente calculée.
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16.2.2 Forme intégrale de l’équation de bilan généralisée

Quelquefois, nous ne souhaitons ou ne pouvons pas savoir comment un processus se
déroule dans le temps. En revanche, on pourrait avoir une information sur le résultat
du déroulement du processus durant une période bien définie. Dans de tels cas, on tra-
vaille avec les variations du contenu du système, les quantités échangées, les quantités
produites, plutôt qu’avec leurs valeurs instantanées.

Les variations du contenu du système, les quantités échangées et produites peuvent
être obtenues en intégrant respectivement le taux de variation, les flux et les taux de
source, ainsi que les taux de production. Il s’ensuit que le forme générale de l’équation
de bilan applicable pour un processus se déroulant durant une période déterminée est
le résultat de l’intégration de chacun des termes de l’équation (16.1), ce qui donne

(16.2)

En d’autres termes, la forme intégrée de l’équation de bilan exprime le fait que la
variation du contenu du système est égale à la somme de toutes les quantités échangées
par les courants et les sources et de la quantité nette produite à l’intérieur du système.

16.2.3 Rôle des bilans dans les processus dynamiques

Sans les bilans, il n’y aurait pas de systèmes dynamiques (au sens mathématique du
terme). Un système peut réagir à un signal dynamique externe, et manifester une
réponse dynamique, mais sans accumulation, il ne manifestera jamais un comporte-
ment dynamique intrinsèque. Considérons la lumière du soleil tombant sur une fenê-
tre. Si tout ce que fait la fenêtre consiste à transmettre une fraction de la lumière et
réfléchir le reste, la lumière dans la pièce suit instantanément les variations du rayon-
nement sur le verre. Si, en revanche, la lumière était absorbée par une paroi susceptible
de stocker l’entropie, la paroi pourrait réchauffer l’intérieur de la pièce dans la soirée,
longtemps après que le soleil se fut couché, montrant ainsi que ce système a une vie
propre.

I

Nourriture(t) = Nourriture(t - dt) 
         + (Apport_de_nourriture + Taux_de_consommation) * dt
INIT Nourriture = 100
Apport_de_nourriture = 12
Taux_de_consommation = GRAPH(TIME)
         (0.00, -4.00), (10.0, -6.10), (20.0, -8.40), (30.0, -11.1), 
         (40.0, -12.9), (50.0, -13.7), (60.0, -13.6), (70.0, -12.9), 
         (80.0, -11.8), (90.0, -10.8), (100, -9.90)

Nourriture

Apport de nourriture Taux de consommation

ΠFIGURE 16.7 Diagramme de dyna-
mique des systèmes utilisé comme
intégrateur pour calculer la valeur
instantanée de nutriments présents
dans le bioréacteur.
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16.3 STRUCTURE DES MODÈLES DE SYSTÈMES DYNAMIQUES

Arrêtons-nous un instant pour étudier la structure du modèle développé pour un
modèle hydraulique simple au chapitre 1. Nous le faisons en décomposant le diagram-
me du modèle de système dynamique de la fig. 1.65. L’aspect le plus remarquable du
diagramme est la présence de trois différents sortes de symboles représentant trois
classes différentes de grandeurs ou variables (fig. 16.8). Il s’agit du stock (le rectan-
gle), du flow (la conduite, le pipeline) et du converter (les cercles). Alors que la majo-
rité des relations que l’on peut voir dans le diagramme sont des relations entre des
converters, et entre des converters et des flux, il existe une relation entre le stock et le
flow. Cette dernière représente l’équation de bilan portant sur la grandeur accumulée,
le volume V du fluide. La distinction la plus importante est celle qu’il faut faire entre
les équations de bilan et les autres relations qui sont appelées lois constitutives. Les
diverses lois constitutives apparaissant dans notre exemple n’ont qu’un objectif :
déterminer le flux dans l’équation de bilan.

La structure particulière de nos modèles de dynamique des systèmes décrite dans la
figure 16.8 est la conséquence de la manière dont nous envisageons le fonctionnement
de la nature: nous avons supposé que l’écoulement, la production et le stockage de cer-
taines grandeurs sont la cause des processus que nous observons autour de nous. Il est
donc naturel d’énoncer des lois qui traitent de ce genre de situation: ce sont les bilans.
On peut considérer les éléments constitués de stocks et de flows comme la colonne
vertébrale de la description dynamique des processus de nature physique ou autres.
D’autre part, les lois constitutives décrivent la grande variété de processus, corps et
circonstances trouvés dans la nature. Nous pouvons résumer nos résultats de la maniè-
re suivante:

I V

C V

Int I V point
I V point

L V delta p L

delta p Pompe

delta p R

R V

V

delta p C

Bilan

Loi d’induction

Loi de résistance

Loi de capacité

Loi des mailles

FIGURE 16.8 Structure d’un modèle
de dynamique des systèmes (rem-
plissage d’un réservoir au moyen
d’une pompe avec prise en compte
de l’induction). Remarquez la divi-
sion des relations en deux groupes
distincts, à savoir les équations de
bilan et les lois constitutives. Les
premiers traitent des grandeurs accu-
mulables en mettant en relation les
stocks et les flows; elles ont toujours
la même forme et sont valables pour
tous les systèmes physiques. Les lois
constitutives (ou lois matérielles)
font la distinction entre différentes
situations et reflètent les particulari-
tés des systèmes.
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Alors que la modélisation implique de nombreux aspects qualitatifs, en fin de compte
nous souhaitons pouvoir énoncer nos hypothèses sur le système et son comportement
sous forme d’un jeu d’équations qu’il faudra résoudre. Dans ce qui suit, nous allons
brièvement décrire la forme de ces équations et quelques méthodes pour les résoudre.
Ce sont des points importants pour le processus de modélisation en général, et pour la
physique en particulier.

16.4.1 Forme des équations du modèle

Les exemples de systèmes que nous avons modélisés jusqu’ici présentent tous une
structure sous-jacente identique (section 16.3). Il est donc justifié de s’attendre à ce
que les équations reflètent également cette structure, ce qui est le cas: les équations
émergeant de la modélisation de processus dynamiques appartiennent toutes à la
même classe d’objets mathématiques, les problèmes aux conditions initiales (ou pro-
blème de Cauchy).

Les modèles de systèmes dynamiques consistent en un ou plusieurs bilans et un certain
nombre de lois constitutives qui déterminent les flux (section 16.3). Vu que tous les bi-
lans ont la même forme mathématique, quel que soit le domaine considéré (physique,
biologique ou autre), nous devons obtenir le même ensemble d’équations, indépen-
damment du sujet traité.

Avant de présenter cette forme générale, considérons un exemple simple tiré de
l’hydraulique: deux réservoirs reliés par un tuyau; le second réservoir possède un
écoulement au niveau du fond (fig. 16.9). Nous supposons que les réservoirs ont des
parois verticales et que les écoulements obéissent à la loi de HAGEN-POISEUILLE. Nous
énonçons tout d’abord les équations de bilan pour les volumes de fluide V1 et V2:

(16.3)

Nous devons ensuite énoncer les relations qui déterminent les deux courants IV1 et IV2
qui apparaissent dans les membres de droite des équations de bilan. Ce sont les lois
constitutives liées à ce problème concret, à savoir la loi de résistance pour chacun des
flux et la loi de capacité pour chacun des réservoirs:

Les modèles de processus dynamiques sont basés sur deux types fonda-
mentaux de relations, à savoir, d’une part, entre les stocks et les flows pour
énoncer les bilans et, d’autre part, les relations entre les autres variables
pour déterminer les flux. Ces dernières relations sont appelées lois consti-
tutives. Étant donné qu’un modèle concret reflète la structure d’un système
concret, la structure d’un modèle reflète notre vision du fonctionnement de
la nature et pourrait être appelée une méta-structure.

A 1 A 2

IV1 IV2

FIGURE 16.9 Système hydraulique
simple constitué de deux réservoirs.
Les équations du modèle comportent
deux bilans ainsi que plusieurs équa-
tions caractérisant les flux.  
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(16.4)

Enfin, nous devons spécifier les valeurs initiales des grandeurs V1 et V2 qui apparais-
sent dans les équations de bilan:

(16.5)

Ce système d’équation doit être résolu si nous voulons obtenir V1 et V2 en fonction du
temps, grandeurs à partir desquelles nous pouvons obtenir d’autres informations inté-
ressantes. Il est possible de substituer les équations (16.4) dans les équations de bilan
(16.3), ce qui donne

(16.6)

Il faut encore tenir compte des valeurs initiales selon les équations (16.5). C’est parce
que les équations (16.6) donnent l’évolution de V1 et V2 à partir de valeurs initiales V1,0
et V2,0, que ce jeu d’équations est appelé un problème aux conditions initiales.

Si nous examinons les exemples des chapitres précédents, nous constatons que les
équations des modèles peuvent toujours être ramenées à une forme semblable aux
équations (16.6). Les seules choses qui changent sont le nombre d’équations, la signi-
fication des variables et la forme algébrique des membres de droite de ces équations.
En d’autres termes, nous aboutissons toujours à une ou plusieurs équations contenant
la dérivée par rapport au temps de la grandeur X dans le membre de gauche, divers pa-
ramètres, et éventuellement le temps, dans le membre de droite. De telles équations et
les valeurs initiales associées peuvent être écrites sous la forme:

(16.7)

La dépendance de la fonction F par rapport aux paramètres n’est pas mentionnée ex-
plicitement. Comme il peut y avoir plusieurs équations de ce type pour un problème
donné, la solution sera elle aussi constituée d’un ensemble de fonctions du temps que
l’on peut représenter graphiquement, comme nous l’avons vu dans les exemples.

Les solutions possibles de problèmes aux conditions initiales sont encore maintenant
un sujet de recherche intense. Seules les équations les plus simples peuvent être réso-
lues analytiquement. La majorité doivent être résolues par des méthodes numériques
que nous allons décrire brièvement dans les sections suivantes. D’autre part, l’existen-
ce de systèmes à comportement dit complexe ou chaotique a fait l’objet d’une grande
activité de recherche mathématique durant les dernières décennies. Elle a contribué au
développement de méthodes permettant de déterminer la nature générale des solutions
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que peuvent admettre des problèmes aux valeurs initiales, incluant celles des systèmes
chaotiques.

16.4.2 Résolution de problèmes aux conditions initiales

L’objectif lors de la résolution d’un problème aux conditions initiales est de trouver
des courbes X(t) qui représentent l’évolution du système dans le temps. Il existe deux
types de solutions d’un tel problème, analytiques ou numériques. Une solution analy-
tique consiste en une expression explicite pour X(t) donnée sous forme d’équation al-
gébrique. De telles solutions n’existent que pour les systèmes les plus simples. Tous
les cas que nous avons réussi à résoudre analytiquement jusqu’ici sont présentés dans
le tableau 16.5.

Pour obtenir une solution analytique, il faut maîtriser l’analyse; même dans ce cas, la
résolution de problèmes aux conditions initiales est un art que nous n’allons pas ap-
prendre dans cet ouvrage. La manière la plus simple pour trouver une solution, que
nous avons utilisée dans les chapitres précédents, consiste à avoir une idée des fonc-
tions mathématiques qui pourraient décrire le comportement observé, de les utiliser
comme fonction d’essai que l’on substitue dans l’équation différentielle aux condi-
tions initiales. On peut ainsi vérifier si la fonction proposée convient et, si c’est le cas,
déterminer les paramètres indéterminés dans la solution. Une solution numérique con-
siste en un jeu de valeurs pour X(t) en des points distincts du temps, valeurs qui servent
d’approximation de la solution exacte. Dans la majorité des exemples traités jusqu’ici,
nous avons donné des solutions numériques sous forme de tableau de valeurs ou de
graphiques.

TABLEAU 16.5 Récapitulation des ED résolues analytiquement.

ED a Solution Processus

Vidange d’un réservoir: y = V, P, IV

Décharge d’un condensateur: y = Q, U, IQ

Refroidissement: y = S, T, IS

Freinage d’un volant: y = L, ω, IL

Chute dans un milieu visqueux: y = p, v, Ip

Remplissage d’un réservoir: y = V, P, IV

Charge d’un condensateur: y = Q, U, IQ

Réchauffement dans un milieu à température
constante: y = S, T, IS
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16.4.3 Champs directionnels et solutions graphiques

La méthode de résolution peut être expliquée au moyen d’un simple graphique. Consi-
dérons une équation différentielle aux conditions initiales telle que l’équation (16.7),
dont la solution est une courbe dans le diagramme X–t. Trouver la solution est équiva-
lent à parcourir cette courbe. En n’importe quel point, la poursuite du chemin nécessite
simplement la connaissance de la direction locale (fig. 16.10). Si nous avons cette
information, nous pouvons parcourir la courbe sans problème.

Établissement d’un flux volumique: y = IV

Établissement d’un courant électrique: y = IQ

Oscillations non amorties: y peut représenter
toutes les grandeurs ci-dessus, sauf les gran-

deurs thermiques.

Oscillations avec amortissement de type
visqueux: y peut représenter toutes les gran-

deurs ci-dessus, sauf les grandeurs thermiques.

a. Le symbole y peut représenter n’importe quelle grandeur qui évolue dans le temps.

TABLEAU 16.5 Récapitulation des ED résolues analytiquement.
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FIGURE 16.10 Trouver une courbe à
partir d’un point de départ équivaut à
suivre une route. Il suffit de connaître
la direction de la route en chaque
point. Dans le diagramme X–t, cette
direction est donnée par le taux de
variation de X(t) (pente de la
tangente).
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La direction de la courbure X(t) en un point quelconque est le taux de variation de la
grandeur X qui nous est donné par l’équation différentielle (16.7). Le membre de droi-
te de l’équation différentielle (16.7) nous permet de calculer le taux de variation dont
nous avons besoin. En d’autres termes, l’équation différentielle détermine la direction
de la courbe X(t) dans le diagramme X–t, mais pas la courbe elle-même.

Pour une équation unique, nous pouvons obtenir une vue d’ensemble des courbes
représentant les solutions possibles de l’équation (16.7) si nous dessinons un champ
directionnel dans le plan X–t. En effet, la connaissance de F(X,t) nous permet de cal-
culer dX/dt en n’importe quel point (t,X) dans le plan de la figure 16.10. Nous sélec-
tionnons un certain nombre de valeurs de la variable t sur son axe et pour chacune de
ces valeurs, nous choisissons un certain nombre de valeurs de X. Nous déterminons
ainsi une grille de points dans le plan X–t. En chacun de ces points, nous calculons
F(X,t) pour obtenir la direction de la courbe solution en cet endroit. Si nous traçons
une petite flèche indiquant cette direction en chaque point, nous obtenons une repré-
sentation graphique appelée champ directionnel du problème aux conditions initiales
(fig. 16.11).

Ensuite, nous pouvons choisir un point (t0,X0) qui servira de point de départ d’une
courbe (condition initiale). Si nous suivons les flèches, nous obtenons une courbe qui
est la représentation graphique de la solution pour la condition initiale choisie.
D’autres conditions initiales donneront d’autres solutions (fig. 16.11). Naturellement,
cette méthode est approximative, mais elle permet d’obtenir une vue d’ensemble des
solutions auxquelles on peut s’attendre.

Il existe une variante importante pour les problèmes consistant en deux équations dif-
férentielles aux conditions initiales, tels que le cas de deux réservoirs communicants
(fig. 16.9), ou lorsque le phénomène d’induction est couplé à un processus de stocka-
ge, ce qui peut produire un comportement oscillatoire (chapitres 4 et 7). Écrivons les
équations explicites, dans lesquelles X et Y représentent les deux solutions:

(16.8)

Il est important de noter que nous admettons que les membres de droite ne dépendent
pas explicitement du temps. Au lieu de tenter de trouver les courbes X(t) et Y(t) dans
les diagrammes X–t ouY–t, nous allons construire un diagramme Y–X que l’on appelle
un diagramme de phase. Une solution des équations (16.8), avec prise en compte des
conditions initiales, est une courbe dans l’espace des phases; un point de cette courbe
représente une paire de valeurs (X,Y) pour une valeur particulière du temps. Une telle
courbe (fig. 16.12) semble émerger d’un champ directionnel tel que celui de la
figure 16.11. Nous nous intéressons à la direction de la courbe au point (X,Y), ce qui
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FIGURE 16.11 Champ directionnel
d’un problème aux conditions initia-
les représenté par des flèches dans le
plan (t,X). L’équation différentielle
est

Cet exemple a été calculé et repré-
senté graphiquement au moyen de
Matlab.
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n’est rien d’autre que la grandeur qui nous indique comment Y varie en fonction de X.
Cette grandeur peut être obtenue en divisant la seconde des équations (16.8) par la
première:

(16.9)

Comme auparavant dans la figure 16.11, nous choisissons une grille de points (Y,X) et
calculons la direction dY/dX pour chacun d’eux. En représentant ces directions au
moyen de petites flèches, nous obtenons un champ directionnel comme dans la
figure 16.12.

16.4.4 Méthodes numériques pour les problèmes aux conditions 
initiales

Nous allons maintenant nous intéresser à quelques questions relatives aux méthodes
numériques de manière un peu plus approfondie que dans les chapitres précédents.
Nous n’arriverons qu’égratigner la surface du domaine de la résolution numérique de
solutions. Malgré tout, ce que nous apprendrons nous permettra de faire un meilleur
usage des méthodes numériques qui sont proposées dans les outils de modélisation et
de simulation.

Il existe pratiquement un nombre illimité de méthodes numériques pour résoudre les
problèmes aux conditions initiales. Nous n’allons en considérer que deux, les algorith-
mes d’EULER et de HEUN, qui font partie de l’arsenal standard des méthodes numéri-
ques utilisées dans les logiciels de dynamique des systèmes. Cela nous suffira pour un
début dans la résolution numérique de problèmes aux conditions initiales.

La figure 16.10 permet d’illustrer en détail la plus simple des méthodes de résolution
numérique d’une équation différentielle aux conditions initiales. Le problème fonda-
mental consiste à trouver le cheminement correct dans l’espace X–t. Nous connaissons
le point de départ (la valeur initiale X0 de X à l’instant 0), et nous pouvons calculer la
direction initiale à partir de l’équation (16.7). Il suffit de suivre cette direction initiale
durant un court intervalle de temps ∆t, ce qui nous amène le long de la flèche de direc-
tion à un point qui est légèrement décalé par rapport à la solution exacte (fig. 16.13).
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FIGURE 16.12 Diagramme de phase
et champ directionnel pour les solu-
tions des équations différentielles re-
présentant les oscillations amorties
d’un système. Les équations sont:

où D = 10 N/m est la constante de ri-
gidité du ressort, et β = 1 N/(m/s) et
m = 1 kg sont respectivement le fac-
teur d’amortissement et la masse du
corps. Les calculs et la représenta-
tion graphique ont été réalisés au
moyen de Matlab.
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À partir de ce nouveau point, nous calculons une nouvelle direction. Vu que nous ne
sommes plus sur la courbe exacte, la direction calculée à partir de l’équation (16.7) ne
sera pas correcte. Ainsi, lors de la deuxième étape, nous partons d’un point approximé
dans une direction approximée, ce qui va nous éloigner encore plus de la solution
désirée. Mais c’est ce que nous pouvons faire de mieux avec cette méthode: la métho-
de d’EULER est simple, mais pas très précise. Naturellement, la précision des solutions
calculées peut être améliorée en réduisant la longueur du pas ∆t, ce qui se paie par une
augmentation du nombre de calculs à effectuer pour arriver au point final le long de la
courbe.

Il est possible de formuler mathématiquement cet algorithme. Suivre la direction de la
courbe durant un bref intervalle ∆t signifie que nous additionnons F(Xi,ti)∆t à la valeur
initiale de Xi pour obtenir la nouvelle valeur. Donc:

 

(16.10)

Si nous comparons cette équation à celles qui sont générées à partir d’une structure de
stocks et de flows par le programme STELLA (telle que la première de la liste d’équa-
tions dans la figure qui accompagne l’exemple 16.3), nous voyons qu’elles sont iden-
tiques. Pour des raisons de simplicité, les équations de bilan dans un modèle de
dynamique des systèmes sont souvent présentées sous la forme de l’algorithme
d’EULER de résolution des équations différentielles sous-jacentes.

La méthode numérique suivante est un peu moins simple, mais un peu plus précise que
la méthode d’EULER. Elle consiste à améliorer la précision en calculant la valeur
moyenne de la pente prise au début et à la fin de l’intervalle ∆t, au lieu de se contenter
de la pente calculée au début de l’intervalle. Pour y arriver, nous calculons, à partir du
point Xj, une première approximation de Xi+1 en utilisant la méthode d’EULER. Appe-
lons X*i+1 cette première approximation. Les deux valeurs Xi et X*i+1 nous permettent
de calculer la pente au début et à la fin de l’intervalle de temps. Même si la seconde
pente est encore moins correcte que la première, nous pouvons utiliser sa valeur pour
calculer une pente moyenne que nous utilisons pour le pas en question. Ainsi:

 

(16.11)

Il s’agit d’une méthode numérique de deuxième ordre, appelée méthode de HEUN. Elle
est plus précise que la méthode d’EULER, vu qu’elle utilise une valeur corrigée de la
pente pour chaque pas d’intégration. On peut montrer que l’erreur de la solution
numérique décroît linéairement avec la longueur du pas d’intégration, mais qu’elle le
fait de manière quadratique pour l’algorithme de HEUN. En augmentant le nombre
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FIGURE 16.13 Représentation gra-
phique de la méthode d’EULER. On
suit la direction de la route pour un
pas, puis on détermine la nouvelle di-
rection. On s’éloigne progressive-
ment de la solution exacte.
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d’évaluations de la pente dans le même intervalle, on augmente la précision de l’algo-
rithme. Les algorithmes les plus fréquemment utilisés sont connus sous la dénomina-
tion d’algorithme de RUNGE-KUTTA, qui s’arrêtent usuellement au quatrième ordre.
Les algorithmes d’EULER et de HEUN sont des algorithmes de RUNGE-KUTTA respec-
tivement d’ordre un et deux.

Il y a une leçon importante qu’il faut retenir du caractère approximatif des méthodes
numériques: il ne faut jamais faire confiance à une solution après une seule exécution
de la simulation. Il est indispensable de refaire une simulation, soit avec un intervalle
de temps réduit, soit avec une méthode numérique différente. Il est même préférable
de procéder à ces changements de manière séquentielle pour obtenir plusieurs jeux de
solutions du même problème; ce n’est que de cette manière que l’on peut améliorer la
confiance dans la qualité des processus numériques.

16.5 LES ÉTAPES DU PROCESSUS DE MODÉLISATION

L’objectif principal de la physique est de créer des modèles du monde physique qui
nous entoure. Les processus que nous avons étudiés dans les chapitres précédents nous
ont permis de pénétrer dans le monde des systèmes dynamiques et nous ont démontré
qu’une image fondamentale unique de la manière dont fonctionne la nature peut être
utilisée pour la conception de modèles performants.

La modélisation de phénomènes physiques consiste en une représentation des proces-
sus au moyen d’une structure mathématique de la forme décrite dans les sections pré-
cédentes. Alors que c’est l’objectif final, nous devons toujours garder présent à l’esprit
qu’il est rare de l’atteindre d’un seul jet; au contraire, nous devons tendre à construire
les modèles avec beaucoup de soin en une séquence d’étapes. Nous allons voir que ces
étapes forment une boucle fermée: la méthodologie de modélisation et validation est
un processus cyclique.

16.5.1 Spécification du système et des buts du modèle

Il est impératif d’examiner le problème à résoudre sous autant d’aspects que possible
avant de se lancer concrètement dans la construction du modèle. Il faut en savoir le
plus possible sur le système réel:

• Il faut déterminer aussi précisément que possible ce que le système est capable
de faire, c’est-à-dire étudier les processus qui peuvent s’y dérouler.

• Pour autant que cela soit possible, il faut présenter l’information sur le com-
portement du système sous forme graphique.

La clarification des objectifs à atteindre avec le modèle est tout aussi importante. Il
faut accepter le fait que l’on ne peut généralement accéder qu’à une partie, souvent très
petite, des aspects, particularités et modes de comportement de l’objet réel que l’on
modélise. Il faut donc mettre clairement en évidence ces objectifs limités.

• Il faut être conscient de ce que le modèle pourra accomplir, c’est-à-dire quels
aspects de l’objet réel il pourra expliquer et prédire.

16.5.2 Images mentales et modèles verbaux

Après la clarification de l’objectif du modèle, l’étape suivante nécessite une réflexion
approfondie , car il s’agit de développer des images mentales de l’objet et de ses
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fonctions. Ces images seront, dans un premier temps, exprimées verbalement. Pour les
créer, on doit s’appuyer sur ce que l’on observe dans la vie quotidienne ou sur des ima-
ges qui tentent de concrétiser l’invisible, telles que les grandeurs physiques et leurs
relations. Ainsi, l’image de l’accumulation et de l’écoulement de certaines grandeurs
physiques correspond à ce que l’on peut voir dans la réalité. Cette réflexion peut être
rendue plus structurée si l’on pose quelques questions importantes:

 

• Quelle est l’extension spatiale et matérielle du système, c’est-à-dire quelles
sont les limites du système?

 

• Quelles sont les grandeurs qui s’accumulent dans ce système?

 

• Où les grandeurs accumulées s’écoulent-elles, et pourquoi s’écoulent-elles?

 

• Y a-t-il d’autres grandeurs qui ont une influence essentielle sur l’évolution du
système?

 

16.5.3 Expression des images mentales sous forme de diagrammes

Après avoir établi des listes de termes importants et des idées, il faut faire usage de la
puissance des diagrammes pour exprimer de manière plus structurée ce que l’on sait,
ou croit savoir, sur le système. Les diagrammes peuvent souvent mieux révéler et
exprimer certaines particularités du système que de longues explications.

Un type de diagramme qui joue un rôle central dans la modélisation de systèmes
dynamiques généraux est celui que nous avons utilisé et qui se sert de stocks, de flows
et de converters pour représenter les relations causales. En physique, d’autres outils
graphiques, tels que les diagrammes de flux pour l’énergie et les porteurs d’énergie, et
la représentation hydraulique des processus dynamiques, peuvent servir à clarifier les
concepts. Tous ces diagrammes sont importants lorsque l’on essaie d’expliquer com-
ment fonctionne la nature. En particulier, lorsque l’on considère des systèmes
dynamiques:

 

• il faut transformer les images mentales en un diagramme de dynamique des
systèmes.

 

16.5.4 Modèles mathématiques

Lorsque la structure d’un modèle a été couchée sur un diagramme de dynamique des
systèmes, l’établissement de relations mathématiques concrètes est guidé par la repré-
sentation graphique. Cela signifie que l’on ne doit plus tâtonner dans le noir et espérer
découvrir quelques équations utiles. La représentation graphique des idées sur un sys-
tème sert à identifier les relations qui sont nécessaires pour compléter le modèle.

Si nous suivons la procédure pas à pas décrite ici, la modélisation devient une activité
qui a peu en commun avec la recherche désespérée d’équations, souvent observée
auprès de débutants lors de la résolution de problèmes en physique. En conclusion
(fig. 16.14)

… la modélisation doit devenir une activité au cours de laquelle on s’ef-
force de comprendre une situation. Elle doit être guidée par la question
«pourquoi le système fonctionne-t-il comme il le fait?» Il faut avoir com-
pris comment une situation réelle est transposée en un modèle physique en
une suite d’étapes. Modéliser signifie se poser la question «quelle est
notre image mentale de la situation que nous souhaitons décrire?» à cha-
que étape du processus.
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16.5.5 Simulation

Le jeu de relations mathématiques qui constituent la couche formelle du modèle
(fig. 16.14) doit être résolu pour obtenir des réponses au sujet du comportement du
système. En fonction du type d’équations que nous avons obtenues, on pourra
employer des solutions analytiques ou numériques. Si un modèle décrit une situation
stationnaire, on pourra trouver un ensemble unique de valeurs de toutes les variables.
Si, en revanche, nous avons affaire à des systèmes dynamiques, les variables impor-
tantes seront représentées en tant que fonction du temps, soit sous forme analytique,
soit sous forme de tableaux ou de graphiques.

Un ensemble de graphiques montrant l’évolution dans le temps des grandeurs intéres-
santes est usuellement tout ce que l’on désire obtenir d’une simulation du modèle. Ils
représentent le comportement du modèle pour un certain choix des paramètres. Si on
le souhaite, on peut changer les valeurs des paramètres du modèle, refaire les calculs
et examiner le comportement qui en résulte. De cette manière, on obtient une meilleu-
re compréhension de l’éventail de processus qui peuvent avoir lieu dans le système.
Cette procédure répétitive est appelée étude des paramètres ou analyse de la sensibi-
lité (aux changements des conditions).

16.5.6 Expériences et validation

Après avoir construit un modèle et effectué la simulation, on souhaite savoir jusqu’à
quel point les résultats donnés par le modèle rendent compte du comportement du sys-
tème réel. Il est nécessaire de comparer les résultats du modèle avec les observations,
ce qui ne peut être réalisé que si l’on a effectué des mesures sur le système réel.

Comme dans le cas des simulations du modèle qui sont répétées avec différents jeux
de paramètres pour obtenir différents comportements, les systèmes réels doivent être
observés dans des circonstances variables pour obtenir des résultats différents. On
peut ensuite comparer les observations et les résultats des calculs, ce qui permet de
juger de la qualité du modèle sur la base de la concordance entre les deux.

Si le système qui nous intéresse ne devrait ou ne peut pas être perturbé, seule l’obser-
vation peut nous donner des informations sur son comportement. C’est le cas des

Volume(t) = Volume(t - ∆t) + 

            (Flow 1 + Flow 2) * ∆t

INIT Volume = 10

Flow 2 = –Constante_de_flux 1*(Niveau 1 – Niveau 2)

Flow 1 = 0.010
Niveau 1 = Volume / Surface 1

Niveau 2 = 8.0
Constante_de_flux 1 = 0.0050

Surface 1 = 200

Flow 1
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Flow 2
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Flow constant 1
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FIGURE 16.14 De la réalité au
modèle mathématique. Un modèle se
construit en un certain nombre d’éta-
pes menant de la réalité (première
couche) à une image mentale qualita-
tive (deuxième couche) puis, par
l’intermédiaire de diagramme de
dynamique des systèmes (troisième
couche) à la représentation mathé-
matique des relations (quatrième
couche). Chaque étape nous fait pas-
ser progressivement de la réalité à un
monde abstrait.
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grandes structures qui nous entourent. L’astronomie est le premier exemple d’une
science physique qui ne peut pas expérimenter sur la majorité de ses objets.

Cependant, la physique étudie également des objets et des situations créés artificielle-
ment. Les physiciens construisent des systèmes ou manipulent des systèmes existants
pour les scruter de manière aussi détaillée que possible. C’est ce que l’on appelle l’ex-
périmentation. La réalisation d’expériences sert essentiellement à soumettre un systè-
me à des processus dans un environnement contrôlé. Ce niveau de contrôle est
nécessaire pour diminuer l’ampleur de la complexité que nous rencontrons dans les
objets et les phénomènes naturels, ce qui est important si l’on veut simplifier le pro-
blème pour pouvoir l’étudier soigneusement et en détail. Grâce à l’expérimentation,
les physiciens peuvent observer le fonctionnement de la nature dans un environnement
artificiel afin de découvrir comment elle se comporte dans ce contexte simplifié.

L’expérimentation est donc une activité tout aussi abstraite que la modélisation. Les
grandeurs que l’on mesure sont celles qui apparaissent dans les équations des modèles.
L’expérimentation n’est pas nécessairement plus proche de la réalité que la modélisa-
tion. On choisit soigneusement les aspects du comportement réel que l’on peut con-
trôler et mesurer, et même dans ce cas, on ne sélectionne que ceux dont l’intérêt est
immédiat.

Comment peut-on savoir à quoi il faut être attentif, quelles grandeurs il faut mesurer
et mettre en relation les unes avec les autres? Ici, les modèles viennent à la rescousse.
Si l’on n’avait pas d’idée préconçue de la structure du système, on serait incapable de
trouver un sens à ce que l’on observe. C’est pourquoi des expériences ne peuvent
jamais prouver une théorie, une loi de la nature ou un modèle, vu que le modèle expli-
que ce que l’on observe. En résumé:

16.5.7 Boucler la boucle

Les paragraphes précédents suggèrent que la modélisation et l’expérimentation for-
ment ensemble une boucle fermée d’activités qui contribue à l’élaboration d’une
science telle que la physique. Les étapes mises en évidence jusqu’ici forment une bou-
cle fermée telle que celle de la figure 16.15, si l’on revient simplement à la première
étape pour reconsidérer ce qui a été fait à la lumière des observations ou des mesures
réalisées lors de l’expérimentation. On pourra être amené à modifier le modèle, effec-
tuer de nouvelle simulations, comparer les résultats à de nouvelles mesures, et ainsi de
suite, dans un cycle qui ne se terminera que lorsque l’on sera satisfait de la qualité du
modèle proposé.

Tout comme les expériences servent à valider une théorie ou un modèle, à
en tester la qualité, les modèles donnent un sens à ce que nous observons.
Aucune de ces deux activités, la modélisation ou l’expérimentation, ne se
suffit à elle-même. Les deux sont imbriquées dans une relation mutuelle
pour créer une science de la nature.
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Dans cette section, nous allons étudier un exemple d’un système dynamique naturel,
l’interaction entre trois populations: des antilopes, l’herbe dont elles se nourrissent, et
des lions. Si nous avons choisi un exemple tiré de la biologie, ce n’est pas parce que
la biologie est plus simple que la physique, l’opposé est probablement vrai. C’est pour
montrer que, même en tant que novice, on peut formuler des idées intéressantes dans
un domaine relativement peu connu.

Il s’agit d’un exemple construit (nous ne disposons pas de données observationnelles)
et nous aborderons le problème en deux étapes. Dans la première, nous établirons un
modèle de l’interaction entre les antilopes et les lions, modèle que nous compléterons
dans une seconde étape par l’interaction entre les antilopes et l’herbe dont elles se nou-
rissent. Nous n’entrerons pas dans les détails du modèle, l’objectif étant de montrer
comment un système relativement simple peut avoir un comportement complexe.

16.6.1 Deux populations en interaction: modèle de type 
prédateur-proie

Nous formulons tout d’abord les équations de bilan pour chacune des deux popula-
tions, les variations de chacune d’elles étant dues aux naissances et aux morts. Les
deux équations de bilan ont la même structure, comme le montre la figure 16.16.

FIGURE 16.15 Le processus de
modélisation forme une boucle fer-
mée. La modélisation n’est pas ter-
minée avec la résolutions des
équations du modèle. La validation
nécessite la comparaison des résul-
tats avec les mesures, ce qui peut
entraîner une révision du modèle,
c’est-à-dire un nouveau passage dans
la boucle. Il peut s’avérer nécessaire
d’effectuer de nouvelles expériences
pour répondre à des questions qui ont
surgi au cours du cycle de
modélisation.
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Nous allons maintenant modéliser l’interaction entre ces deux populations. Pour sim-
plifier le modèle, nous admettons que les antilopes ne meurent qu’en étant tuées par
les lions et que les lions ne meurent que faute de nourriture. Les taux de mortalité res-
pectifs sont influencés par la taille de l’autre population. Ainsi, le taux de mortalité des
antilopes dépend du nombre de lions présents, ce qui se modélise par la relation:

(16.12)

Le produit des deux premiers facteurs peut être interprété comme représentant la frac-
tion de la population d’antilopes tuées par les lions par unité de temps.

Il doit naturellement y avoir une rétroaction du nombre d’antilopes sur la population
des lions. En effet, le nombre de lions qui meurent de faim augmente lorsque le nom-
bre d’antilopes diminue, ce que l’on peut exprimer par la relation:

(16.13)

En combinant ces deux interactions avec les équations de bilan, nous obtenons le
modèle et le comportement représentés dans la figure 16.17. Un tel modèle est appelé
modèle de type prédateur-proie.

Antilopes

Lions

taux de mortalité Ataux de natalité A

taux de mortalité L taux de natalité L

facteur de natalité A facteur de mortalité A

facteur de mortalité L
facteur de natalité L

FIGURE 16.16 Bilans des popula-
tions d’antilopes et de lions sans pri-
se en compte de leur interaction.

taux de mortalité A facteur de mortalité A_ _ _ _ _ _ *= LLions Antilopes*

taux de mortalité L facteur de mortalité L_ _ _ _ _ _ /= AAntilopes Lions*
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FIGURE 16.17 Modèle de l’interac-
tion entre les antilopes et les lions,
appelé modèle prédateur-proie.
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Ce modèle simple aboutit à un régime cyclique, ce que la réflexion permet de prévoir.
Lorsqu’il y a suffisamment d’antilopes, la population de lions augmente, ce qui aug-
mente leur consommation et entraîne une réduction de la population d’antilopes. Avec
un certain retard, la population de lions diminue elle aussi, à cause de la réduction de
la nourriture disponible. La diminution du nombre de prédateurs permet à la popula-
tion d’antilopes de se rétablir, rétablissement qui est suivi, avec un certain retard, par
la croissance de la population des lions, et le cycle recommence.

16.6.2 Modèles linéaires et non linéaires

Le modèle prédateur-proie de la section 16.6.1 fait apparaître des oscillations des deux
populations. Mais il existe une différence intéressante et essentielle entre ces oscilla-
tions et celles que nous avons observées et modélisées en hydraulique, électricité et en
mécanique. Le premier modèle est non linéaire, alors que les autres le sont.

Un modèle de système dynamique est dit linéaire si les expressions pour tous les flux
et taux de variations apparaissant dans le modèle sont linéaires dans les variables re-
présentées par des stocks. Cela signifie que les variables représentées par des stocks
ne peuvent pas, par exemple, être multipliées entre elles ou avec elles-mêmes. Elle ne
peuvent être multipliées que par des facteurs apparaissant dans le modèle ou par des
combinaisons de ceux-ci.

Considérons par exemple le taux de mortalité des antilopes dans le modèle de la
figure 16.17. L’équation (16.12) nous informe que cette loi constitutive est le résultat
de la multiplication du nombre de lions et d’antilopes. Comme ces variables sont re-
présentées par des stocks et qu’elles apparaissent dans un produit, ce simple modèle
prédateur-proie est non linéaire.

Tous les modèles d’oscillations rencontrés dans les chapitres précédents sont linéaires.
On s’en convainc en vérifiant que les équations des modèles reliant les flux et taux de
variations aux variables représentées par des stocks sont toutes linéaires.

Pourquoi cette distinction est-elle importante? On peut avoir un premier aperçu de
l’importance de la non-linéarité en comparant le comportement du modèle prédateur-
proie et les oscillations électriques ou mécaniques. Tout d’abord, on note que les cour-
bes obtenues dans le cas non linéaire sont plus intéressantes: ce ne sont pas de simples
courbes sinusoïdales. Deuxièmement, et cela est beaucoup plus important, les oscilla-
tions des populations de lions et d’antilopes dépendent fortement des conditions ini-
tiales choisies : un changement de celles-ci peut aboutir à un comportement
passablement différent. Nous allons voir dans la section suivante comment les modè-
les non linéaires peuvent manifester des comportements étonnants, même en l’absence
de chaos ou autre comportement extrêmement complexe.

16.6.3 Trois populations et complexité

Nous allons ajouter une extension au modèle de la figure 16.17. Ce qui manque, c’est
la prise en compte de la nourriture des antilopes, l’herbe. Nous allons tout d’abord éla-
borer un modèle de la croissance de l’herbe que nous intégrerons dans le modèle
prédateur-proie.

Nous considérons une parcelle vierge sur laquelle nous venons de semer de l’herbe.
Au début, l’herbe croît de façon exponentielle. Mais l’herbe ne peut pas faire plus que
de couvrir complètement la surface à disposition: la quantité d’herbe a atteint une
valeur maximale stationnaire. Si l’on reporte la quantité d’herbe en fonction du temps,
on obtient une courbe ressemblant à un S (fig. 16.18).
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FIGURE 16.18 Courbe de croissance
en forme de S rendant compte d’une
limite à la croissance. Ce type de
comportement est appelé croissance
logistique.
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Comme il s’agit d’un modèle d’évolution de population, son élément de base sera
identique à celui des populations d’antilopes et de lions. Pour tenir compte du fait que
la croissance de l’herbe est limitée, nous devons rendre le facteur de croissance de
l’herbe dépendant de la quantité d’herbe.

Nous admettons que nous utilisons des valeurs relatives pour l’herbe, c’est-à-dire la
valeur actuelle divisée par la valeur maximale lorsque toute la surface est couverte, ce
qui veut dire que les valeurs ne dépasseront pas 1. Pour cette valeur de la quantité
d’herbe, le facteur de croissance doit être nul, alors que pour de très faible valeurs de
la variable Herbe, il doit correspondre au facteur de croissance normale h. Ces condi-
tions sont satisfaites par l’expression suivante du facteur de croissance de l’herbe:

(16.14)

C’est une forme particulière de la loi constitutive pour la croissance d’une espèce qui,
intégré au modèle de la figure 16.19, donne le comportement représenté dans la
figure 16.18.

La combinaison des deux modèles est relativement facile. Il faut y intégrer deux rela-
tions. La première est la consommation d’herbe par les antilopes. Nous remplaçons le
taux de mortalité de l’herbe en un taux de consommation de l’herbe qui dépend de la
taille de la population d’antilopes, ce qui peut être exprimé par:

(16.15)

Quelle est la raison de la présence de la variable Herbe en tant que facteur? S’il y a
une grande quantité d’herbe disponible, cette relation n’est pas très réaliste, vu que les
antilopes ne vont pas brouter plus que ce dont elles ont besoin. Cependant, lorsque

facteur de croissance H h Herbe_ _ _ = −( )1

Herbe
taux de croissance H taux de mortalité H

facteur de croissance H facteur de mortalité H

FIGURE 16.19 Modèle de croissan-
ce limitée réalisé en rendant le fac-
teur de croissance dépendant de la
taille de la population.

taux de consommation H f H Antilopes Herbe_ _ _ _ * *=
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l’herbe se fait rare, cette relation reflète la réalité, raison pour laquelle nous allons la
conserver. À nouveau, nous sommes en présence d’une relation non linéaire.

En second lieu, nous devons exprimer l’idée que les antilopes vont mourir d’inanition
si elles ne trouvent plus assez d’herbe. Nous pouvons le faire en introduisant la relation
suivante pour le taux de mortalité des antilopes:

(16.16)

Rappelons que f_m*Lions représente la fraction d’antilopes tuées par les lions. Nous
avons ajouté la fraction d’antilopes mourant d’inanition au moyen de la relation
f_f/Herbe, qui exprime l’idée que la fraction de décès dus à la famine doit être basse
s’il y a suffisamment d’herbe et élevée dans le cas inverse.

Si nous simulons le modèle, nous voyons que le comportement du système est beau-
coup plus compliqué et intéressant que tout ce que nous avons pu observer dans les
modèles étudiés jusqu’à présent. En fait, nous obtenons des types de solutions très dif-
férents si nous changeons certains paramètres. La figure 16.21 montre deux solutions
dans l’une desquelles l’une des espèces, les lions, disparaît.

Antilopes

Lions

taux de mortalité Ataux de natalité A

taux de mortalité L taux de natalité L

facteur de natalité A
facteur de mortalité A

facteur de mortalité L
facteur de natalité L

Herbe
taux de croissance H taux de consommation H

facteur de croissance H facteur de consommation H

facteur de famine

FIGURE 16.20 La combinaison du
modèle prédateur-proie et du modèle
de croissance logistique aboutit à un
modèle d’interaction entre trois
populations.
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FIGURE 16.21 Deux solutions du
modèle de la figure 16.20 dans un
diagramme de phase tridimension-
nel. Dans le premier cas, les trois
espèces spiralent vers une valeur sta-
tionnaire, alors que dans le second,
les lions disparaissent alors que
l’herbe et les antilopes survivent.
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On obtient des résultats encore plus intéressants si les interactions des populations
sont modélisées de manière plus réaliste. Pour certaines plages des valeurs des para-
mètres, les solutions sont extrêmement sensibles à des changements, même minimes,
des valeurs initiales.

Résumé du chapitre
Les processus dynamiques, qu’ils soient physiques, biologiques, sociaux, économi-
ques ou autres, résultent de l’accumulation et de la variation à l’intérieur d’un système,
d’une ou de plusieurs grandeurs extensives, qui peuvent être assimilées à un fluide.
Ces variations peuvent être provoquées par des flux, la production ou la destruction
ainsi que par des sources de ces grandeurs extensives. Ce constat est formulé mathé-
matiquement au moyen d’une équation de bilan qui égale le taux de variation de la
grandeur extensive à la somme des flux (conductifs ou convectifs), des taux de produc-
tion et des taux de source.

Lorsque l’on veut modéliser un système dynamique, la procédure commence par
l’identification des grandeurs extensives et des flux, taux de production, taux de source
responsables de leurs variations, ainsi que des grandeurs qui ont une influence essen-
tielle sur l’évolution du système.

Il faut ensuite créer une image mentale du système et des raisons du comportement
observé et traduire graphiquement cette image mentale au moyen de diagrammes de
processus. Dans le même temps, il faut énoncer les lois constitutives qui gouvernent
les flux, taux de production et taux de source. Cette étape peut être grandement facili-
tée par l’utilisation de logiciels de modélisation de systèmes dynamiques qui prennent
en charge l’énoncé des équations de bilan et la résolution des équations du modèle.

L’étape suivante est la phase de simulation qui consiste à résoudre les équations du
modèle afin d’obtenir, analytiquement ou numériquement, les fonctions décrivant
l’évolution temporelle des grandeurs caractéristiques du système. L’objectif est de
pouvoir comparer les résultats des calculs et les observations obtenues lors de la phase
expérimentale. Cette comparaison permet de se rendre compte de la qualité des hypo-
thèses qui ont été utilisées pour élaborer le modèle, de les corriger si nécessaire, et
éventuellement de recourir à des nouvelles expériences pour répondre à des questions
que la simulation et la validation ont fait surgir.
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FIGURE 16.22 Simulation d’une
version plus élaborée du modèle de
la figure 16.20. Dans le premier cas,
les traces de la solution spiralent
autour d’un domaine pendant un cer-
tain temps avant que le système ne
subisse un collapsus qui voit la dis-
parition de toutes les espèces. Si la
valeur initiale des Antilopes est mo-
difiée de 1%, une seconde solution
apparaît. Dans celle-ci, les popula-
tions arrivent à s’échapper du goulot
d’étranglement dans lequel elles
semblent piégées.
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Seuls les systèmes les plus simples permettent d’énoncer des modèles qui débouchent
sur des équations différentielles que l’on peut résoudre analytiquement. Ce sont des
modèles linéaires. Dès que la modélisation des processus fait intervenir des interac-
tions entre des grandeurs extensives, les modèles deviennent non linéaires et débou-
chent, dans de nombreux cas, sur des comportements complexes manifestant une
grande sensibilité à la variation des conditions initiales, voire des comportements
chaotiques.
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Questions
1. Dressez la liste des processus qui sont responsables de la

variation de la quantité d’une certaine grandeur stockée dans
un système.

2. On lit souvent que le courant d’une grandeur X est défini par
dX/dt. Pourquoi est-ce faux ? Que représente la grandeur
dX/dt? Si l’on souhaite continuer à définir un courant par
« grandeur divisée par temps», comment peut-on le faire
correctement?

3. Si l’on connaît le courant d’une grandeur X, quelle autre gran-
deur peut-on en déduire?

4. Pourquoi le taux de naissance de lapins est-il différent du taux
de source de ces animaux dû à un arrivage aérien directement
dans le système?

5. Dans certains modèles de la circulation du sang dans les tis-
sus, on suppose que le sang transporté par les artères apparaît
directement en tous les points des tissus. Quelle est la gran-
deur physique adéquate pour décrire un tel processus dans un
bilan?

6. La figure 16.23 montre le taux de variation du nombre d’habi-
tants d’une ville. a) Quelle est la signification des deux points
où le taux de variation est nul? b) Qu’advient-il du nombre
d’habitant entre ces deux points?

7. Les courants, taux de production et taux de source ont-ils des
effets différents sur le taux de variation d’une grandeur
accumulée?

8. Tous les ordinateurs livrés à un certain pays le sont par avion.
Écrivez la forme instantanée de l’équation de bilan des ordi-
nateurs pour ce pays.

9. Dans un certain pays, il n’y a ni immigration, ni émigration.
Quelle conclusion peut-on tirer du fait que le nombre d’habi-
tants de ce pays ne varie pas?

10. Dressez la liste de tous les processus connus responsables de
la variation de volumes de fluide, de la charge électrique, du
moment cinétique, ou de la quantité de matière dans des sys-
tèmes. Énoncez ensuite la forme la plus générale de l’équation
de bilan pour ces grandeurs.

Exercices
1. Le nombre d’habitants dans une ville a diminué linéairement

de 400 000 à 320 000 en 20 ans. a) Déterminez la variation du
nombre d’habitants durant les 5 premières années. b) Quel est

t
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t Question 6

le taux de variation du nombre d’habitants durant la période
de 20 ans?

2. L’épaisseur d’une couche de glace varie dans le temps selon
la formule e(t) = a + bt, a = 0.050 m, b = 4.0·10–7 m s–1. Quel
est le taux de variation de l’épaisseur exactement deux jours
après le moment initial?

3. Le courant d’une certaine substance chimique augmente
linéairement de 0.10 mol s–1 à 0.30 mol s–1 en 10 s. Combien
de cette substance le courant a-t-il transporté?

4. Une substance s’écoule vers et hors d’un récipient. Le dia-
gramme de la figure 16.24 donne l’évolution des deux cou-
rants en fonction du temps. À quel instant la quantité de
substance dans le récipient atteint-elle un maximum?

5. Les portes d’un parc d’attractions ouvrent à 9 h. Le flux de
visiteurs entrant et sortant du parc est mesuré durant les pre-
mières heures (fig. 16.25). Combien de visiteurs y a-t-il dans
le parc à l’instant t = 14 h?

6. La quantité de nourriture pour bactéries se trouvant dans une
réacteur est donnée par n(t) = at2 – bt + c, où a = 100 mol h–2,
b = – 400 mol h–1, et c = 1400 mol. De la nourriture est ajou-
tée en continu. Le flux de nourriture augmente linéairement de
200 mol h–1 à 450 mol h–1 durant les 5 premières heures.
a) Tracez les graphes de la quantité de nourriture et du flux de
nourriture pour les 5 premières heures. b) Quel est le taux de
variation de la nourriture à l’instant t = 2.0 h?
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Problèmes
1. Considérez un état en tant que système. Nous sommes inté-

ressés au nombre d’automobiles contenues dans ce système.
Durant l’année 2018, il y a eu un flux d’importation constant
de 1000 unités par mois. Durant le même temps, le flux
d’exportation a augmenté linéairement de 600 à 18000 unités
par mois. L’industrie automobile a produit des véhicules à un
taux qui a diminué linéairement de 1200 à 600 unités par
mois. a) Esquissez, dans le même diagramme, le flux
d’importation, le flux d’exportation et le taux de fabrication
et démolition en fonction du temps pour l’année 2018.
b) Dans le même diagramme, esquissez le flux net de véhicu-
les. c) Quel est le nombre net d’automobiles échangées entre
le début du mois de mars et la fin du mois d’octobre (tous les
mois étant considérés comme d’égale longueur)? d) Quelle
est la variation du nombre de véhicules dans ce système pour
l’année 2018?

2. Dans un certain pays, le nombre d’automobiles en circulation
correspond à l’information dans la figure. Elles sont retirées
de la circulation à un taux constant de 300 000 a/année, et il
n’y a pas d’importation. Le taux de production de l’industrie
automobile a diminué de manière constante de 700 000
A/année à 600 000 A/année en 10 ans. a) Que vaut le flux
d’exportation pour t = 5.0 années? b) Combien de voitures a-
t-on exportées durant ces 10 années?

3. La population d’un certain pays varie durant le mois de juin à
un taux constant de +600 P jour–1(P : personnes). Durant
cette période, le taux de naissance net (taux de naissance
moins taux de décès) diminue de manière régulière de 1200
P/jour à 900 P jour–1. a) Déterminez et représentez graphi-
quement le flux de migration net en fonction du temps pour
cette période. b) Combien de personnes au total ont-elles
franchi la frontière du 11 au 20 de ce mois?

4. Il y a, au début de l’année, dans une portion de l’océan,
1.0·106 poissons d’une certaine sorte. Durant l’année, il y a
un flux constant de 20 000 poissons mois–1 hors de cette
zone. Le taux de naissance est de 2.0·106 poissons mois-1 au
début de janvier. Ce taux décroît de manière constante
jusqu’à zéro durant les quatre premiers mois, pour rester nul
de la fin avril à la fin de l’année. Durant l’année, 2.5·106

poissons meurent dans cette zone. Le taux de mortalité est
constant. a) La pêche est interdite en juillet. Quel est le taux
de variation du nombre de poissons le 15 juillet ? b) Quel
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FIGURE 16.26
Problème 2

pourrait être le taux de prise maximal par mois, si le nombre
de poissons vivants dans cette zone est de 1.2·106 à la fin de
l’année?

5. On cultive des micro-organismes dans un réacteur. Le graphi-
que ci-dessous montre la masse des micro-organismes mesu-
rée en fonction du temps. Il faut 0.20 kg de nutriments par
heure pour 1 kg de micro-organismes. La quantité de nutri-
ments dans le réacteur devrait diminuer de manière constante
de 20 kg à zéro en l’espace de dix heures. a) Quel devrait être,
en kg h–1, le flux de nutriments dans le réacteur? b) Combien
de nutriments introduit-on dans le réacteur en 10 h?

6. Des lièvres et des renards cohabitent dans une certaine zone.
Les lièvres naissent et meurent, et sont mangés par les
renards, mais il n’y a aucun flux migratoire. Il n’y a aucune
autre cause de disparition des lièvres. Durant une période de
3 ans, le nombre de renards augmente de manière constante
de 30 à 45. Dans le même temps, le nombre de lièvres man-
gés par les renards passe de 50 L R–1 a–1 à 60 L R–1 a–1. Le
graphique donne le taux de natalité des lièvres. a) Quand le
nombre de lièvres passe-t-il par un maximum ou un
minimum ? b) Que vaut le taux de variation des lièvres à
l’instant 1.0 a? c) Combien de lièvres naissent-ils durant les
trois ans?
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Les tableaux qui suivent donnent la liste des symboles les plus importants utilisés
dans le texte, leur signification et leurs unités.

 

• Tableau S.1 Symboles utilisant des lettres latines

 

• Tableau S.2 Symboles utilisant des lettres grecques

 

• Tableau S.3 Indices et exposants

 

TABLEAU S.1:

 

 Symboles utilisant des lettres latines.

Symbole Signification Unités SI

a Constante de Stefan-Boltzmann J ·m–3 ·K–4

 

a Accélération m· s–2

A Aire de la surface, aire de la section m2

 

A Taux d’absorption d’énergie par unité de sur-
face

W·m–2

 

A Tension chimique (affinité chimique) J · mol–1

 

B Intensité de la densité du flux magnétique T

c Vitesse du son, vitesse de la lumière m· s–1

c , cV Coefficient de température de l’énergie spécifi-
que (chaleur spécifique ou massique)

J ·K–1 ·kg–1

cP Coefficient de température de l’enthalpie spéci-
fique (chaleur spécifique ou massique)

J ·K– 1 ·kg–1

Coefficient de température de l’enthalpie
molaire

J ·K–1 ·mol–1

Coefficient de température de l’énergie molaire J ·K–1 ·mol–1

Concentration (molaire) mol ·m–3, mol ·L–1

C Coulomb (unité de la charge électrique)

CQ Capacité électrique F

C Coefficient de température de l’énergie J ·K–1

COP Coefficient de performance

CP Coefficient de température de l’enthalpie J ·K–1

cP

cV

c
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CV Coefficient de température de l’énergie J ·K–1

CV Capacité hydraulique m3 ·Pa–1

Capacité linéique de quantité de mouvement kg ·m-1

Ct Carnot (unité de l’entropie—chaleur) J ·K–1

Cx Coefficient de traînée

°C Degrés Celsius

 

C Contour d’intégration

D Constante de diffusion m2 · s–1

  

DDDD Intensité du déplacement électrique A· s ·m–2

e Charge élémentaire C

e Énergie spécifique J ·kg–1

Énergie molaire J ·mol–1

E Énergie du système (contenu en énergie) J

E Module de Young N·m–2

Echim Énergie échangée (transportée) lors de proces-
sus chimiques

J

Eél Énergie échangée lors de processus électriques J

Eméc Énergie échangée lors de processus mécani-
ques

J

Etherm Énergie échangée lors de processus thermiques
(chauffage et refroidissement)

J

Eu Euler (unité du moment cinétique) N ·m· s

 

E Intensité du champ électrique V·m–1

 

E Irradiance, éclairement énergétique (taux
d’énergie rayonnée incidente par unité de sur-
face)

W·m–2

Ecs Constante solaire W·m–2

f Fréquence Hz

fQ Taux de source spécifique de la quantité Q

fp Taux de source spécifique de la quantité de
mouvement

m· s–2

F Force (flux de quantité de mouvement) N

F Constante de Faraday C·mol–1

g Intensité du champ de pesanteur N ·kg–1

G Constante de gravitation N·m2 ·kg–2

G Conductance

GE Conductance énergétique W·K–1

GS Conductance entropique W·K–2

GQ Conductance électrique S

TABLEAU S.1: Symboles utilisant des lettres latines.

Symbole Signification Unités SI

Cp
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GV Conductance hydraulique m3 ·Pa–1 · s–1

Gn Conductance liée au flux de quantité de matière m3 · s–1

G Gibbs (unité du potentiel chimique) J ·mol–1

G Énergie libre de Gibbs J

G Module de cisaillement N ·m–2

g Densité de quantité de mouvement du champ
électromagnétique

kg ·m–2 ·s–1

G Intensité du champ gravitationnel N ·kg–1

h, H Hauteur m

h Enthalpie spécifique J ·kg-1

Enthalpie molaire J ·mol–1

∆hfus Enthalpie de fusion spécifique (chaleur latente
de fusion)

J · kg–1

∆Hfus Enthalpie de fusion molaire (chaleur latente de
fusion)

J ·mol–1

∆h vap Enthalpie de vaporisation spécifique (chaleur
latente de vaporisation)

J · kg–1

∆H vap Enthalpie de vaporisation molaire (chaleur
latente de vaporisation)

J ·mol–1

h Constante de Planck J · s

h Coefficient de transmission de la chaleur (de
l’énergie)

W·K–1 ·m–2

hcond Coefficient de transmission de la chaleur (de
l’énergie) par conduction

W·K–1 ·m–2

hconv Coefficient de transfert de la chaleur (de l’éner-
gie) par convection

W·K–1 ·m–2

hS Coefficient de transmission de l’entropie W·K–2 ·m–2

H Enthalpie J

H Intensité du champ magnétique A·m–1

Hy Huygens (unité de la quantité de mouvement) N · s

I Intensité du courant, flux

IE Intensité du flux d’énergie W

IL Intensité du flux de moment cinétique kg ·m2 ·s–1

Im Intensité du flux de masse gravitationnelle kg · s–1

Imagn Intensité du courant magnétique A

In Intensité du flux de quantité de matière mol · s–1

Ip Intensité du flux de quantité de mouvement N

IQ Intensité du flux de charge électrique A

IS Intensité du flux d’entropie W·K–1

IV Intensité du flux de volume m3 ·s–1

TABLEAU S.1: Symboles utilisant des lettres latines.

Symbole Signification Unités SI
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J Joule (unité de l’énergie)

J Moment d’inertie kg ·m2

J Matrice (tenseur) du moment d’inertie kg ·m2

j Densité de flux

j Vecteur de densité de flux

jE Densité de flux d’énergie W·m–2

jp Densité de flux de quantité de mouvement N ·m–2

jn Densité de flux de quantité de matière mol ·m–3 · s–1

jS Densité de flux d’entropie W·K–1 ·m–2

jV Densité de flux volumique m · s–1

jm Densité de flux massique kg ·m–2 ·s–1

k Constante de Boltzmann J ·K–1

k Constante de rigidité d’un ressort N ·m–1

k Nombre d’onde m–1

kE Conductivité thermique relative à l’énergie W·K–1 ·m–1

kS Conductivité thermique relative à l’entropie W·K–2 ·m–1

kn Coefficient de vitesse d’une réaction s–1

K Kelvin (unité de température)

Κ Voir lettre grecque kappa

Kp Constante d’équilibre chimique

l , L Longueur m

lfus , lvap Entropie spécifique de fusion / vaporisation J ·K–1 ·kg–1

Entropie molaire de fusion / vaporisation J ·K–1 ·mol–1

L Luminosité d’une étoile W

LV Inductance hydraulique Pa · s2 ·m–3

LQ Inductance électrique H

Inductance linéique de quantité de mouvement N–1 ·m–2

L Moment cinétique kg ·m2

m Mètre (unité de longueur)

m Masse d’un corps kg

mair Masse de l’air kg

m Moment dipolaire magnétique A·m2

mol Unité de la quantité de matière

M Masse molaire kg ·mol–1

M Moment d’une force (couple) N ·m

M Aimantation A·m–1

M Puissance émissive, exitance (taux d’émission
d’énergie rayonnée par unité de surface)

W·m–2

TABLEAU S.1: Symboles utilisant des lettres latines.

Symbole Signification Unités SI

l lfus vap,

Lp
*
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MCN Puissance émissive du corps noir W·m–2

n Quantité de matière mol

n Vecteur unitaire normal à la surface (orienté
vers l’extérieur)

N Nombre de particules

NA Nombre d’Avogadro mol–1

N Newton (unité de force – flux de quantité de
mouvement)

p Vecteur de la quantité de mouvement N · s

p Moment dipolaire électrique A· s ·m

P Pression Pa

P Puissance W

Pdiss Taux de dissipation de l’énergie W

P Polarisation électrique A· s ·m–2

Pa Pascal (unité de pression)

Q Charge électrique C, As

Q Quantité semblable à un fluide quelconque,
grandeur extensive

q Quantité spécifique quelconque

Qm, qm Charge magnétique A·m

r Coordonnée radiale m

r Vecteur position m

R Constante des gaz parfaits J ·K–1 ·mol–1

R, RQ Résistance électrique Ω
R Rayon m

Re Nombre de Reynolds

RE Résistance thermique par rapport à l’énergie K·W–1

RS Résistance thermique par rapport à l’entropie W–1 ·K2

RV Résistance hydraulique Pa · s ·m–3

s Seconde (unité de temps)

s Abscisse curviligne m

S Surface d’intégration

s Entropie spécifique J ·K–1 ·kg–1

Entropie molaire J ·K–1 ·mol–1

S Entropie, entropie contenue dans un corps J ·K–1

Séch Entropie échangée au cours d’un processus J ·K–1

Sprod Entropie produite dans un système J ·K–1

S Vecteur de Poynting W·m–2

t Temps s

TABLEAU S.1: Symboles utilisant des lettres latines.

Symbole Signification Unités SI
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T Température du gaz parfait, température abso-
lue

K

T Période (durée d’une oscillation) s

u Vecteur unitaire m

u Énergie interne spécifique J ·kg–1

U Tension électrique V

U Énergie interne J

U Coefficient de transfert de la chaleur global W·K–1 ·m–2

Umagn Tension magnétique V

v Vecteur vitesse m· s–1

vd Vitesse de drift m · s–1

V Volume d’un corps m3

V Potentiel du champ gravitationnel m2 · s–2

V Volume d’intégration

W Travail produit par une force J

W Watt (unité du flux d’énergie ou puissance)

w Fraction massique

x, y, z Coordonnée spatiale m

Fraction molaire

z Fraction masse/volume kg ·m-3

z Distance verticale m

Parallèle

Perpendiculaire

TABLEAU S.2: Symboles utilisant des lettres grecques

Symbole Signification Unités SI

α Absorptivité

α Coefficient Peltier J ·K–1 ·C–1

α Accélération angulaire s–2

αR Coefficient de température linéaire de la résisti-
vité

K–1

αs Coefficient de chauffage K2 ·kg ·J–1

αQ Élastance électrique V·C–1

TABLEAU S.1: Symboles utilisant des lettres latines.

Symbole Signification Unités SI
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αV Élastance hydraulique Pa ·m–3

αµ Coefficient de température du potentiel chimi-
que

mol ·K–1

β Coefficient de température de la pression K–1

βR Coefficient de température quadratique de la
résistivité

K–2

βµ Coefficient de pression du potentiel chimique mol · Pa–1

γ Exposant adiabatique, rapport des capacités
entropiques

γµ Coefficient de concentration du potentiel chi-
mique

G·m3 ·mol–1

δ Épaisseur de la couche limite m

ε Allongement relatif

ε Coefficient Seebeck V·K–1

ε Émissivité

ε0 Constante diélectrique, permittivité du vide A· s ·V–1 ·m–1

εr Permittivité relative, constante diélectrique

η Efficacité, rendement

η Coefficient de viscosité dynamique Pa · s

ηc Efficacité ou rendement de Carnot

ηI Efficacité thermique, rendement énergétique,
efficacité selon la première loi

ηII Rendement effectif, efficacité selon la
deuxième loi

θ Température Celsius °C

κ Capacité entropique spécifique J ·K–2 ·kg–1

Capacité entropique molaire J ·K–2 ·mol–1

Κ Capacité entropique J ·K–2

ΚV Capacité entropique à volume constant J ·K–2

ΚP Capacité entropique à pression constante J ·K–2

ΚM Capacité entropique à aimantation constante J ·K–2

λ Longueur d’onde m

λ Constante de désintégration s–1

Λ Circulation d’un champ vectoriel

ΛE Circulation du champ électrique V

Λ Entropie latente

ΛV Entropie latente par rapport au volume (entro-
pie latente de détente)

J ·K–1 ·m–3

ΛP Entropie latente par rapport à la pression
(entropie latente de compression)

J ·K–1 ·Pa–3

TABLEAU S.2: Symboles utilisant des lettres grecques

Symbole Signification Unités SI
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ΛM Entropie latente par rapport à l’aimantation J ·K–1 ·m ·A–1

µ Coefficient de frottement

µ Potentiel chimique G = J ·mol–1

µo Perméabilité magnétique du vide V· s ·A–1 ·m–1

ν Fréquence Hz

ν Coefficient stoechiométrique

ξ Élongation (perturbation) d’une onde

ξ0 Amplitude d’une onde

π Densité volumique du taux de production

πn Densité volumique du taux de production de
quantité de matière

mol · s–1 ·m–3

πS Densité volumique du taux de production
d’entropie

W·K–1 ·m–3

Π Taux de production

Πn Taux de production de quantité de matière mol · s–1

ΠS Taux de production d’entropie W·K–1

ρ Densité (en général)

ρ Masse volumique kg ·m–3

ρél Résistivité électrique Ω ·m

ρE Densité d’énergie J ·m–3

ρp Densité de quantité de mouvement kg ·m–2 ·s–1

ρS Densité de l’entropie d’un corps J ·K–1 ·m–3

σ Tension mécanique N·m–2

σ Contrainte dans un champ vectoriel

σ Constante de Stefan-Boltzmann W·m–2 ·K–4

σél Conductivité électrique S ·m–1

σpol Densité superficielle de la charge de polarisa-
tion

A· s ·m–2

σ Densité volumique du taux de source kg ·m–2 ·s–2

σE Densité volumique du taux de source d’énergie W·m–3

σp Densité volumique du taux de source de la
quantité de mouvement

σS Densité volumique du taux de source d’entro-
pie

W·K–1 ·m–3

Σ Taux de source

ΣE Taux de source de l’énergie W

Σp Taux de source de la quantité de mouvement N

ΣS Taux de source de l’entropie W·K–1

τ Constante de temps s

TABLEAU S.2: Symboles utilisant des lettres grecques

Symbole Signification Unités SI
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τC Constante de temps capacitive s

τL Constante de temps inductive s

τ Quantum de quantité de matière mol

(τα) Facteur de transmissio-absorption

υ Volume spécifique m3 ·kg–1

Volume molaire m3 ·mol–1

ϕ Potentiel

ϕél Potentiel électrique V

ϕmagn Potentiel magnétique scalaire A

ϕ Élongation angulaire rad

φB Flux d’induction magnétique Wb (weber) = V· s

ψ Flux d’un champ vectoriel

χ Susceptibilité électrique

χm Susceptibilité magnétique

Ω Ohm (unité de la résistance électrique)

ψ Flux d’un champ vectoriel

ψE Flux du champ électrique V·m

ωωωω Vitesse angulaire s–1

ω Fréquence angulaire, pulsation s–1

TABLEAU S.3: Indices et exposants

Symbole Signification

aa Air – air

abs Absorbé, absorbeur

amb Ambiant

app Apparent

adh Adhérence

CN Corps noir

C Capacitif

C Contour (chemin) d’intégration

CM Centre de masse, relatif au centre de masse

coll Collecteur

TABLEAU S.2: Symboles utilisant des lettres grecques

Symbole Signification Unités SI
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cond Partie conductive d’un flux

chim Chimique

compr Compression

cond Conductif

conv Convectif

disp Disponible

diss Dissipatif

éch Échangé

él Électrique

éq Équilibre

E Énergie, relatif à l’énergie

EC Électrochimique

f Solvant, fluide

fus Fusion

prod Produit

grav Gravitationnel

GC Gravitochimique

H Haut (température haute, température de la source chaude…)

hydr Hydraulique

init Initial

in In, entrant

ind Induit

cin Cinétique

liq Liquide

L Moment cinétique, relatif au moment cinétique

L Induction, relatif à l’induction

B Bas (température, niveau...)

m Masse, relatif à la masse

m, magn Magnétique

max Maximum

méc Mécanique

min Minimum

M Aimantation, relatif à l’aimantation

n, norm Normal

net Net (courant)

0 Origine d’un repère, valeur initiale

out Out, sortant, émergent

p Quantité de mouvement, relatif à la quantité de mouvement

TABLEAU S.3: Indices et exposants

Symbole Signification
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P Pression, relatif à la pression, à pression constante

Q Charge électrique, quantité Q

Q Relatif à la charge électrique, à la quantité Q

rad Radial

rad Radiatif

réf Valeur de référence

rés Réservoir

R Résistif, relatif à la résistance électrique

S Entropie, relatif à l’entropie

S Surface d’intégration

s Soluté

tang Tangentiel

therm Thermique

TC Thermochimique

TE Thermoélectrique

TEC Thermo-électrochimique

vap Vapeur, vaporisation

V Volume, hydraulique, relatif au volume, à volume constant

V Volume d’intégration

x, y, z Relatif aux coordonnées spatiales

λ Relatif à la longueur d’onde

ν Relatif à la fréquence

TABLEAU S.3: Indices et exposants

Symbole Signification
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L’objectif de ce bref glossaire est de présenter certaines notions qui n’apparaissent pas
dans la présentation usuelle de la physique ou qui en diffèrent. Les termes en italique
apparaissent ailleurs dans le glossaire.

 

Bilan. Sert à tenir la comptabilité de l’évolution du contenu d’un système au moyen
d’équations de bilan relatives aux grandeurs semblables à un fluide qui participent
aux processus envisagés.

 

Bilan d’énergie. Formulation de l’équation de bilan relativement à l’énergie.

 

Bilan d’entropie. Formulation de l’équation de bilan relativement à l’entropie.

 

Calorique. Utilisé en tant qu’alternative pour la notion de chaleur. La théorie calori-
que de la chaleur peut être rendue formelle et correcte dans un sens moderne si on
accepte que le calorique n’est pas conservé, qu’il peut être produit mais pas détruit.
Dans ce cas, il est équivalent à l’entropie d’un corps.

 

Capacité thermique. Utilisé dans le sens de capacité en entropie, à savoir la dérivée
par rapport à la température de la fonction d’entropie. Les «capacités thermiques»
usuelles sont appelées respectivement coefficients de température de l’énergie et de
l’enthalpie.

 

Chaleur. Terme informel pour l’entropie. Est équivalent au calorique. Communé-
ment, l’énergie échangée durant un processus de chauffage est appelée chaleur; cet
usage n’est pas suivi dans cet ouvrage.

 

Chauffage. Processus de transfert de chaleur (entropie) à travers la surface d’un
corps, à l’exclusion des transports en mode convectif. Le processus inverse est le
refroidissement.

 

Coefficient de température de l’énergie. Dérivée de l’énergie par rapport à la tem-
pérature à volume constant. Appelé traditionnellement capacité thermique à volu-
me constant.

 

Coefficient de température de l’enthalpie. Dérivée de l’enthalpie par rapport à la
température à pression constante. Appelé traditionnellement capacité thermique à
pression constante.

 

Courant. Terme informel pour le phénomène de transport d’une grandeur semblable
à un fluide. Utilisé souvent en lieu et place de la grandeur qui sert à mesurer l’in-
tensité d’un écoulement, le flux.

 

Courant d’énergie. Quantité d’énergie franchissant la surface d’un système par unité
de temps au cours d’un processus de transport. Il faut le distinguer de la notion de
puissance.

 

Courant d’entropie. Mesure du transfert d’entropie à travers la surface d’un système.

 

Densité. Densité spatiale d’une grandeur semblable à un fluide. L’intégrale de la den-
sité d’une telle grandeur sur le volume d’un système donne la quantité de la gran-
deur semblable à un fluide contenue dans le système.
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Densité de courant. Mesure formelle de la valeur locale d’un courant. L’intensité du
flux est l’intégrale de surface d’une densité de courant. Pour une grandeur sembla-
ble à un fluide scalaire, la densité de courant est un vecteur.

 

Densité de flux. Densité de surface d’un flux. L’intégrale de surface d’une densité de
flux fournit l’intensité du flux. Est équivalent à la densité de courant.

 

Densité de taux de source. Densité spatiale du taux de source. Son intégrale de
volume est égale au taux de source.

 

Deuxième principe de la thermodynamique. Correspond à l’équation de bilan de
l’entropie.

 

Différence de potentiel. Variation du potentiel entre deux points de l’espace.

 

Dynamique. Une théorie de la dynamique requiert la formulation d’équations de bilan
et de relations constitutives relatives au cas particulier considéré. Les modèles de
processus dynamiques reposent sur une distinction claire entre les équations de
bilan et les lois constitutives.

 

É

 

nergie. Grandeur qui accompagne tous les processus physiques et qui joue le même
rôle dans chacun d’eux. Elle est utilisée pour quantifier le couplage de processus
(libération d’énergie). Elle s’écoule toujours en compagnie de grandeurs sembla-
bles à un fluide qui servent de porteurs d’énergie.

 

Entropie. Grandeur formelle pour représenter la chaleur ou le calorique. L’entropie
est la grandeur semblable à un fluide associée aux processus thermiques pour la-
quelle on peut, par conséquent, énoncer une équation de bilan. Elle peut être accu-
mulée, peut s’écouler (courant d’entropie) et peut être créée (production).

 

É

 

quation de bilan. Relation formelle qui établit le lien entre le taux de variation d’une
grandeur semblable à un fluide associée à un corps et ses courants et éventuelle-
ment ses taux de source et taux de production.

 

Flux. Mesure formelle de la quantité d’une grandeur semblable à un fluide franchis-
sant la surface d’un système par unité de temps. De manière informelle, cette gran-
deur est également appelée un courant. Le flux est compté positivement pour un
courant qui pénètre dans le système.

 

Force d’entraînement. Terme informel pour une différence de potentiel. Par exemple,
la force d’entraînement thermique est la différence du potentiel thermique en deux
points de l’espace, à savoir la différence des températures.

 

Force d’entraînement chimique. Différence du potentiel chimique.

 

Grandeurs extensives. Grandeurs dont la quantité varie avec la taille d’un système.
Les grandeurs semblables à un fluide sont un sous-ensemble des grandeurs exten-
sives. Le volume est l’exemple d’une grandeur extensive qui n’est pas semblable à
un fluide.

 

Grandeurs intensives. Grandeurs dont la valeur ne change pas lorsque le corps
auquel elles sont associées est divisé en parties. Les potentiels sont un sous-ensem-
ble des grandeurs intensives.

 

Grandeur semblable à un fluide. Les grandeurs qui possèdent une densité et une den-
sité de courant (et dans certains cas une densité de source et une densité de produc-
tion) sont appelées semblables à un fluide. On peut leur associer des équations de
bilan. Elles constituent un sous-ensemble des grandeurs extensives. Les grandeurs
semblables à un fluide classiques sont la quantité de mouvement, le moment ciné-
tique, l’entropie, la charge électrique, la quantité de matière et la masse (gravita-
tionnelle).

 

Irréversibilité. Contraire de réversibilité. La condition d’irréversibilité signifie que de
l’entropie est produite durant un processus.
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Liaison d’énergie. Liaison d’énergie au courant d’une grandeur semblable à un fluide
lorsqu’elle est portée d’un niveau bas à un niveau élevé du potentiel. Équivalent à
utilisation d’énergie. Opposé à libération d’énergie.

Libération d’énergie. Libération d’énergie lorsque le courant d’une grandeur sem-
blable à un fluide passe d’un niveau élevé à un niveau bas du potentiel. Contraire
de liaison d’énergie.

Niveau. Terme informel pour potentiel. Les niveaux sont les grandeurs conjuguées
(par rapport à l’énergie) des grandeurs semblables à un fluide.

Porteur d’énergie. Grandeur semblable à un fluide dans les processus de conduction.

Potentiel. Terme formel pour les grandeurs qui jouent le rôle de niveaux physiques,
connues également en tant que grandeurs intensives. Il y a un potentiel associé à
chacune des grandeurs semblables à un fluide. Les paires potentiel et grandeur
semblable à un fluide associées sont respectivement la vitesse et la quantité de mou-
vement, la vitesse angulaire et le moment cinétique, la température et l’entropie, le
potentiel et la charge électrique, le potentiel chimique et la quantité de matière, le
potentiel gravitationnel et la masse grave.

Potentiel chimique. Le potentiel associé aux processus de variation ou d’écoulement
de la quantité de matière.

Premier principe de la thermodynamique. C’est l’équation de bilan de l’énergie.
Elle n’inclut que les taux de variation du contenu en énergie, les courants d’énergie
et les taux de source d’énergie.

Processus continus. Processus qui sont spatialement continus, c’est-à-dire au cours
desquels les variables changent d’un point à l’autre à l’intérieur d’un corps ou d’un
système.

Processus dissipatif. Processus durant lequel de l’entropie est produite, donc un pro-
cessus irréversible.

Processus irréversible. Processus qui entraîne de la production d’entropie.

Processus supraconductif. Processus de transport d’une grandeur semblable à un
fluide qui ne nécessite pas de force d’entraînement.

Processus uniformes. Processus qui sont spatialement uniformes, c’est-à-dire au
cours desquels des variables ont la même valeur en tous les points d’un corps ou
d’un système à un instant donné.

Production. Terme informel pour le phénomène de production d’une grandeur sem-
blable à un fluide. Une grandeur qui est produite peut s’accumuler à l’intérieur d’un
système sans y avoir été transportée. La production (ou la destruction) est liée à la
non-conservation d’une grandeur.

Production d’entropie. Processus de production d’entropie durant un processus irré-
versible.

Puissance. Taux de libération d’énergie ou taux de liaison d’énergie. La puissance
est associée à un processus interne, en opposition à un processus externe, c’est-à-
dire un processus de transport qui est quantifié au moyen de courants d’énergie.

Puissance thermique. Puissance associée à la chute de l’entropie entre des points de
température élevée et basse. Correspond à la «puissance du feu» de Carnot.

Quantité échangée. Quantité d’une grandeur semblable à un fluide qui a franchi la
surface d’un système transportée par un courant durant une certaine durée. Corres-
pond formellement à l’intégrale temporelle du flux.

Quantité de matière. Mesure formelle de la quantité d’une substance utilisée au sens
de la chimie, en termes de «nombre de moles» ou de «nombre de particules».
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Relations constitutives. Lois particulières qui distinguent les systèmes et les circons-
tances. Les lois générales sont les équations de bilan.

Réversibilité. La condition de réversibilité signifie qu’il n’y a pas de production d’en-
tropie durant un processus.

Source. Terme informel pour un processus au cours duquel une grandeur semblable
à un fluide est transférée dans un système sans avoir à traverser la surface du systè-
me. Cela se produit lors de l’interaction entre des corps et des champs.

Taux de dissipation. Taux auquel l’énergie est liée en conséquence de la production
d’entropie (voir liaison d’énergie).

Taux de production. Mesure formelle de la production d’une grandeur semblable à
un fluide. Mesure la quantité de la grandeur produite à l’intérieur d’un système par
unité de temps. Un taux de production négatif signifie que la grandeur est détruite.

Taux de production d’entropie. Taux auquel est produite de l’entropie lors d’un pro-
cessus irréversible.

Taux de source. Mesure formelle de la source d’une grandeur semblable à un fluide.
Il détermine la quantité de la grandeur délivrée dans le système par unité de temps.

Température. Mesure du degré de chaleur d’un corps. La température joue le rôle de
potentiel thermique.

Utilisation d’énergie. Équivalent à liaison d’énergie.
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A
accélération linéaire

caractère vectoriel 407
composantes tangentielle et normale 407

accumulation
charge 67
énergie 127–135, 599
énergie dans un élément inductif 159,

405
entropie 204, 208
moment cinétique 321, 332
quantité de mouvement 360, 366, 374,

390
volume 16, 17
voir aussi stockage

action à distance 625, 626, 680
adiabatique, voir processus adiabatique
affinité chimique

tension chimique 256
aimantation

champ démagnétisant 655
définition 654
densité superficielle de charge

magnétique 654
densité volumique de moments dipolaires

magnétiques 654
induite 656
perméabilité absolue 656
perméabilité relative 656
susceptibilité magnétique 656

alimentation
pompe à électricité 52, 76

Ampère
loi d’Ampère-Maxwell 699
vision ampérienne du magnétisme 629

analogie
électrique

processus de rotation 324
processus de translation 367
système cardiovasculaire 91

hydraulique
Carnot, machine thermique 210
processus de rotation 324
processus de translation 375, 390
processus électriques 53, 55, 67
processus liés à l’énergie 130, 132,

378
Archimède

poussée 441
atmosphère isotherme

répartition de la pression 21, 440, 553

 

B
batterie 76, 288
Bernoulli, Daniel

effet 31
équation 382, 443, 552

bilan d’énergie 127–135
capteur solaire aérothermique 573
changement de phase 495
conduction thermique 604
conservation 114
fluide parfait 464
forme locale 598
inclusion de sources 606
inclusion des processus thermiques 210
matériau simple 213
premier principe de la

thermodynamique 232
processus continus 598
thermoélectricité 616
transfert d’entropie 515

bilan d’entropie 196, 208
capteur solaire aérothermique 575, 576
changement de phase 495
conduction 511, 601–603
conduction dépendante du temps 603
convection 512
deuxième principe de la

thermodynamique 232
fluide parfait 463
forme locale 594, 602, 603
inclusion de sources 514
matériau simple 213
processus de transport 511–515
rayonnement 513–515
thermoélectricité 616

bilan de chaleur, voir bilan d’entropie
bilan de charge 54, 62, 80, 82

première loi de Kirchhoff 62
thermoélectricité 616

bilan de masse
changement de phase 495
équation de continuité 594
processus continus 593

bilan de moment cinétique 322, 327, 346
bilan de quantité de matière 252, 283, 543,

559, 593
changement de phase 495

bilan de quantité de mouvement 362, 372
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forme locale 594
bilan de volume 4, 15–18, 36, 39, 44

fluide parfait 464
représentation graphique 4
systèmes ouverts 544

bilan des sauterelles 585
Biot-Savart

loi 660
bouteille magnétique 735
Boyle-Mariotte

loi 264

 

C
calorique et chaleur 195, 199, 204
capacité 24

électrique 67
entropique 196, 215–218

à aimantation constante 491
à pression constante 467
à volume constant 465
gaz parfait 470
rapport des capacités 471
rayonnement du corps noir 486
tableau 217

hydraulique 24
moment cinétique 332
quantité de mouvement 361, 374
thermique

à pression constante 472
à volume constant 472

capteur solaire thermique
aérothermique 572–578
bilan d’énergie 573
bilan d’entropie 575, 576
minimisation de l’entropie 572
optimisation 575
pertes d’énergie 573
pertes d’entropie 572, 576
production d’eau chaude 569–572
production d’entropie 569, 572

caractéristique
électrique

capacitive 67
courant-tension 71
diode 74, 176
lampe fluorescente 75
ohmique 72
résistive 70
source de tension 77

hydraulique
capacitive 24
écoulement laminaire 28
écoulement turbulent 28
pompe 32
PV d’une pompe 104, 189
résistive 28

thermique
entropie-température 215

Carnot 199, 210
cycle 231, 469, 486

Cavendish
constante de gravitation 680
peser la Terre 682

ceintures de Van Allen 737
centre de masse

accélération 420
définition 333
théorème 420
vitesse 420

centrifuge
effet d’inertie 746

chaleur
et entropie 204
généralités 203–206
grandeur extensive thermique 204
latente

stockage 578–581
molaire 472
production 205
propriétés 203
puissance 210
selon la thermodynamique

traditionnelle 204, 211
spécifique 472
voir aussi entropie

champ
conservatif 640
en tant que système physique 625, 631
interaction avec les corps 514
principe de superposition 632
vecteur de l’interaction

entre charges électriques 56, 626
entre masses 680
entre objets magnétisés 627

champ électrostatique
circulation 640
contraintes 645
densité d’énergie 645
déplacement électrique

 

 D 651
en présence de matière 649–653
flux du champ 634
intensité

à partir de la force sur une charge 632
champ dipolaire 643
charge ponctuelle 633
condensateur plan 636
en tant que gradient du potentiel 639

loi de Coulomb 633
polarisation 649
potentiel 638

champ dipolaire 643
charge ponctuelle 638
gradient 639
puits et collines 640

source 636
théorème de Gauss 635

champ gravitationnel
contraintes 681
densité d’énergie 682
intensité

à partir de la force sur une masse 680
en tant que gradient du potentiel 680

loi de la gravitation universelle 679
lois de Képler 678
masse en tant que charge

gravitationnelle 630
modèle géocentrique de Ptolémée 678
modèle héliocentrique de Copernic 678
mouvement képlerien 741
orbites planétaires 738
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peser la Terre 682
potentiel 680
vitesse de libération 740
vitesse de satellisation 740

champ magnétostatique
aimantation induite 656
champ magnétique et courant

électrique 660–674
champ magnétique

 

H
champ démagnétisant 655
intensité

à partir de la force sur une
charge 653

à partir du potentiel scalaire 656
potentiel scalaire 656
théorème de Gauss 655

circulation 661
contraintes 659
définition de l’ampère 671
densité d’énergie 659
effet Hall 673
en présence de matière 656–658
force de Laplace 669
force de Lorentz 670
force entre courants parallèles 671
induction magnétique

 

B
absence de sources 655
définition 655
théorème de Gauss 655

intensité
boucle de courant 664
câble coaxial 667
champ dipolaire 662, 664
courant rectiligne 660, 664
solénoïde 663
spire de courant 662

loi de Biot-Savart 660
champs statiques

description graphique
lignes de champ 632
surfaces orthogonales 632

description mathématique
intensité du champ 632

principe de superposition 632
champs variables

électrique
déplacement diélectrique

 

D 700
loi d’Ampère-Maxwell 699
tourbilonnaire 689

électromagnétique
densité d’énergie 703
densité de flux d’énergie 703
densité de quantité de mouvement 707
équations de Maxwell 701
vecteur de Poynting 704

magnétique
effet des variations 689
loi d’induction de Faraday 692
phénomène de self-induction 696
sens du courant ou du champ

induit 690
tension et courant induits 689

changement de phase 257, 494–504
bilan d’énergie 495

bilan d’entropie 495
bilan de quantité de matière 495
dépendance pression de vapeur-

température 503
diagramme TS 497
diagramme TS de phase 499
énergie et variation de volume 497
enthalpie latente de vaporisation 497
entropie 495
entropie latente de vaporisation 497
équilibre chimique 502
lien entre entropie et enthalpie 497
ligne de liquide saturé 499
point critique 499
point de fusion

dépendance de la pression 500, 501
potentiel chimique 501
pression de vapeur 502
quantité de matière 495
relation pression-température 499
sublimation 499
vaporisation à différentes pressions 499

charge électrique
conservation 52
courant 60
double nature 51
échangée 60
interaction entre charges 55
taux de variation 59
variation 59

charge magnétique
concept 628
correspondance avec les pôles 628, 653
inséparabilité des dipôles 628
lien avec l’aimantation 654
origine de l’aimantation 628
vision coulombienne du

magnétisme 628, 653
chauffage

à température constante 207, 465
à volume constant 207, 465
fluide parfait 465–467
fluides simples 213
gaz parfait 465–468

transfert d’énergie 481
modèle uniforme 213
par absorption et émission de

rayonnement 526
transfert d’énergie 211
transfert d’entropie 204

chauffage à écoulement 554–555
bilans en régime stationnaire 554
production d’entropie 555

chute d’eau
Carnot, puissance motrice du feu 210
production d’énergie électrique 110
puissance délivrée 116

cinématique
dans un repère accéléré 744–751
dans un repère galiléen 406–411

circuit cardiovasculaire 91
pulmonaire 91
systémique 91

circuit électrique 52
analogie hydraulique 52
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circuit hydraulique
différence de pression 21

circulation d’un champ vectoriel
champ électrostatique 640
champ magnétostatique 661
concept 640

Clausius 193, 211
coefficient

d’adhérence 412
de chauffage 215
de concentration du potentiel

chimique 260
de convection 221
de diffusion 278
de frottement sec 412
de performance 230
de pression du potentiel chimique 259
de température de l’énergie (chaleur

massique)
gaz parfait 472
magnétisation 491
matériaux simples 216

de température de l’enthalpie 472, 481
de température de la pression 202
de température de la résistivité 202
de température du potentiel

chimique 258
de transmission de la chaleur (de l’éner-

gie)
par conduction 220
par convection 220
par rayonnement 537

de transmission global de l’entropie 220
Peltier 302, 312, 316, 615
Seebeck 299, 312, 316, 615
stoechiométrique 253

combustion
pouvoir énergétique 273

compression
taux de production de volume 464
transfert d’énergie 464

comptabilisation, voir équations de bilan
concentration 251–252

diffusion 278
équilibre 279
et potentiel chimique 260
gradient 278

condensateur
à plaques parallèles 68
élément de stockage 50, 67
enroulé 69
sphérique 68
supercondensateur 84

conductance
électrique 71
entropique 304
hydraulique 29
processus de rotation 341
thermique(énergie) 220
thermique(entropie) 220
transfert d’entropie 521

conduction
charge électrique 70

mécanismes 73
densité de flux 591

densité de flux d’énergie 597
quantité de mouvement 369, 386, 594

conduction thermique
bilan d’énergie 604
bilan d’entropie 208, 601–603
dépendante du temps 603, 612–614
équation du champ de température 605,

607, 612
inclusion de sources 602, 606
loi de Fourier 604
production d’entropie 205, 605
transfert d’entropie 198, 204, 220–224,

511
conductivité

électrique 72
entropique 517, 604
thermique (énergie) 221, 520, 606

conservation
charge électrique 52
des éléments 253
énergie 114
moment cinétique 324
quantité de mouvement 366

constante
d’équilibre

réactions chimiques 283
transport de substances 280

de Curie 491
de Faraday 250, 290, 318
de gravitation 680
de rayonnement 487
diélectrique 68, 633

constante de temps
capacitive 38, 41, 81, 82
inductive 153

contraintes
champ électrostatique 645
champ gravitationnel 681
champ magnétostatique 659
transfert de quantité de mouvement 369

convection
bilan d’entropie 512
densité de flux 591
densité de flux d’énergie 597
entropie 204, 512
force d’entraînement 512
quantité de mouvement 371
systèmes ouverts 538–544
transport de quantité de matière 252,

277
coordonnées polaires 409
Copernic

modèle héliocentrique 678
Coriolis

effet d’inertie 747
Coulomb

loi d’interaction entre charges
électriques 633

vision coulombienne du
magnétisme 628, 653

couple
flux de moment cinétique 326

courant
charge électrique 60
convectif
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énergie 543
entropie 541
quantité de mouvement 541
substances dissoutes 539

courant électrique et champ
magnétique 660–674

de déplacement 700
de Foucault 697
énergie 124

écoulement d’un fluide sous
pression 543

électrique 131
facteur de chargement 124
hydraulique 124
thermique 211, 220

entropie 208, 211
induit 689
intensité 5, 14
moment cinétique 325, 327
quantité de matière 252
quantité de mouvement 362, 367, 369,

541, 595
par convection 541

variation de l’intensité 147
volume 4, 8

Curie
température 658

cyclotron 734

 

D
densité

gradient 586
grandeur extensive 588
quantité de mouvement 589
taux de production 592
taux de source 592

densité d’énergie
champ électromagnétique 703
champ électrostatique 645, 652
champ gravitationnel 682
champ magnétostatique 659
écoulement de fluide 383, 443, 543
fluide 597
onde électromagnétique 721
pression d’un gaz 389
rayonnement du corps noir 485

densité de courant (flux)
conductif 591
convectif 591
énergie 520, 597
énergie de l’onde électromagnétique 722
énergie du champ

électromagnétique 703
entropie 519, 591, 601
masse 591
quantité de matière 278, 559
quantité de mouvement 369, 591, 595,

708
quantité de mouvement de l’onde

électromagnétique 722
densité du flux magnétique

 

B 655
déplacement électrique

 

 D 651
dérivée matérielle 513, 596
désaimantation adiabatique 493
désintégration radioactive 257, 285

deuxième principe de la
thermodynamique 232

diagramme de phase 500
diagramme PV

cycle cardiaque 104, 189
diagramme TS

caractéristique entropie-température 215
chauffage à volume constant 207
cycle de Carnot 231
eau et éthylène glycol 215
processus adiabatique 207
processus isotherme 207
vaporisation 497
vaporisation d’eau 499

diagramme TV
chauffage isochore d’un fluide

parfait 466
chauffage isotherme d’un fluide

parfait 465
cycle de Carnot 469
entropie du rayonnement du corps

noir 487
processus adiabatique du gaz parfait 470,

483
diagrammes de dynamique des systèmes 16
diagrammes de niveau

potentiel 64, 80, 82
pression 21, 39
température 220, 224

diagrammes de processus 17
accumulation d’énergie dans un élément

inductif 159
accumulation d’entropie 204
apport d’énergie dans un système 125
bilan de quantité de matière 253
cellule électrolytique 289
centrale hydroélectrique 111
chaîne de processus 112
champ magnétique et induction 150
changement de phase 497
charge d’un condensateur 132
chauffage d’eau 209
chauffage d’un corps 214
chauffage/détente d’un fluide parfait 463
collision de glisseurs 404
compression de l’air 194
conduite 33
conservation de l’énergie 114
destruction et production d’espèces 255
différence de pression inductive 147
dissipation 117
dissipation dans les processus

chimiques 273
dissipation lors du transfert

d’entropie 224
élément électrochimique 290
énergie dans les processus

chimiques 271
énergie transférée par un flux de quantité

de mouvement 379
équivalent windkessel du système

cardiovasculaire 95
flux d’énergie lors d’une vidange 134
flux de chaleur 197
flux de quantité de matière 255



 

I

 

NDEX

 

824

 

P

 

HYSIQUE

 

, 

 

UNE

 

 

 

PRÉSENTATION

 

 

 

SYSTÉMIQUE

flux lors du couplage par
embrayage 344–345

générateur thermoélectrique 298, 316
glissement relatif 416
lien entre entropie et énergie 211
machine thermique 229
machine thermique dissipative 231
machine thermique idéale 229
moteur de Stirling 199
pompe à chaleur idéale 229
pompe à chaleur Peltier 296, 317
pompe électrique 112, 200
processus de rotation 326
processus de roulement 433
processus de translation 368
processus électrochimiques 288
production d’entropie 205
puissance des processus de rotation 331
puissance des processus de

translation 379
résistance 71
résistance et inductance 148
source réelle 78
système cardiovasculaire 94
sytème turbine et générateur 200
thermoplongeur 110, 212
transfert d’énergie 113
transfert d’énergie en rotation 331
transfert d’entropie 220
turbine et pompe 33
turbine-générateur 111
vaporisation d’eau 198, 495

diamagnétisme 657
différence de potentiel

à l’origine d’un processus 64
causée par un processus 64
chimique

force d’entraînement 255–264
puissance chimique 271
tension chimique 256

différence de pression 15
différence de vitesse angulaire 322, 342
force d’entraînement 64
inductive 150
libération d’énergie 112, 120
tension 51, 60
thermique 211

différence de pression 3, 15, 45
capacitive 22, 24
caractéristique capacitive 24
caractéristique résistive 28
circuit hydraulique 21
inductive 147
résistive 22, 28

différence de température
force d’entraînement thermique 194
puissance thermique 211

différence de vitesse angulaire 322, 342
diffusion

charge électrique 553
entropie 227, 511, 553
production d’entropie 227
transport de quantité de matière 252,

277–283
vapeur dans l’air 557

diode
caractéristique 176
modèle dynamique 177

dipôle
de Hertz 720
électrique 627

moment dipolaire 649
potentiel et champ 643

magnétique 629
inséparabilité 628
moment dipolaire 662

dissipation
production d’entropie 212
taux de dissipation 212
transfert d’entropie 224

divergence
concept 592, 636
théorème de Gauss 592, 636

domaines de Weiss 658
dynamique des systèmes 4

 

E
eau

liquide comprimé 494
liquide saturé 494
mélange liquide-vapeur 494
potentiel chimique 257
pression de vapeur 502
vaporisation

diagramme TS 499
vaporisation à différentes pressions 499

écoulement
irrotationnel 443
laminaire 442
potentiel 445
tourbillonnaire 446
turbulent 30, 442
voir aussi courant

effet d’inertie 746
accélération d’Euler 747
centrifuge 746
Coriolis 747

effet magnétocalorique 489–494
efficacité

Carnot 231
du processus 117
selon la deuxième loi 230

module Peltier 316
selon la première loi 230
thermique 230

élastance
hydraulique 24
variable du ventricule gauche 107

électricité
bilan de charge 62
capacité 67
champ électrique 56
charge 58
conductance 71
conducteurs et isolants 57
conducteurs ohmiques 72
conservation de la charge 52
courant de charge 60
différence de potentiel 60
force d’entraînement 51, 64
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induction 150
influence 56
interaction entre charges 55
modèle RLC 164
modèles RC 80–84
modèles RL 152–156
potentiel 59
résistance 70
tension 60

électrolyse 249
embrayage à friction

transfert de moment cinétique 342
énergie

accumulation 127–135
condensateur 131
dans un élément inductif 405
inductance 161
processus de translation 378
voir aussi bilan d’énergie

compression isotherme 468
conservation 114
couplage de processus 111–115
courant 124

chimique 271
écoulement d’un fluide sous

pression 543
électrique 125
hydraulique 124
processus de translation 379
thermique 211

densité
champ électromagnétique 703
champ électrostatique 645, 652
champ gravitationnel 682
champ magnétostatique 659
écoulement de fluide 383, 443, 543
fluide 597
onde électromagnétique 721
pression d’un gaz 389
rayonnement du corps noir 485

densité de flux
onde électromagnétique 722

détente adiabatique 483
gaz parfait 480
libérée 112

dans la conduction d’entropie 605
intégrale de la puissance 120
travail 120

mesure de l’accomplissement 112
paramagnétisme 492
partie intrinsèque de l’énergie

molaire 548
porteurs d’énergie 123–127
potentielle 114
processus chimiques 271–273
processus continus 597–598
propriétés 114
sources 515, 598, 606
taux de libération, voir puissance
transfert 112, 123–127

et porteurs d’énergie 123–127
gaz parfait 481
lors de chauffage ou

refroidissement 210, 481
processus de translation 379

travail 112, 120
enthalpie

coefficient de température 472
de fusion 496
de vaporisation 496
écoulement de fluide 543
gaz parfait 480
latente de vaporisation 497

entropie
accumulation 204

gaz parfait 478
bilan, voir bilan d’entropie
calorique 195, 203
capacité,voir capacité, entropique
changement de phase 495
conduction 601–614
conductivité 517, 604
corps noir 487
courant 208

conduction 517–520
convectif 541
cycle de Carnot 231
densité 519, 591, 594, 601
écoulement à travers des surfaces 512
loi de Fourier 517–520, 604

échangée 208, 465–466, 469
généralités 203–206
grandeur extensive thermique 204
latente

changement de phase 495
de fusion 496
de l’eau (0°C à 4°C) 465
de vaporisation 496, 497
fluide parfait 465
gaz parfait 467, 480
par rapport à l’aimantation 491
par rapport à la pression 468
par rapport au volume 465
rayonnement du corps noir 485
signe 465
stockage 578–581

minimisation
capteur solaire thermique 572

molaire 251
paramagnétisme 491
pertes

capteur solaire thermique 572, 576
systèmes ouverts 538

porteur d’énergie 211
processus chimiques 273–275
production

capteur solaire thermique 569, 572
chauffage à écoulement 555
conduction thermique 520, 605
dispositif thermoélectrique 617
dissipation 212
irréversibilité 205
mélange 555
pression de vapeur 502
processus 205
rayonnement 526–529
réactions chimiques 273
systèmes d’écoulement 553–555
transfert d’entropie 224
transfert de chaleur 511–515
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vaporisation d’eau 498
produite 208
propriétés 203
relation avec la température et

l’énergie 210–213
sources 514, 602
spécifique 215
transfert 511–515

conductance 220
conduction 511, 601–614
convection 512
couches composites 220, 225
lors de chauffage ou

refroidissement 220–224
modes de transfert 204
rayonnement 513–515
résistance thermique 221

variation 208, 216
équation d’état

gaz et rayonnement 487
gaz parfait 467
rayonnement du corps noir 485
substance paramagnétique 490
thermique 467

équation de champ
température 605, 607, 612

équations de bilan 5, 15–18
forme instantanée 16
forme intégrée 16, 593
forme locale 586, 593
processus continus 593–596
systèmes ouverts 544
voir aussi bilan de ...

équations raides 181, 311
équilibrage

niveaux électriques 50
niveaux hydrauliques 1
températures 193

équilibre
chimique 502
hydrostatique 439
réactions chimiques 283

étoiles
masse molaire 487
rayonnement interne 487

Euler
effet d’inertie 747

évaporation 557–562
courant de quantité de matière 558
diffusion de vapeur 558
eau chaude 557
eau froide 560
refroidissement 560

excitation magnétique

 

H 654
expérience

à-coup de courant 696
caractéristique d’une source de

tension 77
Cavendish 682
charge et décharge d’un

condensateur 53
chauffage d’un cylindre de cuivre 194
chauffage de glycol 218
collision de deux disques 320
collision entre deux glisseurs 358

conduction dans une barre de cuivre 522
contact thermique entre deux corps 193
couplage de processus électrique et

thermique 110
décharge d’un supercondensateur 85
décomposition de la murexide 240
démarrage d’un courant d’eau 144
diffusion de sel à travers une

membrane 242
diffusion de sel dans l’eau 244
diffusion de toluène de l’eau vers

l’air 245
double nature de la charge électrique 51
dynamique d’une lampe à

incandescence 532
écoulement de chaleur dans une

barre 198
effet Bernoulli 31
électrisation par frottement 49
équilibrage des niveaux électriques 50
évaporation d’eau chaude 558
évaporation d’eau froide 560
fusion de glace 199
influcence magnétique 629
influence électrostatique 56
interaction entre charges électriques 55
libération de chaleur latente 578
mélange de sel et d’eau 540
module Peltier 300–307
mutarotation du glucose 246
Œrsted 629
oscillations du pendule de Pohl 348
oscillations entre réservoirs

communicants 144
oscillations forcées du pendule de

Pohl 349
refroidissement d’eau dans une

canette 195
refroidissement de cire liquide 578
réservoirs communicants 2
résistance ohmique 71
résistivité du tungstène 534
Rüchardt 475
Rutherford 731
self-induction 695
séparation de moments cinétiques

opposés 323
trempage de coeurs de pommes de

terre 246
vaporisation d’eau 198, 497
variation de la pression d’un gaz avec la

température 202
variation de la résistance avec la

température 202

 

F
Faraday

constante 250, 290, 318
loi d’induction 692

ferromagnétisme
domaines de Weiss 658
hystérésis 658
température de Curie 658

fluide
newtonien 447
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parfait 442
bilan d’énergie 464
bilan d’entropie 463
bilan de volume 464
capacité entropique 465
chauffage 465–467
chauffage isochore 465
compression 464
écoulement potentiel 445
entropie latente 465
équation de Bernoulli 443
équation de continuité 443
équations de bilan 463
propriétés 463
transfert d’énergie 464

propriétés 439
statique

équilibre hydrostatique 439
poussée d’Archimède 441

visqueux 446
couche limite 447
effet Magnus 446, 452
loi de Hagen-Poiseuille 447
nombre de Reynolds 450
similitude dynamique 450

flux 3
densité 590
facteur 5
synonyme pour courant 8

flux d’un champ vectoriel
concept 634
divergence 636
surface gaussienne 634
théorème de Gauss 635

force
apparente 746
d’inertie 746

accélération d’Euler 747
centrifuge 746
de Coriolis 747

entre courants parallèles 671
fictive 746
force d’adhérence 412
force de contact 411
force et flux de quantité de

mouvement 397–402
force normale 412
Laplace 669
lien avec l’induction 400
Lorentz 670, 732
moment d’une force 422
puissance d’une force 403
travail produit 404

force d’entraînement
chimique 240, 255–264
convection 512
électrique 51, 64
flux de chaleur 194
hydraulique 19, 28
inductive 145
thermique 201
thermique (conduction) 511

Foucault
courants 697

Fourier

loi 517–520
conduction thermique 604
flux d’énergie 520

fraction
masse-volume 251
massique 251
molaire 251

fréquence
lien avec la vitesse angulaire 330
mouvement de rotation 330

frottement 386

 

G
Gauss

théorème 592, 635
Gay-Lussac

loi 265
gaz de photons 484
gaz parfait

capacité entropique 470
chauffage 465–468
constante des gaz parfaits 264
contenu en entropie 478
énergie 480–484
enthalpie 480–484
entropie latente 467, 480
équation d’état 264, 467
lois constitutives 467–473
mélanges 264
modèle corpusculaire 387
potentiel chimique 268
processus adiabatique 470–471
relation entre entropie latente et capacité

entropique 467
générateur

électrique 697
thermoélectrique 297, 303

Gibbs
potentiel chimique 240
relation fondamentale

écoulement de fluide 551
fluide parfait 480
fluides simples 214
substance paramagnétique 492

gradient
concentration 278
de la densité 586
potentiel chimique 278
potentiel du champ électrostatique 639
potentiel électrique 73
pression 20, 28
température 220, 520, 604

grandeur de niveau
chimique 240
électrique 50, 59
hydraulique 1
processus de rotation 321, 326
processus de translation 360, 368
thermique 194, 201

grandeur extensive 9
chaleur 195
charge électrique 50, 58
densité 588
énergie 115
entropie 196, 204
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moment cinétique 321, 323
quantité de matière 240, 248
quantité de mouvement 360, 365
volume 9

grandeur intensive 9
potentiel chimique 241, 255
potentiel électrique 51, 59
pression 9
température 196, 201
vitesse 360
vitesse angulaire 321, 326

grandeur semblable à un fluide
charge électrique 50, 58
entropie 196, 204
liste 205, 368
quantité de mouvement 361
voir aussi grandeur extensive

grandeurs molaires 251
grandeurs primitives

chimie 248, 255
électricité 58
hydraulique 8
processus de rotation 323
processus de translation 365
thermodynamique 201

gravité
source de quantité de mouvement 371

 

H
Hagen-Poiseuille

loi 29, 447
Hall

effet 673
Hertz

dipôle 720
Hooke

loi 400
horseshoe orbit 758
Huygens-Steiner

théorème de l’axe parallèle 338
hydraulique

capacité 24
courant de volume 14
différence de pression 15, 21
force d’entraînement 19
induction 147
modèle RLC 164
modèles RC 35–43
modèles RL 152–156
résistance 28
volume 9

hystérésis 658

 

I
inductance

électrique 157
hydraulique 157, 372

induction
électrique 150

courants de Foucault 697
générateur électrique 697
loi au moyen de la tension 692
loi au moyen des champs 693
microphone et haut-parleur 698

moteur électrique synchrone 697
phénomène de self-induction 696
transformateur 698

hydraulique 147, 550
puissance 159

inertie
effets inductifs 143, 144
électrique 150
fluide 143, 144
force (effet) d’inertie 746
processus de rotation 332–341
processus de translation 361, 374

influence
électrique 56, 626
magnétique 629

intensité
courant 5, 14
état électrique

potentiel 59
état thermique

température 201
irréversibilité, voir production d’entropie
isentropique, voir processus adiabatique
isotherme, voir processus isotherme

 

K
Képler

lois du mouvement planétaire 678
trajectoires képleriennes 741

Kirchhoff
première loi

électrique 62
hydraulique 44

seconde loi
électrique 64, 67
hydraulique 22
puissance 120

 

L
Lagrange

points 751
satellisation autour de L4 754

Laplace
force 669

Lawrence
cyclotron 734

libration 757
liquide comprimé 499
lit de galets 599
loi des mailles

électrique 64, 67
hydraulique 22
puissance 120

loi des noeuds
électrique 62
hydraulique 44

lois constitutives 8
chaleur et processus

thermiques 213–228
électricité 64, 67, 70
et équations de bilan 17
gaz parfait 467–473
hydraulique 17, 37–45
migration des sauterelles 586
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rayonnement du corps noir 486
thermoélectricité 616

Lorentz
force 670, 732

 

M
machine thermique

coefficient de performance 230
cycle de Carnot 231
diagramme de processus 210, 229
efficacité 230
idéale 229
pompe à chaleur idéale 229
principe de fonctionnement 210

magnétisation, voir aimantation
magnétisme et chaleur 489–494

capacité entropique à aimantation
constante 491

couplage magnétocalorique 490
désaimantation adiabatique 493
entropie latente par rapport à

l’aimantation 491
équation d’état d’une substance

paramagnétique 490
relation fondamentale de Gibbs 492

Magnus
effet 446, 452

masse
capacité en quantité de mouvement 361,

374
densité de flux 591
en tant que charge gravitationnelle 630
équivalence masse-énergie 391
masse inerte 361, 374
masse inerte et masse pesante 376
molaire 251

à l’intérieur des étoiles 487
Maxwell

équations du champ
électromagnétique 701

loi d’Ampère-Maxwell 699
mélange

production d’entropie 555
mélanges

eau fraîche et eau salée 540
fraction molaire 265
pression partielle 266

microphone et haut-parleur 698
miroir magnétique 735
modèles de dynamique des systèmes

bouteille magnétique 736
capteur solaire thermique 571
chaîne de condensateurs 84
chaîne de réservoirs 42
charge d’un condensateur 82

solution analytique 82
chauffage d’un corps solide 226
chauffage de glycol 219
chute de caissettes à cupcakes 386
circuit RLC 164

traitement analytique 167
collision de deux disques 322
collision entre deux glisseurs 361, 380
condensateurs couplés 72
conduction de l’entropie 522

corps en contact thermique 224
couplage par embrayage 343
décharge d’un condensateur 80

solution analytique 81
décomposition de murexide 241
démarrage d’un courant 154
désintégration radioactive 285
diffusion 42, 279
diffusion de sel 243
diffusion du toluène 281
diode 177

avec propriétés capacitives 179
avec propriétés inductives 180

dynamique d’une lampe à
incandescence 532

effet Coriolis 748
électrique du circuit cardiovasculaire 96,

98, 183
équations raides 181
équilibrage des températures 226
expérience de Rutherford 731
hydraulique du circuit

cardiovasculaire 99, 102, 104, 185,
187, 188

lancement vertical d’une fusée 550
libération de chaleur latente 579
mélange d’eau fraîche et d’eau salée 540
module Peltier 308, 310, 314
mouvement képlerien 741
mutarotation du glucose 284
pendule de Pohl 352
perméabilité des globules rouges 281
problèmes numériques 181
refroidissement d’eau 195, 222
refroidissement de cire liquide 579
refroidissement par évaporation 560
relations algébriques circulaires 177
remplissage d’un réservoir 38

solution analytique 39
réservoirs communicants 15, 23, 26, 31
satellisation autour de L4 755
vidange d’un réservoir 36

solution analytique 36
windkessel 41
windkessel électrique 83

modélisation de systèmes dynamiques
équations raides 181, 311
philosophie 4–7
problèmes numériques 181, 311
relations algébriques circulaires 177
structure des modèles 15–17

module Peltier
coefficient Peltier 302, 312, 316
coefficient Seebeck 299, 312, 316
conductance entropique 304
conduction d’entropie 296
efficacité selon la deuxième loi 316
générateur thermoélectrique 297, 303
lois constitutives 311
pompe à chaleur 296, 301
production d’entropie 296
puissance 304
refroidisseur 296, 301
rôle de l’énergie 315
structure 298
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moment cinétique
accumulation 321, 332
bilan, voir bilan de moment cinétique
capacité, voir moment d’inertie
conservation 324, 339
courant 325, 327

lien avec les forces 422
échangé 327
grandeur extensive en rotation 323
induction 346
oscillations 346
propriétés 323–325
transfert 327, 341

conductance 341
embrayage à friction 342
induction 346
par arbre rigide

(supraconduction) 341
résistance 341

moment d’inertie 332–341
moment d’une force 422
moment dipolaire

électrique 649
magnétique 654, 662

monopôle magnétique
concept 628
non-existence 628, 653, 661

moteur électrique synchrone 697
mouvement de libration 757
mouvement planétaire 738
mouvement relatif 743

 

N
Newton

dynamique des fluides 447
loi de la gravitation universelle 679
lois de la dynamique 365, 397–402

niveau, voir grandeur de niveau

 

O
Œrsted

expérience 629
Ohm

conducteurs ohmiques 72
loi de résistance 71

onde
équation de propagation 712
équation différentielle 435
exemples 711
harmonique

équation 713
paramètres 713

propagation dans un gaz 478
propagation dans un solide 437

onde électromagnétique
caractéristiques 718
densité d’énergie 721
densité de flux d’énergie 722
densité de flux de quantité de

mouvement 722
dipôle de Hertz 720
existence 717
pression radiative 723

orbite en fer à cheval 758

orbites planétaires 738
oscillations 162–171

hydrauliques 163
modèle RLC 164
pendule de Pohl 346
résonance 348–351
sur un plan horizontal 417
traitement analytique 167

osmose 269
coeurs de pommes de terre 246
globules rouges 281

 

P
paramagnétisme 657
pebble bed 599
Peltier

coefficient 302, 312, 615
voir aussi module Peltier

perméabilité magnétique
absolue 656
du vide 654
relative 656

permittivité
du vide 68, 633
relative 69, 651

pile à combustible 76, 288
Pohl

oscillations du pendule 346
point critique 499
point de fusion

équilibre des potentiels chimiques 258
influence de la pression 259

points de Lagrange 751
polarisation

électrique 56, 626, 649
moment dipolaire 649
susceptibilité 650

magnétique 629, 656
moment dipolaire 654, 662

pompage
de la charge 52, 64
élévation du potentiel 52, 64

pompe à chaleur
pompe à chaleur Peltier 296

pompes
caractéristique 32
différence de pression 22
force d’entraînement 19
intermittente 104, 106, 187

potentiel
champ électrostatique 638

champ dipolaire 643
charge ponctuelle 638
gradient 639
puits et collines 640

chimique 240, 255–264
changement de phase 501
dépendance de la concentration 260
dépendance de la pression 259
dépendance de la température 258
écoulement de fluide 551
valeurs 257, 260–264
vapeur et liquide 503

électrique 51, 59, 64
électrochimique 289
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et courant d’énergie 124
et transfert d’énergie 112
hydraulique 9
processus de rotation 321, 326
processus de translation 360, 368
thermique 201, 232
thermoélectrique 618

potentiels combinés
potentiel électrochimique 289, 615
potentiel gravitochimique 275
potentiel thermo-électrochimique 616

Poynting
vecteur 704

premier principe de la
thermodynamique 232

pression 2
de vapeur 502
force d’entraînement hydraulique 19
osmotique 269
partielle 266

air et vapeur 558
potentiel hydraulique 9
radiative 723

pression sanguine
diastolique 92
en mmHg 92
systolique 92

problème à trois corps restreint 751
processus

adiabatique 207
compression 207
détente 207
gaz parfait 470–471

chaînes de processus 111
continus

conduction thermique 601–614
équations de bilan 593–596
thermoélectricité 615

exemples de couplage 112
isotherme 207

compression 207
compression d’un fluide parfait 465
détente 207

spontané ou contraint 17
transport

par convection 538–544, 587
par rayonnement 524–537, 587

production d’entropie, voir entropie
pseudoforce 746
Ptolémée

modèle géocentrique 678
puissance 110

bilan dans les circuits 120
chute d’eau 116
module Peltier 304
processus chimique 271
processus de translation 379
processus électrique 119
processus gravitationnel 116
processus hydraulique 119
processus inductif 159
processus thermique 210
processus thermoélectrique 618
puissance d’un moment 424
puissance d’une force 403

taux de libération d’énergie 120
puits, voir source

 

Q
quantité

d’électricité 58
de fluide 8

quantité de matière
concept 248–253
courant 252, 539
mesure de la quantité de substance 8
réactions chimiques 248–250
taux de production 252

quantité de mouvement
accumulation 360, 366, 374, 390
bilan, voir bilan de quantité de mouve-

ment
capacité 374
caractère vectoriel 366
conservation 366
courant 364, 369, 371
densité 589
densité dans le champ

électromagnétique 707
densité de flux 369, 591, 595

onde électromagnétique 722
échange 362, 365, 386
échangée 363, 365
grandeur extensive en translation 365
porteur d’énergie 378
propriétés 366–367
transfert

conduction 369, 594
contraintes 369
convection 371, 541, 594
courant 362, 367, 369
par la lumière 390
par le champ magnétique 362
par rayonnement 371
résistance 386

quantité échangée
charge électrique 60
volume 14

quantité, mesure de 8

 

R
rayonnement

à l’intérieur d’une étoile 487
absorbeurs sélectifs 532
absorption 527–529
absorptivité 530
bilan d’énergie 486, 515
bilan d’entropie 486, 513–515
constante de Stefan-Boltzmann 525
émission 527–529
émissivité 530
interaction entre corps et champ 514
loi de Kirchhoff 530
production d’entropie 526–529
rayonnement du corps noir 484–489,

525–529
capacité entropique 486
densité d’énergie 485
énergie 485
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entropie latente 485
pression 485

réflexivité 530
solaire

constante solaire 536
surfaces grises 530–532
surfaces opaques 524–532
température 486
thermique 485
transfert d’entropie 524–526

réacteur nucléaire 600
réactions chimiques

bilan de quantité de matière 283
changement de phase 501
désintégration radioactive 285
exothermiques et endothermiques 273
production d’entropie 273
quantité de matière 248

réactions électrochimiques 290
référentiel 406

inertiel 743
refroidissement, voir chauffage
refroidisseur Peltier 296
rendement 117
résistance

électrique 70
hydraulique 28
processus de rotation 341
processus de translation 386
thermique 221, 524
transfert d’entropie 521

résistivité 72
résonance 348–351
Reynolds

nombre 450
rotationnel

concept 665
théorème d’Ampère 661, 665

roulement
étude du mouvement 429–435

Rutherford
expérience 731

 

S
sauterelles

bilan 585
lois constitutives 586
migration 583–588
naissance et mort 585
rayonnement et convection 587
transports conductifs 584

Seebeck
coefficient 299, 312, 615

self-induction 696
solide rigide

centre de masse 420
décomposition du mouvement 423
mouvement 420
propriétés 333
rotation autour d’un axe de direction

constante 424–428
solutions

diluées 268
osmose 268
potentiel chimique 269

pression osmotique 268
pression partielle 268
soluté 268
solvant 268

son
propagation dans l’air. 477
vitesse du son dans un gaz parfait 478

source
de tension 52, 76

caractéristique 77
du champ électrostatique 636
énergie 598, 606
entropie 606
équation de champ avec sources 607
quantité de mouvement 371
sauterelles 587
synonyme pour alimentation 52

spectromètre de masse 733
spin

moment cinétique intrinsèque 325
Stefan-Boltzmann

loi 487
Stirling

moteur 199
stockage

chaleur latente 578–581
charge électrique 67
énergie 127–135, 161, 351, 599
entropie 204, 208, 308, 603, 612
moment cinétique 321
quantité de mouvement 360, 366, 374,

390
volume 24

substances
briques fondamentales 248
et charge électrique 249
quantité de matière 248–250

supraconduction
électrique 76
transfert de moment cinétique 341

surface gaussienne 634
surfaces 632
susceptibilité

électrique 650
magnétique 656

systèmes d’écoulement
analyse 553–555
effets inductifs 550
production d’entropie 553–555

systèmes ouverts 538–557
analyse 547–551
avec effets mécaniques 547–553
courant d’énergie 547
en mouvement 548
potentiel chimique 551
processus thermiques 538
volume de contrôle 513

 

T
taux de production

densité 585, 592, 601
entropie 208, 212, 224
quantité de matière 252
volume 464

taux de source
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densité 592
énergie 515, 527
entropie 514, 527, 534
quantité de mouvement 371
spécifique 592

quantité de mouvement 598
taux de variation 9

charge électrique 59
courant électrique 150
énergie 213, 515, 527
entropie 208, 527, 534
flux volumique 147
quantité de mouvement 372
volume 9

température
à la surface de la Terre 536
à la surface du Soleil 536
absolue 202
absolue et potentiel thermique 232
accès aux basses températures 493
changement de phase 198
coefficient de pression 202
du gaz parfait 202
échelle Celsius 202
échelle Kelvin 202
équation de champ 605, 607, 612
gradient 604
mesure du degré de chaleur 201
niveau thermique 194
potentiel thermique 201

tenseur du flux de quantité de
mouvement 592, 595, 707

tension chimique 256
tension électrique 51, 60

chute de potentiel 60
différence de potentiel 51
tension à vide 78
tension aux bornes 51, 64, 78
tension capacitive 67
tension induite 150, 689
tension résistive 71

thermocouple 298
thermoélectricité

bilan d’énergie 616
bilan d’entropie et charge 616
coefficient Peltier 302, 316, 615
coefficient Seebeck 299, 316, 615
densité de puissance 618
en tant que processus chimique 317
lois constitutives 616
potentiel 618
production d’entropie 617
voir aussi module Peltier

thermomètre
à gaz 202
à résistance électrique 202
au mercure 202

trajectoire 406
transformateur 698
transformation intégrale

théorème de la divergence 592
travail 404

 

V
Van Allen

ceintures 737
vapeur

pression 502
saturée 495
surchauffée 495

variation 9
de l’entropie à partir de la capacité 216
de l’intensité du courant 145, 147, 150
de la charge électrique 59
du volume 9
du volume à partir de la capacité 25
du volume à partir du taux de

variation 10
vitesse

caractère vectoriel 379, 407
de libération 740
de satellisation 740
niveau de mouvement 360
potentiel du mouvement de

translation 360, 368
vitesse angulaire

niveau de rotation 321, 326
potentiel rotatoire 321

volume 8, 9
corps et volume de contrôle 513
échangé 14
équation de bilan 16
molaire 251
taux de production 464
variation du volume 9

 

W
windkessel

électrique 83
hydraulique 41
modèle du circuit cardiovasculaire 94,

183
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